diff options
author | neksard <neksard@yandex-team.ru> | 2022-02-10 16:45:33 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:33 +0300 |
commit | 1d9c550e7c38e051d7961f576013a482003a70d9 (patch) | |
tree | b2cc84ee7850122e7ccf51d0ea21e4fa7e7a5685 /contrib/restricted/boost/libs/python/src/object/inheritance.cpp | |
parent | 8f7cf138264e0caa318144bf8a2c950e0b0a8593 (diff) | |
download | ydb-1d9c550e7c38e051d7961f576013a482003a70d9.tar.gz |
Restoring authorship annotation for <neksard@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/restricted/boost/libs/python/src/object/inheritance.cpp')
-rw-r--r-- | contrib/restricted/boost/libs/python/src/object/inheritance.cpp | 990 |
1 files changed, 495 insertions, 495 deletions
diff --git a/contrib/restricted/boost/libs/python/src/object/inheritance.cpp b/contrib/restricted/boost/libs/python/src/object/inheritance.cpp index 47c31bf87e..7dc9db1cd7 100644 --- a/contrib/restricted/boost/libs/python/src/object/inheritance.cpp +++ b/contrib/restricted/boost/libs/python/src/object/inheritance.cpp @@ -1,495 +1,495 @@ -// Copyright David Abrahams 2002. -// Distributed under the Boost Software License, Version 1.0. (See -// accompanying file LICENSE_1_0.txt or copy at -// http://www.boost.org/LICENSE_1_0.txt) -#include <boost/python/object/inheritance.hpp> -#include <boost/python/type_id.hpp> -#include <boost/graph/breadth_first_search.hpp> -#if _MSC_FULL_VER >= 13102171 && _MSC_FULL_VER <= 13102179 -# include <boost/graph/reverse_graph.hpp> -#endif -#include <boost/graph/adjacency_list.hpp> -#include <boost/graph/reverse_graph.hpp> -#include <boost/property_map/property_map.hpp> -#include <boost/bind.hpp> -#include <boost/integer_traits.hpp> -#include <boost/tuple/tuple.hpp> -#include <boost/tuple/tuple_comparison.hpp> -#include <queue> -#include <vector> -#include <functional> - -// -// Procedure: -// -// The search is a BFS over the space of (type,address) pairs -// guided by the edges of the casting graph whose nodes -// correspond to classes, and whose edges are traversed by -// applying associated cast functions to an address. We use -// vertex distance to the goal node in the cast_graph to rate the -// paths. The vertex distance to any goal node is calculated on -// demand and outdated by the addition of edges to the graph. - -namespace boost { -namespace -{ - enum edge_cast_t { edge_cast = 8010 }; - template <class T> inline void unused_variable(const T&) { } -} - -// Install properties -BOOST_INSTALL_PROPERTY(edge, cast); - -namespace -{ - typedef void*(*cast_function)(void*); - - // - // Here we put together the low-level data structures of the - // casting graph representation. - // - typedef python::type_info class_id; - - // represents a graph of available casts - -#if 0 - struct cast_graph - : -#else - typedef -#endif - adjacency_list<vecS,vecS, bidirectionalS, no_property - - // edge index property allows us to look up edges in the connectivity matrix - , property<edge_index_t,std::size_t - - // The function which casts a void* from the edge's source type - // to its destination type. - , property<edge_cast_t,cast_function> > > -#if 0 - {}; -#else - cast_graph; -#endif - - typedef cast_graph::vertex_descriptor vertex_t; - typedef cast_graph::edge_descriptor edge_t; - - struct smart_graph - { - typedef std::vector<std::size_t>::const_iterator node_distance_map; - - typedef std::pair<cast_graph::out_edge_iterator - , cast_graph::out_edge_iterator> out_edges_t; - - // Return a map of the distances from any node to the given - // target node - node_distance_map distances_to(vertex_t target) const - { - std::size_t n = num_vertices(m_topology); - if (m_distances.size() != n * n) - { - m_distances.clear(); - m_distances.resize(n * n, (std::numeric_limits<std::size_t>::max)()); - m_known_vertices = n; - } - - std::vector<std::size_t>::iterator to_target = m_distances.begin() + n * target; - - // this node hasn't been used as a target yet - if (to_target[target] != 0) - { - typedef reverse_graph<cast_graph> reverse_cast_graph; - reverse_cast_graph reverse_topology(m_topology); - - to_target[target] = 0; - - breadth_first_search( - reverse_topology, target - , visitor( - make_bfs_visitor( - record_distances( - make_iterator_property_map( - to_target - , get(vertex_index, reverse_topology) -# ifdef BOOST_NO_STD_ITERATOR_TRAITS - , *to_target -# endif - ) - , on_tree_edge() - )))); - } - - return to_target; - } - - cast_graph& topology() { return m_topology; } - cast_graph const& topology() const { return m_topology; } - - smart_graph() - : m_known_vertices(0) - {} - - private: - cast_graph m_topology; - mutable std::vector<std::size_t> m_distances; - mutable std::size_t m_known_vertices; - }; - - smart_graph& full_graph() - { - static smart_graph x; - return x; - } - - smart_graph& up_graph() - { - static smart_graph x; - return x; - } - - // - // Our index of class types - // - using boost::python::objects::dynamic_id_function; - typedef tuples::tuple< - class_id // static type - , vertex_t // corresponding vertex - , dynamic_id_function // dynamic_id if polymorphic, or 0 - > - index_entry_interface; - typedef index_entry_interface::inherited index_entry; - enum { ksrc_static_t, kvertex, kdynamic_id }; - - typedef std::vector<index_entry> type_index_t; - - - type_index_t& type_index() - { - static type_index_t x; - return x; - } - - template <class Tuple> - struct select1st - { - typedef typename tuples::element<0, Tuple>::type result_type; - - result_type const& operator()(Tuple const& x) const - { - return tuples::get<0>(x); - } - }; - - // map a type to a position in the index - inline type_index_t::iterator type_position(class_id type) - { - typedef index_entry entry; - - return std::lower_bound( - type_index().begin(), type_index().end() - , boost::make_tuple(type, vertex_t(), dynamic_id_function(0)) - , boost::bind<bool>(std::less<class_id>() - , boost::bind<class_id>(select1st<entry>(), _1) - , boost::bind<class_id>(select1st<entry>(), _2))); - } - - inline index_entry* seek_type(class_id type) - { - type_index_t::iterator p = type_position(type); - if (p == type_index().end() || tuples::get<ksrc_static_t>(*p) != type) - return 0; - else - return &*p; - } - - // Get the entry for a type, inserting if necessary - inline type_index_t::iterator demand_type(class_id type) - { - type_index_t::iterator p = type_position(type); - - if (p != type_index().end() && tuples::get<ksrc_static_t>(*p) == type) - return p; - - vertex_t v = add_vertex(full_graph().topology()); - vertex_t v2 = add_vertex(up_graph().topology()); - unused_variable(v2); - assert(v == v2); - return type_index().insert(p, boost::make_tuple(type, v, dynamic_id_function(0))); - } - - // Map a two types to a vertex in the graph, inserting if necessary - typedef std::pair<type_index_t::iterator, type_index_t::iterator> - type_index_iterator_pair; - - inline type_index_iterator_pair - demand_types(class_id t1, class_id t2) - { - // be sure there will be no reallocation - type_index().reserve(type_index().size() + 2); - type_index_t::iterator first = demand_type(t1); - type_index_t::iterator second = demand_type(t2); - if (first == second) - ++first; - return std::make_pair(first, second); - } - - struct q_elt - { - q_elt(std::size_t distance - , void* src_address - , vertex_t target - , cast_function cast - ) - : distance(distance) - , src_address(src_address) - , target(target) - , cast(cast) - {} - - std::size_t distance; - void* src_address; - vertex_t target; - cast_function cast; - - bool operator<(q_elt