diff options
author | Anton Samokhvalov <pg83@yandex.ru> | 2022-02-10 16:45:15 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:15 +0300 |
commit | 72cb13b4aff9bc9cf22e49251bc8fd143f82538f (patch) | |
tree | da2c34829458c7d4e74bdfbdf85dff449e9e7fb8 /contrib/restricted | |
parent | 778e51ba091dc39e7b7fcab2b9cf4dbedfb6f2b5 (diff) | |
download | ydb-72cb13b4aff9bc9cf22e49251bc8fd143f82538f.tar.gz |
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted')
-rw-r--r-- | contrib/restricted/libffi/include/ffi_common.h | 236 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/closures.c | 1172 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/dlmalloc.c | 10296 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/java_raw_api.c | 702 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/prep_cif.c | 418 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/raw_api.c | 498 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/types.c | 124 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/ffi.c | 334 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/ffi64.c | 1102 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/ffitarget.h | 200 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/sysv.S | 186 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/unix64.S | 286 | ||||
-rw-r--r-- | contrib/restricted/libffi/src/x86/win64.S | 74 | ||||
-rw-r--r-- | contrib/restricted/libffi/ya.make | 30 |
14 files changed, 7829 insertions, 7829 deletions
diff --git a/contrib/restricted/libffi/include/ffi_common.h b/contrib/restricted/libffi/include/ffi_common.h index 76b9dd6faf..c403bade2d 100644 --- a/contrib/restricted/libffi/include/ffi_common.h +++ b/contrib/restricted/libffi/include/ffi_common.h @@ -1,24 +1,24 @@ -/* ----------------------------------------------------------------------- +/* ----------------------------------------------------------------------- ffi_common.h - Copyright (C) 2011, 2012, 2013 Anthony Green - Copyright (C) 2007 Free Software Foundation, Inc - Copyright (c) 1996 Red Hat, Inc. + Copyright (C) 2007 Free Software Foundation, Inc + Copyright (c) 1996 Red Hat, Inc. - Common internal definitions and macros. Only necessary for building - libffi. - ----------------------------------------------------------------------- */ - -#ifndef FFI_COMMON_H -#define FFI_COMMON_H - -#ifdef __cplusplus -extern "C" { -#endif - -#include <fficonfig.h> - -/* Do not move this. Some versions of AIX are very picky about where - this is positioned. */ -#ifdef __GNUC__ + Common internal definitions and macros. Only necessary for building + libffi. + ----------------------------------------------------------------------- */ + +#ifndef FFI_COMMON_H +#define FFI_COMMON_H + +#ifdef __cplusplus +extern "C" { +#endif + +#include <fficonfig.h> + +/* Do not move this. Some versions of AIX are very picky about where + this is positioned. */ +#ifdef __GNUC__ # if HAVE_ALLOCA_H # include <alloca.h> # else @@ -27,63 +27,63 @@ extern "C" { # define alloca __builtin_alloca # endif # endif -# define MAYBE_UNUSED __attribute__((__unused__)) -#else -# define MAYBE_UNUSED -# if HAVE_ALLOCA_H -# include <alloca.h> -# else -# ifdef _AIX +# define MAYBE_UNUSED __attribute__((__unused__)) +#else +# define MAYBE_UNUSED +# if HAVE_ALLOCA_H +# include <alloca.h> +# else +# ifdef _AIX # pragma alloca -# else -# ifndef alloca /* predefined by HP cc +Olibcalls */ -# ifdef _MSC_VER -# define alloca _alloca -# else -char *alloca (); -# endif -# endif +# else +# ifndef alloca /* predefined by HP cc +Olibcalls */ +# ifdef _MSC_VER +# define alloca _alloca +# else +char *alloca (); +# endif +# endif +# endif # endif -# endif -#endif - -/* Check for the existence of memcpy. */ -#if STDC_HEADERS -# include <string.h> -#else -# ifndef HAVE_MEMCPY -# define memcpy(d, s, n) bcopy ((s), (d), (n)) -# endif -#endif - -#if defined(FFI_DEBUG) -#include <stdio.h> -#endif - -#ifdef FFI_DEBUG -void ffi_assert(char *expr, char *file, int line); -void ffi_stop_here(void); -void ffi_type_test(ffi_type *a, char *file, int line); - -#define FFI_ASSERT(x) ((x) ? (void)0 : ffi_assert(#x, __FILE__,__LINE__)) -#define FFI_ASSERT_AT(x, f, l) ((x) ? 0 : ffi_assert(#x, (f), (l))) -#define FFI_ASSERT_VALID_TYPE(x) ffi_type_test (x, __FILE__, __LINE__) -#else -#define FFI_ASSERT(x) -#define FFI_ASSERT_AT(x, f, l) -#define FFI_ASSERT_VALID_TYPE(x) -#endif - +#endif + +/* Check for the existence of memcpy. */ +#if STDC_HEADERS +# include <string.h> +#else +# ifndef HAVE_MEMCPY +# define memcpy(d, s, n) bcopy ((s), (d), (n)) +# endif +#endif + +#if defined(FFI_DEBUG) +#include <stdio.h> +#endif + +#ifdef FFI_DEBUG +void ffi_assert(char *expr, char *file, int line); +void ffi_stop_here(void); +void ffi_type_test(ffi_type *a, char *file, int line); + +#define FFI_ASSERT(x) ((x) ? (void)0 : ffi_assert(#x, __FILE__,__LINE__)) +#define FFI_ASSERT_AT(x, f, l) ((x) ? 0 : ffi_assert(#x, (f), (l))) +#define FFI_ASSERT_VALID_TYPE(x) ffi_type_test (x, __FILE__, __LINE__) +#else +#define FFI_ASSERT(x) +#define FFI_ASSERT_AT(x, f, l) +#define FFI_ASSERT_VALID_TYPE(x) +#endif + /* v cast to size_t and aligned up to a multiple of a */ #define FFI_ALIGN(v, a) (((((size_t) (v))-1) | ((a)-1))+1) /* v cast to size_t and aligned down to a multiple of a */ #define FFI_ALIGN_DOWN(v, a) (((size_t) (v)) & -a) - -/* Perform machine dependent cif processing */ -ffi_status ffi_prep_cif_machdep(ffi_cif *cif); -ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif, - unsigned int nfixedargs, unsigned int ntotalargs); - + +/* Perform machine dependent cif processing */ +ffi_status ffi_prep_cif_machdep(ffi_cif *cif); +ffi_status ffi_prep_cif_machdep_var(ffi_cif *cif, + unsigned int nfixedargs, unsigned int ntotalargs); + #if HAVE_LONG_DOUBLE_VARIANT /* Used to adjust size/alignment of ffi types. */ @@ -103,51 +103,51 @@ ffi_status ffi_prep_cif_core(ffi_cif *cif, some targets. */ void *ffi_data_to_code_pointer (void *data) FFI_HIDDEN; -/* Extended cif, used in callback from assembly routine */ -typedef struct -{ - ffi_cif *cif; - void *rvalue; - void **avalue; -} extended_cif; - -/* Terse sized type definitions. */ -#if defined(_MSC_VER) || defined(__sgi) || defined(__SUNPRO_C) -typedef unsigned char UINT8; -typedef signed char SINT8; -typedef unsigned short UINT16; -typedef signed short SINT16; -typedef unsigned int UINT32; -typedef signed int SINT32; -# ifdef _MSC_VER -typedef unsigned __int64 UINT64; -typedef signed __int64 SINT64; -# else -# include <inttypes.h> -typedef uint64_t UINT64; -typedef int64_t SINT64; -# endif -#else -typedef unsigned int UINT8 __attribute__((__mode__(__QI__))); -typedef signed int SINT8 __attribute__((__mode__(__QI__))); -typedef unsigned int UINT16 __attribute__((__mode__(__HI__))); -typedef signed int SINT16 __attribute__((__mode__(__HI__))); -typedef unsigned int UINT32 __attribute__((__mode__(__SI__))); -typedef signed int SINT32 __attribute__((__mode__(__SI__))); -typedef unsigned int UINT64 __attribute__((__mode__(__DI__))); -typedef signed int SINT64 __attribute__((__mode__(__DI__))); -#endif - -typedef float FLOAT32; - -#ifndef __GNUC__ -#define __builtin_expect(x, expected_value) (x) -#endif -#define LIKELY(x) __builtin_expect(!!(x),1) -#define UNLIKELY(x) __builtin_expect((x)!=0,0) - -#ifdef __cplusplus -} -#endif - -#endif +/* Extended cif, used in callback from assembly routine */ +typedef struct +{ + ffi_cif *cif; + void *rvalue; + void **avalue; +} extended_cif; + +/* Terse sized type definitions. */ +#if defined(_MSC_VER) || defined(__sgi) || defined(__SUNPRO_C) +typedef unsigned char UINT8; +typedef signed char SINT8; +typedef unsigned short UINT16; +typedef signed short SINT16; +typedef unsigned int UINT32; +typedef signed int SINT32; +# ifdef _MSC_VER +typedef unsigned __int64 UINT64; +typedef signed __int64 SINT64; +# else +# include <inttypes.h> +typedef uint64_t UINT64; +typedef int64_t SINT64; +# endif +#else +typedef unsigned int UINT8 __attribute__((__mode__(__QI__))); +typedef signed int SINT8 __attribute__((__mode__(__QI__))); +typedef unsigned int UINT16 __attribute__((__mode__(__HI__))); +typedef signed int SINT16 __attribute__((__mode__(__HI__))); +typedef unsigned int UINT32 __attribute__((__mode__(__SI__))); +typedef signed int SINT32 __attribute__((__mode__(__SI__))); +typedef unsigned int UINT64 __attribute__((__mode__(__DI__))); +typedef signed int SINT64 __attribute__((__mode__(__DI__))); +#endif + +typedef float FLOAT32; + +#ifndef __GNUC__ +#define __builtin_expect(x, expected_value) (x) +#endif +#define LIKELY(x) __builtin_expect(!!(x),1) +#define UNLIKELY(x) __builtin_expect((x)!=0,0) + +#ifdef __cplusplus +} +#endif + +#endif diff --git a/contrib/restricted/libffi/src/closures.c b/contrib/restricted/libffi/src/closures.c index 5120021652..5819fdb769 100644 --- a/contrib/restricted/libffi/src/closures.c +++ b/contrib/restricted/libffi/src/closures.c @@ -1,40 +1,40 @@ -/* ----------------------------------------------------------------------- +/* ----------------------------------------------------------------------- closures.c - Copyright (c) 2019 Anthony Green Copyright (c) 2007, 2009, 2010 Red Hat, Inc. - Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc - Copyright (c) 2011 Plausible Labs Cooperative, Inc. - - Code to allocate and deallocate memory for closures. - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -#if defined __linux__ && !defined _GNU_SOURCE -#define _GNU_SOURCE 1 -#endif - + Copyright (C) 2007, 2009, 2010 Free Software Foundation, Inc + Copyright (c) 2011 Plausible Labs Cooperative, Inc. + + Code to allocate and deallocate memory for closures. + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +#if defined __linux__ && !defined _GNU_SOURCE +#define _GNU_SOURCE 1 +#endif + #include <fficonfig.h> -#include <ffi.h> -#include <ffi_common.h> - +#include <ffi.h> +#include <ffi_common.h> + #ifdef __NetBSD__ #include <sys/param.h> #endif @@ -111,39 +111,39 @@ ffi_closure_free (void *ptr) } #else /* !NetBSD with PROT_MPROTECT */ -#if !FFI_MMAP_EXEC_WRIT && !FFI_EXEC_TRAMPOLINE_TABLE +#if !FFI_MMAP_EXEC_WRIT && !FFI_EXEC_TRAMPOLINE_TABLE # if __linux__ && !defined(__ANDROID__) -/* This macro indicates it may be forbidden to map anonymous memory - with both write and execute permission. Code compiled when this - option is defined will attempt to map such pages once, but if it - fails, it falls back to creating a temporary file in a writable and - executable filesystem and mapping pages from it into separate - locations in the virtual memory space, one location writable and - another executable. */ -# define FFI_MMAP_EXEC_WRIT 1 -# define HAVE_MNTENT 1 -# endif +/* This macro indicates it may be forbidden to map anonymous memory + with both write and execute permission. Code compiled when this + option is defined will attempt to map such pages once, but if it + fails, it falls back to creating a temporary file in a writable and + executable filesystem and mapping pages from it into separate + locations in the virtual memory space, one location writable and + another executable. */ +# define FFI_MMAP_EXEC_WRIT 1 +# define HAVE_MNTENT 1 +# endif # if defined(X86_WIN32) || defined(X86_WIN64) || defined(_M_ARM64) || defined(__OS2__) -/* Windows systems may have Data Execution Protection (DEP) enabled, - which requires the use of VirtualMalloc/VirtualFree to alloc/free - executable memory. */ -# define FFI_MMAP_EXEC_WRIT 1 -# endif -#endif - -#if FFI_MMAP_EXEC_WRIT && !defined FFI_MMAP_EXEC_SELINUX +/* Windows systems may have Data Execution Protection (DEP) enabled, + which requires the use of VirtualMalloc/VirtualFree to alloc/free + executable memory. */ +# define FFI_MMAP_EXEC_WRIT 1 +# endif +#endif + +#if FFI_MMAP_EXEC_WRIT && !defined FFI_MMAP_EXEC_SELINUX # if defined(__linux__) && !defined(__ANDROID__) -/* When defined to 1 check for SELinux and if SELinux is active, - don't attempt PROT_EXEC|PROT_WRITE mapping at all, as that - might cause audit messages. */ -# define FFI_MMAP_EXEC_SELINUX 1 -# endif -#endif - -#if FFI_CLOSURES - +/* When defined to 1 check for SELinux and if SELinux is active, + don't attempt PROT_EXEC|PROT_WRITE mapping at all, as that + might cause audit messages. */ +# define FFI_MMAP_EXEC_SELINUX 1 +# endif +#endif + +#if FFI_CLOSURES + #if FFI_EXEC_TRAMPOLINE_TABLE - + #ifdef __MACH__ #include <mach/mach.h> @@ -349,120 +349,120 @@ ffi_closure_free (void *ptr) #endif -// Per-target implementation; It's unclear what can reasonable be shared between two OS/architecture implementations. - +// Per-target implementation; It's unclear what can reasonable be shared between two OS/architecture implementations. + #elif FFI_MMAP_EXEC_WRIT /* !FFI_EXEC_TRAMPOLINE_TABLE */ - -#define USE_LOCKS 1 -#define USE_DL_PREFIX 1 -#ifdef __GNUC__ -#ifndef USE_BUILTIN_FFS -#define USE_BUILTIN_FFS 1 -#endif -#endif - -/* We need to use mmap, not sbrk. */ -#define HAVE_MORECORE 0 - -/* We could, in theory, support mremap, but it wouldn't buy us anything. */ -#define HAVE_MREMAP 0 - -/* We have no use for this, so save some code and data. */ -#define NO_MALLINFO 1 - -/* We need all allocations to be in regular segments, otherwise we - lose track of the corresponding code address. */ -#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T - -/* Don't allocate more than a page unless needed. */ -#define DEFAULT_GRANULARITY ((size_t)malloc_getpagesize) - -#include <sys/types.h> -#include <sys/stat.h> -#include <fcntl.h> -#include <errno.h> -#ifndef _MSC_VER -#include <unistd.h> -#endif -#include <string.h> -#include <stdio.h> + +#define USE_LOCKS 1 +#define USE_DL_PREFIX 1 +#ifdef __GNUC__ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 1 +#endif +#endif + +/* We need to use mmap, not sbrk. */ +#define HAVE_MORECORE 0 + +/* We could, in theory, support mremap, but it wouldn't buy us anything. */ +#define HAVE_MREMAP 0 + +/* We have no use for this, so save some code and data. */ +#define NO_MALLINFO 1 + +/* We need all allocations to be in regular segments, otherwise we + lose track of the corresponding code address. */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T + +/* Don't allocate more than a page unless needed. */ +#define DEFAULT_GRANULARITY ((size_t)malloc_getpagesize) + +#include <sys/types.h> +#include <sys/stat.h> +#include <fcntl.h> +#include <errno.h> +#ifndef _MSC_VER +#include <unistd.h> +#endif +#include <string.h> +#include <stdio.h> #if !defined(X86_WIN32) && !defined(X86_WIN64) && !defined(_M_ARM64) -#ifdef HAVE_MNTENT -#include <mntent.h> -#endif /* HAVE_MNTENT */ -#include <sys/param.h> -#include <pthread.h> - -/* We don't want sys/mman.h to be included after we redefine mmap and - dlmunmap. */ -#include <sys/mman.h> -#define LACKS_SYS_MMAN_H 1 - -#if FFI_MMAP_EXEC_SELINUX -#include <sys/statfs.h> -#include <stdlib.h> - -static int selinux_enabled = -1; - -static int -selinux_enabled_check (void) -{ - struct statfs sfs; - FILE *f; - char *buf = NULL; - size_t len = 0; - - if (statfs ("/selinux", &sfs) >= 0 - && (unsigned int) sfs.f_type == 0xf97cff8cU) - return 1; - f = fopen ("/proc/mounts", "r"); - if (f == NULL) - return 0; - while (getline (&buf, &len, f) >= 0) - { - char *p = strchr (buf, ' '); - if (p == NULL) - break; - p = strchr (p + 1, ' '); - if (p == NULL) - break; - if (strncmp (p + 1, "selinuxfs ", 10) == 0) - { - free (buf); - fclose (f); - return 1; - } - } - free (buf); - fclose (f); - return 0; -} - -#define is_selinux_enabled() (selinux_enabled >= 0 ? selinux_enabled \ - : (selinux_enabled = selinux_enabled_check ())) - -#else - -#define is_selinux_enabled() 0 - -#endif /* !FFI_MMAP_EXEC_SELINUX */ - -/* On PaX enable kernels that have MPROTECT enable we can't use PROT_EXEC. */ -#ifdef FFI_MMAP_EXEC_EMUTRAMP_PAX -#include <stdlib.h> - -static int emutramp_enabled = -1; - -static int -emutramp_enabled_check (void) -{ +#ifdef HAVE_MNTENT +#include <mntent.h> +#endif /* HAVE_MNTENT */ +#include <sys/param.h> +#include <pthread.h> + +/* We don't want sys/mman.h to be included after we redefine mmap and + dlmunmap. */ +#include <sys/mman.h> +#define LACKS_SYS_MMAN_H 1 + +#if FFI_MMAP_EXEC_SELINUX +#include <sys/statfs.h> +#include <stdlib.h> + +static int selinux_enabled = -1; + +static int +selinux_enabled_check (void) +{ + struct statfs sfs; + FILE *f; + char *buf = NULL; + size_t len = 0; + + if (statfs ("/selinux", &sfs) >= 0 + && (unsigned int) sfs.f_type == 0xf97cff8cU) + return 1; + f = fopen ("/proc/mounts", "r"); + if (f == NULL) + return 0; + while (getline (&buf, &len, f) >= 0) + { + char *p = strchr (buf, ' '); + if (p == NULL) + break; + p = strchr (p + 1, ' '); + if (p == NULL) + break; + if (strncmp (p + 1, "selinuxfs ", 10) == 0) + { + free (buf); + fclose (f); + return 1; + } + } + free (buf); + fclose (f); + return 0; +} + +#define is_selinux_enabled() (selinux_enabled >= 0 ? selinux_enabled \ + : (selinux_enabled = selinux_enabled_check ())) + +#else + +#define is_selinux_enabled() 0 + +#endif /* !FFI_MMAP_EXEC_SELINUX */ + +/* On PaX enable kernels that have MPROTECT enable we can't use PROT_EXEC. */ +#ifdef FFI_MMAP_EXEC_EMUTRAMP_PAX +#include <stdlib.h> + +static int emutramp_enabled = -1; + +static int +emutramp_enabled_check (void) +{ char *buf = NULL; size_t len = 0; FILE *f; int ret; f = fopen ("/proc/self/status", "r"); if (f == NULL) - return 0; + return 0; ret = 0; while (getline (&buf, &len, f) != -1) @@ -476,97 +476,97 @@ emutramp_enabled_check (void) free (buf); fclose (f); return ret; -} - -#define is_emutramp_enabled() (emutramp_enabled >= 0 ? emutramp_enabled \ - : (emutramp_enabled = emutramp_enabled_check ())) -#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */ - -#elif defined (__CYGWIN__) || defined(__INTERIX) - -#include <sys/mman.h> - -/* Cygwin is Linux-like, but not quite that Linux-like. */ -#define is_selinux_enabled() 0 - -#endif /* !defined(X86_WIN32) && !defined(X86_WIN64) */ - -#ifndef FFI_MMAP_EXEC_EMUTRAMP_PAX -#define is_emutramp_enabled() 0 -#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */ - -/* Declare all functions defined in dlmalloc.c as static. */ -static void *dlmalloc(size_t); -static void dlfree(void*); -static void *dlcalloc(size_t, size_t) MAYBE_UNUSED; -static void *dlrealloc(void *, size_t) MAYBE_UNUSED; -static void *dlmemalign(size_t, size_t) MAYBE_UNUSED; -static void *dlvalloc(size_t) MAYBE_UNUSED; -static int dlmallopt(int, int) MAYBE_UNUSED; -static size_t dlmalloc_footprint(void) MAYBE_UNUSED; -static size_t dlmalloc_max_footprint(void) MAYBE_UNUSED; -static void** dlindependent_calloc(size_t, size_t, void**) MAYBE_UNUSED; -static void** dlindependent_comalloc(size_t, size_t*, void**) MAYBE_UNUSED; -static void *dlpvalloc(size_t) MAYBE_UNUSED; -static int dlmalloc_trim(size_t) MAYBE_UNUSED; -static size_t dlmalloc_usable_size(void*) MAYBE_UNUSED; -static void dlmalloc_stats(void) MAYBE_UNUSED; - +} + +#define is_emutramp_enabled() (emutramp_enabled >= 0 ? emutramp_enabled \ + : (emutramp_enabled = emutramp_enabled_check ())) +#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */ + +#elif defined (__CYGWIN__) || defined(__INTERIX) + +#include <sys/mman.h> + +/* Cygwin is Linux-like, but not quite that Linux-like. */ +#define is_selinux_enabled() 0 + +#endif /* !defined(X86_WIN32) && !defined(X86_WIN64) */ + +#ifndef FFI_MMAP_EXEC_EMUTRAMP_PAX +#define is_emutramp_enabled() 0 +#endif /* FFI_MMAP_EXEC_EMUTRAMP_PAX */ + +/* Declare all functions defined in dlmalloc.c as static. */ +static void *dlmalloc(size_t); +static void dlfree(void*); +static void *dlcalloc(size_t, size_t) MAYBE_UNUSED; +static void *dlrealloc(void *, size_t) MAYBE_UNUSED; +static void *dlmemalign(size_t, size_t) MAYBE_UNUSED; +static void *dlvalloc(size_t) MAYBE_UNUSED; +static int dlmallopt(int, int) MAYBE_UNUSED; +static size_t dlmalloc_footprint(void) MAYBE_UNUSED; +static size_t dlmalloc_max_footprint(void) MAYBE_UNUSED; +static void** dlindependent_calloc(size_t, size_t, void**) MAYBE_UNUSED; +static void** dlindependent_comalloc(size_t, size_t*, void**) MAYBE_UNUSED; +static void *dlpvalloc(size_t) MAYBE_UNUSED; +static int dlmalloc_trim(size_t) MAYBE_UNUSED; +static size_t dlmalloc_usable_size(void*) MAYBE_UNUSED; +static void dlmalloc_stats(void) MAYBE_UNUSED; + #if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(_M_ARM64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) -/* Use these for mmap and munmap within dlmalloc.c. */ -static void *dlmmap(void *, size_t, int, int, int, off_t); -static int dlmunmap(void *, size_t); -#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */ - -#define mmap dlmmap -#define munmap dlmunmap - -#include "dlmalloc.c" - -#undef mmap -#undef munmap - +/* Use these for mmap and munmap within dlmalloc.c. */ +static void *dlmmap(void *, size_t, int, int, int, off_t); +static int dlmunmap(void *, size_t); +#endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */ + +#define mmap dlmmap +#define munmap dlmunmap + +#include "dlmalloc.c" + +#undef mmap +#undef munmap + #if !(defined(X86_WIN32) || defined(X86_WIN64) || defined(_M_ARM64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) - -/* A mutex used to synchronize access to *exec* variables in this file. */ -static pthread_mutex_t open_temp_exec_file_mutex = PTHREAD_MUTEX_INITIALIZER; - -/* A file descriptor of a temporary file from which we'll map - executable pages. */ -static int execfd = -1; - -/* The amount of space already allocated from the temporary file. */ -static size_t execsize = 0; - -/* Open a temporary file name, and immediately unlink it. */ -static int + +/* A mutex used to synchronize access to *exec* variables in this file. */ +static pthread_mutex_t open_temp_exec_file_mutex = PTHREAD_MUTEX_INITIALIZER; + +/* A file descriptor of a temporary file from which we'll map + executable pages. */ +static int execfd = -1; + +/* The amount of space already allocated from the temporary file. */ +static size_t execsize = 0; + +/* Open a temporary file name, and immediately unlink it. */ +static int open_temp_exec_file_name (char *name, int flags) -{ +{ int fd; - + #ifdef HAVE_MKOSTEMP fd = mkostemp (name, flags); #else fd = mkstemp (name); #endif - if (fd != -1) - unlink (name); - - return fd; -} - -/* Open a temporary file in the named directory. */ -static int -open_temp_exec_file_dir (const char *dir) -{ - static const char suffix[] = "/ffiXXXXXX"; + if (fd != -1) + unlink (name); + + return fd; +} + +/* Open a temporary file in the named directory. */ +static int +open_temp_exec_file_dir (const char *dir) +{ + static const char suffix[] = "/ffiXXXXXX"; int lendir, flags; char *tempname; #ifdef O_TMPFILE int fd; #endif - + #ifdef O_CLOEXEC flags = O_CLOEXEC; #else @@ -586,144 +586,144 @@ open_temp_exec_file_dir (const char *dir) lendir = (int) strlen (dir); tempname = __builtin_alloca (lendir + sizeof (suffix)); - if (!tempname) - return -1; - - memcpy (tempname, dir, lendir); - memcpy (tempname + lendir, suffix, sizeof (suffix)); - + if (!tempname) + return -1; + + memcpy (tempname, dir, lendir); + memcpy (tempname + lendir, suffix, sizeof (suffix)); + return open_temp_exec_file_name (tempname, flags); -} - -/* Open a temporary file in the directory in the named environment - variable. */ -static int -open_temp_exec_file_env (const char *envvar) -{ - const char *value = getenv (envvar); - - if (!value) - return -1; - - return open_temp_exec_file_dir (value); -} - -#ifdef HAVE_MNTENT -/* Open a temporary file in an executable and writable mount point - listed in the mounts file. Subsequent calls with the same mounts - keep searching for mount points in the same file. Providing NULL - as the mounts file closes the file. */ -static int -open_temp_exec_file_mnt (const char *mounts) -{ - static const char *last_mounts; - static FILE *last_mntent; - - if (mounts != last_mounts) - { - if (last_mntent) - endmntent (last_mntent); - - last_mounts = mounts; - - if (mounts) - last_mntent = setmntent (mounts, "r"); - else - last_mntent = NULL; - } - - if (!last_mntent) - return -1; - - for (;;) - { - int fd; - struct mntent mnt; - char buf[MAXPATHLEN * 3]; - - if (getmntent_r (last_mntent, &mnt, buf, sizeof (buf)) == NULL) - return -1; - - if (hasmntopt (&mnt, "ro") - || hasmntopt (&mnt, "noexec") - || access (mnt.mnt_dir, W_OK)) - continue; - - fd = open_temp_exec_file_dir (mnt.mnt_dir); - - if (fd != -1) - return fd; - } -} -#endif /* HAVE_MNTENT */ - -/* Instructions to look for a location to hold a temporary file that - can be mapped in for execution. */ -static struct -{ - int (*func)(const char *); - const char *arg; - int repeat; -} open_temp_exec_file_opts[] = { - { open_temp_exec_file_env, "TMPDIR", 0 }, - { open_temp_exec_file_dir, "/tmp", 0 }, - { open_temp_exec_file_dir, "/var/tmp", 0 }, - { open_temp_exec_file_dir, "/dev/shm", 0 }, - { open_temp_exec_file_env, "HOME", 0 }, -#ifdef HAVE_MNTENT - { open_temp_exec_file_mnt, "/etc/mtab", 1 }, - { open_temp_exec_file_mnt, "/proc/mounts", 1 }, -#endif /* HAVE_MNTENT */ -}; - -/* Current index into open_temp_exec_file_opts. */ -static int open_temp_exec_file_opts_idx = 0; - -/* Reset a current multi-call func, then advances to the next entry. - If we're at the last, go back to the first and return nonzero, - otherwise return zero. */ -static int -open_temp_exec_file_opts_next (void) -{ - if (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat) - open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func (NULL); - - open_temp_exec_file_opts_idx++; - if (open_temp_exec_file_opts_idx - == (sizeof (open_temp_exec_file_opts) - / sizeof (*open_temp_exec_file_opts))) - { - open_temp_exec_file_opts_idx = 0; - return 1; - } - - return 0; -} - -/* Return a file descriptor of a temporary zero-sized file in a +} + +/* Open a temporary file in the directory in the named environment + variable. */ +static int +open_temp_exec_file_env (const char *envvar) +{ + const char *value = getenv (envvar); + + if (!value) + return -1; + + return open_temp_exec_file_dir (value); +} + +#ifdef HAVE_MNTENT +/* Open a temporary file in an executable and writable mount point + listed in the mounts file. Subsequent calls with the same mounts + keep searching for mount points in the same file. Providing NULL + as the mounts file closes the file. */ +static int +open_temp_exec_file_mnt (const char *mounts) +{ + static const char *last_mounts; + static FILE *last_mntent; + + if (mounts != last_mounts) + { + if (last_mntent) + endmntent (last_mntent); + + last_mounts = mounts; + + if (mounts) + last_mntent = setmntent (mounts, "r"); + else + last_mntent = NULL; + } + + if (!last_mntent) + return -1; + + for (;;) + { + int fd; + struct mntent mnt; + char buf[MAXPATHLEN * 3]; + + if (getmntent_r (last_mntent, &mnt, buf, sizeof (buf)) == NULL) + return -1; + + if (hasmntopt (&mnt, "ro") + || hasmntopt (&mnt, "noexec") + || access (mnt.mnt_dir, W_OK)) + continue; + + fd = open_temp_exec_file_dir (mnt.mnt_dir); + + if (fd != -1) + return fd; + } +} +#endif /* HAVE_MNTENT */ + +/* Instructions to look for a location to hold a temporary file that + can be mapped in for execution. */ +static struct +{ + int (*func)(const char *); + const char *arg; + int repeat; +} open_temp_exec_file_opts[] = { + { open_temp_exec_file_env, "TMPDIR", 0 }, + { open_temp_exec_file_dir, "/tmp", 0 }, + { open_temp_exec_file_dir, "/var/tmp", 0 }, + { open_temp_exec_file_dir, "/dev/shm", 0 }, + { open_temp_exec_file_env, "HOME", 0 }, +#ifdef HAVE_MNTENT + { open_temp_exec_file_mnt, "/etc/mtab", 1 }, + { open_temp_exec_file_mnt, "/proc/mounts", 1 }, +#endif /* HAVE_MNTENT */ +}; + +/* Current index into open_temp_exec_file_opts. */ +static int open_temp_exec_file_opts_idx = 0; + +/* Reset a current multi-call func, then advances to the next entry. + If we're at the last, go back to the first and return nonzero, + otherwise return zero. */ +static int +open_temp_exec_file_opts_next (void) +{ + if (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat) + open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func (NULL); + + open_temp_exec_file_opts_idx++; + if (open_temp_exec_file_opts_idx + == (sizeof (open_temp_exec_file_opts) + / sizeof (*open_temp_exec_file_opts))) + { + open_temp_exec_file_opts_idx = 0; + return 1; + } + + return 0; +} + +/* Return a file descriptor of a temporary zero-sized file in a writable and executable filesystem. */ -static int -open_temp_exec_file (void) -{ - int fd; - - do - { - fd = open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func - (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].arg); - - if (!open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat - || fd == -1) - { - if (open_temp_exec_file_opts_next ()) - break; - } - } - while (fd == -1); - - return fd; -} - +static int +open_temp_exec_file (void) +{ + int fd; + + do + { + fd = open_temp_exec_file_opts[open_temp_exec_file_opts_idx].func + (open_temp_exec_file_opts[open_temp_exec_file_opts_idx].arg); + + if (!open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat + || fd == -1) + { + if (open_temp_exec_file_opts_next ()) + break; + } + } + while (fd == -1); + + return fd; +} + /* We need to allocate space in a file that will be backing a writable mapping. Several problems exist with the usual approaches: - fallocate() is Linux-only @@ -754,42 +754,42 @@ allocate_space (int fd, off_t offset, off_t len) return 0; } -/* Map in a chunk of memory from the temporary exec file into separate - locations in the virtual memory address space, one writable and one - executable. Returns the address of the writable portion, after - storing an offset to the corresponding executable portion at the - last word of the requested chunk. */ -static void * -dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset) -{ - void *ptr; - - if (execfd == -1) - { - open_temp_exec_file_opts_idx = 0; - retry_open: - execfd = open_temp_exec_file (); - if (execfd == -1) - return MFAIL; - } - - offset = execsize; - +/* Map in a chunk of memory from the temporary exec file into separate + locations in the virtual memory address space, one writable and one + executable. Returns the address of the writable portion, after + storing an offset to the corresponding executable portion at the + last word of the requested chunk. */ +static void * +dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset) +{ + void *ptr; + + if (execfd == -1) + { + open_temp_exec_file_opts_idx = 0; + retry_open: + execfd = open_temp_exec_file (); + if (execfd == -1) + return MFAIL; + } + + offset = execsize; + if (allocate_space (execfd, offset, length)) - return MFAIL; - - flags &= ~(MAP_PRIVATE | MAP_ANONYMOUS); - flags |= MAP_SHARED; - - ptr = mmap (NULL, length, (prot & ~PROT_WRITE) | PROT_EXEC, - flags, execfd, offset); - if (ptr == MFAIL) - { - if (!offset) - { - close (execfd); - goto retry_open; - } + return MFAIL; + + flags &= ~(MAP_PRIVATE | MAP_ANONYMOUS); + flags |= MAP_SHARED; + + ptr = mmap (NULL, length, (prot & ~PROT_WRITE) | PROT_EXEC, + flags, execfd, offset); + if (ptr == MFAIL) + { + if (!offset) + { + close (execfd); + goto retry_open; + } if (ftruncate (execfd, offset) != 0) { /* Fixme : Error logs can be added here. Returning an error for @@ -797,142 +797,142 @@ dlmmap_locked (void *start, size_t length, int prot, int flags, off_t offset) * validating in the error case. */ } - return MFAIL; - } - else if (!offset - && open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat) - open_temp_exec_file_opts_next (); - - start = mmap (start, length, prot, flags, execfd, offset); - - if (start == MFAIL) - { - munmap (ptr, length); + return MFAIL; + } + else if (!offset + && open_temp_exec_file_opts[open_temp_exec_file_opts_idx].repeat) + open_temp_exec_file_opts_next (); + + start = mmap (start, length, prot, flags, execfd, offset); + + if (start == MFAIL) + { + munmap (ptr, length); if (ftruncate (execfd, offset) != 0) { /* Fixme : Error logs can be added here. Returning an error for * ftruncte() will not add any advantage as it is being * validating in the error case. */ } - return start; - } - - mmap_exec_offset ((char *)start, length) = (char*)ptr - (char*)start; - - execsize += length; - - return start; -} - -/* Map in a writable and executable chunk of memory if possible. - Failing that, fall back to dlmmap_locked. */ -static void * -dlmmap (void *start, size_t length, int prot, - int flags, int fd, off_t offset) -{ - void *ptr; - - assert (start == NULL && length % malloc_getpagesize == 0 - && prot == (PROT_READ | PROT_WRITE) - && flags == (MAP_PRIVATE | MAP_ANONYMOUS) - && fd == -1 && offset == 0); - - if (execfd == -1 && is_emutramp_enabled ()) - { - ptr = mmap (start, length, prot & ~PROT_EXEC, flags, fd, offset); - return ptr; - } - - if (execfd == -1 && !is_selinux_enabled ()) - { - ptr = mmap (start, length, prot | PROT_EXEC, flags, fd, offset); - - if (ptr != MFAIL || (errno != EPERM && errno != EACCES)) - /* Cool, no need to mess with separate segments. */ - return ptr; - - /* If MREMAP_DUP is ever introduced and implemented, try mmap - with ((prot & ~PROT_WRITE) | PROT_EXEC) and mremap with - MREMAP_DUP and prot at this point. */ - } - - if (execsize == 0 || execfd == -1) - { - pthread_mutex_lock (&open_temp_exec_file_mutex); - ptr = dlmmap_locked (start, length, prot, flags, offset); - pthread_mutex_unlock (&open_temp_exec_file_mutex); - - return ptr; - } - - return dlmmap_locked (start, length, prot, flags, offset); -} - -/* Release memory at the given address, as well as the corresponding - executable page if it's separate. */ -static int -dlmunmap (void *start, size_t length) -{ - /* We don't bother decreasing execsize or truncating the file, since - we can't quite tell whether we're unmapping the end of the file. - We don't expect frequent deallocation anyway. If we did, we - could locate pages in the file by writing to the pages being - deallocated and checking that the file contents change. - Yuck. */ - msegmentptr seg = segment_holding (gm, start); - void *code; - - if (seg && (code = add_segment_exec_offset (start, seg)) != start) - { - int ret = munmap (code, length); - if (ret) - return ret; - } - - return munmap (start, length); -} - -#if FFI_CLOSURE_FREE_CODE -/* Return segment holding given code address. */ -static msegmentptr -segment_holding_code (mstate m, char* addr) -{ - msegmentptr sp = &m->seg; - for (;;) { - if (addr >= add_segment_exec_offset (sp->base, sp) - && addr < add_segment_exec_offset (sp->base, sp) + sp->size) - return sp; - if ((sp = sp->next) == 0) - return 0; - } -} -#endif - + return start; + } + + mmap_exec_offset ((char *)start, length) = (char*)ptr - (char*)start; + + execsize += length; + + return start; +} + +/* Map in a writable and executable chunk of memory if possible. + Failing that, fall back to dlmmap_locked. */ +static void * +dlmmap (void *start, size_t length, int prot, + int flags, int fd, off_t offset) +{ + void *ptr; + + assert (start == NULL && length % malloc_getpagesize == 0 + && prot == (PROT_READ | PROT_WRITE) + && flags == (MAP_PRIVATE | MAP_ANONYMOUS) + && fd == -1 && offset == 0); + + if (execfd == -1 && is_emutramp_enabled ()) + { + ptr = mmap (start, length, prot & ~PROT_EXEC, flags, fd, offset); + return ptr; + } + + if (execfd == -1 && !is_selinux_enabled ()) + { + ptr = mmap (start, length, prot | PROT_EXEC, flags, fd, offset); + + if (ptr != MFAIL || (errno != EPERM && errno != EACCES)) + /* Cool, no need to mess with separate segments. */ + return ptr; + + /* If MREMAP_DUP is ever introduced and implemented, try mmap + with ((prot & ~PROT_WRITE) | PROT_EXEC) and mremap with + MREMAP_DUP and prot at this point. */ + } + + if (execsize == 0 || execfd == -1) + { + pthread_mutex_lock (&open_temp_exec_file_mutex); + ptr = dlmmap_locked (start, length, prot, flags, offset); + pthread_mutex_unlock (&open_temp_exec_file_mutex); + + return ptr; + } + + return dlmmap_locked (start, length, prot, flags, offset); +} + +/* Release memory at the given address, as well as the corresponding + executable page if it's separate. */ +static int +dlmunmap (void *start, size_t length) +{ + /* We don't bother decreasing execsize or truncating the file, since + we can't quite tell whether we're unmapping the end of the file. + We don't expect frequent deallocation anyway. If we did, we + could locate pages in the file by writing to the pages being + deallocated and checking that the file contents change. + Yuck. */ + msegmentptr seg = segment_holding (gm, start); + void *code; + + if (seg && (code = add_segment_exec_offset (start, seg)) != start) + { + int ret = munmap (code, length); + if (ret) + return ret; + } + + return munmap (start, length); +} + +#if FFI_CLOSURE_FREE_CODE +/* Return segment holding given code address. */ +static msegmentptr +segment_holding_code (mstate m, char* addr) +{ + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= add_segment_exec_offset (sp->base, sp) + && addr < add_segment_exec_offset (sp->base, sp) + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} +#endif + #endif /* !(defined(X86_WIN32) || defined(X86_WIN64) || defined(_M_ARM64) || defined(__OS2__)) || defined (__CYGWIN__) || defined(__INTERIX) */ - -/* Allocate a chunk of memory with the given size. Returns a pointer - to the writable address, and sets *CODE to the executable - corresponding virtual address. */ -void * -ffi_closure_alloc (size_t size, void **code) -{ - void *ptr; - - if (!code) - return NULL; - - ptr = dlmalloc (size); - - if (ptr) - { - msegmentptr seg = segment_holding (gm, ptr); - - *code = add_segment_exec_offset (ptr, seg); - } - - return ptr; -} - + +/* Allocate a chunk of memory with the given size. Returns a pointer + to the writable address, and sets *CODE to the executable + corresponding virtual address. */ +void * +ffi_closure_alloc (size_t size, void **code) +{ + void *ptr; + + if (!code) + return NULL; + + ptr = dlmalloc (size); + + if (ptr) + { + msegmentptr seg = segment_holding (gm, ptr); + + *code = add_segment_exec_offset (ptr, seg); + } + + return ptr; +} + void * ffi_data_to_code_pointer (void *data) { @@ -947,52 +947,52 @@ ffi_data_to_code_pointer (void *data) return data; } -/* Release a chunk of memory allocated with ffi_closure_alloc. If - FFI_CLOSURE_FREE_CODE is nonzero, the given address can be the - writable or the executable address given. Otherwise, only the - writable address can be provided here. */ -void -ffi_closure_free (void *ptr) -{ -#if FFI_CLOSURE_FREE_CODE - msegmentptr seg = segment_holding_code (gm, ptr); - - if (seg) - ptr = sub_segment_exec_offset (ptr, seg); -#endif - - dlfree (ptr); -} - -# else /* ! FFI_MMAP_EXEC_WRIT */ - -/* On many systems, memory returned by malloc is writable and - executable, so just use it. */ - -#include <stdlib.h> - -void * -ffi_closure_alloc (size_t size, void **code) -{ - if (!code) - return NULL; - - return *code = malloc (size); -} - -void -ffi_closure_free (void *ptr) -{ - free (ptr); -} - +/* Release a chunk of memory allocated with ffi_closure_alloc. If + FFI_CLOSURE_FREE_CODE is nonzero, the given address can be the + writable or the executable address given. Otherwise, only the + writable address can be provided here. */ +void +ffi_closure_free (void *ptr) +{ +#if FFI_CLOSURE_FREE_CODE + msegmentptr seg = segment_holding_code (gm, ptr); + + if (seg) + ptr = sub_segment_exec_offset (ptr, seg); +#endif + + dlfree (ptr); +} + +# else /* ! FFI_MMAP_EXEC_WRIT */ + +/* On many systems, memory returned by malloc is writable and + executable, so just use it. */ + +#include <stdlib.h> + +void * +ffi_closure_alloc (size_t size, void **code) +{ + if (!code) + return NULL; + + return *code = malloc (size); +} + +void +ffi_closure_free (void *ptr) +{ + free (ptr); +} + void * ffi_data_to_code_pointer (void *data) { return data; } -# endif /* ! FFI_MMAP_EXEC_WRIT */ -#endif /* FFI_CLOSURES */ +# endif /* ! FFI_MMAP_EXEC_WRIT */ +#endif /* FFI_CLOSURES */ #endif /* NetBSD with PROT_MPROTECT */ diff --git a/contrib/restricted/libffi/src/dlmalloc.c b/contrib/restricted/libffi/src/dlmalloc.c index ec85fcec2a..6f47b7cece 100644 --- a/contrib/restricted/libffi/src/dlmalloc.c +++ b/contrib/restricted/libffi/src/dlmalloc.c @@ -1,5166 +1,5166 @@ -/* - This is a version (aka dlmalloc) of malloc/free/realloc written by - Doug Lea and released to the public domain, as explained at - http://creativecommons.org/licenses/publicdomain. Send questions, - comments, complaints, performance data, etc to dl@cs.oswego.edu - -* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee) - - Note: There may be an updated version of this malloc obtainable at - ftp://gee.cs.oswego.edu/pub/misc/malloc.c - Check before installing! - -* Quickstart - - This library is all in one file to simplify the most common usage: - ftp it, compile it (-O3), and link it into another program. All of - the compile-time options default to reasonable values for use on - most platforms. You might later want to step through various - compile-time and dynamic tuning options. - - For convenience, an include file for code using this malloc is at: - ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h - You don't really need this .h file unless you call functions not - defined in your system include files. The .h file contains only the - excerpts from this file needed for using this malloc on ANSI C/C++ - systems, so long as you haven't changed compile-time options about - naming and tuning parameters. If you do, then you can create your - own malloc.h that does include all settings by cutting at the point - indicated below. Note that you may already by default be using a C - library containing a malloc that is based on some version of this - malloc (for example in linux). You might still want to use the one - in this file to customize settings or to avoid overheads associated - with library versions. - -* Vital statistics: - - Supported pointer/size_t representation: 4 or 8 bytes - size_t MUST be an unsigned type of the same width as - pointers. (If you are using an ancient system that declares - size_t as a signed type, or need it to be a different width - than pointers, you can use a previous release of this malloc - (e.g. 2.7.2) supporting these.) - - Alignment: 8 bytes (default) - This suffices for nearly all current machines and C compilers. - However, you can define MALLOC_ALIGNMENT to be wider than this - if necessary (up to 128bytes), at the expense of using more space. - - Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) - 8 or 16 bytes (if 8byte sizes) - Each malloced chunk has a hidden word of overhead holding size - and status information, and additional cross-check word - if FOOTERS is defined. - - Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) - 8-byte ptrs: 32 bytes (including overhead) - - Even a request for zero bytes (i.e., malloc(0)) returns a - pointer to something of the minimum allocatable size. - The maximum overhead wastage (i.e., number of extra bytes - allocated than were requested in malloc) is less than or equal - to the minimum size, except for requests >= mmap_threshold that - are serviced via mmap(), where the worst case wastage is about - 32 bytes plus the remainder from a system page (the minimal - mmap unit); typically 4096 or 8192 bytes. - - Security: static-safe; optionally more or less - The "security" of malloc refers to the ability of malicious - code to accentuate the effects of errors (for example, freeing - space that is not currently malloc'ed or overwriting past the - ends of chunks) in code that calls malloc. This malloc - guarantees not to modify any memory locations below the base of - heap, i.e., static variables, even in the presence of usage - errors. The routines additionally detect most improper frees - and reallocs. All this holds as long as the static bookkeeping - for malloc itself is not corrupted by some other means. This - is only one aspect of security -- these checks do not, and - cannot, detect all possible programming errors. - - If FOOTERS is defined nonzero, then each allocated chunk - carries an additional check word to verify that it was malloced - from its space. These check words are the same within each - execution of a program using malloc, but differ across - executions, so externally crafted fake chunks cannot be - freed. This improves security by rejecting frees/reallocs that - could corrupt heap memory, in addition to the checks preventing - writes to statics that are always on. This may further improve - security at the expense of time and space overhead. (Note that - FOOTERS may also be worth using with MSPACES.) - - By default detected errors cause the program to abort (calling - "abort()"). You can override this to instead proceed past - errors by defining PROCEED_ON_ERROR. In this case, a bad free - has no effect, and a malloc that encounters a bad address - caused by user overwrites will ignore the bad address by - dropping pointers and indices to all known memory. This may - be appropriate for programs that should continue if at all - possible in the face of programming errors, although they may - run out of memory because dropped memory is never reclaimed. - - If you don't like either of these options, you can define - CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything - else. And if if you are sure that your program using malloc has - no errors or vulnerabilities, you can define INSECURE to 1, - which might (or might not) provide a small performance improvement. - - Thread-safety: NOT thread-safe unless USE_LOCKS defined - When USE_LOCKS is defined, each public call to malloc, free, - etc is surrounded with either a pthread mutex or a win32 - spinlock (depending on WIN32). This is not especially fast, and - can be a major bottleneck. It is designed only to provide - minimal protection in concurrent environments, and to provide a - basis for extensions. If you are using malloc in a concurrent - program, consider instead using ptmalloc, which is derived from - a version of this malloc. (See http://www.malloc.de). - - System requirements: Any combination of MORECORE and/or MMAP/MUNMAP - This malloc can use unix sbrk or any emulation (invoked using - the CALL_MORECORE macro) and/or mmap/munmap or any emulation - (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system - memory. On most unix systems, it tends to work best if both - MORECORE and MMAP are enabled. On Win32, it uses emulations - based on VirtualAlloc. It also uses common C library functions - like memset. - - Compliance: I believe it is compliant with the Single Unix Specification - (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably - others as well. - -* Overview of algorithms - - This is not the fastest, most space-conserving, most portable, or - most tunable malloc ever written. However it is among the fastest - while also being among the most space-conserving, portable and - tunable. Consistent balance across these factors results in a good - general-purpose allocator for malloc-intensive programs. - - In most ways, this malloc is a best-fit allocator. Generally, it - chooses the best-fitting existing chunk for a request, with ties - broken in approximately least-recently-used order. (This strategy - normally maintains low fragmentation.) However, for requests less - than 256bytes, it deviates from best-fit when there is not an - exactly fitting available chunk by preferring to use space adjacent - to that used for the previous small request, as well as by breaking - ties in approximately most-recently-used order. (These enhance - locality of series of small allocations.) And for very large requests - (>= 256Kb by default), it relies on system memory mapping - facilities, if supported. (This helps avoid carrying around and - possibly fragmenting memory used only for large chunks.) - - All operations (except malloc_stats and mallinfo) have execution - times that are bounded by a constant factor of the number of bits in - a size_t, not counting any clearing in calloc or copying in realloc, - or actions surrounding MORECORE and MMAP that have times - proportional to the number of non-contiguous regions returned by - system allocation routines, which is often just 1. - - The implementation is not very modular and seriously overuses - macros. Perhaps someday all C compilers will do as good a job - inlining modular code as can now be done by brute-force expansion, - but now, enough of them seem not to. - - Some compilers issue a lot of warnings about code that is - dead/unreachable only on some platforms, and also about intentional - uses of negation on unsigned types. All known cases of each can be - ignored. - - For a longer but out of date high-level description, see - http://gee.cs.oswego.edu/dl/html/malloc.html - -* MSPACES - If MSPACES is defined, then in addition to malloc, free, etc., - this file also defines mspace_malloc, mspace_free, etc. These - are versions of malloc routines that take an "mspace" argument - obtained using create_mspace, to control all internal bookkeeping. - If ONLY_MSPACES is defined, only these versions are compiled. - So if you would like to use this allocator for only some allocations, - and your system malloc for others, you can compile with - ONLY_MSPACES and then do something like... - static mspace mymspace = create_mspace(0,0); // for example - #define mymalloc(bytes) mspace_malloc(mymspace, bytes) - - (Note: If you only need one instance of an mspace, you can instead - use "USE_DL_PREFIX" to relabel the global malloc.) - - You can similarly create thread-local allocators by storing - mspaces as thread-locals. For example: - static __thread mspace tlms = 0; - void* tlmalloc(size_t bytes) { - if (tlms == 0) tlms = create_mspace(0, 0); - return mspace_malloc(tlms, bytes); - } - void tlfree(void* mem) { mspace_free(tlms, mem); } - - Unless FOOTERS is defined, each mspace is completely independent. - You cannot allocate from one and free to another (although - conformance is only weakly checked, so usage errors are not always - caught). If FOOTERS is defined, then each chunk carries around a tag - indicating its originating mspace, and frees are directed to their - originating spaces. - - ------------------------- Compile-time options --------------------------- - -Be careful in setting #define values for numerical constants of type -size_t. On some systems, literal values are not automatically extended -to size_t precision unless they are explicitly casted. - -WIN32 default: defined if _WIN32 defined - Defining WIN32 sets up defaults for MS environment and compilers. - Otherwise defaults are for unix. - -MALLOC_ALIGNMENT default: (size_t)8 - Controls the minimum alignment for malloc'ed chunks. It must be a - power of two and at least 8, even on machines for which smaller - alignments would suffice. It may be defined as larger than this - though. Note however that code and data structures are optimized for - the case of 8-byte alignment. - -MSPACES default: 0 (false) - If true, compile in support for independent allocation spaces. - This is only supported if HAVE_MMAP is true. - -ONLY_MSPACES default: 0 (false) - If true, only compile in mspace versions, not regular versions. - -USE_LOCKS default: 0 (false) - Causes each call to each public routine to be surrounded with - pthread or WIN32 mutex lock/unlock. (If set true, this can be - overridden on a per-mspace basis for mspace versions.) - -FOOTERS default: 0 - If true, provide extra checking and dispatching by placing - information in the footers of allocated chunks. This adds - space and time overhead. - -INSECURE default: 0 - If true, omit checks for usage errors and heap space overwrites. - -USE_DL_PREFIX default: NOT defined - Causes compiler to prefix all public routines with the string 'dl'. - This can be useful when you only want to use this malloc in one part - of a program, using your regular system malloc elsewhere. - -ABORT default: defined as abort() - Defines how to abort on failed checks. On most systems, a failed - check cannot die with an "assert" or even print an informative - message, because the underlying print routines in turn call malloc, - which will fail again. Generally, the best policy is to simply call - abort(). It's not very useful to do more than this because many - errors due to overwriting will show up as address faults (null, odd - addresses etc) rather than malloc-triggered checks, so will also - abort. Also, most compilers know that abort() does not return, so - can better optimize code conditionally calling it. - -PROCEED_ON_ERROR default: defined as 0 (false) - Controls whether detected bad addresses cause them to bypassed - rather than aborting. If set, detected bad arguments to free and - realloc are ignored. And all bookkeeping information is zeroed out - upon a detected overwrite of freed heap space, thus losing the - ability to ever return it from malloc again, but enabling the - application to proceed. If PROCEED_ON_ERROR is defined, the - static variable malloc_corruption_error_count is compiled in - and can be examined to see if errors have occurred. This option - generates slower code than the default abort policy. - -DEBUG default: NOT defined - The DEBUG setting is mainly intended for people trying to modify - this code or diagnose problems when porting to new platforms. - However, it may also be able to better isolate user errors than just - using runtime checks. The assertions in the check routines spell - out in more detail the assumptions and invariants underlying the - algorithms. The checking is fairly extensive, and will slow down - execution noticeably. Calling malloc_stats or mallinfo with DEBUG - set will attempt to check every non-mmapped allocated and free chunk - in the course of computing the summaries. - -ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) - Debugging assertion failures can be nearly impossible if your - version of the assert macro causes malloc to be called, which will - lead to a cascade of further failures, blowing the runtime stack. - ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), - which will usually make debugging easier. - -MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 - The action to take before "return 0" when malloc fails to be able to - return memory because there is none available. - -HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES - True if this system supports sbrk or an emulation of it. - -MORECORE default: sbrk - The name of the sbrk-style system routine to call to obtain more - memory. See below for guidance on writing custom MORECORE - functions. The type of the argument to sbrk/MORECORE varies across - systems. It cannot be size_t, because it supports negative - arguments, so it is normally the signed type of the same width as - size_t (sometimes declared as "intptr_t"). It doesn't much matter - though. Internally, we only call it with arguments less than half - the max value of a size_t, which should work across all reasonable - possibilities, although sometimes generating compiler warnings. See - near the end of this file for guidelines for creating a custom - version of MORECORE. - -MORECORE_CONTIGUOUS default: 1 (true) - If true, take advantage of fact that consecutive calls to MORECORE - with positive arguments always return contiguous increasing - addresses. This is true of unix sbrk. It does not hurt too much to - set it true anyway, since malloc copes with non-contiguities. - Setting it false when definitely non-contiguous saves time - and possibly wasted space it would take to discover this though. - -MORECORE_CANNOT_TRIM default: NOT defined - True if MORECORE cannot release space back to the system when given - negative arguments. This is generally necessary only if you are - using a hand-crafted MORECORE function that cannot handle negative - arguments. - -HAVE_MMAP default: 1 (true) - True if this system supports mmap or an emulation of it. If so, and - HAVE_MORECORE is not true, MMAP is used for all system - allocation. If set and HAVE_MORECORE is true as well, MMAP is - primarily used to directly allocate very large blocks. It is also - used as a backup strategy in cases where MORECORE fails to provide - space from system. Note: A single call to MUNMAP is assumed to be - able to unmap memory that may have be allocated using multiple calls - to MMAP, so long as they are adjacent. - -HAVE_MREMAP default: 1 on linux, else 0 - If true realloc() uses mremap() to re-allocate large blocks and - extend or shrink allocation spaces. - -MMAP_CLEARS default: 1 on unix - True if mmap clears memory so calloc doesn't need to. This is true - for standard unix mmap using /dev/zero. - -USE_BUILTIN_FFS default: 0 (i.e., not used) - Causes malloc to use the builtin ffs() function to compute indices. - Some compilers may recognize and intrinsify ffs to be faster than the - supplied C version. Also, the case of x86 using gcc is special-cased - to an asm instruction, so is already as fast as it can be, and so - this setting has no effect. (On most x86s, the asm version is only - slightly faster than the C version.) - -malloc_getpagesize default: derive from system includes, or 4096. - The system page size. To the extent possible, this malloc manages - memory from the system in page-size units. This may be (and - usually is) a function rather than a constant. This is ignored - if WIN32, where page size is determined using getSystemInfo during - initialization. - -USE_DEV_RANDOM default: 0 (i.e., not used) - Causes malloc to use /dev/random to initialize secure magic seed for - stamping footers. Otherwise, the current time is used. - -NO_MALLINFO default: 0 - If defined, don't compile "mallinfo". This can be a simple way - of dealing with mismatches between system declarations and - those in this file. - -MALLINFO_FIELD_TYPE default: size_t - The type of the fields in the mallinfo struct. This was originally - defined as "int" in SVID etc, but is more usefully defined as - size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set - -REALLOC_ZERO_BYTES_FREES default: not defined - This should be set if a call to realloc with zero bytes should - be the same as a call to free. Some people think it should. Otherwise, - since this malloc returns a unique pointer for malloc(0), so does - realloc(p, 0). - -LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H -LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H -LACKS_STDLIB_H default: NOT defined unless on WIN32 - Define these if your system does not have these header files. - You might need to manually insert some of the declarations they provide. - -DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, - system_info.dwAllocationGranularity in WIN32, - otherwise 64K. - Also settable using mallopt(M_GRANULARITY, x) - The unit for allocating and deallocating memory from the system. On - most systems with contiguous MORECORE, there is no reason to - make this more than a page. However, systems with MMAP tend to - either require or encourage larger granularities. You can increase - this value to prevent system allocation functions to be called so - often, especially if they are slow. The value must be at least one - page and must be a power of two. Setting to 0 causes initialization - to either page size or win32 region size. (Note: In previous - versions of malloc, the equivalent of this option was called - "TOP_PAD") - -DEFAULT_TRIM_THRESHOLD default: 2MB - Also settable using mallopt(M_TRIM_THRESHOLD, x) - The maximum amount of unused top-most memory to keep before - releasing via malloc_trim in free(). Automatic trimming is mainly - useful in long-lived programs using contiguous MORECORE. Because - trimming via sbrk can be slow on some systems, and can sometimes be - wasteful (in cases where programs immediately afterward allocate - more large chunks) the value should be high enough so that your - overall system performance would improve by releasing this much - memory. As a rough guide, you might set to a value close to the - average size of a process (program) running on your system. - Releasing this much memory would allow such a process to run in - memory. Generally, it is worth tuning trim thresholds when a - program undergoes phases where several large chunks are allocated - and released in ways that can reuse each other's storage, perhaps - mixed with phases where there are no such chunks at all. The trim - value must be greater than page size to have any useful effect. To - disable trimming completely, you can set to MAX_SIZE_T. Note that the trick - some people use of mallocing a huge space and then freeing it at - program startup, in an attempt to reserve system memory, doesn't - have the intended effect under automatic trimming, since that memory - will immediately be returned to the system. - -DEFAULT_MMAP_THRESHOLD default: 256K - Also settable using mallopt(M_MMAP_THRESHOLD, x) - The request size threshold for using MMAP to directly service a - request. Requests of at least this size that cannot be allocated - using already-existing space will be serviced via mmap. (If enough - normal freed space already exists it is used instead.) Using mmap - segregates relatively large chunks of memory so that they can be - individually obtained and released from the host system. A request - serviced through mmap is never reused by any other request (at least - not directly; the system may just so happen to remap successive - requests to the same locations). Segregating space in this way has - the benefits that: Mmapped space can always be individually released - back to the system, which helps keep the system level memory demands - of a long-lived program low. Also, mapped memory doesn't become - `locked' between other chunks, as can happen with normally allocated - chunks, which means that even trimming via malloc_trim would not - release them. However, it has the disadvantage that the space - cannot be reclaimed, consolidated, and then used to service later - requests, as happens with normal chunks. The advantages of mmap - nearly always outweigh disadvantages for "large" chunks, but the - value of "large" may vary across systems. The default is an - empirically derived value that works well in most systems. You can - disable mmap by setting to MAX_SIZE_T. - -*/ - +/* + This is a version (aka dlmalloc) of malloc/free/realloc written by + Doug Lea and released to the public domain, as explained at + http://creativecommons.org/licenses/publicdomain. Send questions, + comments, complaints, performance data, etc to dl@cs.oswego.edu + +* Version 2.8.3 Thu Sep 22 11:16:15 2005 Doug Lea (dl at gee) + + Note: There may be an updated version of this malloc obtainable at + ftp://gee.cs.oswego.edu/pub/misc/malloc.c + Check before installing! + +* Quickstart + + This library is all in one file to simplify the most common usage: + ftp it, compile it (-O3), and link it into another program. All of + the compile-time options default to reasonable values for use on + most platforms. You might later want to step through various + compile-time and dynamic tuning options. + + For convenience, an include file for code using this malloc is at: + ftp://gee.cs.oswego.edu/pub/misc/malloc-2.8.3.h + You don't really need this .h file unless you call functions not + defined in your system include files. The .h file contains only the + excerpts from this file needed for using this malloc on ANSI C/C++ + systems, so long as you haven't changed compile-time options about + naming and tuning parameters. If you do, then you can create your + own malloc.h that does include all settings by cutting at the point + indicated below. Note that you may already by default be using a C + library containing a malloc that is based on some version of this + malloc (for example in linux). You might still want to use the one + in this file to customize settings or to avoid overheads associated + with library versions. + +* Vital statistics: + + Supported pointer/size_t representation: 4 or 8 bytes + size_t MUST be an unsigned type of the same width as + pointers. (If you are using an ancient system that declares + size_t as a signed type, or need it to be a different width + than pointers, you can use a previous release of this malloc + (e.g. 2.7.2) supporting these.) + + Alignment: 8 bytes (default) + This suffices for nearly all current machines and C compilers. + However, you can define MALLOC_ALIGNMENT to be wider than this + if necessary (up to 128bytes), at the expense of using more space. + + Minimum overhead per allocated chunk: 4 or 8 bytes (if 4byte sizes) + 8 or 16 bytes (if 8byte sizes) + Each malloced chunk has a hidden word of overhead holding size + and status information, and additional cross-check word + if FOOTERS is defined. + + Minimum allocated size: 4-byte ptrs: 16 bytes (including overhead) + 8-byte ptrs: 32 bytes (including overhead) + + Even a request for zero bytes (i.e., malloc(0)) returns a + pointer to something of the minimum allocatable size. + The maximum overhead wastage (i.e., number of extra bytes + allocated than were requested in malloc) is less than or equal + to the minimum size, except for requests >= mmap_threshold that + are serviced via mmap(), where the worst case wastage is about + 32 bytes plus the remainder from a system page (the minimal + mmap unit); typically 4096 or 8192 bytes. + + Security: static-safe; optionally more or less + The "security" of malloc refers to the ability of malicious + code to accentuate the effects of errors (for example, freeing + space that is not currently malloc'ed or overwriting past the + ends of chunks) in code that calls malloc. This malloc + guarantees not to modify any memory locations below the base of + heap, i.e., static variables, even in the presence of usage + errors. The routines additionally detect most improper frees + and reallocs. All this holds as long as the static bookkeeping + for malloc itself is not corrupted by some other means. This + is only one aspect of security -- these checks do not, and + cannot, detect all possible programming errors. + + If FOOTERS is defined nonzero, then each allocated chunk + carries an additional check word to verify that it was malloced + from its space. These check words are the same within each + execution of a program using malloc, but differ across + executions, so externally crafted fake chunks cannot be + freed. This improves security by rejecting frees/reallocs that + could corrupt heap memory, in addition to the checks preventing + writes to statics that are always on. This may further improve + security at the expense of time and space overhead. (Note that + FOOTERS may also be worth using with MSPACES.) + + By default detected errors cause the program to abort (calling + "abort()"). You can override this to instead proceed past + errors by defining PROCEED_ON_ERROR. In this case, a bad free + has no effect, and a malloc that encounters a bad address + caused by user overwrites will ignore the bad address by + dropping pointers and indices to all known memory. This may + be appropriate for programs that should continue if at all + possible in the face of programming errors, although they may + run out of memory because dropped memory is never reclaimed. + + If you don't like either of these options, you can define + CORRUPTION_ERROR_ACTION and USAGE_ERROR_ACTION to do anything + else. And if if you are sure that your program using malloc has + no errors or vulnerabilities, you can define INSECURE to 1, + which might (or might not) provide a small performance improvement. + + Thread-safety: NOT thread-safe unless USE_LOCKS defined + When USE_LOCKS is defined, each public call to malloc, free, + etc is surrounded with either a pthread mutex or a win32 + spinlock (depending on WIN32). This is not especially fast, and + can be a major bottleneck. It is designed only to provide + minimal protection in concurrent environments, and to provide a + basis for extensions. If you are using malloc in a concurrent + program, consider instead using ptmalloc, which is derived from + a version of this malloc. (See http://www.malloc.de). + + System requirements: Any combination of MORECORE and/or MMAP/MUNMAP + This malloc can use unix sbrk or any emulation (invoked using + the CALL_MORECORE macro) and/or mmap/munmap or any emulation + (invoked using CALL_MMAP/CALL_MUNMAP) to get and release system + memory. On most unix systems, it tends to work best if both + MORECORE and MMAP are enabled. On Win32, it uses emulations + based on VirtualAlloc. It also uses common C library functions + like memset. + + Compliance: I believe it is compliant with the Single Unix Specification + (See http://www.unix.org). Also SVID/XPG, ANSI C, and probably + others as well. + +* Overview of algorithms + + This is not the fastest, most space-conserving, most portable, or + most tunable malloc ever written. However it is among the fastest + while also being among the most space-conserving, portable and + tunable. Consistent balance across these factors results in a good + general-purpose allocator for malloc-intensive programs. + + In most ways, this malloc is a best-fit allocator. Generally, it + chooses the best-fitting existing chunk for a request, with ties + broken in approximately least-recently-used order. (This strategy + normally maintains low fragmentation.) However, for requests less + than 256bytes, it deviates from best-fit when there is not an + exactly fitting available chunk by preferring to use space adjacent + to that used for the previous small request, as well as by breaking + ties in approximately most-recently-used order. (These enhance + locality of series of small allocations.) And for very large requests + (>= 256Kb by default), it relies on system memory mapping + facilities, if supported. (This helps avoid carrying around and + possibly fragmenting memory used only for large chunks.) + + All operations (except malloc_stats and mallinfo) have execution + times that are bounded by a constant factor of the number of bits in + a size_t, not counting any clearing in calloc or copying in realloc, + or actions surrounding MORECORE and MMAP that have times + proportional to the number of non-contiguous regions returned by + system allocation routines, which is often just 1. + + The implementation is not very modular and seriously overuses + macros. Perhaps someday all C compilers will do as good a job + inlining modular code as can now be done by brute-force expansion, + but now, enough of them seem not to. + + Some compilers issue a lot of warnings about code that is + dead/unreachable only on some platforms, and also about intentional + uses of negation on unsigned types. All known cases of each can be + ignored. + + For a longer but out of date high-level description, see + http://gee.cs.oswego.edu/dl/html/malloc.html + +* MSPACES + If MSPACES is defined, then in addition to malloc, free, etc., + this file also defines mspace_malloc, mspace_free, etc. These + are versions of malloc routines that take an "mspace" argument + obtained using create_mspace, to control all internal bookkeeping. + If ONLY_MSPACES is defined, only these versions are compiled. + So if you would like to use this allocator for only some allocations, + and your system malloc for others, you can compile with + ONLY_MSPACES and then do something like... + static mspace mymspace = create_mspace(0,0); // for example + #define mymalloc(bytes) mspace_malloc(mymspace, bytes) + + (Note: If you only need one instance of an mspace, you can instead + use "USE_DL_PREFIX" to relabel the global malloc.) + + You can similarly create thread-local allocators by storing + mspaces as thread-locals. For example: + static __thread mspace tlms = 0; + void* tlmalloc(size_t bytes) { + if (tlms == 0) tlms = create_mspace(0, 0); + return mspace_malloc(tlms, bytes); + } + void tlfree(void* mem) { mspace_free(tlms, mem); } + + Unless FOOTERS is defined, each mspace is completely independent. + You cannot allocate from one and free to another (although + conformance is only weakly checked, so usage errors are not always + caught). If FOOTERS is defined, then each chunk carries around a tag + indicating its originating mspace, and frees are directed to their + originating spaces. + + ------------------------- Compile-time options --------------------------- + +Be careful in setting #define values for numerical constants of type +size_t. On some systems, literal values are not automatically extended +to size_t precision unless they are explicitly casted. + +WIN32 default: defined if _WIN32 defined + Defining WIN32 sets up defaults for MS environment and compilers. + Otherwise defaults are for unix. + +MALLOC_ALIGNMENT default: (size_t)8 + Controls the minimum alignment for malloc'ed chunks. It must be a + power of two and at least 8, even on machines for which smaller + alignments would suffice. It may be defined as larger than this + though. Note however that code and data structures are optimized for + the case of 8-byte alignment. + +MSPACES default: 0 (false) + If true, compile in support for independent allocation spaces. + This is only supported if HAVE_MMAP is true. + +ONLY_MSPACES default: 0 (false) + If true, only compile in mspace versions, not regular versions. + +USE_LOCKS default: 0 (false) + Causes each call to each public routine to be surrounded with + pthread or WIN32 mutex lock/unlock. (If set true, this can be + overridden on a per-mspace basis for mspace versions.) + +FOOTERS default: 0 + If true, provide extra checking and dispatching by placing + information in the footers of allocated chunks. This adds + space and time overhead. + +INSECURE default: 0 + If true, omit checks for usage errors and heap space overwrites. + +USE_DL_PREFIX default: NOT defined + Causes compiler to prefix all public routines with the string 'dl'. + This can be useful when you only want to use this malloc in one part + of a program, using your regular system malloc elsewhere. + +ABORT default: defined as abort() + Defines how to abort on failed checks. On most systems, a failed + check cannot die with an "assert" or even print an informative + message, because the underlying print routines in turn call malloc, + which will fail again. Generally, the best policy is to simply call + abort(). It's not very useful to do more than this because many + errors due to overwriting will show up as address faults (null, odd + addresses etc) rather than malloc-triggered checks, so will also + abort. Also, most compilers know that abort() does not return, so + can better optimize code conditionally calling it. + +PROCEED_ON_ERROR default: defined as 0 (false) + Controls whether detected bad addresses cause them to bypassed + rather than aborting. If set, detected bad arguments to free and + realloc are ignored. And all bookkeeping information is zeroed out + upon a detected overwrite of freed heap space, thus losing the + ability to ever return it from malloc again, but enabling the + application to proceed. If PROCEED_ON_ERROR is defined, the + static variable malloc_corruption_error_count is compiled in + and can be examined to see if errors have occurred. This option + generates slower code than the default abort policy. + +DEBUG default: NOT defined + The DEBUG setting is mainly intended for people trying to modify + this code or diagnose problems when porting to new platforms. + However, it may also be able to better isolate user errors than just + using runtime checks. The assertions in the check routines spell + out in more detail the assumptions and invariants underlying the + algorithms. The checking is fairly extensive, and will slow down + execution noticeably. Calling malloc_stats or mallinfo with DEBUG + set will attempt to check every non-mmapped allocated and free chunk + in the course of computing the summaries. + +ABORT_ON_ASSERT_FAILURE default: defined as 1 (true) + Debugging assertion failures can be nearly impossible if your + version of the assert macro causes malloc to be called, which will + lead to a cascade of further failures, blowing the runtime stack. + ABORT_ON_ASSERT_FAILURE cause assertions failures to call abort(), + which will usually make debugging easier. + +MALLOC_FAILURE_ACTION default: sets errno to ENOMEM, or no-op on win32 + The action to take before "return 0" when malloc fails to be able to + return memory because there is none available. + +HAVE_MORECORE default: 1 (true) unless win32 or ONLY_MSPACES + True if this system supports sbrk or an emulation of it. + +MORECORE default: sbrk + The name of the sbrk-style system routine to call to obtain more + memory. See below for guidance on writing custom MORECORE + functions. The type of the argument to sbrk/MORECORE varies across + systems. It cannot be size_t, because it supports negative + arguments, so it is normally the signed type of the same width as + size_t (sometimes declared as "intptr_t"). It doesn't much matter + though. Internally, we only call it with arguments less than half + the max value of a size_t, which should work across all reasonable + possibilities, although sometimes generating compiler warnings. See + near the end of this file for guidelines for creating a custom + version of MORECORE. + +MORECORE_CONTIGUOUS default: 1 (true) + If true, take advantage of fact that consecutive calls to MORECORE + with positive arguments always return contiguous increasing + addresses. This is true of unix sbrk. It does not hurt too much to + set it true anyway, since malloc copes with non-contiguities. + Setting it false when definitely non-contiguous saves time + and possibly wasted space it would take to discover this though. + +MORECORE_CANNOT_TRIM default: NOT defined + True if MORECORE cannot release space back to the system when given + negative arguments. This is generally necessary only if you are + using a hand-crafted MORECORE function that cannot handle negative + arguments. + +HAVE_MMAP default: 1 (true) + True if this system supports mmap or an emulation of it. If so, and + HAVE_MORECORE is not true, MMAP is used for all system + allocation. If set and HAVE_MORECORE is true as well, MMAP is + primarily used to directly allocate very large blocks. It is also + used as a backup strategy in cases where MORECORE fails to provide + space from system. Note: A single call to MUNMAP is assumed to be + able to unmap memory that may have be allocated using multiple calls + to MMAP, so long as they are adjacent. + +HAVE_MREMAP default: 1 on linux, else 0 + If true realloc() uses mremap() to re-allocate large blocks and + extend or shrink allocation spaces. + +MMAP_CLEARS default: 1 on unix + True if mmap clears memory so calloc doesn't need to. This is true + for standard unix mmap using /dev/zero. + +USE_BUILTIN_FFS default: 0 (i.e., not used) + Causes malloc to use the builtin ffs() function to compute indices. + Some compilers may recognize and intrinsify ffs to be faster than the + supplied C version. Also, the case of x86 using gcc is special-cased + to an asm instruction, so is already as fast as it can be, and so + this setting has no effect. (On most x86s, the asm version is only + slightly faster than the C version.) + +malloc_getpagesize default: derive from system includes, or 4096. + The system page size. To the extent possible, this malloc manages + memory from the system in page-size units. This may be (and + usually is) a function rather than a constant. This is ignored + if WIN32, where page size is determined using getSystemInfo during + initialization. + +USE_DEV_RANDOM default: 0 (i.e., not used) + Causes malloc to use /dev/random to initialize secure magic seed for + stamping footers. Otherwise, the current time is used. + +NO_MALLINFO default: 0 + If defined, don't compile "mallinfo". This can be a simple way + of dealing with mismatches between system declarations and + those in this file. + +MALLINFO_FIELD_TYPE default: size_t + The type of the fields in the mallinfo struct. This was originally + defined as "int" in SVID etc, but is more usefully defined as + size_t. The value is used only if HAVE_USR_INCLUDE_MALLOC_H is not set + +REALLOC_ZERO_BYTES_FREES default: not defined + This should be set if a call to realloc with zero bytes should + be the same as a call to free. Some people think it should. Otherwise, + since this malloc returns a unique pointer for malloc(0), so does + realloc(p, 0). + +LACKS_UNISTD_H, LACKS_FCNTL_H, LACKS_SYS_PARAM_H, LACKS_SYS_MMAN_H +LACKS_STRINGS_H, LACKS_STRING_H, LACKS_SYS_TYPES_H, LACKS_ERRNO_H +LACKS_STDLIB_H default: NOT defined unless on WIN32 + Define these if your system does not have these header files. + You might need to manually insert some of the declarations they provide. + +DEFAULT_GRANULARITY default: page size if MORECORE_CONTIGUOUS, + system_info.dwAllocationGranularity in WIN32, + otherwise 64K. + Also settable using mallopt(M_GRANULARITY, x) + The unit for allocating and deallocating memory from the system. On + most systems with contiguous MORECORE, there is no reason to + make this more than a page. However, systems with MMAP tend to + either require or encourage larger granularities. You can increase + this value to prevent system allocation functions to be called so + often, especially if they are slow. The value must be at least one + page and must be a power of two. Setting to 0 causes initialization + to either page size or win32 region size. (Note: In previous + versions of malloc, the equivalent of this option was called + "TOP_PAD") + +DEFAULT_TRIM_THRESHOLD default: 2MB + Also settable using mallopt(M_TRIM_THRESHOLD, x) + The maximum amount of unused top-most memory to keep before + releasing via malloc_trim in free(). Automatic trimming is mainly + useful in long-lived programs using contiguous MORECORE. Because + trimming via sbrk can be slow on some systems, and can sometimes be + wasteful (in cases where programs immediately afterward allocate + more large chunks) the value should be high enough so that your + overall system performance would improve by releasing this much + memory. As a rough guide, you might set to a value close to the + average size of a process (program) running on your system. + Releasing this much memory would allow such a process to run in + memory. Generally, it is worth tuning trim thresholds when a + program undergoes phases where several large chunks are allocated + and released in ways that can reuse each other's storage, perhaps + mixed with phases where there are no such chunks at all. The trim + value must be greater than page size to have any useful effect. To + disable trimming completely, you can set to MAX_SIZE_T. Note that the trick + some people use of mallocing a huge space and then freeing it at + program startup, in an attempt to reserve system memory, doesn't + have the intended effect under automatic trimming, since that memory + will immediately be returned to the system. + +DEFAULT_MMAP_THRESHOLD default: 256K + Also settable using mallopt(M_MMAP_THRESHOLD, x) + The request size threshold for using MMAP to directly service a + request. Requests of at least this size that cannot be allocated + using already-existing space will be serviced via mmap. (If enough + normal freed space already exists it is used instead.) Using mmap + segregates relatively large chunks of memory so that they can be + individually obtained and released from the host system. A request + serviced through mmap is never reused by any other request (at least + not directly; the system may just so happen to remap successive + requests to the same locations). Segregating space in this way has + the benefits that: Mmapped space can always be individually released + back to the system, which helps keep the system level memory demands + of a long-lived program low. Also, mapped memory doesn't become + `locked' between other chunks, as can happen with normally allocated + chunks, which means that even trimming via malloc_trim would not + release them. However, it has the disadvantage that the space + cannot be reclaimed, consolidated, and then used to service later + requests, as happens with normal chunks. The advantages of mmap + nearly always outweigh disadvantages for "large" chunks, but the + value of "large" may vary across systems. The default is an + empirically derived value that works well in most systems. You can + disable mmap by setting to MAX_SIZE_T. + +*/ + #if defined __linux__ && !defined _GNU_SOURCE /* mremap() on Linux requires this via sys/mman.h */ #define _GNU_SOURCE 1 #endif -#ifndef WIN32 -#ifdef _WIN32 -#define WIN32 1 -#endif /* _WIN32 */ -#endif /* WIN32 */ -#ifdef WIN32 -#define WIN32_LEAN_AND_MEAN -#include <windows.h> -#define HAVE_MMAP 1 -#define HAVE_MORECORE 0 -#define LACKS_UNISTD_H -#define LACKS_SYS_PARAM_H -#define LACKS_SYS_MMAN_H -#define LACKS_STRING_H -#define LACKS_STRINGS_H -#define LACKS_SYS_TYPES_H -#define LACKS_ERRNO_H -#define MALLOC_FAILURE_ACTION -#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */ -#endif /* WIN32 */ - -#ifdef __OS2__ -#define INCL_DOS -#include <os2.h> -#define HAVE_MMAP 1 -#define HAVE_MORECORE 0 -#define LACKS_SYS_MMAN_H -#endif /* __OS2__ */ - -#if defined(DARWIN) || defined(_DARWIN) -/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ -#ifndef HAVE_MORECORE -#define HAVE_MORECORE 0 -#define HAVE_MMAP 1 -#endif /* HAVE_MORECORE */ -#endif /* DARWIN */ - -#ifndef LACKS_SYS_TYPES_H -#include <sys/types.h> /* For size_t */ -#endif /* LACKS_SYS_TYPES_H */ - -/* The maximum possible size_t value has all bits set */ -#define MAX_SIZE_T (~(size_t)0) - -#ifndef ONLY_MSPACES -#define ONLY_MSPACES 0 -#endif /* ONLY_MSPACES */ -#ifndef MSPACES -#if ONLY_MSPACES -#define MSPACES 1 -#else /* ONLY_MSPACES */ -#define MSPACES 0 -#endif /* ONLY_MSPACES */ -#endif /* MSPACES */ -#ifndef MALLOC_ALIGNMENT -#define MALLOC_ALIGNMENT ((size_t)8U) -#endif /* MALLOC_ALIGNMENT */ -#ifndef FOOTERS -#define FOOTERS 0 -#endif /* FOOTERS */ -#ifndef ABORT -#define ABORT abort() -#endif /* ABORT */ -#ifndef ABORT_ON_ASSERT_FAILURE -#define ABORT_ON_ASSERT_FAILURE 1 -#endif /* ABORT_ON_ASSERT_FAILURE */ -#ifndef PROCEED_ON_ERROR -#define PROCEED_ON_ERROR 0 -#endif /* PROCEED_ON_ERROR */ -#ifndef USE_LOCKS -#define USE_LOCKS 0 -#endif /* USE_LOCKS */ -#ifndef INSECURE -#define INSECURE 0 -#endif /* INSECURE */ -#ifndef HAVE_MMAP -#define HAVE_MMAP 1 -#endif /* HAVE_MMAP */ -#ifndef MMAP_CLEARS -#define MMAP_CLEARS 1 -#endif /* MMAP_CLEARS */ -#ifndef HAVE_MREMAP -#ifdef linux -#define HAVE_MREMAP 1 -#else /* linux */ -#define HAVE_MREMAP 0 -#endif /* linux */ -#endif /* HAVE_MREMAP */ -#ifndef MALLOC_FAILURE_ACTION -#define MALLOC_FAILURE_ACTION errno = ENOMEM; -#endif /* MALLOC_FAILURE_ACTION */ -#ifndef HAVE_MORECORE -#if ONLY_MSPACES -#define HAVE_MORECORE 0 -#else /* ONLY_MSPACES */ -#define HAVE_MORECORE 1 -#endif /* ONLY_MSPACES */ -#endif /* HAVE_MORECORE */ -#if !HAVE_MORECORE -#define MORECORE_CONTIGUOUS 0 -#else /* !HAVE_MORECORE */ -#ifndef MORECORE -#define MORECORE sbrk -#endif /* MORECORE */ -#ifndef MORECORE_CONTIGUOUS -#define MORECORE_CONTIGUOUS 1 -#endif /* MORECORE_CONTIGUOUS */ -#endif /* HAVE_MORECORE */ -#ifndef DEFAULT_GRANULARITY -#if MORECORE_CONTIGUOUS -#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ -#else /* MORECORE_CONTIGUOUS */ -#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) -#endif /* MORECORE_CONTIGUOUS */ -#endif /* DEFAULT_GRANULARITY */ -#ifndef DEFAULT_TRIM_THRESHOLD -#ifndef MORECORE_CANNOT_TRIM -#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) -#else /* MORECORE_CANNOT_TRIM */ -#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T -#endif /* MORECORE_CANNOT_TRIM */ -#endif /* DEFAULT_TRIM_THRESHOLD */ -#ifndef DEFAULT_MMAP_THRESHOLD -#if HAVE_MMAP -#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) -#else /* HAVE_MMAP */ -#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T -#endif /* HAVE_MMAP */ -#endif /* DEFAULT_MMAP_THRESHOLD */ -#ifndef USE_BUILTIN_FFS -#define USE_BUILTIN_FFS 0 -#endif /* USE_BUILTIN_FFS */ -#ifndef USE_DEV_RANDOM -#define USE_DEV_RANDOM 0 -#endif /* USE_DEV_RANDOM */ -#ifndef NO_MALLINFO -#define NO_MALLINFO 0 -#endif /* NO_MALLINFO */ -#ifndef MALLINFO_FIELD_TYPE -#define MALLINFO_FIELD_TYPE size_t -#endif /* MALLINFO_FIELD_TYPE */ - -/* - mallopt tuning options. SVID/XPG defines four standard parameter - numbers for mallopt, normally defined in malloc.h. None of these - are used in this malloc, so setting them has no effect. But this - malloc does support the following options. -*/ - -#define M_TRIM_THRESHOLD (-1) -#define M_GRANULARITY (-2) -#define M_MMAP_THRESHOLD (-3) - -/* ------------------------ Mallinfo declarations ------------------------ */ - -#if !NO_MALLINFO -/* - This version of malloc supports the standard SVID/XPG mallinfo - routine that returns a struct containing usage properties and - statistics. It should work on any system that has a - /usr/include/malloc.h defining struct mallinfo. The main - declaration needed is the mallinfo struct that is returned (by-copy) - by mallinfo(). The malloinfo struct contains a bunch of fields that - are not even meaningful in this version of malloc. These fields are - are instead filled by mallinfo() with other numbers that might be of - interest. - - HAVE_USR_INCLUDE_MALLOC_H should be set if you have a - /usr/include/malloc.h file that includes a declaration of struct - mallinfo. If so, it is included; else a compliant version is - declared below. These must be precisely the same for mallinfo() to - work. The original SVID version of this struct, defined on most - systems with mallinfo, declares all fields as ints. But some others - define as unsigned long. If your system defines the fields using a - type of different width than listed here, you MUST #include your - system version and #define HAVE_USR_INCLUDE_MALLOC_H. -*/ - -/* #define HAVE_USR_INCLUDE_MALLOC_H */ - -#ifdef HAVE_USR_INCLUDE_MALLOC_H +#ifndef WIN32 +#ifdef _WIN32 +#define WIN32 1 +#endif /* _WIN32 */ +#endif /* WIN32 */ +#ifdef WIN32 +#define WIN32_LEAN_AND_MEAN +#include <windows.h> +#define HAVE_MMAP 1 +#define HAVE_MORECORE 0 +#define LACKS_UNISTD_H +#define LACKS_SYS_PARAM_H +#define LACKS_SYS_MMAN_H +#define LACKS_STRING_H +#define LACKS_STRINGS_H +#define LACKS_SYS_TYPES_H +#define LACKS_ERRNO_H +#define MALLOC_FAILURE_ACTION +#define MMAP_CLEARS 0 /* WINCE and some others apparently don't clear */ +#endif /* WIN32 */ + +#ifdef __OS2__ +#define INCL_DOS +#include <os2.h> +#define HAVE_MMAP 1 +#define HAVE_MORECORE 0 +#define LACKS_SYS_MMAN_H +#endif /* __OS2__ */ + +#if defined(DARWIN) || defined(_DARWIN) +/* Mac OSX docs advise not to use sbrk; it seems better to use mmap */ +#ifndef HAVE_MORECORE +#define HAVE_MORECORE 0 +#define HAVE_MMAP 1 +#endif /* HAVE_MORECORE */ +#endif /* DARWIN */ + +#ifndef LACKS_SYS_TYPES_H +#include <sys/types.h> /* For size_t */ +#endif /* LACKS_SYS_TYPES_H */ + +/* The maximum possible size_t value has all bits set */ +#define MAX_SIZE_T (~(size_t)0) + +#ifndef ONLY_MSPACES +#define ONLY_MSPACES 0 +#endif /* ONLY_MSPACES */ +#ifndef MSPACES +#if ONLY_MSPACES +#define MSPACES 1 +#else /* ONLY_MSPACES */ +#define MSPACES 0 +#endif /* ONLY_MSPACES */ +#endif /* MSPACES */ +#ifndef MALLOC_ALIGNMENT +#define MALLOC_ALIGNMENT ((size_t)8U) +#endif /* MALLOC_ALIGNMENT */ +#ifndef FOOTERS +#define FOOTERS 0 +#endif /* FOOTERS */ +#ifndef ABORT +#define ABORT abort() +#endif /* ABORT */ +#ifndef ABORT_ON_ASSERT_FAILURE +#define ABORT_ON_ASSERT_FAILURE 1 +#endif /* ABORT_ON_ASSERT_FAILURE */ +#ifndef PROCEED_ON_ERROR +#define PROCEED_ON_ERROR 0 +#endif /* PROCEED_ON_ERROR */ +#ifndef USE_LOCKS +#define USE_LOCKS 0 +#endif /* USE_LOCKS */ +#ifndef INSECURE +#define INSECURE 0 +#endif /* INSECURE */ +#ifndef HAVE_MMAP +#define HAVE_MMAP 1 +#endif /* HAVE_MMAP */ +#ifndef MMAP_CLEARS +#define MMAP_CLEARS 1 +#endif /* MMAP_CLEARS */ +#ifndef HAVE_MREMAP +#ifdef linux +#define HAVE_MREMAP 1 +#else /* linux */ +#define HAVE_MREMAP 0 +#endif /* linux */ +#endif /* HAVE_MREMAP */ +#ifndef MALLOC_FAILURE_ACTION +#define MALLOC_FAILURE_ACTION errno = ENOMEM; +#endif /* MALLOC_FAILURE_ACTION */ +#ifndef HAVE_MORECORE +#if ONLY_MSPACES +#define HAVE_MORECORE 0 +#else /* ONLY_MSPACES */ +#define HAVE_MORECORE 1 +#endif /* ONLY_MSPACES */ +#endif /* HAVE_MORECORE */ +#if !HAVE_MORECORE +#define MORECORE_CONTIGUOUS 0 +#else /* !HAVE_MORECORE */ +#ifndef MORECORE +#define MORECORE sbrk +#endif /* MORECORE */ +#ifndef MORECORE_CONTIGUOUS +#define MORECORE_CONTIGUOUS 1 +#endif /* MORECORE_CONTIGUOUS */ +#endif /* HAVE_MORECORE */ +#ifndef DEFAULT_GRANULARITY +#if MORECORE_CONTIGUOUS +#define DEFAULT_GRANULARITY (0) /* 0 means to compute in init_mparams */ +#else /* MORECORE_CONTIGUOUS */ +#define DEFAULT_GRANULARITY ((size_t)64U * (size_t)1024U) +#endif /* MORECORE_CONTIGUOUS */ +#endif /* DEFAULT_GRANULARITY */ +#ifndef DEFAULT_TRIM_THRESHOLD +#ifndef MORECORE_CANNOT_TRIM +#define DEFAULT_TRIM_THRESHOLD ((size_t)2U * (size_t)1024U * (size_t)1024U) +#else /* MORECORE_CANNOT_TRIM */ +#define DEFAULT_TRIM_THRESHOLD MAX_SIZE_T +#endif /* MORECORE_CANNOT_TRIM */ +#endif /* DEFAULT_TRIM_THRESHOLD */ +#ifndef DEFAULT_MMAP_THRESHOLD +#if HAVE_MMAP +#define DEFAULT_MMAP_THRESHOLD ((size_t)256U * (size_t)1024U) +#else /* HAVE_MMAP */ +#define DEFAULT_MMAP_THRESHOLD MAX_SIZE_T +#endif /* HAVE_MMAP */ +#endif /* DEFAULT_MMAP_THRESHOLD */ +#ifndef USE_BUILTIN_FFS +#define USE_BUILTIN_FFS 0 +#endif /* USE_BUILTIN_FFS */ +#ifndef USE_DEV_RANDOM +#define USE_DEV_RANDOM 0 +#endif /* USE_DEV_RANDOM */ +#ifndef NO_MALLINFO +#define NO_MALLINFO 0 +#endif /* NO_MALLINFO */ +#ifndef MALLINFO_FIELD_TYPE +#define MALLINFO_FIELD_TYPE size_t +#endif /* MALLINFO_FIELD_TYPE */ + +/* + mallopt tuning options. SVID/XPG defines four standard parameter + numbers for mallopt, normally defined in malloc.h. None of these + are used in this malloc, so setting them has no effect. But this + malloc does support the following options. +*/ + +#define M_TRIM_THRESHOLD (-1) +#define M_GRANULARITY (-2) +#define M_MMAP_THRESHOLD (-3) + +/* ------------------------ Mallinfo declarations ------------------------ */ + +#if !NO_MALLINFO +/* + This version of malloc supports the standard SVID/XPG mallinfo + routine that returns a struct containing usage properties and + statistics. It should work on any system that has a + /usr/include/malloc.h defining struct mallinfo. The main + declaration needed is the mallinfo struct that is returned (by-copy) + by mallinfo(). The malloinfo struct contains a bunch of fields that + are not even meaningful in this version of malloc. These fields are + are instead filled by mallinfo() with other numbers that might be of + interest. + + HAVE_USR_INCLUDE_MALLOC_H should be set if you have a + /usr/include/malloc.h file that includes a declaration of struct + mallinfo. If so, it is included; else a compliant version is + declared below. These must be precisely the same for mallinfo() to + work. The original SVID version of this struct, defined on most + systems with mallinfo, declares all fields as ints. But some others + define as unsigned long. If your system defines the fields using a + type of different width than listed here, you MUST #include your + system version and #define HAVE_USR_INCLUDE_MALLOC_H. +*/ + +/* #define HAVE_USR_INCLUDE_MALLOC_H */ + +#ifdef HAVE_USR_INCLUDE_MALLOC_H #error #include "/usr/include/malloc.h" -#else /* HAVE_USR_INCLUDE_MALLOC_H */ - -/* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */ -#define _STRUCT_MALLINFO - -struct mallinfo { - MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ - MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ - MALLINFO_FIELD_TYPE smblks; /* always 0 */ - MALLINFO_FIELD_TYPE hblks; /* always 0 */ - MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ - MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ - MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ - MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ - MALLINFO_FIELD_TYPE fordblks; /* total free space */ - MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ -}; - -#endif /* HAVE_USR_INCLUDE_MALLOC_H */ -#endif /* NO_MALLINFO */ - -#ifdef __cplusplus -extern "C" { -#endif /* __cplusplus */ - -#if !ONLY_MSPACES - -/* ------------------- Declarations of public routines ------------------- */ - -#ifndef USE_DL_PREFIX -#define dlcalloc calloc -#define dlfree free -#define dlmalloc malloc -#define dlmemalign memalign -#define dlrealloc realloc -#define dlvalloc valloc -#define dlpvalloc pvalloc -#define dlmallinfo mallinfo -#define dlmallopt mallopt -#define dlmalloc_trim malloc_trim -#define dlmalloc_stats malloc_stats -#define dlmalloc_usable_size malloc_usable_size -#define dlmalloc_footprint malloc_footprint -#define dlmalloc_max_footprint malloc_max_footprint -#define dlindependent_calloc independent_calloc -#define dlindependent_comalloc independent_comalloc -#endif /* USE_DL_PREFIX */ - - -/* - malloc(size_t n) - Returns a pointer to a newly allocated chunk of at least n bytes, or - null if no space is available, in which case errno is set to ENOMEM - on ANSI C systems. - - If n is zero, malloc returns a minimum-sized chunk. (The minimum - size is 16 bytes on most 32bit systems, and 32 bytes on 64bit - systems.) Note that size_t is an unsigned type, so calls with - arguments that would be negative if signed are interpreted as - requests for huge amounts of space, which will often fail. The - maximum supported value of n differs across systems, but is in all - cases less than the maximum representable value of a size_t. -*/ -void* dlmalloc(size_t); - -/* - free(void* p) - Releases the chunk of memory pointed to by p, that had been previously - allocated using malloc or a related routine such as realloc. - It has no effect if p is null. If p was not malloced or already - freed, free(p) will by default cause the current program to abort. -*/ -void dlfree(void*); - -/* - calloc(size_t n_elements, size_t element_size); - Returns a pointer to n_elements * element_size bytes, with all locations - set to zero. -*/ -void* dlcalloc(size_t, size_t); - -/* - realloc(void* p, size_t n) - Returns a pointer to a chunk of size n that contains the same data - as does chunk p up to the minimum of (n, p's size) bytes, or null - if no space is available. - - The returned pointer may or may not be the same as p. The algorithm - prefers extending p in most cases when possible, otherwise it - employs the equivalent of a malloc-copy-free sequence. - - If p is null, realloc is equivalent to malloc. - - If space is not available, realloc returns null, errno is set (if on - ANSI) and p is NOT freed. - - if n is for fewer bytes than already held by p, the newly unused - space is lopped off and freed if possible. realloc with a size - argument of zero (re)allocates a minimum-sized chunk. - - The old unix realloc convention of allowing the last-free'd chunk - to be used as an argument to realloc is not supported. -*/ - -void* dlrealloc(void*, size_t); - -/* - memalign(size_t alignment, size_t n); - Returns a pointer to a newly allocated chunk of n bytes, aligned - in accord with the alignment argument. - - The alignment argument should be a power of two. If the argument is - not a power of two, the nearest greater power is used. - 8-byte alignment is guaranteed by normal malloc calls, so don't - bother calling memalign with an argument of 8 or less. - - Overreliance on memalign is a sure way to fragment space. -*/ -void* dlmemalign(size_t, size_t); - -/* - valloc(size_t n); - Equivalent to memalign(pagesize, n), where pagesize is the page - size of the system. If the pagesize is unknown, 4096 is used. -*/ -void* dlvalloc(size_t); - -/* - mallopt(int parameter_number, int parameter_value) - Sets tunable parameters The format is to provide a - (parameter-number, parameter-value) pair. mallopt then sets the - corresponding parameter to the argument value if it can (i.e., so - long as the value is meaningful), and returns 1 if successful else - 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, - normally defined in malloc.h. None of these are use in this malloc, - so setting them has no effect. But this malloc also supports other - options in mallopt. See below for details. Briefly, supported - parameters are as follows (listed defaults are for "typical" - configurations). - - Symbol param # default allowed param values - M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) - M_GRANULARITY -2 page size any power of 2 >= page size - M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) -*/ -int dlmallopt(int, int); - -/* - malloc_footprint(); - Returns the number of bytes obtained from the system. The total - number of bytes allocated by malloc, realloc etc., is less than this - value. Unlike mallinfo, this function returns only a precomputed - result, so can be called frequently to monitor memory consumption. - Even if locks are otherwise defined, this function does not use them, - so results might not be up to date. -*/ -size_t dlmalloc_footprint(void); - -/* - malloc_max_footprint(); - Returns the maximum number of bytes obtained from the system. This - value will be greater than current footprint if deallocated space - has been reclaimed by the system. The peak number of bytes allocated - by malloc, realloc etc., is less than this value. Unlike mallinfo, - this function returns only a precomputed result, so can be called - frequently to monitor memory consumption. Even if locks are - otherwise defined, this function does not use them, so results might - not be up to date. -*/ -size_t dlmalloc_max_footprint(void); - -#if !NO_MALLINFO -/* - mallinfo() - Returns (by copy) a struct containing various summary statistics: - - arena: current total non-mmapped bytes allocated from system - ordblks: the number of free chunks - smblks: always zero. - hblks: current number of mmapped regions - hblkhd: total bytes held in mmapped regions - usmblks: the maximum total allocated space. This will be greater - than current total if trimming has occurred. - fsmblks: always zero - uordblks: current total allocated space (normal or mmapped) - fordblks: total free space - keepcost: the maximum number of bytes that could ideally be released - back to system via malloc_trim. ("ideally" means that - it ignores page restrictions etc.) - - Because these fields are ints, but internal bookkeeping may - be kept as longs, the reported values may wrap around zero and - thus be inaccurate. -*/ -struct mallinfo dlmallinfo(void); -#endif /* NO_MALLINFO */ - -/* - independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); - - independent_calloc is similar to calloc, but instead of returning a - single cleared space, it returns an array of pointers to n_elements - independent elements that can hold contents of size elem_size, each - of which starts out cleared, and can be independently freed, - realloc'ed etc. The elements are guaranteed to be adjacently - allocated (this is not guaranteed to occur with multiple callocs or - mallocs), which may also improve cache locality in some - applications. - - The "chunks" argument is optional (i.e., may be null, which is - probably the most typical usage). If it is null, the returned array - is itself dynamically allocated and should also be freed when it is - no longer needed. Otherwise, the chunks array must be of at least - n_elements in length. It is filled in with the pointers to the - chunks. - - In either case, independent_calloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and "chunks" - is null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be individually freed when it is no longer - needed. If you'd like to instead be able to free all at once, you - should instead use regular calloc and assign pointers into this - space to represent elements. (In this case though, you cannot - independently free elements.) - - independent_calloc simplifies and speeds up implementations of many - kinds of pools. It may also be useful when constructing large data - structures that initially have a fixed number of fixed-sized nodes, - but the number is not known at compile time, and some of the nodes - may later need to be freed. For example: - - struct Node { int item; struct Node* next; }; - - struct Node* build_list() { - struct Node** pool; - int n = read_number_of_nodes_needed(); - if (n <= 0) return 0; - pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); - if (pool == 0) die(); - // organize into a linked list... - struct Node* first = pool[0]; - for (i = 0; i < n-1; ++i) - pool[i]->next = pool[i+1]; - free(pool); // Can now free the array (or not, if it is needed later) - return first; - } -*/ -void** dlindependent_calloc(size_t, size_t, void**); - -/* - independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); - - independent_comalloc allocates, all at once, a set of n_elements - chunks with sizes indicated in the "sizes" array. It returns - an array of pointers to these elements, each of which can be - independently freed, realloc'ed etc. The elements are guaranteed to - be adjacently allocated (this is not guaranteed to occur with - multiple callocs or mallocs), which may also improve cache locality - in some applications. - - The "chunks" argument is optional (i.e., may be null). If it is null - the returned array is itself dynamically allocated and should also - be freed when it is no longer needed. Otherwise, the chunks array - must be of at least n_elements in length. It is filled in with the - pointers to the chunks. - - In either case, independent_comalloc returns this pointer array, or - null if the allocation failed. If n_elements is zero and chunks is - null, it returns a chunk representing an array with zero elements - (which should be freed if not wanted). - - Each element must be individually freed when it is no longer - needed. If you'd like to instead be able to free all at once, you - should instead use a single regular malloc, and assign pointers at - particular offsets in the aggregate space. (In this case though, you - cannot independently free elements.) - - independent_comallac differs from independent_calloc in that each - element may have a different size, and also that it does not - automatically clear elements. - - independent_comalloc can be used to speed up allocation in cases - where several structs or objects must always be allocated at the - same time. For example: - - struct Head { ... } - struct Foot { ... } - - void send_message(char* msg) { - int msglen = strlen(msg); - size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; - void* chunks[3]; - if (independent_comalloc(3, sizes, chunks) == 0) - die(); - struct Head* head = (struct Head*)(chunks[0]); - char* body = (char*)(chunks[1]); - struct Foot* foot = (struct Foot*)(chunks[2]); - // ... - } - - In general though, independent_comalloc is worth using only for - larger values of n_elements. For small values, you probably won't - detect enough difference from series of malloc calls to bother. - - Overuse of independent_comalloc can increase overall memory usage, - since it cannot reuse existing noncontiguous small chunks that - might be available for some of the elements. -*/ -void** dlindependent_comalloc(size_t, size_t*, void**); - - -/* - pvalloc(size_t n); - Equivalent to valloc(minimum-page-that-holds(n)), that is, - round up n to nearest pagesize. - */ -void* dlpvalloc(size_t); - -/* - malloc_trim(size_t pad); - - If possible, gives memory back to the system (via negative arguments - to sbrk) if there is unused memory at the `high' end of the malloc - pool or in unused MMAP segments. You can call this after freeing - large blocks of memory to potentially reduce the system-level memory - requirements of a program. However, it cannot guarantee to reduce - memory. Under some allocation patterns, some large free blocks of - memory will be locked between two used chunks, so they cannot be - given back to the system. - - The `pad' argument to malloc_trim represents the amount of free - trailing space to leave untrimmed. If this argument is zero, only - the minimum amount of memory to maintain internal data structures - will be left. Non-zero arguments can be supplied to maintain enough - trailing space to service future expected allocations without having - to re-obtain memory from the system. - - Malloc_trim returns 1 if it actually released any memory, else 0. -*/ -int dlmalloc_trim(size_t); - -/* - malloc_usable_size(void* p); - - Returns the number of bytes you can actually use in - an allocated chunk, which may be more than you requested (although - often not) due to alignment and minimum size constraints. - You can use this many bytes without worrying about - overwriting other allocated objects. This is not a particularly great - programming practice. malloc_usable_size can be more useful in - debugging and assertions, for example: - - p = malloc(n); - assert(malloc_usable_size(p) >= 256); -*/ -size_t dlmalloc_usable_size(void*); - -/* - malloc_stats(); - Prints on stderr the amount of space obtained from the system (both - via sbrk and mmap), the maximum amount (which may be more than - current if malloc_trim and/or munmap got called), and the current - number of bytes allocated via malloc (or realloc, etc) but not yet - freed. Note that this is the number of bytes allocated, not the - number requested. It will be larger than the number requested - because of alignment and bookkeeping overhead. Because it includes - alignment wastage as being in use, this figure may be greater than - zero even when no user-level chunks are allocated. - - The reported current and maximum system memory can be inaccurate if - a program makes other calls to system memory allocation functions - (normally sbrk) outside of malloc. - - malloc_stats prints only the most commonly interesting statistics. - More information can be obtained by calling mallinfo. -*/ -void dlmalloc_stats(void); - -#endif /* ONLY_MSPACES */ - -#if MSPACES - -/* - mspace is an opaque type representing an independent - region of space that supports mspace_malloc, etc. -*/ -typedef void* mspace; - -/* - create_mspace creates and returns a new independent space with the - given initial capacity, or, if 0, the default granularity size. It - returns null if there is no system memory available to create the - space. If argument locked is non-zero, the space uses a separate - lock to control access. The capacity of the space will grow - dynamically as needed to service mspace_malloc requests. You can - control the sizes of incremental increases of this space by - compiling with a different DEFAULT_GRANULARITY or dynamically - setting with mallopt(M_GRANULARITY, value). -*/ -mspace create_mspace(size_t capacity, int locked); - -/* - destroy_mspace destroys the given space, and attempts to return all - of its memory back to the system, returning the total number of - bytes freed. After destruction, the results of access to all memory - used by the space become undefined. -*/ -size_t destroy_mspace(mspace msp); - -/* - create_mspace_with_base uses the memory supplied as the initial base - of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this - space is used for bookkeeping, so the capacity must be at least this - large. (Otherwise 0 is returned.) When this initial space is - exhausted, additional memory will be obtained from the system. - Destroying this space will deallocate all additionally allocated - space (if possible) but not the initial base. -*/ -mspace create_mspace_with_base(void* base, size_t capacity, int locked); - -/* - mspace_malloc behaves as malloc, but operates within - the given space. -*/ -void* mspace_malloc(mspace msp, size_t bytes); - -/* - mspace_free behaves as free, but operates within - the given space. - - If compiled with FOOTERS==1, mspace_free is not actually needed. - free may be called instead of mspace_free because freed chunks from - any space are handled by their originating spaces. -*/ -void mspace_free(mspace msp, void* mem); - -/* - mspace_realloc behaves as realloc, but operates within - the given space. - - If compiled with FOOTERS==1, mspace_realloc is not actually - needed. realloc may be called instead of mspace_realloc because - realloced chunks from any space are handled by their originating - spaces. -*/ -void* mspace_realloc(mspace msp, void* mem, size_t newsize); - -/* - mspace_calloc behaves as calloc, but operates within - the given space. -*/ -void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); - -/* - mspace_memalign behaves as memalign, but operates within - the given space. -*/ -void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); - -/* - mspace_independent_calloc behaves as independent_calloc, but - operates within the given space. -*/ -void** mspace_independent_calloc(mspace msp, size_t n_elements, - size_t elem_size, void* chunks[]); - -/* - mspace_independent_comalloc behaves as independent_comalloc, but - operates within the given space. -*/ -void** mspace_independent_comalloc(mspace msp, size_t n_elements, - size_t sizes[], void* chunks[]); - -/* - mspace_footprint() returns the number of bytes obtained from the - system for this space. -*/ -size_t mspace_footprint(mspace msp); - -/* - mspace_max_footprint() returns the peak number of bytes obtained from the - system for this space. -*/ -size_t mspace_max_footprint(mspace msp); - - -#if !NO_MALLINFO -/* - mspace_mallinfo behaves as mallinfo, but reports properties of - the given space. -*/ -struct mallinfo mspace_mallinfo(mspace msp); -#endif /* NO_MALLINFO */ - -/* - mspace_malloc_stats behaves as malloc_stats, but reports - properties of the given space. -*/ -void mspace_malloc_stats(mspace msp); - -/* - mspace_trim behaves as malloc_trim, but - operates within the given space. -*/ -int mspace_trim(mspace msp, size_t pad); - -/* - An alias for mallopt. -*/ -int mspace_mallopt(int, int); - -#endif /* MSPACES */ - -#ifdef __cplusplus -}; /* end of extern "C" */ -#endif /* __cplusplus */ - -/* - ======================================================================== - To make a fully customizable malloc.h header file, cut everything - above this line, put into file malloc.h, edit to suit, and #include it - on the next line, as well as in programs that use this malloc. - ======================================================================== -*/ - -/* #include "malloc.h" */ - -/*------------------------------ internal #includes ---------------------- */ - -#ifdef _MSC_VER -#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ -#endif /* _MSC_VER */ - -#include <stdio.h> /* for printing in malloc_stats */ - -#ifndef LACKS_ERRNO_H -#include <errno.h> /* for MALLOC_FAILURE_ACTION */ -#endif /* LACKS_ERRNO_H */ -#if FOOTERS -#include <time.h> /* for magic initialization */ -#endif /* FOOTERS */ -#ifndef LACKS_STDLIB_H -#include <stdlib.h> /* for abort() */ -#endif /* LACKS_STDLIB_H */ -#ifdef DEBUG -#if ABORT_ON_ASSERT_FAILURE -#define assert(x) if(!