diff options
author | anastasy888 <anastasy888@yandex-team.ru> | 2022-02-10 16:45:54 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:54 +0300 |
commit | 49f765d71da452ea93138a25559dfa68dd76c7f3 (patch) | |
tree | 1016041feb637349e401dcc0fa85217dd2c2c639 /contrib/restricted/abseil-cpp/absl/time/duration.cc | |
parent | 7353a3fdea9c67c256980c00a2b3b67f09b23a27 (diff) | |
download | ydb-49f765d71da452ea93138a25559dfa68dd76c7f3.tar.gz |
Restoring authorship annotation for <anastasy888@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/abseil-cpp/absl/time/duration.cc')
-rw-r--r-- | contrib/restricted/abseil-cpp/absl/time/duration.cc | 1718 |
1 files changed, 859 insertions, 859 deletions
diff --git a/contrib/restricted/abseil-cpp/absl/time/duration.cc b/contrib/restricted/abseil-cpp/absl/time/duration.cc index 4443109a51..77ed7af93e 100644 --- a/contrib/restricted/abseil-cpp/absl/time/duration.cc +++ b/contrib/restricted/abseil-cpp/absl/time/duration.cc @@ -1,720 +1,720 @@ -// Copyright 2017 The Abseil Authors. -// -// Licensed under the Apache License, Version 2.0 (the "License"); -// you may not use this file except in compliance with the License. -// You may obtain a copy of the License at -// -// https://www.apache.org/licenses/LICENSE-2.0 -// -// Unless required by applicable law or agreed to in writing, software -// distributed under the License is distributed on an "AS IS" BASIS, -// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -// See the License for the specific language governing permissions and -// limitations under the License. - -// The implementation of the absl::Duration class, which is declared in -// //absl/time.h. This class behaves like a numeric type; it has no public -// methods and is used only through the operators defined here. -// -// Implementation notes: -// -// An absl::Duration is represented as -// -// rep_hi_ : (int64_t) Whole seconds -// rep_lo_ : (uint32_t) Fractions of a second -// -// The seconds value (rep_hi_) may be positive or negative as appropriate. -// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. -// The API for Duration guarantees at least nanosecond resolution, which -// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. -// However, to utilize more of the available 32 bits of space in rep_lo_, -// we instead store quarters of a nanosecond in rep_lo_ resulting in a max -// value of 4B - 1. This allows us to correctly handle calculations like -// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual -// Duration rep using quarters of a nanosecond. -// -// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 -// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} -// -// Infinite durations are represented as Durations with the rep_lo_ field set -// to all 1s. -// -// +InfiniteDuration: -// rep_hi_ : kint64max -// rep_lo_ : ~0U -// -// -InfiniteDuration: -// rep_hi_ : kint64min -// rep_lo_ : ~0U -// -// Arithmetic overflows/underflows to +/- infinity and saturates. - -#if defined(_MSC_VER) -#include <winsock2.h> // for timeval -#endif - -#include <algorithm> -#include <cassert> -#include <cctype> -#include <cerrno> -#include <cmath> -#include <cstdint> -#include <cstdlib> -#include <cstring> -#include <ctime> -#include <functional> -#include <limits> -#include <string> - -#include "absl/base/casts.h" +// Copyright 2017 The Abseil Authors. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// https://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +// The implementation of the absl::Duration class, which is declared in +// //absl/time.h. This class behaves like a numeric type; it has no public +// methods and is used only through the operators defined here. +// +// Implementation notes: +// +// An absl::Duration is represented as +// +// rep_hi_ : (int64_t) Whole seconds +// rep_lo_ : (uint32_t) Fractions of a second +// +// The seconds value (rep_hi_) may be positive or negative as appropriate. +// The fractional seconds (rep_lo_) is always a positive offset from rep_hi_. +// The API for Duration guarantees at least nanosecond resolution, which +// means rep_lo_ could have a max value of 1B - 1 if it stored nanoseconds. +// However, to utilize more of the available 32 bits of space in rep_lo_, +// we instead store quarters of a nanosecond in rep_lo_ resulting in a max +// value of 4B - 1. This allows us to correctly handle calculations like +// 0.5 nanos + 0.5 nanos = 1 nano. The following example shows the actual +// Duration rep using quarters of a nanosecond. +// +// 2.5 sec = {rep_hi_=2, rep_lo_=2000000000} // lo = 4 * 500000000 +// -2.5 sec = {rep_hi_=-3, rep_lo_=2000000000} +// +// Infinite durations are represented as Durations with the rep_lo_ field set +// to all 1s. +// +// +InfiniteDuration: +// rep_hi_ : kint64max +// rep_lo_ : ~0U +// +// -InfiniteDuration: +// rep_hi_ : kint64min +// rep_lo_ : ~0U +// +// Arithmetic overflows/underflows to +/- infinity and saturates. + +#if defined(_MSC_VER) +#include <winsock2.h> // for timeval +#endif + +#include <algorithm> +#include <cassert> +#include <cctype> +#include <cerrno> +#include <cmath> +#include <cstdint> +#include <cstdlib> +#include <cstring> +#include <ctime> +#include <functional> +#include <limits> +#include <string> + +#include "absl/base/casts.h" #include "absl/base/macros.h" -#include "absl/numeric/int128.h" +#include "absl/numeric/int128.h" #include "absl/strings/string_view.h" #include "absl/strings/strip.h" -#include "absl/time/time.h" - -namespace absl { +#include "absl/time/time.h" + +namespace absl { ABSL_NAMESPACE_BEGIN - -namespace { - -using time_internal::kTicksPerNanosecond; -using time_internal::kTicksPerSecond; - -constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); -constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); - -// Can't use std::isinfinite() because it doesn't exist on windows. -inline bool IsFinite(double d) { - if (std::isnan(d)) return false; - return d != std::numeric_limits<double>::infinity() && - d != -std::numeric_limits<double>::infinity(); -} - -inline bool IsValidDivisor(double d) { - if (std::isnan(d)) return false; - return d != 