const& rhs) const - { - return distance < rhs.distance; - } - }; - - // Optimization: - // - // Given p, src_t, dst_t - // - // Get a pointer pd to the most-derived object - // if it's polymorphic, dynamic_cast to void* - // otherwise pd = p - // - // Get the most-derived typeid src_td - // - // ptrdiff_t offset = p - pd - // - // Now we can keep a cache, for [src_t, offset, src_td, dst_t] of - // the cast transformation function to use on p and the next src_t - // in the chain. src_td, dst_t don't change throughout this - // process. In order to represent unreachability, when a pair is - // found to be unreachable, we stick a 0-returning "dead-cast" - // function in the cache. - - // This is needed in a few places below - inline void* identity_cast(void* p) - { - return p; - } - - void* search(smart_graph const& g, void* p, vertex_t src, vertex_t dst) - { - // I think this test was thoroughly bogus -- dwa - // If we know there's no path; bail now. - // if (src > g.known_vertices() || dst > g.known_vertices()) - // return 0; - - smart_graph::node_distance_map d(g.distances_to(dst)); - - if (d[src] == (std::numeric_limits<std::size_t>::max)()) - return 0; - - typedef property_map<cast_graph,edge_cast_t>::const_type cast_map; - cast_map casts = get(edge_cast, g.topology()); - - typedef std::pair<vertex_t,void*> search_state; - typedef std::vector<search_state> visited_t; - visited_t visited; - std::priority_queue<q_elt> q; - - q.push(q_elt(d[src], p, src, identity_cast)); - while (!q.empty()) - { - q_elt top = q.top(); - q.pop(); - - // Check to see if we have a real state - void* dst_address = top.cast(top.src_address); - if (dst_address == 0) - continue; - - if (top.target == dst) - return dst_address; - - search_state s(top.target,dst_address); - - visited_t::iterator pos = std::lower_bound( - visited.begin(), visited.end(), s); - - // If already visited, continue - if (pos != visited.end() && *pos == s) - continue; - - visited.insert(pos, s); // mark it - - // expand it: - smart_graph::out_edges_t edges = out_edges(s.first, g.topology()); - for (cast_graph::out_edge_iterator p = edges.first - , finish = edges.second - ; p != finish - ; ++p - ) - { - edge_t e = *p; - q.push(q_elt( - d[target(e, g.topology())] - , dst_address - , target(e, g.topology()) - , boost::get(casts, e))); - } - } - return 0; - } - - struct cache_element - { - typedef tuples::tuple< - class_id // source static type - , class_id // target type - , std::ptrdiff_t // offset within source object - , class_id // source dynamic type - >::inherited key_type; - - cache_element(key_type const& k) - : key(k) - , offset(0) - {} - - key_type key; - std::ptrdiff_t offset; - - BOOST_STATIC_CONSTANT( - std::ptrdiff_t, not_found = integer_traits<std::ptrdiff_t>::const_min); - - bool operator<(cache_element const& rhs) const - { - return this->key < rhs.key; - } - - bool unreachable() const - { - return offset == not_found; - } - }; - - enum { kdst_t = ksrc_static_t + 1, koffset, ksrc_dynamic_t }; - typedef std::vector<cache_element> cache_t; - - cache_t& cache() - { - static cache_t x; - return x; - } - - inline void* convert_type(void* const p, class_id src_t, class_id dst_t, bool polymorphic) - { - // Quickly rule out unregistered types - index_entry* src_p = seek_type(src_t); - if (src_p == 0) - return 0; - - index_entry* dst_p = seek_type(dst_t); - if (dst_p == 0) - return 0; - - // Look up the dynamic_id function and call it to get the dynamic - // info - boost::python::objects::dynamic_id_t dynamic_id = polymorphic - ? tuples::get<kdynamic_id>(*src_p)(p) - : std::make_pair(p, src_t); - - // Look in the cache first for a quickie address translation - std::ptrdiff_t offset = (char*)p - (char*)dynamic_id.first; - - cache_element seek(boost::make_tuple(src_t, dst_t, offset, dynamic_id.second)); - cache_t& c = cache(); - cache_t::iterator const cache_pos - = std::lower_bound(c.begin(), c.end(), seek); - - - // if found in the cache, we're done - if (cache_pos != c.end() && cache_pos->key == seek.key) - { - return cache_pos->offset == cache_element::not_found - ? 