(x)) ABORT -#else /* ABORT_ON_ASSERT_FAILURE */ -#include <assert.h> -#endif /* ABORT_ON_ASSERT_FAILURE */ -#else /* DEBUG */ -#define assert(x) -#endif /* DEBUG */ -#ifndef LACKS_STRING_H -#include <string.h> /* for memset etc */ -#endif /* LACKS_STRING_H */ -#if USE_BUILTIN_FFS -#ifndef LACKS_STRINGS_H -#include <strings.h> /* for ffs */ -#endif /* LACKS_STRINGS_H */ -#endif /* USE_BUILTIN_FFS */ -#if HAVE_MMAP -#ifndef LACKS_SYS_MMAN_H -#include <sys/mman.h> /* for mmap */ -#endif /* LACKS_SYS_MMAN_H */ -#ifndef LACKS_FCNTL_H -#include <fcntl.h> -#endif /* LACKS_FCNTL_H */ -#endif /* HAVE_MMAP */ -#if HAVE_MORECORE -#ifndef LACKS_UNISTD_H -#include <unistd.h> /* for sbrk */ -#else /* LACKS_UNISTD_H */ -#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) -extern void* sbrk(ptrdiff_t); -#endif /* FreeBSD etc */ -#endif /* LACKS_UNISTD_H */ -#endif /* HAVE_MMAP */ - -#ifndef WIN32 -#ifndef malloc_getpagesize -# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ -# ifndef _SC_PAGE_SIZE -# define _SC_PAGE_SIZE _SC_PAGESIZE -# endif -# endif -# ifdef _SC_PAGE_SIZE -# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) -# else -# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) - extern size_t getpagesize(); -# define malloc_getpagesize getpagesize() -# else -# ifdef WIN32 /* use supplied emulation of getpagesize */ -# define malloc_getpagesize getpagesize() -# else -# ifndef LACKS_SYS_PARAM_H -# include <sys/param.h> -# endif -# ifdef EXEC_PAGESIZE -# define malloc_getpagesize EXEC_PAGESIZE -# else -# ifdef NBPG -# ifndef CLSIZE -# define malloc_getpagesize NBPG -# else -# define malloc_getpagesize (NBPG * CLSIZE) -# endif -# else -# ifdef NBPC -# define malloc_getpagesize NBPC -# else -# ifdef PAGESIZE -# define malloc_getpagesize PAGESIZE -# else /* just guess */ -# define malloc_getpagesize ((size_t)4096U) -# endif -# endif -# endif -# endif -# endif -# endif -# endif -#endif -#endif - -/* ------------------- size_t and alignment properties -------------------- */ - -/* The byte and bit size of a size_t */ -#define SIZE_T_SIZE (sizeof(size_t)) -#define SIZE_T_BITSIZE (sizeof(size_t) << 3) - -/* Some constants coerced to size_t */ +#else /* HAVE_USR_INCLUDE_MALLOC_H */ + +/* HP-UX's stdlib.h redefines mallinfo unless _STRUCT_MALLINFO is defined */ +#define _STRUCT_MALLINFO + +struct mallinfo { + MALLINFO_FIELD_TYPE arena; /* non-mmapped space allocated from system */ + MALLINFO_FIELD_TYPE ordblks; /* number of free chunks */ + MALLINFO_FIELD_TYPE smblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblks; /* always 0 */ + MALLINFO_FIELD_TYPE hblkhd; /* space in mmapped regions */ + MALLINFO_FIELD_TYPE usmblks; /* maximum total allocated space */ + MALLINFO_FIELD_TYPE fsmblks; /* always 0 */ + MALLINFO_FIELD_TYPE uordblks; /* total allocated space */ + MALLINFO_FIELD_TYPE fordblks; /* total free space */ + MALLINFO_FIELD_TYPE keepcost; /* releasable (via malloc_trim) space */ +}; + +#endif /* HAVE_USR_INCLUDE_MALLOC_H */ +#endif /* NO_MALLINFO */ + +#ifdef __cplusplus +extern "C" { +#endif /* __cplusplus */ + +#if !ONLY_MSPACES + +/* ------------------- Declarations of public routines ------------------- */ + +#ifndef USE_DL_PREFIX +#define dlcalloc calloc +#define dlfree free +#define dlmalloc malloc +#define dlmemalign memalign +#define dlrealloc realloc +#define dlvalloc valloc +#define dlpvalloc pvalloc +#define dlmallinfo mallinfo +#define dlmallopt mallopt +#define dlmalloc_trim malloc_trim +#define dlmalloc_stats malloc_stats +#define dlmalloc_usable_size malloc_usable_size +#define dlmalloc_footprint malloc_footprint +#define dlmalloc_max_footprint malloc_max_footprint +#define dlindependent_calloc independent_calloc +#define dlindependent_comalloc independent_comalloc +#endif /* USE_DL_PREFIX */ + + +/* + malloc(size_t n) + Returns a pointer to a newly allocated chunk of at least n bytes, or + null if no space is available, in which case errno is set to ENOMEM + on ANSI C systems. + + If n is zero, malloc returns a minimum-sized chunk. (The minimum + size is 16 bytes on most 32bit systems, and 32 bytes on 64bit + systems.) Note that size_t is an unsigned type, so calls with + arguments that would be negative if signed are interpreted as + requests for huge amounts of space, which will often fail. The + maximum supported value of n differs across systems, but is in all + cases less than the maximum representable value of a size_t. +*/ +void* dlmalloc(size_t); + +/* + free(void* p) + Releases the chunk of memory pointed to by p, that had been previously + allocated using malloc or a related routine such as realloc. + It has no effect if p is null. If p was not malloced or already + freed, free(p) will by default cause the current program to abort. +*/ +void dlfree(void*); + +/* + calloc(size_t n_elements, size_t element_size); + Returns a pointer to n_elements * element_size bytes, with all locations + set to zero. +*/ +void* dlcalloc(size_t, size_t); + +/* + realloc(void* p, size_t n) + Returns a pointer to a chunk of size n that contains the same data + as does chunk p up to the minimum of (n, p's size) bytes, or null + if no space is available. + + The returned pointer may or may not be the same as p. The algorithm + prefers extending p in most cases when possible, otherwise it + employs the equivalent of a malloc-copy-free sequence. + + If p is null, realloc is equivalent to malloc. + + If space is not available, realloc returns null, errno is set (if on + ANSI) and p is NOT freed. + + if n is for fewer bytes than already held by p, the newly unused + space is lopped off and freed if possible. realloc with a size + argument of zero (re)allocates a minimum-sized chunk. + + The old unix realloc convention of allowing the last-free'd chunk + to be used as an argument to realloc is not supported. +*/ + +void* dlrealloc(void*, size_t); + +/* + memalign(size_t alignment, size_t n); + Returns a pointer to a newly allocated chunk of n bytes, aligned + in accord with the alignment argument. + + The alignment argument should be a power of two. If the argument is + not a power of two, the nearest greater power is used. + 8-byte alignment is guaranteed by normal malloc calls, so don't + bother calling memalign with an argument of 8 or less. + + Overreliance on memalign is a sure way to fragment space. +*/ +void* dlmemalign(size_t, size_t); + +/* + valloc(size_t n); + Equivalent to memalign(pagesize, n), where pagesize is the page + size of the system. If the pagesize is unknown, 4096 is used. +*/ +void* dlvalloc(size_t); + +/* + mallopt(int parameter_number, int parameter_value) + Sets tunable parameters The format is to provide a + (parameter-number, parameter-value) pair. mallopt then sets the + corresponding parameter to the argument value if it can (i.e., so + long as the value is meaningful), and returns 1 if successful else + 0. SVID/XPG/ANSI defines four standard param numbers for mallopt, + normally defined in malloc.h. None of these are use in this malloc, + so setting them has no effect. But this malloc also supports other + options in mallopt. See below for details. Briefly, supported + parameters are as follows (listed defaults are for "typical" + configurations). + + Symbol param # default allowed param values + M_TRIM_THRESHOLD -1 2*1024*1024 any (MAX_SIZE_T disables) + M_GRANULARITY -2 page size any power of 2 >= page size + M_MMAP_THRESHOLD -3 256*1024 any (or 0 if no MMAP support) +*/ +int dlmallopt(int, int); + +/* + malloc_footprint(); + Returns the number of bytes obtained from the system. The total + number of bytes allocated by malloc, realloc etc., is less than this + value. Unlike mallinfo, this function returns only a precomputed + result, so can be called frequently to monitor memory consumption. + Even if locks are otherwise defined, this function does not use them, + so results might not be up to date. +*/ +size_t dlmalloc_footprint(void); + +/* + malloc_max_footprint(); + Returns the maximum number of bytes obtained from the system. This + value will be greater than current footprint if deallocated space + has been reclaimed by the system. The peak number of bytes allocated + by malloc, realloc etc., is less than this value. Unlike mallinfo, + this function returns only a precomputed result, so can be called + frequently to monitor memory consumption. Even if locks are + otherwise defined, this function does not use them, so results might + not be up to date. +*/ +size_t dlmalloc_max_footprint(void); + +#if !NO_MALLINFO +/* + mallinfo() + Returns (by copy) a struct containing various summary statistics: + + arena: current total non-mmapped bytes allocated from system + ordblks: the number of free chunks + smblks: always zero. + hblks: current number of mmapped regions + hblkhd: total bytes held in mmapped regions + usmblks: the maximum total allocated space. This will be greater + than current total if trimming has occurred. + fsmblks: always zero + uordblks: current total allocated space (normal or mmapped) + fordblks: total free space + keepcost: the maximum number of bytes that could ideally be released + back to system via malloc_trim. ("ideally" means that + it ignores page restrictions etc.) + + Because these fields are ints, but internal bookkeeping may + be kept as longs, the reported values may wrap around zero and + thus be inaccurate. +*/ +struct mallinfo dlmallinfo(void); +#endif /* NO_MALLINFO */ + +/* + independent_calloc(size_t n_elements, size_t element_size, void* chunks[]); + + independent_calloc is similar to calloc, but instead of returning a + single cleared space, it returns an array of pointers to n_elements + independent elements that can hold contents of size elem_size, each + of which starts out cleared, and can be independently freed, + realloc'ed etc. The elements are guaranteed to be adjacently + allocated (this is not guaranteed to occur with multiple callocs or + mallocs), which may also improve cache locality in some + applications. + + The "chunks" argument is optional (i.e., may be null, which is + probably the most typical usage). If it is null, the returned array + is itself dynamically allocated and should also be freed when it is + no longer needed. Otherwise, the chunks array must be of at least + n_elements in length. It is filled in with the pointers to the + chunks. + + In either case, independent_calloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and "chunks" + is null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use regular calloc and assign pointers into this + space to represent elements. (In this case though, you cannot + independently free elements.) + + independent_calloc simplifies and speeds up implementations of many + kinds of pools. It may also be useful when constructing large data + structures that initially have a fixed number of fixed-sized nodes, + but the number is not known at compile time, and some of the nodes + may later need to be freed. For example: + + struct Node { int item; struct Node* next; }; + + struct Node* build_list() { + struct Node** pool; + int n = read_number_of_nodes_needed(); + if (n <= 0) return 0; + pool = (struct Node**)(independent_calloc(n, sizeof(struct Node), 0); + if (pool == 0) die(); + // organize into a linked list... + struct Node* first = pool[0]; + for (i = 0; i < n-1; ++i) + pool[i]->next = pool[i+1]; + free(pool); // Can now free the array (or not, if it is needed later) + return first; + } +*/ +void** dlindependent_calloc(size_t, size_t, void**); + +/* + independent_comalloc(size_t n_elements, size_t sizes[], void* chunks[]); + + independent_comalloc allocates, all at once, a set of n_elements + chunks with sizes indicated in the "sizes" array. It returns + an array of pointers to these elements, each of which can be + independently freed, realloc'ed etc. The elements are guaranteed to + be adjacently allocated (this is not guaranteed to occur with + multiple callocs or mallocs), which may also improve cache locality + in some applications. + + The "chunks" argument is optional (i.e., may be null). If it is null + the returned array is itself dynamically allocated and should also + be freed when it is no longer needed. Otherwise, the chunks array + must be of at least n_elements in length. It is filled in with the + pointers to the chunks. + + In either case, independent_comalloc returns this pointer array, or + null if the allocation failed. If n_elements is zero and chunks is + null, it returns a chunk representing an array with zero elements + (which should be freed if not wanted). + + Each element must be individually freed when it is no longer + needed. If you'd like to instead be able to free all at once, you + should instead use a single regular malloc, and assign pointers at + particular offsets in the aggregate space. (In this case though, you + cannot independently free elements.) + + independent_comallac differs from independent_calloc in that each + element may have a different size, and also that it does not + automatically clear elements. + + independent_comalloc can be used to speed up allocation in cases + where several structs or objects must always be allocated at the + same time. For example: + + struct Head { ... } + struct Foot { ... } + + void send_message(char* msg) { + int msglen = strlen(msg); + size_t sizes[3] = { sizeof(struct Head), msglen, sizeof(struct Foot) }; + void* chunks[3]; + if (independent_comalloc(3, sizes, chunks) == 0) + die(); + struct Head* head = (struct Head*)(chunks[0]); + char* body = (char*)(chunks[1]); + struct Foot* foot = (struct Foot*)(chunks[2]); + // ... + } + + In general though, independent_comalloc is worth using only for + larger values of n_elements. For small values, you probably won't + detect enough difference from series of malloc calls to bother. + + Overuse of independent_comalloc can increase overall memory usage, + since it cannot reuse existing noncontiguous small chunks that + might be available for some of the elements. +*/ +void** dlindependent_comalloc(size_t, size_t*, void**); + + +/* + pvalloc(size_t n); + Equivalent to valloc(minimum-page-that-holds(n)), that is, + round up n to nearest pagesize. + */ +void* dlpvalloc(size_t); + +/* + malloc_trim(size_t pad); + + If possible, gives memory back to the system (via negative arguments + to sbrk) if there is unused memory at the `high' end of the malloc + pool or in unused MMAP segments. You can call this after freeing + large blocks of memory to potentially reduce the system-level memory + requirements of a program. However, it cannot guarantee to reduce + memory. Under some allocation patterns, some large free blocks of + memory will be locked between two used chunks, so they cannot be + given back to the system. + + The `pad' argument to malloc_trim represents the amount of free + trailing space to leave untrimmed. If this argument is zero, only + the minimum amount of memory to maintain internal data structures + will be left. Non-zero arguments can be supplied to maintain enough + trailing space to service future expected allocations without having + to re-obtain memory from the system. + + Malloc_trim returns 1 if it actually released any memory, else 0. +*/ +int dlmalloc_trim(size_t); + +/* + malloc_usable_size(void* p); + + Returns the number of bytes you can actually use in + an allocated chunk, which may be more than you requested (although + often not) due to alignment and minimum size constraints. + You can use this many bytes without worrying about + overwriting other allocated objects. This is not a particularly great + programming practice. malloc_usable_size can be more useful in + debugging and assertions, for example: + + p = malloc(n); + assert(malloc_usable_size(p) >= 256); +*/ +size_t dlmalloc_usable_size(void*); + +/* + malloc_stats(); + Prints on stderr the amount of space obtained from the system (both + via sbrk and mmap), the maximum amount (which may be more than + current if malloc_trim and/or munmap got called), and the current + number of bytes allocated via malloc (or realloc, etc) but not yet + freed. Note that this is the number of bytes allocated, not the + number requested. It will be larger than the number requested + because of alignment and bookkeeping overhead. Because it includes + alignment wastage as being in use, this figure may be greater than + zero even when no user-level chunks are allocated. + + The reported current and maximum system memory can be inaccurate if + a program makes other calls to system memory allocation functions + (normally sbrk) outside of malloc. + + malloc_stats prints only the most commonly interesting statistics. + More information can be obtained by calling mallinfo. +*/ +void dlmalloc_stats(void); + +#endif /* ONLY_MSPACES */ + +#if MSPACES + +/* + mspace is an opaque type representing an independent + region of space that supports mspace_malloc, etc. +*/ +typedef void* mspace; + +/* + create_mspace creates and returns a new independent space with the + given initial capacity, or, if 0, the default granularity size. It + returns null if there is no system memory available to create the + space. If argument locked is non-zero, the space uses a separate + lock to control access. The capacity of the space will grow + dynamically as needed to service mspace_malloc requests. You can + control the sizes of incremental increases of this space by + compiling with a different DEFAULT_GRANULARITY or dynamically + setting with mallopt(M_GRANULARITY, value). +*/ +mspace create_mspace(size_t capacity, int locked); + +/* + destroy_mspace destroys the given space, and attempts to return all + of its memory back to the system, returning the total number of + bytes freed. After destruction, the results of access to all memory + used by the space become undefined. +*/ +size_t destroy_mspace(mspace msp); + +/* + create_mspace_with_base uses the memory supplied as the initial base + of a new mspace. Part (less than 128*sizeof(size_t) bytes) of this + space is used for bookkeeping, so the capacity must be at least this + large. (Otherwise 0 is returned.) When this initial space is + exhausted, additional memory will be obtained from the system. + Destroying this space will deallocate all additionally allocated + space (if possible) but not the initial base. +*/ +mspace create_mspace_with_base(void* base, size_t capacity, int locked); + +/* + mspace_malloc behaves as malloc, but operates within + the given space. +*/ +void* mspace_malloc(mspace msp, size_t bytes); + +/* + mspace_free behaves as free, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_free is not actually needed. + free may be called instead of mspace_free because freed chunks from + any space are handled by their originating spaces. +*/ +void mspace_free(mspace msp, void* mem); + +/* + mspace_realloc behaves as realloc, but operates within + the given space. + + If compiled with FOOTERS==1, mspace_realloc is not actually + needed. realloc may be called instead of mspace_realloc because + realloced chunks from any space are handled by their originating + spaces. +*/ +void* mspace_realloc(mspace msp, void* mem, size_t newsize); + +/* + mspace_calloc behaves as calloc, but operates within + the given space. +*/ +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size); + +/* + mspace_memalign behaves as memalign, but operates within + the given space. +*/ +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes); + +/* + mspace_independent_calloc behaves as independent_calloc, but + operates within the given space. +*/ +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]); + +/* + mspace_independent_comalloc behaves as independent_comalloc, but + operates within the given space. +*/ +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]); + +/* + mspace_footprint() returns the number of bytes obtained from the + system for this space. +*/ +size_t mspace_footprint(mspace msp); + +/* + mspace_max_footprint() returns the peak number of bytes obtained from the + system for this space. +*/ +size_t mspace_max_footprint(mspace msp); + + +#if !NO_MALLINFO +/* + mspace_mallinfo behaves as mallinfo, but reports properties of + the given space. +*/ +struct mallinfo mspace_mallinfo(mspace msp); +#endif /* NO_MALLINFO */ + +/* + mspace_malloc_stats behaves as malloc_stats, but reports + properties of the given space. +*/ +void mspace_malloc_stats(mspace msp); + +/* + mspace_trim behaves as malloc_trim, but + operates within the given space. +*/ +int mspace_trim(mspace msp, size_t pad); + +/* + An alias for mallopt. +*/ +int mspace_mallopt(int, int); + +#endif /* MSPACES */ + +#ifdef __cplusplus +}; /* end of extern "C" */ +#endif /* __cplusplus */ + +/* + ======================================================================== + To make a fully customizable malloc.h header file, cut everything + above this line, put into file malloc.h, edit to suit, and #include it + on the next line, as well as in programs that use this malloc. + ======================================================================== +*/ + +/* #include "malloc.h" */ + +/*------------------------------ internal #includes ---------------------- */ + +#ifdef _MSC_VER +#pragma warning( disable : 4146 ) /* no "unsigned" warnings */ +#endif /* _MSC_VER */ + +#include <stdio.h> /* for printing in malloc_stats */ + +#ifndef LACKS_ERRNO_H +#include <errno.h> /* for MALLOC_FAILURE_ACTION */ +#endif /* LACKS_ERRNO_H */ +#if FOOTERS +#include <time.h> /* for magic initialization */ +#endif /* FOOTERS */ +#ifndef LACKS_STDLIB_H +#include <stdlib.h> /* for abort() */ +#endif /* LACKS_STDLIB_H */ +#ifdef DEBUG +#if ABORT_ON_ASSERT_FAILURE +#define assert(x) if(!(x)) ABORT +#else /* ABORT_ON_ASSERT_FAILURE */ +#include <assert.h> +#endif /* ABORT_ON_ASSERT_FAILURE */ +#else /* DEBUG */ +#define assert(x) +#endif /* DEBUG */ +#ifndef LACKS_STRING_H +#include <string.h> /* for memset etc */ +#endif /* LACKS_STRING_H */ +#if USE_BUILTIN_FFS +#ifndef LACKS_STRINGS_H +#include <strings.h> /* for ffs */ +#endif /* LACKS_STRINGS_H */ +#endif /* USE_BUILTIN_FFS */ +#if HAVE_MMAP +#ifndef LACKS_SYS_MMAN_H +#include <sys/mman.h> /* for mmap */ +#endif /* LACKS_SYS_MMAN_H */ +#ifndef LACKS_FCNTL_H +#include <fcntl.h> +#endif /* LACKS_FCNTL_H */ +#endif /* HAVE_MMAP */ +#if HAVE_MORECORE +#ifndef LACKS_UNISTD_H +#include <unistd.h> /* for sbrk */ +#else /* LACKS_UNISTD_H */ +#if !defined(__FreeBSD__) && !defined(__OpenBSD__) && !defined(__NetBSD__) +extern void* sbrk(ptrdiff_t); +#endif /* FreeBSD etc */ +#endif /* LACKS_UNISTD_H */ +#endif /* HAVE_MMAP */ + +#ifndef WIN32 +#ifndef malloc_getpagesize +# ifdef _SC_PAGESIZE /* some SVR4 systems omit an underscore */ +# ifndef _SC_PAGE_SIZE +# define _SC_PAGE_SIZE _SC_PAGESIZE +# endif +# endif +# ifdef _SC_PAGE_SIZE +# define malloc_getpagesize sysconf(_SC_PAGE_SIZE) +# else +# if defined(BSD) || defined(DGUX) || defined(HAVE_GETPAGESIZE) + extern size_t getpagesize(); +# define malloc_getpagesize getpagesize() +# else +# ifdef WIN32 /* use supplied emulation of getpagesize */ +# define malloc_getpagesize getpagesize() +# else +# ifndef LACKS_SYS_PARAM_H +# include <sys/param.h> +# endif +# ifdef EXEC_PAGESIZE +# define malloc_getpagesize EXEC_PAGESIZE +# else +# ifdef NBPG +# ifndef CLSIZE +# define malloc_getpagesize NBPG +# else +# define malloc_getpagesize (NBPG * CLSIZE) +# endif +# else +# ifdef NBPC +# define malloc_getpagesize NBPC +# else +# ifdef PAGESIZE +# define malloc_getpagesize PAGESIZE +# else /* just guess */ +# define malloc_getpagesize ((size_t)4096U) +# endif +# endif +# endif +# endif +# endif +# endif +# endif +#endif +#endif + +/* ------------------- size_t and alignment properties -------------------- */ + +/* The byte and bit size of a size_t */ +#define SIZE_T_SIZE (sizeof(size_t)) +#define SIZE_T_BITSIZE (sizeof(size_t) << 3) + +/* Some constants coerced to size_t */ /* Annoying but necessary to avoid errors on some platforms */ -#define SIZE_T_ZERO ((size_t)0) -#define SIZE_T_ONE ((size_t)1) -#define SIZE_T_TWO ((size_t)2) -#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) -#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) -#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) -#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) - -/* The bit mask value corresponding to MALLOC_ALIGNMENT */ -#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) - -/* True if address a has acceptable alignment */ -#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) - -/* the number of bytes to offset an address to align it */ -#define align_offset(A)\ - ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ - ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) - -/* -------------------------- MMAP preliminaries ------------------------- */ - -/* - If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and - checks to fail so compiler optimizer can delete code rather than - using so many "#if"s. -*/ - - -/* MORECORE and MMAP must return MFAIL on failure */ -#define MFAIL ((void*)(MAX_SIZE_T)) -#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ - -#if !HAVE_MMAP -#define IS_MMAPPED_BIT (SIZE_T_ZERO) -#define USE_MMAP_BIT (SIZE_T_ZERO) -#define CALL_MMAP(s) MFAIL -#define CALL_MUNMAP(a, s) (-1) -#define DIRECT_MMAP(s) MFAIL - -#else /* HAVE_MMAP */ -#define IS_MMAPPED_BIT (SIZE_T_ONE) -#define USE_MMAP_BIT (SIZE_T_ONE) - -#if !defined(WIN32) && !defined (__OS2__) -#define CALL_MUNMAP(a, s) munmap((a), (s)) -#define MMAP_PROT (PROT_READ|PROT_WRITE) -#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) -#define MAP_ANONYMOUS MAP_ANON -#endif /* MAP_ANON */ -#ifdef MAP_ANONYMOUS -#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) -#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) -#else /* MAP_ANONYMOUS */ -/* - Nearly all versions of mmap support MAP_ANONYMOUS, so the following - is unlikely to be needed, but is supplied just in case. -*/ -#define MMAP_FLAGS (MAP_PRIVATE) -static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ -#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ - (dev_zero_fd = open("/dev/zero", O_RDWR), \ - mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ - mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) -#endif /* MAP_ANONYMOUS */ - -#define DIRECT_MMAP(s) CALL_MMAP(s) - -#elif defined(__OS2__) - -/* OS/2 MMAP via DosAllocMem */ -static void* os2mmap(size_t size) { - void* ptr; - if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) && - DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE)) - return MFAIL; - return ptr; -} - -#define os2direct_mmap(n) os2mmap(n) - -/* This function supports releasing coalesed segments */ -static int os2munmap(void* ptr, size_t size) { - while (size) { - ULONG ulSize = size; - ULONG ulFlags = 0; - if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0) - return -1; - if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 || - ulSize > size) - return -1; - if (DosFreeMem(ptr) != 0) - return -1; - ptr = ( void * ) ( ( char * ) ptr + ulSize ); - size -= ulSize; - } - return 0; -} - -#define CALL_MMAP(s) os2mmap(s) -#define CALL_MUNMAP(a, s) os2munmap((a), (s)) -#define DIRECT_MMAP(s) os2direct_mmap(s) - -#else /* WIN32 */ - -/* Win32 MMAP via VirtualAlloc */ -static void* win32mmap(size_t size) { - void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE); - return (ptr != 0)? ptr: MFAIL; -} - -/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ -static void* win32direct_mmap(size_t size) { - void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, - PAGE_EXECUTE_READWRITE); - return (ptr != 0)? ptr: MFAIL; -} - -/* This function supports releasing coalesed segments */ -static int win32munmap(void* ptr, size_t size) { - MEMORY_BASIC_INFORMATION minfo; - char* cptr = ptr; - while (size) { - if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) - return -1; - if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || - minfo.State != MEM_COMMIT || minfo.RegionSize > size) - return -1; - if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) - return -1; - cptr += minfo.RegionSize; - size -= minfo.RegionSize; - } - return 0; -} - -#define CALL_MMAP(s) win32mmap(s) -#define CALL_MUNMAP(a, s) win32munmap((a), (s)) -#define DIRECT_MMAP(s) win32direct_mmap(s) -#endif /* WIN32 */ -#endif /* HAVE_MMAP */ - -#if HAVE_MMAP && HAVE_MREMAP -#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) -#else /* HAVE_MMAP && HAVE_MREMAP */ -#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL -#endif /* HAVE_MMAP && HAVE_MREMAP */ - -#if HAVE_MORECORE -#define CALL_MORECORE(S) MORECORE(S) -#else /* HAVE_MORECORE */ -#define CALL_MORECORE(S) MFAIL -#endif /* HAVE_MORECORE */ - +#define SIZE_T_ZERO ((size_t)0) +#define SIZE_T_ONE ((size_t)1) +#define SIZE_T_TWO ((size_t)2) +#define TWO_SIZE_T_SIZES (SIZE_T_SIZE<<1) +#define FOUR_SIZE_T_SIZES (SIZE_T_SIZE<<2) +#define SIX_SIZE_T_SIZES (FOUR_SIZE_T_SIZES+TWO_SIZE_T_SIZES) +#define HALF_MAX_SIZE_T (MAX_SIZE_T / 2U) + +/* The bit mask value corresponding to MALLOC_ALIGNMENT */ +#define CHUNK_ALIGN_MASK (MALLOC_ALIGNMENT - SIZE_T_ONE) + +/* True if address a has acceptable alignment */ +#define is_aligned(A) (((size_t)((A)) & (CHUNK_ALIGN_MASK)) == 0) + +/* the number of bytes to offset an address to align it */ +#define align_offset(A)\ + ((((size_t)(A) & CHUNK_ALIGN_MASK) == 0)? 0 :\ + ((MALLOC_ALIGNMENT - ((size_t)(A) & CHUNK_ALIGN_MASK)) & CHUNK_ALIGN_MASK)) + +/* -------------------------- MMAP preliminaries ------------------------- */ + +/* + If HAVE_MORECORE or HAVE_MMAP are false, we just define calls and + checks to fail so compiler optimizer can delete code rather than + using so many "#if"s. +*/ + + +/* MORECORE and MMAP must return MFAIL on failure */ +#define MFAIL ((void*)(MAX_SIZE_T)) +#define CMFAIL ((char*)(MFAIL)) /* defined for convenience */ + +#if !HAVE_MMAP +#define IS_MMAPPED_BIT (SIZE_T_ZERO) +#define USE_MMAP_BIT (SIZE_T_ZERO) +#define CALL_MMAP(s) MFAIL +#define CALL_MUNMAP(a, s) (-1) +#define DIRECT_MMAP(s) MFAIL + +#else /* HAVE_MMAP */ +#define IS_MMAPPED_BIT (SIZE_T_ONE) +#define USE_MMAP_BIT (SIZE_T_ONE) + +#if !defined(WIN32) && !defined (__OS2__) +#define CALL_MUNMAP(a, s) munmap((a), (s)) +#define MMAP_PROT (PROT_READ|PROT_WRITE) +#if !defined(MAP_ANONYMOUS) && defined(MAP_ANON) +#define MAP_ANONYMOUS MAP_ANON +#endif /* MAP_ANON */ +#ifdef MAP_ANONYMOUS +#define MMAP_FLAGS (MAP_PRIVATE|MAP_ANONYMOUS) +#define CALL_MMAP(s) mmap(0, (s), MMAP_PROT, MMAP_FLAGS, -1, 0) +#else /* MAP_ANONYMOUS */ +/* + Nearly all versions of mmap support MAP_ANONYMOUS, so the following + is unlikely to be needed, but is supplied just in case. +*/ +#define MMAP_FLAGS (MAP_PRIVATE) +static int dev_zero_fd = -1; /* Cached file descriptor for /dev/zero. */ +#define CALL_MMAP(s) ((dev_zero_fd < 0) ? \ + (dev_zero_fd = open("/dev/zero", O_RDWR), \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) : \ + mmap(0, (s), MMAP_PROT, MMAP_FLAGS, dev_zero_fd, 0)) +#endif /* MAP_ANONYMOUS */ + +#define DIRECT_MMAP(s) CALL_MMAP(s) + +#elif defined(__OS2__) + +/* OS/2 MMAP via DosAllocMem */ +static void* os2mmap(size_t size) { + void* ptr; + if (DosAllocMem(&ptr, size, OBJ_ANY|PAG_COMMIT|PAG_READ|PAG_WRITE) && + DosAllocMem(&ptr, size, PAG_COMMIT|PAG_READ|PAG_WRITE)) + return MFAIL; + return ptr; +} + +#define os2direct_mmap(n) os2mmap(n) + +/* This function supports releasing coalesed segments */ +static int os2munmap(void* ptr, size_t size) { + while (size) { + ULONG ulSize = size; + ULONG ulFlags = 0; + if (DosQueryMem(ptr, &ulSize, &ulFlags) != 0) + return -1; + if ((ulFlags & PAG_BASE) == 0 ||(ulFlags & PAG_COMMIT) == 0 || + ulSize > size) + return -1; + if (DosFreeMem(ptr) != 0) + return -1; + ptr = ( void * ) ( ( char * ) ptr + ulSize ); + size -= ulSize; + } + return 0; +} + +#define CALL_MMAP(s) os2mmap(s) +#define CALL_MUNMAP(a, s) os2munmap((a), (s)) +#define DIRECT_MMAP(s) os2direct_mmap(s) + +#else /* WIN32 */ + +/* Win32 MMAP via VirtualAlloc */ +static void* win32mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT, PAGE_EXECUTE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* For direct MMAP, use MEM_TOP_DOWN to minimize interference */ +static void* win32direct_mmap(size_t size) { + void* ptr = VirtualAlloc(0, size, MEM_RESERVE|MEM_COMMIT|MEM_TOP_DOWN, + PAGE_EXECUTE_READWRITE); + return (ptr != 0)? ptr: MFAIL; +} + +/* This function supports releasing coalesed segments */ +static int win32munmap(void* ptr, size_t size) { + MEMORY_BASIC_INFORMATION minfo; + char* cptr = ptr; + while (size) { + if (VirtualQuery(cptr, &minfo, sizeof(minfo)) == 0) + return -1; + if (minfo.BaseAddress != cptr || minfo.AllocationBase != cptr || + minfo.State != MEM_COMMIT || minfo.RegionSize > size) + return -1; + if (VirtualFree(cptr, 0, MEM_RELEASE) == 0) + return -1; + cptr += minfo.RegionSize; + size -= minfo.RegionSize; + } + return 0; +} + +#define CALL_MMAP(s) win32mmap(s) +#define CALL_MUNMAP(a, s) win32munmap((a), (s)) +#define DIRECT_MMAP(s) win32direct_mmap(s) +#endif /* WIN32 */ +#endif /* HAVE_MMAP */ + +#if HAVE_MMAP && HAVE_MREMAP +#define CALL_MREMAP(addr, osz, nsz, mv) mremap((addr), (osz), (nsz), (mv)) +#else /* HAVE_MMAP && HAVE_MREMAP */ +#define CALL_MREMAP(addr, osz, nsz, mv) MFAIL +#endif /* HAVE_MMAP && HAVE_MREMAP */ + +#if HAVE_MORECORE +#define CALL_MORECORE(S) MORECORE(S) +#else /* HAVE_MORECORE */ +#define CALL_MORECORE(S) MFAIL +#endif /* HAVE_MORECORE */ + /* mstate bit set if contiguous morecore disabled or failed */ -#define USE_NONCONTIGUOUS_BIT (4U) - -/* segment bit set in create_mspace_with_base */ -#define EXTERN_BIT (8U) - - -/* --------------------------- Lock preliminaries ------------------------ */ - -#if USE_LOCKS - -/* - When locks are defined, there are up to two global locks: - - * If HAVE_MORECORE, morecore_mutex protects sequences of calls to - MORECORE. In many cases sys_alloc requires two calls, that should - not be interleaved with calls by other threads. This does not - protect against direct calls to MORECORE by other threads not - using this lock, so there is still code to cope the best we can on - interference. - - * magic_init_mutex ensures that mparams.magic and other - unique mparams values are initialized only once. -*/ - -#if !defined(WIN32) && !defined(__OS2__) -/* By default use posix locks */ -#include <pthread.h> -#define MLOCK_T pthread_mutex_t -#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL) -#define ACQUIRE_LOCK(l) pthread_mutex_lock(l) -#define RELEASE_LOCK(l) pthread_mutex_unlock(l) - -#if HAVE_MORECORE -static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER; -#endif /* HAVE_MORECORE */ - -static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER; - -#elif defined(__OS2__) -#define MLOCK_T HMTX -#define INITIAL_LOCK(l) DosCreateMutexSem(0, l, 0, FALSE) -#define ACQUIRE_LOCK(l) DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT) -#define RELEASE_LOCK(l) DosReleaseMutexSem(*l) -#if HAVE_MORECORE -static MLOCK_T morecore_mutex; -#endif /* HAVE_MORECORE */ -static MLOCK_T magic_init_mutex; - -#else /* WIN32 */ -/* - Because lock-protected regions have bounded times, and there - are no recursive lock calls, we can use simple spinlocks. -*/ - -#define MLOCK_T long -static int win32_acquire_lock (MLOCK_T *sl) { - for (;;) { -#ifdef InterlockedCompareExchangePointer - if (!InterlockedCompareExchange(sl, 1, 0)) - return 0; -#else /* Use older void* version */ - if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0)) - return 0; -#endif /* InterlockedCompareExchangePointer */ - Sleep (0); - } -} - -static void win32_release_lock (MLOCK_T *sl) { - InterlockedExchange (sl, 0); -} - -#define INITIAL_LOCK(l) *(l)=0 -#define ACQUIRE_LOCK(l) win32_acquire_lock(l) -#define RELEASE_LOCK(l) win32_release_lock(l) -#if HAVE_MORECORE -static MLOCK_T morecore_mutex; -#endif /* HAVE_MORECORE */ -static MLOCK_T magic_init_mutex; -#endif /* WIN32 */ - -#define USE_LOCK_BIT (2U) -#else /* USE_LOCKS */ -#define USE_LOCK_BIT (0U) -#define INITIAL_LOCK(l) -#endif /* USE_LOCKS */ - -#if USE_LOCKS && HAVE_MORECORE -#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); -#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); -#else /* USE_LOCKS && HAVE_MORECORE */ -#define ACQUIRE_MORECORE_LOCK() -#define RELEASE_MORECORE_LOCK() -#endif /* USE_LOCKS && HAVE_MORECORE */ - -#if USE_LOCKS -#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); -#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); -#else /* USE_LOCKS */ -#define ACQUIRE_MAGIC_INIT_LOCK() -#define RELEASE_MAGIC_INIT_LOCK() -#endif /* USE_LOCKS */ - - -/* ----------------------- Chunk representations ------------------------ */ - -/* - (The following includes lightly edited explanations by Colin Plumb.) - - The malloc_chunk declaration below is misleading (but accurate and - necessary). It declares a "view" into memory allowing access to - necessary fields at known offsets from a given base. - - Chunks of memory are maintained using a `boundary tag' method as - originally described by Knuth. (See the paper by Paul Wilson - ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such - techniques.) Sizes of free chunks are stored both in the front of - each chunk and at the end. This makes consolidating fragmented - chunks into bigger chunks fast. The head fields also hold bits - representing whether chunks are free or in use. - - Here are some pictures to make it clearer. They are "exploded" to - show that the state of a chunk can be thought of as extending from - the high 31 bits of the head field of its header through the - prev_foot and PINUSE_BIT bit of the following chunk header. - - A chunk that's in use looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk (if P = 1) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 1| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | | - +- -+ - | | - +- -+ - | : - +- size - sizeof(size_t) available payload bytes -+ - : | - chunk-> +- -+ - | | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| - | Size of next chunk (may or may not be in use) | +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - And if it's free, it looks like this: - - chunk-> +- -+ - | User payload (must be in use, or we would have merged!) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| - | Size of this chunk 0| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Next pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Prev pointer | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- size - sizeof(struct chunk) unused bytes -+ - : | - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| - | Size of next chunk (must be in use, or we would have merged)| +-+ - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | : - +- User payload -+ - : | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - |0| - +-+ - Note that since we always merge adjacent free chunks, the chunks - adjacent to a free chunk must be in use. - - Given a pointer to a chunk (which can be derived trivially from the - payload pointer) we can, in O(1) time, find out whether the adjacent - chunks are free, and if so, unlink them from the lists that they - are on and merge them with the current chunk. - - Chunks always begin on even word boundaries, so the mem portion - (which is returned to the user) is also on an even word boundary, and - thus at least double-word aligned. - - The P (PINUSE_BIT) bit, stored in the unused low-order bit of the - chunk size (which is always a multiple of two words), is an in-use - bit for the *previous* chunk. If that bit is *clear*, then the - word before the current chunk size contains the previous chunk - size, and can be used to find the front of the previous chunk. - The very first chunk allocated always has this bit set, preventing - access to non-existent (or non-owned) memory. If pinuse is set for - any given chunk, then you CANNOT determine the size of the - previous chunk, and might even get a memory addressing fault when - trying to do so. - - The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of - the chunk size redundantly records whether the current chunk is - inuse. This redundancy enables usage checks within free and realloc, - and reduces indirection when freeing and consolidating chunks. - - Each freshly allocated chunk must have both cinuse and pinuse set. - That is, each allocated chunk borders either a previously allocated - and still in-use chunk, or the base of its memory arena. This is - ensured by making all allocations from the the `lowest' part of any - found chunk. Further, no free chunk physically borders another one, - so each free chunk is known to be preceded and followed by either - inuse chunks or the ends of memory. - - Note that the `foot' of the current chunk is actually represented - as the prev_foot of the NEXT chunk. This makes it easier to - deal with alignments etc but can be very confusing when trying - to extend or adapt this code. - - The exceptions to all this are - - 1. The special chunk `top' is the top-most available chunk (i.e., - the one bordering the end of available memory). It is treated - specially. Top is never included in any bin, is used only if - no other chunk is available, and is released back to the - system if it is very large (see M_TRIM_THRESHOLD). In effect, - the top chunk is treated as larger (and thus less well - fitting) than any other available chunk. The top chunk - doesn't update its trailing size field since there is no next - contiguous chunk that would have to index off it. However, - space is still allocated for it (TOP_FOOT_SIZE) to enable - separation or merging when space is extended. - - 3. Chunks allocated via mmap, which have the lowest-order bit - (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set - PINUSE_BIT in their head fields. Because they are allocated - one-by-one, each must carry its own prev_foot field, which is - also used to hold the offset this chunk has within its mmapped - region, which is needed to preserve alignment. Each mmapped - chunk is trailed by the first two fields of a fake next-chunk - for sake of usage checks. - -*/ - -struct malloc_chunk { - size_t prev_foot; /* Size of previous chunk (if free). */ - size_t head; /* Size and inuse bits. */ - struct malloc_chunk* fd; /* double links -- used only if free. */ - struct malloc_chunk* bk; -}; - -typedef struct malloc_chunk mchunk; -typedef struct malloc_chunk* mchunkptr; -typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ +#define USE_NONCONTIGUOUS_BIT (4U) + +/* segment bit set in create_mspace_with_base */ +#define EXTERN_BIT (8U) + + +/* --------------------------- Lock preliminaries ------------------------ */ + +#if USE_LOCKS + +/* + When locks are defined, there are up to two global locks: + + * If HAVE_MORECORE, morecore_mutex protects sequences of calls to + MORECORE. In many cases sys_alloc requires two calls, that should + not be interleaved with calls by other threads. This does not + protect against direct calls to MORECORE by other threads not + using this lock, so there is still code to cope the best we can on + interference. + + * magic_init_mutex ensures that mparams.magic and other + unique mparams values are initialized only once. +*/ + +#if !defined(WIN32) && !defined(__OS2__) +/* By default use posix locks */ +#include <pthread.h> +#define MLOCK_T pthread_mutex_t +#define INITIAL_LOCK(l) pthread_mutex_init(l, NULL) +#define ACQUIRE_LOCK(l) pthread_mutex_lock(l) +#define RELEASE_LOCK(l) pthread_mutex_unlock(l) + +#if HAVE_MORECORE +static MLOCK_T morecore_mutex = PTHREAD_MUTEX_INITIALIZER; +#endif /* HAVE_MORECORE */ + +static MLOCK_T magic_init_mutex = PTHREAD_MUTEX_INITIALIZER; + +#elif defined(__OS2__) +#define MLOCK_T HMTX +#define INITIAL_LOCK(l) DosCreateMutexSem(0, l, 0, FALSE) +#define ACQUIRE_LOCK(l) DosRequestMutexSem(*l, SEM_INDEFINITE_WAIT) +#define RELEASE_LOCK(l) DosReleaseMutexSem(*l) +#if HAVE_MORECORE +static MLOCK_T morecore_mutex; +#endif /* HAVE_MORECORE */ +static MLOCK_T magic_init_mutex; + +#else /* WIN32 */ +/* + Because lock-protected regions have bounded times, and there + are no recursive lock calls, we can use simple spinlocks. +*/ + +#define MLOCK_T long +static int win32_acquire_lock (MLOCK_T *sl) { + for (;;) { +#ifdef InterlockedCompareExchangePointer + if (!InterlockedCompareExchange(sl, 1, 0)) + return 0; +#else /* Use older void* version */ + if (!InterlockedCompareExchange((void**)sl, (void*)1, (void*)0)) + return 0; +#endif /* InterlockedCompareExchangePointer */ + Sleep (0); + } +} + +static void win32_release_lock (MLOCK_T *sl) { + InterlockedExchange (sl, 0); +} + +#define INITIAL_LOCK(l) *(l)=0 +#define ACQUIRE_LOCK(l) win32_acquire_lock(l) +#define RELEASE_LOCK(l) win32_release_lock(l) +#if HAVE_MORECORE +static MLOCK_T morecore_mutex; +#endif /* HAVE_MORECORE */ +static MLOCK_T magic_init_mutex; +#endif /* WIN32 */ + +#define USE_LOCK_BIT (2U) +#else /* USE_LOCKS */ +#define USE_LOCK_BIT (0U) +#define INITIAL_LOCK(l) +#endif /* USE_LOCKS */ + +#if USE_LOCKS && HAVE_MORECORE +#define ACQUIRE_MORECORE_LOCK() ACQUIRE_LOCK(&morecore_mutex); +#define RELEASE_MORECORE_LOCK() RELEASE_LOCK(&morecore_mutex); +#else /* USE_LOCKS && HAVE_MORECORE */ +#define ACQUIRE_MORECORE_LOCK() +#define RELEASE_MORECORE_LOCK() +#endif /* USE_LOCKS && HAVE_MORECORE */ + +#if USE_LOCKS +#define ACQUIRE_MAGIC_INIT_LOCK() ACQUIRE_LOCK(&magic_init_mutex); +#define RELEASE_MAGIC_INIT_LOCK() RELEASE_LOCK(&magic_init_mutex); +#else /* USE_LOCKS */ +#define ACQUIRE_MAGIC_INIT_LOCK() +#define RELEASE_MAGIC_INIT_LOCK() +#endif /* USE_LOCKS */ + + +/* ----------------------- Chunk representations ------------------------ */ + +/* + (The following includes lightly edited explanations by Colin Plumb.) + + The malloc_chunk declaration below is misleading (but accurate and + necessary). It declares a "view" into memory allowing access to + necessary fields at known offsets from a given base. + + Chunks of memory are maintained using a `boundary tag' method as + originally described by Knuth. (See the paper by Paul Wilson + ftp://ftp.cs.utexas.edu/pub/garbage/allocsrv.ps for a survey of such + techniques.) Sizes of free chunks are stored both in the front of + each chunk and at the end. This makes consolidating fragmented + chunks into bigger chunks fast. The head fields also hold bits + representing whether chunks are free or in use. + + Here are some pictures to make it clearer. They are "exploded" to + show that the state of a chunk can be thought of as extending from + the high 31 bits of the head field of its header through the + prev_foot and PINUSE_BIT bit of the following chunk header. + + A chunk that's in use looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk (if P = 1) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 1| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | | + +- -+ + | | + +- -+ + | : + +- size - sizeof(size_t) available payload bytes -+ + : | + chunk-> +- -+ + | | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |1| + | Size of next chunk (may or may not be in use) | +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + And if it's free, it looks like this: + + chunk-> +- -+ + | User payload (must be in use, or we would have merged!) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |P| + | Size of this chunk 0| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Next pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Prev pointer | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- size - sizeof(struct chunk) unused bytes -+ + : | + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |0| + | Size of next chunk (must be in use, or we would have merged)| +-+ + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | : + +- User payload -+ + : | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + |0| + +-+ + Note that since we always merge adjacent free chunks, the chunks + adjacent to a free chunk must be in use. + + Given a pointer to a chunk (which can be derived trivially from the + payload pointer) we can, in O(1) time, find out whether the adjacent + chunks are free, and if so, unlink them from the lists that they + are on and merge them with the current chunk. + + Chunks always begin on even word boundaries, so the mem portion + (which is returned to the user) is also on an even word boundary, and + thus at least double-word aligned. + + The P (PINUSE_BIT) bit, stored in the unused low-order bit of the + chunk size (which is always a multiple of two words), is an in-use + bit for the *previous* chunk. If that bit is *clear*, then the + word before the current chunk size contains the previous chunk + size, and can be used to find the front of the previous chunk. + The very first chunk allocated always has this bit set, preventing + access to non-existent (or non-owned) memory. If pinuse is set for + any given chunk, then you CANNOT determine the size of the + previous chunk, and might even get a memory addressing fault when + trying to do so. + + The C (CINUSE_BIT) bit, stored in the unused second-lowest bit of + the chunk size redundantly records whether the current chunk is + inuse. This redundancy enables usage checks within free and realloc, + and reduces indirection when freeing and consolidating chunks. + + Each freshly allocated chunk must have both cinuse and pinuse set. + That is, each allocated chunk borders either a previously allocated + and still in-use chunk, or the base of its memory arena. This is + ensured by making all allocations from the the `lowest' part of any + found chunk. Further, no free chunk physically borders another one, + so each free chunk is known to be preceded and followed by either + inuse chunks or the ends of memory. + + Note that the `foot' of the current chunk is actually represented + as the prev_foot of the NEXT chunk. This makes it easier to + deal with alignments etc but can be very confusing when trying + to extend or adapt this code. + + The exceptions to all this are + + 1. The special chunk `top' is the top-most available chunk (i.e., + the one bordering the end of available memory). It is treated + specially. Top is never included in any bin, is used only if + no other chunk is available, and is released back to the + system if it is very large (see M_TRIM_THRESHOLD). In effect, + the top chunk is treated as larger (and thus less well + fitting) than any other available chunk. The top chunk + doesn't update its trailing size field since there is no next + contiguous chunk that would have to index off it. However, + space is still allocated for it (TOP_FOOT_SIZE) to enable + separation or merging when space is extended. + + 3. Chunks allocated via mmap, which have the lowest-order bit + (IS_MMAPPED_BIT) set in their prev_foot fields, and do not set + PINUSE_BIT in their head fields. Because they are allocated + one-by-one, each must carry its own prev_foot field, which is + also used to hold the offset this chunk has within its mmapped + region, which is needed to preserve alignment. Each mmapped + chunk is trailed by the first two fields of a fake next-chunk + for sake of usage checks. + +*/ + +struct malloc_chunk { + size_t prev_foot; /* Size of previous chunk (if free). */ + size_t head; /* Size and inuse bits. */ + struct malloc_chunk* fd; /* double links -- used only if free. */ + struct malloc_chunk* bk; +}; + +typedef struct malloc_chunk mchunk; +typedef struct malloc_chunk* mchunkptr; +typedef struct malloc_chunk* sbinptr; /* The type of bins of chunks */ typedef size_t bindex_t; /* Described below */ -typedef unsigned int binmap_t; /* Described below */ -typedef unsigned int flag_t; /* The type of various bit flag sets */ - -/* ------------------- Chunks sizes and alignments ----------------------- */ - -#define MCHUNK_SIZE (sizeof(mchunk)) - -#if FOOTERS -#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -#else /* FOOTERS */ -#define CHUNK_OVERHEAD (SIZE_T_SIZE) -#endif /* FOOTERS */ - -/* MMapped chunks need a second word of overhead ... */ -#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) -/* ... and additional padding for fake next-chunk at foot */ -#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) - -/* The smallest size we can malloc is an aligned minimal chunk */ -#define MIN_CHUNK_SIZE\ - ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* conversion from malloc headers to user pointers, and back */ -#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) -#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) -/* chunk associated with aligned address A */ -#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) - -/* Bounds on request (not chunk) sizes. */ -#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) -#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) - -/* pad request bytes into a usable size */ -#define pad_request(req) \ - (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) - -/* pad request, checking for minimum (but not maximum) */ -#define request2size(req) \ - (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) - - -/* ------------------ Operations on head and foot fields ----------------- */ - -/* - The head field of a chunk is or'ed with PINUSE_BIT when previous - adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in - use. If the chunk was obtained with mmap, the prev_foot field has - IS_MMAPPED_BIT set, otherwise holding the offset of the base of the - mmapped region to the base of the chunk. -*/ - -#define PINUSE_BIT (SIZE_T_ONE) -#define CINUSE_BIT (SIZE_T_TWO) -#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) - -/* Head value for fenceposts */ -#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) - -/* extraction of fields from head words */ -#define cinuse(p) ((p)->head & CINUSE_BIT) -#define pinuse(p) ((p)->head & PINUSE_BIT) -#define chunksize(p) ((p)->head & ~(INUSE_BITS)) - -#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) -#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) - -/* Treat space at ptr +/- offset as a chunk */ -#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) -#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) - -/* Ptr to next or previous physical malloc_chunk. */ -#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS))) -#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) - -/* extract next chunk's pinuse bit */ -#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) - -/* Get/set size at footer */ -#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) -#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) - -/* Set size, pinuse bit, and foot */ -#define set_size_and_pinuse_of_free_chunk(p, s)\ - ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) - -/* Set size, pinuse bit, foot, and clear next pinuse */ -#define set_free_with_pinuse(p, s, n)\ - (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) - -#define is_mmapped(p)\ - (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) - -/* Get the internal overhead associated with chunk p */ -#define overhead_for(p)\ - (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) - -/* Return true if malloced space is not necessarily cleared */ -#if MMAP_CLEARS -#define calloc_must_clear(p) (!is_mmapped(p)) -#else /* MMAP_CLEARS */ -#define calloc_must_clear(p) (1) -#endif /* MMAP_CLEARS */ - -/* ---------------------- Overlaid data structures ----------------------- */ - -/* - When chunks are not in use, they are treated as nodes of either - lists or trees. - - "Small" chunks are stored in circular doubly-linked lists, and look - like this: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk in list | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space (may be 0 bytes long) . - . . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Larger chunks are kept in a form of bitwise digital trees (aka - tries) keyed on chunksizes. Because malloc_tree_chunks are only for - free chunks greater than 256 bytes, their size doesn't impose any - constraints on user chunk sizes. Each node looks like: - - chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Size of previous chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `head:' | Size of chunk, in bytes |P| - mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Forward pointer to next chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Back pointer to previous chunk of same size | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to left child (child[0]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to right child (child[1]) | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Pointer to parent | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | bin index of this chunk | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - | Unused space . - . | -nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - `foot:' | Size of chunk, in bytes | - +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ - - Each tree holding treenodes is a tree of unique chunk sizes. Chunks - of the same size are arranged in a circularly-linked list, with only - the oldest chunk (the next to be used, in our FIFO ordering) - actually in the tree. (Tree members are distinguished by a non-null - parent pointer.) If a chunk with the same size an an existing node - is inserted, it is linked off the existing node using pointers that - work in the same way as fd/bk pointers of small chunks. - - Each tree contains a power of 2 sized range of chunk sizes (the - smallest is 0x100 <= x < 0x180), which is is divided in half at each - tree level, with the chunks in the smaller half of the range (0x100 - <= x < 0x140 for the top nose) in the left subtree and the larger - half (0x140 <= x < 0x180) in the right subtree. This is, of course, - done by inspecting individual bits. - - Using these rules, each node's left subtree contains all smaller - sizes than its right subtree. However, the node at the root of each - subtree has no particular ordering relationship to either. (The - dividing line between the subtree sizes is based on trie relation.) - If we remove the last chunk of a given size from the interior of the - tree, we need to replace it with a leaf node. The tree ordering - rules permit a node to be replaced by any leaf below it. - - The smallest chunk in a tree (a common operation in a best-fit - allocator) can be found by walking a path to the leftmost leaf in - the tree. Unlike a usual binary tree, where we follow left child - pointers until we reach a null, here we follow the right child - pointer any time the left one is null, until we reach a leaf with - both child pointers null. The smallest chunk in the tree will be - somewhere along that path. - - The worst case number of steps to add, find, or remove a node is - bounded by the number of bits differentiating chunks within - bins. Under current bin calculations, this ranges from 6 up to 21 - (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case - is of course much better. -*/ - -struct malloc_tree_chunk { - /* The first four fields must be compatible with malloc_chunk */ - size_t prev_foot; - size_t head; - struct malloc_tree_chunk* fd; - struct malloc_tree_chunk* bk; - - struct malloc_tree_chunk* child[2]; - struct malloc_tree_chunk* parent; - bindex_t index; -}; - -typedef struct malloc_tree_chunk tchunk; -typedef struct malloc_tree_chunk* tchunkptr; -typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ - -/* A little helper macro for trees */ -#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) - -/* ----------------------------- Segments -------------------------------- */ - -/* - Each malloc space may include non-contiguous segments, held in a - list headed by an embedded malloc_segment record representing the - top-most space. Segments also include flags holding properties of - the space. Large chunks that are directly allocated by mmap are not - included in this list. They are instead independently created and - destroyed without otherwise keeping track of them. - - Segment management mainly comes into play for spaces allocated by - MMAP. Any call to MMAP might or might not return memory that is - adjacent to an existing segment. MORECORE normally contiguously - extends the current space, so this space is almost always adjacent, - which is simpler and faster to deal with. (This is why MORECORE is - used preferentially to MMAP when both are available -- see - sys_alloc.) When allocating using MMAP, we don't use any of the - hinting mechanisms (inconsistently) supported in various - implementations of unix mmap, or distinguish reserving from - committing memory. Instead, we just ask for space, and exploit - contiguity when we get it. It is probably possible to do - better than this on some systems, but no general scheme seems - to be significantly better. - - Management entails a simpler variant of the consolidation scheme - used for chunks to reduce fragmentation -- new adjacent memory is - normally prepended or appended to an existing segment. However, - there are limitations compared to chunk consolidation that mostly - reflect the fact that segment processing is relatively infrequent - (occurring only when getting memory from system) and that we - don't expect to have huge numbers of segments: - - * Segments are not indexed, so traversal requires linear scans. (It - would be possible to index these, but is not worth the extra - overhead and complexity for most programs on most platforms.) - * New segments are only appended to old ones when holding top-most - memory; if they cannot be prepended to others, they are held in - different segments. - - Except for the top-most segment of an mstate, each segment record - is kept at the tail of its segment. Segments are added by pushing - segment records onto the list headed by &mstate.seg for the - containing mstate. - - Segment flags control allocation/merge/deallocation policies: - * If EXTERN_BIT set, then we did not allocate this segment, - and so should not try to deallocate or merge with others. - (This currently holds only for the initial segment passed - into create_mspace_with_base.) - * If IS_MMAPPED_BIT set, the segment may be merged with - other surrounding mmapped segments and trimmed/de-allocated - using munmap. - * If neither bit is set, then the segment was obtained using - MORECORE so can be merged with surrounding MORECORE'd segments - and deallocated/trimmed using MORECORE with negative arguments. -*/ - -struct malloc_segment { - char* base; /* base address */ - size_t size; /* allocated size */ - struct malloc_segment* next; /* ptr to next segment */ -#if FFI_MMAP_EXEC_WRIT - /* The mmap magic is supposed to store the address of the executable - segment at the very end of the requested block. */ - -# define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t))) - - /* We can only merge segments if their corresponding executable - segments are at identical offsets. */ -# define check_segment_merge(S,b,s) \ - (mmap_exec_offset((b),(s)) == (S)->exec_offset) - -# define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset) -# define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset) - - /* The removal of sflags only works with HAVE_MORECORE == 0. */ - -# define get_segment_flags(S) (IS_MMAPPED_BIT) -# define set_segment_flags(S,v) \ - (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) : \ - (((S)->exec_offset = \ - mmap_exec_offset((S)->base, (S)->size)), \ - (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) != \ - (S)->exec_offset) ? (ABORT, (v)) : \ - (mmap_exec_offset((S)->base, (S)->size) = 0), (v))) - - /* We use an offset here, instead of a pointer, because then, when - base changes, we don't have to modify this. On architectures - with segmented addresses, this might not work. */ - ptrdiff_t exec_offset; -#else - -# define get_segment_flags(S) ((S)->sflags) -# define set_segment_flags(S,v) ((S)->sflags = (v)) -# define check_segment_merge(S,b,s) (1) - - flag_t sflags; /* mmap and extern flag */ -#endif -}; - -#define is_mmapped_segment(S) (get_segment_flags(S) & IS_MMAPPED_BIT) -#define is_extern_segment(S) (get_segment_flags(S) & EXTERN_BIT) - -typedef struct malloc_segment msegment; -typedef struct malloc_segment* msegmentptr; - -/* ---------------------------- malloc_state ----------------------------- */ - -/* - A malloc_state holds all of the bookkeeping for a space. - The main fields are: - - Top - The topmost chunk of the currently active segment. Its size is - cached in topsize. The actual size of topmost space is - topsize+TOP_FOOT_SIZE, which includes space reserved for adding - fenceposts and segment records if necessary when getting more - space from the system. The size at which to autotrim top is - cached from mparams in trim_check, except that it is disabled if - an autotrim fails. - - Designated victim (dv) - This is the preferred chunk for servicing small requests that - don't have exact fits. It is normally the chunk split off most - recently to service another small request. Its size is cached in - dvsize. The link fields of this chunk are not maintained since it - is not kept in a bin. - - SmallBins - An array of bin headers for free chunks. These bins hold chunks - with sizes less than MIN_LARGE_SIZE bytes. Each bin contains - chunks of all the same size, spaced 8 bytes apart. To simplify - use in double-linked lists, each bin header acts as a malloc_chunk - pointing to the real first node, if it exists (else pointing to - itself). This avoids special-casing for headers. But to avoid - waste, we allocate only the fd/bk pointers of bins, and then use - repositioning tricks to treat these as the fields of a chunk. - - TreeBins - Treebins are pointers to the roots of trees holding a range of - sizes. There are 2 equally spaced treebins for each power of two - from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything - larger. - - Bin maps - There is one bit map for small bins ("smallmap") and one for - treebins ("treemap). Each bin sets its bit when non-empty, and - clears the bit when empty. Bit operations are then used to avoid - bin-by-bin searching -- nearly all "search" is done without ever - looking at bins that won't be selected. The bit maps - conservatively use 32 bits per map word, even if on 64bit system. - For a good description of some of the bit-based techniques used - here, see Henry S. Warren Jr's book "Hacker's Delight" (and - supplement at http://hackersdelight.org/). Many of these are - intended to reduce the branchiness of paths through malloc etc, as - well as to reduce the number of memory locations read or written. - - Segments - A list of segments headed by an embedded malloc_segment record - representing the initial space. - - Address check support - The least_addr field is the least address ever obtained from - MORECORE or MMAP. Attempted frees and reallocs of any address less - than this are trapped (unless INSECURE is defined). - - Magic tag - A cross-check field that should always hold same value as mparams.magic. - - Flags - Bits recording whether to use MMAP, locks, or contiguous MORECORE - - Statistics - Each space keeps track of current and maximum system memory - obtained via MORECORE or MMAP. - - Locking - If USE_LOCKS is defined, the "mutex" lock is acquired and released - around every public call using this mspace. -*/ - -/* Bin types, widths and sizes */ -#define NSMALLBINS (32U) -#define NTREEBINS (32U) -#define SMALLBIN_SHIFT (3U) -#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) -#define TREEBIN_SHIFT (8U) -#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) -#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) -#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) - -struct malloc_state { - binmap_t smallmap; - binmap_t treemap; - size_t dvsize; - size_t topsize; - char* least_addr; - mchunkptr dv; - mchunkptr top; - size_t trim_check; - size_t magic; - mchunkptr smallbins[(NSMALLBINS+1)*2]; - tbinptr treebins[NTREEBINS]; - size_t footprint; - size_t max_footprint; - flag_t mflags; -#if USE_LOCKS - MLOCK_T mutex; /* locate lock among fields that rarely change */ -#endif /* USE_LOCKS */ - msegment seg; -}; - -typedef struct malloc_state* mstate; - -/* ------------- Global malloc_state and malloc_params ------------------- */ - -/* - malloc_params holds global properties, including those that can be - dynamically set using mallopt. There is a single instance, mparams, - initialized in init_mparams. -*/ - -struct malloc_params { - size_t magic; - size_t page_size; - size_t granularity; - size_t mmap_threshold; - size_t trim_threshold; - flag_t default_mflags; -}; - -static struct malloc_params mparams; - -/* The global malloc_state used for all non-"mspace" calls */ -static struct malloc_state _gm_; -#define gm (&_gm_) -#define is_global(M) ((M) == &_gm_) -#define is_initialized(M) ((M)->top != 0) - -/* -------------------------- system alloc setup ------------------------- */ - -/* Operations on mflags */ - -#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) -#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) -#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) - -#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) -#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) -#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) - -#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) -#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) - -#define set_lock(M,L)\ - ((M)->mflags = (L)?