0.0; -} - -// Can't use std::round() because it is only available in C++11. -// Note that we ignore the possibility of floating-point over/underflow. -template <typename Double> -inline double Round(Double d) { - return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5); -} - -// *sec may be positive or negative. *ticks must be in the range -// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it -// will be normalized to a positive value by adjusting *sec accordingly. -inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { - if (*ticks < 0) { - --*sec; - *ticks += kTicksPerSecond; - } -} - -// Makes a uint128 from the absolute value of the given scalar. -inline uint128 MakeU128(int64_t a) { - uint128 u128 = 0; - if (a < 0) { - ++u128; - ++a; // Makes it safe to negate 'a' - a = -a; - } - u128 += static_cast<uint64_t>(a); - return u128; -} - -// Makes a uint128 count of ticks out of the absolute value of the Duration. -inline uint128 MakeU128Ticks(Duration d) { - int64_t rep_hi = time_internal::GetRepHi(d); - uint32_t rep_lo = time_internal::GetRepLo(d); - if (rep_hi < 0) { - ++rep_hi; - rep_hi = -rep_hi; - rep_lo = kTicksPerSecond - rep_lo; - } - uint128 u128 = static_cast<uint64_t>(rep_hi); - u128 *= static_cast<uint64_t>(kTicksPerSecond); - u128 += rep_lo; - return u128; -} - -// Breaks a uint128 of ticks into a Duration. -inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { - int64_t rep_hi; - uint32_t rep_lo; - const uint64_t h64 = Uint128High64(u128); - const uint64_t l64 = Uint128Low64(u128); - if (h64 == 0) { // fastpath - const uint64_t hi = l64 / kTicksPerSecond; - rep_hi = static_cast<int64_t>(hi); - rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); - } else { - // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). - // Any positive tick count whose high 64 bits are >= kMaxRepHi64 - // is not representable as a Duration. A negative tick count can - // have its high 64 bits == kMaxRepHi64 but only when the low 64 - // bits are all zero, otherwise it is not representable either. - const uint64_t kMaxRepHi64 = 0x77359400UL; - if (h64 >= kMaxRepHi64) { - if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { - // Avoid trying to represent -kint64min below. - return time_internal::MakeDuration(kint64min); - } - return is_neg ? -InfiniteDuration() : InfiniteDuration(); - } - const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); - const uint128 hi = u128 / kTicksPerSecond128; - rep_hi = static_cast<int64_t>(Uint128Low64(hi)); - rep_lo = - static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); - } - if (is_neg) { - rep_hi = -rep_hi; - if (rep_lo != 0) { - --rep_hi; - rep_lo = kTicksPerSecond - rep_lo; - } - } - return time_internal::MakeDuration(rep_hi, rep_lo); -} - -// Convert between int64_t and uint64_t, preserving representation. This -// allows us to do arithmetic in the unsigned domain, where overflow has -// well-defined behavior. See operator+=() and operator-=(). -// -// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef -// name intN_t designates a signed integer type with width N, no padding -// bits, and a two's complement representation." So, we can convert to -// and from the corresponding uint64_t value using a bit cast. -inline uint64_t EncodeTwosComp(int64_t v) { - return absl::bit_cast<uint64_t>(v); -} -inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } - -// Note: The overflow detection in this function is done using greater/less *or -// equal* because kint64max/min is too large to be represented exactly in a -// double (which only has 53 bits of precision). In order to avoid assigning to -// rep->hi a double value that is too large for an int64_t (and therefore is -// undefined), we must consider computations that equal kint64max/min as a -// double as overflow cases. -inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { - double c = a_hi + b_hi; - if (c >= static_cast<double>(kint64max)) { - *d = InfiniteDuration(); - return false; - } - if (c <= static_cast<double>(kint64min)) { - *d = -InfiniteDuration(); - return false; - } - *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); - return true; -} - -// A functor that's similar to std::multiplies<T>, except this returns the max -// T value instead of overflowing. This is only defined for uint128. -template <typename Ignored> -struct SafeMultiply { - uint128 operator()(uint128 a, uint128 b) const { - // b hi is always zero because it originated as an int64_t. - assert(Uint128High64(b) == 0); - // Fastpath to avoid the expensive overflow check with division. - if (Uint128High64(a) == 0) { - return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) - ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) - : a * b; - } - return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b; - } -}; - -// Scales (i.e., multiplies or divides, depending on the Operation template) -// the Duration d by the int64_t r. -template <template <typename> class Operation> -inline Duration ScaleFixed(Duration d, int64_t r) { - const uint128 a = MakeU128Ticks(d); - const uint128 b = MakeU128(r); - const uint128 q = Operation<uint128>()(a, b); - const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); - return MakeDurationFromU128(q, is_neg); -} - -// Scales (i.e., multiplies or divides, depending on the Operation template) -// the Duration d by the double r. -template <template <typename> class Operation> -inline Duration ScaleDouble(Duration d, double r) { - Operation<double> op; - double hi_doub = op(time_internal::GetRepHi(d), r); - double lo_doub = op(time_internal::GetRepLo(d), r); - - double hi_int = 0; - double hi_frac = std::modf(hi_doub, &hi_int); - - // Moves hi's fractional bits to lo. - lo_doub /= kTicksPerSecond; - lo_doub += hi_frac; - - double lo_int = 0; - double lo_frac = std::modf(lo_doub, &lo_int); - - // Rolls lo into hi if necessary. - int64_t lo64 = Round(lo_frac * kTicksPerSecond); - - Duration ans; - if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; - int64_t hi64 = time_internal::GetRepHi(ans); - if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; - hi64 = time_internal::GetRepHi(ans); - lo64 %= kTicksPerSecond; - NormalizeTicks(&hi64, &lo64); - return time_internal::MakeDuration(hi64, lo64); -} - -// Tries to divide num by den as fast as possible by looking for common, easy -// cases. If the division was done, the quotient is in *q and the remainder is -// in *rem and true will be returned. -inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, - Duration* rem) { - // Bail if num or den is an infinity. - if (time_internal::IsInfiniteDuration(num) || - time_internal::IsInfiniteDuration(den)) - return false; - - int64_t num_hi = time_internal::GetRepHi(num); - uint32_t num_lo = time_internal::GetRepLo(num); - int64_t den_hi = time_internal::GetRepHi(den); - uint32_t den_lo = time_internal::GetRepLo(den); - - if (den_hi == 0 && den_lo == kTicksPerNanosecond) { - // Dividing by 1ns - if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { - *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; - *rem = time_internal::MakeDuration(0, num_lo % den_lo); - return true; - } - } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) { - // Dividing by 100ns (common when converting to Universal time) - if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { - *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); - *rem = time_internal::MakeDuration(0, num_lo % den_lo); - return true; - } - } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) { - // Dividing by 1us - if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { - *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); - *rem = time_internal::MakeDuration(0, num_lo % den_lo); - return true; - } - } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) { - // Dividing by 1ms - if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { - *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); - *rem = time_internal::MakeDuration(0, num_lo % den_lo); - return true; - } - } else if (den_hi > 0 && den_lo == 0) { - // Dividing by positive multiple of 1s - if (num_hi >= 0) { - if (den_hi == 1) { - *q = num_hi; - *rem = time_internal::MakeDuration(0, num_lo); - return true; - } - *q = num_hi / den_hi; - *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); - return true; - } - if (num_lo != 0) { - num_hi += 1; - } - int64_t quotient = num_hi / den_hi; - int64_t rem_sec = num_hi % den_hi; - if (rem_sec > 0) { - rem_sec -= den_hi; - quotient += 1; - } - if (num_lo != 0) { - rem_sec -= 1; - } - *q = quotient; - *rem = time_internal::MakeDuration(rem_sec, num_lo); - return true; - } - - return false; -} - -} // namespace - -namespace time_internal { - -// The 'satq' argument indicates whether the quotient should saturate at the -// bounds of int64_t. If it does saturate, the difference will spill over to -// the remainder. If it does not saturate, the remainder remain accurate, -// but the returned quotient will over/underflow int64_t and should not be used. -int64_t IDivDuration(bool satq, const Duration num, const Duration den, + +namespace { + +using time_internal::kTicksPerNanosecond; +using time_internal::kTicksPerSecond; + +constexpr int64_t kint64max = std::numeric_limits<int64_t>::max(); +constexpr int64_t kint64min = std::numeric_limits<int64_t>::min(); + +// Can't use std::isinfinite() because it doesn't exist on windows. +inline bool IsFinite(double d) { + if (std::isnan(d)) return false; + return d != std::numeric_limits<double>::infinity() && + d != -std::numeric_limits<double>::infinity(); +} + +inline bool IsValidDivisor(double d) { + if (std::isnan(d)) return false; + return d != 0.0; +} + +// Can't use std::round() because it is only available in C++11. +// Note that we ignore the possibility of floating-point over/underflow. +template <typename Double> +inline double Round(Double d) { + return d < 0 ? std::ceil(d - 0.5) : std::floor(d + 0.5); +} + +// *sec may be positive or negative. *ticks must be in the range +// -kTicksPerSecond < *ticks < kTicksPerSecond. If *ticks is negative it +// will be normalized to a positive value by adjusting *sec accordingly. +inline void NormalizeTicks(int64_t* sec, int64_t* ticks) { + if (*ticks < 0) { + --*sec; + *ticks += kTicksPerSecond; + } +} + +// Makes a uint128 from the absolute value of the given scalar. +inline uint128 MakeU128(int64_t a) { + uint128 u128 = 0; + if (a < 0) { + ++u128; + ++a; // Makes it safe to negate 'a' + a = -a; + } + u128 += static_cast<uint64_t>(a); + return u128; +} + +// Makes a uint128 count of ticks out of the absolute value of the Duration. +inline uint128 MakeU128Ticks(Duration d) { + int64_t rep_hi = time_internal::GetRepHi(d); + uint32_t rep_lo = time_internal::GetRepLo(d); + if (rep_hi < 0) { + ++rep_hi; + rep_hi = -rep_hi; + rep_lo = kTicksPerSecond - rep_lo; + } + uint128 u128 = static_cast<uint64_t>(rep_hi); + u128 *= static_cast<uint64_t>(kTicksPerSecond); + u128 += rep_lo; + return u128; +} + +// Breaks a uint128 of ticks into a Duration. +inline Duration MakeDurationFromU128(uint128 u128, bool is_neg) { + int64_t rep_hi; + uint32_t rep_lo; + const uint64_t h64 = Uint128High64(u128); + const uint64_t l64 = Uint128Low64(u128); + if (h64 == 0) { // fastpath + const uint64_t hi = l64 / kTicksPerSecond; + rep_hi = static_cast<int64_t>(hi); + rep_lo = static_cast<uint32_t>(l64 - hi * kTicksPerSecond); + } else { + // kMaxRepHi64 is the high 64 bits of (2^63 * kTicksPerSecond). + // Any positive tick count whose high 64 bits are >= kMaxRepHi64 + // is not representable as a Duration. A negative tick count can + // have its high 64 bits == kMaxRepHi64 but only when the low 64 + // bits are all zero, otherwise it is not representable either. + const uint64_t kMaxRepHi64 = 0x77359400UL; + if (h64 >= kMaxRepHi64) { + if (is_neg && h64 == kMaxRepHi64 && l64 == 0) { + // Avoid trying to represent -kint64min below. + return time_internal::MakeDuration(kint64min); + } + return is_neg ? -InfiniteDuration() : InfiniteDuration(); + } + const uint128 kTicksPerSecond128 = static_cast<uint64_t>(kTicksPerSecond); + const uint128 hi = u128 / kTicksPerSecond128; + rep_hi = static_cast<int64_t>(Uint128Low64(hi)); + rep_lo = + static_cast<uint32_t>(Uint128Low64(u128 - hi * kTicksPerSecond128)); + } + if (is_neg) { + rep_hi = -rep_hi; + if (rep_lo != 0) { + --rep_hi; + rep_lo = kTicksPerSecond - rep_lo; + } + } + return time_internal::MakeDuration(rep_hi, rep_lo); +} + +// Convert between int64_t and uint64_t, preserving representation. This +// allows us to do arithmetic in the unsigned domain, where overflow has +// well-defined behavior. See operator+=() and operator-=(). +// +// C99 7.20.1.1.1, as referenced by C++11 18.4.1.2, says, "The typedef +// name intN_t designates a signed integer type with width N, no padding +// bits, and a two's complement representation." So, we can convert to +// and from the corresponding uint64_t value using a bit cast. +inline uint64_t EncodeTwosComp(int64_t v) { + return absl::bit_cast<uint64_t>(v); +} +inline int64_t DecodeTwosComp(uint64_t v) { return absl::bit_cast<int64_t>(v); } + +// Note: The overflow detection in this function is done using greater/less *or +// equal* because kint64max/min is too large to be represented exactly in a +// double (which only has 53 bits of precision). In order to avoid assigning to +// rep->hi a double value that is too large for an int64_t (and therefore is +// undefined), we must consider computations that equal kint64max/min as a +// double as overflow cases. +inline bool SafeAddRepHi(double a_hi, double b_hi, Duration* d) { + double c = a_hi + b_hi; + if (c >= static_cast<double>(kint64max)) { + *d = InfiniteDuration(); + return false; + } + if (c <= static_cast<double>(kint64min)) { + *d = -InfiniteDuration(); + return false; + } + *d = time_internal::MakeDuration(c, time_internal::GetRepLo(*d)); + return true; +} + +// A functor that's similar to std::multiplies<T>, except this returns the max +// T value instead of overflowing. This is only defined for uint128. +template <typename Ignored> +struct SafeMultiply { + uint128 operator()(uint128 a, uint128 b) const { + // b hi is always zero because it originated as an int64_t. + assert(Uint128High64(b) == 0); + // Fastpath to avoid the expensive overflow check with division. + if (Uint128High64(a) == 0) { + return (((Uint128Low64(a) | Uint128Low64(b)) >> 32) == 0) + ? static_cast<uint128>(Uint128Low64(a) * Uint128Low64(b)) + : a * b; + } + return b == 0 ? b : (a > kuint128max / b) ? kuint128max : a * b; + } +}; + +// Scales (i.e., multiplies or divides, depending on the Operation template) +// the Duration d by the int64_t r. +template <template <typename> class Operation> +inline Duration ScaleFixed(Duration d, int64_t r) { + const uint128 a = MakeU128Ticks(d); + const uint128 b = MakeU128(r); + const uint128 q = Operation<uint128>()(a, b); + const bool is_neg = (time_internal::GetRepHi(d) < 0) != (r < 0); + return MakeDurationFromU128(q, is_neg); +} + +// Scales (i.e., multiplies or divides, depending on the Operation template) +// the Duration d by the double r. +template <template <typename> class Operation> +inline Duration ScaleDouble(Duration d, double r) { + Operation<double> op; + double hi_doub = op(time_internal::GetRepHi(d), r); + double lo_doub = op(time_internal::GetRepLo(d), r); + + double hi_int = 0; + double hi_frac = std::modf(hi_doub, &hi_int); + + // Moves hi's fractional bits to lo. + lo_doub /= kTicksPerSecond; + lo_doub += hi_frac; + + double lo_int = 0; + double lo_frac = std::modf(lo_doub, &lo_int); + + // Rolls lo into hi if necessary. + int64_t lo64 = Round(lo_frac * kTicksPerSecond); + + Duration ans; + if (!SafeAddRepHi(hi_int, lo_int, &ans)) return ans; + int64_t hi64 = time_internal::GetRepHi(ans); + if (!SafeAddRepHi(hi64, lo64 / kTicksPerSecond, &ans)) return ans; + hi64 = time_internal::GetRepHi(ans); + lo64 %= kTicksPerSecond; + NormalizeTicks(&hi64, &lo64); + return time_internal::MakeDuration(hi64, lo64); +} + +// Tries to divide num by den as fast as possible by looking for common, easy +// cases. If the division was done, the quotient is in *q and the remainder is +// in *rem and true will be returned. +inline bool IDivFastPath(const Duration num, const Duration den, int64_t* q, + Duration* rem) { + // Bail if num or den is an infinity. + if (time_internal::IsInfiniteDuration(num) || + time_internal::IsInfiniteDuration(den)) + return false; + + int64_t num_hi = time_internal::GetRepHi(num); + uint32_t num_lo = time_internal::GetRepLo(num); + int64_t den_hi = time_internal::GetRepHi(den); + uint32_t den_lo = time_internal::GetRepLo(den); + + if (den_hi == 0 && den_lo == kTicksPerNanosecond) { + // Dividing by 1ns + if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000000) { + *q = num_hi * 1000000000 + num_lo / kTicksPerNanosecond; + *rem = time_internal::MakeDuration(0, num_lo % den_lo); + return true; + } + } else if (den_hi == 0 && den_lo == 100 * kTicksPerNanosecond) { + // Dividing by 100ns (common when converting to Universal time) + if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 10000000) { + *q = num_hi * 10000000 + num_lo / (100 * kTicksPerNanosecond); + *rem = time_internal::MakeDuration(0, num_lo % den_lo); + return true; + } + } else if (den_hi == 0 && den_lo == 1000 * kTicksPerNanosecond) { + // Dividing by 1us + if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000000) { + *q = num_hi * 1000000 + num_lo / (1000 * kTicksPerNanosecond); + *rem = time_internal::MakeDuration(0, num_lo % den_lo); + return true; + } + } else if (den_hi == 0 && den_lo == 1000000 * kTicksPerNanosecond) { + // Dividing by 1ms + if (num_hi >= 0 && num_hi < (kint64max - kTicksPerSecond) / 1000) { + *q = num_hi * 1000 + num_lo / (1000000 * kTicksPerNanosecond); + *rem = time_internal::MakeDuration(0, num_lo % den_lo); + return true; + } + } else if (den_hi > 0 && den_lo == 0) { + // Dividing by positive multiple of 1s + if (num_hi >= 0) { + if (den_hi == 1) { + *q = num_hi; + *rem = time_internal::MakeDuration(0, num_lo); + return true; + } + *q = num_hi / den_hi; + *rem = time_internal::MakeDuration(num_hi % den_hi, num_lo); + return true; + } + if (num_lo != 0) { + num_hi += 1; + } + int64_t quotient = num_hi / den_hi; + int64_t rem_sec = num_hi % den_hi; + if (rem_sec > 0) { + rem_sec -= den_hi; + quotient += 1; + } + if (num_lo != 0) { + rem_sec -= 1; + } + *q = quotient; + *rem = time_internal::MakeDuration(rem_sec, num_lo); + return true; + } + + return false; +} + +} // namespace + +namespace time_internal { + +// The 'satq' argument indicates whether the quotient should saturate at the +// bounds of int64_t. If it does saturate, the difference will spill over to +// the remainder. If it does not saturate, the remainder remain accurate, +// but the returned quotient will over/underflow int64_t and should not be used. +int64_t IDivDuration(bool satq, const Duration num, const Duration den, Duration* rem) { - int64_t q = 0; - if (IDivFastPath(num, den, &q, rem)) { - return q; - } - - const bool num_neg = num < ZeroDuration(); - const bool den_neg = den < ZeroDuration(); - const bool quotient_neg = num_neg != den_neg; - - if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { - *rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); - return quotient_neg ? kint64min : kint64max; - } - if (time_internal::IsInfiniteDuration(den)) { - *rem = num; - return 0; - } - - const uint128 a = MakeU128Ticks(num); - const uint128 b = MakeU128Ticks(den); - uint128 quotient128 = a / b; - - if (satq) { - // Limits the quotient to the range of int64_t. - if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { - quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) - : uint128(static_cast<uint64_t>(kint64max)); - } - } - - const uint128 remainder128 = a - quotient128 * b; - *rem = MakeDurationFromU128(remainder128, num_neg); - - if (!quotient_neg || quotient128 == 0) { - return Uint128Low64(quotient128) & kint64max; - } - // The quotient needs to be negated, but we need to carefully handle - // quotient128s with the top bit on. - return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; -} - -} // namespace time_internal - -// -// Additive operators. -// - -Duration& Duration::operator+=(Duration rhs) { - if (time_internal::IsInfiniteDuration(*this)) return *this; - if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; - const int64_t orig_rep_hi = rep_hi_; - rep_hi_ = - DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_)); - if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { - rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1); - rep_lo_ -= kTicksPerSecond; - } - rep_lo_ += rhs.rep_lo_; - if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) { - return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration(); - } - return *this; -} - -Duration& Duration::operator-=(Duration rhs) { - if (time_internal::IsInfiniteDuration(*this)) return *this; - if (time_internal::IsInfiniteDuration(rhs)) { - return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); - } - const int64_t orig_rep_hi = rep_hi_; - rep_hi_ = - DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_)); - if (rep_lo_ < rhs.rep_lo_) { - rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1); - rep_lo_ += kTicksPerSecond; - } - rep_lo_ -= rhs.rep_lo_; - if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) { - return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); - } - return *this; -} - -// -// Multiplicative operators. -// - -Duration& Duration::operator*=(int64_t r) { - if (time_internal::IsInfiniteDuration(*this)) { - const bool is_neg = (r < 0) != (rep_hi_ < 0); - return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); - } - return *this = ScaleFixed<SafeMultiply>(*this, r); -} - -Duration& Duration::operator*=(double r) { - if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { - const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); - return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); - } - return *this = ScaleDouble<std::multiplies>(*this, r); -} - -Duration& Duration::operator/=(int64_t r) { - if (time_internal::IsInfiniteDuration(*this) || r == 0) { - const bool is_neg = (r < 0) != (rep_hi_ < 0); - return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); - } - return *this = ScaleFixed<std::divides>(*this, r); -} - -Duration& Duration::operator/=(double r) { - if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { - const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); - return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); - } - return *this = ScaleDouble<std::divides>(*this, r); -} - -Duration& Duration::operator%=(Duration rhs) { - time_internal::IDivDuration(false, *this, rhs, this); - return *this; -} - -double FDivDuration(Duration num, Duration den) { - // Arithmetic with infinity is sticky. - if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { - return (num < ZeroDuration()) == (den < ZeroDuration()) - ? std::numeric_limits<double>::infinity() - : -std::numeric_limits<double>::infinity(); - } - if (time_internal::IsInfiniteDuration(den)) return 0.0; - - double a = - static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + - time_internal::GetRepLo(num); - double b = - static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + - time_internal::GetRepLo(den); - return a / b; -} - -// -// Trunc/Floor/Ceil. -// - -Duration Trunc(Duration d, Duration unit) { - return d - (d % unit); -} - -Duration Floor(const Duration d, const Duration unit) { - const absl::Duration td = Trunc(d, unit); - return td <= d ? td : td - AbsDuration(unit); -} - -Duration Ceil(const Duration d, const Duration unit) { - const absl::Duration td = Trunc(d, unit); - return td >= d ? td : td + AbsDuration(unit); -} - -// -// Factory functions. -// - -Duration DurationFromTimespec(timespec ts) { - if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { - int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; - return time_internal::MakeDuration(ts.tv_sec, ticks); - } - return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); -} - -Duration DurationFromTimeval(timeval tv) { - if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { - int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; - return time_internal::MakeDuration(tv.tv_sec, ticks); - } - return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); -} - -// -// Conversion to other duration types. -// - -int64_t ToInt64Nanoseconds(Duration d) { - if (time_internal::GetRepHi(d) >= 0 && - time_internal::GetRepHi(d) >> 33 == 0) { - return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + - (time_internal::GetRepLo(d) / kTicksPerNanosecond); - } - return d / Nanoseconds(1); -} -int64_t ToInt64Microseconds(Duration d) { - if (time_internal::GetRepHi(d) >= 0 && - time_internal::GetRepHi(d) >> 43 == 0) { - return (time_internal::GetRepHi(d) * 1000 * 1000) + - (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); - } - return d / Microseconds(1); -} -int64_t ToInt64Milliseconds(Duration d) { - if (time_internal::GetRepHi(d) >= 0 && - time_internal::GetRepHi(d) >> 53 == 0) { - return (time_internal::GetRepHi(d) * 1000) + - (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); - } - return d / Milliseconds(1); -} -int64_t ToInt64Seconds(Duration d) { - int64_t hi = time_internal::GetRepHi(d); - if (time_internal::IsInfiniteDuration(d)) return hi; - if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; - return hi; -} -int64_t ToInt64Minutes(Duration d) { - int64_t hi = time_internal::GetRepHi(d); - if (time_internal::IsInfiniteDuration(d)) return hi; - if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; - return hi / 60; -} -int64_t ToInt64Hours(Duration d) { - int64_t hi = time_internal::GetRepHi(d); - if (time_internal::IsInfiniteDuration(d)) return hi; - if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; - return hi / (60 * 60); -} - -double ToDoubleNanoseconds(Duration d) { - return FDivDuration(d, Nanoseconds(1)); -} -double ToDoubleMicroseconds(Duration d) { - return FDivDuration(d, Microseconds(1)); -} -double ToDoubleMilliseconds(Duration d) { - return FDivDuration(d, Milliseconds(1)); -} -double ToDoubleSeconds(Duration d) { - return FDivDuration(d, Seconds(1)); -} -double ToDoubleMinutes(Duration d) { - return FDivDuration(d, Minutes(1)); -} -double ToDoubleHours(Duration d) { - return FDivDuration(d, Hours(1)); -} - -timespec ToTimespec(Duration d) { - timespec ts; - if (!time_internal::IsInfiniteDuration(d)) { - int64_t rep_hi = time_internal::GetRepHi(d); - uint32_t rep_lo = time_internal::GetRepLo(d); - if (rep_hi < 0) { - // Tweak the fields so that unsigned division of rep_lo - // maps to truncation (towards zero) for the timespec. - rep_lo += kTicksPerNanosecond - 1; - if (rep_lo >= kTicksPerSecond) { - rep_hi += 1; - rep_lo -= kTicksPerSecond; - } - } - ts.tv_sec = rep_hi; - if (ts.tv_sec == rep_hi) { // no time_t narrowing - ts.tv_nsec = rep_lo / kTicksPerNanosecond; - return ts; - } - } - if (d >= ZeroDuration()) { - ts.tv_sec = std::numeric_limits<time_t>::max(); - ts.tv_nsec = 1000 * 1000 * 1000 - 1; - } else { - ts.tv_sec = std::numeric_limits<time_t>::min(); - ts.tv_nsec = 0; - } - return ts; -} - -timeval ToTimeval(Duration d) { - timeval tv; - timespec ts = ToTimespec(d); - if (ts.tv_sec < 0) { - // Tweak the fields so that positive division of tv_nsec - // maps to truncation (towards zero) for the timeval. - ts.tv_nsec += 1000 - 1; - if (ts.tv_nsec >= 1000 * 1000 * 1000) { - ts.tv_sec += 1; - ts.tv_nsec -= 1000 * 1000 * 1000; - } - } - tv.tv_sec = ts.tv_sec; - if (tv.tv_sec != ts.tv_sec) { // narrowing - if (ts.tv_sec < 0) { - tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); - tv.tv_usec = 0; - } else { - tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); - tv.tv_usec = 1000 * 1000 - 1; - } - return tv; - } - tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t - return tv; -} - -std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { - return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); -} -std::chrono::microseconds ToChronoMicroseconds(Duration d) { - return time_internal::ToChronoDuration<std::chrono::microseconds>(d); -} -std::chrono::milliseconds ToChronoMilliseconds(Duration d) { - return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); -} -std::chrono::seconds ToChronoSeconds(Duration d) { - return time_internal::ToChronoDuration<std::chrono::seconds>(d); -} -std::chrono::minutes ToChronoMinutes(Duration d) { - return time_internal::ToChronoDuration<std::chrono::minutes>(d); -} -std::chrono::hours ToChronoHours(Duration d) { - return time_internal::ToChronoDuration<std::chrono::hours>(d); -} - -// -// To/From string formatting. -// - -namespace { - -// Formats a positive 64-bit integer in the given field width. Note that -// it is up to the caller of Format64() to ensure that there is sufficient -// space before ep to hold the conversion. -char* Format64(char* ep, int width, int64_t v) { - do { - --width; - *--ep = '0' + (v % 10); // contiguous digits - } while (v /= 10); - while (--width >= 0) *--ep = '0'; // zero pad - return ep; -} - -// Helpers for FormatDuration() that format 'n' and append it to 'out' -// followed by the given 'unit'. If 'n' formats to "0", nothing is -// appended (not even the unit). - -// A type that encapsulates how to display a value of a particular unit. For -// values that are displayed with fractional parts, the precision indicates -// where to round the value. The precision varies with the display unit because -// a Duration can hold only quarters of a nanosecond, so displaying information -// beyond that is just noise. -// -// For example, a microsecond value of 42.00025xxxxx should not display beyond 5 -// fractional digits, because it is in the noise of what a Duration can -// represent. -struct DisplayUnit { + int64_t q = 0; + if (IDivFastPath(num, den, &q, rem)) { + return q; + } + + const bool num_neg = num < ZeroDuration(); + const bool den_neg = den < ZeroDuration(); + const bool quotient_neg = num_neg != den_neg; + + if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { + *rem = num_neg ? -InfiniteDuration() : InfiniteDuration(); + return quotient_neg ? kint64min : kint64max; + } + if (time_internal::IsInfiniteDuration(den)) { + *rem = num; + return 0; + } + + const uint128 a = MakeU128Ticks(num); + const uint128 b = MakeU128Ticks(den); + uint128 quotient128 = a / b; + + if (satq) { + // Limits the quotient to the range of int64_t. + if (quotient128 > uint128(static_cast<uint64_t>(kint64max))) { + quotient128 = quotient_neg ? uint128(static_cast<uint64_t>(kint64min)) + : uint128(static_cast<uint64_t>(kint64max)); + } + } + + const