0 : (char*)p + cache_pos->offset; - } - - // If we are starting at the most-derived type, only look in the up graph - smart_graph const& g = polymorphic && dynamic_id.second != src_t - ? full_graph() : up_graph(); - - void* result = search( - g, p, tuples::get<kvertex>(*src_p) - , tuples::get<kvertex>(*dst_p)); - - // update the cache - c.insert(cache_pos, seek)->offset - = (result == 0) ? cache_element::not_found : (char*)result - (char*)p; - - return result; - } -} - -namespace python { namespace objects { - -BOOST_PYTHON_DECL void* find_dynamic_type(void* p, class_id src_t, class_id dst_t) -{ - return convert_type(p, src_t, dst_t, true); -} - -BOOST_PYTHON_DECL void* find_static_type(void* p, class_id src_t, class_id dst_t) -{ - return convert_type(p, src_t, dst_t, false); -} - -BOOST_PYTHON_DECL void add_cast( - class_id src_t, class_id dst_t, cast_function cast, bool is_downcast) -{ - // adding an edge will invalidate any record of unreachability in - // the cache. - static std::size_t expected_cache_len = 0; - cache_t& c = cache(); - if (c.size() > expected_cache_len) - { - c.erase(std::remove_if( - c.begin(), c.end(), - mem_fn(&cache_element::unreachable)) - , c.end()); - - // If any new cache entries get added, we'll have to do this - // again when the next edge is added - expected_cache_len = c.size(); - } - - type_index_iterator_pair types = demand_types(src_t, dst_t); - vertex_t src = tuples::get<kvertex>(*types.first); - vertex_t dst = tuples::get<kvertex>(*types.second); - - cast_graph* const g[2] = { &up_graph().topology(), &full_graph().topology() }; - - for (cast_graph*const* p = g + (is_downcast ? 1 : 0); p < g + 2; ++p) - { - edge_t e; - bool added; - - tie(e, added) = add_edge(src, dst, **p); - assert(added); - - put(get(edge_cast, **p), e, cast); - put(get(edge_index, **p), e, num_edges(full_graph().topology()) - 1); - } -} - -BOOST_PYTHON_DECL void register_dynamic_id_aux( - class_id static_id, dynamic_id_function get_dynamic_id) -{ - tuples::get<kdynamic_id>(*demand_type(static_id)) = get_dynamic_id; -} - -}}} // namespace boost::python::objects +// Copyright David Abrahams 2002. +// Distributed under the Boost Software License, Version 1.0. (See +// accompanying file LICENSE_1_0.txt or copy at +// http://www.boost.org/LICENSE_1_0.txt) +#include <boost/python/object/inheritance.hpp> +#include <boost/python/type_id.hpp> +#include <boost/graph/breadth_first_search.hpp> +#if _MSC_FULL_VER >= 13102171 && _MSC_FULL_VER <= 13102179 +# include <boost/graph/reverse_graph.hpp> +#endif +#include <boost/graph/adjacency_list.hpp> +#include <boost/graph/reverse_graph.hpp> +#include <boost/property_map/property_map.hpp> +#include <boost/bind.hpp> +#include <boost/integer_traits.hpp> +#include <boost/tuple/tuple.hpp> +#include <boost/tuple/tuple_comparison.hpp> +#include <queue> +#include <vector> +#include <functional> + +// +// Procedure: +// +// The search is a BFS over the space of (type,address) pairs +// guided by the edges of the casting graph whose nodes +// correspond to classes, and whose edges are traversed by +// applying associated cast functions to an address. We use +// vertex distance to the goal node in the cast_graph to rate the +// paths. The vertex distance to any goal node is calculated on +// demand and outdated by the addition of edges to the graph. + +namespace boost { +namespace +{ + enum edge_cast_t { edge_cast = 8010 }; + template <class T> inline void