\ - ((M)->mflags | USE_LOCK_BIT) :\ - ((M)->mflags & ~USE_LOCK_BIT)) - -/* page-align a size */ -#define page_align(S)\ - (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE)) - -/* granularity-align a size */ -#define granularity_align(S)\ - (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE)) - -#define is_page_aligned(S)\ - (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) -#define is_granularity_aligned(S)\ - (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) - -/* True if segment S holds address A */ -#define segment_holds(S, A)\ - ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) - -/* Return segment holding given address */ -static msegmentptr segment_holding(mstate m, char* addr) { - msegmentptr sp = &m->seg; - for (;;) { - if (addr >= sp->base && addr < sp->base + sp->size) - return sp; - if ((sp = sp->next) == 0) - return 0; - } -} - -/* Return true if segment contains a segment link */ -static int has_segment_link(mstate m, msegmentptr ss) { - msegmentptr sp = &m->seg; - for (;;) { - if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) - return 1; - if ((sp = sp->next) == 0) - return 0; - } -} - -#ifndef MORECORE_CANNOT_TRIM -#define should_trim(M,s) ((s) > (M)->trim_check) -#else /* MORECORE_CANNOT_TRIM */ -#define should_trim(M,s) (0) -#endif /* MORECORE_CANNOT_TRIM */ - -/* - TOP_FOOT_SIZE is padding at the end of a segment, including space - that may be needed to place segment records and fenceposts when new - noncontiguous segments are added. -*/ -#define TOP_FOOT_SIZE\ - (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) - - -/* ------------------------------- Hooks -------------------------------- */ - -/* - PREACTION should be defined to return 0 on success, and nonzero on - failure. If you are not using locking, you can redefine these to do - anything you like. -*/ - -#if USE_LOCKS - -/* Ensure locks are initialized */ -#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) - -#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) -#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } -#else /* USE_LOCKS */ - -#ifndef PREACTION -#define PREACTION(M) (0) -#endif /* PREACTION */ - -#ifndef POSTACTION -#define POSTACTION(M) -#endif /* POSTACTION */ - -#endif /* USE_LOCKS */ - -/* - CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. - USAGE_ERROR_ACTION is triggered on detected bad frees and - reallocs. The argument p is an address that might have triggered the - fault. It is ignored by the two predefined actions, but might be - useful in custom actions that try to help diagnose errors. -*/ - -#if PROCEED_ON_ERROR - -/* A count of the number of corruption errors causing resets */ -int malloc_corruption_error_count; - -/* default corruption action */ -static void reset_on_error(mstate m); - -#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) -#define USAGE_ERROR_ACTION(m, p) - -#else /* PROCEED_ON_ERROR */ - -#ifndef CORRUPTION_ERROR_ACTION -#define CORRUPTION_ERROR_ACTION(m) ABORT -#endif /* CORRUPTION_ERROR_ACTION */ - -#ifndef USAGE_ERROR_ACTION -#define USAGE_ERROR_ACTION(m,p) ABORT -#endif /* USAGE_ERROR_ACTION */ - -#endif /* PROCEED_ON_ERROR */ - -/* -------------------------- Debugging setup ---------------------------- */ - -#if ! DEBUG - -#define check_free_chunk(M,P) -#define check_inuse_chunk(M,P) -#define check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) -#define check_malloc_state(M) -#define check_top_chunk(M,P) - -#else /* DEBUG */ -#define check_free_chunk(M,P) do_check_free_chunk(M,P) -#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) -#define check_top_chunk(M,P) do_check_top_chunk(M,P) -#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) -#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) -#define check_malloc_state(M) do_check_malloc_state(M) - -static void do_check_any_chunk(mstate m, mchunkptr p); -static void do_check_top_chunk(mstate m, mchunkptr p); -static void do_check_mmapped_chunk(mstate m, mchunkptr p); -static void do_check_inuse_chunk(mstate m, mchunkptr p); -static void do_check_free_chunk(mstate m, mchunkptr p); -static void do_check_malloced_chunk(mstate m, void* mem, size_t s); -static void do_check_tree(mstate m, tchunkptr t); -static void do_check_treebin(mstate m, bindex_t i); -static void do_check_smallbin(mstate m, bindex_t i); -static void do_check_malloc_state(mstate m); -static int bin_find(mstate m, mchunkptr x); -static size_t traverse_and_check(mstate m); -#endif /* DEBUG */ - -/* ---------------------------- Indexing Bins ---------------------------- */ - -#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) -#define small_index(s) ((s) >> SMALLBIN_SHIFT) -#define small_index2size(i) ((i) << SMALLBIN_SHIFT) -#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) - -/* addressing by index. See above about smallbin repositioning */ -#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) -#define treebin_at(M,i) (&((M)->treebins[i])) - -/* assign tree index for size S to variable I */ +typedef unsigned int binmap_t; /* Described below */ +typedef unsigned int flag_t; /* The type of various bit flag sets */ + +/* ------------------- Chunks sizes and alignments ----------------------- */ + +#define MCHUNK_SIZE (sizeof(mchunk)) + +#if FOOTERS +#define CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +#else /* FOOTERS */ +#define CHUNK_OVERHEAD (SIZE_T_SIZE) +#endif /* FOOTERS */ + +/* MMapped chunks need a second word of overhead ... */ +#define MMAP_CHUNK_OVERHEAD (TWO_SIZE_T_SIZES) +/* ... and additional padding for fake next-chunk at foot */ +#define MMAP_FOOT_PAD (FOUR_SIZE_T_SIZES) + +/* The smallest size we can malloc is an aligned minimal chunk */ +#define MIN_CHUNK_SIZE\ + ((MCHUNK_SIZE + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* conversion from malloc headers to user pointers, and back */ +#define chunk2mem(p) ((void*)((char*)(p) + TWO_SIZE_T_SIZES)) +#define mem2chunk(mem) ((mchunkptr)((char*)(mem) - TWO_SIZE_T_SIZES)) +/* chunk associated with aligned address A */ +#define align_as_chunk(A) (mchunkptr)((A) + align_offset(chunk2mem(A))) + +/* Bounds on request (not chunk) sizes. */ +#define MAX_REQUEST ((-MIN_CHUNK_SIZE) << 2) +#define MIN_REQUEST (MIN_CHUNK_SIZE - CHUNK_OVERHEAD - SIZE_T_ONE) + +/* pad request bytes into a usable size */ +#define pad_request(req) \ + (((req) + CHUNK_OVERHEAD + CHUNK_ALIGN_MASK) & ~CHUNK_ALIGN_MASK) + +/* pad request, checking for minimum (but not maximum) */ +#define request2size(req) \ + (((req) < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(req)) + + +/* ------------------ Operations on head and foot fields ----------------- */ + +/* + The head field of a chunk is or'ed with PINUSE_BIT when previous + adjacent chunk in use, and or'ed with CINUSE_BIT if this chunk is in + use. If the chunk was obtained with mmap, the prev_foot field has + IS_MMAPPED_BIT set, otherwise holding the offset of the base of the + mmapped region to the base of the chunk. +*/ + +#define PINUSE_BIT (SIZE_T_ONE) +#define CINUSE_BIT (SIZE_T_TWO) +#define INUSE_BITS (PINUSE_BIT|CINUSE_BIT) + +/* Head value for fenceposts */ +#define FENCEPOST_HEAD (INUSE_BITS|SIZE_T_SIZE) + +/* extraction of fields from head words */ +#define cinuse(p) ((p)->head & CINUSE_BIT) +#define pinuse(p) ((p)->head & PINUSE_BIT) +#define chunksize(p) ((p)->head & ~(INUSE_BITS)) + +#define clear_pinuse(p) ((p)->head &= ~PINUSE_BIT) +#define clear_cinuse(p) ((p)->head &= ~CINUSE_BIT) + +/* Treat space at ptr +/- offset as a chunk */ +#define chunk_plus_offset(p, s) ((mchunkptr)(((char*)(p)) + (s))) +#define chunk_minus_offset(p, s) ((mchunkptr)(((char*)(p)) - (s))) + +/* Ptr to next or previous physical malloc_chunk. */ +#define next_chunk(p) ((mchunkptr)( ((char*)(p)) + ((p)->head & ~INUSE_BITS))) +#define prev_chunk(p) ((mchunkptr)( ((char*)(p)) - ((p)->prev_foot) )) + +/* extract next chunk's pinuse bit */ +#define next_pinuse(p) ((next_chunk(p)->head) & PINUSE_BIT) + +/* Get/set size at footer */ +#define get_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot) +#define set_foot(p, s) (((mchunkptr)((char*)(p) + (s)))->prev_foot = (s)) + +/* Set size, pinuse bit, and foot */ +#define set_size_and_pinuse_of_free_chunk(p, s)\ + ((p)->head = (s|PINUSE_BIT), set_foot(p, s)) + +/* Set size, pinuse bit, foot, and clear next pinuse */ +#define set_free_with_pinuse(p, s, n)\ + (clear_pinuse(n), set_size_and_pinuse_of_free_chunk(p, s)) + +#define is_mmapped(p)\ + (!((p)->head & PINUSE_BIT) && ((p)->prev_foot & IS_MMAPPED_BIT)) + +/* Get the internal overhead associated with chunk p */ +#define overhead_for(p)\ + (is_mmapped(p)? MMAP_CHUNK_OVERHEAD : CHUNK_OVERHEAD) + +/* Return true if malloced space is not necessarily cleared */ +#if MMAP_CLEARS +#define calloc_must_clear(p) (!is_mmapped(p)) +#else /* MMAP_CLEARS */ +#define calloc_must_clear(p) (1) +#endif /* MMAP_CLEARS */ + +/* ---------------------- Overlaid data structures ----------------------- */ + +/* + When chunks are not in use, they are treated as nodes of either + lists or trees. + + "Small" chunks are stored in circular doubly-linked lists, and look + like this: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk in list | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space (may be 0 bytes long) . + . . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Larger chunks are kept in a form of bitwise digital trees (aka + tries) keyed on chunksizes. Because malloc_tree_chunks are only for + free chunks greater than 256 bytes, their size doesn't impose any + constraints on user chunk sizes. Each node looks like: + + chunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Size of previous chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `head:' | Size of chunk, in bytes |P| + mem-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Forward pointer to next chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Back pointer to previous chunk of same size | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to left child (child[0]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to right child (child[1]) | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Pointer to parent | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | bin index of this chunk | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | Unused space . + . | +nextchunk-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + `foot:' | Size of chunk, in bytes | + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + + Each tree holding treenodes is a tree of unique chunk sizes. Chunks + of the same size are arranged in a circularly-linked list, with only + the oldest chunk (the next to be used, in our FIFO ordering) + actually in the tree. (Tree members are distinguished by a non-null + parent pointer.) If a chunk with the same size an an existing node + is inserted, it is linked off the existing node using pointers that + work in the same way as fd/bk pointers of small chunks. + + Each tree contains a power of 2 sized range of chunk sizes (the + smallest is 0x100 <= x < 0x180), which is is divided in half at each + tree level, with the chunks in the smaller half of the range (0x100 + <= x < 0x140 for the top nose) in the left subtree and the larger + half (0x140 <= x < 0x180) in the right subtree. This is, of course, + done by inspecting individual bits. + + Using these rules, each node's left subtree contains all smaller + sizes than its right subtree. However, the node at the root of each + subtree has no particular ordering relationship to either. (The + dividing line between the subtree sizes is based on trie relation.) + If we remove the last chunk of a given size from the interior of the + tree, we need to replace it with a leaf node. The tree ordering + rules permit a node to be replaced by any leaf below it. + + The smallest chunk in a tree (a common operation in a best-fit + allocator) can be found by walking a path to the leftmost leaf in + the tree. Unlike a usual binary tree, where we follow left child + pointers until we reach a null, here we follow the right child + pointer any time the left one is null, until we reach a leaf with + both child pointers null. The smallest chunk in the tree will be + somewhere along that path. + + The worst case number of steps to add, find, or remove a node is + bounded by the number of bits differentiating chunks within + bins. Under current bin calculations, this ranges from 6 up to 21 + (for 32 bit sizes) or up to 53 (for 64 bit sizes). The typical case + is of course much better. +*/ + +struct malloc_tree_chunk { + /* The first four fields must be compatible with malloc_chunk */ + size_t prev_foot; + size_t head; + struct malloc_tree_chunk* fd; + struct malloc_tree_chunk* bk; + + struct malloc_tree_chunk* child[2]; + struct malloc_tree_chunk* parent; + bindex_t index; +}; + +typedef struct malloc_tree_chunk tchunk; +typedef struct malloc_tree_chunk* tchunkptr; +typedef struct malloc_tree_chunk* tbinptr; /* The type of bins of trees */ + +/* A little helper macro for trees */ +#define leftmost_child(t) ((t)->child[0] != 0? (t)->child[0] : (t)->child[1]) + +/* ----------------------------- Segments -------------------------------- */ + +/* + Each malloc space may include non-contiguous segments, held in a + list headed by an embedded malloc_segment record representing the + top-most space. Segments also include flags holding properties of + the space. Large chunks that are directly allocated by mmap are not + included in this list. They are instead independently created and + destroyed without otherwise keeping track of them. + + Segment management mainly comes into play for spaces allocated by + MMAP. Any call to MMAP might or might not return memory that is + adjacent to an existing segment. MORECORE normally contiguously + extends the current space, so this space is almost always adjacent, + which is simpler and faster to deal with. (This is why MORECORE is + used preferentially to MMAP when both are available -- see + sys_alloc.) When allocating using MMAP, we don't use any of the + hinting mechanisms (inconsistently) supported in various + implementations of unix mmap, or distinguish reserving from + committing memory. Instead, we just ask for space, and exploit + contiguity when we get it. It is probably possible to do + better than this on some systems, but no general scheme seems + to be significantly better. + + Management entails a simpler variant of the consolidation scheme + used for chunks to reduce fragmentation -- new adjacent memory is + normally prepended or appended to an existing segment. However, + there are limitations compared to chunk consolidation that mostly + reflect the fact that segment processing is relatively infrequent + (occurring only when getting memory from system) and that we + don't expect to have huge numbers of segments: + + * Segments are not indexed, so traversal requires linear scans. (It + would be possible to index these, but is not worth the extra + overhead and complexity for most programs on most platforms.) + * New segments are only appended to old ones when holding top-most + memory; if they cannot be prepended to others, they are held in + different segments. + + Except for the top-most segment of an mstate, each segment record + is kept at the tail of its segment. Segments are added by pushing + segment records onto the list headed by &mstate.seg for the + containing mstate. + + Segment flags control allocation/merge/deallocation policies: + * If EXTERN_BIT set, then we did not allocate this segment, + and so should not try to deallocate or merge with others. + (This currently holds only for the initial segment passed + into create_mspace_with_base.) + * If IS_MMAPPED_BIT set, the segment may be merged with + other surrounding mmapped segments and trimmed/de-allocated + using munmap. + * If neither bit is set, then the segment was obtained using + MORECORE so can be merged with surrounding MORECORE'd segments + and deallocated/trimmed using MORECORE with negative arguments. +*/ + +struct malloc_segment { + char* base; /* base address */ + size_t size; /* allocated size */ + struct malloc_segment* next; /* ptr to next segment */ +#if FFI_MMAP_EXEC_WRIT + /* The mmap magic is supposed to store the address of the executable + segment at the very end of the requested block. */ + +# define mmap_exec_offset(b,s) (*(ptrdiff_t*)((b)+(s)-sizeof(ptrdiff_t))) + + /* We can only merge segments if their corresponding executable + segments are at identical offsets. */ +# define check_segment_merge(S,b,s) \ + (mmap_exec_offset((b),(s)) == (S)->exec_offset) + +# define add_segment_exec_offset(p,S) ((char*)(p) + (S)->exec_offset) +# define sub_segment_exec_offset(p,S) ((char*)(p) - (S)->exec_offset) + + /* The removal of sflags only works with HAVE_MORECORE == 0. */ + +# define get_segment_flags(S) (IS_MMAPPED_BIT) +# define set_segment_flags(S,v) \ + (((v) != IS_MMAPPED_BIT) ? (ABORT, (v)) : \ + (((S)->exec_offset = \ + mmap_exec_offset((S)->base, (S)->size)), \ + (mmap_exec_offset((S)->base + (S)->exec_offset, (S)->size) != \ + (S)->exec_offset) ? (ABORT, (v)) : \ + (mmap_exec_offset((S)->base, (S)->size) = 0), (v))) + + /* We use an offset here, instead of a pointer, because then, when + base changes, we don't have to modify this. On architectures + with segmented addresses, this might not work. */ + ptrdiff_t exec_offset; +#else + +# define get_segment_flags(S) ((S)->sflags) +# define set_segment_flags(S,v) ((S)->sflags = (v)) +# define check_segment_merge(S,b,s) (1) + + flag_t sflags; /* mmap and extern flag */ +#endif +}; + +#define is_mmapped_segment(S) (get_segment_flags(S) & IS_MMAPPED_BIT) +#define is_extern_segment(S) (get_segment_flags(S) & EXTERN_BIT) + +typedef struct malloc_segment msegment; +typedef struct malloc_segment* msegmentptr; + +/* ---------------------------- malloc_state ----------------------------- */ + +/* + A malloc_state holds all of the bookkeeping for a space. + The main fields are: + + Top + The topmost chunk of the currently active segment. Its size is + cached in topsize. The actual size of topmost space is + topsize+TOP_FOOT_SIZE, which includes space reserved for adding + fenceposts and segment records if necessary when getting more + space from the system. The size at which to autotrim top is + cached from mparams in trim_check, except that it is disabled if + an autotrim fails. + + Designated victim (dv) + This is the preferred chunk for servicing small requests that + don't have exact fits. It is normally the chunk split off most + recently to service another small request. Its size is cached in + dvsize. The link fields of this chunk are not maintained since it + is not kept in a bin. + + SmallBins + An array of bin headers for free chunks. These bins hold chunks + with sizes less than MIN_LARGE_SIZE bytes. Each bin contains + chunks of all the same size, spaced 8 bytes apart. To simplify + use in double-linked lists, each bin header acts as a malloc_chunk + pointing to the real first node, if it exists (else pointing to + itself). This avoids special-casing for headers. But to avoid + waste, we allocate only the fd/bk pointers of bins, and then use + repositioning tricks to treat these as the fields of a chunk. + + TreeBins + Treebins are pointers to the roots of trees holding a range of + sizes. There are 2 equally spaced treebins for each power of two + from TREE_SHIFT to TREE_SHIFT+16. The last bin holds anything + larger. + + Bin maps + There is one bit map for small bins ("smallmap") and one for + treebins ("treemap). Each bin sets its bit when non-empty, and + clears the bit when empty. Bit operations are then used to avoid + bin-by-bin searching -- nearly all "search" is done without ever + looking at bins that won't be selected. The bit maps + conservatively use 32 bits per map word, even if on 64bit system. + For a good description of some of the bit-based techniques used + here, see Henry S. Warren Jr's book "Hacker's Delight" (and + supplement at http://hackersdelight.org/). Many of these are + intended to reduce the branchiness of paths through malloc etc, as + well as to reduce the number of memory locations read or written. + + Segments + A list of segments headed by an embedded malloc_segment record + representing the initial space. + + Address check support + The least_addr field is the least address ever obtained from + MORECORE or MMAP. Attempted frees and reallocs of any address less + than this are trapped (unless INSECURE is defined). + + Magic tag + A cross-check field that should always hold same value as mparams.magic. + + Flags + Bits recording whether to use MMAP, locks, or contiguous MORECORE + + Statistics + Each space keeps track of current and maximum system memory + obtained via MORECORE or MMAP. + + Locking + If USE_LOCKS is defined, the "mutex" lock is acquired and released + around every public call using this mspace. +*/ + +/* Bin types, widths and sizes */ +#define NSMALLBINS (32U) +#define NTREEBINS (32U) +#define SMALLBIN_SHIFT (3U) +#define SMALLBIN_WIDTH (SIZE_T_ONE << SMALLBIN_SHIFT) +#define TREEBIN_SHIFT (8U) +#define MIN_LARGE_SIZE (SIZE_T_ONE << TREEBIN_SHIFT) +#define MAX_SMALL_SIZE (MIN_LARGE_SIZE - SIZE_T_ONE) +#define MAX_SMALL_REQUEST (MAX_SMALL_SIZE - CHUNK_ALIGN_MASK - CHUNK_OVERHEAD) + +struct malloc_state { + binmap_t smallmap; + binmap_t treemap; + size_t dvsize; + size_t topsize; + char* least_addr; + mchunkptr dv; + mchunkptr top; + size_t trim_check; + size_t magic; + mchunkptr smallbins[(NSMALLBINS+1)*2]; + tbinptr treebins[NTREEBINS]; + size_t footprint; + size_t max_footprint; + flag_t mflags; +#if USE_LOCKS + MLOCK_T mutex; /* locate lock among fields that rarely change */ +#endif /* USE_LOCKS */ + msegment seg; +}; + +typedef struct malloc_state* mstate; + +/* ------------- Global malloc_state and malloc_params ------------------- */ + +/* + malloc_params holds global properties, including those that can be + dynamically set using mallopt. There is a single instance, mparams, + initialized in init_mparams. +*/ + +struct malloc_params { + size_t magic; + size_t page_size; + size_t granularity; + size_t mmap_threshold; + size_t trim_threshold; + flag_t default_mflags; +}; + +static struct malloc_params mparams; + +/* The global malloc_state used for all non-"mspace" calls */ +static struct malloc_state _gm_; +#define gm (&_gm_) +#define is_global(M) ((M) == &_gm_) +#define is_initialized(M) ((M)->top != 0) + +/* -------------------------- system alloc setup ------------------------- */ + +/* Operations on mflags */ + +#define use_lock(M) ((M)->mflags & USE_LOCK_BIT) +#define enable_lock(M) ((M)->mflags |= USE_LOCK_BIT) +#define disable_lock(M) ((M)->mflags &= ~USE_LOCK_BIT) + +#define use_mmap(M) ((M)->mflags & USE_MMAP_BIT) +#define enable_mmap(M) ((M)->mflags |= USE_MMAP_BIT) +#define disable_mmap(M) ((M)->mflags &= ~USE_MMAP_BIT) + +#define use_noncontiguous(M) ((M)->mflags & USE_NONCONTIGUOUS_BIT) +#define disable_contiguous(M) ((M)->mflags |= USE_NONCONTIGUOUS_BIT) + +#define set_lock(M,L)\ + ((M)->mflags = (L)?\ + ((M)->mflags | USE_LOCK_BIT) :\ + ((M)->mflags & ~USE_LOCK_BIT)) + +/* page-align a size */ +#define page_align(S)\ + (((S) + (mparams.page_size)) & ~(mparams.page_size - SIZE_T_ONE)) + +/* granularity-align a size */ +#define granularity_align(S)\ + (((S) + (mparams.granularity)) & ~(mparams.granularity - SIZE_T_ONE)) + +#define is_page_aligned(S)\ + (((size_t)(S) & (mparams.page_size - SIZE_T_ONE)) == 0) +#define is_granularity_aligned(S)\ + (((size_t)(S) & (mparams.granularity - SIZE_T_ONE)) == 0) + +/* True if segment S holds address A */ +#define segment_holds(S, A)\ + ((char*)(A) >= S->base && (char*)(A) < S->base + S->size) + +/* Return segment holding given address */ +static msegmentptr segment_holding(mstate m, char* addr) { + msegmentptr sp = &m->seg; + for (;;) { + if (addr >= sp->base && addr < sp->base + sp->size) + return sp; + if ((sp = sp->next) == 0) + return 0; + } +} + +/* Return true if segment contains a segment link */ +static int has_segment_link(mstate m, msegmentptr ss) { + msegmentptr sp = &m->seg; + for (;;) { + if ((char*)sp >= ss->base && (char*)sp < ss->base + ss->size) + return 1; + if ((sp = sp->next) == 0) + return 0; + } +} + +#ifndef MORECORE_CANNOT_TRIM +#define should_trim(M,s) ((s) > (M)->trim_check) +#else /* MORECORE_CANNOT_TRIM */ +#define should_trim(M,s) (0) +#endif /* MORECORE_CANNOT_TRIM */ + +/* + TOP_FOOT_SIZE is padding at the end of a segment, including space + that may be needed to place segment records and fenceposts when new + noncontiguous segments are added. +*/ +#define TOP_FOOT_SIZE\ + (align_offset(chunk2mem(0))+pad_request(sizeof(struct malloc_segment))+MIN_CHUNK_SIZE) + + +/* ------------------------------- Hooks -------------------------------- */ + +/* + PREACTION should be defined to return 0 on success, and nonzero on + failure. If you are not using locking, you can redefine these to do + anything you like. +*/ + +#if USE_LOCKS + +/* Ensure locks are initialized */ +#define GLOBALLY_INITIALIZE() (mparams.page_size == 0 && init_mparams()) + +#define PREACTION(M) ((GLOBALLY_INITIALIZE() || use_lock(M))? ACQUIRE_LOCK(&(M)->mutex) : 0) +#define POSTACTION(M) { if (use_lock(M)) RELEASE_LOCK(&(M)->mutex); } +#else /* USE_LOCKS */ + +#ifndef PREACTION +#define PREACTION(M) (0) +#endif /* PREACTION */ + +#ifndef POSTACTION +#define POSTACTION(M) +#endif /* POSTACTION */ + +#endif /* USE_LOCKS */ + +/* + CORRUPTION_ERROR_ACTION is triggered upon detected bad addresses. + USAGE_ERROR_ACTION is triggered on detected bad frees and + reallocs. The argument p is an address that might have triggered the + fault. It is ignored by the two predefined actions, but might be + useful in custom actions that try to help diagnose errors. +*/ + +#if PROCEED_ON_ERROR + +/* A count of the number of corruption errors causing resets */ +int malloc_corruption_error_count; + +/* default corruption action */ +static void reset_on_error(mstate m); + +#define CORRUPTION_ERROR_ACTION(m) reset_on_error(m) +#define USAGE_ERROR_ACTION(m, p) + +#else /* PROCEED_ON_ERROR */ + +#ifndef CORRUPTION_ERROR_ACTION +#define CORRUPTION_ERROR_ACTION(m) ABORT +#endif /* CORRUPTION_ERROR_ACTION */ + +#ifndef USAGE_ERROR_ACTION +#define USAGE_ERROR_ACTION(m,p) ABORT +#endif /* USAGE_ERROR_ACTION */ + +#endif /* PROCEED_ON_ERROR */ + +/* -------------------------- Debugging setup ---------------------------- */ + +#if ! DEBUG + +#define check_free_chunk(M,P) +#define check_inuse_chunk(M,P) +#define check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) +#define check_malloc_state(M) +#define check_top_chunk(M,P) + +#else /* DEBUG */ +#define check_free_chunk(M,P) do_check_free_chunk(M,P) +#define check_inuse_chunk(M,P) do_check_inuse_chunk(M,P) +#define check_top_chunk(M,P) do_check_top_chunk(M,P) +#define check_malloced_chunk(M,P,N) do_check_malloced_chunk(M,P,N) +#define check_mmapped_chunk(M,P) do_check_mmapped_chunk(M,P) +#define check_malloc_state(M) do_check_malloc_state(M) + +static void do_check_any_chunk(mstate m, mchunkptr p); +static void do_check_top_chunk(mstate m, mchunkptr p); +static void do_check_mmapped_chunk(mstate m, mchunkptr p); +static void do_check_inuse_chunk(mstate m, mchunkptr p); +static void do_check_free_chunk(mstate m, mchunkptr p); +static void do_check_malloced_chunk(mstate m, void* mem, size_t s); +static void do_check_tree(mstate m, tchunkptr t); +static void do_check_treebin(mstate m, bindex_t i); +static void do_check_smallbin(mstate m, bindex_t i); +static void do_check_malloc_state(mstate m); +static int bin_find(mstate m, mchunkptr x); +static size_t traverse_and_check(mstate m); +#endif /* DEBUG */ + +/* ---------------------------- Indexing Bins ---------------------------- */ + +#define is_small(s) (((s) >> SMALLBIN_SHIFT) < NSMALLBINS) +#define small_index(s) ((s) >> SMALLBIN_SHIFT) +#define small_index2size(i) ((i) << SMALLBIN_SHIFT) +#define MIN_SMALL_INDEX (small_index(MIN_CHUNK_SIZE)) + +/* addressing by index. See above about smallbin repositioning */ +#define smallbin_at(M, i) ((sbinptr)((char*)&((M)->smallbins[(i)<<1]))) +#define treebin_at(M,i) (&((M)->treebins[i])) + +/* assign tree index for size S to variable I */ #if defined(__GNUC__) && defined(__i386__) -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int K;\ - __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\ - I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ - }\ -} -#else /* GNUC */ -#define compute_tree_index(S, I)\ -{\ - size_t X = S >> TREEBIN_SHIFT;\ - if (X == 0)\ - I = 0;\ - else if (X > 0xFFFF)\ - I = NTREEBINS-1;\ - else {\ - unsigned int Y = (unsigned int)X;\ - unsigned int N = ((Y - 0x100) >> 16) & 8;\ - unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ - N += K;\ - N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ - K = 14 - N + ((Y <<= K) >> 15);\ - I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ - }\ -} -#endif /* GNUC */ - -/* Bit representing maximum resolved size in a treebin at i */ -#define bit_for_tree_index(i) \ - (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) - -/* Shift placing maximum resolved bit in a treebin at i as sign bit */ -#define leftshift_for_tree_index(i) \ - ((i == NTREEBINS-1)? 0 : \ - ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) - -/* The size of the smallest chunk held in bin with index i */ -#define minsize_for_tree_index(i) \ - ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ - (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) - - -/* ------------------------ Operations on bin maps ----------------------- */ - -/* bit corresponding to given index */ -#define idx2bit(i) ((binmap_t)(1) << (i)) - -/* Mark/Clear bits with given index */ -#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) -#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) -#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) - -#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) -#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) -#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) - -/* index corresponding to given bit */ - +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int K;\ + __asm__("bsrl %1,%0\n\t" : "=r" (K) : "rm" (X));\ + I = (bindex_t)((K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1)));\ + }\ +} +#else /* GNUC */ +#define compute_tree_index(S, I)\ +{\ + size_t X = S >> TREEBIN_SHIFT;\ + if (X == 0)\ + I = 0;\ + else if (X > 0xFFFF)\ + I = NTREEBINS-1;\ + else {\ + unsigned int Y = (unsigned int)X;\ + unsigned int N = ((Y - 0x100) >> 16) & 8;\ + unsigned int K = (((Y <<= N) - 0x1000) >> 16) & 4;\ + N += K;\ + N += K = (((Y <<= K) - 0x4000) >> 16) & 2;\ + K = 14 - N + ((Y <<= K) >> 15);\ + I = (K << 1) + ((S >> (K + (TREEBIN_SHIFT-1)) & 1));\ + }\ +} +#endif /* GNUC */ + +/* Bit representing maximum resolved size in a treebin at i */ +#define bit_for_tree_index(i) \ + (i == NTREEBINS-1)? (SIZE_T_BITSIZE-1) : (((i) >> 1) + TREEBIN_SHIFT - 2) + +/* Shift placing maximum resolved bit in a treebin at i as sign bit */ +#define leftshift_for_tree_index(i) \ + ((i == NTREEBINS-1)? 0 : \ + ((SIZE_T_BITSIZE-SIZE_T_ONE) - (((i) >> 1) + TREEBIN_SHIFT - 2))) + +/* The size of the smallest chunk held in bin with index i */ +#define minsize_for_tree_index(i) \ + ((SIZE_T_ONE << (((i) >> 1) + TREEBIN_SHIFT)) | \ + (((size_t)((i) & SIZE_T_ONE)) << (((i) >> 1) + TREEBIN_SHIFT - 1))) + + +/* ------------------------ Operations on bin maps ----------------------- */ + +/* bit corresponding to given index */ +#define idx2bit(i) ((binmap_t)(1) << (i)) + +/* Mark/Clear bits with given index */ +#define mark_smallmap(M,i) ((M)->smallmap |= idx2bit(i)) +#define clear_smallmap(M,i) ((M)->smallmap &= ~idx2bit(i)) +#define smallmap_is_marked(M,i) ((M)->smallmap & idx2bit(i)) + +#define mark_treemap(M,i) ((M)->treemap |= idx2bit(i)) +#define clear_treemap(M,i) ((M)->treemap &= ~idx2bit(i)) +#define treemap_is_marked(M,i) ((M)->treemap & idx2bit(i)) + +/* index corresponding to given bit */ + #if defined(__GNUC__) && defined(__i386__) -#define compute_bit2idx(X, I)\ -{\ - unsigned int J;\ - __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\ - I = (bindex_t)J;\ -} - -#else /* GNUC */ -#if USE_BUILTIN_FFS -#define compute_bit2idx(X, I) I = ffs(X)-1 - -#else /* USE_BUILTIN_FFS */ -#define compute_bit2idx(X, I)\ -{\ - unsigned int Y = X - 1;\ - unsigned int K = Y >> (16-4) & 16;\ - unsigned int N = K; Y >>= K;\ - N += K = Y >> (8-3) & 8; Y >>= K;\ - N += K = Y >> (4-2) & 4; Y >>= K;\ - N += K = Y >> (2-1) & 2; Y >>= K;\ - N += K = Y >> (1-0) & 1; Y >>= K;\ - I = (bindex_t)(N + Y);\ -} -#endif /* USE_BUILTIN_FFS */ -#endif /* GNUC */ - -/* isolate the least set bit of a bitmap */ -#define least_bit(x) ((x) & -(x)) - -/* mask with all bits to left of least bit of x on */ -#define left_bits(x) ((x<<1) | -(x<<1)) - -/* mask with all bits to left of or equal to least bit of x on */ -#define same_or_left_bits(x) ((x) | -(x)) - - -/* ----------------------- Runtime Check Support ------------------------- */ - -/* - For security, the main invariant is that malloc/free/etc never - writes to a static address other than malloc_state, unless static - malloc_state itself has been corrupted, which cannot occur via - malloc (because of these checks). In essence this means that we - believe all pointers, sizes, maps etc held in malloc_state, but - check all of those linked or offsetted from other embedded data - structures. These checks are interspersed with main code in a way - that tends to minimize their run-time cost. - - When FOOTERS is defined, in addition to range checking, we also - verify footer fields of inuse chunks, which can be used guarantee - that the mstate controlling malloc/free is intact. This is a - streamlined version of the approach described by William Robertson - et al in "Run-time Detection of Heap-based Overflows" LISA'03 - http://www.usenix.org/events/lisa03/tech/robertson.html The footer - of an inuse chunk holds the xor of its mstate and a random seed, - that is checked upon calls to free() and realloc(). This is - (probablistically) unguessable from outside the program, but can be - computed by any code successfully malloc'ing any chunk, so does not - itself provide protection against code that has already broken - security through some other means. Unlike Robertson et al, we - always dynamically check addresses of all offset chunks (previous, - next, etc). This turns out to be cheaper than relying on hashes. -*/ - -#if !INSECURE -/* Check if address a is at least as high as any from MORECORE or MMAP */ -#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) -/* Check if address of next chunk n is higher than base chunk p */ -#define ok_next(p, n) ((char*)(p) < (char*)(n)) -/* Check if p has its cinuse bit on */ -#define ok_cinuse(p) cinuse(p) -/* Check if p has its pinuse bit on */ -#define ok_pinuse(p) pinuse(p) - -#else /* !INSECURE */ -#define ok_address(M, a) (1) -#define ok_next(b, n) (1) -#define ok_cinuse(p) (1) -#define ok_pinuse(p) (1) -#endif /* !INSECURE */ - -#if (FOOTERS && !INSECURE) -/* Check if (alleged) mstate m has expected magic field */ -#define ok_magic(M) ((M)->magic == mparams.magic) -#else /* (FOOTERS && !INSECURE) */ -#define ok_magic(M) (1) -#endif /* (FOOTERS && !INSECURE) */ - - -/* In gcc, use __builtin_expect to minimize impact of checks */ -#if !INSECURE -#if defined(__GNUC__) && __GNUC__ >= 3 -#define RTCHECK(e) __builtin_expect(e, 1) -#else /* GNUC */ -#define RTCHECK(e) (e) -#endif /* GNUC */ -#else /* !INSECURE */ -#define RTCHECK(e) (1) -#endif /* !INSECURE */ - -/* macros to set up inuse chunks with or without footers */ - -#if !FOOTERS - -#define mark_inuse_foot(M,p,s) - -/* Set cinuse bit and pinuse bit of next chunk */ -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) - -/* Set size, cinuse and pinuse bit of this chunk */ -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) - -#else /* FOOTERS */ - -/* Set foot of inuse chunk to be xor of mstate and seed */ -#define mark_inuse_foot(M,p,s)\ - (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) - -#define get_mstate_for(p)\ - ((mstate)(((mchunkptr)((char*)(p) +\ - (chunksize(p))))->prev_foot ^ mparams.magic)) - -#define set_inuse(M,p,s)\ - ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ - mark_inuse_foot(M,p,s)) - -#define set_inuse_and_pinuse(M,p,s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ - mark_inuse_foot(M,p,s)) - -#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ - ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ - mark_inuse_foot(M, p, s)) - -#endif /* !FOOTERS */ - -/* ---------------------------- setting mparams -------------------------- */ - -/* Initialize mparams */ -static int init_mparams(void) { - if (mparams.page_size == 0) { - size_t s; - - mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; - mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; -#if MORECORE_CONTIGUOUS - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; -#else /* MORECORE_CONTIGUOUS */ - mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; -#endif /* MORECORE_CONTIGUOUS */ - -#if (FOOTERS && !INSECURE) - { -#if USE_DEV_RANDOM - int fd; - unsigned char buf[sizeof(size_t)]; - /* Try to use /dev/urandom, else fall back on using time */ - if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && - read(fd, buf, sizeof(buf)) == sizeof(buf)) { - s = *((size_t *) buf); - close(fd); - } - else -#endif /* USE_DEV_RANDOM */ - s = (size_t)(time(0) ^ (size_t)0x55555555U); - - s |= (size_t)8U; /* ensure nonzero */ - s &= ~(size_t)7U; /* improve chances of fault for bad values */ - - } -#else /* (FOOTERS && !INSECURE) */ - s = (size_t)0x58585858U; -#endif /* (FOOTERS && !INSECURE) */ - ACQUIRE_MAGIC_INIT_LOCK(); - if (mparams.magic == 0) { - mparams.magic = s; - /* Set up lock for main malloc area */ - INITIAL_LOCK(&gm->mutex); - gm->mflags = mparams.default_mflags; - } - RELEASE_MAGIC_INIT_LOCK(); - -#if !defined(WIN32) && !defined(__OS2__) - mparams.page_size = malloc_getpagesize; - mparams.granularity = ((DEFAULT_GRANULARITY != 0)? - DEFAULT_GRANULARITY : mparams.page_size); -#elif defined (__OS2__) - /* if low-memory is used, os2munmap() would break - if it were anything other than 64k */ - mparams.page_size = 4096u; - mparams.granularity = 65536u; -#else /* WIN32 */ - { - SYSTEM_INFO system_info; - GetSystemInfo(&system_info); - mparams.page_size = system_info.dwPageSize; - mparams.granularity = system_info.dwAllocationGranularity; - } -#endif /* WIN32 */ - - /* Sanity-check configuration: - size_t must be unsigned and as wide as pointer type. - ints must be at least 4 bytes. - alignment must be at least 8. - Alignment, min chunk size, and page size must all be powers of 2. - */ - if ((sizeof(size_t) != sizeof(char*)) || - (MAX_SIZE_T < MIN_CHUNK_SIZE) || - (sizeof(int) < 4) || - (MALLOC_ALIGNMENT < (size_t)8U) || - ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || - ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || - ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || - ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) - ABORT; - } - return 0; -} - -/* support for mallopt */ -static int change_mparam(int param_number, int value) { - size_t val = (size_t)value; - init_mparams(); - switch(param_number) { - case M_TRIM_THRESHOLD: - mparams.trim_threshold = val; - return 1; - case M_GRANULARITY: - if (val >= mparams.page_size && ((val & (val-1)) == 0)) { - mparams.granularity = val; - return 1; - } - else - return 0; - case M_MMAP_THRESHOLD: - mparams.mmap_threshold = val; - return 1; - default: - return 0; - } -} - -#if DEBUG -/* ------------------------- Debugging Support --------------------------- */ - -/* Check properties of any chunk, whether free, inuse, mmapped etc */ -static void do_check_any_chunk(mstate m, mchunkptr p) { - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); -} - -/* Check properties of top chunk */ -static void do_check_top_chunk(mstate m, mchunkptr p) { - msegmentptr sp = segment_holding(m, (char*)p); - size_t sz = chunksize(p); - assert(sp != 0); - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); - assert(sz == m->topsize); - assert(sz > 0); - assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); - assert(pinuse(p)); - assert(!next_pinuse(p)); -} - -/* Check properties of (inuse) mmapped chunks */ -static void do_check_mmapped_chunk(mstate m, mchunkptr p) { - size_t sz = chunksize(p); - size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); - assert(is_mmapped(p)); - assert(use_mmap(m)); - assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); - assert(ok_address(m, p)); - assert(!is_small(sz)); - assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); - assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); - assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); -} - -/* Check properties of inuse chunks */ -static void do_check_inuse_chunk(mstate m, mchunkptr p) { - do_check_any_chunk(m, p); - assert(cinuse(p)); - assert(next_pinuse(p)); - /* If not pinuse and not mmapped, previous chunk has OK offset */ - assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); - if (is_mmapped(p)) - do_check_mmapped_chunk(m, p); -} - -/* Check properties of free chunks */ -static void do_check_free_chunk(mstate m, mchunkptr p) { - size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); - mchunkptr next = chunk_plus_offset(p, sz); - do_check_any_chunk(m, p); - assert(!cinuse(p)); - assert(!next_pinuse(p)); - assert (!is_mmapped(p)); - if (p != m->dv && p != m->top) { - if (sz >= MIN_CHUNK_SIZE) { - assert((sz & CHUNK_ALIGN_MASK) == 0); - assert(is_aligned(chunk2mem(p))); - assert(next->prev_foot == sz); - assert(pinuse(p)); - assert (next == m->top || cinuse(next)); - assert(p->fd->bk == p); - assert(p->bk->fd == p); - } - else /* markers are always of size SIZE_T_SIZE */ - assert(sz == SIZE_T_SIZE); - } -} - -/* Check properties of malloced chunks at the point they are malloced */ -static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); - do_check_inuse_chunk(m, p); - assert((sz & CHUNK_ALIGN_MASK) == 0); - assert(sz >= MIN_CHUNK_SIZE); - assert(sz >= s); - /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ - assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); - } -} - -/* Check a tree and its subtrees. */ -static void do_check_tree(mstate m, tchunkptr t) { - tchunkptr head = 0; - tchunkptr u = t; - bindex_t tindex = t->index; - size_t tsize = chunksize(t); - bindex_t idx; - compute_tree_index(tsize, idx); - assert(tindex == idx); - assert(tsize >= MIN_LARGE_SIZE); - assert(tsize >= minsize_for_tree_index(idx)); - assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); - - do { /* traverse through chain of same-sized nodes */ - do_check_any_chunk(m, ((mchunkptr)u)); - assert(u->index == tindex); - assert(chunksize(u) == tsize); - assert(!cinuse(u)); - assert(!next_pinuse(u)); - assert(u->fd->bk == u); - assert(u->bk->fd == u); - if (u->parent == 0) { - assert(u->child[0] == 0); - assert(u->child[1] == 0); - } - else { - assert(head == 0); /* only one node on chain has parent */ - head = u; - assert(u->parent != u); - assert (u->parent->child[0] == u || - u->parent->child[1] == u || - *((tbinptr*)(u->parent)) == u); - if (u->child[0] != 0) { - assert(u->child[0]->parent == u); - assert(u->child[0] != u); - do_check_tree(m, u->child[0]); - } - if (u->child[1] != 0) { - assert(u->child[1]->parent == u); - assert(u->child[1] != u); - do_check_tree(m, u->child[1]); - } - if (u->child[0] != 0 && u->child[1] != 0) { - assert(chunksize(u->child[0]) < chunksize(u->child[1])); - } - } - u = u->fd; - } while (u != t); - assert(head != 0); -} - -/* Check all the chunks in a treebin. */ -static void do_check_treebin(mstate m, bindex_t i) { - tbinptr* tb = treebin_at(m, i); - tchunkptr t = *tb; - int empty = (m->treemap & (1U << i)) == 0; - if (t == 0) - assert(empty); - if (!empty) - do_check_tree(m, t); -} - -/* Check all the chunks in a smallbin. */ -static void do_check_smallbin(mstate m, bindex_t i) { - sbinptr b = smallbin_at(m, i); - mchunkptr p = b->bk; - unsigned int empty = (m->smallmap & (1U << i)) == 0; - if (p == b) - assert(empty); - if (!empty) { - for (; p != b; p = p->bk) { - size_t size = chunksize(p); - mchunkptr q; - /* each chunk claims to be free */ - do_check_free_chunk(m, p); - /* chunk belongs in bin */ - assert(small_index(size) == i); - assert(p->bk == b || chunksize(p->bk) == chunksize(p)); - /* chunk is followed by an inuse chunk */ - q = next_chunk(p); - if (q->head != FENCEPOST_HEAD) - do_check_inuse_chunk(m, q); - } - } -} - -/* Find x in a bin. Used in other check functions. */ -static int bin_find(mstate m, mchunkptr x) { - size_t size = chunksize(x); - if (is_small(size)) { - bindex_t sidx = small_index(size); - sbinptr b = smallbin_at(m, sidx); - if (smallmap_is_marked(m, sidx)) { - mchunkptr p = b; - do { - if (p == x) - return 1; - } while ((p = p->fd) != b); - } - } - else { - bindex_t tidx; - compute_tree_index(size, tidx); - if (treemap_is_marked(m, tidx)) { - tchunkptr t = *treebin_at(m, tidx); - size_t sizebits = size << leftshift_for_tree_index(tidx); - while (t != 0 && chunksize(t) != size) { - t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; - sizebits <<= 1; - } - if (t != 0) { - tchunkptr u = t; - do { - if (u == (tchunkptr)x) - return 1; - } while ((u = u->fd) != t); - } - } - } - return 0; -} - -/* Traverse each chunk and check it; return total */ -static size_t traverse_and_check(mstate m) { - size_t sum = 0; - if (is_initialized(m)) { - msegmentptr s = &m->seg; - sum += m->topsize + TOP_FOOT_SIZE; - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - mchunkptr lastq = 0; - assert(pinuse(q)); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - sum += chunksize(q); - if (cinuse(q)) { - assert(!bin_find(m, q)); - do_check_inuse_chunk(m, q); - } - else { - assert(q == m->dv || bin_find(m, q)); - assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ - do_check_free_chunk(m, q); - } - lastq = q; - q = next_chunk(q); - } - s = s->next; - } - } - return sum; -} - -/* Check all properties of malloc_state. */ -static void do_check_malloc_state(mstate m) { - bindex_t i; - size_t total; - /* check bins */ - for (i = 0; i < NSMALLBINS; ++i) - do_check_smallbin(m, i); - for (i = 0; i < NTREEBINS; ++i) - do_check_treebin(m, i); - - if (m->dvsize != 0) { /* check dv chunk */ - do_check_any_chunk(m, m->dv); - assert(m->dvsize == chunksize(m->dv)); - assert(m->dvsize >= MIN_CHUNK_SIZE); - assert(bin_find(m, m->dv) == 0); - } - - if (m->top != 0) { /* check top chunk */ - do_check_top_chunk(m, m->top); - assert(m->topsize == chunksize(m->top)); - assert(m->topsize > 0); - assert(bin_find(m, m->top) == 0); - } - - total = traverse_and_check(m); - assert(total <= m->footprint); - assert(m->footprint <= m->max_footprint); -} -#endif /* DEBUG */ - -/* ----------------------------- statistics ------------------------------ */ - -#if !NO_MALLINFO -static struct mallinfo internal_mallinfo(mstate m) { - struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; - if (!PREACTION(m)) { - check_malloc_state(m); - if (is_initialized(m)) { - size_t nfree = SIZE_T_ONE; /* top always free */ - size_t mfree = m->topsize + TOP_FOOT_SIZE; - size_t sum = mfree; - msegmentptr s = &m->seg; - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - size_t sz = chunksize(q); - sum += sz; - if (!cinuse(q)) { - mfree += sz; - ++nfree; - } - q = next_chunk(q); - } - s = s->next; - } - - nm.arena = sum; - nm.ordblks = nfree; - nm.hblkhd = m->footprint - sum; - nm.usmblks = m->max_footprint; - nm.uordblks = m->footprint - mfree; - nm.fordblks = mfree; - nm.keepcost = m->topsize; - } - - POSTACTION(m); - } - return nm; -} -#endif /* !NO_MALLINFO */ - -static void internal_malloc_stats(mstate m) { - if (!PREACTION(m)) { - size_t maxfp = 0; - size_t fp = 0; - size_t used = 0; - check_malloc_state(m); - if (is_initialized(m)) { - msegmentptr s = &m->seg; - maxfp = m->max_footprint; - fp = m->footprint; - used = fp - (m->topsize + TOP_FOOT_SIZE); - - while (s != 0) { - mchunkptr q = align_as_chunk(s->base); - while (segment_holds(s, q) && - q != m->top && q->head != FENCEPOST_HEAD) { - if (!cinuse(q)) - used -= chunksize(q); - q = next_chunk(q); - } - s = s->next; - } - } - - fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); - fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); - fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); - - POSTACTION(m); - } -} - -/* ----------------------- Operations on smallbins ----------------------- */ - -/* - Various forms of linking and unlinking are defined as macros. Even - the ones for trees, which are very long but have very short typical - paths. This is ugly but reduces reliance on inlining support of - compilers. -*/ - -/* Link a free chunk into a smallbin */ -#define insert_small_chunk(M, P, S) {\ - bindex_t I = small_index(S);\ - mchunkptr B = smallbin_at(M, I);\ - mchunkptr F = B;\ - assert(S >= MIN_CHUNK_SIZE);\ - if (!smallmap_is_marked(M, I))\ - mark_smallmap(M, I);\ - else if (RTCHECK(ok_address(M, B->fd)))\ - F = B->fd;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - B->fd = P;\ - F->bk = P;\ - P->fd = F;\ - P->bk = B;\ -} - -/* Unlink a chunk from a smallbin */ -#define unlink_small_chunk(M, P, S) {\ - mchunkptr F = P->fd;\ - mchunkptr B = P->bk;\ - bindex_t I = small_index(S);\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (F == B)\ - clear_smallmap(M, I);\ - else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ - (B == smallbin_at(M,I) || ok_address(M, B)))) {\ - F->bk = B;\ - B->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Unlink the first chunk from a smallbin */ -#define unlink_first_small_chunk(M, B, P, I) {\ - mchunkptr F = P->fd;\ - assert(P != B);\ - assert(P != F);\ - assert(chunksize(P) == small_index2size(I));\ - if (B == F)\ - clear_smallmap(M, I);\ - else if (RTCHECK(ok_address(M, F))) {\ - B->fd = F;\ - F->bk = B;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ -} - -/* Replace dv node, binning the old one */ -/* Used only when dvsize known to be small */ -#define replace_dv(M, P, S) {\ - size_t DVS = M->dvsize;\ - if (DVS != 0) {\ - mchunkptr DV = M->dv;\ - assert(is_small(DVS));\ - insert_small_chunk(M, DV, DVS);\ - }\ - M->dvsize = S;\ - M->dv = P;\ -} - -/* ------------------------- Operations on trees ------------------------- */ - -/* Insert chunk into tree */ -#define insert_large_chunk(M, X, S) {\ - tbinptr* H;\ - bindex_t I;\ - compute_tree_index(S, I);\ - H = treebin_at(M, I);\ - X->index = I;\ - X->child[0] = X->child[1] = 0;\ - if (!treemap_is_marked(M, I)) {\ - mark_treemap(M, I);\ - *H = X;\ - X->parent = (tchunkptr)H;\ - X->fd = X->bk = X;\ - }\ - else {\ - tchunkptr T = *H;\ - size_t K = S << leftshift_for_tree_index(I);\ - for (;;) {\ - if (chunksize(T) != S) {\ - tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ - K <<= 1;\ - if (*C != 0)\ - T = *C;\ - else if (RTCHECK(ok_address(M, C))) {\ - *C = X;\ - X->parent = T;\ - X->fd = X->bk = X;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - else {\ - tchunkptr F = T->fd;\ - if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ - T->fd = F->bk = X;\ - X->fd = F;\ - X->bk = T;\ - X->parent = 0;\ - break;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - break;\ - }\ - }\ - }\ - }\ -} - -/* - Unlink steps: - - 1. If x is a chained node, unlink it from its same-sized fd/bk links - and choose its bk node as its replacement. - 2. If x was the last node of its size, but not a leaf node, it must - be replaced with a leaf node (not merely one with an open left or +#define compute_bit2idx(X, I)\ +{\ + unsigned int J;\ + __asm__("bsfl %1,%0\n\t" : "=r" (J) : "rm" (X));\ + I = (bindex_t)J;\ +} + +#else /* GNUC */ +#if USE_BUILTIN_FFS +#define compute_bit2idx(X, I) I = ffs(X)-1 + +#else /* USE_BUILTIN_FFS */ +#define compute_bit2idx(X, I)\ +{\ + unsigned int Y = X - 1;\ + unsigned int K = Y >> (16-4) & 16;\ + unsigned int N = K; Y >>= K;\ + N += K = Y >> (8-3) & 8; Y >>= K;\ + N += K = Y >> (4-2) & 4; Y >>= K;\ + N += K = Y >> (2-1) & 2; Y >>= K;\ + N += K = Y >> (1-0) & 1; Y >>= K;\ + I = (bindex_t)(N + Y);\ +} +#endif /* USE_BUILTIN_FFS */ +#endif /* GNUC */ + +/* isolate the least set bit of a bitmap */ +#define least_bit(x) ((x) & -(x)) + +/* mask with all bits to left of least bit of x on */ +#define left_bits(x) ((x<<1) | -(x<<1)) + +/* mask with all bits to left of or equal to least bit of x on */ +#define same_or_left_bits(x) ((x) | -(x)) + + +/* ----------------------- Runtime Check Support ------------------------- */ + +/* + For security, the main invariant is that malloc/free/etc never + writes to a static address other than malloc_state, unless static + malloc_state itself has been corrupted, which cannot occur via + malloc (because of these checks). In essence this means that we + believe all pointers, sizes, maps etc held in malloc_state, but + check all of those linked or offsetted from other embedded data + structures. These checks are interspersed with main code in a way + that tends to minimize their run-time cost. + + When FOOTERS is defined, in addition to range checking, we also + verify footer fields of inuse chunks, which can be used guarantee + that the mstate controlling malloc/free is intact. This is a + streamlined version of the approach described by William Robertson + et al in "Run-time Detection of Heap-based Overflows" LISA'03 + http://www.usenix.org/events/lisa03/tech/robertson.html The footer + of an inuse chunk holds the xor of its mstate and a random seed, + that is checked upon calls to free() and realloc(). This is + (probablistically) unguessable from outside the program, but can be + computed by any code successfully malloc'ing any chunk, so does not + itself provide protection against code that has already broken + security through some other means. Unlike Robertson et al, we + always dynamically check addresses of all offset chunks (previous, + next, etc). This turns out to be cheaper than relying on hashes. +*/ + +#if !INSECURE +/* Check if address a is at least as high as any from MORECORE or MMAP */ +#define ok_address(M, a) ((char*)(a) >= (M)->least_addr) +/* Check if address of next chunk n is higher than base chunk p */ +#define ok_next(p, n) ((char*)(p) < (char*)(n)) +/* Check if p has its cinuse bit on */ +#define ok_cinuse(p) cinuse(p) +/* Check if p has its pinuse bit on */ +#define ok_pinuse(p) pinuse(p) + +#else /* !INSECURE */ +#define ok_address(M, a) (1) +#define ok_next(b, n) (1) +#define ok_cinuse(p) (1) +#define ok_pinuse(p) (1) +#endif /* !INSECURE */ + +#if (FOOTERS && !INSECURE) +/* Check if (alleged) mstate m has expected magic field */ +#define ok_magic(M) ((M)->magic == mparams.magic) +#else /* (FOOTERS && !INSECURE) */ +#define ok_magic(M) (1) +#endif /* (FOOTERS && !INSECURE) */ + + +/* In gcc, use __builtin_expect to minimize impact of checks */ +#if !INSECURE +#if defined(__GNUC__) && __GNUC__ >= 3 +#define RTCHECK(e) __builtin_expect(e, 1) +#else /* GNUC */ +#define RTCHECK(e) (e) +#endif /* GNUC */ +#else /* !INSECURE */ +#define RTCHECK(e) (1) +#endif /* !INSECURE */ + +/* macros to set up inuse chunks with or without footers */ + +#if !FOOTERS + +#define mark_inuse_foot(M,p,s) + +/* Set cinuse bit and pinuse bit of next chunk */ +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set cinuse and pinuse of this chunk and pinuse of next chunk */ +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + ((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT) + +/* Set size, cinuse and pinuse bit of this chunk */ +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT)) + +#else /* FOOTERS */ + +/* Set foot of inuse chunk to be xor of mstate and seed */ +#define mark_inuse_foot(M,p,s)\ + (((mchunkptr)((char*)(p) + (s)))->prev_foot = ((size_t)(M) ^ mparams.magic)) + +#define get_mstate_for(p)\ + ((mstate)(((mchunkptr)((char*)(p) +\ + (chunksize(p))))->prev_foot ^ mparams.magic)) + +#define set_inuse(M,p,s)\ + ((p)->head = (((p)->head & PINUSE_BIT)|s|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT), \ + mark_inuse_foot(M,p,s)) + +#define set_inuse_and_pinuse(M,p,s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + (((mchunkptr)(((char*)(p)) + (s)))->head |= PINUSE_BIT),\ + mark_inuse_foot(M,p,s)) + +#define set_size_and_pinuse_of_inuse_chunk(M, p, s)\ + ((p)->head = (s|PINUSE_BIT|CINUSE_BIT),\ + mark_inuse_foot(M, p, s)) + +#endif /* !FOOTERS */ + +/* ---------------------------- setting mparams -------------------------- */ + +/* Initialize mparams */ +static int init_mparams(void) { + if (mparams.page_size == 0) { + size_t s; + + mparams.mmap_threshold = DEFAULT_MMAP_THRESHOLD; + mparams.trim_threshold = DEFAULT_TRIM_THRESHOLD; +#if MORECORE_CONTIGUOUS + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT; +#else /* MORECORE_CONTIGUOUS */ + mparams.default_mflags = USE_LOCK_BIT|USE_MMAP_BIT|USE_NONCONTIGUOUS_BIT; +#endif /* MORECORE_CONTIGUOUS */ + +#if (FOOTERS && !INSECURE) + { +#if USE_DEV_RANDOM + int fd; + unsigned char buf[sizeof(size_t)]; + /* Try to use /dev/urandom, else fall back on using time */ + if ((fd = open("/dev/urandom", O_RDONLY)) >= 0 && + read(fd, buf, sizeof(buf)) == sizeof(buf)) { + s = *((size_t *) buf); + close(fd); + } + else +#endif /* USE_DEV_RANDOM */ + s = (size_t)(time(0) ^ (size_t)0x55555555U); + + s |= (size_t)8U; /* ensure nonzero */ + s &= ~(size_t)7U; /* improve chances of fault for bad values */ + + } +#else /* (FOOTERS && !INSECURE) */ + s = (size_t)0x58585858U; +#endif /* (FOOTERS && !INSECURE) */ + ACQUIRE_MAGIC_INIT_LOCK(); + if (mparams.magic == 0) { + mparams.magic = s; + /* Set up lock for main malloc area */ + INITIAL_LOCK(&gm->mutex); + gm->mflags = mparams.default_mflags; + } + RELEASE_MAGIC_INIT_LOCK(); + +#if !defined(WIN32) && !defined(__OS2__) + mparams.page_size = malloc_getpagesize; + mparams.granularity = ((DEFAULT_GRANULARITY != 0)? + DEFAULT_GRANULARITY : mparams.page_size); +#elif defined (__OS2__) + /* if low-memory is used, os2munmap() would break + if it were anything other than 64k */ + mparams.page_size = 4096u; + mparams.granularity = 65536u; +#else /* WIN32 */ + { + SYSTEM_INFO system_info; + GetSystemInfo(&system_info); + mparams.page_size = system_info.dwPageSize; + mparams.granularity = system_info.dwAllocationGranularity; + } +#endif /* WIN32 */ + + /* Sanity-check configuration: + size_t must be unsigned and as wide as pointer type. + ints must be at least 4 bytes. + alignment must be at least 8. + Alignment, min chunk size, and page size must all be powers of 2. + */ + if ((sizeof(size_t) != sizeof(char*)) || + (MAX_SIZE_T < MIN_CHUNK_SIZE) || + (sizeof(int) < 4) || + (MALLOC_ALIGNMENT < (size_t)8U) || + ((MALLOC_ALIGNMENT & (MALLOC_ALIGNMENT-SIZE_T_ONE)) != 0) || + ((MCHUNK_SIZE & (MCHUNK_SIZE-SIZE_T_ONE)) != 0) || + ((mparams.granularity & (mparams.granularity-SIZE_T_ONE)) != 0) || + ((mparams.page_size & (mparams.page_size-SIZE_T_ONE)) != 0)) + ABORT; + } + return 0; +} + +/* support for mallopt */ +static int change_mparam(int param_number, int value) { + size_t val = (size_t)value; + init_mparams(); + switch(param_number) { + case M_TRIM_THRESHOLD: + mparams.trim_threshold = val; + return 1; + case M_GRANULARITY: + if (val >= mparams.page_size && ((val & (val-1)) == 0)) { + mparams.granularity = val; + return 1; + } + else + return 0; + case M_MMAP_THRESHOLD: + mparams.mmap_threshold = val; + return 1; + default: + return 0; + } +} + +#if DEBUG +/* ------------------------- Debugging Support --------------------------- */ + +/* Check properties of any chunk, whether free, inuse, mmapped etc */ +static void do_check_any_chunk(mstate m, mchunkptr p) { + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); +} + +/* Check properties of top chunk */ +static void do_check_top_chunk(mstate m, mchunkptr p) { + msegmentptr sp = segment_holding(m, (char*)p); + size_t sz = chunksize(p); + assert(sp != 0); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(sz == m->topsize); + assert(sz > 0); + assert(sz == ((sp->base + sp->size) - (char*)p) - TOP_FOOT_SIZE); + assert(pinuse(p)); + assert(!next_pinuse(p)); +} + +/* Check properties of (inuse) mmapped chunks */ +static void do_check_mmapped_chunk(mstate m, mchunkptr p) { + size_t sz = chunksize(p); + size_t len = (sz + (p->prev_foot & ~IS_MMAPPED_BIT) + MMAP_FOOT_PAD); + assert(is_mmapped(p)); + assert(use_mmap(m)); + assert((is_aligned(chunk2mem(p))) || (p->head == FENCEPOST_HEAD)); + assert(ok_address(m, p)); + assert(!is_small(sz)); + assert((len & (mparams.page_size-SIZE_T_ONE)) == 0); + assert(chunk_plus_offset(p, sz)->head == FENCEPOST_HEAD); + assert(chunk_plus_offset(p, sz+SIZE_T_SIZE)->head == 0); +} + +/* Check properties of inuse chunks */ +static void do_check_inuse_chunk(mstate m, mchunkptr p) { + do_check_any_chunk(m, p); + assert(cinuse(p)); + assert(next_pinuse(p)); + /* If not pinuse and not mmapped, previous chunk has OK offset */ + assert(is_mmapped(p) || pinuse(p) || next_chunk(prev_chunk(p)) == p); + if (is_mmapped(p)) + do_check_mmapped_chunk(m, p); +} + +/* Check properties of free chunks */ +static void do_check_free_chunk(mstate m, mchunkptr p) { + size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); + mchunkptr next = chunk_plus_offset(p, sz); + do_check_any_chunk(m, p); + assert(!cinuse(p)); + assert(!next_pinuse(p)); + assert (!is_mmapped(p)); + if (p != m->dv && p != m->top) { + if (sz >= MIN_CHUNK_SIZE) { + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(is_aligned(chunk2mem(p))); + assert(next->prev_foot == sz); + assert(pinuse(p)); + assert (next == m->top || cinuse(next)); + assert(p->fd->bk == p); + assert(p->bk->fd == p); + } + else /* markers are always of size SIZE_T_SIZE */ + assert(sz == SIZE_T_SIZE); + } +} + +/* Check properties of malloced chunks at the point they are malloced */ +static void do_check_malloced_chunk(mstate m, void* mem, size_t s) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + size_t sz = p->head & ~(PINUSE_BIT|CINUSE_BIT); + do_check_inuse_chunk(m, p); + assert((sz & CHUNK_ALIGN_MASK) == 0); + assert(sz >= MIN_CHUNK_SIZE); + assert(sz >= s); + /* unless mmapped, size is less than MIN_CHUNK_SIZE more than request */ + assert(is_mmapped(p) || sz < (s + MIN_CHUNK_SIZE)); + } +} + +/* Check a tree and its subtrees. */ +static void do_check_tree(mstate m, tchunkptr t) { + tchunkptr head = 0; + tchunkptr u = t; + bindex_t tindex = t->index; + size_t tsize = chunksize(t); + bindex_t idx; + compute_tree_index(tsize, idx); + assert(tindex == idx); + assert(tsize >= MIN_LARGE_SIZE); + assert(tsize >= minsize_for_tree_index(idx)); + assert((idx == NTREEBINS-1) || (tsize < minsize_for_tree_index((idx+1)))); + + do { /* traverse through chain of same-sized nodes */ + do_check_any_chunk(m, ((mchunkptr)u)); + assert(u->index == tindex); + assert(chunksize(u) == tsize); + assert(!cinuse(u)); + assert(!next_pinuse(u)); + assert(u->fd->bk == u); + assert(u->bk->fd == u); + if (u->parent == 0) { + assert(u->child[0] == 0); + assert(u->child[1] == 0); + } + else { + assert(head == 0); /* only one node on chain has parent */ + head = u; + assert(u->parent != u); + assert (u->parent->child[0] == u || + u->parent->child[1] == u || + *((tbinptr*)(u->parent)) == u); + if (u->child[0] != 0) { + assert(u->child[0]->parent == u); + assert(u->child[0] != u); + do_check_tree(m, u->child[0]); + } + if (u->child[1] != 0) { + assert(u->child[1]->parent == u); + assert(u->child[1] != u); + do_check_tree(m, u->child[1]); + } + if (u->child[0] != 0 && u->child[1] != 0) { + assert(chunksize(u->child[0]) < chunksize(u->child[1])); + } + } + u = u->fd; + } while (u != t); + assert(head != 0); +} + +/* Check all the chunks in a treebin. */ +static void do_check_treebin(mstate m, bindex_t i) { + tbinptr* tb = treebin_at(m, i); + tchunkptr t = *tb; + int empty = (m->treemap & (1U << i)) == 0; + if (t == 0) + assert(empty); + if (!empty) + do_check_tree(m, t); +} + +/* Check all the chunks in a smallbin. */ +static void do_check_smallbin(mstate m, bindex_t i) { + sbinptr b = smallbin_at(m, i); + mchunkptr p = b->bk; + unsigned int empty = (m->smallmap & (1U << i)) == 0; + if (p == b) + assert(empty); + if (!empty) { + for (; p != b; p = p->bk) { + size_t size = chunksize(p); + mchunkptr q; + /* each chunk claims to be free */ + do_check_free_chunk(m, p); + /* chunk belongs in bin */ + assert(small_index(size) == i); + assert(p->bk == b || chunksize(p->bk) == chunksize(p)); + /* chunk is followed by an inuse chunk */ + q = next_chunk(p); + if (q->head != FENCEPOST_HEAD) + do_check_inuse_chunk(m, q); + } + } +} + +/* Find x in a bin. Used in other check functions. */ +static int bin_find(mstate m, mchunkptr x) { + size_t size = chunksize(x); + if (is_small(size)) { + bindex_t sidx = small_index(size); + sbinptr b = smallbin_at(m, sidx); + if (smallmap_is_marked(m, sidx)) { + mchunkptr p = b; + do { + if (p == x) + return 1; + } while ((p = p->fd) != b); + } + } + else { + bindex_t tidx; + compute_tree_index(size, tidx); + if (treemap_is_marked(m, tidx)) { + tchunkptr t = *treebin_at(m, tidx); + size_t sizebits = size << leftshift_for_tree_index(tidx); + while (t != 0 && chunksize(t) != size) { + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + sizebits <<= 1; + } + if (t != 0) { + tchunkptr u = t; + do { + if (u == (tchunkptr)x) + return 1; + } while ((u = u->fd) != t); + } + } + } + return 0; +} + +/* Traverse each chunk and check it; return total */ +static size_t traverse_and_check(mstate m) { + size_t sum = 0; + if (is_initialized(m)) { + msegmentptr s = &m->seg; + sum += m->topsize + TOP_FOOT_SIZE; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + mchunkptr lastq = 0; + assert(pinuse(q)); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + sum += chunksize(q); + if (cinuse(q)) { + assert(!bin_find(m, q)); + do_check_inuse_chunk(m, q); + } + else { + assert(q == m->dv || bin_find(m, q)); + assert(lastq == 0 || cinuse(lastq)); /* Not 2 consecutive free */ + do_check_free_chunk(m, q); + } + lastq = q; + q = next_chunk(q); + } + s = s->next; + } + } + return sum; +} + +/* Check all properties of malloc_state. */ +static void do_check_malloc_state(mstate m) { + bindex_t i; + size_t total; + /* check bins */ + for (i = 0; i < NSMALLBINS; ++i) + do_check_smallbin(m, i); + for (i = 0; i < NTREEBINS; ++i) + do_check_treebin(m, i); + + if (m->dvsize != 0) { /* check dv chunk */ + do_check_any_chunk(m, m->dv); + assert(m->dvsize == chunksize(m->dv)); + assert(m->dvsize >= MIN_CHUNK_SIZE); + assert(bin_find(m, m->dv) == 0); + } + + if (m->top != 0) { /* check top chunk */ + do_check_top_chunk(m, m->top); + assert(m->topsize == chunksize(m->top)); + assert(m->topsize > 0); + assert(bin_find(m, m->top) == 0); + } + + total = traverse_and_check(m); + assert(total <= m->footprint); + assert(m->footprint <= m->max_footprint); +} +#endif /* DEBUG */ + +/* ----------------------------- statistics ------------------------------ */ + +#if !NO_MALLINFO +static struct mallinfo internal_mallinfo(mstate m) { + struct mallinfo nm = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; + if (!PREACTION(m)) { + check_malloc_state(m); + if (is_initialized(m)) { + size_t nfree = SIZE_T_ONE; /* top always free */ + size_t mfree = m->topsize + TOP_FOOT_SIZE; + size_t sum = mfree; + msegmentptr s = &m->seg; + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + size_t sz = chunksize(q); + sum += sz; + if (!cinuse(q)) { + mfree += sz; + ++nfree; + } + q = next_chunk(q); + } + s = s->next; + } + + nm.arena = sum; + nm.ordblks = nfree; + nm.hblkhd = m->footprint - sum; + nm.usmblks = m->max_footprint; + nm.uordblks = m->footprint - mfree; + nm.fordblks = mfree; + nm.keepcost = m->topsize; + } + + POSTACTION(m); + } + return nm; +} +#endif /* !NO_MALLINFO */ + +static void internal_malloc_stats(mstate m) { + if (!PREACTION(m)) { + size_t maxfp = 0; + size_t fp = 0; + size_t used = 0; + check_malloc_state(m); + if (is_initialized(m)) { + msegmentptr s = &m->seg; + maxfp = m->max_footprint; + fp = m->footprint; + used = fp - (m->topsize + TOP_FOOT_SIZE); + + while (s != 0) { + mchunkptr q = align_as_chunk(s->base); + while (segment_holds(s, q) && + q != m->top && q->head != FENCEPOST_HEAD) { + if (!cinuse(q)) + used -= chunksize(q); + q = next_chunk(q); + } + s = s->next; + } + } + + fprintf(stderr, "max system bytes = %10lu\n", (unsigned long)(maxfp)); + fprintf(stderr, "system bytes = %10lu\n", (unsigned long)(fp)); + fprintf(stderr, "in use bytes = %10lu\n", (unsigned long)(used)); + + POSTACTION(m); + } +} + +/* ----------------------- Operations on smallbins ----------------------- */ + +/* + Various forms of linking and unlinking are defined as macros. Even + the ones for trees, which are very long but have very short typical + paths. This is ugly but reduces reliance on inlining support of + compilers. +*/ + +/* Link a free chunk into a smallbin */ +#define insert_small_chunk(M, P, S) {\ + bindex_t I = small_index(S);\ + mchunkptr B = smallbin_at(M, I);\ + mchunkptr F = B;\ + assert(S >= MIN_CHUNK_SIZE);\ + if (!smallmap_is_marked(M, I))\ + mark_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, B->fd)))\ + F = B->fd;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + B->fd = P;\ + F->bk = P;\ + P->fd = F;\ + P->bk = B;\ +} + +/* Unlink a chunk from a smallbin */ +#define unlink_small_chunk(M, P, S) {\ + mchunkptr F = P->fd;\ + mchunkptr B = P->bk;\ + bindex_t I = small_index(S);\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (F == B)\ + clear_smallmap(M, I);\ + else if (RTCHECK((F == smallbin_at(M,I) || ok_address(M, F)) &&\ + (B == smallbin_at(M,I) || ok_address(M, B)))) {\ + F->bk = B;\ + B->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Unlink the first chunk from a smallbin */ +#define unlink_first_small_chunk(M, B, P, I) {\ + mchunkptr F = P->fd;\ + assert(P != B);\ + assert(P != F);\ + assert(chunksize(P) == small_index2size(I));\ + if (B == F)\ + clear_smallmap(M, I);\ + else if (RTCHECK(ok_address(M, F))) {\ + B->fd = F;\ + F->bk = B;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ +} + +/* Replace dv node, binning the old one */ +/* Used only when dvsize known to be small */ +#define replace_dv(M, P, S) {\ + size_t DVS = M->dvsize;\ + if (DVS != 0) {\ + mchunkptr DV = M->dv;\ + assert(is_small(DVS));\ + insert_small_chunk(M, DV, DVS);\ + }\ + M->dvsize = S;\ + M->dv = P;\ +} + +/* ------------------------- Operations on trees ------------------------- */ + +/* Insert chunk into tree */ +#define insert_large_chunk(M, X, S) {\ + tbinptr* H;\ + bindex_t I;\ + compute_tree_index(S, I);\ + H = treebin_at(M, I);\ + X->index = I;\ + X->child[0] = X->child[1] = 0;\ + if (!treemap_is_marked(M, I)) {\ + mark_treemap(M, I);\ + *H = X;\ + X->parent = (tchunkptr)H;\ + X->fd = X->bk = X;\ + }\ + else {\ + tchunkptr T = *H;\ + size_t K = S << leftshift_for_tree_index(I);\ + for (;;) {\ + if (chunksize(T) != S) {\ + tchunkptr* C = &(T->child[(K >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]);\ + K <<= 1;\ + if (*C != 0)\ + T = *C;\ + else if (RTCHECK(ok_address(M, C))) {\ + *C = X;\ + X->parent = T;\ + X->fd = X->bk = X;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + else {\ + tchunkptr F = T->fd;\ + if (RTCHECK(ok_address(M, T) && ok_address(M, F))) {\ + T->fd = F->bk = X;\ + X->fd = F;\ + X->bk = T;\ + X->parent = 0;\ + break;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + break;\ + }\ + }\ + }\ + }\ +} + +/* + Unlink steps: + + 1. If x is a chained node, unlink it from its same-sized fd/bk links + and choose its bk node as its replacement. + 2. If x was the last node of its size, but not a leaf node, it must + be replaced with a leaf node (not merely one with an open left or right), to make sure that lefts and rights of descendants correspond properly to bit masks. We use the rightmost descendant - of x. We could use any other leaf, but this is easy to locate and - tends to counteract removal of leftmosts elsewhere, and so keeps - paths shorter than minimally guaranteed. This doesn't loop much - because on average a node in a tree is near the bottom. - 3. If x is the base of a chain (i.e., has parent links) relink - x's parent and children to x's replacement (or null if none). -*/ - -#define unlink_large_chunk(M, X) {\ - tchunkptr XP = X->parent;\ - tchunkptr R;\ - if (X->bk != X) {\ - tchunkptr F = X->fd;\ - R = X->bk;\ - if (RTCHECK(ok_address(M, F))) {\ - F->bk = R;\ - R->fd = F;\ - }\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else {\ - tchunkptr* RP;\ - if (((R = *(RP = &(X->child[1]))) != 0) ||\ - ((R = *(RP = &(X->child[0]))) != 0)) {\ - tchunkptr* CP;\ - while ((*(CP = &(R->child[1])) != 0) ||\ - (*(CP = &(R->child[0])) != 0)) {\ - R = *(RP = CP);\ - }\ - if (RTCHECK(ok_address(M, RP)))\ - *RP = 0;\ - else {\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - }\ - if (XP != 0) {\ - tbinptr* H = treebin_at(M, X->index);\ - if (X == *H) {\ - if ((*H = R) == 0) \ - clear_treemap(M, X->index);\ - }\ - else if (RTCHECK(ok_address(M, XP))) {\ - if (XP->child[0] == X) \ - XP->child[0] = R;\ - else \ - XP->child[1] = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - if (R != 0) {\ - if (RTCHECK(ok_address(M, R))) {\ - tchunkptr C0, C1;\ - R->parent = XP;\ - if ((C0 = X->child[0]) != 0) {\ - if (RTCHECK(ok_address(M, C0))) {\ - R->child[0] = C0;\ - C0->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - if ((C1 = X->child[1]) != 0) {\ - if (RTCHECK(ok_address(M, C1))) {\ - R->child[1] = C1;\ - C1->parent = R;\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ - else\ - CORRUPTION_ERROR_ACTION(M);\ - }\ - }\ -} - -/* Relays to large vs small bin operations */ - -#define insert_chunk(M, P, S)\ - if (is_small(S)) insert_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } - -#define unlink_chunk(M, P, S)\ - if (is_small(S)) unlink_small_chunk(M, P, S)\ - else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } - - -/* Relays to internal calls to malloc/free from realloc, memalign etc */ - -#if ONLY_MSPACES -#define internal_malloc(m, b) mspace_malloc(m, b) -#define internal_free(m, mem) mspace_free(m,mem); -#else /* ONLY_MSPACES */ -#if MSPACES -#define internal_malloc(m, b)\ - (m == gm)? dlmalloc(b) : mspace_malloc(m, b) -#define internal_free(m, mem)\ - if (m == gm) dlfree(mem); else mspace_free(m,mem); -#else /* MSPACES */ -#define internal_malloc(m, b) dlmalloc(b) -#define internal_free(m, mem) dlfree(mem) -#endif /* MSPACES */ -#endif /* ONLY_MSPACES */ - -/* ----------------------- Direct-mmapping chunks ----------------------- */ - -/* - Directly mmapped chunks are set up with an offset to the start of - the mmapped region stored in the prev_foot field of the chunk. This - allows reconstruction of the required argument to MUNMAP when freed, - and also allows adjustment of the returned chunk to meet alignment - requirements (especially in memalign). There is also enough space - allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain - the PINUSE bit so frees can be checked. -*/ - -/* Malloc using mmap */ -static void* mmap_alloc(mstate m, size_t nb) { - size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - if (mmsize > nb) { /* Check for wrap around 0 */ - char* mm = (char*)(DIRECT_MMAP(mmsize)); - if (mm != CMFAIL) { - size_t offset = align_offset(chunk2mem(mm)); - size_t psize = mmsize - offset - MMAP_FOOT_PAD; - mchunkptr p = (mchunkptr)(mm + offset); - p->prev_foot = offset | IS_MMAPPED_BIT; - (p)->head = (psize|CINUSE_BIT); - mark_inuse_foot(m, p, psize); - chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; - - if (mm < m->least_addr) - m->least_addr = mm; - if ((m->footprint += mmsize) > m->max_footprint) - m->max_footprint = m->footprint; - assert(is_aligned(chunk2mem(p))); - check_mmapped_chunk(m, p); - return chunk2mem(p); - } - } - return 0; -} - -/* Realloc using mmap */ -static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { - size_t oldsize = chunksize(oldp); - if (is_small(nb)) /* Can't shrink mmap regions below small size */ - return 0; - /* Keep old chunk if big enough but not too big */ - if (oldsize >= nb + SIZE_T_SIZE && - (oldsize - nb) <= (mparams.granularity << 1)) - return oldp; - else { - size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; - size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; - size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES + - CHUNK_ALIGN_MASK); - char* cp = (char*)CALL_MREMAP((char*)oldp - offset, - oldmmsize, newmmsize, 1); - if (cp != CMFAIL) { - mchunkptr newp = (mchunkptr)(cp + offset); - size_t psize = newmmsize - offset - MMAP_FOOT_PAD; - newp->head = (psize|CINUSE_BIT); - mark_inuse_foot(m, newp, psize); - chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; - chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; - - if (cp < m->least_addr) - m->least_addr = cp; - if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) - m->max_footprint = m->footprint; - check_mmapped_chunk(m, newp); - return newp; - } - } - return 0; -} - -/* -------------------------- mspace management -------------------------- */ - -/* Initialize top chunk and its size */ -static void init_top(mstate m, mchunkptr p, size_t psize) { - /* Ensure alignment */ - size_t offset = align_offset(chunk2mem(p)); - p = (mchunkptr)((char*)p + offset); - psize -= offset; - - m->top = p; - m->topsize = psize; - p->head = psize | PINUSE_BIT; - /* set size of fake trailing chunk holding overhead space only once */ - chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; - m->trim_check = mparams.trim_threshold; /* reset on each update */ -} - -/* Initialize bins for a new mstate that is otherwise zeroed out */ -static void init_bins(mstate m) { - /* Establish circular links for smallbins */ - bindex_t i; - for (i = 0; i < NSMALLBINS; ++i) { - sbinptr bin = smallbin_at(m,i); - bin->fd = bin->bk = bin; - } -} - -#if PROCEED_ON_ERROR - -/* default corruption action */ -static void reset_on_error(mstate m) { - int i; - ++malloc_corruption_error_count; - /* Reinitialize fields to forget about all memory */ - m->smallbins = m->treebins = 0; - m->dvsize = m->topsize = 0; - m->seg.base = 0; - m->seg.size = 0; - m->seg.next = 0; - m->top = m->dv = 0; - for (i = 0; i < NTREEBINS; ++i) - *treebin_at(m, i) = 0; - init_bins(m); -} -#endif /* PROCEED_ON_ERROR */ - -/* Allocate chunk and prepend remainder with chunk in successor base. */ -static void* prepend_alloc(mstate m, char* newbase, char* oldbase, - size_t nb) { - mchunkptr p = align_as_chunk(newbase); - mchunkptr oldfirst = align_as_chunk(oldbase); - size_t psize = (char*)oldfirst - (char*)p; - mchunkptr q = chunk_plus_offset(p, nb); - size_t qsize = psize - nb; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - - assert((char*)oldfirst > (char*)q); - assert(pinuse(oldfirst)); - assert(qsize >= MIN_CHUNK_SIZE); - - /* consolidate remainder with first chunk of old base */ - if (oldfirst == m->top) { - size_t tsize = m->topsize += qsize; - m->top = q; - q->head = tsize | PINUSE_BIT; - check_top_chunk(m, q); - } - else if (oldfirst == m->dv) { - size_t dsize = m->dvsize += qsize; - m->dv = q; - set_size_and_pinuse_of_free_chunk(q, dsize); - } - else { - if (!cinuse(oldfirst)) { - size_t nsize = chunksize(oldfirst); - unlink_chunk(m, oldfirst, nsize); - oldfirst = chunk_plus_offset(oldfirst, nsize); - qsize += nsize; - } - set_free_with_pinuse(q, qsize, oldfirst); - insert_chunk(m, q, qsize); - check_free_chunk(m, q); - } - - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); -} - - -/* Add a segment to hold a new noncontiguous region */ -static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { - /* Determine locations and sizes of segment, fenceposts, old top */ - char* old_top = (char*)m->top; - msegmentptr oldsp = segment_holding(m, old_top); - char* old_end = oldsp->base + oldsp->size; - size_t ssize = pad_request(sizeof(struct malloc_segment)); - char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); - size_t offset = align_offset(chunk2mem(rawsp)); - char* asp = rawsp + offset; - char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; - mchunkptr sp = (mchunkptr)csp; - msegmentptr ss = (msegmentptr)(chunk2mem(sp)); - mchunkptr tnext = chunk_plus_offset(sp, ssize); - mchunkptr p = tnext; - int nfences = 0; - - /* reset top to new space */ - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - - /* Set up segment record */ - assert(is_aligned(ss)); - set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); - *ss = m->seg; /* Push current record */ - m->seg.base = tbase; - m->seg.size = tsize; + of x. We could use any other leaf, but this is easy to locate and + tends to counteract removal of leftmosts elsewhere, and so keeps + paths shorter than minimally guaranteed. This doesn't loop much + because on average a node in a tree is near the bottom. + 3. If x is the base of a chain (i.e., has parent links) relink + x's parent and children to x's replacement (or null if none). +*/ + +#define unlink_large_chunk(M, X) {\ + tchunkptr XP = X->parent;\ + tchunkptr R;\ + if (X->bk != X) {\ + tchunkptr F = X->fd;\ + R = X->bk;\ + if (RTCHECK(ok_address(M, F))) {\ + F->bk = R;\ + R->fd = F;\ + }\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else {\ + tchunkptr* RP;\ + if (((R = *(RP = &(X->child[1]))) != 0) ||\ + ((R = *(RP = &(X->child[0]))) != 0)) {\ + tchunkptr* CP;\ + while ((*(CP = &(R->child[1])) != 0) ||\ + (*(CP = &(R->child[0])) != 0)) {\ + R = *(RP = CP);\ + }\ + if (RTCHECK(ok_address(M, RP)))\ + *RP = 0;\ + else {\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + }\ + if (XP != 0) {\ + tbinptr* H = treebin_at(M, X->index);\ + if (X == *H) {\ + if ((*H = R) == 0) \ + clear_treemap(M, X->index);\ + }\ + else if (RTCHECK(ok_address(M, XP))) {\ + if (XP->child[0] == X) \ + XP->child[0] = R;\ + else \ + XP->child[1] = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + if (R != 0) {\ + if (RTCHECK(ok_address(M, R))) {\ + tchunkptr C0, C1;\ + R->parent = XP;\ + if ((C0 = X->child[0]) != 0) {\ + if (RTCHECK(ok_address(M, C0))) {\ + R->child[0] = C0;\ + C0->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + if ((C1 = X->child[1]) != 0) {\ + if (RTCHECK(ok_address(M, C1))) {\ + R->child[1] = C1;\ + C1->parent = R;\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ + else\ + CORRUPTION_ERROR_ACTION(M);\ + }\ + }\ +} + +/* Relays to large vs small bin operations */ + +#define insert_chunk(M, P, S)\ + if (is_small(S)) insert_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); insert_large_chunk(M, TP, S); } + +#define unlink_chunk(M, P, S)\ + if (is_small(S)) unlink_small_chunk(M, P, S)\ + else { tchunkptr TP = (tchunkptr)(P); unlink_large_chunk(M, TP); } + + +/* Relays to internal calls to malloc/free from realloc, memalign etc */ + +#if ONLY_MSPACES +#define internal_malloc(m, b) mspace_malloc(m, b) +#define internal_free(m, mem) mspace_free(m,mem); +#else /* ONLY_MSPACES */ +#if MSPACES +#define internal_malloc(m, b)\ + (m == gm)? dlmalloc(b) : mspace_malloc(m, b) +#define internal_free(m, mem)\ + if (m == gm) dlfree(mem); else mspace_free(m,mem); +#else /* MSPACES */ +#define internal_malloc(m, b) dlmalloc(b) +#define internal_free(m, mem) dlfree(mem) +#endif /* MSPACES */ +#endif /* ONLY_MSPACES */ + +/* ----------------------- Direct-mmapping chunks ----------------------- */ + +/* + Directly mmapped chunks are set up with an offset to the start of + the mmapped region stored in the prev_foot field of the chunk. This + allows reconstruction of the required argument to MUNMAP when freed, + and also allows adjustment of the returned chunk to meet alignment + requirements (especially in memalign). There is also enough space + allocated to hold a fake next chunk of size SIZE_T_SIZE to maintain + the PINUSE bit so frees can be checked. +*/ + +/* Malloc using mmap */ +static void* mmap_alloc(mstate m, size_t nb) { + size_t mmsize = granularity_align(nb + SIX_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + if (mmsize > nb) { /* Check for wrap around 0 */ + char* mm = (char*)(DIRECT_MMAP(mmsize)); + if (mm != CMFAIL) { + size_t offset = align_offset(chunk2mem(mm)); + size_t psize = mmsize - offset - MMAP_FOOT_PAD; + mchunkptr p = (mchunkptr)(mm + offset); + p->prev_foot = offset | IS_MMAPPED_BIT; + (p)->head = (psize|CINUSE_BIT); + mark_inuse_foot(m, p, psize); + chunk_plus_offset(p, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(p, psize+SIZE_T_SIZE)->head = 0; + + if (mm < m->least_addr) + m->least_addr = mm; + if ((m->footprint += mmsize) > m->max_footprint) + m->max_footprint = m->footprint; + assert(is_aligned(chunk2mem(p))); + check_mmapped_chunk(m, p); + return chunk2mem(p); + } + } + return 0; +} + +/* Realloc using mmap */ +static mchunkptr mmap_resize(mstate m, mchunkptr oldp, size_t nb) { + size_t oldsize = chunksize(oldp); + if (is_small(nb)) /* Can't shrink mmap regions below small size */ + return 0; + /* Keep old chunk if big enough but not too big */ + if (oldsize >= nb + SIZE_T_SIZE && + (oldsize - nb) <= (mparams.granularity << 1)) + return oldp; + else { + size_t offset = oldp->prev_foot & ~IS_MMAPPED_BIT; + size_t oldmmsize = oldsize + offset + MMAP_FOOT_PAD; + size_t newmmsize = granularity_align(nb + SIX_SIZE_T_SIZES + + CHUNK_ALIGN_MASK); + char* cp = (char*)CALL_MREMAP((char*)oldp - offset, + oldmmsize, newmmsize, 1); + if (cp != CMFAIL) { + mchunkptr newp = (mchunkptr)(cp + offset); + size_t psize = newmmsize - offset - MMAP_FOOT_PAD; + newp->head = (psize|CINUSE_BIT); + mark_inuse_foot(m, newp, psize); + chunk_plus_offset(newp, psize)->head = FENCEPOST_HEAD; + chunk_plus_offset(newp, psize+SIZE_T_SIZE)->head = 0; + + if (cp < m->least_addr) + m->least_addr = cp; + if ((m->footprint += newmmsize - oldmmsize) > m->max_footprint) + m->max_footprint = m->footprint; + check_mmapped_chunk(m, newp); + return newp; + } + } + return 0; +} + +/* -------------------------- mspace management -------------------------- */ + +/* Initialize top chunk and its size */ +static void init_top(mstate m, mchunkptr p, size_t psize) { + /* Ensure alignment */ + size_t offset = align_offset(chunk2mem(p)); + p = (mchunkptr)((char*)p + offset); + psize -= offset; + + m->top = p; + m->topsize = psize; + p->head = psize | PINUSE_BIT; + /* set size of fake trailing chunk holding overhead space only once */ + chunk_plus_offset(p, psize)->head = TOP_FOOT_SIZE; + m->trim_check = mparams.trim_threshold; /* reset on each update */ +} + +/* Initialize bins for a new mstate that is otherwise zeroed out */ +static void init_bins(mstate m) { + /* Establish circular links for smallbins */ + bindex_t i; + for (i = 0; i < NSMALLBINS; ++i) { + sbinptr bin = smallbin_at(m,i); + bin->fd = bin->bk = bin; + } +} + +#if PROCEED_ON_ERROR + +/* default corruption action */ +static void reset_on_error(mstate m) { + int i; + ++malloc_corruption_error_count; + /* Reinitialize fields to forget about all memory */ + m->smallbins = m->treebins = 0; + m->dvsize = m->topsize = 0; + m->seg.base = 0; + m->seg.size = 0; + m->seg.next = 0; + m->top = m->dv = 0; + for (i = 0; i < NTREEBINS; ++i) + *treebin_at(m, i) = 0; + init_bins(m); +} +#endif /* PROCEED_ON_ERROR */ + +/* Allocate chunk and prepend remainder with chunk in successor base. */ +static void* prepend_alloc(mstate m, char* newbase, char* oldbase, + size_t nb) { + mchunkptr p = align_as_chunk(newbase); + mchunkptr oldfirst = align_as_chunk(oldbase); + size_t psize = (char*)oldfirst - (char*)p; + mchunkptr q = chunk_plus_offset(p, nb); + size_t qsize = psize - nb; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + + assert((char*)oldfirst > (char*)q); + assert(pinuse(oldfirst)); + assert(qsize >= MIN_CHUNK_SIZE); + + /* consolidate remainder with first chunk of old base */ + if (oldfirst == m->top) { + size_t tsize = m->topsize += qsize; + m->top = q; + q->head = tsize | PINUSE_BIT; + check_top_chunk(m, q); + } + else if (oldfirst == m->dv) { + size_t dsize = m->dvsize += qsize; + m->dv = q; + set_size_and_pinuse_of_free_chunk(q, dsize); + } + else { + if (!cinuse(oldfirst)) { + size_t nsize = chunksize(oldfirst); + unlink_chunk(m, oldfirst, nsize); + oldfirst = chunk_plus_offset(oldfirst, nsize); + qsize += nsize; + } + set_free_with_pinuse(q, qsize, oldfirst); + insert_chunk(m, q, qsize); + check_free_chunk(m, q); + } + + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); +} + + +/* Add a segment to hold a new noncontiguous region */ +static void add_segment(mstate m, char* tbase, size_t tsize, flag_t mmapped) { + /* Determine locations and sizes of segment, fenceposts, old top */ + char* old_top = (char*)m->top; + msegmentptr oldsp = segment_holding(m, old_top); + char* old_end = oldsp->base + oldsp->size; + size_t ssize = pad_request(sizeof(struct malloc_segment)); + char* rawsp = old_end - (ssize + FOUR_SIZE_T_SIZES + CHUNK_ALIGN_MASK); + size_t offset = align_offset(chunk2mem(rawsp)); + char* asp = rawsp + offset; + char* csp = (asp < (old_top + MIN_CHUNK_SIZE))? old_top : asp; + mchunkptr sp = (mchunkptr)csp; + msegmentptr ss = (msegmentptr)(chunk2mem(sp)); + mchunkptr tnext = chunk_plus_offset(sp, ssize); + mchunkptr p = tnext; + int nfences = 0; + + /* reset top to new space */ + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + + /* Set up segment record */ + assert(is_aligned(ss)); + set_size_and_pinuse_of_inuse_chunk(m, sp, ssize); + *ss = m->seg; /* Push current record */ + m->seg.base = tbase; + m->seg.size = tsize; (void)set_segment_flags(&m->seg, mmapped); - m->seg.next = ss; - - /* Insert trailing fenceposts */ - for (;;) { - mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); - p->head = FENCEPOST_HEAD; - ++nfences; - if ((char*)(&(nextp->head)) < old_end) - p = nextp; - else - break; - } - assert(nfences >= 2); - - /* Insert the rest of old top into a bin as an ordinary free chunk */ - if (csp != old_top) { - mchunkptr q = (mchunkptr)old_top; - size_t psize = csp - old_top; - mchunkptr tn = chunk_plus_offset(q, psize); - set_free_with_pinuse(q, psize, tn); - insert_chunk(m, q, psize); - } - - check_top_chunk(m, m->top); -} - -/* -------------------------- System allocation -------------------------- */ - -/* Get memory from system using MORECORE or MMAP */ -static void* sys_alloc(mstate m, size_t nb) { - char* tbase = CMFAIL; - size_t tsize = 0; - flag_t mmap_flag = 0; - - init_mparams(); - - /* Directly map large chunks */ - if (use_mmap(m) && nb >= mparams.mmap_threshold) { - void* mem = mmap_alloc(m, nb); - if (mem != 0) - return mem; - } - - /* - Try getting memory in any of three ways (in most-preferred to - least-preferred order): - 1. A call to MORECORE that can normally contiguously extend memory. - (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or - or main space is mmapped or a previous contiguous call failed) - 2. A call to MMAP new space (disabled if not HAVE_MMAP). - Note that under the default settings, if MORECORE is unable to - fulfill a request, and HAVE_MMAP is true, then mmap is - used as a noncontiguous system allocator. This is a useful backup - strategy for systems with holes in address spaces -- in this case - sbrk cannot contiguously expand the heap, but mmap may be able to - find space. - 3. A call to MORECORE that cannot usually contiguously extend memory. - (disabled if not HAVE_MORECORE) - */ - - if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { - char* br = CMFAIL; - msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); - size_t asize = 0; - ACQUIRE_MORECORE_LOCK(); - - if (ss == 0) { /* First time through or recovery */ - char* base = (char*)CALL_MORECORE(0); - if (base != CMFAIL) { - asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); - /* Adjust to end on a page boundary */ - if (!is_page_aligned(base)) - asize += (page_align((size_t)base) - (size_t)base); - /* Can't call MORECORE if size is negative when treated as signed */ - if (asize < HALF_MAX_SIZE_T && - (br = (char*)(CALL_MORECORE(asize))) == base) { - tbase = base; - tsize = asize; - } - } - } - else { - /* Subtract out existing available top space from MORECORE request. */ - asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); - /* Use mem here only if it did continuously extend old space */ - if (asize < HALF_MAX_SIZE_T && - (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { - tbase = br; - tsize = asize; - } - } - - if (tbase == CMFAIL) { /* Cope with partial failure */ - if (br != CMFAIL) { /* Try to use/extend the space we did get */ - if (asize < HALF_MAX_SIZE_T && - asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { - size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); - if (esize < HALF_MAX_SIZE_T) { - char* end = (char*)CALL_MORECORE(esize); - if (end != CMFAIL) - asize += esize; - else { /* Can't use; try to release */ - (void)CALL_MORECORE(-asize); - br = CMFAIL; - } - } - } - } - if (br != CMFAIL) { /* Use the space we did get */ - tbase = br; - tsize = asize; - } - else - disable_contiguous(m); /* Don't try contiguous path in the future */ - } - - RELEASE_MORECORE_LOCK(); - } - - if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ - size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; - size_t rsize = granularity_align(req); - if (rsize > nb) { /* Fail if wraps around zero */ - char* mp = (char*)(CALL_MMAP(rsize)); - if (mp != CMFAIL) { - tbase = mp; - tsize = rsize; - mmap_flag = IS_MMAPPED_BIT; - } - } - } - - if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ - size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); - if (asize < HALF_MAX_SIZE_T) { - char* br = CMFAIL; - char* end = CMFAIL; - ACQUIRE_MORECORE_LOCK(); - br = (char*)(CALL_MORECORE(asize)); - end = (char*)(CALL_MORECORE(0)); - RELEASE_MORECORE_LOCK(); - if (br != CMFAIL && end != CMFAIL && br < end) { - size_t ssize = end - br; - if (ssize > nb + TOP_FOOT_SIZE) { - tbase = br; - tsize = ssize; - } - } - } - } - - if (tbase != CMFAIL) { - - if ((m->footprint += tsize) > m->max_footprint) - m->max_footprint = m->footprint; - - if (!is_initialized(m)) { /* first-time initialization */ - m->seg.base = m->least_addr = tbase; - m->seg.size = tsize; + m->seg.next = ss; + + /* Insert trailing fenceposts */ + for (;;) { + mchunkptr nextp = chunk_plus_offset(p, SIZE_T_SIZE); + p->head = FENCEPOST_HEAD; + ++nfences; + if ((char*)(&(nextp->head)) < old_end) + p = nextp; + else + break; + } + assert(nfences >= 2); + + /* Insert the rest of old top into a bin as an ordinary free chunk */ + if (csp != old_top) { + mchunkptr q = (mchunkptr)old_top; + size_t psize = csp - old_top; + mchunkptr tn = chunk_plus_offset(q, psize); + set_free_with_pinuse(q, psize, tn); + insert_chunk(m, q, psize); + } + + check_top_chunk(m, m->top); +} + +/* -------------------------- System allocation -------------------------- */ + +/* Get memory from system using MORECORE or MMAP */ +static void* sys_alloc(mstate m, size_t nb) { + char* tbase = CMFAIL; + size_t tsize = 0; + flag_t mmap_flag = 0; + + init_mparams(); + + /* Directly map large chunks */ + if (use_mmap(m) && nb >= mparams.mmap_threshold) { + void* mem = mmap_alloc(m, nb); + if (mem != 0) + return mem; + } + + /* + Try getting memory in any of three ways (in most-preferred to + least-preferred order): + 1. A call to MORECORE that can normally contiguously extend memory. + (disabled if not MORECORE_CONTIGUOUS or not HAVE_MORECORE or + or main space is mmapped or a previous contiguous call failed) + 2. A call to MMAP new space (disabled if not HAVE_MMAP). + Note that under the default settings, if MORECORE is unable to + fulfill a request, and HAVE_MMAP is true, then mmap is + used as a noncontiguous system allocator. This is a useful backup + strategy for systems with holes in address spaces -- in this case + sbrk cannot contiguously expand the heap, but mmap may be able to + find space. + 3. A call to MORECORE that cannot usually contiguously extend memory. + (disabled if not HAVE_MORECORE) + */ + + if (MORECORE_CONTIGUOUS && !use_noncontiguous(m)) { + char* br = CMFAIL; + msegmentptr ss = (m->top == 0)? 0 : segment_holding(m, (char*)m->top); + size_t asize = 0; + ACQUIRE_MORECORE_LOCK(); + + if (ss == 0) { /* First time through or recovery */ + char* base = (char*)CALL_MORECORE(0); + if (base != CMFAIL) { + asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); + /* Adjust to end on a page boundary */ + if (!is_page_aligned(base)) + asize += (page_align((size_t)base) - (size_t)base); + /* Can't call MORECORE if size is negative when treated as signed */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == base) { + tbase = base; + tsize = asize; + } + } + } + else { + /* Subtract out existing available top space from MORECORE request. */ + asize = granularity_align(nb - m->topsize + TOP_FOOT_SIZE + SIZE_T_ONE); + /* Use mem here only if it did continuously extend old space */ + if (asize < HALF_MAX_SIZE_T && + (br = (char*)(CALL_MORECORE(asize))) == ss->base+ss->size) { + tbase = br; + tsize = asize; + } + } + + if (tbase == CMFAIL) { /* Cope with partial failure */ + if (br != CMFAIL) { /* Try to use/extend the space we did get */ + if (asize < HALF_MAX_SIZE_T && + asize < nb + TOP_FOOT_SIZE + SIZE_T_ONE) { + size_t esize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE - asize); + if (esize < HALF_MAX_SIZE_T) { + char* end = (char*)CALL_MORECORE(esize); + if (end != CMFAIL) + asize += esize; + else { /* Can't use; try to release */ + (void)CALL_MORECORE(-asize); + br = CMFAIL; + } + } + } + } + if (br != CMFAIL) { /* Use the space we did get */ + tbase = br; + tsize = asize; + } + else + disable_contiguous(m); /* Don't try contiguous path in the future */ + } + + RELEASE_MORECORE_LOCK(); + } + + if (HAVE_MMAP && tbase == CMFAIL) { /* Try MMAP */ + size_t req = nb + TOP_FOOT_SIZE + SIZE_T_ONE; + size_t rsize = granularity_align(req); + if (rsize > nb) { /* Fail if wraps around zero */ + char* mp = (char*)(CALL_MMAP(rsize)); + if (mp != CMFAIL) { + tbase = mp; + tsize = rsize; + mmap_flag = IS_MMAPPED_BIT; + } + } + } + + if (HAVE_MORECORE && tbase == CMFAIL) { /* Try noncontiguous MORECORE */ + size_t asize = granularity_align(nb + TOP_FOOT_SIZE + SIZE_T_ONE); + if (asize < HALF_MAX_SIZE_T) { + char* br = CMFAIL; + char* end = CMFAIL; + ACQUIRE_MORECORE_LOCK(); + br = (char*)(CALL_MORECORE(asize)); + end = (char*)(CALL_MORECORE(0)); + RELEASE_MORECORE_LOCK(); + if (br != CMFAIL && end != CMFAIL && br < end) { + size_t ssize = end - br; + if (ssize > nb + TOP_FOOT_SIZE) { + tbase = br; + tsize = ssize; + } + } + } + } + + if (tbase != CMFAIL) { + + if ((m->footprint += tsize) > m->max_footprint) + m->max_footprint = m->footprint; + + if (!is_initialized(m)) { /* first-time initialization */ + m->seg.base = m->least_addr = tbase; + m->seg.size = tsize; (void)set_segment_flags(&m->seg, mmap_flag); - m->magic = mparams.magic; - init_bins(m); - if (is_global(m)) - init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); - else { - /* Offset top by embedded malloc_state */ - mchunkptr mn = next_chunk(mem2chunk(m)); - init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); - } - } - - else { - /* Try to merge with an existing segment */ - msegmentptr sp = &m->seg; - while (sp != 0 && tbase != sp->base + sp->size) - sp = sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - check_segment_merge(sp, tbase, tsize) && - (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag && - segment_holds(sp, m->top)) { /* append */ - sp->size += tsize; - init_top(m, m->top, m->topsize + tsize); - } - else { - if (tbase < m->least_addr) - m->least_addr = tbase; - sp = &m->seg; - while (sp != 0 && sp->base != tbase + tsize) - sp = sp->next; - if (sp != 0 && - !is_extern_segment(sp) && - check_segment_merge(sp, tbase, tsize) && - (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) { - char* oldbase = sp->base; - sp->base = tbase; - sp->size += tsize; - return prepend_alloc(m, tbase, oldbase, nb); - } - else - add_segment(m, tbase, tsize, mmap_flag); - } - } - - if (nb < m->topsize) { /* Allocate from new or extended top space */ - size_t rsize = m->topsize -= nb; - mchunkptr p = m->top; - mchunkptr r = m->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(m, p, nb); - check_top_chunk(m, m->top); - check_malloced_chunk(m, chunk2mem(p), nb); - return chunk2mem(p); - } - } - - MALLOC_FAILURE_ACTION; - return 0; -} - -/* ----------------------- system deallocation -------------------------- */ - -/* Unmap and unlink any mmapped segments that don't contain used chunks */ -static size_t release_unused_segments(mstate m) { - size_t released = 0; - msegmentptr pred = &m->seg; - msegmentptr sp = pred->next; - while (sp != 0) { - char* base = sp->base; - size_t size = sp->size; - msegmentptr next = sp->next; - if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { - mchunkptr p = align_as_chunk(base); - size_t psize = chunksize(p); - /* Can unmap if first chunk holds entire segment and not pinned */ - if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { - tchunkptr tp = (tchunkptr)p; - assert(segment_holds(sp, (char*)sp)); - if (p == m->dv) { - m->dv = 0; - m->dvsize = 0; - } - else { - unlink_large_chunk(m, tp); - } - if (CALL_MUNMAP(base, size) == 0) { - released += size; - m->footprint -= size; - /* unlink obsoleted record */ - sp = pred; - sp->next = next; - } - else { /* back out if cannot unmap */ - insert_large_chunk(m, tp, psize); - } - } - } - pred = sp; - sp = next; - } - return released; -} - -static int sys_trim(mstate m, size_t pad) { - size_t released = 0; - if (pad < MAX_REQUEST && is_initialized(m)) { - pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ - - if (m->topsize > pad) { - /* Shrink top space in granularity-size units, keeping at least one */ - size_t unit = mparams.granularity; - size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - - SIZE_T_ONE) * unit; - msegmentptr sp = segment_holding(m, (char*)m->top); - - if (!is_extern_segment(sp)) { - if (is_mmapped_segment(sp)) { - if (HAVE_MMAP && - sp->size >= extra && - !has_segment_link(m, sp)) { /* can't shrink if pinned */ - size_t newsize = sp->size - extra; - /* Prefer mremap, fall back to munmap */ - if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || - (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { - released = extra; - } - } - } - else if (HAVE_MORECORE) { - if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ - extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; - ACQUIRE_MORECORE_LOCK(); - { - /* Make sure end of memory is where we last set it. */ - char* old_br = (char*)(CALL_MORECORE(0)); - if (old_br == sp->base + sp->size) { - char* rel_br = (char*)(CALL_MORECORE(-extra)); - char* new_br = (char*)(CALL_MORECORE(0)); - if (rel_br != CMFAIL && new_br < old_br) - released = old_br - new_br; - } - } - RELEASE_MORECORE_LOCK(); - } - } - - if (released != 0) { - sp->size -= released; - m->footprint -= released; - init_top(m, m->top, m->topsize - released); - check_top_chunk(m, m->top); - } - } - - /* Unmap any unused mmapped segments */ - if (HAVE_MMAP) - released += release_unused_segments(m); - - /* On failure, disable autotrim to avoid repeated failed future calls */ - if (released == 0) - m->trim_check = MAX_SIZE_T; - } - - return (released != 0)? 1 : 0; -} - -/* ---------------------------- malloc support --------------------------- */ - -/* allocate a large request from the best fitting chunk in a treebin */ -static void* tmalloc_large(mstate m, size_t nb) { - tchunkptr v = 0; - size_t rsize = -nb; /* Unsigned negation */ - tchunkptr t; - bindex_t idx; - compute_tree_index(nb, idx); - - if ((t = *treebin_at(m, idx)) != 0) { - /* Traverse tree for this bin looking for node with size == nb */ - size_t sizebits = nb << leftshift_for_tree_index(idx); - tchunkptr rst = 0; /* The deepest untaken right subtree */ - for (;;) { - tchunkptr rt; - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - v = t; - if ((rsize = trem) == 0) - break; - } - rt = t->child[1]; - t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; - if (rt != 0 && rt != t) - rst = rt; - if (t == 0) { - t = rst; /* set t to least subtree holding sizes > nb */ - break; - } - sizebits <<= 1; - } - } - - if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ - binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; - if (leftbits != 0) { - bindex_t i; - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - t = *treebin_at(m, i); - } - } - - while (t != 0) { /* find smallest of tree or subtree */ - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - t = leftmost_child(t); - } - - /* If dv is a better fit, return 0 so malloc will use it */ - if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { - if (RTCHECK(ok_address(m, v))) { /* split */ - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - insert_chunk(m, r, rsize); - } - return chunk2mem(v); - } - } - CORRUPTION_ERROR_ACTION(m); - } - return 0; -} - -/* allocate a small request from the best fitting chunk in a treebin */ -static void* tmalloc_small(mstate m, size_t nb) { - tchunkptr t, v; - size_t rsize; - bindex_t i; - binmap_t leastbit = least_bit(m->treemap); - compute_bit2idx(leastbit, i); - - v = t = *treebin_at(m, i); - rsize = chunksize(t) - nb; - - while ((t = leftmost_child(t)) != 0) { - size_t trem = chunksize(t) - nb; - if (trem < rsize) { - rsize = trem; - v = t; - } - } - - if (RTCHECK(ok_address(m, v))) { - mchunkptr r = chunk_plus_offset(v, nb); - assert(chunksize(v) == rsize + nb); - if (RTCHECK(ok_next(v, r))) { - unlink_large_chunk(m, v); - if (rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(m, v, (rsize + nb)); - else { - set_size_and_pinuse_of_inuse_chunk(m, v, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(m, r, rsize); - } - return chunk2mem(v); - } - } - - CORRUPTION_ERROR_ACTION(m); - return 0; -} - -/* --------------------------- realloc support --------------------------- */ - -static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { - if (bytes >= MAX_REQUEST) { - MALLOC_FAILURE_ACTION; - return 0; - } - if (!PREACTION(m)) { - mchunkptr oldp = mem2chunk(oldmem); - size_t oldsize = chunksize(oldp); - mchunkptr next = chunk_plus_offset(oldp, oldsize); - mchunkptr newp = 0; - void* extra = 0; - - /* Try to either shrink or extend into top. Else malloc-copy-free */ - - if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && - ok_next(oldp, next) && ok_pinuse(next))) { - size_t nb = request2size(bytes); - if (is_mmapped(oldp)) - newp = mmap_resize(m, oldp, nb); - else if (oldsize >= nb) { /* already big enough */ - size_t rsize = oldsize - nb; - newp = oldp; - if (rsize >= MIN_CHUNK_SIZE) { - mchunkptr remainder = chunk_plus_offset(newp, nb); - set_inuse(m, newp, nb); - set_inuse(m, remainder, rsize); - extra = chunk2mem(remainder); - } - } - else if (next == m->top && oldsize + m->topsize > nb) { - /* Expand into top */ - size_t newsize = oldsize + m->topsize; - size_t newtopsize = newsize - nb; - mchunkptr newtop = chunk_plus_offset(oldp, nb); - set_inuse(m, oldp, nb); - newtop->head = newtopsize |PINUSE_BIT; - m->top = newtop; - m->topsize = newtopsize; - newp = oldp; - } - } - else { - USAGE_ERROR_ACTION(m, oldmem); - POSTACTION(m); - return 0; - } - - POSTACTION(m); - - if (newp != 0) { - if (extra != 0) { - internal_free(m, extra); - } - check_inuse_chunk(m, newp); - return chunk2mem(newp); - } - else { - void* newmem = internal_malloc(m, bytes); - if (newmem != 0) { - size_t oc = oldsize - overhead_for(oldp); - memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); - internal_free(m, oldmem); - } - return newmem; - } - } - return 0; -} - -/* --------------------------- memalign support -------------------------- */ - -static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { - if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ - return internal_malloc(m, bytes); - if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ - alignment = MIN_CHUNK_SIZE; - if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ - size_t a = MALLOC_ALIGNMENT << 1; - while (a < alignment) a <<= 1; - alignment = a; - } - - if (bytes >= MAX_REQUEST - alignment) { - if (m != 0) { /* Test isn't needed but avoids compiler warning */ - MALLOC_FAILURE_ACTION; - } - } - else { - size_t nb = request2size(bytes); - size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; - char* mem = (char*)internal_malloc(m, req); - if (mem != 0) { - void* leader = 0; - void* trailer = 0; - mchunkptr p = mem2chunk(mem); - - if (PREACTION(m)) return 0; - if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ - /* - Find an aligned spot inside chunk. Since we need to give - back leading space in a chunk of at least MIN_CHUNK_SIZE, if - the first calculation places us at a spot with less than - MIN_CHUNK_SIZE leader, we can move to the next aligned spot. - We've allocated enough total room so that this is always - possible. - */ - char* br = (char*)mem2chunk((size_t)(((size_t)(mem + - alignment - - SIZE_T_ONE)) & - -alignment)); - char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? - br : br+alignment; - mchunkptr newp = (mchunkptr)pos; - size_t leadsize = pos - (char*)(p); - size_t newsize = chunksize(p) - leadsize; - - if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ - newp->prev_foot = p->prev_foot + leadsize; - newp->head = (newsize|CINUSE_BIT); - } - else { /* Otherwise, give back leader, use the rest */ - set_inuse(m, newp, newsize); - set_inuse(m, p, leadsize); - leader = chunk2mem(p); - } - p = newp; - } - - /* Give back spare room at the end */ - if (!is_mmapped(p)) { - size_t size = chunksize(p); - if (size > nb + MIN_CHUNK_SIZE) { - size_t remainder_size = size - nb; - mchunkptr remainder = chunk_plus_offset(p, nb); - set_inuse(m, p, nb); - set_inuse(m, remainder, remainder_size); - trailer = chunk2mem(remainder); - } - } - - assert (chunksize(p) >= nb); - assert((((size_t)(chunk2mem(p))) % alignment) == 0); - check_inuse_chunk(m, p); - POSTACTION(m); - if (leader != 0) { - internal_free(m, leader); - } - if (trailer != 0) { - internal_free(m, trailer); - } - return chunk2mem(p); - } - } - return 0; -} - -/* ------------------------ comalloc/coalloc support --------------------- */ - -static void** ialloc(mstate m, - size_t n_elements, - size_t* sizes, - int opts, - void* chunks[]) { - /* - This provides common support for independent_X routines, handling - all of the combinations that can result. - - The opts arg has: - bit 0 set if all elements are same size (using sizes[0]) - bit 1 set if elements should be zeroed - */ - - size_t element_size; /* chunksize of each element, if all same */ - size_t contents_size; /* total size of elements */ - size_t array_size; /* request size of pointer array */ - void* mem; /* malloced aggregate space */ - mchunkptr p; /* corresponding chunk */ - size_t remainder_size; /* remaining bytes while splitting */ - void** marray; /* either "chunks" or malloced ptr array */ - mchunkptr array_chunk; /* chunk for malloced ptr array */ - flag_t was_enabled; /* to disable mmap */ - size_t size; - size_t i; - - /* compute array length, if needed */ - if (chunks != 0) { - if (n_elements == 0) - return chunks; /* nothing to do */ - marray = chunks; - array_size = 0; - } - else { - /* if empty req, must still return chunk representing empty array */ - if (n_elements == 0) - return (void**)internal_malloc(m, 0); - marray = 0; - array_size = request2size(n_elements * (sizeof(void*))); - } - - /* compute total element size */ - if (opts & 0x1) { /* all-same-size */ - element_size = request2size(*sizes); - contents_size = n_elements * element_size; - } - else { /* add up all the sizes */ - element_size = 0; - contents_size = 0; - for (i = 0; i != n_elements; ++i) - contents_size += request2size(sizes[i]); - } - - size = contents_size + array_size; - - /* - Allocate the aggregate chunk. First disable direct-mmapping so - malloc won't use it, since we would not be able to later - free/realloc space internal to a segregated mmap region. - */ - was_enabled = use_mmap(m); - disable_mmap(m); - mem = internal_malloc(m, size - CHUNK_OVERHEAD); - if (was_enabled) - enable_mmap(m); - if (mem == 0) - return 0; - - if (PREACTION(m)) return 0; - p = mem2chunk(mem); - remainder_size = chunksize(p); - - assert(!is_mmapped(p)); - - if (opts & 0x2) { /* optionally clear the elements */ - memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); - } - - /* If not provided, allocate the pointer array as final part of chunk */ - if (marray == 0) { - size_t array_chunk_size; - array_chunk = chunk_plus_offset(p, contents_size); - array_chunk_size = remainder_size - contents_size; - marray = (void**) (chunk2mem(array_chunk)); - set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); - remainder_size = contents_size; - } - - /* split out elements */ - for (i = 0; ; ++i) { - marray[i] = chunk2mem(p); - if (i != n_elements-1) { - if (element_size != 0) - size = element_size; - else - size = request2size(sizes[i]); - remainder_size -= size; - set_size_and_pinuse_of_inuse_chunk(m, p, size); - p = chunk_plus_offset(p, size); - } - else { /* the final element absorbs any overallocation slop */ - set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); - break; - } - } - -#if DEBUG - if (marray != chunks) { - /* final element must have exactly exhausted chunk */ - if (element_size != 0) { - assert(remainder_size == element_size); - } - else { - assert(remainder_size == request2size(sizes[i])); - } - check_inuse_chunk(m, mem2chunk(marray)); - } - for (i = 0; i != n_elements; ++i) - check_inuse_chunk(m, mem2chunk(marray[i])); - -#endif /* DEBUG */ - - POSTACTION(m); - return marray; -} - - -/* -------------------------- public routines ---------------------------- */ - -#if !ONLY_MSPACES - -void* dlmalloc(size_t bytes) { - /* - Basic algorithm: - If a small request (< 256 bytes minus per-chunk overhead): - 1. If one exists, use a remainderless chunk in associated smallbin. - (Remainderless means that there are too few excess bytes to - represent as a chunk.) - 2. If it is big enough, use the dv chunk, which is normally the - chunk adjacent to the one used for the most recent small request. - 3. If one exists, split the smallest available chunk in a bin, - saving remainder in dv. - 4. If it is big enough, use the top chunk. - 5. If available, get memory from system and use it - Otherwise, for a large request: - 1. Find the smallest available binned chunk that fits, and use it - if it is better fitting than dv chunk, splitting if necessary. - 2. If better fitting than any binned chunk, use the dv chunk. - 3. If it is big enough, use the top chunk. - 4. If request size >= mmap threshold, try to directly mmap this chunk. - 5. If available, get memory from system and use it - - The ugly goto's here ensure that postaction occurs along all paths. - */ - - if (!PREACTION(gm)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = gm->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(gm, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(gm, b, p, idx); - set_inuse_and_pinuse(gm, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb > gm->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(gm, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(gm, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(gm, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(gm, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - } - - if (nb <= gm->dvsize) { - size_t rsize = gm->dvsize - nb; - mchunkptr p = gm->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = gm->dv = chunk_plus_offset(p, nb); - gm->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - } - else { /* exhaust dv */ - size_t dvs = gm->dvsize; - gm->dvsize = 0; - gm->dv = 0; - set_inuse_and_pinuse(gm, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - else if (nb < gm->topsize) { /* Split top */ - size_t rsize = gm->topsize -= nb; - mchunkptr p = gm->top; - mchunkptr r = gm->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(gm, p, nb); - mem = chunk2mem(p); - check_top_chunk(gm, gm->top); - check_malloced_chunk(gm, mem, nb); - goto postaction; - } - - mem = sys_alloc(gm, nb); - - postaction: - POSTACTION(gm); - return mem; - } - - return 0; -} - -void dlfree(void* mem) { - /* - Consolidate freed chunks with preceding or succeeding bordering - free chunks, if they exist, and then place in a bin. Intermixed - with special cases for top, dv, mmapped chunks, and usage errors. - */ - - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } -#else /* FOOTERS */ -#define fm gm -#endif /* FOOTERS */ - if (!PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if ((prevsize & IS_MMAPPED_BIT) != 0) { - prevsize &= ~IS_MMAPPED_BIT; - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - insert_chunk(fm, p, psize); - check_free_chunk(fm, p); - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - POSTACTION(fm); - } - } -#if !FOOTERS -#undef fm -#endif /* FOOTERS */ -} - -void* dlcalloc(size_t n_elements, size_t elem_size) { - void* mem; - size_t req = 0; - if (n_elements != 0) { - req = n_elements * elem_size; - if (((n_elements | elem_size) & ~(size_t)0xffff) && - (req / n_elements != elem_size)) - req = MAX_SIZE_T; /* force downstream failure on overflow */ - } - mem = dlmalloc(req); - if (mem != 0 && calloc_must_clear(mem2chunk(mem))) - memset(mem, 0, req); - return mem; -} - -void* dlrealloc(void* oldmem, size_t bytes) { - if (oldmem == 0) - return dlmalloc(bytes); -#ifdef REALLOC_ZERO_BYTES_FREES - if (bytes == 0) { - dlfree(oldmem); - return 0; - } -#endif /* REALLOC_ZERO_BYTES_FREES */ - else { -#if ! FOOTERS - mstate m = gm; -#else /* FOOTERS */ - mstate m = get_mstate_for(mem2chunk(oldmem)); - if (!ok_magic(m)) { - USAGE_ERROR_ACTION(m, oldmem); - return 0; - } -#endif /* FOOTERS */ - return internal_realloc(m, oldmem, bytes); - } -} - -void* dlmemalign(size_t alignment, size_t bytes) { - return internal_memalign(gm, alignment, bytes); -} - -void** dlindependent_calloc(size_t n_elements, size_t elem_size, - void* chunks[]) { - size_t sz = elem_size; /* serves as 1-element array */ - return ialloc(gm, n_elements, &sz, 3, chunks); -} - -void** dlindependent_comalloc(size_t n_elements, size_t