uint128 remainder128 = a - quotient128 * b; + *rem = MakeDurationFromU128(remainder128, num_neg); + + if (!quotient_neg || quotient128 == 0) { + return Uint128Low64(quotient128) & kint64max; + } + // The quotient needs to be negated, but we need to carefully handle + // quotient128s with the top bit on. + return -static_cast<int64_t>(Uint128Low64(quotient128 - 1) & kint64max) - 1; +} + +} // namespace time_internal + +// +// Additive operators. +// + +Duration& Duration::operator+=(Duration rhs) { + if (time_internal::IsInfiniteDuration(*this)) return *this; + if (time_internal::IsInfiniteDuration(rhs)) return *this = rhs; + const int64_t orig_rep_hi = rep_hi_; + rep_hi_ = + DecodeTwosComp(EncodeTwosComp(rep_hi_) + EncodeTwosComp(rhs.rep_hi_)); + if (rep_lo_ >= kTicksPerSecond - rhs.rep_lo_) { + rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) + 1); + rep_lo_ -= kTicksPerSecond; + } + rep_lo_ += rhs.rep_lo_; + if (rhs.rep_hi_ < 0 ? rep_hi_ > orig_rep_hi : rep_hi_ < orig_rep_hi) { + return *this = rhs.rep_hi_ < 0 ? -InfiniteDuration() : InfiniteDuration(); + } + return *this; +} + +Duration& Duration::operator-=(Duration rhs) { + if (time_internal::IsInfiniteDuration(*this)) return *this; + if (time_internal::IsInfiniteDuration(rhs)) { + return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); + } + const int64_t orig_rep_hi = rep_hi_; + rep_hi_ = + DecodeTwosComp(EncodeTwosComp(rep_hi_) - EncodeTwosComp(rhs.rep_hi_)); + if (rep_lo_ < rhs.rep_lo_) { + rep_hi_ = DecodeTwosComp(EncodeTwosComp(rep_hi_) - 1); + rep_lo_ += kTicksPerSecond; + } + rep_lo_ -= rhs.rep_lo_; + if (rhs.rep_hi_ < 0 ? rep_hi_ < orig_rep_hi : rep_hi_ > orig_rep_hi) { + return *this = rhs.rep_hi_ >= 0 ? -InfiniteDuration() : InfiniteDuration(); + } + return *this; +} + +// +// Multiplicative operators. +// + +Duration& Duration::operator*=(int64_t r) { + if (time_internal::IsInfiniteDuration(*this)) { + const bool is_neg = (r < 0) != (rep_hi_ < 0); + return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); + } + return *this = ScaleFixed<SafeMultiply>(*this, r); +} + +Duration& Duration::operator*=(double r) { + if (time_internal::IsInfiniteDuration(*this) || !IsFinite(r)) { + const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); + return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); + } + return *this = ScaleDouble<std::multiplies>(*this, r); +} + +Duration& Duration::operator/=(int64_t r) { + if (time_internal::IsInfiniteDuration(*this) || r == 0) { + const bool is_neg = (r < 0) != (rep_hi_ < 0); + return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); + } + return *this = ScaleFixed<std::divides>(*this, r); +} + +Duration& Duration::operator/=(double r) { + if (time_internal::IsInfiniteDuration(*this) || !IsValidDivisor(r)) { + const bool is_neg = (std::signbit(r) != 0) != (rep_hi_ < 0); + return *this = is_neg ? -InfiniteDuration() : InfiniteDuration(); + } + return *this = ScaleDouble<std::divides>(*this, r); +} + +Duration& Duration::operator%=(Duration rhs) { + time_internal::IDivDuration(false, *this, rhs, this); + return *this; +} + +double FDivDuration(Duration num, Duration den) { + // Arithmetic with infinity is sticky. + if (time_internal::IsInfiniteDuration(num) || den == ZeroDuration()) { + return (num < ZeroDuration()) == (den < ZeroDuration()) + ? std::numeric_limits<double>::infinity() + : -std::numeric_limits<double>::infinity(); + } + if (time_internal::IsInfiniteDuration(den)) return 0.0; + + double a = + static_cast<double>(time_internal::GetRepHi(num)) * kTicksPerSecond + + time_internal::GetRepLo(num); + double b = + static_cast<double>(time_internal::GetRepHi(den)) * kTicksPerSecond + + time_internal::GetRepLo(den); + return a / b; +} + +// +// Trunc/Floor/Ceil. +// + +Duration Trunc(Duration d, Duration unit) { + return d - (d % unit); +} + +Duration Floor(const Duration d, const Duration unit) { + const absl::Duration td = Trunc(d, unit); + return td <= d ? td : td - AbsDuration(unit); +} + +Duration Ceil(const Duration d, const Duration unit) { + const absl::Duration td = Trunc(d, unit); + return td >= d ? td : td + AbsDuration(unit); +} + +// +// Factory functions. +// + +Duration DurationFromTimespec(timespec ts) { + if (static_cast<uint64_t>(ts.tv_nsec) < 1000 * 1000 * 1000) { + int64_t ticks = ts.tv_nsec * kTicksPerNanosecond; + return time_internal::MakeDuration(ts.tv_sec, ticks); + } + return Seconds(ts.tv_sec) + Nanoseconds(ts.tv_nsec); +} + +Duration DurationFromTimeval(timeval tv) { + if (static_cast<uint64_t>(tv.tv_usec) < 1000 * 1000) { + int64_t ticks = tv.tv_usec * 1000 * kTicksPerNanosecond; + return time_internal::MakeDuration(tv.tv_sec, ticks); + } + return Seconds(tv.tv_sec) + Microseconds(tv.tv_usec); +} + +// +// Conversion to other duration types. +// + +int64_t ToInt64Nanoseconds(Duration d) { + if (time_internal::GetRepHi(d) >= 0 && + time_internal::GetRepHi(d) >> 33 == 0) { + return (time_internal::GetRepHi(d) * 1000 * 1000 * 1000) + + (time_internal::GetRepLo(d) / kTicksPerNanosecond); + } + return d / Nanoseconds(1); +} +int64_t ToInt64Microseconds(Duration d) { + if (time_internal::GetRepHi(d) >= 0 && + time_internal::GetRepHi(d) >> 43 == 0) { + return (time_internal::GetRepHi(d) * 1000 * 1000) + + (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000)); + } + return d / Microseconds(1); +} +int64_t ToInt64Milliseconds(Duration d) { + if (time_internal::GetRepHi(d) >= 0 && + time_internal::GetRepHi(d) >> 53 == 0) { + return (time_internal::GetRepHi(d) * 1000) + + (time_internal::GetRepLo(d) / (kTicksPerNanosecond * 1000 * 1000)); + } + return d / Milliseconds(1); +} +int64_t ToInt64Seconds(Duration d) { + int64_t hi = time_internal::GetRepHi(d); + if (time_internal::IsInfiniteDuration(d)) return hi; + if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; + return hi; +} +int64_t ToInt64Minutes(Duration d) { + int64_t hi = time_internal::GetRepHi(d); + if (time_internal::IsInfiniteDuration(d)) return hi; + if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; + return hi / 60; +} +int64_t ToInt64Hours(Duration d) { + int64_t