unused_variable(const T&) { } +} + +// Install properties +BOOST_INSTALL_PROPERTY(edge, cast); + +namespace +{ + typedef void*(*cast_function)(void*); + + // + // Here we put together the low-level data structures of the + // casting graph representation. + // + typedef python::type_info class_id; + + // represents a graph of available casts + +#if 0 + struct cast_graph + : +#else + typedef +#endif + adjacency_list<vecS,vecS, bidirectionalS, no_property + + // edge index property allows us to look up edges in the connectivity matrix + , property<edge_index_t,std::size_t + + // The function which casts a void* from the edge's source type + // to its destination type. + , property<edge_cast_t,cast_function> > > +#if 0 + {}; +#else + cast_graph; +#endif + + typedef cast_graph::vertex_descriptor vertex_t; + typedef cast_graph::edge_descriptor edge_t; + + struct smart_graph + { + typedef std::vector<std::size_t>::const_iterator node_distance_map; + + typedef std::pair<cast_graph::out_edge_iterator + , cast_graph::out_edge_iterator> out_edges_t; + + // Return a map of the distances from any node to the given + // target node + node_distance_map distances_to(vertex_t target) const + { + std::size_t n = num_vertices(m_topology); + if (m_distances.size() != n * n) + { + m_distances.clear(); + m_distances.resize(n * n, (std::numeric_limits<std::size_t>::max)()); + m_known_vertices = n; + } + + std::vector<std::size_t>::iterator to_target = m_distances.begin() + n * target; + + // this node hasn't been used as a target yet + if (to_target[target] != 0) + { + typedef reverse_graph<cast_graph> reverse_cast_graph; + reverse_cast_graph reverse_topology(m_topology); + + to_target[target] = 0; + + breadth_first_search( + reverse_topology, target + , visitor( + make_bfs_visitor( + record_distances( + make_iterator_property_map( + to_target + , get(vertex_index, reverse_topology) +# ifdef BOOST_NO_STD_ITERATOR_TRAITS + , *to_target +# endif + ) + , on_tree_edge() + )))); + } + + return to_target; + } + + cast_graph& topology() { return m_topology; } + cast_graph const& topology() const { return m_topology; } + + smart_graph() + : m_known_vertices(0) + {} + + private: + cast_graph m_topology; + mutable std::vector<std::size_t> m_distances; + mutable std::size_t m_known_vertices; + }; + + smart_graph& full_graph() + { + static smart_graph x; + return x; + } + + smart_graph& up_graph() + { + static smart_graph x; + return x; + } + + // + // Our index of class types + // + using boost::python::objects::dynamic_id_function; + typedef tuples::tuple< + class_id // static type + , vertex_t // corresponding vertex + , dynamic_id_function // dynamic_id if polymorphic, or 0 + > + index_entry_interface; + typedef index_entry_interface::inherited index_entry; + enum { ksrc_static_t, kvertex, kdynamic_id }; + + typedef std::vector<index_entry> type_index_t; + + + type_index_t& type_index() + { + static type_index_t x; + return x; + } + + template <class Tuple> + struct select1st + { + typedef typename tuples::element<0, Tuple>::type result_type; + + result_type const& operator()(Tuple const& x) const + { + return tuples::get<0>(x); + } + }; + + // map a type to a position in the index + inline type_index_t::iterator type_position(class_id type) + { + typedef index_entry entry; + + return std::lower_bound( + type_index().begin(), type_index().end() + , boost::make_tuple(type, vertex_t(), dynamic_id_function(0)) + , boost::bind<bool>(std::less<class_id>() + , boost::bind<class_id>(select1st<entry>(), _1) + , boost::bind<class_id>(select1st<entry>(), _2))); + } + + inline index_entry* seek_type(class_id type) + { + type_index_t::iterator p = type_position(type); + if (p == type_index().end() || tuples::get<ksrc_static_t>(*p) != type) + return 0; + else + return &*p; + } + + // Get the entry for a type, inserting if necessary + inline type_index_t::iterator demand_type(class_id type) + { + type_index_t::iterator p = type_position(type); + + if (p != type_index().end() && tuples::get<ksrc_static_t>(*p) == type) + return p; + + vertex_t v = add_vertex(full_graph().topology()); + vertex_t v2 = add_vertex(up_graph().topology()); + unused_variable(v2); + assert(v == v2); + return type_index().insert(p, boost::make_tuple(type, v, dynamic_id_function(0))); + } + + // Map a two types to a vertex in the graph, inserting if necessary + typedef std::pair<type_index_t::iterator, type_index_t::iterator> + type_index_iterator_pair; + + inline type_index_iterator_pair + demand_types(class_id t1, class_id t2) + { + // be sure there will be no reallocation + type_index().reserve(type_index().size() + 2); + type_index_t::iterator first = demand_type(t1); + type_index_t::iterator second = demand_type(t2); + if (first == second) + ++first; + return std::make_pair(first, second); + } + + struct q_elt + { + q_elt(std::size_t distance + , void* src_address + , vertex_t target + , cast_function cast + ) + : distance(distance) + , src_address(src_address) + , target(target) + , cast(cast) + {} + + std::size_t distance; + void* src_address; + vertex_t target; + cast_function cast; + + bool operator<(q_elt const& rhs) const + { + return distance < rhs.distance; + } + }; + + // Optimization: + // + // Given p, src_t, dst_t + // + // Get a pointer pd to the most-derived object + // if it's polymorphic, dynamic_cast to void* + // otherwise pd = p + // + // Get the most-derived typeid src_td + // + // ptrdiff_t offset = p - pd + // + // Now we can keep a cache, for [src_t, offset, src_td, dst_t] of + // the cast transformation function to use on p and the next src_t + // in the chain. src_td, dst_t don't change throughout this + // process. In order to represent unreachability, when a pair is + // found to be unreachable, we stick a 0-returning "dead-cast" + // function in the cache. + + // This is needed in a few places below + inline void* identity_cast(void* p) + { + return p; + } + + void* search(smart_graph const& g, void* p, vertex_t src, vertex_t dst) + { + // I think this test was thoroughly bogus -- dwa + // If we know there's no path; bail now. + // if (src > g.known_vertices() || dst > g.known_vertices()) + // return 0; + + smart_graph::node_distance_map d(g.distances_to(dst)); + + if (d[src] == (std::numeric_limits<std::size_t>::max)()) + return 0; + + typedef property_map<cast_graph,edge_cast_t>::const_type cast_map; + cast_map casts = get(edge_cast, g.topology()); + + typedef std::pair<vertex_t,void*> search_state; + typedef std::vector<search_state> visited_t; + visited_t visited; + std::priority_queue<q_elt> q; + + q.push(q_elt(d[src], p, src, identity_cast)); + while (!q.empty()) + { + q_elt top = q.top(); + q.pop(); + + // Check to see if we have a real state + void* dst_address = top.cast(top.src_address); + if (dst_address == 0) + continue; + + if (top.target == dst) + return dst_address; + + search_state s(top.target,dst_address); + + visited_t::iterator pos = std::lower_bound( + visited.begin(), visited.end(), s); + + // If already visited, continue + if (pos != visited.end() && *pos == s) + continue; + + visited.insert(pos, s); // mark it + + // expand it: + smart_graph::out_edges_t edges = out_edges(s.first, g.topology()); + for (cast_graph::out_edge_iterator p = edges.first + , finish = edges.second + ; p != finish + ; ++p + ) + { + edge_t e = *p; + q.push(q_elt( + d[target(e, g.topology())] + , dst_address + , target(e, g.topology()) + , boost::get(casts, e))); + } + } + return 0; + } + + struct cache_element + { + typedef tuples::tuple< + class_id // source