sizes[], - void* chunks[]) { - return ialloc(gm, n_elements, sizes, 0, chunks); -} - -void* dlvalloc(size_t bytes) { - size_t pagesz; - init_mparams(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, bytes); -} - -void* dlpvalloc(size_t bytes) { - size_t pagesz; - init_mparams(); - pagesz = mparams.page_size; - return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); -} - -int dlmalloc_trim(size_t pad) { - int result = 0; - if (!PREACTION(gm)) { - result = sys_trim(gm, pad); - POSTACTION(gm); - } - return result; -} - -size_t dlmalloc_footprint(void) { - return gm->footprint; -} - -size_t dlmalloc_max_footprint(void) { - return gm->max_footprint; -} - -#if !NO_MALLINFO -struct mallinfo dlmallinfo(void) { - return internal_mallinfo(gm); -} -#endif /* NO_MALLINFO */ - -void dlmalloc_stats() { - internal_malloc_stats(gm); -} - -size_t dlmalloc_usable_size(void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); - if (cinuse(p)) - return chunksize(p) - overhead_for(p); - } - return 0; -} - -int dlmallopt(int param_number, int value) { - return change_mparam(param_number, value); -} - -#endif /* !ONLY_MSPACES */ - -/* ----------------------------- user mspaces ---------------------------- */ - -#if MSPACES - -static mstate init_user_mstate(char* tbase, size_t tsize) { - size_t msize = pad_request(sizeof(struct malloc_state)); - mchunkptr mn; - mchunkptr msp = align_as_chunk(tbase); - mstate m = (mstate)(chunk2mem(msp)); - memset(m, 0, msize); - INITIAL_LOCK(&m->mutex); - msp->head = (msize|PINUSE_BIT|CINUSE_BIT); - m->seg.base = m->least_addr = tbase; - m->seg.size = m->footprint = m->max_footprint = tsize; - m->magic = mparams.magic; - m->mflags = mparams.default_mflags; - disable_contiguous(m); - init_bins(m); - mn = next_chunk(mem2chunk(m)); - init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); - check_top_chunk(m, m->top); - return m; -} - -mspace create_mspace(size_t capacity, int locked) { - mstate m = 0; - size_t msize = pad_request(sizeof(struct malloc_state)); - init_mparams(); /* Ensure pagesize etc initialized */ - - if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { - size_t rs = ((capacity == 0)? mparams.granularity : - (capacity + TOP_FOOT_SIZE + msize)); - size_t tsize = granularity_align(rs); - char* tbase = (char*)(CALL_MMAP(tsize)); - if (tbase != CMFAIL) { - m = init_user_mstate(tbase, tsize); - set_segment_flags(&m->seg, IS_MMAPPED_BIT); - set_lock(m, locked); - } - } - return (mspace)m; -} - -mspace create_mspace_with_base(void* base, size_t capacity, int locked) { - mstate m = 0; - size_t msize = pad_request(sizeof(struct malloc_state)); - init_mparams(); /* Ensure pagesize etc initialized */ - - if (capacity > msize + TOP_FOOT_SIZE && - capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { - m = init_user_mstate((char*)base, capacity); - set_segment_flags(&m->seg, EXTERN_BIT); - set_lock(m, locked); - } - return (mspace)m; -} - -size_t destroy_mspace(mspace msp) { - size_t freed = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - msegmentptr sp = &ms->seg; - while (sp != 0) { - char* base = sp->base; - size_t size = sp->size; - flag_t flag = get_segment_flags(sp); - sp = sp->next; - if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && - CALL_MUNMAP(base, size) == 0) - freed += size; - } - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return freed; -} - -/* - mspace versions of routines are near-clones of the global - versions. This is not so nice but better than the alternatives. -*/ - - -void* mspace_malloc(mspace msp, size_t bytes) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (!PREACTION(ms)) { - void* mem; - size_t nb; - if (bytes <= MAX_SMALL_REQUEST) { - bindex_t idx; - binmap_t smallbits; - nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); - idx = small_index(nb); - smallbits = ms->smallmap >> idx; - - if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ - mchunkptr b, p; - idx += ~smallbits & 1; /* Uses next bin if idx empty */ - b = smallbin_at(ms, idx); - p = b->fd; - assert(chunksize(p) == small_index2size(idx)); - unlink_first_small_chunk(ms, b, p, idx); - set_inuse_and_pinuse(ms, p, small_index2size(idx)); - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb > ms->dvsize) { - if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ - mchunkptr b, p, r; - size_t rsize; - bindex_t i; - binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); - binmap_t leastbit = least_bit(leftbits); - compute_bit2idx(leastbit, i); - b = smallbin_at(ms, i); - p = b->fd; - assert(chunksize(p) == small_index2size(i)); - unlink_first_small_chunk(ms, b, p, i); - rsize = small_index2size(i) - nb; - /* Fit here cannot be remainderless if 4byte sizes */ - if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) - set_inuse_and_pinuse(ms, p, small_index2size(i)); - else { - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - r = chunk_plus_offset(p, nb); - set_size_and_pinuse_of_free_chunk(r, rsize); - replace_dv(ms, r, rsize); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - } - else if (bytes >= MAX_REQUEST) - nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ - else { - nb = pad_request(bytes); - if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - } - - if (nb <= ms->dvsize) { - size_t rsize = ms->dvsize - nb; - mchunkptr p = ms->dv; - if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ - mchunkptr r = ms->dv = chunk_plus_offset(p, nb); - ms->dvsize = rsize; - set_size_and_pinuse_of_free_chunk(r, rsize); - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - } - else { /* exhaust dv */ - size_t dvs = ms->dvsize; - ms->dvsize = 0; - ms->dv = 0; - set_inuse_and_pinuse(ms, p, dvs); - } - mem = chunk2mem(p); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - else if (nb < ms->topsize) { /* Split top */ - size_t rsize = ms->topsize -= nb; - mchunkptr p = ms->top; - mchunkptr r = ms->top = chunk_plus_offset(p, nb); - r->head = rsize | PINUSE_BIT; - set_size_and_pinuse_of_inuse_chunk(ms, p, nb); - mem = chunk2mem(p); - check_top_chunk(ms, ms->top); - check_malloced_chunk(ms, mem, nb); - goto postaction; - } - - mem = sys_alloc(ms, nb); - - postaction: - POSTACTION(ms); - return mem; - } - - return 0; -} - -void mspace_free(mspace msp, void* mem) { - if (mem != 0) { - mchunkptr p = mem2chunk(mem); -#if FOOTERS - mstate fm = get_mstate_for(p); -#else /* FOOTERS */ - mstate fm = (mstate)msp; -#endif /* FOOTERS */ - if (!ok_magic(fm)) { - USAGE_ERROR_ACTION(fm, p); - return; - } - if (!PREACTION(fm)) { - check_inuse_chunk(fm, p); - if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { - size_t psize = chunksize(p); - mchunkptr next = chunk_plus_offset(p, psize); - if (!pinuse(p)) { - size_t prevsize = p->prev_foot; - if ((prevsize & IS_MMAPPED_BIT) != 0) { - prevsize &= ~IS_MMAPPED_BIT; - psize += prevsize + MMAP_FOOT_PAD; - if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) - fm->footprint -= psize; - goto postaction; - } - else { - mchunkptr prev = chunk_minus_offset(p, prevsize); - psize += prevsize; - p = prev; - if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ - if (p != fm->dv) { - unlink_chunk(fm, p, prevsize); - } - else if ((next->head & INUSE_BITS) == INUSE_BITS) { - fm->dvsize = psize; - set_free_with_pinuse(p, psize, next); - goto postaction; - } - } - else - goto erroraction; - } - } - - if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { - if (!cinuse(next)) { /* consolidate forward */ - if (next == fm->top) { - size_t tsize = fm->topsize += psize; - fm->top = p; - p->head = tsize | PINUSE_BIT; - if (p == fm->dv) { - fm->dv = 0; - fm->dvsize = 0; - } - if (should_trim(fm, tsize)) - sys_trim(fm, 0); - goto postaction; - } - else if (next == fm->dv) { - size_t dsize = fm->dvsize += psize; - fm->dv = p; - set_size_and_pinuse_of_free_chunk(p, dsize); - goto postaction; - } - else { - size_t nsize = chunksize(next); - psize += nsize; - unlink_chunk(fm, next, nsize); - set_size_and_pinuse_of_free_chunk(p, psize); - if (p == fm->dv) { - fm->dvsize = psize; - goto postaction; - } - } - } - else - set_free_with_pinuse(p, psize, next); - insert_chunk(fm, p, psize); - check_free_chunk(fm, p); - goto postaction; - } - } - erroraction: - USAGE_ERROR_ACTION(fm, p); - postaction: - POSTACTION(fm); - } - } -} - -void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { - void* mem; - size_t req = 0; - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - if (n_elements != 0) { - req = n_elements * elem_size; - if (((n_elements | elem_size) & ~(size_t)0xffff) && - (req / n_elements != elem_size)) - req = MAX_SIZE_T; /* force downstream failure on overflow */ - } - mem = internal_malloc(ms, req); - if (mem != 0 && calloc_must_clear(mem2chunk(mem))) - memset(mem, 0, req); - return mem; -} - -void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { - if (oldmem == 0) - return mspace_malloc(msp, bytes); -#ifdef REALLOC_ZERO_BYTES_FREES - if (bytes == 0) { - mspace_free(msp, oldmem); - return 0; - } -#endif /* REALLOC_ZERO_BYTES_FREES */ - else { -#if FOOTERS - mchunkptr p = mem2chunk(oldmem); - mstate ms = get_mstate_for(p); -#else /* FOOTERS */ - mstate ms = (mstate)msp; -#endif /* FOOTERS */ - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return internal_realloc(ms, oldmem, bytes); - } -} - -void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return internal_memalign(ms, alignment, bytes); -} - -void** mspace_independent_calloc(mspace msp, size_t n_elements, - size_t elem_size, void* chunks[]) { - size_t sz = elem_size; /* serves as 1-element array */ - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return ialloc(ms, n_elements, &sz, 3, chunks); -} - -void** mspace_independent_comalloc(mspace msp, size_t n_elements, - size_t sizes[], void* chunks[]) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - return 0; - } - return ialloc(ms, n_elements, sizes, 0, chunks); -} - -int mspace_trim(mspace msp, size_t pad) { - int result = 0; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - if (!PREACTION(ms)) { - result = sys_trim(ms, pad); - POSTACTION(ms); - } - } - else { - USAGE_ERROR_ACTION(ms,ms); - } - return result; -} - -void mspace_malloc_stats(mspace msp) { - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - internal_malloc_stats(ms); - } - else { - USAGE_ERROR_ACTION(ms,ms); - } -} - -size_t mspace_footprint(mspace msp) { - size_t result; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - result = ms->footprint; - } - USAGE_ERROR_ACTION(ms,ms); - return result; -} - - -size_t mspace_max_footprint(mspace msp) { - size_t result; - mstate ms = (mstate)msp; - if (ok_magic(ms)) { - result = ms->max_footprint; - } - USAGE_ERROR_ACTION(ms,ms); - return result; -} - - -#if !NO_MALLINFO -struct mallinfo mspace_mallinfo(mspace msp) { - mstate ms = (mstate)msp; - if (!ok_magic(ms)) { - USAGE_ERROR_ACTION(ms,ms); - } - return internal_mallinfo(ms); -} -#endif /* NO_MALLINFO */ - -int mspace_mallopt(int param_number, int value) { - return change_mparam(param_number, value); -} - -#endif /* MSPACES */ - -/* -------------------- Alternative MORECORE functions ------------------- */ - -/* - Guidelines for creating a custom version of MORECORE: - - * For best performance, MORECORE should allocate in multiples of pagesize. - * MORECORE may allocate more memory than requested. (Or even less, - but this will usually result in a malloc failure.) - * MORECORE must not allocate memory when given argument zero, but - instead return one past the end address of memory from previous - nonzero call. - * For best performance, consecutive calls to MORECORE with positive - arguments should return increasing addresses, indicating that - space has been contiguously extended. - * Even though consecutive calls to MORECORE need not return contiguous - addresses, it must be OK for malloc'ed chunks to span multiple - regions in those cases where they do happen to be contiguous. - * MORECORE need not handle negative arguments -- it may instead - just return MFAIL when given negative arguments. - Negative arguments are always multiples of pagesize. MORECORE - must not misinterpret negative args as large positive unsigned - args. You can suppress all such calls from even occurring by defining - MORECORE_CANNOT_TRIM, - - As an example alternative MORECORE, here is a custom allocator - kindly contributed for pre-OSX macOS. It uses virtually but not - necessarily physically contiguous non-paged memory (locked in, - present and won't get swapped out). You can use it by uncommenting - this section, adding some #includes, and setting up the appropriate - defines above: - - #define MORECORE osMoreCore - - There is also a shutdown routine that should somehow be called for - cleanup upon program exit. - - #define MAX_POOL_ENTRIES 100 - #define MINIMUM_MORECORE_SIZE (64 * 1024U) - static int next_os_pool; - void *our_os_pools[MAX_POOL_ENTRIES]; - - void *osMoreCore(int size) - { - void *ptr = 0; - static void *sbrk_top = 0; - - if (size > 0) - { - if (size < MINIMUM_MORECORE_SIZE) - size = MINIMUM_MORECORE_SIZE; - if (CurrentExecutionLevel() == kTaskLevel) - ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); - if (ptr == 0) - { - return (void *) MFAIL; - } - // save ptrs so they can be freed during cleanup - our_os_pools[next_os_pool] = ptr; - next_os_pool++; - ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); - sbrk_top = (char *) ptr + size; - return ptr; - } - else if (size < 0) - { - // we don't currently support shrink behavior - return (void *) MFAIL; - } - else - { - return sbrk_top; - } - } - - // cleanup any allocated memory pools - // called as last thing before shutting down driver - - void osCleanupMem(void) - { - void **ptr; - - for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) - if (*ptr) - { - PoolDeallocate(*ptr); - *ptr = 0; - } - } - -*/ - - -/* ----------------------------------------------------------------------- -History: - V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) - * Add max_footprint functions - * Ensure all appropriate literals are size_t - * Fix conditional compilation problem for some #define settings - * Avoid concatenating segments with the one provided - in create_mspace_with_base - * Rename some variables to avoid compiler shadowing warnings - * Use explicit lock initialization. - * Better handling of sbrk interference. - * Simplify and fix segment insertion, trimming and mspace_destroy - * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x - * Thanks especially to Dennis Flanagan for help on these. - - V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) - * Fix memalign brace error. - - V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) - * Fix improper #endif nesting in C++ - * Add explicit casts needed for C++ - - V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) - * Use trees for large bins - * Support mspaces - * Use segments to unify sbrk-based and mmap-based system allocation, - removing need for emulation on most platforms without sbrk. - * Default safety checks - * Optional footer checks. Thanks to William Robertson for the idea. - * Internal code refactoring - * Incorporate suggestions and platform-specific changes. - Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, - Aaron Bachmann, Emery Berger, and others. - * Speed up non-fastbin processing enough to remove fastbins. - * Remove useless cfree() to avoid conflicts with other apps. - * Remove internal memcpy, memset. Compilers handle builtins better. - * Remove some options that no one ever used and rename others. - - V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) - * Fix malloc_state bitmap array misdeclaration - - V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) - * Allow tuning of FIRST_SORTED_BIN_SIZE - * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. - * Better detection and support for non-contiguousness of MORECORE. - Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger - * Bypass most of malloc if no frees. Thanks To Emery Berger. - * Fix freeing of old top non-contiguous chunk im sysmalloc. - * Raised default trim and map thresholds to 256K. - * Fix mmap-related #defines. Thanks to Lubos Lunak. - * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. - * Branch-free bin calculation - * Default trim and mmap thresholds now 256K. - - V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) - * Introduce independent_comalloc and independent_calloc. - Thanks to Michael Pachos for motivation and help. - * Make optional .h file available - * Allow > 2GB requests on 32bit systems. - * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. - Thanks also to Andreas Mueller <a.mueller at paradatec.de>, - and Anonymous. - * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for - helping test this.) - * memalign: check alignment arg - * realloc: don't try to shift chunks backwards, since this - leads to more fragmentation in some programs and doesn't - seem to help in any others. - * Collect all cases in malloc requiring system memory into sysmalloc - * Use mmap as backup to sbrk - * Place all internal state in malloc_state - * Introduce fastbins (although similar to 2.5.1) - * Many minor tunings and cosmetic improvements - * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK - * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS - Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. - * Include errno.h to support default failure action. - - V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) - * return null for negative arguments - * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> - * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' - (e.g. WIN32 platforms) - * Cleanup header file inclusion for WIN32 platforms - * Cleanup code to avoid Microsoft Visual C++ compiler complaints - * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing - memory allocation routines - * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) - * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to - usage of 'assert' in non-WIN32 code - * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to - avoid infinite loop - * Always call 'fREe()' rather than 'free()' - - V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) - * Fixed ordering problem with boundary-stamping - - V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) - * Added pvalloc, as recommended by H.J. Liu - * Added 64bit pointer support mainly from Wolfram Gloger - * Added anonymously donated WIN32 sbrk emulation - * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen - * malloc_extend_top: fix mask error that caused wastage after - foreign sbrks - * Add linux mremap support code from HJ Liu - - V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) - * Integrated most documentation with the code. - * Add support for mmap, with help from - Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Use last_remainder in more cases. - * Pack bins using idea from colin@nyx10.cs.du.edu + m->magic = mparams.magic; + init_bins(m); + if (is_global(m)) + init_top(m, (mchunkptr)tbase, tsize - TOP_FOOT_SIZE); + else { + /* Offset top by embedded malloc_state */ + mchunkptr mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) -TOP_FOOT_SIZE); + } + } + + else { + /* Try to merge with an existing segment */ + msegmentptr sp = &m->seg; + while (sp != 0 && tbase != sp->base + sp->size) + sp = sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + check_segment_merge(sp, tbase, tsize) && + (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag && + segment_holds(sp, m->top)) { /* append */ + sp->size += tsize; + init_top(m, m->top, m->topsize + tsize); + } + else { + if (tbase < m->least_addr) + m->least_addr = tbase; + sp = &m->seg; + while (sp != 0 && sp->base != tbase + tsize) + sp = sp->next; + if (sp != 0 && + !is_extern_segment(sp) && + check_segment_merge(sp, tbase, tsize) && + (get_segment_flags(sp) & IS_MMAPPED_BIT) == mmap_flag) { + char* oldbase = sp->base; + sp->base = tbase; + sp->size += tsize; + return prepend_alloc(m, tbase, oldbase, nb); + } + else + add_segment(m, tbase, tsize, mmap_flag); + } + } + + if (nb < m->topsize) { /* Allocate from new or extended top space */ + size_t rsize = m->topsize -= nb; + mchunkptr p = m->top; + mchunkptr r = m->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(m, p, nb); + check_top_chunk(m, m->top); + check_malloced_chunk(m, chunk2mem(p), nb); + return chunk2mem(p); + } + } + + MALLOC_FAILURE_ACTION; + return 0; +} + +/* ----------------------- system deallocation -------------------------- */ + +/* Unmap and unlink any mmapped segments that don't contain used chunks */ +static size_t release_unused_segments(mstate m) { + size_t released = 0; + msegmentptr pred = &m->seg; + msegmentptr sp = pred->next; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + msegmentptr next = sp->next; + if (is_mmapped_segment(sp) && !is_extern_segment(sp)) { + mchunkptr p = align_as_chunk(base); + size_t psize = chunksize(p); + /* Can unmap if first chunk holds entire segment and not pinned */ + if (!cinuse(p) && (char*)p + psize >= base + size - TOP_FOOT_SIZE) { + tchunkptr tp = (tchunkptr)p; + assert(segment_holds(sp, (char*)sp)); + if (p == m->dv) { + m->dv = 0; + m->dvsize = 0; + } + else { + unlink_large_chunk(m, tp); + } + if (CALL_MUNMAP(base, size) == 0) { + released += size; + m->footprint -= size; + /* unlink obsoleted record */ + sp = pred; + sp->next = next; + } + else { /* back out if cannot unmap */ + insert_large_chunk(m, tp, psize); + } + } + } + pred = sp; + sp = next; + } + return released; +} + +static int sys_trim(mstate m, size_t pad) { + size_t released = 0; + if (pad < MAX_REQUEST && is_initialized(m)) { + pad += TOP_FOOT_SIZE; /* ensure enough room for segment overhead */ + + if (m->topsize > pad) { + /* Shrink top space in granularity-size units, keeping at least one */ + size_t unit = mparams.granularity; + size_t extra = ((m->topsize - pad + (unit - SIZE_T_ONE)) / unit - + SIZE_T_ONE) * unit; + msegmentptr sp = segment_holding(m, (char*)m->top); + + if (!is_extern_segment(sp)) { + if (is_mmapped_segment(sp)) { + if (HAVE_MMAP && + sp->size >= extra && + !has_segment_link(m, sp)) { /* can't shrink if pinned */ + size_t newsize = sp->size - extra; + /* Prefer mremap, fall back to munmap */ + if ((CALL_MREMAP(sp->base, sp->size, newsize, 0) != MFAIL) || + (CALL_MUNMAP(sp->base + newsize, extra) == 0)) { + released = extra; + } + } + } + else if (HAVE_MORECORE) { + if (extra >= HALF_MAX_SIZE_T) /* Avoid wrapping negative */ + extra = (HALF_MAX_SIZE_T) + SIZE_T_ONE - unit; + ACQUIRE_MORECORE_LOCK(); + { + /* Make sure end of memory is where we last set it. */ + char* old_br = (char*)(CALL_MORECORE(0)); + if (old_br == sp->base + sp->size) { + char* rel_br = (char*)(CALL_MORECORE(-extra)); + char* new_br = (char*)(CALL_MORECORE(0)); + if (rel_br != CMFAIL && new_br < old_br) + released = old_br - new_br; + } + } + RELEASE_MORECORE_LOCK(); + } + } + + if (released != 0) { + sp->size -= released; + m->footprint -= released; + init_top(m, m->top, m->topsize - released); + check_top_chunk(m, m->top); + } + } + + /* Unmap any unused mmapped segments */ + if (HAVE_MMAP) + released += release_unused_segments(m); + + /* On failure, disable autotrim to avoid repeated failed future calls */ + if (released == 0) + m->trim_check = MAX_SIZE_T; + } + + return (released != 0)? 1 : 0; +} + +/* ---------------------------- malloc support --------------------------- */ + +/* allocate a large request from the best fitting chunk in a treebin */ +static void* tmalloc_large(mstate m, size_t nb) { + tchunkptr v = 0; + size_t rsize = -nb; /* Unsigned negation */ + tchunkptr t; + bindex_t idx; + compute_tree_index(nb, idx); + + if ((t = *treebin_at(m, idx)) != 0) { + /* Traverse tree for this bin looking for node with size == nb */ + size_t sizebits = nb << leftshift_for_tree_index(idx); + tchunkptr rst = 0; /* The deepest untaken right subtree */ + for (;;) { + tchunkptr rt; + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + v = t; + if ((rsize = trem) == 0) + break; + } + rt = t->child[1]; + t = t->child[(sizebits >> (SIZE_T_BITSIZE-SIZE_T_ONE)) & 1]; + if (rt != 0 && rt != t) + rst = rt; + if (t == 0) { + t = rst; /* set t to least subtree holding sizes > nb */ + break; + } + sizebits <<= 1; + } + } + + if (t == 0 && v == 0) { /* set t to root of next non-empty treebin */ + binmap_t leftbits = left_bits(idx2bit(idx)) & m->treemap; + if (leftbits != 0) { + bindex_t i; + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + t = *treebin_at(m, i); + } + } + + while (t != 0) { /* find smallest of tree or subtree */ + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + t = leftmost_child(t); + } + + /* If dv is a better fit, return 0 so malloc will use it */ + if (v != 0 && rsize < (size_t)(m->dvsize - nb)) { + if (RTCHECK(ok_address(m, v))) { /* split */ + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + insert_chunk(m, r, rsize); + } + return chunk2mem(v); + } + } + CORRUPTION_ERROR_ACTION(m); + } + return 0; +} + +/* allocate a small request from the best fitting chunk in a treebin */ +static void* tmalloc_small(mstate m, size_t nb) { + tchunkptr t, v; + size_t rsize; + bindex_t i; + binmap_t leastbit = least_bit(m->treemap); + compute_bit2idx(leastbit, i); + + v = t = *treebin_at(m, i); + rsize = chunksize(t) - nb; + + while ((t = leftmost_child(t)) != 0) { + size_t trem = chunksize(t) - nb; + if (trem < rsize) { + rsize = trem; + v = t; + } + } + + if (RTCHECK(ok_address(m, v))) { + mchunkptr r = chunk_plus_offset(v, nb); + assert(chunksize(v) == rsize + nb); + if (RTCHECK(ok_next(v, r))) { + unlink_large_chunk(m, v); + if (rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(m, v, (rsize + nb)); + else { + set_size_and_pinuse_of_inuse_chunk(m, v, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(m, r, rsize); + } + return chunk2mem(v); + } + } + + CORRUPTION_ERROR_ACTION(m); + return 0; +} + +/* --------------------------- realloc support --------------------------- */ + +static void* internal_realloc(mstate m, void* oldmem, size_t bytes) { + if (bytes >= MAX_REQUEST) { + MALLOC_FAILURE_ACTION; + return 0; + } + if (!PREACTION(m)) { + mchunkptr oldp = mem2chunk(oldmem); + size_t oldsize = chunksize(oldp); + mchunkptr next = chunk_plus_offset(oldp, oldsize); + mchunkptr newp = 0; + void* extra = 0; + + /* Try to either shrink or extend into top. Else malloc-copy-free */ + + if (RTCHECK(ok_address(m, oldp) && ok_cinuse(oldp) && + ok_next(oldp, next) && ok_pinuse(next))) { + size_t nb = request2size(bytes); + if (is_mmapped(oldp)) + newp = mmap_resize(m, oldp, nb); + else if (oldsize >= nb) { /* already big enough */ + size_t rsize = oldsize - nb; + newp = oldp; + if (rsize >= MIN_CHUNK_SIZE) { + mchunkptr remainder = chunk_plus_offset(newp, nb); + set_inuse(m, newp, nb); + set_inuse(m, remainder, rsize); + extra = chunk2mem(remainder); + } + } + else if (next == m->top && oldsize + m->topsize > nb) { + /* Expand into top */ + size_t newsize = oldsize + m->topsize; + size_t newtopsize = newsize - nb; + mchunkptr newtop = chunk_plus_offset(oldp, nb); + set_inuse(m, oldp, nb); + newtop->head = newtopsize |PINUSE_BIT; + m->top = newtop; + m->topsize = newtopsize; + newp = oldp; + } + } + else { + USAGE_ERROR_ACTION(m, oldmem); + POSTACTION(m); + return 0; + } + + POSTACTION(m); + + if (newp != 0) { + if (extra != 0) { + internal_free(m, extra); + } + check_inuse_chunk(m, newp); + return chunk2mem(newp); + } + else { + void* newmem = internal_malloc(m, bytes); + if (newmem != 0) { + size_t oc = oldsize - overhead_for(oldp); + memcpy(newmem, oldmem, (oc < bytes)? oc : bytes); + internal_free(m, oldmem); + } + return newmem; + } + } + return 0; +} + +/* --------------------------- memalign support -------------------------- */ + +static void* internal_memalign(mstate m, size_t alignment, size_t bytes) { + if (alignment <= MALLOC_ALIGNMENT) /* Can just use malloc */ + return internal_malloc(m, bytes); + if (alignment < MIN_CHUNK_SIZE) /* must be at least a minimum chunk size */ + alignment = MIN_CHUNK_SIZE; + if ((alignment & (alignment-SIZE_T_ONE)) != 0) {/* Ensure a power of 2 */ + size_t a = MALLOC_ALIGNMENT << 1; + while (a < alignment) a <<= 1; + alignment = a; + } + + if (bytes >= MAX_REQUEST - alignment) { + if (m != 0) { /* Test isn't needed but avoids compiler warning */ + MALLOC_FAILURE_ACTION; + } + } + else { + size_t nb = request2size(bytes); + size_t req = nb + alignment + MIN_CHUNK_SIZE - CHUNK_OVERHEAD; + char* mem = (char*)internal_malloc(m, req); + if (mem != 0) { + void* leader = 0; + void* trailer = 0; + mchunkptr p = mem2chunk(mem); + + if (PREACTION(m)) return 0; + if ((((size_t)(mem)) % alignment) != 0) { /* misaligned */ + /* + Find an aligned spot inside chunk. Since we need to give + back leading space in a chunk of at least MIN_CHUNK_SIZE, if + the first calculation places us at a spot with less than + MIN_CHUNK_SIZE leader, we can move to the next aligned spot. + We've allocated enough total room so that this is always + possible. + */ + char* br = (char*)mem2chunk((size_t)(((size_t)(mem + + alignment - + SIZE_T_ONE)) & + -alignment)); + char* pos = ((size_t)(br - (char*)(p)) >= MIN_CHUNK_SIZE)? + br : br+alignment; + mchunkptr newp = (mchunkptr)pos; + size_t leadsize = pos - (char*)(p); + size_t newsize = chunksize(p) - leadsize; + + if (is_mmapped(p)) { /* For mmapped chunks, just adjust offset */ + newp->prev_foot = p->prev_foot + leadsize; + newp->head = (newsize|CINUSE_BIT); + } + else { /* Otherwise, give back leader, use the rest */ + set_inuse(m, newp, newsize); + set_inuse(m, p, leadsize); + leader = chunk2mem(p); + } + p = newp; + } + + /* Give back spare room at the end */ + if (!is_mmapped(p)) { + size_t size = chunksize(p); + if (size > nb + MIN_CHUNK_SIZE) { + size_t remainder_size = size - nb; + mchunkptr remainder = chunk_plus_offset(p, nb); + set_inuse(m, p, nb); + set_inuse(m, remainder, remainder_size); + trailer = chunk2mem(remainder); + } + } + + assert (chunksize(p) >= nb); + assert((((size_t)(chunk2mem(p))) % alignment) == 0); + check_inuse_chunk(m, p); + POSTACTION(m); + if (leader != 0) { + internal_free(m, leader); + } + if (trailer != 0) { + internal_free(m, trailer); + } + return chunk2mem(p); + } + } + return 0; +} + +/* ------------------------ comalloc/coalloc support --------------------- */ + +static void** ialloc(mstate m, + size_t n_elements, + size_t* sizes, + int opts, + void* chunks[]) { + /* + This provides common support for independent_X routines, handling + all of the combinations that can result. + + The opts arg has: + bit 0 set if all elements are same size (using sizes[0]) + bit 1 set if elements should be zeroed + */ + + size_t element_size; /* chunksize of each element, if all same */ + size_t contents_size; /* total size of elements */ + size_t array_size; /* request size of pointer array */ + void* mem; /* malloced aggregate space */ + mchunkptr p; /* corresponding chunk */ + size_t remainder_size; /* remaining bytes while splitting */ + void** marray; /* either "chunks" or malloced ptr array */ + mchunkptr array_chunk; /* chunk for malloced ptr array */ + flag_t was_enabled; /* to disable mmap */ + size_t size; + size_t i; + + /* compute array length, if needed */ + if (chunks != 0) { + if (n_elements == 0) + return chunks; /* nothing to do */ + marray = chunks; + array_size = 0; + } + else { + /* if empty req, must still return chunk representing empty array */ + if (n_elements == 0) + return (void**)internal_malloc(m, 0); + marray = 0; + array_size = request2size(n_elements * (sizeof(void*))); + } + + /* compute total element size */ + if (opts & 0x1) { /* all-same-size */ + element_size = request2size(*sizes); + contents_size = n_elements * element_size; + } + else { /* add up all the sizes */ + element_size = 0; + contents_size = 0; + for (i = 0; i != n_elements; ++i) + contents_size += request2size(sizes[i]); + } + + size = contents_size + array_size; + + /* + Allocate the aggregate chunk. First disable direct-mmapping so + malloc won't use it, since we would not be able to later + free/realloc space internal to a segregated mmap region. + */ + was_enabled = use_mmap(m); + disable_mmap(m); + mem = internal_malloc(m, size - CHUNK_OVERHEAD); + if (was_enabled) + enable_mmap(m); + if (mem == 0) + return 0; + + if (PREACTION(m)) return 0; + p = mem2chunk(mem); + remainder_size = chunksize(p); + + assert(!is_mmapped(p)); + + if (opts & 0x2) { /* optionally clear the elements */ + memset((size_t*)mem, 0, remainder_size - SIZE_T_SIZE - array_size); + } + + /* If not provided, allocate the pointer array as final part of chunk */ + if (marray == 0) { + size_t array_chunk_size; + array_chunk = chunk_plus_offset(p, contents_size); + array_chunk_size = remainder_size - contents_size; + marray = (void**) (chunk2mem(array_chunk)); + set_size_and_pinuse_of_inuse_chunk(m, array_chunk, array_chunk_size); + remainder_size = contents_size; + } + + /* split out elements */ + for (i = 0; ; ++i) { + marray[i] = chunk2mem(p); + if (i != n_elements-1) { + if (element_size != 0) + size = element_size; + else + size = request2size(sizes[i]); + remainder_size -= size; + set_size_and_pinuse_of_inuse_chunk(m, p, size); + p = chunk_plus_offset(p, size); + } + else { /* the final element absorbs any overallocation slop */ + set_size_and_pinuse_of_inuse_chunk(m, p, remainder_size); + break; + } + } + +#if DEBUG + if (marray != chunks) { + /* final element must have exactly exhausted chunk */ + if (element_size != 0) { + assert(remainder_size == element_size); + } + else { + assert(remainder_size == request2size(sizes[i])); + } + check_inuse_chunk(m, mem2chunk(marray)); + } + for (i = 0; i != n_elements; ++i) + check_inuse_chunk(m, mem2chunk(marray[i])); + +#endif /* DEBUG */ + + POSTACTION(m); + return marray; +} + + +/* -------------------------- public routines ---------------------------- */ + +#if !ONLY_MSPACES + +void* dlmalloc(size_t bytes) { + /* + Basic algorithm: + If a small request (< 256 bytes minus per-chunk overhead): + 1. If one exists, use a remainderless chunk in associated smallbin. + (Remainderless means that there are too few excess bytes to + represent as a chunk.) + 2. If it is big enough, use the dv chunk, which is normally the + chunk adjacent to the one used for the most recent small request. + 3. If one exists, split the smallest available chunk in a bin, + saving remainder in dv. + 4. If it is big enough, use the top chunk. + 5. If available, get memory from system and use it + Otherwise, for a large request: + 1. Find the smallest available binned chunk that fits, and use it + if it is better fitting than dv chunk, splitting if necessary. + 2. If better fitting than any binned chunk, use the dv chunk. + 3. If it is big enough, use the top chunk. + 4. If request size >= mmap threshold, try to directly mmap this chunk. + 5. If available, get memory from system and use it + + The ugly goto's here ensure that postaction occurs along all paths. + */ + + if (!PREACTION(gm)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = gm->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(gm, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(gm, b, p, idx); + set_inuse_and_pinuse(gm, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb > gm->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(gm, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(gm, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(gm, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(gm, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (gm->treemap != 0 && (mem = tmalloc_small(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (gm->treemap != 0 && (mem = tmalloc_large(gm, nb)) != 0) { + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + } + + if (nb <= gm->dvsize) { + size_t rsize = gm->dvsize - nb; + mchunkptr p = gm->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = gm->dv = chunk_plus_offset(p, nb); + gm->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + } + else { /* exhaust dv */ + size_t dvs = gm->dvsize; + gm->dvsize = 0; + gm->dv = 0; + set_inuse_and_pinuse(gm, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + else if (nb < gm->topsize) { /* Split top */ + size_t rsize = gm->topsize -= nb; + mchunkptr p = gm->top; + mchunkptr r = gm->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(gm, p, nb); + mem = chunk2mem(p); + check_top_chunk(gm, gm->top); + check_malloced_chunk(gm, mem, nb); + goto postaction; + } + + mem = sys_alloc(gm, nb); + + postaction: + POSTACTION(gm); + return mem; + } + + return 0; +} + +void dlfree(void* mem) { + /* + Consolidate freed chunks with preceding or succeeding bordering + free chunks, if they exist, and then place in a bin. Intermixed + with special cases for top, dv, mmapped chunks, and usage errors. + */ + + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } +#else /* FOOTERS */ +#define fm gm +#endif /* FOOTERS */ + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if ((prevsize & IS_MMAPPED_BIT) != 0) { + prevsize &= ~IS_MMAPPED_BIT; + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + insert_chunk(fm, p, psize); + check_free_chunk(fm, p); + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +#if !FOOTERS +#undef fm +#endif /* FOOTERS */ +} + +void* dlcalloc(size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = dlmalloc(req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* dlrealloc(void* oldmem, size_t bytes) { + if (oldmem == 0) + return dlmalloc(bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + dlfree(oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if ! FOOTERS + mstate m = gm; +#else /* FOOTERS */ + mstate m = get_mstate_for(mem2chunk(oldmem)); + if (!ok_magic(m)) { + USAGE_ERROR_ACTION(m, oldmem); + return 0; + } +#endif /* FOOTERS */ + return internal_realloc(m, oldmem, bytes); + } +} + +void* dlmemalign(size_t alignment, size_t bytes) { + return internal_memalign(gm, alignment, bytes); +} + +void** dlindependent_calloc(size_t n_elements, size_t elem_size, + void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + return ialloc(gm, n_elements, &sz, 3, chunks); +} + +void** dlindependent_comalloc(size_t n_elements, size_t sizes[], + void* chunks[]) { + return ialloc(gm, n_elements, sizes, 0, chunks); +} + +void* dlvalloc(size_t bytes) { + size_t pagesz; + init_mparams(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, bytes); +} + +void* dlpvalloc(size_t bytes) { + size_t pagesz; + init_mparams(); + pagesz = mparams.page_size; + return dlmemalign(pagesz, (bytes + pagesz - SIZE_T_ONE) & ~(pagesz - SIZE_T_ONE)); +} + +int dlmalloc_trim(size_t pad) { + int result = 0; + if (!PREACTION(gm)) { + result = sys_trim(gm, pad); + POSTACTION(gm); + } + return result; +} + +size_t dlmalloc_footprint(void) { + return gm->footprint; +} + +size_t dlmalloc_max_footprint(void) { + return gm->max_footprint; +} + +#if !NO_MALLINFO +struct mallinfo dlmallinfo(void) { + return internal_mallinfo(gm); +} +#endif /* NO_MALLINFO */ + +void dlmalloc_stats() { + internal_malloc_stats(gm); +} + +size_t dlmalloc_usable_size(void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); + if (cinuse(p)) + return chunksize(p) - overhead_for(p); + } + return 0; +} + +int dlmallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* !ONLY_MSPACES */ + +/* ----------------------------- user mspaces ---------------------------- */ + +#if MSPACES + +static mstate init_user_mstate(char* tbase, size_t tsize) { + size_t msize = pad_request(sizeof(struct malloc_state)); + mchunkptr mn; + mchunkptr msp = align_as_chunk(tbase); + mstate m = (mstate)(chunk2mem(msp)); + memset(m, 0, msize); + INITIAL_LOCK(&m->mutex); + msp->head = (msize|PINUSE_BIT|CINUSE_BIT); + m->seg.base = m->least_addr = tbase; + m->seg.size = m->footprint = m->max_footprint = tsize; + m->magic = mparams.magic; + m->mflags = mparams.default_mflags; + disable_contiguous(m); + init_bins(m); + mn = next_chunk(mem2chunk(m)); + init_top(m, mn, (size_t)((tbase + tsize) - (char*)mn) - TOP_FOOT_SIZE); + check_top_chunk(m, m->top); + return m; +} + +mspace create_mspace(size_t capacity, int locked) { + mstate m = 0; + size_t msize = pad_request(sizeof(struct malloc_state)); + init_mparams(); /* Ensure pagesize etc initialized */ + + if (capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + size_t rs = ((capacity == 0)? mparams.granularity : + (capacity + TOP_FOOT_SIZE + msize)); + size_t tsize = granularity_align(rs); + char* tbase = (char*)(CALL_MMAP(tsize)); + if (tbase != CMFAIL) { + m = init_user_mstate(tbase, tsize); + set_segment_flags(&m->seg, IS_MMAPPED_BIT); + set_lock(m, locked); + } + } + return (mspace)m; +} + +mspace create_mspace_with_base(void* base, size_t capacity, int locked) { + mstate m = 0; + size_t msize = pad_request(sizeof(struct malloc_state)); + init_mparams(); /* Ensure pagesize etc initialized */ + + if (capacity > msize + TOP_FOOT_SIZE && + capacity < (size_t) -(msize + TOP_FOOT_SIZE + mparams.page_size)) { + m = init_user_mstate((char*)base, capacity); + set_segment_flags(&m->seg, EXTERN_BIT); + set_lock(m, locked); + } + return (mspace)m; +} + +size_t destroy_mspace(mspace msp) { + size_t freed = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + msegmentptr sp = &ms->seg; + while (sp != 0) { + char* base = sp->base; + size_t size = sp->size; + flag_t flag = get_segment_flags(sp); + sp = sp->next; + if ((flag & IS_MMAPPED_BIT) && !(flag & EXTERN_BIT) && + CALL_MUNMAP(base, size) == 0) + freed += size; + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return freed; +} + +/* + mspace versions of routines are near-clones of the global + versions. This is not so nice but better than the alternatives. +*/ + + +void* mspace_malloc(mspace msp, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (!PREACTION(ms)) { + void* mem; + size_t nb; + if (bytes <= MAX_SMALL_REQUEST) { + bindex_t idx; + binmap_t smallbits; + nb = (bytes < MIN_REQUEST)? MIN_CHUNK_SIZE : pad_request(bytes); + idx = small_index(nb); + smallbits = ms->smallmap >> idx; + + if ((smallbits & 0x3U) != 0) { /* Remainderless fit to a smallbin. */ + mchunkptr b, p; + idx += ~smallbits & 1; /* Uses next bin if idx empty */ + b = smallbin_at(ms, idx); + p = b->fd; + assert(chunksize(p) == small_index2size(idx)); + unlink_first_small_chunk(ms, b, p, idx); + set_inuse_and_pinuse(ms, p, small_index2size(idx)); + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb > ms->dvsize) { + if (smallbits != 0) { /* Use chunk in next nonempty smallbin */ + mchunkptr b, p, r; + size_t rsize; + bindex_t i; + binmap_t leftbits = (smallbits << idx) & left_bits(idx2bit(idx)); + binmap_t leastbit = least_bit(leftbits); + compute_bit2idx(leastbit, i); + b = smallbin_at(ms, i); + p = b->fd; + assert(chunksize(p) == small_index2size(i)); + unlink_first_small_chunk(ms, b, p, i); + rsize = small_index2size(i) - nb; + /* Fit here cannot be remainderless if 4byte sizes */ + if (SIZE_T_SIZE != 4 && rsize < MIN_CHUNK_SIZE) + set_inuse_and_pinuse(ms, p, small_index2size(i)); + else { + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + r = chunk_plus_offset(p, nb); + set_size_and_pinuse_of_free_chunk(r, rsize); + replace_dv(ms, r, rsize); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (ms->treemap != 0 && (mem = tmalloc_small(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + } + else if (bytes >= MAX_REQUEST) + nb = MAX_SIZE_T; /* Too big to allocate. Force failure (in sys alloc) */ + else { + nb = pad_request(bytes); + if (ms->treemap != 0 && (mem = tmalloc_large(ms, nb)) != 0) { + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + } + + if (nb <= ms->dvsize) { + size_t rsize = ms->dvsize - nb; + mchunkptr p = ms->dv; + if (rsize >= MIN_CHUNK_SIZE) { /* split dv */ + mchunkptr r = ms->dv = chunk_plus_offset(p, nb); + ms->dvsize = rsize; + set_size_and_pinuse_of_free_chunk(r, rsize); + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + } + else { /* exhaust dv */ + size_t dvs = ms->dvsize; + ms->dvsize = 0; + ms->dv = 0; + set_inuse_and_pinuse(ms, p, dvs); + } + mem = chunk2mem(p); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + else if (nb < ms->topsize) { /* Split top */ + size_t rsize = ms->topsize -= nb; + mchunkptr p = ms->top; + mchunkptr r = ms->top = chunk_plus_offset(p, nb); + r->head = rsize | PINUSE_BIT; + set_size_and_pinuse_of_inuse_chunk(ms, p, nb); + mem = chunk2mem(p); + check_top_chunk(ms, ms->top); + check_malloced_chunk(ms, mem, nb); + goto postaction; + } + + mem = sys_alloc(ms, nb); + + postaction: + POSTACTION(ms); + return mem; + } + + return 0; +} + +void mspace_free(mspace msp, void* mem) { + if (mem != 0) { + mchunkptr p = mem2chunk(mem); +#if FOOTERS + mstate fm = get_mstate_for(p); +#else /* FOOTERS */ + mstate fm = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(fm)) { + USAGE_ERROR_ACTION(fm, p); + return; + } + if (!PREACTION(fm)) { + check_inuse_chunk(fm, p); + if (RTCHECK(ok_address(fm, p) && ok_cinuse(p))) { + size_t psize = chunksize(p); + mchunkptr next = chunk_plus_offset(p, psize); + if (!pinuse(p)) { + size_t prevsize = p->prev_foot; + if ((prevsize & IS_MMAPPED_BIT) != 0) { + prevsize &= ~IS_MMAPPED_BIT; + psize += prevsize + MMAP_FOOT_PAD; + if (CALL_MUNMAP((char*)p - prevsize, psize) == 0) + fm->footprint -= psize; + goto postaction; + } + else { + mchunkptr prev = chunk_minus_offset(p, prevsize); + psize += prevsize; + p = prev; + if (RTCHECK(ok_address(fm, prev))) { /* consolidate backward */ + if (p != fm->dv) { + unlink_chunk(fm, p, prevsize); + } + else if ((next->head & INUSE_BITS) == INUSE_BITS) { + fm->dvsize = psize; + set_free_with_pinuse(p, psize, next); + goto postaction; + } + } + else + goto erroraction; + } + } + + if (RTCHECK(ok_next(p, next) && ok_pinuse(next))) { + if (!cinuse(next)) { /* consolidate forward */ + if (next == fm->top) { + size_t tsize = fm->topsize += psize; + fm->top = p; + p->head = tsize | PINUSE_BIT; + if (p == fm->dv) { + fm->dv = 0; + fm->dvsize = 0; + } + if (should_trim(fm, tsize)) + sys_trim(fm, 0); + goto postaction; + } + else if (next == fm->dv) { + size_t dsize = fm->dvsize += psize; + fm->dv = p; + set_size_and_pinuse_of_free_chunk(p, dsize); + goto postaction; + } + else { + size_t nsize = chunksize(next); + psize += nsize; + unlink_chunk(fm, next, nsize); + set_size_and_pinuse_of_free_chunk(p, psize); + if (p == fm->dv) { + fm->dvsize = psize; + goto postaction; + } + } + } + else + set_free_with_pinuse(p, psize, next); + insert_chunk(fm, p, psize); + check_free_chunk(fm, p); + goto postaction; + } + } + erroraction: + USAGE_ERROR_ACTION(fm, p); + postaction: + POSTACTION(fm); + } + } +} + +void* mspace_calloc(mspace msp, size_t n_elements, size_t elem_size) { + void* mem; + size_t req = 0; + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + if (n_elements != 0) { + req = n_elements * elem_size; + if (((n_elements | elem_size) & ~(size_t)0xffff) && + (req / n_elements != elem_size)) + req = MAX_SIZE_T; /* force downstream failure on overflow */ + } + mem = internal_malloc(ms, req); + if (mem != 0 && calloc_must_clear(mem2chunk(mem))) + memset(mem, 0, req); + return mem; +} + +void* mspace_realloc(mspace msp, void* oldmem, size_t bytes) { + if (oldmem == 0) + return mspace_malloc(msp, bytes); +#ifdef REALLOC_ZERO_BYTES_FREES + if (bytes == 0) { + mspace_free(msp, oldmem); + return 0; + } +#endif /* REALLOC_ZERO_BYTES_FREES */ + else { +#if FOOTERS + mchunkptr p = mem2chunk(oldmem); + mstate ms = get_mstate_for(p); +#else /* FOOTERS */ + mstate ms = (mstate)msp; +#endif /* FOOTERS */ + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_realloc(ms, oldmem, bytes); + } +} + +void* mspace_memalign(mspace msp, size_t alignment, size_t bytes) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return internal_memalign(ms, alignment, bytes); +} + +void** mspace_independent_calloc(mspace msp, size_t n_elements, + size_t elem_size, void* chunks[]) { + size_t sz = elem_size; /* serves as 1-element array */ + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, &sz, 3, chunks); +} + +void** mspace_independent_comalloc(mspace msp, size_t n_elements, + size_t sizes[], void* chunks[]) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + return 0; + } + return ialloc(ms, n_elements, sizes, 0, chunks); +} + +int mspace_trim(mspace msp, size_t pad) { + int result = 0; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + if (!PREACTION(ms)) { + result = sys_trim(ms, pad); + POSTACTION(ms); + } + } + else { + USAGE_ERROR_ACTION(ms,ms); + } + return result; +} + +void mspace_malloc_stats(mspace msp) { + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + internal_malloc_stats(ms); + } + else { + USAGE_ERROR_ACTION(ms,ms); + } +} + +size_t mspace_footprint(mspace msp) { + size_t result; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->footprint; + } + USAGE_ERROR_ACTION(ms,ms); + return result; +} + + +size_t mspace_max_footprint(mspace msp) { + size_t result; + mstate ms = (mstate)msp; + if (ok_magic(ms)) { + result = ms->max_footprint; + } + USAGE_ERROR_ACTION(ms,ms); + return result; +} + + +#if !NO_MALLINFO +struct mallinfo mspace_mallinfo(mspace msp) { + mstate ms = (mstate)msp; + if (!ok_magic(ms)) { + USAGE_ERROR_ACTION(ms,ms); + } + return internal_mallinfo(ms); +} +#endif /* NO_MALLINFO */ + +int mspace_mallopt(int param_number, int value) { + return change_mparam(param_number, value); +} + +#endif /* MSPACES */ + +/* -------------------- Alternative MORECORE functions ------------------- */ + +/* + Guidelines for creating a custom version of MORECORE: + + * For best performance, MORECORE should allocate in multiples of pagesize. + * MORECORE may allocate more memory than requested. (Or even less, + but this will usually result in a malloc failure.) + * MORECORE must not allocate memory when given argument zero, but + instead return one past the end address of memory from previous + nonzero call. + * For best performance, consecutive calls to MORECORE with positive + arguments should return increasing addresses, indicating that + space has been contiguously extended. + * Even though consecutive calls to MORECORE need not return contiguous + addresses, it must be OK for malloc'ed chunks to span multiple + regions in those cases where they do happen to be contiguous. + * MORECORE need not handle negative arguments -- it may instead + just return MFAIL when given negative arguments. + Negative arguments are always multiples of pagesize. MORECORE + must not misinterpret negative args as large positive unsigned + args. You can suppress all such calls from even occurring by defining + MORECORE_CANNOT_TRIM, + + As an example alternative MORECORE, here is a custom allocator + kindly contributed for pre-OSX macOS. It uses virtually but not + necessarily physically contiguous non-paged memory (locked in, + present and won't get swapped out). You can use it by uncommenting + this section, adding some #includes, and setting up the appropriate + defines above: + + #define MORECORE osMoreCore + + There is also a shutdown routine that should somehow be called for + cleanup upon program exit. + + #define MAX_POOL_ENTRIES 100 + #define MINIMUM_MORECORE_SIZE (64 * 1024U) + static int next_os_pool; + void *our_os_pools[MAX_POOL_ENTRIES]; + + void *osMoreCore(int size) + { + void *ptr = 0; + static void *sbrk_top = 0; + + if (size > 0) + { + if (size < MINIMUM_MORECORE_SIZE) + size = MINIMUM_MORECORE_SIZE; + if (CurrentExecutionLevel() == kTaskLevel) + ptr = PoolAllocateResident(size + RM_PAGE_SIZE, 0); + if (ptr == 0) + { + return (void *) MFAIL; + } + // save ptrs so they can be freed during cleanup + our_os_pools[next_os_pool] = ptr; + next_os_pool++; + ptr = (void *) ((((size_t) ptr) + RM_PAGE_MASK) & ~RM_PAGE_MASK); + sbrk_top = (char *) ptr + size; + return ptr; + } + else if (size < 0) + { + // we don't currently support shrink behavior + return (void *) MFAIL; + } + else + { + return sbrk_top; + } + } + + // cleanup any allocated memory pools + // called as last thing before shutting down driver + + void osCleanupMem(void) + { + void **ptr; + + for (ptr = our_os_pools; ptr < &our_os_pools[MAX_POOL_ENTRIES]; ptr++) + if (*ptr) + { + PoolDeallocate(*ptr); + *ptr = 0; + } + } + +*/ + + +/* ----------------------------------------------------------------------- +History: + V2.8.3 Thu Sep 22 11:16:32 2005 Doug Lea (dl at gee) + * Add max_footprint functions + * Ensure all appropriate literals are size_t + * Fix conditional compilation problem for some #define settings + * Avoid concatenating segments with the one provided + in create_mspace_with_base + * Rename some variables to avoid compiler shadowing warnings + * Use explicit lock initialization. + * Better handling of sbrk interference. + * Simplify and fix segment insertion, trimming and mspace_destroy + * Reinstate REALLOC_ZERO_BYTES_FREES option from 2.7.x + * Thanks especially to Dennis Flanagan for help on these. + + V2.8.2 Sun Jun 12 16:01:10 2005 Doug Lea (dl at gee) + * Fix memalign brace error. + + V2.8.1 Wed Jun 8 16:11:46 2005 Doug Lea (dl at gee) + * Fix improper #endif nesting in C++ + * Add explicit casts needed for C++ + + V2.8.0 Mon May 30 14:09:02 2005 Doug Lea (dl at gee) + * Use trees for large bins + * Support mspaces + * Use segments to unify sbrk-based and mmap-based system allocation, + removing need for emulation on most platforms without sbrk. + * Default safety checks + * Optional footer checks. Thanks to William Robertson for the idea. + * Internal code refactoring + * Incorporate suggestions and platform-specific changes. + Thanks to Dennis Flanagan, Colin Plumb, Niall Douglas, + Aaron Bachmann, Emery Berger, and others. + * Speed up non-fastbin processing enough to remove fastbins. + * Remove useless cfree() to avoid conflicts with other apps. + * Remove internal memcpy, memset. Compilers handle builtins better. + * Remove some options that no one ever used and rename others. + + V2.7.2 Sat Aug 17 09:07:30 2002 Doug Lea (dl at gee) + * Fix malloc_state bitmap array misdeclaration + + V2.7.1 Thu Jul 25 10:58:03 2002 Doug Lea (dl at gee) + * Allow tuning of FIRST_SORTED_BIN_SIZE + * Use PTR_UINT as type for all ptr->int casts. Thanks to John Belmonte. + * Better detection and support for non-contiguousness of MORECORE. + Thanks to Andreas Mueller, Conal Walsh, and Wolfram Gloger + * Bypass most of malloc if no frees. Thanks To Emery Berger. + * Fix freeing of old top non-contiguous chunk im sysmalloc. + * Raised default trim and map thresholds to 256K. + * Fix mmap-related #defines. Thanks to Lubos Lunak. + * Fix copy macros; added LACKS_FCNTL_H. Thanks to Neal Walfield. + * Branch-free bin calculation + * Default trim and mmap thresholds now 256K. + + V2.7.0 Sun Mar 11 14:14:06 2001 Doug Lea (dl at gee) + * Introduce independent_comalloc and independent_calloc. + Thanks to Michael Pachos for motivation and help. + * Make optional .h file available + * Allow > 2GB requests on 32bit systems. + * new WIN32 sbrk, mmap, munmap, lock code from <Walter@GeNeSys-e.de>. + Thanks also to Andreas Mueller <a.mueller at paradatec.de>, + and Anonymous. + * Allow override of MALLOC_ALIGNMENT (Thanks to Ruud Waij for + helping test this.) + * memalign: check alignment arg + * realloc: don't try to shift chunks backwards, since this + leads to more fragmentation in some programs and doesn't + seem to help in any others. + * Collect all cases in malloc requiring system memory into sysmalloc + * Use mmap as backup to sbrk + * Place all internal state in malloc_state + * Introduce fastbins (although similar to 2.5.1) + * Many minor tunings and cosmetic improvements + * Introduce USE_PUBLIC_MALLOC_WRAPPERS, USE_MALLOC_LOCK + * Introduce MALLOC_FAILURE_ACTION, MORECORE_CONTIGUOUS + Thanks to Tony E. Bennett <tbennett@nvidia.com> and others. + * Include errno.h to support default failure action. + + V2.6.6 Sun Dec 5 07:42:19 1999 Doug Lea (dl at gee) + * return null for negative arguments + * Added Several WIN32 cleanups from Martin C. Fong <mcfong at yahoo.com> + * Add 'LACKS_SYS_PARAM_H' for those systems without 'sys/param.h' + (e.g. WIN32 platforms) + * Cleanup header file inclusion for WIN32 platforms + * Cleanup code to avoid Microsoft Visual C++ compiler complaints + * Add 'USE_DL_PREFIX' to quickly allow co-existence with existing + memory allocation routines + * Set 'malloc_getpagesize' for WIN32 platforms (needs more work) + * Use 'assert' rather than 'ASSERT' in WIN32 code to conform to + usage of 'assert' in non-WIN32 code + * Improve WIN32 'sbrk()' emulation's 'findRegion()' routine to + avoid infinite loop + * Always call 'fREe()' rather than 'free()' + + V2.6.5 Wed Jun 17 15:57:31 1998 Doug Lea (dl at gee) + * Fixed ordering problem with boundary-stamping + + V2.6.3 Sun May 19 08:17:58 1996 Doug Lea (dl at gee) + * Added pvalloc, as recommended by H.J. Liu + * Added 64bit pointer support mainly from Wolfram Gloger + * Added anonymously donated WIN32 sbrk emulation + * Malloc, calloc, getpagesize: add optimizations from Raymond Nijssen + * malloc_extend_top: fix mask error that caused wastage after + foreign sbrks + * Add linux mremap support code from HJ Liu + + V2.6.2 Tue Dec 5 06:52:55 1995 Doug Lea (dl at gee) + * Integrated most documentation with the code. + * Add support for mmap, with help from + Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Use last_remainder in more cases. + * Pack bins using idea from colin@nyx10.cs.du.edu * Use ordered bins instead of best-fit threshold - * Eliminate block-local decls to simplify tracing and debugging. - * Support another case of realloc via move into top + * Eliminate block-local decls to simplify tracing and debugging. + * Support another case of realloc via move into top * Fix error occurring when initial sbrk_base not word-aligned. - * Rely on page size for units instead of SBRK_UNIT to - avoid surprises about sbrk alignment conventions. - * Add mallinfo, mallopt. Thanks to Raymond Nijssen - (raymond@es.ele.tue.nl) for the suggestion. - * Add `pad' argument to malloc_trim and top_pad mallopt parameter. - * More precautions for cases where other routines call sbrk, - courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). - * Added macros etc., allowing use in linux libc from - H.J. Lu (hjl@gnu.ai.mit.edu) - * Inverted this history list - - V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) - * Re-tuned and fixed to behave more nicely with V2.6.0 changes. - * Removed all preallocation code since under current scheme - the work required to undo bad preallocations exceeds - the work saved in good cases for most test programs. - * No longer use return list or unconsolidated bins since - no scheme using them consistently outperforms those that don't - given above changes. - * Use best fit for very large chunks to prevent some worst-cases. - * Added some support for debugging - - V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) - * Removed footers when chunks are in use. Thanks to - Paul Wilson (wilson@cs.texas.edu) for the suggestion. - - V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) - * Added malloc_trim, with help from Wolfram Gloger - (wmglo@Dent.MED.Uni-Muenchen.DE). - - V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) - - V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) - * realloc: try to expand in both directions - * malloc: swap order of clean-bin strategy; - * realloc: only conditionally expand backwards - * Try not to scavenge used bins - * Use bin counts as a guide to preallocation - * Occasionally bin return list chunks in first scan - * Add a few optimizations from colin@nyx10.cs.du.edu - - V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) - * faster bin computation & slightly different binning - * merged all consolidations to one part of malloc proper - (eliminating old malloc_find_space & malloc_clean_bin) - * Scan 2 returns chunks (not just 1) - * Propagate failure in realloc if malloc returns 0 - * Add stuff to allow compilation on non-ANSI compilers - from kpv@research.att.com - - V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) - * removed potential for odd address access in prev_chunk - * removed dependency on getpagesize.h - * misc cosmetics and a bit more internal documentation - * anticosmetics: mangled names in macros to evade debugger strangeness - * tested on sparc, hp-700, dec-mips, rs6000 - with gcc & native cc (hp, dec only) allowing - Detlefs & Zorn comparison study (in SIGPLAN Notices.) - - Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) - * Based