static type + , class_id // target type + , std::ptrdiff_t // offset within source object + , class_id // source dynamic type + >::inherited key_type; + + cache_element(key_type const& k) + : key(k) + , offset(0) + {} + + key_type key; + std::ptrdiff_t offset; + + BOOST_STATIC_CONSTANT( + std::ptrdiff_t, not_found = integer_traits<std::ptrdiff_t>::const_min); + + bool operator<(cache_element const& rhs) const + { + return this->key < rhs.key; + } + + bool unreachable() const + { + return offset == not_found; + } + }; + + enum { kdst_t = ksrc_static_t + 1, koffset, ksrc_dynamic_t }; + typedef std::vector<cache_element> cache_t; + + cache_t& cache() + { + static cache_t x; + return x; + } + + inline void* convert_type(void* const p, class_id src_t, class_id dst_t, bool polymorphic) + { + // Quickly rule out unregistered types + index_entry* src_p = seek_type(src_t); + if (src_p == 0) + return 0; + + index_entry* dst_p = seek_type(dst_t); + if (dst_p == 0) + return 0; + + // Look up the dynamic_id function and call it to get the dynamic + // info + boost::python::objects::dynamic_id_t dynamic_id = polymorphic + ? tuples::get<kdynamic_id>(*src_p)(p) + : std::make_pair(p, src_t); + + // Look in the cache first for a quickie address translation + std::ptrdiff_t offset = (char*)p - (char*)dynamic_id.first; + + cache_element seek(boost::make_tuple(src_t, dst_t, offset, dynamic_id.second)); + cache_t& c = cache(); + cache_t::iterator const cache_pos + = std::lower_bound(c.begin(), c.end(), seek); + + + // if found in the cache, we're done + if (cache_pos != c.end() && cache_pos->key == seek.key) + { + return cache_pos->offset == cache_element::not_found + ? 0 : (char*)p + cache_pos->offset; + } + + // If we are starting at the most-derived type, only look in the up graph + smart_graph const& g = polymorphic && dynamic_id.second != src_t + ? full_graph() : up_graph(); + + void* result = search( + g, p, tuples::get<kvertex>(*src_p) + , tuples::get<kvertex>(*dst_p)); + + // update the cache + c.insert(cache_pos, seek)->offset + = (result == 0) ? cache_element::not_found : (char*)result - (char*)p; + + return result; + } +} + +namespace python { namespace objects { + +BOOST_PYTHON_DECL void* find_dynamic_type(void* p, class_id src_t, class_id dst_t) +{ + return convert_type(p, src_t, dst_t, true); +} + +BOOST_PYTHON_DECL void* find_static_type(void* p, class_id src_t, class_id dst_t) +{ + return convert_type(p, src_t, dst_t, false); +} + +BOOST_PYTHON_DECL void add_cast( + class_id src_t, class_id dst_t, cast_function cast, bool is_downcast) +{ + // adding an edge will invalidate any record of unreachability in + // the cache. + static std::size_t expected_cache_len = 0; + cache_t& c = cache(); + if (c.size() > expected_cache_len) + { + c.erase(std::remove_if( + c.begin(), c.end(), + mem_fn(&cache_element::unreachable)) + , c.end()); + + // If any new cache entries get added, we'll have to do this + // again when the next edge is added + expected_cache_len = c.size(); + } + + type_index_iterator_pair types = demand_types(src_t, dst_t); + vertex_t src = tuples::get<kvertex>(*types.first); + vertex_t dst = tuples::get<kvertex>(*types.second); + + cast_graph* const g[2] = { &up_graph().topology(), &full_graph().topology() }; + + for (cast_graph*const* p = g + (is_downcast ? 1 : 0); p < g + 2; ++p) + { + edge_t e; + bool added; + + tie(e, added) = add_edge(src, dst, **p); + assert(added); + + put(get(edge_cast, **p), e, cast); + put(get(edge_index, **p), e, num_edges(full_graph().topology()) - 1); + } +} + +BOOST_PYTHON_DECL void register_dynamic_id_aux( + class_id static_id, dynamic_id_function get_dynamic_id) +{ + tuples::get<kdynamic_id>(*demand_type(static_id)) = get_dynamic_id; +} + +}}} // namespace boost::python::objects |