loosely on libg++-1.2X malloc. (It retains some of the overall - structure of old version, but most details differ.) + * Rely on page size for units instead of SBRK_UNIT to + avoid surprises about sbrk alignment conventions. + * Add mallinfo, mallopt. Thanks to Raymond Nijssen + (raymond@es.ele.tue.nl) for the suggestion. + * Add `pad' argument to malloc_trim and top_pad mallopt parameter. + * More precautions for cases where other routines call sbrk, + courtesy of Wolfram Gloger (Gloger@lrz.uni-muenchen.de). + * Added macros etc., allowing use in linux libc from + H.J. Lu (hjl@gnu.ai.mit.edu) + * Inverted this history list + + V2.6.1 Sat Dec 2 14:10:57 1995 Doug Lea (dl at gee) + * Re-tuned and fixed to behave more nicely with V2.6.0 changes. + * Removed all preallocation code since under current scheme + the work required to undo bad preallocations exceeds + the work saved in good cases for most test programs. + * No longer use return list or unconsolidated bins since + no scheme using them consistently outperforms those that don't + given above changes. + * Use best fit for very large chunks to prevent some worst-cases. + * Added some support for debugging + + V2.6.0 Sat Nov 4 07:05:23 1995 Doug Lea (dl at gee) + * Removed footers when chunks are in use. Thanks to + Paul Wilson (wilson@cs.texas.edu) for the suggestion. + + V2.5.4 Wed Nov 1 07:54:51 1995 Doug Lea (dl at gee) + * Added malloc_trim, with help from Wolfram Gloger + (wmglo@Dent.MED.Uni-Muenchen.DE). + + V2.5.3 Tue Apr 26 10:16:01 1994 Doug Lea (dl at g) -*/ + V2.5.2 Tue Apr 5 16:20:40 1994 Doug Lea (dl at g) + * realloc: try to expand in both directions + * malloc: swap order of clean-bin strategy; + * realloc: only conditionally expand backwards + * Try not to scavenge used bins + * Use bin counts as a guide to preallocation + * Occasionally bin return list chunks in first scan + * Add a few optimizations from colin@nyx10.cs.du.edu + + V2.5.1 Sat Aug 14 15:40:43 1993 Doug Lea (dl at g) + * faster bin computation & slightly different binning + * merged all consolidations to one part of malloc proper + (eliminating old malloc_find_space & malloc_clean_bin) + * Scan 2 returns chunks (not just 1) + * Propagate failure in realloc if malloc returns 0 + * Add stuff to allow compilation on non-ANSI compilers + from kpv@research.att.com + + V2.5 Sat Aug 7 07:41:59 1993 Doug Lea (dl at g.oswego.edu) + * removed potential for odd address access in prev_chunk + * removed dependency on getpagesize.h + * misc cosmetics and a bit more internal documentation + * anticosmetics: mangled names in macros to evade debugger strangeness + * tested on sparc, hp-700, dec-mips, rs6000 + with gcc & native cc (hp, dec only) allowing + Detlefs & Zorn comparison study (in SIGPLAN Notices.) + + Trial version Fri Aug 28 13:14:29 1992 Doug Lea (dl at g.oswego.edu) + * Based loosely on libg++-1.2X malloc. (It retains some of the overall + structure of old version, but most details differ.) + +*/ diff --git a/contrib/restricted/libffi/src/java_raw_api.c b/contrib/restricted/libffi/src/java_raw_api.c index 114d3e47fc..0f1ef3821b 100644 --- a/contrib/restricted/libffi/src/java_raw_api.c +++ b/contrib/restricted/libffi/src/java_raw_api.c @@ -1,374 +1,374 @@ -/* ----------------------------------------------------------------------- - java_raw_api.c - Copyright (c) 1999, 2007, 2008 Red Hat, Inc. - - Cloned from raw_api.c - - Raw_api.c author: Kresten Krab Thorup <krab@gnu.org> - Java_raw_api.c author: Hans-J. Boehm <hboehm@hpl.hp.com> - - $Id $ - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -/* This defines a Java- and 64-bit specific variant of the raw API. */ -/* It assumes that "raw" argument blocks look like Java stacks on a */ -/* 64-bit machine. Arguments that can be stored in a single stack */ -/* stack slots (longs, doubles) occupy 128 bits, but only the first */ -/* 64 bits are actually used. */ - -#include <ffi.h> -#include <ffi_common.h> -#include <stdlib.h> - +/* ----------------------------------------------------------------------- + java_raw_api.c - Copyright (c) 1999, 2007, 2008 Red Hat, Inc. + + Cloned from raw_api.c + + Raw_api.c author: Kresten Krab Thorup <krab@gnu.org> + Java_raw_api.c author: Hans-J. Boehm <hboehm@hpl.hp.com> + + $Id $ + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +/* This defines a Java- and 64-bit specific variant of the raw API. */ +/* It assumes that "raw" argument blocks look like Java stacks on a */ +/* 64-bit machine. Arguments that can be stored in a single stack */ +/* stack slots (longs, doubles) occupy 128 bits, but only the first */ +/* 64 bits are actually used. */ + +#include <ffi.h> +#include <ffi_common.h> +#include <stdlib.h> + #if !defined(NO_JAVA_RAW_API) - -size_t -ffi_java_raw_size (ffi_cif *cif) -{ - size_t result = 0; - int i; - - ffi_type **at = cif->arg_types; - - for (i = cif->nargs-1; i >= 0; i--, at++) - { - switch((*at) -> type) { - case FFI_TYPE_UINT64: - case FFI_TYPE_SINT64: - case FFI_TYPE_DOUBLE: - result += 2 * FFI_SIZEOF_JAVA_RAW; - break; - case FFI_TYPE_STRUCT: - /* No structure parameters in Java. */ - abort(); + +size_t +ffi_java_raw_size (ffi_cif *cif) +{ + size_t result = 0; + int i; + + ffi_type **at = cif->arg_types; + + for (i = cif->nargs-1; i >= 0; i--, at++) + { + switch((*at) -> type) { + case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_DOUBLE: + result += 2 * FFI_SIZEOF_JAVA_RAW; + break; + case FFI_TYPE_STRUCT: + /* No structure parameters in Java. */ + abort(); case FFI_TYPE_COMPLEX: /* Not supported yet. */ abort(); - default: - result += FFI_SIZEOF_JAVA_RAW; - } - } - - return result; -} - - -void -ffi_java_raw_to_ptrarray (ffi_cif *cif, ffi_java_raw *raw, void **args) -{ - unsigned i; - ffi_type **tp = cif->arg_types; - -#if WORDS_BIGENDIAN - - for (i = 0; i < cif->nargs; i++, tp++, args++) - { - switch ((*tp)->type) - { - case FFI_TYPE_UINT8: - case FFI_TYPE_SINT8: - *args = (void*) ((char*)(raw++) + 3); - break; - - case FFI_TYPE_UINT16: - case FFI_TYPE_SINT16: - *args = (void*) ((char*)(raw++) + 2); - break; - -#if FFI_SIZEOF_JAVA_RAW == 8 - case FFI_TYPE_UINT64: - case FFI_TYPE_SINT64: - case FFI_TYPE_DOUBLE: - *args = (void *)raw; - raw += 2; - break; -#endif - - case FFI_TYPE_POINTER: - *args = (void*) &(raw++)->ptr; - break; - + default: + result += FFI_SIZEOF_JAVA_RAW; + } + } + + return result; +} + + +void +ffi_java_raw_to_ptrarray (ffi_cif *cif, ffi_java_raw *raw, void **args) +{ + unsigned i; + ffi_type **tp = cif->arg_types; + +#if WORDS_BIGENDIAN + + for (i = 0; i < cif->nargs; i++, tp++, args++) + { + switch ((*tp)->type) + { + case FFI_TYPE_UINT8: + case FFI_TYPE_SINT8: + *args = (void*) ((char*)(raw++) + 3); + break; + + case FFI_TYPE_UINT16: + case FFI_TYPE_SINT16: + *args = (void*) ((char*)(raw++) + 2); + break; + +#if FFI_SIZEOF_JAVA_RAW == 8 + case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_DOUBLE: + *args = (void *)raw; + raw += 2; + break; +#endif + + case FFI_TYPE_POINTER: + *args = (void*) &(raw++)->ptr; + break; + case FFI_TYPE_COMPLEX: /* Not supported yet. */ abort(); - default: - *args = raw; - raw += + default: + *args = raw; + raw += FFI_ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw); - } - } - -#else /* WORDS_BIGENDIAN */ - -#if !PDP - - /* then assume little endian */ - for (i = 0; i < cif->nargs; i++, tp++, args++) - { -#if FFI_SIZEOF_JAVA_RAW == 8 - switch((*tp)->type) { - case FFI_TYPE_UINT64: - case FFI_TYPE_SINT64: - case FFI_TYPE_DOUBLE: - *args = (void*) raw; - raw += 2; - break; + } + } + +#else /* WORDS_BIGENDIAN */ + +#if !PDP + + /* then assume little endian */ + for (i = 0; i < cif->nargs; i++, tp++, args++) + { +#if FFI_SIZEOF_JAVA_RAW == 8 + switch((*tp)->type) { + case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_DOUBLE: + *args = (void*) raw; + raw += 2; + break; case FFI_TYPE_COMPLEX: /* Not supported yet. */ abort(); - default: - *args = (void*) raw++; - } -#else /* FFI_SIZEOF_JAVA_RAW != 8 */ - *args = (void*) raw; - raw += + default: + *args = (void*) raw++; + } +#else /* FFI_SIZEOF_JAVA_RAW != 8 */ + *args = (void*) raw; + raw += FFI_ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw); -#endif /* FFI_SIZEOF_JAVA_RAW == 8 */ - } - -#else -#error "pdp endian not supported" -#endif /* ! PDP */ - -#endif /* WORDS_BIGENDIAN */ -} - -void -ffi_java_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_java_raw *raw) -{ - unsigned i; - ffi_type **tp = cif->arg_types; - - for (i = 0; i < cif->nargs; i++, tp++, args++) - { - switch ((*tp)->type) - { - case FFI_TYPE_UINT8: -#if WORDS_BIGENDIAN - *(UINT32*)(raw++) = *(UINT8*) (*args); -#else - (raw++)->uint = *(UINT8*) (*args); -#endif - break; - - case FFI_TYPE_SINT8: -#if WORDS_BIGENDIAN - *(SINT32*)(raw++) = *(SINT8*) (*args); -#else - (raw++)->sint = *(SINT8*) (*args); -#endif - break; - - case FFI_TYPE_UINT16: -#if WORDS_BIGENDIAN - *(UINT32*)(raw++) = *(UINT16*) (*args); -#else - (raw++)->uint = *(UINT16*) (*args); -#endif - break; - - case FFI_TYPE_SINT16: -#if WORDS_BIGENDIAN - *(SINT32*)(raw++) = *(SINT16*) (*args); -#else - (raw++)->sint = *(SINT16*) (*args); -#endif - break; - - case FFI_TYPE_UINT32: -#if WORDS_BIGENDIAN - *(UINT32*)(raw++) = *(UINT32*) (*args); -#else - (raw++)->uint = *(UINT32*) (*args); -#endif - break; - - case FFI_TYPE_SINT32: -#if WORDS_BIGENDIAN - *(SINT32*)(raw++) = *(SINT32*) (*args); -#else - (raw++)->sint = *(SINT32*) (*args); -#endif - break; - - case FFI_TYPE_FLOAT: - (raw++)->flt = *(FLOAT32*) (*args); - break; - -#if FFI_SIZEOF_JAVA_RAW == 8 - case FFI_TYPE_UINT64: - case FFI_TYPE_SINT64: - case FFI_TYPE_DOUBLE: - raw->uint = *(UINT64*) (*args); - raw += 2; - break; -#endif - - case FFI_TYPE_POINTER: - (raw++)->ptr = **(void***) args; - break; - - default: -#if FFI_SIZEOF_JAVA_RAW == 8 - FFI_ASSERT(0); /* Should have covered all cases */ -#else - memcpy ((void*) raw->data, (void*)*args, (*tp)->size); - raw += +#endif /* FFI_SIZEOF_JAVA_RAW == 8 */ + } + +#else +#error "pdp endian not supported" +#endif /* ! PDP */ + +#endif /* WORDS_BIGENDIAN */ +} + +void +ffi_java_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_java_raw *raw) +{ + unsigned i; + ffi_type **tp = cif->arg_types; + + for (i = 0; i < cif->nargs; i++, tp++, args++) + { + switch ((*tp)->type) + { + case FFI_TYPE_UINT8: +#if WORDS_BIGENDIAN + *(UINT32*)(raw++) = *(UINT8*) (*args); +#else + (raw++)->uint = *(UINT8*) (*args); +#endif + break; + + case FFI_TYPE_SINT8: +#if WORDS_BIGENDIAN + *(SINT32*)(raw++) = *(SINT8*) (*args); +#else + (raw++)->sint = *(SINT8*) (*args); +#endif + break; + + case FFI_TYPE_UINT16: +#if WORDS_BIGENDIAN + *(UINT32*)(raw++) = *(UINT16*) (*args); +#else + (raw++)->uint = *(UINT16*) (*args); +#endif + break; + + case FFI_TYPE_SINT16: +#if WORDS_BIGENDIAN + *(SINT32*)(raw++) = *(SINT16*) (*args); +#else + (raw++)->sint = *(SINT16*) (*args); +#endif + break; + + case FFI_TYPE_UINT32: +#if WORDS_BIGENDIAN + *(UINT32*)(raw++) = *(UINT32*) (*args); +#else + (raw++)->uint = *(UINT32*) (*args); +#endif + break; + + case FFI_TYPE_SINT32: +#if WORDS_BIGENDIAN + *(SINT32*)(raw++) = *(SINT32*) (*args); +#else + (raw++)->sint = *(SINT32*) (*args); +#endif + break; + + case FFI_TYPE_FLOAT: + (raw++)->flt = *(FLOAT32*) (*args); + break; + +#if FFI_SIZEOF_JAVA_RAW == 8 + case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_DOUBLE: + raw->uint = *(UINT64*) (*args); + raw += 2; + break; +#endif + + case FFI_TYPE_POINTER: + (raw++)->ptr = **(void***) args; + break; + + default: +#if FFI_SIZEOF_JAVA_RAW == 8 + FFI_ASSERT(0); /* Should have covered all cases */ +#else + memcpy ((void*) raw->data, (void*)*args, (*tp)->size); + raw += FFI_ALIGN ((*tp)->size, sizeof(ffi_java_raw)) / sizeof(ffi_java_raw); -#endif - } - } -} - -#if !FFI_NATIVE_RAW_API - -static void -ffi_java_rvalue_to_raw (ffi_cif *cif, void *rvalue) -{ -#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8 - switch (cif->rtype->type) - { - case FFI_TYPE_UINT8: - case FFI_TYPE_UINT16: - case FFI_TYPE_UINT32: - *(UINT64 *)rvalue <<= 32; - break; - - case FFI_TYPE_SINT8: - case FFI_TYPE_SINT16: - case FFI_TYPE_SINT32: - case FFI_TYPE_INT: -#if FFI_SIZEOF_JAVA_RAW == 4 - case FFI_TYPE_POINTER: -#endif - *(SINT64 *)rvalue <<= 32; - break; - +#endif + } + } +} + +#if !FFI_NATIVE_RAW_API + +static void +ffi_java_rvalue_to_raw (ffi_cif *cif, void *rvalue) +{ +#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8 + switch (cif->rtype->type) + { + case FFI_TYPE_UINT8: + case FFI_TYPE_UINT16: + case FFI_TYPE_UINT32: + *(UINT64 *)rvalue <<= 32; + break; + + case FFI_TYPE_SINT8: + case FFI_TYPE_SINT16: + case FFI_TYPE_SINT32: + case FFI_TYPE_INT: +#if FFI_SIZEOF_JAVA_RAW == 4 + case FFI_TYPE_POINTER: +#endif + *(SINT64 *)rvalue <<= 32; + break; + case FFI_TYPE_COMPLEX: /* Not supported yet. */ abort(); - default: - break; - } -#endif -} - -static void -ffi_java_raw_to_rvalue (ffi_cif *cif, void *rvalue) -{ -#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8 - switch (cif->rtype->type) - { - case FFI_TYPE_UINT8: - case FFI_TYPE_UINT16: - case FFI_TYPE_UINT32: - *(UINT64 *)rvalue >>= 32; - break; - - case FFI_TYPE_SINT8: - case FFI_TYPE_SINT16: - case FFI_TYPE_SINT32: - case FFI_TYPE_INT: - *(SINT64 *)rvalue >>= 32; - break; - + default: + break; + } +#endif +} + +static void +ffi_java_raw_to_rvalue (ffi_cif *cif, void *rvalue) +{ +#if WORDS_BIGENDIAN && FFI_SIZEOF_ARG == 8 + switch (cif->rtype->type) + { + case FFI_TYPE_UINT8: + case FFI_TYPE_UINT16: + case FFI_TYPE_UINT32: + *(UINT64 *)rvalue >>= 32; + break; + + case FFI_TYPE_SINT8: + case FFI_TYPE_SINT16: + case FFI_TYPE_SINT32: + case FFI_TYPE_INT: + *(SINT64 *)rvalue >>= 32; + break; + case FFI_TYPE_COMPLEX: /* Not supported yet. */ abort(); - default: - break; - } -#endif -} - -/* This is a generic definition of ffi_raw_call, to be used if the - * native system does not provide a machine-specific implementation. - * Having this, allows code to be written for the raw API, without - * the need for system-specific code to handle input in that format; - * these following couple of functions will handle the translation forth - * and back automatically. */ - -void ffi_java_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, - ffi_java_raw *raw) -{ - void **avalue = (void**) alloca (cif->nargs * sizeof (void*)); - ffi_java_raw_to_ptrarray (cif, raw, avalue); - ffi_call (cif, fn, rvalue, avalue); - ffi_java_rvalue_to_raw (cif, rvalue); -} - -#if FFI_CLOSURES /* base system provides closures */ - -static void -ffi_java_translate_args (ffi_cif *cif, void *rvalue, - void **avalue, void *user_data) -{ - ffi_java_raw *raw = (ffi_java_raw*)alloca (ffi_java_raw_size (cif)); - ffi_raw_closure *cl = (ffi_raw_closure*)user_data; - - ffi_java_ptrarray_to_raw (cif, avalue, raw); - (*cl->fun) (cif, rvalue, (ffi_raw*)raw, cl->user_data); - ffi_java_raw_to_rvalue (cif, rvalue); -} - -ffi_status -ffi_prep_java_raw_closure_loc (ffi_java_raw_closure* cl, - ffi_cif *cif, - void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*), - void *user_data, - void *codeloc) -{ - ffi_status status; - - status = ffi_prep_closure_loc ((ffi_closure*) cl, - cif, - &ffi_java_translate_args, - codeloc, - codeloc); - if (status == FFI_OK) - { - cl->fun = fun; - cl->user_data = user_data; - } - - return status; -} - -/* Again, here is the generic version of ffi_prep_raw_closure, which - * will install an intermediate "hub" for translation of arguments from - * the pointer-array format, to the raw format */ - -ffi_status -ffi_prep_java_raw_closure (ffi_java_raw_closure* cl, - ffi_cif *cif, - void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*), - void *user_data) -{ - return ffi_prep_java_raw_closure_loc (cl, cif, fun, user_data, cl); -} - -#endif /* FFI_CLOSURES */ -#endif /* !FFI_NATIVE_RAW_API */ + default: + break; + } +#endif +} + +/* This is a generic definition of ffi_raw_call, to be used if the + * native system does not provide a machine-specific implementation. + * Having this, allows code to be written for the raw API, without + * the need for system-specific code to handle input in that format; + * these following couple of functions will handle the translation forth + * and back automatically. */ + +void ffi_java_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, + ffi_java_raw *raw) +{ + void **avalue = (void**) alloca (cif->nargs * sizeof (void*)); + ffi_java_raw_to_ptrarray (cif, raw, avalue); + ffi_call (cif, fn, rvalue, avalue); + ffi_java_rvalue_to_raw (cif, rvalue); +} + +#if FFI_CLOSURES /* base system provides closures */ + +static void +ffi_java_translate_args (ffi_cif *cif, void *rvalue, + void **avalue, void *user_data) +{ + ffi_java_raw *raw = (ffi_java_raw*)alloca (ffi_java_raw_size (cif)); + ffi_raw_closure *cl = (ffi_raw_closure*)user_data; + + ffi_java_ptrarray_to_raw (cif, avalue, raw); + (*cl->fun) (cif, rvalue, (ffi_raw*)raw, cl->user_data); + ffi_java_raw_to_rvalue (cif, rvalue); +} + +ffi_status +ffi_prep_java_raw_closure_loc (ffi_java_raw_closure* cl, + ffi_cif *cif, + void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*), + void *user_data, + void *codeloc) +{ + ffi_status status; + + status = ffi_prep_closure_loc ((ffi_closure*) cl, + cif, + &ffi_java_translate_args, + codeloc, + codeloc); + if (status == FFI_OK) + { + cl->fun = fun; + cl->user_data = user_data; + } + + return status; +} + +/* Again, here is the generic version of ffi_prep_raw_closure, which + * will install an intermediate "hub" for translation of arguments from + * the pointer-array format, to the raw format */ + +ffi_status +ffi_prep_java_raw_closure (ffi_java_raw_closure* cl, + ffi_cif *cif, + void (*fun)(ffi_cif*,void*,ffi_java_raw*,void*), + void *user_data) +{ + return ffi_prep_java_raw_closure_loc (cl, cif, fun, user_data, cl); +} + +#endif /* FFI_CLOSURES */ +#endif /* !FFI_NATIVE_RAW_API */ #endif /* !NO_JAVA_RAW_API */ diff --git a/contrib/restricted/libffi/src/prep_cif.c b/contrib/restricted/libffi/src/prep_cif.c index 06c6544036..034f6822a1 100644 --- a/contrib/restricted/libffi/src/prep_cif.c +++ b/contrib/restricted/libffi/src/prep_cif.c @@ -1,83 +1,83 @@ -/* ----------------------------------------------------------------------- - prep_cif.c - Copyright (c) 2011, 2012 Anthony Green - Copyright (c) 1996, 1998, 2007 Red Hat, Inc. - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -#include <ffi.h> -#include <ffi_common.h> -#include <stdlib.h> - -/* Round up to FFI_SIZEOF_ARG. */ - +/* ----------------------------------------------------------------------- + prep_cif.c - Copyright (c) 2011, 2012 Anthony Green + Copyright (c) 1996, 1998, 2007 Red Hat, Inc. + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +#include <ffi.h> +#include <ffi_common.h> +#include <stdlib.h> + +/* Round up to FFI_SIZEOF_ARG. */ + #define STACK_ARG_SIZE(x) FFI_ALIGN(x, FFI_SIZEOF_ARG) - -/* Perform machine independent initialization of aggregate type - specifications. */ - + +/* Perform machine independent initialization of aggregate type + specifications. */ + static ffi_status initialize_aggregate(ffi_type *arg, size_t *offsets) -{ - ffi_type **ptr; - - if (UNLIKELY(arg == NULL || arg->elements == NULL)) - return FFI_BAD_TYPEDEF; - - arg->size = 0; - arg->alignment = 0; - - ptr = &(arg->elements[0]); - - if (UNLIKELY(ptr == 0)) - return FFI_BAD_TYPEDEF; - - while ((*ptr) != NULL) - { - if (UNLIKELY(((*ptr)->size == 0) +{ + ffi_type **ptr; + + if (UNLIKELY(arg == NULL || arg->elements == NULL)) + return FFI_BAD_TYPEDEF; + + arg->size = 0; + arg->alignment = 0; + + ptr = &(arg->elements[0]); + + if (UNLIKELY(ptr == 0)) + return FFI_BAD_TYPEDEF; + + while ((*ptr) != NULL) + { + if (UNLIKELY(((*ptr)->size == 0) && (initialize_aggregate((*ptr), NULL) != FFI_OK))) - return FFI_BAD_TYPEDEF; - - /* Perform a sanity check on the argument type */ - FFI_ASSERT_VALID_TYPE(*ptr); - + return FFI_BAD_TYPEDEF; + + /* Perform a sanity check on the argument type */ + FFI_ASSERT_VALID_TYPE(*ptr); + arg->size = FFI_ALIGN(arg->size, (*ptr)->alignment); if (offsets) *offsets++ = arg->size; - arg->size += (*ptr)->size; - - arg->alignment = (arg->alignment > (*ptr)->alignment) ? - arg->alignment : (*ptr)->alignment; - - ptr++; - } - - /* Structure size includes tail padding. This is important for - structures that fit in one register on ABIs like the PowerPC64 - Linux ABI that right justify small structs in a register. - It's also needed for nested structure layout, for example - struct A { long a; char b; }; struct B { struct A x; char y; }; - should find y at an offset of 2*sizeof(long) and result in a - total size of 3*sizeof(long). */ + arg->size += (*ptr)->size; + + arg->alignment = (arg->alignment > (*ptr)->alignment) ? + arg->alignment : (*ptr)->alignment; + + ptr++; + } + + /* Structure size includes tail padding. This is important for + structures that fit in one register on ABIs like the PowerPC64 + Linux ABI that right justify small structs in a register. + It's also needed for nested structure layout, for example + struct A { long a; char b; }; struct B { struct A x; char y; }; + should find y at an offset of 2*sizeof(long) and result in a + total size of 3*sizeof(long). */ arg->size = FFI_ALIGN (arg->size, arg->alignment); - + /* On some targets, the ABI defines that structures have an additional alignment beyond the "natural" one based on their elements. */ #ifdef FFI_AGGREGATE_ALIGNMENT @@ -85,167 +85,167 @@ static ffi_status initialize_aggregate(ffi_type *arg, size_t *offsets) arg->alignment = FFI_AGGREGATE_ALIGNMENT; #endif - if (arg->size == 0) - return FFI_BAD_TYPEDEF; - else - return FFI_OK; -} - -#ifndef __CRIS__ -/* The CRIS ABI specifies structure elements to have byte - alignment only, so it completely overrides this functions, - which assumes "natural" alignment and padding. */ - -/* Perform machine independent ffi_cif preparation, then call - machine dependent routine. */ - -/* For non variadic functions isvariadic should be 0 and - nfixedargs==ntotalargs. - - For variadic calls, isvariadic should be 1 and nfixedargs - and ntotalargs set as appropriate. nfixedargs must always be >=1 */ - - -ffi_status FFI_HIDDEN ffi_prep_cif_core(ffi_cif *cif, ffi_abi abi, - unsigned int isvariadic, - unsigned int nfixedargs, - unsigned int ntotalargs, - ffi_type *rtype, ffi_type **atypes) -{ - unsigned bytes = 0; - unsigned int i; - ffi_type **ptr; - - FFI_ASSERT(cif != NULL); - FFI_ASSERT((!isvariadic) || (nfixedargs >= 1)); - FFI_ASSERT(nfixedargs <= ntotalargs); - - if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)) - return FFI_BAD_ABI; - - cif->abi = abi; - cif->arg_types = atypes; - cif->nargs = ntotalargs; - cif->rtype = rtype; - - cif->flags = 0; + if (arg->size == 0) + return FFI_BAD_TYPEDEF; + else + return FFI_OK; +} + +#ifndef __CRIS__ +/* The CRIS ABI specifies structure elements to have byte + alignment only, so it completely overrides this functions, + which assumes "natural" alignment and padding. */ + +/* Perform machine independent ffi_cif preparation, then call + machine dependent routine. */ + +/* For non variadic functions isvariadic should be 0 and + nfixedargs==ntotalargs. + + For variadic calls, isvariadic should be 1 and nfixedargs + and ntotalargs set as appropriate. nfixedargs must always be >=1 */ + + +ffi_status FFI_HIDDEN ffi_prep_cif_core(ffi_cif *cif, ffi_abi abi, + unsigned int isvariadic, + unsigned int nfixedargs, + unsigned int ntotalargs, + ffi_type *rtype, ffi_type **atypes) +{ + unsigned bytes = 0; + unsigned int i; + ffi_type **ptr; + + FFI_ASSERT(cif != NULL); + FFI_ASSERT((!isvariadic) || (nfixedargs >= 1)); + FFI_ASSERT(nfixedargs <= ntotalargs); + + if (! (abi > FFI_FIRST_ABI && abi < FFI_LAST_ABI)) + return FFI_BAD_ABI; + + cif->abi = abi; + cif->arg_types = atypes; + cif->nargs = ntotalargs; + cif->rtype = rtype; + + cif->flags = 0; #ifdef _M_ARM64 cif->is_variadic = isvariadic; #endif #if HAVE_LONG_DOUBLE_VARIANT ffi_prep_types (abi); #endif - - /* Initialize the return type if necessary */ + + /* Initialize the return type if necessary */ if ((cif->rtype->size == 0) && (initialize_aggregate(cif->rtype, NULL) != FFI_OK)) - return FFI_BAD_TYPEDEF; - + return FFI_BAD_TYPEDEF; + #ifndef FFI_TARGET_HAS_COMPLEX_TYPE if (rtype->type == FFI_TYPE_COMPLEX) abort(); #endif - /* Perform a sanity check on the return type */ - FFI_ASSERT_VALID_TYPE(cif->rtype); - - /* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */ + /* Perform a sanity check on the return type */ + FFI_ASSERT_VALID_TYPE(cif->rtype); + + /* x86, x86-64 and s390 stack space allocation is handled in prep_machdep. */ #if !defined FFI_TARGET_SPECIFIC_STACK_SPACE_ALLOCATION - /* Make space for the return structure pointer */ - if (cif->rtype->type == FFI_TYPE_STRUCT -#ifdef TILE - && (cif->rtype->size > 10 * FFI_SIZEOF_ARG) -#endif -#ifdef XTENSA - && (cif->rtype->size > 16) -#endif + /* Make space for the return structure pointer */ + if (cif->rtype->type == FFI_TYPE_STRUCT +#ifdef TILE + && (cif->rtype->size > 10 * FFI_SIZEOF_ARG) +#endif +#ifdef XTENSA + && (cif->rtype->size > 16) +#endif #ifdef NIOS2 && (cif->rtype->size > 8) #endif - ) - bytes = STACK_ARG_SIZE(sizeof(void*)); -#endif - - for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) - { - - /* Initialize any uninitialized aggregate type definitions */ + ) + bytes = STACK_ARG_SIZE(sizeof(void*)); +#endif + + for (ptr = cif->arg_types, i = cif->nargs; i > 0; i--, ptr++) + { + + /* Initialize any uninitialized aggregate type definitions */ if (((*ptr)->size == 0) && (initialize_aggregate((*ptr), NULL) != FFI_OK)) - return FFI_BAD_TYPEDEF; - + return FFI_BAD_TYPEDEF; + #ifndef FFI_TARGET_HAS_COMPLEX_TYPE if ((*ptr)->type == FFI_TYPE_COMPLEX) abort(); #endif - /* Perform a sanity check on the argument type, do this - check after the initialization. */ - FFI_ASSERT_VALID_TYPE(*ptr); - + /* Perform a sanity check on the argument type, do this + check after the initialization. */ + FFI_ASSERT_VALID_TYPE(*ptr); + #if !defined FFI_TARGET_SPECIFIC_STACK_SPACE_ALLOCATION - { - /* Add any padding if necessary */ - if (((*ptr)->alignment - 1) & bytes) + { + /* Add any padding if necessary */ + if (((*ptr)->alignment - 1) & bytes) bytes = (unsigned)FFI_ALIGN(bytes, (*ptr)->alignment); - -#ifdef TILE - if (bytes < 10 * FFI_SIZEOF_ARG && - bytes + STACK_ARG_SIZE((*ptr)->size) > 10 * FFI_SIZEOF_ARG) - { - /* An argument is never split between the 10 parameter - registers and the stack. */ - bytes = 10 * FFI_SIZEOF_ARG; - } -#endif -#ifdef XTENSA - if (bytes <= 6*4 && bytes + STACK_ARG_SIZE((*ptr)->size) > 6*4) - bytes = 6*4; -#endif - + +#ifdef TILE + if (bytes < 10 * FFI_SIZEOF_ARG && + bytes + STACK_ARG_SIZE((*ptr)->size) > 10 * FFI_SIZEOF_ARG) + { + /* An argument is never split between the 10 parameter + registers and the stack. */ + bytes = 10 * FFI_SIZEOF_ARG; + } +#endif +#ifdef XTENSA + if (bytes <= 6*4 && bytes + STACK_ARG_SIZE((*ptr)->size) > 6*4) + bytes = 6*4; +#endif + bytes += (unsigned int)STACK_ARG_SIZE((*ptr)->size); - } -#endif - } - - cif->bytes = bytes; - - /* Perform machine dependent cif processing */ -#ifdef FFI_TARGET_SPECIFIC_VARIADIC - if (isvariadic) - return ffi_prep_cif_machdep_var(cif, nfixedargs, ntotalargs); -#endif - - return ffi_prep_cif_machdep(cif); -} -#endif /* not __CRIS__ */ - -ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs, - ffi_type *rtype, ffi_type **atypes) -{ - return ffi_prep_cif_core(cif, abi, 0, nargs, nargs, rtype, atypes); -} - -ffi_status ffi_prep_cif_var(ffi_cif *cif, - ffi_abi abi, - unsigned int nfixedargs, - unsigned int ntotalargs, - ffi_type *rtype, - ffi_type **atypes) -{ - return ffi_prep_cif_core(cif, abi, 1, nfixedargs, ntotalargs, rtype, atypes); -} - -#if FFI_CLOSURES - -ffi_status -ffi_prep_closure (ffi_closure* closure, - ffi_cif* cif, - void (*fun)(ffi_cif*,void*,void**,void*), - void *user_data) -{ - return ffi_prep_closure_loc (closure, cif, fun, user_data, closure); -} - -#endif + } +#endif + } + + cif->bytes = bytes; + + /* Perform machine dependent cif processing */ +#ifdef FFI_TARGET_SPECIFIC_VARIADIC + if (isvariadic) + return ffi_prep_cif_machdep_var(cif, nfixedargs, ntotalargs); +#endif + + return ffi_prep_cif_machdep(cif); +} +#endif /* not __CRIS__ */ + +ffi_status ffi_prep_cif(ffi_cif *cif, ffi_abi abi, unsigned int nargs, + ffi_type *rtype, ffi_type **atypes) +{ + return ffi_prep_cif_core(cif, abi, 0, nargs, nargs, rtype, atypes); +} + +ffi_status ffi_prep_cif_var(ffi_cif *cif, + ffi_abi abi, + unsigned int nfixedargs, + unsigned int ntotalargs, + ffi_type *rtype, + ffi_type **atypes) +{ + return ffi_prep_cif_core(cif, abi, 1, nfixedargs, ntotalargs, rtype, atypes); +} + +#if FFI_CLOSURES + +ffi_status +ffi_prep_closure (ffi_closure* closure, + ffi_cif* cif, + void (*fun)(ffi_cif*,void*,void**,void*), + void *user_data) +{ + return ffi_prep_closure_loc (closure, cif, fun, user_data, closure); +} + +#endif ffi_status ffi_get_struct_offsets (ffi_abi abi, ffi_type *struct_type, size_t *offsets) diff --git a/contrib/restricted/libffi/src/raw_api.c b/contrib/restricted/libffi/src/raw_api.c index be156116cb..bded12239d 100644 --- a/contrib/restricted/libffi/src/raw_api.c +++ b/contrib/restricted/libffi/src/raw_api.c @@ -1,267 +1,267 @@ -/* ----------------------------------------------------------------------- - raw_api.c - Copyright (c) 1999, 2008 Red Hat, Inc. - - Author: Kresten Krab Thorup <krab@gnu.org> - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -/* This file defines generic functions for use with the raw api. */ - -#include <ffi.h> -#include <ffi_common.h> - -#if !FFI_NO_RAW_API - -size_t -ffi_raw_size (ffi_cif *cif) -{ - size_t result = 0; - int i; - - ffi_type **at = cif->arg_types; - - for (i = cif->nargs-1; i >= 0; i--, at++) - { -#if !FFI_NO_STRUCTS - if ((*at)->type == FFI_TYPE_STRUCT) +/* ----------------------------------------------------------------------- + raw_api.c - Copyright (c) 1999, 2008 Red Hat, Inc. + + Author: Kresten Krab Thorup <krab@gnu.org> + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +/* This file defines generic functions for use with the raw api. */ + +#include <ffi.h> +#include <ffi_common.h> + +#if !FFI_NO_RAW_API + +size_t +ffi_raw_size (ffi_cif *cif) +{ + size_t result = 0; + int i; + + ffi_type **at = cif->arg_types; + + for (i = cif->nargs-1; i >= 0; i--, at++) + { +#if !FFI_NO_STRUCTS + if ((*at)->type == FFI_TYPE_STRUCT) result += FFI_ALIGN (sizeof (void*), FFI_SIZEOF_ARG); - else -#endif + else +#endif result += FFI_ALIGN ((*at)->size, FFI_SIZEOF_ARG); - } - - return result; -} - - -void -ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args) -{ - unsigned i; - ffi_type **tp = cif->arg_types; - -#if WORDS_BIGENDIAN - - for (i = 0; i < cif->nargs; i++, tp++, args++) - { - switch ((*tp)->type) - { - case FFI_TYPE_UINT8: - case FFI_TYPE_SINT8: - *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 1); - break; - - case FFI_TYPE_UINT16: - case FFI_TYPE_SINT16: - *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 2); - break; - -#if FFI_SIZEOF_ARG >= 4 - case FFI_TYPE_UINT32: - case FFI_TYPE_SINT32: - *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 4); - break; -#endif - -#if !FFI_NO_STRUCTS - case FFI_TYPE_STRUCT: - *args = (raw++)->ptr; - break; -#endif - + } + + return result; +} + + +void +ffi_raw_to_ptrarray (ffi_cif *cif, ffi_raw *raw, void **args) +{ + unsigned i; + ffi_type **tp = cif->arg_types; + +#if WORDS_BIGENDIAN + + for (i = 0; i < cif->nargs; i++, tp++, args++) + { + switch ((*tp)->type) + { + case FFI_TYPE_UINT8: + case FFI_TYPE_SINT8: + *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 1); + break; + + case FFI_TYPE_UINT16: + case FFI_TYPE_SINT16: + *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 2); + break; + +#if FFI_SIZEOF_ARG >= 4 + case FFI_TYPE_UINT32: + case FFI_TYPE_SINT32: + *args = (void*) ((char*)(raw++) + FFI_SIZEOF_ARG - 4); + break; +#endif + +#if !FFI_NO_STRUCTS + case FFI_TYPE_STRUCT: + *args = (raw++)->ptr; + break; +#endif + case FFI_TYPE_COMPLEX: *args = (raw++)->ptr; break; - case FFI_TYPE_POINTER: - *args = (void*) &(raw++)->ptr; - break; - - default: - *args = raw; + case FFI_TYPE_POINTER: + *args = (void*) &(raw++)->ptr; + break; + + default: + *args = raw; raw += FFI_ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG; - } - } - -#else /* WORDS_BIGENDIAN */ - -#if !PDP - - /* then assume little endian */ - for (i = 0; i < cif->nargs; i++, tp++, args++) - { -#if !FFI_NO_STRUCTS - if ((*tp)->type == FFI_TYPE_STRUCT) - { - *args = (raw++)->ptr; - } - else -#endif + } + } + +#else /* WORDS_BIGENDIAN */ + +#if !PDP + + /* then assume little endian */ + for (i = 0; i < cif->nargs; i++, tp++, args++) + { +#if !FFI_NO_STRUCTS + if ((*tp)->type == FFI_TYPE_STRUCT) + { + *args = (raw++)->ptr; + } + else +#endif if ((*tp)->type == FFI_TYPE_COMPLEX) - { + { *args = (raw++)->ptr; } else { - *args = (void*) raw; + *args = (void*) raw; raw += FFI_ALIGN ((*tp)->size, sizeof (void*)) / sizeof (void*); - } - } - -#else -#error "pdp endian not supported" -#endif /* ! PDP */ - -#endif /* WORDS_BIGENDIAN */ -} - -void -ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw) -{ - unsigned i; - ffi_type **tp = cif->arg_types; - - for (i = 0; i < cif->nargs; i++, tp++, args++) - { - switch ((*tp)->type) - { - case FFI_TYPE_UINT8: - (raw++)->uint = *(UINT8*) (*args); - break; - - case FFI_TYPE_SINT8: - (raw++)->sint = *(SINT8*) (*args); - break; - - case FFI_TYPE_UINT16: - (raw++)->uint = *(UINT16*) (*args); - break; - - case FFI_TYPE_SINT16: - (raw++)->sint = *(SINT16*) (*args); - break; - -#if FFI_SIZEOF_ARG >= 4 - case FFI_TYPE_UINT32: - (raw++)->uint = *(UINT32*) (*args); - break; - - case FFI_TYPE_SINT32: - (raw++)->sint = *(SINT32*) (*args); - break; -#endif - -#if !FFI_NO_STRUCTS - case FFI_TYPE_STRUCT: - (raw++)->ptr = *args; - break; -#endif - + } + } + +#else +#error "pdp endian not supported" +#endif /* ! PDP */ + +#endif /* WORDS_BIGENDIAN */ +} + +void +ffi_ptrarray_to_raw (ffi_cif *cif, void **args, ffi_raw *raw) +{ + unsigned i; + ffi_type **tp = cif->arg_types; + + for (i = 0; i < cif->nargs; i++, tp++, args++) + { + switch ((*tp)->type) + { + case FFI_TYPE_UINT8: + (raw++)->uint = *(UINT8*) (*args); + break; + + case FFI_TYPE_SINT8: + (raw++)->sint = *(SINT8*) (*args); + break; + + case FFI_TYPE_UINT16: + (raw++)->uint = *(UINT16*) (*args); + break; + + case FFI_TYPE_SINT16: + (raw++)->sint = *(SINT16*) (*args); + break; + +#if FFI_SIZEOF_ARG >= 4 + case FFI_TYPE_UINT32: + (raw++)->uint = *(UINT32*) (*args); + break; + + case FFI_TYPE_SINT32: + (raw++)->sint = *(SINT32*) (*args); + break; +#endif + +#if !FFI_NO_STRUCTS + case FFI_TYPE_STRUCT: + (raw++)->ptr = *args; + break; +#endif + case FFI_TYPE_COMPLEX: (raw++)->ptr = *args; break; - case FFI_TYPE_POINTER: - (raw++)->ptr = **(void***) args; - break; - - default: - memcpy ((void*) raw->data, (void*)*args, (*tp)->size); + case FFI_TYPE_POINTER: + (raw++)->ptr = **(void***) args; + break; + + default: + memcpy ((void*) raw->data, (void*)*args, (*tp)->size); raw += FFI_ALIGN ((*tp)->size, FFI_SIZEOF_ARG) / FFI_SIZEOF_ARG; - } - } -} - -#if !FFI_NATIVE_RAW_API - - -/* This is a generic definition of ffi_raw_call, to be used if the - * native system does not provide a machine-specific implementation. - * Having this, allows code to be written for the raw API, without - * the need for system-specific code to handle input in that format; - * these following couple of functions will handle the translation forth - * and back automatically. */ - -void ffi_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *raw) -{ - void **avalue = (void**) alloca (cif->nargs * sizeof (void*)); - ffi_raw_to_ptrarray (cif, raw, avalue); - ffi_call (cif, fn, rvalue, avalue); -} - -#if FFI_CLOSURES /* base system provides closures */ - -static void -ffi_translate_args (ffi_cif *cif, void *rvalue, - void **avalue, void *user_data) -{ - ffi_raw *raw = (ffi_raw*)alloca (ffi_raw_size (cif)); - ffi_raw_closure *cl = (ffi_raw_closure*)user_data; - - ffi_ptrarray_to_raw (cif, avalue, raw); - (*cl->fun) (cif, rvalue, raw, cl->user_data); -} - -ffi_status -ffi_prep_raw_closure_loc (ffi_raw_closure* cl, - ffi_cif *cif, - void (*fun)(ffi_cif*,void*,ffi_raw*,void*), - void *user_data, - void *codeloc) -{ - ffi_status status; - - status = ffi_prep_closure_loc ((ffi_closure*) cl, - cif, - &ffi_translate_args, - codeloc, - codeloc); - if (status == FFI_OK) - { - cl->fun = fun; - cl->user_data = user_data; - } - - return status; -} - -#endif /* FFI_CLOSURES */ -#endif /* !FFI_NATIVE_RAW_API */ - -#if FFI_CLOSURES - -/* Again, here is the generic version of ffi_prep_raw_closure, which - * will install an intermediate "hub" for translation of arguments from - * the pointer-array format, to the raw format */ - -ffi_status -ffi_prep_raw_closure (ffi_raw_closure* cl, - ffi_cif *cif, - void (*fun)(ffi_cif*,void*,ffi_raw*,void*), - void *user_data) -{ - return ffi_prep_raw_closure_loc (cl, cif, fun, user_data, cl); -} - -#endif /* FFI_CLOSURES */ - -#endif /* !FFI_NO_RAW_API */ + } + } +} + +#if !FFI_NATIVE_RAW_API + + +/* This is a generic definition of ffi_raw_call, to be used if the + * native system does not provide a machine-specific implementation. + * Having this, allows code to be written for the raw API, without + * the need for system-specific code to handle input in that format; + * these following couple of functions will handle the translation forth + * and back automatically. */ + +void ffi_raw_call (ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *raw) +{ + void **avalue = (void**) alloca (cif->nargs * sizeof (void*)); + ffi_raw_to_ptrarray (cif, raw, avalue); + ffi_call (cif, fn, rvalue, avalue); +} + +#if FFI_CLOSURES /* base system provides closures */ + +static void +ffi_translate_args (ffi_cif *cif, void *rvalue, + void **avalue, void *user_data) +{ + ffi_raw *raw = (ffi_raw*)alloca (ffi_raw_size (cif)); + ffi_raw_closure *cl = (ffi_raw_closure*)user_data; + + ffi_ptrarray_to_raw (cif, avalue, raw); + (*cl->fun) (cif, rvalue, raw, cl->user_data); +} + +ffi_status +ffi_prep_raw_closure_loc (ffi_raw_closure* cl, + ffi_cif *cif, + void (*fun)(ffi_cif*,void*,ffi_raw*,void*), + void *user_data, + void *codeloc) +{ + ffi_status status; + + status = ffi_prep_closure_loc ((ffi_closure*) cl, + cif, + &ffi_translate_args, + codeloc, + codeloc); + if (status == FFI_OK) + { + cl->fun = fun; + cl->user_data = user_data; + } + + return status; +} + +#endif /* FFI_CLOSURES */ +#endif /* !FFI_NATIVE_RAW_API */ + +#if FFI_CLOSURES + +/* Again, here is the generic version of ffi_prep_raw_closure, which + * will install an intermediate "hub" for translation of arguments from + * the pointer-array format, to the raw format */ + +ffi_status +ffi_prep_raw_closure (ffi_raw_closure* cl, + ffi_cif *cif, + void (*fun)(ffi_cif*,void*,ffi_raw*,void*), + void *user_data) +{ + return ffi_prep_raw_closure_loc (cl, cif, fun, user_data, cl); +} + +#endif /* FFI_CLOSURES */ + +#endif /* !FFI_NO_RAW_API */ diff --git a/contrib/restricted/libffi/src/types.c b/contrib/restricted/libffi/src/types.c index 9ec27f6cf3..4f8e13f504 100644 --- a/contrib/restricted/libffi/src/types.c +++ b/contrib/restricted/libffi/src/types.c @@ -1,50 +1,50 @@ -/* ----------------------------------------------------------------------- - types.c - Copyright (c) 1996, 1998 Red Hat, Inc. - - Predefined ffi_types needed by libffi. - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -/* Hide the basic type definitions from the header file, so that we - can redefine them here as "const". */ -#define LIBFFI_HIDE_BASIC_TYPES - -#include <ffi.h> -#include <ffi_common.h> - -/* Type definitions */ - +/* ----------------------------------------------------------------------- + types.c - Copyright (c) 1996, 1998 Red Hat, Inc. + + Predefined ffi_types needed by libffi. + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +/* Hide the basic type definitions from the header file, so that we + can redefine them here as "const". */ +#define LIBFFI_HIDE_BASIC_TYPES + +#include <ffi.h> +#include <ffi_common.h> + +/* Type definitions */ + #define FFI_TYPEDEF(name, type, id, maybe_const)\ -struct struct_align_##name { \ - char c; \ - type x; \ -}; \ +struct struct_align_##name { \ + char c; \ + type x; \ +}; \ FFI_EXTERN \ maybe_const ffi_type ffi_type_##name = { \ - sizeof(type), \ - offsetof(struct struct_align_##name, x), \ - id, NULL \ -} - + sizeof(type), \ + offsetof(struct struct_align_##name, x), \ + id, NULL \ +} + #define FFI_COMPLEX_TYPEDEF(name, type, maybe_const) \ static ffi_type *ffi_elements_complex_##name [2] = { \ (ffi_type *)(&ffi_type_##name), NULL \ @@ -61,11 +61,11 @@ maybe_const ffi_type ffi_type_complex_##name = { \ (ffi_type **)ffi_elements_complex_##name \ } -/* Size and alignment are fake here. They must not be 0. */ +/* Size and alignment are fake here. They must not be 0. */ FFI_EXTERN const ffi_type ffi_type_void = { - 1, 1, FFI_TYPE_VOID, NULL -}; - + 1, 1, FFI_TYPE_VOID, NULL +}; + FFI_TYPEDEF(uint8, UINT8, FFI_TYPE_UINT8, const); FFI_TYPEDEF(sint8, SINT8, FFI_TYPE_SINT8, const); FFI_TYPEDEF(uint16, UINT16, FFI_TYPE_UINT16, const); @@ -74,30 +74,30 @@ FFI_TYPEDEF(uint32, UINT32, FFI_TYPE_UINT32, const); FFI_TYPEDEF(sint32, SINT32, FFI_TYPE_SINT32, const); FFI_TYPEDEF(uint64, UINT64, FFI_TYPE_UINT64, const); FFI_TYPEDEF(sint64, SINT64, FFI_TYPE_SINT64, const); - + FFI_TYPEDEF(pointer, void*, FFI_TYPE_POINTER, const); - + FFI_TYPEDEF(float, float, FFI_TYPE_FLOAT, const); FFI_TYPEDEF(double, double, FFI_TYPE_DOUBLE, const); - + #if !defined HAVE_LONG_DOUBLE_VARIANT || defined __alpha__ #define FFI_LDBL_CONST const #else #define FFI_LDBL_CONST #endif -#ifdef __alpha__ -/* Even if we're not configured to default to 128-bit long double, - maintain binary compatibility, as -mlong-double-128 can be used - at any time. */ -/* Validate the hard-coded number below. */ -# if defined(__LONG_DOUBLE_128__) && FFI_TYPE_LONGDOUBLE != 4 -# error FFI_TYPE_LONGDOUBLE out of date -# endif -const ffi_type ffi_type_longdouble = { 16, 16, 4, NULL }; -#elif FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE +#ifdef __alpha__ +/* Even if we're not configured to default to 128-bit long double, + maintain binary compatibility, as -mlong-double-128 can be used + at any time. */ +/* Validate the hard-coded number below. */ +# if defined(__LONG_DOUBLE_128__) && FFI_TYPE_LONGDOUBLE != 4 +# error FFI_TYPE_LONGDOUBLE out of date +# endif +const ffi_type ffi_type_longdouble = { 16, 16, 4, NULL }; +#elif FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE FFI_TYPEDEF(longdouble, long double, FFI_TYPE_LONGDOUBLE, FFI_LDBL_CONST); -#endif +#endif #ifdef FFI_TARGET_HAS_COMPLEX_TYPE FFI_COMPLEX_TYPEDEF(float, float, const); diff --git a/contrib/restricted/libffi/src/x86/ffi.c b/contrib/restricted/libffi/src/x86/ffi.c index 9a592185a1..19a3cb8a5f 100644 --- a/contrib/restricted/libffi/src/x86/ffi.c +++ b/contrib/restricted/libffi/src/x86/ffi.c @@ -1,41 +1,41 @@ -/* ----------------------------------------------------------------------- +/* ----------------------------------------------------------------------- ffi.c - Copyright (c) 2017 Anthony Green Copyright (c) 1996, 1998, 1999, 2001, 2007, 2008 Red Hat, Inc. - Copyright (c) 2002 Ranjit Mathew - Copyright (c) 2002 Bo Thorsen - Copyright (c) 2002 Roger Sayle - Copyright (C) 2008, 2010 Free Software Foundation, Inc. - - x86 Foreign Function Interface - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - + Copyright (c) 2002 Ranjit Mathew + Copyright (c) 2002 Bo Thorsen + Copyright (c) 2002 Roger Sayle + Copyright (C) 2008, 2010 Free Software Foundation, Inc. + + x86 Foreign Function Interface + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + #if defined(__i386__) || defined(_M_IX86) -#include <ffi.h> -#include <ffi_common.h> +#include <ffi.h> +#include <ffi_common.h> #include <stdint.h> -#include <stdlib.h> +#include <stdlib.h> #include "internal.h" - + /* Force FFI_TYPE_LONGDOUBLE to be different than FFI_TYPE_DOUBLE; all further uses in this file will refer to the 80-bit type. */ #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE @@ -45,28 +45,28 @@ #else # undef FFI_TYPE_LONGDOUBLE # define FFI_TYPE_LONGDOUBLE 4 -#endif - +#endif + #if defined(__GNUC__) && !defined(__declspec) # define __declspec(x) __attribute__((x)) -#endif - +#endif + #if defined(_MSC_VER) && defined(_M_IX86) /* Stack is not 16-byte aligned on Windows. */ #define STACK_ALIGN(bytes) (bytes) #else #define STACK_ALIGN(bytes) FFI_ALIGN (bytes, 16) -#endif - +#endif + /* Perform machine dependent cif processing. */ ffi_status FFI_HIDDEN ffi_prep_cif_machdep(ffi_cif *cif) { size_t bytes = 0; int i, n, flags, cabi = cif->abi; - + switch (cabi) - { + { case FFI_SYSV: case FFI_STDCALL: case FFI_THISCALL: @@ -77,11 +77,11 @@ ffi_prep_cif_machdep(ffi_cif *cif) break; default: return FFI_BAD_ABI; - } - - switch (cif->rtype->type) - { - case FFI_TYPE_VOID: + } + + switch (cif->rtype->type) + { + case FFI_TYPE_VOID: flags = X86_RET_VOID; break; case FFI_TYPE_FLOAT: @@ -93,41 +93,41 @@ ffi_prep_cif_machdep(ffi_cif *cif) case FFI_TYPE_LONGDOUBLE: flags = X86_RET_LDOUBLE; break; - case FFI_TYPE_UINT8: + case FFI_TYPE_UINT8: flags = X86_RET_UINT8; break; - case FFI_TYPE_UINT16: + case FFI_TYPE_UINT16: flags = X86_RET_UINT16; break; - case FFI_TYPE_SINT8: + case FFI_TYPE_SINT8: flags = X86_RET_SINT8; break; - case FFI_TYPE_SINT16: + case FFI_TYPE_SINT16: flags = X86_RET_SINT16; break; case FFI_TYPE_INT: case FFI_TYPE_SINT32: - case FFI_TYPE_UINT32: + case FFI_TYPE_UINT32: case FFI_TYPE_POINTER: flags = X86_RET_INT32; break; - case FFI_TYPE_SINT64: - case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_UINT64: flags = X86_RET_INT64; - break; - case FFI_TYPE_STRUCT: -#ifndef X86 + break; + case FFI_TYPE_STRUCT: +#ifndef X86 /* ??? This should be a different ABI rather than an ifdef. */ - if (cif->rtype->size == 1) + if (cif->rtype->size == 1) flags = X86_RET_STRUCT_1B; - else if (cif->rtype->size == 2) + else if (cif->rtype->size == 2) flags = X86_RET_STRUCT_2B; - else if (cif->rtype->size == 4) + else if (cif->rtype->size == 4) flags = X86_RET_INT32; - else if (cif->rtype->size == 8) + else if (cif->rtype->size == 8) flags = X86_RET_INT64; - else -#endif + else +#endif { do_struct: switch (cabi) @@ -145,7 +145,7 @@ ffi_prep_cif_machdep(ffi_cif *cif) /* Allocate space for return value pointer. */ bytes += FFI_ALIGN (sizeof(void*), FFI_SIZEOF_ARG); } - break; + break; case FFI_TYPE_COMPLEX: switch (cif->rtype->elements[0]->type) { @@ -172,23 +172,23 @@ ffi_prep_cif_machdep(ffi_cif *cif) return FFI_BAD_TYPEDEF; } break; - default: + default: return FFI_BAD_TYPEDEF; - } + } cif->flags = flags; - + for (i = 0, n = cif->nargs; i < n; i++) - { + { ffi_type *t = cif->arg_types[i]; bytes = FFI_ALIGN (bytes, t->alignment); bytes += FFI_ALIGN (t->size, FFI_SIZEOF_ARG); - } + } cif->bytes = bytes; - + return FFI_OK; } - + static ffi_arg extend_basic_type(void *arg, int type) { @@ -202,7 +202,7 @@ extend_basic_type(void *arg, int type) return *(SINT16 *)arg; case FFI_TYPE_UINT16: return *(UINT16 *)arg; - + case FFI_TYPE_SINT32: case FFI_TYPE_UINT32: case FFI_TYPE_POINTER: @@ -212,8 +212,8 @@ extend_basic_type(void *arg, int type) default: abort(); } -} - +} + struct call_frame { void *ebp; /* 0 */ @@ -249,31 +249,31 @@ static const struct abi_params abi_params[FFI_LAST_ABI] = { #else #define FFI_DECLARE_FASTCALL __declspec(fastcall) #endif -#else +#else #define FFI_DECLARE_FASTCALL -#endif - +#endif + extern void FFI_DECLARE_FASTCALL ffi_call_i386(struct call_frame *, char *) FFI_HIDDEN; static void ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue, void *closure) -{ +{ size_t rsize, bytes; struct call_frame *frame; char *stack, *argp; ffi_type **arg_types; int flags, cabi, i, n, dir, narg_reg; const struct abi_params *pabi; - + flags = cif->flags; cabi = cif->abi; pabi = &abi_params[cabi]; dir = pabi->dir; - + rsize = 0; if (rvalue == NULL) - { + { switch (flags) { case X86_RET_FLOAT: @@ -290,20 +290,20 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, flags = X86_RET_VOID; break; } - } - + } + bytes = STACK_ALIGN (cif->bytes); stack = alloca(bytes + sizeof(*frame) + rsize); argp = (dir < 0 ? stack + bytes : stack); frame = (struct call_frame *)(stack + bytes); if (rsize) rvalue = frame + 1; - + frame->fn = fn; frame->flags = flags; frame->rvalue = rvalue; frame->regs[pabi->static_chain] = (unsigned)closure; - + narg_reg = 0; switch (flags) { @@ -319,9 +319,9 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, case X86_RET_STRUCTPOP: *(void **)argp = rvalue; argp += sizeof(void *); - break; - } - + break; + } + arg_types = cif->arg_types; for (i = 0, n = cif->nargs; i < n; i++) { @@ -329,11 +329,11 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, void *valp = avalue[i]; size_t z = ty->size; int t = ty->type; - + if (z <= FFI_SIZEOF_ARG && t != FFI_TYPE_STRUCT) { ffi_arg val = extend_basic_type (valp, t); - + if (t != FFI_TYPE_FLOAT && narg_reg < pabi->nregs) frame->regs[pabi->regs[narg_reg++]] = val; else if (dir < 0) @@ -351,7 +351,7 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, { size_t za = FFI_ALIGN (z, FFI_SIZEOF_ARG); size_t align = FFI_SIZEOF_ARG; - + /* Issue 434: For thiscall and fastcall, if the paramter passed as 64-bit integer or struct, all following integer paramters will be passed on stack. */ @@ -360,7 +360,7 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, || t == FFI_TYPE_UINT64 || t == FFI_TYPE_STRUCT)) narg_reg = 2; - + /* Alignment rules for arguments are quite complex. Vectors and structures with 16 byte alignment get it. Note that long double on Darwin does have 16 byte alignment, and does not get this @@ -387,29 +387,29 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, } } FFI_ASSERT (dir > 0 || argp == stack); - + ffi_call_i386 (frame, stack); } - + void ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { ffi_call_int (cif, fn, rvalue, avalue, NULL); -} - +} + void ffi_call_go (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue, void *closure) -{ +{ ffi_call_int (cif, fn, rvalue, avalue, closure); } - + /** private members **/ - + void FFI_HIDDEN ffi_closure_i386(void); void FFI_HIDDEN ffi_closure_STDCALL(void); void FFI_HIDDEN ffi_closure_REGISTER(void); - + struct closure_frame { unsigned rettemp[4]; /* 0 */ @@ -418,10 +418,10 @@ struct closure_frame void (*fun)(ffi_cif*,void*,void**,void*); /* 32 */ void *user_data; /* 36 */ }; - + int FFI_HIDDEN FFI_DECLARE_FASTCALL ffi_closure_inner (struct closure_frame *frame, char *stack) -{ +{ ffi_cif *cif = frame->cif; int cabi, i, n, flags, dir, narg_reg; const struct abi_params *pabi; @@ -429,7 +429,7 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) char *argp; void *rvalue; void **avalue; - + cabi = cif->abi; flags = cif->flags; narg_reg = 0; @@ -437,7 +437,7 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) pabi = &abi_params[cabi]; dir = pabi->dir; argp = (dir < 0 ? stack + STACK_ALIGN (cif->bytes) : stack); - + switch (flags) { case X86_RET_STRUCTARG: @@ -455,18 +455,18 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) frame->rettemp[0] = (unsigned)rvalue; break; } - + n = cif->nargs; avalue = alloca(sizeof(void *) * n); - + arg_types = cif->arg_types; for (i = 0; i < n; ++i) - { + { ffi_type *ty = arg_types[i]; size_t z = ty->size; int t = ty->type; void *valp; - + if (z <= FFI_SIZEOF_ARG && t != FFI_TYPE_STRUCT) { if (t != FFI_TYPE_FLOAT && narg_reg < pabi->nregs) @@ -482,15 +482,15 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) argp += 4; } } - else + else { size_t za = FFI_ALIGN (z, FFI_SIZEOF_ARG); size_t align = FFI_SIZEOF_ARG; - + /* See the comment in ffi_call_int. */ if (t == FFI_TYPE_STRUCT && ty->alignment >= 16) align = 16; - + /* Issue 434: For thiscall and fastcall, if the paramter passed as 64-bit integer or struct, all following integer paramters will be passed on stack. */ @@ -499,7 +499,7 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) || t == FFI_TYPE_UINT64 || t == FFI_TYPE_STRUCT)) narg_reg = 2; - + if (dir < 0) { /* ??? These reverse argument ABIs are probably too old @@ -514,31 +514,31 @@ ffi_closure_inner (struct closure_frame *frame, char *stack) argp += za; } } - + avalue[i] = valp; } - + frame->fun (cif, rvalue, avalue, frame->user_data); - + if (cabi == FFI_STDCALL) return flags + (cif->bytes << X86_RET_POP_SHIFT); else return flags; } - -ffi_status -ffi_prep_closure_loc (ffi_closure* closure, - ffi_cif* cif, - void (*fun)(ffi_cif*,void*,void**,void*), - void *user_data, - void *codeloc) -{ + +ffi_status +ffi_prep_closure_loc (ffi_closure* closure, + ffi_cif* cif, + void (*fun)(ffi_cif*,void*,void**,void*), + void *user_data, + void *codeloc) +{ char *tramp = closure->tramp; void (*dest)(void); int op = 0xb8; /* movl imm, %eax */ switch (cif->abi) - { + { case FFI_SYSV: case FFI_THISCALL: case FFI_FASTCALL: @@ -555,7 +555,7 @@ ffi_prep_closure_loc (ffi_closure* closure, break; default: return FFI_BAD_ABI; - } + } /* movl or pushl immediate. */ tramp[0] = op; @@ -583,7 +583,7 @@ ffi_prep_go_closure (ffi_go_closure* closure, ffi_cif* cif, void (*dest)(void); switch (cif->abi) - { + { case FFI_SYSV: case FFI_MS_CDECL: dest = ffi_go_closure_ECX; @@ -598,38 +598,38 @@ ffi_prep_go_closure (ffi_go_closure* closure, ffi_cif* cif, break; case FFI_REGISTER: default: - return FFI_BAD_ABI; - } - + return FFI_BAD_ABI; + } + closure->tramp = dest; closure->cif = cif; closure->fun = fun; - return FFI_OK; -} - -/* ------- Native raw API support -------------------------------- */ - -#if !FFI_NO_RAW_API - + return FFI_OK; +} + +/* ------- Native raw API support -------------------------------- */ + +#if !FFI_NO_RAW_API + void FFI_HIDDEN ffi_closure_raw_SYSV(void); void FFI_HIDDEN ffi_closure_raw_THISCALL(void); -ffi_status +ffi_status ffi_prep_raw_closure_loc (ffi_raw_closure *closure, ffi_cif *cif, - void (*fun)(ffi_cif*,void*,ffi_raw*,void*), - void *user_data, - void *codeloc) -{ + void (*fun)(ffi_cif*,void*,ffi_raw*,void*), + void *user_data, + void *codeloc) +{ char *tramp = closure->tramp; void (*dest)(void); - int i; - + int i; + /* We currently don't support certain kinds of arguments for raw - closures. This should be implemented by a separate assembly - language routine, since it would require argument processing, - something we don't do now for performance. */ + closures. This should be implemented by a separate assembly + language routine, since it would require argument processing, + something we don't do now for performance. */ for (i = cif->nargs-1; i >= 0; i--) switch (cif->arg_types[i]->type) { @@ -637,9 +637,9 @@ ffi_prep_raw_closure_loc (ffi_raw_closure *closure, case FFI_TYPE_LONGDOUBLE: return FFI_BAD_TYPEDEF; } - + switch (cif->abi) - { + { case FFI_THISCALL: dest = ffi_closure_raw_THISCALL; break; @@ -648,7 +648,7 @@ ffi_prep_raw_closure_loc (ffi_raw_closure *closure, break; default: return FFI_BAD_ABI; - } + } /* movl imm, %eax. */ tramp[0] = 0xb8; @@ -660,28 +660,28 @@ ffi_prep_raw_closure_loc (ffi_raw_closure *closure, closure->cif = cif; closure->fun = fun; - closure->user_data = user_data; - - return FFI_OK; -} - -void + closure->user_data = user_data; + + return FFI_OK; +} + +void ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *avalue) -{ +{ size_t rsize, bytes; struct call_frame *frame; char *stack, *argp; ffi_type **arg_types; int flags, cabi, i, n, narg_reg; const struct abi_params *pabi; - + flags = cif->flags; cabi = cif->abi; pabi = &abi_params[cabi]; - + rsize = 0; if (rvalue == NULL) - { + { switch (flags) { case X86_RET_FLOAT: @@ -698,19 +698,19 @@ ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *avalue) flags = X86_RET_VOID; break; } - } - + } + bytes = STACK_ALIGN (cif->bytes); argp = stack = (void *)((uintptr_t)alloca(bytes + sizeof(*frame) + rsize + 15) & ~16); frame = (struct call_frame *)(stack + bytes); if (rsize) rvalue = frame + 1; - + frame->fn = fn; frame->flags = flags; frame->rvalue = rvalue; - + narg_reg = 0; switch (flags) { @@ -727,16 +727,16 @@ ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *avalue) *(void **)argp = rvalue; argp += sizeof(void *); bytes -= sizeof(void *); - break; - } - + break; + } + arg_types = cif->arg_types; for (i = 0, n = cif->nargs; narg_reg < pabi->nregs && i < n; i++) { ffi_type *ty = arg_types[i]; size_t z = ty->size; int t = ty->type; - + if (z <= FFI_SIZEOF_ARG && t != FFI_TYPE_STRUCT && t != FFI_TYPE_FLOAT) { ffi_arg val = extend_basic_type (avalue, t); @@ -754,7 +754,7 @@ ffi_raw_call(ffi_cif *cif, void (*fn)(void), void *rvalue, ffi_raw *avalue) } if (i < n) memcpy (argp, avalue, bytes); - + ffi_call_i386 (frame, stack); } #endif /* !FFI_NO_RAW_API */ diff --git a/contrib/restricted/libffi/src/x86/ffi64.c b/contrib/restricted/libffi/src/x86/ffi64.c index dec331c958..e59e396ff0 100644 --- a/contrib/restricted/libffi/src/x86/ffi64.c +++ b/contrib/restricted/libffi/src/x86/ffi64.c @@ -1,308 +1,308 @@ -/* ----------------------------------------------------------------------- +/* ----------------------------------------------------------------------- ffi64.c - Copyright (c) 2011, 2018 Anthony Green Copyright (c) 2013 The Written Word, Inc. - Copyright (c) 2008, 2010 Red Hat, Inc. - Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de> - + Copyright (c) 2008, 2010 Red Hat, Inc. + Copyright (c) 2002, 2007 Bo Thorsen <bo@suse.de> + x86-64 Foreign Function Interface - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -#include <ffi.h> -#include <ffi_common.h> - -#include <stdlib.h> -#include <stdarg.h> + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +#include <ffi.h> +#include <ffi_common.h> + +#include <stdlib.h> +#include <stdarg.h> #include <stdint.h> #include "internal64.h" - -#ifdef __x86_64__ - -#define MAX_GPR_REGS 6 -#define MAX_SSE_REGS 8 - -#if defined(__INTEL_COMPILER) + +#ifdef __x86_64__ + +#define MAX_GPR_REGS 6 +#define MAX_SSE_REGS 8 + +#if defined(__INTEL_COMPILER) #include "xmmintrin.h" -#define UINT128 __m128 -#else -#if defined(__SUNPRO_C) -#include <sunmedia_types.h> -#define UINT128 __m128i -#else -#define UINT128 __int128_t -#endif -#endif - -union big_int_union -{ - UINT32 i32; - UINT64 i64; - UINT128 i128; -}; - -struct register_args -{ - /* Registers for argument passing. */ - UINT64 gpr[MAX_GPR_REGS]; +#define UINT128 __m128 +#else +#if defined(__SUNPRO_C) +#include <sunmedia_types.h> +#define UINT128 __m128i +#else +#define UINT128 __int128_t +#endif +#endif + +union big_int_union +{ + UINT32 i32; + UINT64 i64; + UINT128 i128; +}; + +struct register_args +{ + /* Registers for argument passing. */ + UINT64 gpr[MAX_GPR_REGS]; union big_int_union sse[MAX_SSE_REGS]; UINT64 rax; /* ssecount */ UINT64 r10; /* static chain */ -}; - -extern void ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags, +}; + +extern void ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags, void *raddr, void (*fnaddr)(void)) FFI_HIDDEN; - -/* All reference to register classes here is identical to the code in - gcc/config/i386/i386.c. Do *not* change one without the other. */ - -/* Register class used for passing given 64bit part of the argument. - These represent classes as documented by the PS ABI, with the - exception of SSESF, SSEDF classes, that are basically SSE class, - just gcc will use SF or DFmode move instead of DImode to avoid - reformatting penalties. - - Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves - whenever possible (upper half does contain padding). */ -enum x86_64_reg_class - { - X86_64_NO_CLASS, - X86_64_INTEGER_CLASS, - X86_64_INTEGERSI_CLASS, - X86_64_SSE_CLASS, - X86_64_SSESF_CLASS, - X86_64_SSEDF_CLASS, - X86_64_SSEUP_CLASS, - X86_64_X87_CLASS, - X86_64_X87UP_CLASS, - X86_64_COMPLEX_X87_CLASS, - X86_64_MEMORY_CLASS - }; - -#define MAX_CLASSES 4 - -#define SSE_CLASS_P(X) ((X) >= X86_64_SSE_CLASS && X <= X86_64_SSEUP_CLASS) - -/* x86-64 register passing implementation. See x86-64 ABI for details. Goal - of this code is to classify each 8bytes of incoming argument by the register - class and assign registers accordingly. */ - -/* Return the union class of CLASS1 and CLASS2. - See the x86-64 PS ABI for details. */ - -static enum x86_64_reg_class -merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) -{ - /* Rule #1: If both classes are equal, this is the resulting class. */ - if (class1 == class2) - return class1; - - /* Rule #2: If one of the classes is NO_CLASS, the resulting class is - the other class. */ - if (class1 == X86_64_NO_CLASS) - return class2; - if (class2 == X86_64_NO_CLASS) - return class1; - - /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ - if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) - return X86_64_MEMORY_CLASS; - - /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ - if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) - || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) - return X86_64_INTEGERSI_CLASS; - if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS - || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) - return X86_64_INTEGER_CLASS; - - /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, - MEMORY is used. */ - if (class1 == X86_64_X87_CLASS - || class1 == X86_64_X87UP_CLASS - || class1 == X86_64_COMPLEX_X87_CLASS - || class2 == X86_64_X87_CLASS - || class2 == X86_64_X87UP_CLASS - || class2 == X86_64_COMPLEX_X87_CLASS) - return X86_64_MEMORY_CLASS; - - /* Rule #6: Otherwise class SSE is used. */ - return X86_64_SSE_CLASS; -} - -/* Classify the argument of type TYPE and mode MODE. - CLASSES will be filled by the register class used to pass each word - of the operand. The number of words is returned. In case the parameter - should be passed in memory, 0 is returned. As a special case for zero - sized containers, classes[0] will be NO_CLASS and 1 is returned. - - See the x86-64 PS ABI for details. -*/ + +/* All reference to register classes here is identical to the code in + gcc/config/i386/i386.c. Do *not* change one without the other. */ + +/* Register class used for passing given 64bit part of the argument. + These represent classes as documented by the PS ABI, with the + exception of SSESF, SSEDF classes, that are basically SSE class, + just gcc will use SF or DFmode move instead of DImode to avoid + reformatting penalties. + + Similary we play games with INTEGERSI_CLASS to use cheaper SImode moves + whenever possible (upper half does contain padding). */ +enum x86_64_reg_class + { + X86_64_NO_CLASS, + X86_64_INTEGER_CLASS, + X86_64_INTEGERSI_CLASS, + X86_64_SSE_CLASS, + X86_64_SSESF_CLASS, + X86_64_SSEDF_CLASS, + X86_64_SSEUP_CLASS, + X86_64_X87_CLASS, + X86_64_X87UP_CLASS, + X86_64_COMPLEX_X87_CLASS, + X86_64_MEMORY_CLASS + }; + +#define MAX_CLASSES 4 + +#define SSE_CLASS_P(X) ((X) >= X86_64_SSE_CLASS && X <= X86_64_SSEUP_CLASS) + +/* x86-64 register passing implementation. See x86-64 ABI for details. Goal + of this code is to classify each 8bytes of incoming argument by the register + class and assign registers accordingly. */ + +/* Return the union class of CLASS1 and CLASS2. + See the x86-64 PS ABI for details. */ + +static enum x86_64_reg_class +merge_classes (enum x86_64_reg_class class1, enum x86_64_reg_class class2) +{ + /* Rule #1: If both classes are equal, this is the resulting class. */ + if (class1 == class2) + return class1; + + /* Rule #2: If one of the classes is NO_CLASS, the resulting class is + the other class. */ + if (class1 == X86_64_NO_CLASS) + return class2; + if (class2 == X86_64_NO_CLASS) + return class1; + + /* Rule #3: If one of the classes is MEMORY, the result is MEMORY. */ + if (class1 == X86_64_MEMORY_CLASS || class2 == X86_64_MEMORY_CLASS) + return X86_64_MEMORY_CLASS; + + /* Rule #4: If one of the classes is INTEGER, the result is INTEGER. */ + if ((class1 == X86_64_INTEGERSI_CLASS && class2 == X86_64_SSESF_CLASS) + || (class2 == X86_64_INTEGERSI_CLASS && class1 == X86_64_SSESF_CLASS)) + return X86_64_INTEGERSI_CLASS; + if (class1 == X86_64_INTEGER_CLASS || class1 == X86_64_INTEGERSI_CLASS + || class2 == X86_64_INTEGER_CLASS || class2 == X86_64_INTEGERSI_CLASS) + return X86_64_INTEGER_CLASS; + + /* Rule #5: If one of the classes is X87, X87UP, or COMPLEX_X87 class, + MEMORY is used. */ + if (class1 == X86_64_X87_CLASS + || class1 == X86_64_X87UP_CLASS + || class1 == X86_64_COMPLEX_X87_CLASS + || class2 == X86_64_X87_CLASS + || class2 == X86_64_X87UP_CLASS + || class2 == X86_64_COMPLEX_X87_CLASS) + return X86_64_MEMORY_CLASS; + + /* Rule #6: Otherwise class SSE is used. */ + return X86_64_SSE_CLASS; +} + +/* Classify the argument of type TYPE and mode MODE. + CLASSES will be filled by the register class used to pass each word + of the operand. The number of words is returned. In case the parameter + should be passed in memory, 0 is returned. As a special case for zero + sized containers, classes[0] will be NO_CLASS and 1 is returned. + + See the x86-64 PS ABI for details. +*/ static size_t -classify_argument (ffi_type *type, enum x86_64_reg_class classes[], - size_t byte_offset) -{ - switch (type->type) - { - case FFI_TYPE_UINT8: - case FFI_TYPE_SINT8: - case FFI_TYPE_UINT16: - case FFI_TYPE_SINT16: - case FFI_TYPE_UINT32: - case FFI_TYPE_SINT32: - case FFI_TYPE_UINT64: - case FFI_TYPE_SINT64: - case FFI_TYPE_POINTER: +classify_argument (ffi_type *type, enum x86_64_reg_class classes[], + size_t byte_offset) +{ + switch (type->type) + { + case FFI_TYPE_UINT8: + case FFI_TYPE_SINT8: + case FFI_TYPE_UINT16: + case FFI_TYPE_SINT16: + case FFI_TYPE_UINT32: + case FFI_TYPE_SINT32: + case FFI_TYPE_UINT64: + case FFI_TYPE_SINT64: + case FFI_TYPE_POINTER: do_integer: - { + { size_t size = byte_offset + type->size; - - if (size <= 4) - { - classes[0] = X86_64_INTEGERSI_CLASS; - return 1; - } - else if (size <= 8) - { - classes[0] = X86_64_INTEGER_CLASS; - return 1; - } - else if (size <= 12) - { - classes[0] = X86_64_INTEGER_CLASS; - classes[1] = X86_64_INTEGERSI_CLASS; - return 2; - } - else if (size <= 16) - { + + if (size <= 4) + { + classes[0] = X86_64_INTEGERSI_CLASS; + return 1; + } + else if (size <= 8) + { + classes[0] = X86_64_INTEGER_CLASS; + return 1; + } + else if (size <= 12) + { + classes[0] = X86_64_INTEGER_CLASS; + classes[1] = X86_64_INTEGERSI_CLASS; + return 2; + } + else if (size <= 16) + { classes[0] = classes[1] = X86_64_INTEGER_CLASS; - return 2; - } - else - FFI_ASSERT (0); - } - case FFI_TYPE_FLOAT: - if (!(byte_offset % 8)) - classes[0] = X86_64_SSESF_CLASS; - else - classes[0] = X86_64_SSE_CLASS; - return 1; - case FFI_TYPE_DOUBLE: - classes[0] = X86_64_SSEDF_CLASS; - return 1; + return 2; + } + else + FFI_ASSERT (0); + } + case FFI_TYPE_FLOAT: + if (!(byte_offset % 8)) + classes[0] = X86_64_SSESF_CLASS; + else + classes[0] = X86_64_SSE_CLASS; + return 1; + case FFI_TYPE_DOUBLE: + classes[0] = X86_64_SSEDF_CLASS; + return 1; #if FFI_TYPE_LONGDOUBLE != FFI_TYPE_DOUBLE - case FFI_TYPE_LONGDOUBLE: - classes[0] = X86_64_X87_CLASS; - classes[1] = X86_64_X87UP_CLASS; - return 2; + case FFI_TYPE_LONGDOUBLE: + classes[0] = X86_64_X87_CLASS; + classes[1] = X86_64_X87UP_CLASS; + return 2; #endif - case FFI_TYPE_STRUCT: - { + case FFI_TYPE_STRUCT: + { const size_t UNITS_PER_WORD = 8; size_t words = (type->size + UNITS_PER_WORD - 1) / UNITS_PER_WORD; ffi_type **ptr; unsigned int i; - enum x86_64_reg_class subclasses[MAX_CLASSES]; - - /* If the struct is larger than 32 bytes, pass it on the stack. */ - if (type->size > 32) - return 0; - - for (i = 0; i < words; i++) - classes[i] = X86_64_NO_CLASS; - - /* Zero sized arrays or structures are NO_CLASS. We return 0 to - signalize memory class, so handle it as special case. */ - if (!words) - { + enum x86_64_reg_class subclasses[MAX_CLASSES]; + + /* If the struct is larger than 32 bytes, pass it on the stack. */ + if (type->size > 32) + return 0; + + for (i = 0; i < words; i++) + classes[i] = X86_64_NO_CLASS; + + /* Zero sized arrays or structures are NO_CLASS. We return 0 to + signalize memory class, so handle it as special case. */ + if (!words) + { case FFI_TYPE_VOID: - classes[0] = X86_64_NO_CLASS; - return 1; - } - - /* Merge the fields of structure. */ - for (ptr = type->elements; *ptr != NULL; ptr++) - { + classes[0] = X86_64_NO_CLASS; + return 1; + } + + /* Merge the fields of structure. */ + for (ptr = type->elements; *ptr != NULL; ptr++) + { size_t num; - + byte_offset = FFI_ALIGN (byte_offset, (*ptr)->alignment); - - num = classify_argument (*ptr, subclasses, byte_offset % 8); - if (num == 0) - return 0; - for (i = 0; i < num; i++) - { + + num = classify_argument (*ptr, subclasses, byte_offset % 8); + if (num == 0) + return 0; + for (i = 0; i < num; i++) + { size_t pos = byte_offset / 8; - classes[i + pos] = - merge_classes (subclasses[i], classes[i + pos]); - } - - byte_offset += (*ptr)->size; - } - - if (words > 2) - { - /* When size > 16 bytes, if the first one isn't - X86_64_SSE_CLASS or any other ones aren't - X86_64_SSEUP_CLASS, everything should be passed in - memory. */ - if (classes[0] != X86_64_SSE_CLASS) - return 0; - - for (i = 1; i < words; i++) - if (classes[i] != X86_64_SSEUP_CLASS) - return 0; - } - - /* Final merger cleanup. */ - for (i = 0; i < words; i++) - { - /* If one class is MEMORY, everything should be passed in - memory. */ - if (classes[i] == X86_64_MEMORY_CLASS) - return 0; - - /* The X86_64_SSEUP_CLASS should be always preceded by - X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ + classes[i + pos] = + merge_classes (subclasses[i], classes[i + pos]); + } + + byte_offset += (*ptr)->size; + } + + if (words > 2) + { + /* When size > 16 bytes, if the first one isn't + X86_64_SSE_CLASS or any other ones aren't + X86_64_SSEUP_CLASS, everything should be passed in + memory. */ + if (classes[0] != X86_64_SSE_CLASS) + return 0; + + for (i = 1; i < words; i++) + if (classes[i] != X86_64_SSEUP_CLASS) + return 0; + } + + /* Final merger cleanup. */ + for (i = 0; i < words; i++) + { + /* If one class is MEMORY, everything should be passed in + memory. */ + if (classes[i] == X86_64_MEMORY_CLASS) + return 0; + + /* The X86_64_SSEUP_CLASS should be always preceded by + X86_64_SSE_CLASS or X86_64_SSEUP_CLASS. */ if (i > 1 && classes[i] == X86_64_SSEUP_CLASS - && classes[i - 1] != X86_64_SSE_CLASS - && classes[i - 1] != X86_64_SSEUP_CLASS) - { - /* The first one should never be X86_64_SSEUP_CLASS. */ - FFI_ASSERT (i != 0); - classes[i] = X86_64_SSE_CLASS; - } - - /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, - everything should be passed in memory. */ + && classes[i - 1] != X86_64_SSE_CLASS + && classes[i - 1] != X86_64_SSEUP_CLASS) + { + /* The first one should never be X86_64_SSEUP_CLASS. */ + FFI_ASSERT (i != 0); + classes[i] = X86_64_SSE_CLASS; + } + + /* If X86_64_X87UP_CLASS isn't preceded by X86_64_X87_CLASS, + everything should be passed in memory. */ if (i > 1 && classes[i] == X86_64_X87UP_CLASS - && (classes[i - 1] != X86_64_X87_CLASS)) - { - /* The first one should never be X86_64_X87UP_CLASS. */ - FFI_ASSERT (i != 0); - return 0; - } - } - return words; - } + && (classes[i - 1] != X86_64_X87_CLASS)) + { + /* The first one should never be X86_64_X87UP_CLASS. */ + FFI_ASSERT (i != 0); + return 0; + } + } + return words; + } case FFI_TYPE_COMPLEX: { ffi_type *inner = type->elements[0]; @@ -318,7 +318,7 @@ classify_argument (ffi_type *type, enum x86_64_reg_class classes[], case FFI_TYPE_UINT64: case FFI_TYPE_SINT64: goto do_integer; - + case FFI_TYPE_FLOAT: classes[0] = X86_64_SSE_CLASS; if (byte_offset % 8) @@ -337,72 +337,72 @@ classify_argument (ffi_type *type, enum x86_64_reg_class classes[], #endif } } - } + } abort(); -} - -/* Examine the argument and return set number of register required in each - class. Return zero iff parameter should be passed in memory, otherwise - the number of registers. */ - +} + +/* Examine the argument and return set number of register required in each + class. Return zero iff parameter should be passed in memory, otherwise + the number of registers. */ + static size_t -examine_argument (ffi_type *type, enum x86_64_reg_class classes[MAX_CLASSES], - _Bool in_return, int *pngpr, int *pnsse) -{ +examine_argument (ffi_type *type, enum x86_64_reg_class classes[MAX_CLASSES], + _Bool in_return, int *pngpr, int *pnsse) +{ size_t n; unsigned int i; int ngpr, nsse; - - n = classify_argument (type, classes, 0); - if (n == 0) - return 0; - - ngpr = nsse = 0; - for (i = 0; i < n; ++i) - switch (classes[i]) - { - case X86_64_INTEGER_CLASS: - case X86_64_INTEGERSI_CLASS: - ngpr++; - break; - case X86_64_SSE_CLASS: - case X86_64_SSESF_CLASS: - case X86_64_SSEDF_CLASS: - nsse++; - break; - case X86_64_NO_CLASS: - case X86_64_SSEUP_CLASS: - break; - case X86_64_X87_CLASS: - case X86_64_X87UP_CLASS: - case X86_64_COMPLEX_X87_CLASS: - return in_return != 0; - default: - abort (); - } - - *pngpr = ngpr; - *pnsse = nsse; - - return n; -} - -/* Perform machine dependent cif processing. */ - + + n = classify_argument (type, classes, 0); + if (n == 0) + return 0; + + ngpr = nsse = 0; + for (i = 0; i < n; ++i) + switch (classes[i]) + { + case X86_64_INTEGER_CLASS: + case X86_64_INTEGERSI_CLASS: + ngpr++; + break; + case X86_64_SSE_CLASS: + case X86_64_SSESF_CLASS: + case X86_64_SSEDF_CLASS: + nsse++; + break; + case X86_64_NO_CLASS: + case X86_64_SSEUP_CLASS: + break; + case X86_64_X87_CLASS: + case X86_64_X87UP_CLASS: + case X86_64_COMPLEX_X87_CLASS: + return in_return != 0; + default: + abort (); + } + + *pngpr = ngpr; + *pnsse = nsse; + + return n; +} + +/* Perform machine dependent cif processing. */ + #ifndef __ILP32__ extern ffi_status ffi_prep_cif_machdep_efi64(ffi_cif *cif); #endif ffi_status FFI_HIDDEN -ffi_prep_cif_machdep (ffi_cif *cif) -{ +ffi_prep_cif_machdep (ffi_cif *cif) +{ int gprcount, ssecount, i, avn, ngpr, nsse; unsigned flags; - enum x86_64_reg_class classes[MAX_CLASSES]; + enum x86_64_reg_class classes[MAX_CLASSES]; size_t bytes, n, rtype_size; ffi_type *rtype; - + #ifndef __ILP32__ if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64) return ffi_prep_cif_machdep_efi64(cif); @@ -410,12 +410,12 @@ ffi_prep_cif_machdep (ffi_cif *cif) if (cif->abi != FFI_UNIX64) return FFI_BAD_ABI; - gprcount = ssecount = 0; - + gprcount = ssecount = 0; + rtype = cif->rtype; rtype_size = rtype->size; switch (rtype->type) - { + { case FFI_TYPE_VOID: flags = UNIX64_RET_VOID; break; @@ -457,18 +457,18 @@ ffi_prep_cif_machdep (ffi_cif *cif) break; #endif case FFI_TYPE_STRUCT: - n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse); - if (n == 0) - { - /* The return value is passed in memory. A pointer to that - memory is the first argument. Allocate a register for it. */ - gprcount++; - /* We don't have to do anything in asm for the return. */ + n = examine_argument (cif->rtype, classes, 1, &ngpr, &nsse); + if (n == 0) + { + /* The return value is passed in memory. A pointer to that + memory is the first argument. Allocate a register for it. */ + gprcount++; + /* We don't have to do anything in asm for the return. */ flags = UNIX64_RET_VOID | UNIX64_FLAG_RET_IN_MEM; - } + } else - { - _Bool sse0 = SSE_CLASS_P (classes[0]); + { + _Bool sse0 = SSE_CLASS_P (classes[0]); if (rtype_size == 4 && sse0) flags = UNIX64_RET_XMM32; @@ -487,7 +487,7 @@ ffi_prep_cif_machdep (ffi_cif *cif) flags = UNIX64_RET_ST_RAX_RDX; flags |= rtype_size << UNIX64_SIZE_SHIFT; } - } + } break; case FFI_TYPE_COMPLEX: switch (rtype->elements[0]->type) @@ -520,54 +520,54 @@ ffi_prep_cif_machdep (ffi_cif *cif) break; default: return FFI_BAD_TYPEDEF; - } - - /* Go over all arguments and determine the way they should be passed. - If it's in a register and there is space for it, let that be so. If - not, add it's size to the stack byte count. */ - for (bytes = 0, i = 0, avn = cif->nargs; i < avn; i++) - { - if (examine_argument (cif->arg_types[i], classes, 0, &ngpr, &nsse) == 0 - || gprcount + ngpr > MAX_GPR_REGS - || ssecount + nsse > MAX_SSE_REGS) - { - long align = cif->arg_types[i]->alignment; - - if (align < 8) - align = 8; - + } + + /* Go over all arguments and determine the way they should be passed. + If it's in a register and there is space for it, let that be so. If + not, add it's size to the stack byte count. */ + for (bytes = 0, i = 0, avn = cif->nargs; i < avn; i++) + { + if (examine_argument (cif->arg_types[i], classes, 0, &ngpr, &nsse) == 0 + || gprcount + ngpr > MAX_GPR_REGS + || ssecount + nsse > MAX_SSE_REGS) + { + long align = cif->arg_types[i]->alignment; + + if (align < 8) + align = 8; + bytes = FFI_ALIGN (bytes, align); - bytes += cif->arg_types[i]->size; - } - else - { - gprcount += ngpr; - ssecount += nsse; - } - } - if (ssecount) + bytes += cif->arg_types[i]->size; + } + else + { + gprcount += ngpr; + ssecount += nsse; + } + } + if (ssecount) flags |= UNIX64_FLAG_XMM_ARGS; - cif->flags = flags; + cif->flags = flags; cif->bytes = (unsigned) FFI_ALIGN (bytes, 8); - - return FFI_OK; -} - + + return FFI_OK; +} + static void ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue, void *closure) -{ - enum x86_64_reg_class classes[MAX_CLASSES]; - char *stack, *argp; - ffi_type **arg_types; +{ + enum x86_64_reg_class classes[MAX_CLASSES]; + char *stack, *argp; + ffi_type **arg_types; int gprcount, ssecount, ngpr, nsse, i, avn, flags; - struct register_args *reg_args; - - /* Can't call 32-bit mode from 64-bit mode. */ - FFI_ASSERT (cif->abi == FFI_UNIX64); - - /* If the return value is a struct and we don't have a return value + struct register_args *reg_args; + + /* Can't call 32-bit mode from 64-bit mode. */ + FFI_ASSERT (cif->abi == FFI_UNIX64); + + /* If the return value is a struct and we don't have a return value address then we need to make one. Otherwise we can ignore it. */ flags = cif->flags; if (rvalue == NULL) @@ -577,104 +577,104 @@ ffi_call_int (ffi_cif *cif, void (*fn)(void), void *rvalue, else flags = UNIX64_RET_VOID; } - - /* Allocate the space for the arguments, plus 4 words of temp space. */ - stack = alloca (sizeof (struct register_args) + cif->bytes + 4*8); - reg_args = (struct register_args *) stack; - argp = stack + sizeof (struct register_args); - + + /* Allocate the space for the arguments, plus 4 words of temp space. */ + stack = alloca (sizeof (struct register_args) + cif->bytes + 4*8); + reg_args = (struct register_args *) stack; + argp = stack + sizeof (struct register_args); + reg_args->r10 = (uintptr_t) closure; - gprcount = ssecount = 0; - - /* If the return value is passed in memory, add the pointer as the - first integer argument. */ + gprcount = ssecount = 0; + + /* If the return value is passed in memory, add the pointer as the + first integer argument. */ if (flags & UNIX64_FLAG_RET_IN_MEM) - reg_args->gpr[gprcount++] = (unsigned long) rvalue; - - avn = cif->nargs; - arg_types = cif->arg_types; - - for (i = 0; i < avn; ++i) - { + reg_args->gpr[gprcount++] = (unsigned long) rvalue; + + avn = cif->nargs; + arg_types = cif->arg_types; + + for (i = 0; i < avn; ++i) + { size_t n, size = arg_types[i]->size; - - n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse); - if (n == 0 - || gprcount + ngpr > MAX_GPR_REGS - || ssecount + nsse > MAX_SSE_REGS) - { - long align = arg_types[i]->alignment; - - /* Stack arguments are *always* at least 8 byte aligned. */ - if (align < 8) - align = 8; - - /* Pass this argument in memory. */ + + n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse); + if (n == 0 + || gprcount + ngpr > MAX_GPR_REGS + || ssecount + nsse > MAX_SSE_REGS) + { + long align = arg_types[i]->alignment; + + /* Stack arguments are *always* at least 8 byte aligned. */ + if (align < 8) + align = 8; + + /* Pass this argument in memory. */ argp = (void *) FFI_ALIGN (argp, align); - memcpy (argp, avalue[i], size); - argp += size; - } - else - { - /* The argument is passed entirely in registers. */ - char *a = (char *) avalue[i]; + memcpy (argp, avalue[i], size); + argp += size; + } + else + { + /* The argument is passed entirely in registers. */ + char *a = (char *) avalue[i]; unsigned int j; - - for (j = 0; j < n; j++, a += 8, size -= 8) - { - switch (classes[j]) - { + + for (j = 0; j < n; j++, a += 8, size -= 8) + { + switch (classes[j]) + { case X86_64_NO_CLASS: case X86_64_SSEUP_CLASS: break; - case X86_64_INTEGER_CLASS: - case X86_64_INTEGERSI_CLASS: - /* Sign-extend integer arguments passed in general - purpose registers, to cope with the fact that - LLVM incorrectly assumes that this will be done - (the x86-64 PS ABI does not specify this). */ - switch (arg_types[i]->type) - { - case FFI_TYPE_SINT8: + case X86_64_INTEGER_CLASS: + case X86_64_INTEGERSI_CLASS: + /* Sign-extend integer arguments passed in general + purpose registers, to cope with the fact that + LLVM incorrectly assumes that this will be done + (the x86-64 PS ABI does not specify this). */ + switch (arg_types[i]->type) + { + case FFI_TYPE_SINT8: reg_args->gpr[gprcount] = (SINT64) *((SINT8 *) a); - break; - case FFI_TYPE_SINT16: + break; + case FFI_TYPE_SINT16: reg_args->gpr[gprcount] = (SINT64) *((SINT16 *) a); - break; - case FFI_TYPE_SINT32: + break; + case FFI_TYPE_SINT32: reg_args->gpr[gprcount] = (SINT64) *((SINT32 *) a); - break; - default: - reg_args->gpr[gprcount] = 0; + break; + default: + reg_args->gpr[gprcount] = 0; memcpy (®_args->gpr[gprcount], a, size); - } - gprcount++; - break; - case X86_64_SSE_CLASS: - case X86_64_SSEDF_CLASS: + } + gprcount++; + break; + case X86_64_SSE_CLASS: + case X86_64_SSEDF_CLASS: memcpy (®_args->sse[ssecount++].i64, a, sizeof(UINT64)); - break; - case X86_64_SSESF_CLASS: + break; + case X86_64_SSESF_CLASS: memcpy (®_args->sse[ssecount++].i32, a, sizeof(UINT32)); - break; - default: - abort(); - } - } - } - } + break; + default: + abort(); + } + } + } + } reg_args->rax = ssecount; - - ffi_call_unix64 (stack, cif->bytes + sizeof (struct register_args), + + ffi_call_unix64 (stack, cif->bytes + sizeof (struct register_args), flags, rvalue, fn); -} - +} + #ifndef __ILP32__ extern void ffi_call_efi64(ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue); #endif - + void ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) { @@ -687,7 +687,7 @@ ffi_call (ffi_cif *cif, void (*fn)(void), void *rvalue, void **avalue) #endif ffi_call_int (cif, fn, rvalue, avalue, NULL); } - + #ifndef __ILP32__ extern void ffi_call_go_efi64(ffi_cif *cif, void (*fn)(void), void *rvalue, @@ -721,13 +721,13 @@ ffi_prep_closure_loc_efi64(ffi_closure* closure, void *codeloc); #endif -ffi_status -ffi_prep_closure_loc (ffi_closure* closure, - ffi_cif* cif, - void (*fun)(ffi_cif*, void*, void**, void*), - void *user_data, - void *codeloc) -{ +ffi_status +ffi_prep_closure_loc (ffi_closure* closure, + ffi_cif* cif, + void (*fun)(ffi_cif*, void*, void**, void*), + void *user_data, + void *codeloc) +{ static const unsigned char trampoline[16] = { /* leaq -0x7(%rip),%r10 # 0x0 */ 0x4c, 0x8d, 0x15, 0xf9, 0xff, 0xff, 0xff, @@ -738,29 +738,29 @@ ffi_prep_closure_loc (ffi_closure* closure, }; void (*dest)(void); char *tramp = closure->tramp; - + #ifndef __ILP32__ if (cif->abi == FFI_EFI64 || cif->abi == FFI_GNUW64) return ffi_prep_closure_loc_efi64(closure, cif, fun, user_data, codeloc); #endif if (cif->abi != FFI_UNIX64) return FFI_BAD_ABI; - + if (cif->flags & UNIX64_FLAG_XMM_ARGS) dest = ffi_closure_unix64_sse; else dest = ffi_closure_unix64; - + memcpy (tramp, trampoline, sizeof(trampoline)); *(UINT64 *)(tramp + 16) = (uintptr_t)dest; - - closure->cif = cif; - closure->fun = fun; - closure->user_data = user_data; - - return FFI_OK; -} - + + closure->cif = cif; + closure->fun = fun; + closure->user_data = user_data; + + return FFI_OK; +} + int FFI_HIDDEN ffi_closure_unix64_inner(ffi_cif *cif, void (*fun)(ffi_cif*, void*, void**, void*), @@ -768,92 +768,92 @@ ffi_closure_unix64_inner(ffi_cif *cif, void *rvalue, struct register_args *reg_args, char *argp) -{ - void **avalue; - ffi_type **arg_types; - long i, avn; - int gprcount, ssecount, ngpr, nsse; +{ + void **avalue; + ffi_type **arg_types; + long i, avn; + int gprcount, ssecount, ngpr, nsse; int flags; - + avn = cif->nargs; flags = cif->flags; avalue = alloca(avn * sizeof(void *)); - gprcount = ssecount = 0; - + gprcount = ssecount = 0; + if (flags & UNIX64_FLAG_RET_IN_MEM) - { + { /* On return, %rax will contain the address that was passed by the caller in %rdi. */ void *r = (void *)(uintptr_t)reg_args->gpr[gprcount++]; *(void **)rvalue = r; rvalue = r; flags = (sizeof(void *) == 4 ? UNIX64_RET_UINT32 : UNIX64_RET_INT64); - } - - arg_types = cif->arg_types; - for (i = 0; i < avn; ++i) - { - enum x86_64_reg_class classes[MAX_CLASSES]; + } + + arg_types = cif->arg_types; + for (i = 0; i < avn; ++i) + { + enum x86_64_reg_class classes[MAX_CLASSES]; size_t n; - - n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse); - if (n == 0 - || gprcount + ngpr > MAX_GPR_REGS - || ssecount + nsse > MAX_SSE_REGS) - { - long align = arg_types[i]->alignment; - - /* Stack arguments are *always* at least 8 byte aligned. */ - if (align < 8) - align = 8; - - /* Pass this argument in memory. */ + + n = examine_argument (arg_types[i], classes, 0, &ngpr, &nsse); + if (n == 0 + || gprcount + ngpr > MAX_GPR_REGS + || ssecount + nsse > MAX_SSE_REGS) + { + long align = arg_types[i]->alignment; + + /* Stack arguments are *always* at least 8 byte aligned. */ + if (align < 8) + align = 8; + + /* Pass this argument in memory. */ argp = (void *) FFI_ALIGN (argp, align); - avalue[i] = argp; - argp += arg_types[i]->size; - } - /* If the argument is in a single register, or two consecutive - integer registers, then we can use that address directly. */ - else if (n == 1 - || (n == 2 && !(SSE_CLASS_P (classes[0]) - || SSE_CLASS_P (classes[1])))) - { - /* The argument is in a single register. */ - if (SSE_CLASS_P (classes[0])) - { - avalue[i] = ®_args->sse[ssecount]; - ssecount += n; - } - else - { - avalue[i] = ®_args->gpr[gprcount]; - gprcount += n; - } - } - /* Otherwise, allocate space to make them consecutive. */ - else - { - char *a = alloca (16); + avalue[i] = argp; + argp += arg_types[i]->size; + } + /* If the argument is in a single register, or two consecutive + integer registers, then we can use that address directly. */ + else if (n == 1 + || (n == 2 && !(SSE_CLASS_P (classes[0]) + || SSE_CLASS_P (classes[1])))) + { + /* The argument is in a single register. */ + if (SSE_CLASS_P (classes[0])) + { + avalue[i] = ®_args->sse[ssecount]; + ssecount += n; + } + else + { + avalue[i] = ®_args->gpr[gprcount]; + gprcount += n; + } + } + /* Otherwise, allocate space to make them consecutive. */ + else + { + char *a = alloca (16); unsigned int j; - - avalue[i] = a; - for (j = 0; j < n; j++, a += 8) - { - if (SSE_CLASS_P (classes[j])) - memcpy (a, ®_args->sse[ssecount++], 8); - else - memcpy (a, ®_args->gpr[gprcount++], 8); - } - } - } - - /* Invoke the closure. */ + + avalue[i] = a; + for (j = 0; j < n; j++, a += 8) + { + if (SSE_CLASS_P (classes[j])) + memcpy (a, ®_args->sse[ssecount++], 8); + else + memcpy (a, ®_args->gpr[gprcount++], 8); + } + } + } + + /* Invoke the closure. */ fun (cif, rvalue, avalue, user_data); - - /* Tell assembly how to perform return type promotions. */ + + /* Tell assembly how to perform return type promotions. */ return flags; -} - +} + extern void ffi_go_closure_unix64(void) FFI_HIDDEN; extern void ffi_go_closure_unix64_sse(void) FFI_HIDDEN; @@ -883,4 +883,4 @@ ffi_prep_go_closure (ffi_go_closure* closure, ffi_cif* cif, return FFI_OK; } -#endif /* __x86_64__ */ +#endif /* __x86_64__ */ diff --git a/contrib/restricted/libffi/src/x86/ffitarget.h b/contrib/restricted/libffi/src/x86/ffitarget.h index 85ccedfedc..170b5865fe 100644 --- a/contrib/restricted/libffi/src/x86/ffitarget.h +++ b/contrib/restricted/libffi/src/x86/ffitarget.h @@ -1,103 +1,103 @@ -/* -----------------------------------------------------------------*-C-*- +/* -----------------------------------------------------------------*-C-*- ffitarget.h - Copyright (c) 2012, 2014, 2018 Anthony Green - Copyright (c) 1996-2003, 2010 Red Hat, Inc. - Copyright (C) 2008 Free Software Foundation, Inc. - - Target configuration macros for x86 and x86-64. - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - - ----------------------------------------------------------------------- */ - -#ifndef LIBFFI_TARGET_H -#define LIBFFI_TARGET_H - -#ifndef LIBFFI_H -#error "Please do not include ffitarget.h directly into your source. Use ffi.h instead." -#endif - -/* ---- System specific configurations ----------------------------------- */ - -/* For code common to all platforms on x86 and x86_64. */ -#define X86_ANY - -#if defined (X86_64) && defined (__i386__) -#undef X86_64 -#define X86 -#endif - -#ifdef X86_WIN64 -#define FFI_SIZEOF_ARG 8 -#define USE_BUILTIN_FFS 0 /* not yet implemented in mingw-64 */ -#endif - + Copyright (c) 1996-2003, 2010 Red Hat, Inc. + Copyright (C) 2008 Free Software Foundation, Inc. + + Target configuration macros for x86 and x86-64. + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + + ----------------------------------------------------------------------- */ + +#ifndef LIBFFI_TARGET_H +#define LIBFFI_TARGET_H + +#ifndef LIBFFI_H +#error "Please do not include ffitarget.h directly into your source. Use ffi.h instead." +#endif + +/* ---- System specific configurations ----------------------------------- */ + +/* For code common to all platforms on x86 and x86_64. */ +#define X86_ANY + +#if defined (X86_64) && defined (__i386__) +#undef X86_64 +#define X86 +#endif + +#ifdef X86_WIN64 +#define FFI_SIZEOF_ARG 8 +#define USE_BUILTIN_FFS 0 /* not yet implemented in mingw-64 */ +#endif + #define FFI_TARGET_SPECIFIC_STACK_SPACE_ALLOCATION #ifndef _MSC_VER #define FFI_TARGET_HAS_COMPLEX_TYPE #endif -/* ---- Generic type definitions ----------------------------------------- */ - -#ifndef LIBFFI_ASM -#ifdef X86_WIN64 -#ifdef _MSC_VER -typedef unsigned __int64 ffi_arg; -typedef __int64 ffi_sarg; -#else -typedef unsigned long long ffi_arg; -typedef long long ffi_sarg; -#endif -#else -#if defined __x86_64__ && defined __ILP32__ -#define FFI_SIZEOF_ARG 8 -#define FFI_SIZEOF_JAVA_RAW 4 -typedef unsigned long long ffi_arg; -typedef long long ffi_sarg; -#else -typedef unsigned long ffi_arg; -typedef signed long ffi_sarg; -#endif -#endif - -typedef enum ffi_abi { +/* ---- Generic type definitions ----------------------------------------- */ + +#ifndef LIBFFI_ASM +#ifdef X86_WIN64 +#ifdef _MSC_VER +typedef unsigned __int64 ffi_arg; +typedef __int64 ffi_sarg; +#else +typedef unsigned long long ffi_arg; +typedef long long ffi_sarg; +#endif +#else +#if defined __x86_64__ && defined __ILP32__ +#define FFI_SIZEOF_ARG 8 +#define FFI_SIZEOF_JAVA_RAW 4 +typedef unsigned long long ffi_arg; +typedef long long ffi_sarg; +#else +typedef unsigned long ffi_arg; +typedef signed long ffi_sarg; +#endif +#endif + +typedef enum ffi_abi { #if defined(X86_WIN64) - FFI_FIRST_ABI = 0, + FFI_FIRST_ABI = 0, FFI_WIN64, /* sizeof(long double) == 8 - microsoft compilers */ FFI_GNUW64, /* sizeof(long double) == 16 - GNU compilers */ - FFI_LAST_ABI, + FFI_LAST_ABI, #ifdef __GNUC__ FFI_DEFAULT_ABI = FFI_GNUW64 #else FFI_DEFAULT_ABI = FFI_WIN64 #endif - + #elif defined(X86_64) || (defined (__x86_64__) && defined (X86_DARWIN)) FFI_FIRST_ABI = 1, FFI_UNIX64, - FFI_WIN64, + FFI_WIN64, FFI_EFI64 = FFI_WIN64, FFI_GNUW64, - FFI_LAST_ABI, + FFI_LAST_ABI, FFI_DEFAULT_ABI = FFI_UNIX64 - + #elif defined(X86_WIN32) FFI_FIRST_ABI = 0, FFI_SYSV = 1, @@ -109,7 +109,7 @@ typedef enum ffi_abi { FFI_REGISTER = 7, FFI_LAST_ABI, FFI_DEFAULT_ABI = FFI_MS_CDECL -#else +#else FFI_FIRST_ABI = 0, FFI_SYSV = 1, FFI_THISCALL = 3, @@ -118,30 +118,30 @@ typedef enum ffi_abi { FFI_PASCAL = 6, FFI_REGISTER = 7, FFI_MS_CDECL = 8, - FFI_LAST_ABI, - FFI_DEFAULT_ABI = FFI_SYSV -#endif -} ffi_abi; -#endif - -/* ---- Definitions for closures ----------------------------------------- */ - -#define FFI_CLOSURES 1 + FFI_LAST_ABI, + FFI_DEFAULT_ABI = FFI_SYSV +#endif +} ffi_abi; +#endif + +/* ---- Definitions for closures ----------------------------------------- */ + +#define FFI_CLOSURES 1 #define FFI_GO_CLOSURES 1 -#define FFI_TYPE_SMALL_STRUCT_1B (FFI_TYPE_LAST + 1) -#define FFI_TYPE_SMALL_STRUCT_2B (FFI_TYPE_LAST + 2) -#define FFI_TYPE_SMALL_STRUCT_4B (FFI_TYPE_LAST + 3) -#define FFI_TYPE_MS_STRUCT (FFI_TYPE_LAST + 4) - +#define FFI_TYPE_SMALL_STRUCT_1B (FFI_TYPE_LAST + 1) +#define FFI_TYPE_SMALL_STRUCT_2B (FFI_TYPE_LAST + 2) +#define FFI_TYPE_SMALL_STRUCT_4B (FFI_TYPE_LAST + 3) +#define FFI_TYPE_MS_STRUCT (FFI_TYPE_LAST + 4) + #if defined (X86_64) || defined(X86_WIN64) \ || (defined (__x86_64__) && defined (X86_DARWIN)) # define FFI_TRAMPOLINE_SIZE 24 # define FFI_NATIVE_RAW_API 0 -#else +#else # define FFI_TRAMPOLINE_SIZE 12 # define FFI_NATIVE_RAW_API 1 /* x86 has native raw api support */ -#endif - -#endif - +#endif + +#endif + diff --git a/contrib/restricted/libffi/src/x86/sysv.S b/contrib/restricted/libffi/src/x86/sysv.S index 7c9598c93c..8d857a341f 100644 --- a/contrib/restricted/libffi/src/x86/sysv.S +++ b/contrib/restricted/libffi/src/x86/sysv.S @@ -1,39 +1,39 @@ -/* ----------------------------------------------------------------------- +/* ----------------------------------------------------------------------- sysv.S - Copyright (c) 2017 Anthony Green - Copyright (c) 2013 The Written Word, Inc. - Copyright (c) 1996,1998,2001-2003,2005,2008,2010 Red Hat, Inc. - - X86 Foreign Function Interface - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - + + X86 Foreign Function Interface + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + #ifdef __i386__ #ifndef _MSC_VER - -#define LIBFFI_ASM -#include <fficonfig.h> -#include <ffi.h> + +#define LIBFFI_ASM +#include <fficonfig.h> +#include <ffi.h> #include "internal.h" - + #define C2(X, Y) X ## Y #define C1(X, Y) C2(X, Y) #ifdef __USER_LABEL_PREFIX__ @@ -41,19 +41,19 @@ #else # define C(X) X #endif - + #ifdef X86_DARWIN # define L(X) C1(L, X) #else # define L(X) C1(.L, X) #endif - + #ifdef __ELF__ # define ENDF(X) .type X,@function; .size X, . - X #else # define ENDF(X) #endif - + /* Handle win32 fastcall name mangling. */ #ifdef X86_WIN32 # define ffi_call_i386 @ffi_call_i386@8 @@ -62,7 +62,7 @@ # define ffi_call_i386 C(ffi_call_i386) # define ffi_closure_inner C(ffi_closure_inner) #endif - + /* This macro allows the safe creation of jump tables without an actual table. The entry points into the table are all 8 bytes. The use of ORG asserts that we're at the correct location. */ @@ -72,23 +72,23 @@ #else # define E(BASE, X) .balign 8; .org BASE + X * 8 #endif - + .text .balign 16 .globl ffi_call_i386 FFI_HIDDEN(ffi_call_i386) - + /* This is declared as - + void ffi_call_i386(struct call_frame *frame, char *argp) __attribute__((fastcall)); - + Thus the arguments are present in - + ecx: frame edx: argp */ - + ffi_call_i386: L(UW0): # cfi_startproc @@ -99,7 +99,7 @@ L(UW0): movl (%esp), %eax /* move the return address */ movl %ebp, (%ecx) /* store %ebp into local frame */ movl %eax, 4(%ecx) /* store retaddr into local frame */ - + /* New stack frame based off ebp. This is a itty bit of unwind trickery in that the CFA *has* changed. There is no easy way to describe it correctly on entry to the function. Fortunately, @@ -111,19 +111,19 @@ L(UW0): L(UW1): # cfi_def_cfa(%ebp, 8) # cfi_rel_offset(%ebp, 0) - + movl %edx, %esp /* set outgoing argument stack */ movl 20+R_EAX*4(%ebp), %eax /* set register arguments */ movl 20+R_EDX*4(%ebp), %edx movl 20+R_ECX*4(%ebp), %ecx - + call *8(%ebp) - + movl 12(%ebp), %ecx /* load return type code */ movl %ebx, 8(%ebp) /* preserve %ebx */ L(UW2): # cfi_rel_offset(%ebx, 8) - + andl $X86_RET_TYPE_MASK, %ecx #ifdef __PIC__ call C(__x86.get_pc_thunk.bx) @@ -134,7 +134,7 @@ L(pc1): #endif movl 16(%ebp), %ecx /* load result address */ jmp *%ebx - + .balign 8 L(store_table): E(L(store_table), X86_RET_FLOAT) @@ -181,7 +181,7 @@ L(UW3): ret L(UW4): # cfi_restore_state - + E(L(store_table), X86_RET_STRUCTPOP) jmp L(e1) E(L(store_table), X86_RET_STRUCTARG) @@ -192,30 +192,30 @@ E(L(store_table), X86_RET_STRUCT_1B) E(L(store_table), X86_RET_STRUCT_2B) movw %ax, (%ecx) jmp L(e1) - + /* Fill out the table so that bad values are predictable. */ E(L(store_table), X86_RET_UNUSED14) ud2 E(L(store_table), X86_RET_UNUSED15) ud2 - + L(UW5): # cfi_endproc ENDF(ffi_call_i386) - + /* The inner helper is declared as - + void ffi_closure_inner(struct closure_frame *frame, char *argp) __attribute_((fastcall)) - + Thus the arguments are placed in - + ecx: frame edx: argp */ - + /* Macros to help setting up the closure_data structure. */ - + #if HAVE_FASTCALL # define closure_FS (40 + 4) # define closure_CF 0 @@ -223,12 +223,12 @@ ENDF(ffi_call_i386) # define closure_FS (8 + 40 + 12) # define closure_CF 8 #endif - + #define FFI_CLOSURE_SAVE_REGS \ movl %eax, closure_CF+16+R_EAX*4(%esp); \ movl %edx, closure_CF+16+R_EDX*4(%esp); \ movl %ecx, closure_CF+16+R_ECX*4(%esp) - + #define FFI_CLOSURE_COPY_TRAMP_DATA \ movl FFI_TRAMPOLINE_SIZE(%eax), %edx; /* copy cif */ \ movl FFI_TRAMPOLINE_SIZE+4(%eax), %ecx; /* copy fun */ \ @@ -241,14 +241,14 @@ ENDF(ffi_call_i386) # define FFI_CLOSURE_PREP_CALL \ movl %esp, %ecx; /* load closure_data */ \ leal closure_FS+4(%esp), %edx; /* load incoming stack */ -#else +#else # define FFI_CLOSURE_PREP_CALL \ leal closure_CF(%esp), %ecx; /* load closure_data */ \ leal closure_FS+4(%esp), %edx; /* load incoming stack */ \ movl %ecx, (%esp); \ movl %edx, 4(%esp) -#endif - +#endif + #define FFI_CLOSURE_CALL_INNER(UWN) \ call ffi_closure_inner @@ -388,14 +388,14 @@ L(e2): addl $closure_FS, %esp L(UW16): # cfi_adjust_cfa_offset(-closure_FS) - ret + ret L(UW17): # cfi_adjust_cfa_offset(closure_FS) E(L(load_table2), X86_RET_STRUCTPOP) addl $closure_FS, %esp L(UW18): # cfi_adjust_cfa_offset(-closure_FS) - ret $4 + ret $4 L(UW19): # cfi_adjust_cfa_offset(closure_FS) E(L(load_table2), X86_RET_STRUCTARG) @@ -406,7 +406,7 @@ E(L(load_table2), X86_RET_STRUCT_1B) E(L(load_table2), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e2) - + /* Fill out the table so that bad values are predictable. */ E(L(load_table2), X86_RET_UNUSED14) ud2 @@ -566,8 +566,8 @@ L(UW31): # cfi_endproc ENDF(C(ffi_closure_STDCALL)) -#if !FFI_NO_RAW_API - +#if !FFI_NO_RAW_API + #define raw_closure_S_FS (16+16+12) .balign 16 @@ -599,15 +599,15 @@ L(UW34): call C(__x86.get_pc_thunk.bx) L(pc4): leal L(load_table4)-L(pc4)(%ebx, %eax, 8), %ecx -#else +#else leal L(load_table4)(,%eax, 8), %ecx -#endif +#endif movl raw_closure_S_FS-4(%esp), %ebx L(UW35): # cfi_restore(%ebx) movl 16(%esp), %eax /* Optimistic load */ jmp *%ecx - + .balign 8 L(load_table4): E(L(load_table4), X86_RET_FLOAT) @@ -660,13 +660,13 @@ E(L(load_table4), X86_RET_STRUCT_1B) E(L(load_table4), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e4) - + /* Fill out the table so that bad values are predictable. */ E(L(load_table4), X86_RET_UNUSED14) ud2 E(L(load_table4), X86_RET_UNUSED15) ud2 - + L(UW40): # cfi_endproc ENDF(C(ffi_closure_raw_SYSV)) @@ -717,13 +717,13 @@ L(pc5): leal L(load_table5)-L(pc5)(%ebx, %eax, 8), %ecx #else leal L(load_table5)(,%eax, 8), %ecx -#endif +#endif movl raw_closure_T_FS-4(%esp), %ebx L(UW47): # cfi_restore(%ebx) movl 16(%esp), %eax /* Optimistic load */ jmp *%ecx - + .balign 8 L(load_table5): E(L(load_table5), X86_RET_FLOAT) @@ -777,7 +777,7 @@ E(L(load_table5), X86_RET_STRUCT_1B) E(L(load_table5), X86_RET_STRUCT_2B) movzwl %ax, %eax jmp L(e5) - + /* Fill out the table so that bad values are predictable. */ E(L(load_table5), X86_RET_UNUSED14) ud2 @@ -800,10 +800,10 @@ ENDF(C(ffi_closure_raw_THISCALL)) .section .text.X,"axG",@progbits,X,comdat; \ .globl X; \ FFI_HIDDEN(X) -#else +#else # define COMDAT(X) -#endif - +#endif + #if defined(__PIC__) COMDAT(C(__x86.get_pc_thunk.bx)) C(__x86.get_pc_thunk.bx): @@ -828,15 +828,15 @@ EHFrame0: .section .eh_frame,"r" #elif defined(HAVE_AS_X86_64_UNWIND_SECTION_TYPE) .section .eh_frame,EH_FRAME_FLAGS,@unwind -#else +#else .section .eh_frame,EH_FRAME_FLAGS,@progbits -#endif +#endif #ifdef HAVE_AS_X86_PCREL # define PCREL(X) X - . -#else +#else # define PCREL(X) X@rel -#endif +#endif /* Simplify advancing between labels. Assume DW_CFA_advance_loc1 fits. */ #define ADV(N, P) .byte 2, L(N)-L(P) @@ -920,9 +920,9 @@ L(SFDE4): ADV(UW15, UW14) .byte 0xc0+3 /* DW_CFA_restore %ebx */ ADV(UW16, UW15) -#else +#else ADV(UW16, UW13) -#endif +#endif .byte 0xe, 4 /* DW_CFA_def_cfa_offset */ ADV(UW17, UW16) .byte 0xe, closure_FS+4 /* DW_CFA_def_cfa_offset */ @@ -973,11 +973,11 @@ L(SFDE7): .byte 0x80+3, (40-(closure_FS+4))/-4 /* DW_CFA_offset %ebx */ ADV(UW30, UW29) .byte 0xc0+3 /* DW_CFA_restore %ebx */ -#endif +#endif .balign 4 L(EFDE7): - -#if !FFI_NO_RAW_API + +#if !FFI_NO_RAW_API .set L(set8),L(EFDE8)-L(SFDE8) .long L(set8) /* FDE Length */ L(SFDE8): @@ -1001,7 +1001,7 @@ L(SFDE8): .byte 0xe, raw_closure_S_FS+4 /* DW_CFA_def_cfa_offset */ .balign 4 L(EFDE8): - + .set L(set9),L(EFDE9)-L(SFDE9) .long L(set9) /* FDE Length */ L(SFDE9): @@ -1034,7 +1034,7 @@ L(SFDE9): .balign 4 L(EFDE9): #endif /* !FFI_NO_RAW_API */ - + #ifdef _WIN32 .def @feat.00; .scl 3; @@ -1042,12 +1042,12 @@ L(EFDE9): .endef .globl @feat.00 @feat.00 = 1 -#endif - +#endif + #ifdef __APPLE__ .subsections_via_symbols .section __LD,__compact_unwind,regular,debug - + /* compact unwind for ffi_call_i386 */ .long C(ffi_call_i386) .set L1,L(UW5)-L(UW0) @@ -1124,6 +1124,6 @@ L(EFDE9): #endif /* ifndef _MSC_VER */ #endif /* ifdef __i386__ */ -#if defined __ELF__ && defined __linux__ - .section .note.GNU-stack,"",@progbits -#endif +#if defined __ELF__ && defined __linux__ + .section .note.GNU-stack,"",@progbits +#endif diff --git a/contrib/restricted/libffi/src/x86/unix64.S b/contrib/restricted/libffi/src/x86/unix64.S index 41563f5c60..90b847311f 100644 --- a/contrib/restricted/libffi/src/x86/unix64.S +++ b/contrib/restricted/libffi/src/x86/unix64.S @@ -1,40 +1,40 @@ -/* ----------------------------------------------------------------------- - unix64.S - Copyright (c) 2013 The Written Word, Inc. - - Copyright (c) 2008 Red Hat, Inc - - Copyright (c) 2002 Bo Thorsen <bo@suse.de> - - x86-64 Foreign Function Interface - - Permission is hereby granted, free of charge, to any person obtaining - a copy of this software and associated documentation files (the - ``Software''), to deal in the Software without restriction, including - without limitation the rights to use, copy, modify, merge, publish, - distribute, sublicense, and/or sell copies of the Software, and to - permit persons to whom the Software is furnished to do so, subject to - the following conditions: - - The above copyright notice and this permission notice shall be included - in all copies or substantial portions of the Software. - - THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, - EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF - MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND - NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT - HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, - WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, - OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER - DEALINGS IN THE SOFTWARE. - ----------------------------------------------------------------------- */ - -#ifdef __x86_64__ -#define LIBFFI_ASM -#include <fficonfig.h> -#include <ffi.h> +/* ----------------------------------------------------------------------- + unix64.S - Copyright (c) 2013 The Written Word, Inc. + - Copyright (c) 2008 Red Hat, Inc + - Copyright (c) 2002 Bo Thorsen <bo@suse.de> + + x86-64 Foreign Function Interface + + Permission is hereby granted, free of charge, to any person obtaining + a copy of this software and associated documentation files (the + ``Software''), to deal in the Software without restriction, including + without limitation the rights to use, copy, modify, merge, publish, + distribute, sublicense, and/or sell copies of the Software, and to + permit persons to whom the Software is furnished to do so, subject to + the following conditions: + + The above copyright notice and this permission notice shall be included + in all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED ``AS IS'', WITHOUT WARRANTY OF ANY KIND, + EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT + HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, + WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER + DEALINGS IN THE SOFTWARE. + ----------------------------------------------------------------------- */ + +#ifdef __x86_64__ +#define LIBFFI_ASM +#include <fficonfig.h> +#include <ffi.h> #include "internal64.h" #include "asmnames.h" - + .text - + /* This macro allows the safe creation of jump tables without an actual table. The entry points into the table are all 8 bytes. The use of ORG asserts that we're at the correct location. */ @@ -45,26 +45,26 @@ # define E(BASE, X) .balign 8; .org BASE + X * 8 #endif -/* ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags, - void *raddr, void (*fnaddr)(void)); - - Bit o trickiness here -- ARGS+BYTES is the base of the stack frame - for this function. This has been allocated by ffi_call. We also - deallocate some of the stack that has been alloca'd. */ - +/* ffi_call_unix64 (void *args, unsigned long bytes, unsigned flags, + void *raddr, void (*fnaddr)(void)); + + Bit o trickiness here -- ARGS+BYTES is the base of the stack frame + for this function. This has been allocated by ffi_call. We also + deallocate some of the stack that has been alloca'd. */ + .balign 8 .globl C(ffi_call_unix64) FFI_HIDDEN(C(ffi_call_unix64)) - + C(ffi_call_unix64): L(UW0): - movq (%rsp), %r10 /* Load return address. */ - leaq (%rdi, %rsi), %rax /* Find local stack base. */ - movq %rdx, (%rax) /* Save flags. */ - movq %rcx, 8(%rax) /* Save raddr. */ - movq %rbp, 16(%rax) /* Save old frame pointer. */ - movq %r10, 24(%rax) /* Relocate return address. */ - movq %rax, %rbp /* Finalize local stack frame. */ + movq (%rsp), %r10 /* Load return address. */ + leaq (%rdi, %rsi), %rax /* Find local stack base. */ + movq %rdx, (%rax) /* Save flags. */ + movq %rcx, 8(%rax) /* Save raddr. */ + movq %rbp, 16(%rax) /* Save old frame pointer. */ + movq %r10, 24(%rax) /* Relocate return address. */ + movq %rax, %rbp /* Finalize local stack frame. */ /* New stack frame based off rbp. This is a itty bit of unwind trickery in that the CFA *has* changed. There is no easy way @@ -77,59 +77,59 @@ L(UW1): /* cfi_def_cfa(%rbp, 32) */ /* cfi_rel_offset(%rbp, 16) */ - movq %rdi, %r10 /* Save a copy of the register area. */ - movq %r8, %r11 /* Save a copy of the target fn. */ - movl %r9d, %eax /* Set number of SSE registers. */ - - /* Load up all argument registers. */ - movq (%r10), %rdi + movq %rdi, %r10 /* Save a copy of the register area. */ + movq %r8, %r11 /* Save a copy of the target fn. */ + movl %r9d, %eax /* Set number of SSE registers. */ + + /* Load up all argument registers. */ + movq (%r10), %rdi movq 0x08(%r10), %rsi movq 0x10(%r10), %rdx movq 0x18(%r10), %rcx movq 0x20(%r10), %r8 movq 0x28(%r10), %r9 movl 0xb0(%r10), %eax - testl %eax, %eax + testl %eax, %eax jnz L(load_sse) L(ret_from_load_sse): - + /* Deallocate the reg arg area, except for r10, then load via pop. */ leaq 0xb8(%r10), %rsp popq %r10 - - /* Call the user function. */ - call *%r11 - - /* Deallocate stack arg area; local stack frame in redzone. */ - leaq 24(%rbp), %rsp - - movq 0(%rbp), %rcx /* Reload flags. */ - movq 8(%rbp), %rdi /* Reload raddr. */ - movq 16(%rbp), %rbp /* Reload old frame pointer. */ + + /* Call the user function. */ + call *%r11 + + /* Deallocate stack arg area; local stack frame in redzone. */ + leaq 24(%rbp), %rsp + + movq 0(%rbp), %rcx /* Reload flags. */ + movq 8(%rbp), %rdi /* Reload raddr. */ + movq 16(%rbp), %rbp /* Reload old frame pointer. */ L(UW2): /* cfi_remember_state */ /* cfi_def_cfa(%rsp, 8) */ /* cfi_restore(%rbp) */ - - /* The first byte of the flags contains the FFI_TYPE. */ + + /* The first byte of the flags contains the FFI_TYPE. */ cmpb $UNIX64_RET_LAST, %cl - movzbl %cl, %r10d + movzbl %cl, %r10d leaq L(store_table)(%rip), %r11 ja L(sa) leaq (%r11, %r10, 8), %r10 /* Prep for the structure cases: scratch area in redzone. */ leaq -20(%rsp), %rsi - jmp *%r10 - + jmp *%r10 + .balign 8 L(store_table): E(L(store_table), UNIX64_RET_VOID) - ret + ret E(L(store_table), UNIX64_RET_UINT8) movzbl %al, %eax - movq %rax, (%rdi) - ret + movq %rax, (%rdi) + ret E(L(store_table), UNIX64_RET_UINT16) movzwl %ax, %eax movq %rax, (%rdi) @@ -139,29 +139,29 @@ E(L(store_table), UNIX64_RET_UINT32) movq %rax, (%rdi) ret E(L(store_table), UNIX64_RET_SINT8) - movsbq %al, %rax - movq %rax, (%rdi) - ret + movsbq %al, %rax + movq %rax, (%rdi) + ret E(L(store_table), UNIX64_RET_SINT16) - movswq %ax, %rax - movq %rax, (%rdi) - ret + movswq %ax, %rax + movq %rax, (%rdi) + ret E(L(store_table), UNIX64_RET_SINT32) - cltq - movq %rax, (%rdi) - ret + cltq + movq %rax, (%rdi) + ret E(L(store_table), UNIX64_RET_INT64) - movq %rax, (%rdi) - ret + movq %rax, (%rdi) + ret E(L(store_table), UNIX64_RET_XMM32) movd %xmm0, (%rdi) - ret + ret E(L(store_table), UNIX64_RET_XMM64) movq %xmm0, (%rdi) - ret + ret E(L(store_table), UNIX64_RET_X87) - fstpt (%rdi) - ret + fstpt (%rdi) + ret E(L(store_table), UNIX64_RET_X87_2) fstpt (%rdi) fstpt 16(%rdi) @@ -178,22 +178,22 @@ E(L(store_table), UNIX64_RET_ST_XMM0_XMM1) E(L(store_table), UNIX64_RET_ST_RAX_RDX) movq %rdx, 8(%rsi) L(s2): - movq %rax, (%rsi) + movq %rax, (%rsi) shrl $UNIX64_SIZE_SHIFT, %ecx - rep movsb - ret + rep movsb + ret .balign 8 L(s3): movq %xmm0, (%rsi) shrl $UNIX64_SIZE_SHIFT, %ecx rep movsb ret - + L(sa): call PLT(C(abort)) - /* Many times we can avoid loading any SSE registers at all. - It's not worth an indirect jump to load the exact set of - SSE registers needed; zero or all is a good compromise. */ + /* Many times we can avoid loading any SSE registers at all. + It's not worth an indirect jump to load the exact set of + SSE registers needed; zero or all is a good compromise. */ .balign 2 L(UW3): /* cfi_restore_state */ @@ -207,24 +207,24 @@ L(load_sse): movdqa 0x90(%r10), %xmm6 movdqa 0xa0(%r10), %xmm7 jmp L(ret_from_load_sse) - + L(UW4): ENDF(C(ffi_call_unix64)) - + /* 6 general registers, 8 vector registers, 32 bytes of rvalue, 8 bytes of alignment. */ #define ffi_closure_OFS_G 0 #define ffi_closure_OFS_V (6*8) #define ffi_closure_OFS_RVALUE (ffi_closure_OFS_V + 8*16) #define ffi_closure_FS (ffi_closure_OFS_RVALUE + 32 + 8) - + /* The location of rvalue within the red zone after deallocating the frame. */ #define ffi_closure_RED_RVALUE (ffi_closure_OFS_RVALUE - ffi_closure_FS) - + .balign 2 .globl C(ffi_closure_unix64_sse) FFI_HIDDEN(C(ffi_closure_unix64_sse)) - + C(ffi_closure_unix64_sse): L(UW5): subq $ffi_closure_FS, %rsp @@ -276,48 +276,48 @@ L(do_closure): leaq ffi_closure_FS+8(%rsp), %r9 /* Load argp */ call PLT(C(ffi_closure_unix64_inner)) - /* Deallocate stack frame early; return value is now in redzone. */ + /* Deallocate stack frame early; return value is now in redzone. */ addq $ffi_closure_FS, %rsp L(UW10): /* cfi_adjust_cfa_offset(-ffi_closure_FS) */ - - /* The first byte of the return value contains the FFI_TYPE. */ + + /* The first byte of the return value contains the FFI_TYPE. */ cmpb $UNIX64_RET_LAST, %al - movzbl %al, %r10d + movzbl %al, %r10d leaq L(load_table)(%rip), %r11 ja L(la) leaq (%r11, %r10, 8), %r10 leaq ffi_closure_RED_RVALUE(%rsp), %rsi - jmp *%r10 - + jmp *%r10 + .balign 8 L(load_table): E(L(load_table), UNIX64_RET_VOID) - ret + ret E(L(load_table), UNIX64_RET_UINT8) movzbl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_UINT16) movzwl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_UINT32) movl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_SINT8) movsbl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_SINT16) movswl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_SINT32) movl (%rsi), %eax - ret + ret E(L(load_table), UNIX64_RET_INT64) movq (%rsi), %rax - ret + ret E(L(load_table), UNIX64_RET_XMM32) movd (%rsi), %xmm0 - ret + ret E(L(load_table), UNIX64_RET_XMM64) movq (%rsi), %xmm0 ret @@ -346,16 +346,16 @@ L(l2): L(l3): movq (%rsi), %xmm0 ret - + L(la): call PLT(C(abort)) - + L(UW11): ENDF(C(ffi_closure_unix64)) - + .balign 2 .globl C(ffi_go_closure_unix64_sse) FFI_HIDDEN(C(ffi_go_closure_unix64_sse)) - + C(ffi_go_closure_unix64_sse): L(UW12): subq $ffi_closure_FS, %rsp @@ -396,11 +396,11 @@ L(sse_entry2): movl 4(%r10), %edi /* Load cif */ movl 8(%r10), %esi /* Load fun */ movl %r10d, %edx /* Load closure (user_data) */ -#else +#else movq 8(%r10), %rdi /* Load cif */ movq 16(%r10), %rsi /* Load fun */ movq %r10, %rdx /* Load closure (user_data) */ -#endif +#endif jmp L(do_closure) L(UW17): @@ -431,19 +431,19 @@ L(CIE): .set L(set0),L(ECIE)-L(SCIE) .long L(set0) /* CIE Length */ L(SCIE): - .long 0 /* CIE Identifier Tag */ - .byte 1 /* CIE Version */ + .long 0 /* CIE Identifier Tag */ + .byte 1 /* CIE Version */ .ascii "zR\0" /* CIE Augmentation */ .byte 1 /* CIE Code Alignment Factor */ .byte 0x78 /* CIE Data Alignment Factor */ - .byte 0x10 /* CIE RA Column */ + .byte 0x10 /* CIE RA Column */ .byte 1 /* Augmentation size */ - .byte 0x1b /* FDE Encoding (pcrel sdata4) */ + .byte 0x1b /* FDE Encoding (pcrel sdata4) */ .byte 0xc, 7, 8 /* DW_CFA_def_cfa, %rsp offset 8 */ .byte 0x80+16, 1 /* DW_CFA_offset, %rip offset 1*-8 */ .balign 8 L(ECIE): - + .set L(set1),L(EFDE1)-L(SFDE1) .long L(set1) /* FDE Length */ L(SFDE1): @@ -455,14 +455,14 @@ L(SFDE1): .byte 0xc, 6, 32 /* DW_CFA_def_cfa, %rbp 32 */ .byte 0x80+6, 2 /* DW_CFA_offset, %rbp 2*-8 */ ADV(UW2, UW1) - .byte 0xa /* DW_CFA_remember_state */ + .byte 0xa /* DW_CFA_remember_state */ .byte 0xc, 7, 8 /* DW_CFA_def_cfa, %rsp 8 */ - .byte 0xc0+6 /* DW_CFA_restore, %rbp */ + .byte 0xc0+6 /* DW_CFA_restore, %rbp */ ADV(UW3, UW2) - .byte 0xb /* DW_CFA_restore_state */ + .byte 0xb /* DW_CFA_restore_state */ .balign 8 L(EFDE1): - + .set L(set2),L(EFDE2)-L(SFDE2) .long L(set2) /* FDE Length */ L(SFDE2): @@ -475,7 +475,7 @@ L(SFDE2): .byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */ .balign 8 L(EFDE2): - + .set L(set3),L(EFDE3)-L(SFDE3) .long L(set3) /* FDE Length */ L(SFDE3): @@ -484,12 +484,12 @@ L(SFDE3): .long L(UW11)-L(UW8) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW9, UW8) - .byte 0xe /* DW_CFA_def_cfa_offset */ + .byte 0xe /* DW_CFA_def_cfa_offset */ .byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */ ADV(UW10, UW9) .byte 0xe, 8 /* DW_CFA_def_cfa_offset 8 */ L(EFDE3): - + .set L(set4),L(EFDE4)-L(SFDE4) .long L(set4) /* FDE Length */ L(SFDE4): @@ -498,11 +498,11 @@ L(SFDE4): .long L(UW14)-L(UW12) /* Address range */ .byte 0 /* Augmentation size */ ADV(UW13, UW12) - .byte 0xe /* DW_CFA_def_cfa_offset */ + .byte 0xe /* DW_CFA_def_cfa_offset */ .byte ffi_closure_FS + 8, 1 /* uleb128, assuming 128 <= FS < 255 */ .balign 8 L(EFDE4): - + .set L(set5),L(EFDE5)-L(SFDE5) .long L(set5) /* FDE Length */ L(SFDE5): @@ -518,7 +518,7 @@ L(EFDE5): #ifdef __APPLE__ .subsections_via_symbols .section __LD,__compact_unwind,regular,debug - + /* compact unwind for ffi_call_unix64 */ .quad C(ffi_call_unix64) .set L1,L(UW4)-L(UW0) @@ -526,7 +526,7 @@ L(EFDE5): .long 0x04000000 /* use dwarf unwind info */ .quad 0 .quad 0 - + /* compact unwind for ffi_closure_unix64_sse */ .quad C(ffi_closure_unix64_sse) .set L2,L(UW7)-L(UW5) @@ -560,7 +560,7 @@ L(EFDE5): .quad 0 #endif -#endif /* __x86_64__ */ -#if defined __ELF__ && defined __linux__ - .section .note.GNU-stack,"",@progbits -#endif +#endif /* __x86_64__ */ +#if defined __ELF__ && defined __linux__ + .section .note.GNU-stack,"",@progbits +#endif diff --git a/contrib/restricted/libffi/src/x86/win64.S b/contrib/restricted/libffi/src/x86/win64.S index 2c334c82f9..ed60453d94 100644 --- a/contrib/restricted/libffi/src/x86/win64.S +++ b/contrib/restricted/libffi/src/x86/win64.S @@ -1,50 +1,50 @@ #ifdef __x86_64__ -#define LIBFFI_ASM -#include <fficonfig.h> -#include <ffi.h> +#define LIBFFI_ASM +#include <fficonfig.h> +#include <ffi.h> #include <ffi_cfi.h> #include "asmnames.h" - + #if defined(HAVE_AS_CFI_PSEUDO_OP) .cfi_sections .debug_frame #endif - + #ifdef X86_WIN64 #define SEH(...) __VA_ARGS__ #define arg0 %rcx #define arg1 %rdx #define arg2 %r8 #define arg3 %r9 -#else +#else #define SEH(...) #define arg0 %rdi #define arg1 %rsi #define arg2 %rdx #define arg3 %rcx #endif - + /* This macro allows the safe creation of jump tables without an actual table. The entry points into the table are all 8 bytes. The use of ORG asserts that we're at the correct location. */ /* ??? The clang assembler doesn't handle .org with symbolic expressions. */ #if defined(__clang__) || defined(__APPLE__) || (defined (__sun__) && defined(__svr4__)) # define E(BASE, X) .balign 8 -#else +#else # define E(BASE, X) .balign 8; .org BASE + X * 8 -#endif - +#endif + .text - + /* ffi_call_win64 (void *stack, struct win64_call_frame *frame, void *r10) - + Bit o trickiness here -- FRAME is the base of the stack frame for this function. This has been allocated by ffi_call. We also deallocate some of the stack that has been alloca'd. */ - + .align 8 .globl C(ffi_call_win64) FFI_HIDDEN(C(ffi_call_win64)) - + SEH(.seh_proc ffi_call_win64) C(ffi_call_win64): cfi_startproc @@ -59,9 +59,9 @@ C(ffi_call_win64): SEH(.seh_setframe %rbp, 0) SEH(.seh_endprologue) movq arg0, %rsp - + movq arg2, %r10 - + /* Load all slots into both general and xmm registers. */ movq (%rsp), %rcx movsd (%rsp), %xmm0 @@ -71,9 +71,9 @@ C(ffi_call_win64): movsd 16(%rsp), %xmm2 movq 24(%rsp), %r9 movsd 24(%rsp), %xmm3 - + call *16(%rbp) - + movl 24(%rbp), %ecx movq 32(%rbp), %r8 leaq 0f(%rip), %r10 @@ -81,7 +81,7 @@ C(ffi_call_win64): leaq (%r10, %rcx, 8), %r10 ja 99f jmp *%r10 - + /* Below, we're space constrained most of the time. Thus we eschew the modern "mov, pop, ret" sequence (5 bytes) for "leave, ret" (2 bytes). */ .macro epilogue @@ -92,7 +92,7 @@ C(ffi_call_win64): ret cfi_restore_state .endm - + .align 8 0: E(0b, FFI_TYPE_VOID) @@ -153,26 +153,26 @@ E(0b, FFI_TYPE_SMALL_STRUCT_2B) E(0b, FFI_TYPE_SMALL_STRUCT_4B) movl %eax, (%r8) epilogue - + .align 8 99: call PLT(C(abort)) - + epilogue - + cfi_endproc SEH(.seh_endproc) - - + + /* 32 bytes of outgoing register stack space, 8 bytes of alignment, 16 bytes of result, 32 bytes of xmm registers. */ #define ffi_clo_FS (32+8+16+32) #define ffi_clo_OFF_R (32+8) #define ffi_clo_OFF_X (32+8+16) - + .align 8 .globl C(ffi_go_closure_win64) FFI_HIDDEN(C(ffi_go_closure_win64)) - + SEH(.seh_proc ffi_go_closure_win64) C(ffi_go_closure_win64): cfi_startproc @@ -181,18 +181,18 @@ C(ffi_go_closure_win64): movq %rdx, 16(%rsp) movq %r8, 24(%rsp) movq %r9, 32(%rsp) - + movq 8(%r10), %rcx /* load cif */ movq 16(%r10), %rdx /* load fun */ movq %r10, %r8 /* closure is user_data */ jmp 0f cfi_endproc SEH(.seh_endproc) - + .align 8 .globl C(ffi_closure_win64) FFI_HIDDEN(C(ffi_closure_win64)) - + SEH(.seh_proc ffi_closure_win64) C(ffi_closure_win64): cfi_startproc @@ -201,7 +201,7 @@ C(ffi_closure_win64): movq %rdx, 16(%rsp) movq %r8, 24(%rsp) movq %r9, 32(%rsp) - + movq FFI_TRAMPOLINE_SIZE(%r10), %rcx /* load cif */ movq FFI_TRAMPOLINE_SIZE+8(%r10), %rdx /* load fun */ movq FFI_TRAMPOLINE_SIZE+16(%r10), %r8 /* load user_data */ @@ -210,28 +210,28 @@ C(ffi_closure_win64): cfi_adjust_cfa_offset(ffi_clo_FS) SEH(.seh_stackalloc ffi_clo_FS) SEH(.seh_endprologue) - + /* Save all sse arguments into the stack frame. */ movsd %xmm0, ffi_clo_OFF_X(%rsp) movsd %xmm1, ffi_clo_OFF_X+8(%rsp) movsd %xmm2, ffi_clo_OFF_X+16(%rsp) movsd %xmm3, ffi_clo_OFF_X+24(%rsp) - + leaq ffi_clo_OFF_R(%rsp), %r9 call PLT(C(ffi_closure_win64_inner)) - + /* Load the result into both possible result registers. */ movq ffi_clo_OFF_R(%rsp), %rax movsd ffi_clo_OFF_R(%rsp), %xmm0 - + addq $ffi_clo_FS, %rsp cfi_adjust_cfa_offset(-ffi_clo_FS) ret - + cfi_endproc SEH(.seh_endproc) #endif /* __x86_64__ */ - + #if defined __ELF__ && defined __linux__ .section .note.GNU-stack,"",@progbits #endif diff --git a/contrib/restricted/libffi/ya.make b/contrib/restricted/libffi/ya.make index f39d7b6fe3..a5a9ee9381 100644 --- a/contrib/restricted/libffi/ya.make +++ b/contrib/restricted/libffi/ya.make @@ -1,12 +1,12 @@ # Generated by devtools/yamaker from nixpkgs 5852a21819542e6809f68ba5a798600e69874e76. -LIBRARY() - +LIBRARY() + OWNER( borman g:cpp-contrib ) - + VERSION(3.3) ORIGINAL_SOURCE(https://sourceware.org/pub/libffi/libffi-3.3.tar.gz) @@ -18,13 +18,13 @@ LICENSE( LICENSE_TEXTS(.yandex_meta/licenses.list.txt) -ADDINCL( +ADDINCL( contrib/restricted/libffi contrib/restricted/libffi/include contrib/restricted/libffi/src GLOBAL contrib/restricted/libffi/include -) - +) + NO_COMPILER_WARNINGS() NO_RUNTIME() @@ -34,20 +34,20 @@ CFLAGS( GLOBAL -DFFI_BUILDING ) -SRCS( +SRCS( src/closures.c src/java_raw_api.c - src/prep_cif.c + src/prep_cif.c src/raw_api.c - src/types.c -) - + src/types.c +) + IF (ARCH_ARM64 AND OS_ANDROID) ADDINCL( contrib/restricted/libffi/configs/aarch64-unknown-linux-android21 GLOBAL contrib/restricted/libffi/configs/aarch64-unknown-linux-android21/include ) - SRCS( + SRCS( src/aarch64/ffi.c src/aarch64/sysv.S ) @@ -201,9 +201,9 @@ ELSEIF (ARCH_X86_64 AND OS_WINDOWS) ) ELSE() MESSAGE(FATAL_ERROR Unsupported libffi platform: ${TARGET_PLATFORM} / ${HARDWARE_TYPE}) -ENDIF() - -END() +ENDIF() + +END() RECURSE( testsuite |