hi = time_internal::GetRepHi(d); + if (time_internal::IsInfiniteDuration(d)) return hi; + if (hi < 0 && time_internal::GetRepLo(d) != 0) ++hi; + return hi / (60 * 60); +} + +double ToDoubleNanoseconds(Duration d) { + return FDivDuration(d, Nanoseconds(1)); +} +double ToDoubleMicroseconds(Duration d) { + return FDivDuration(d, Microseconds(1)); +} +double ToDoubleMilliseconds(Duration d) { + return FDivDuration(d, Milliseconds(1)); +} +double ToDoubleSeconds(Duration d) { + return FDivDuration(d, Seconds(1)); +} +double ToDoubleMinutes(Duration d) { + return FDivDuration(d, Minutes(1)); +} +double ToDoubleHours(Duration d) { + return FDivDuration(d, Hours(1)); +} + +timespec ToTimespec(Duration d) { + timespec ts; + if (!time_internal::IsInfiniteDuration(d)) { + int64_t rep_hi = time_internal::GetRepHi(d); + uint32_t rep_lo = time_internal::GetRepLo(d); + if (rep_hi < 0) { + // Tweak the fields so that unsigned division of rep_lo + // maps to truncation (towards zero) for the timespec. + rep_lo += kTicksPerNanosecond - 1; + if (rep_lo >= kTicksPerSecond) { + rep_hi += 1; + rep_lo -= kTicksPerSecond; + } + } + ts.tv_sec = rep_hi; + if (ts.tv_sec == rep_hi) { // no time_t narrowing + ts.tv_nsec = rep_lo / kTicksPerNanosecond; + return ts; + } + } + if (d >= ZeroDuration()) { + ts.tv_sec = std::numeric_limits<time_t>::max(); + ts.tv_nsec = 1000 * 1000 * 1000 - 1; + } else { + ts.tv_sec = std::numeric_limits<time_t>::min(); + ts.tv_nsec = 0; + } + return ts; +} + +timeval ToTimeval(Duration d) { + timeval tv; + timespec ts = ToTimespec(d); + if (ts.tv_sec < 0) { + // Tweak the fields so that positive division of tv_nsec + // maps to truncation (towards zero) for the timeval. + ts.tv_nsec += 1000 - 1; + if (ts.tv_nsec >= 1000 * 1000 * 1000) { + ts.tv_sec += 1; + ts.tv_nsec -= 1000 * 1000 * 1000; + } + } + tv.tv_sec = ts.tv_sec; + if (tv.tv_sec != ts.tv_sec) { // narrowing + if (ts.tv_sec < 0) { + tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::min(); + tv.tv_usec = 0; + } else { + tv.tv_sec = std::numeric_limits<decltype(tv.tv_sec)>::max(); + tv.tv_usec = 1000 * 1000 - 1; + } + return tv; + } + tv.tv_usec = static_cast<int>(ts.tv_nsec / 1000); // suseconds_t + return tv; +} + +std::chrono::nanoseconds ToChronoNanoseconds(Duration d) { + return time_internal::ToChronoDuration<std::chrono::nanoseconds>(d); +} +std::chrono::microseconds ToChronoMicroseconds(Duration d) { + return time_internal::ToChronoDuration<std::chrono::microseconds>(d); +} +std::chrono::milliseconds ToChronoMilliseconds(Duration d) { + return time_internal::ToChronoDuration<std::chrono::milliseconds>(d); +} +std::chrono::seconds ToChronoSeconds(Duration d) { + return time_internal::ToChronoDuration<std::chrono::seconds>(d); +} +std::chrono::minutes ToChronoMinutes(Duration d) { + return time_internal::ToChronoDuration<std::chrono::minutes>(d); +} +std::chrono::hours ToChronoHours(Duration d) { + return time_internal::ToChronoDuration<std::chrono::hours>(d); +} + +// +// To/From string formatting. +// + +namespace { + +// Formats a positive 64-bit integer in the given field width. Note that +// it is up to the caller of Format64() to ensure that there is sufficient +// space before ep to hold the conversion. +char* Format64(char* ep, int width, int64_t v) { + do { + --width; + *--ep = '0' + (v % 10); // contiguous digits + } while (v /= 10); + while (--width >= 0) *--ep = '0'; // zero pad + return ep; +} + +// Helpers for FormatDuration() that format 'n' and append it to 'out' +// followed by the given 'unit'. If 'n' formats to "0", nothing is +// appended (not even the unit). + +// A type that encapsulates how to display a value of a particular unit. For +// values that are displayed with fractional parts, the precision indicates +// where to round the value. The precision varies with the display unit because +// a Duration can hold only quarters of a nanosecond, so displaying information +// beyond that is just noise. +// +// For example, a microsecond value of 42.00025xxxxx should not display beyond 5 +// fractional digits, because it is in the noise of what a Duration can +// represent. +struct DisplayUnit { absl::string_view abbr; - int prec; - double pow10; -}; + int prec; + double pow10; +}; ABSL_CONST_INIT const DisplayUnit kDisplayNano = {"ns", 2, 1e2}; ABSL_CONST_INIT const DisplayUnit kDisplayMicro = {"us", 5, 1e5}; ABSL_CONST_INIT const DisplayUnit kDisplayMilli = {"ms", 8, 1e8}; @@ -722,123 +722,123 @@ ABSL_CONST_INIT const DisplayUnit kDisplaySec = {"s", 11, 1e11}; ABSL_CONST_INIT const DisplayUnit kDisplayMin = {"m", -1, 0.0}; // prec ignored ABSL_CONST_INIT const DisplayUnit kDisplayHour = {"h", -1, 0.0}; // prec ignored - -void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { - char buf[sizeof("2562047788015216")]; // hours in max duration - char* const ep = buf + sizeof(buf); - char* bp = Format64(ep, 0, n); - if (*bp != '0' || bp + 1 != ep) { - out->append(bp, ep - bp); + +void AppendNumberUnit(std::string* out, int64_t n, DisplayUnit unit) { + char buf[sizeof("2562047788015216")]; // hours in max duration + char* const ep = buf + sizeof(buf); + char* bp = Format64(ep, 0, n); + if (*bp != '0' || bp + 1 != ep) { + out->append(bp, ep - bp); out->append(unit.abbr.data(), unit.abbr.size()); - } -} - -// Note: unit.prec is limited to double's digits10 value (typically 15) so it -// always fits in buf[]. -void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { + } +} + +// Note: unit.prec is limited to double's digits10 value (typically 15) so it +// always fits in buf[]. +void AppendNumberUnit(std::string* out, double n, DisplayUnit unit) { constexpr int kBufferSize = std::numeric_limits<double>::digits10; const int prec = std::min(kBufferSize, unit.prec); char buf[kBufferSize]; // also large enough to hold integer part - char* ep = buf + sizeof(buf); - double d = 0; - int64_t frac_part = Round(std::modf(n, &d) * unit.pow10); - int64_t int_part = d; - if (int_part != 0 || frac_part != 0) { - char* bp = Format64(ep, 0, int_part); // always < 1000 - out->append(bp, ep - bp); - if (frac_part != 0) { - out->push_back('.'); - bp = Format64(ep, prec, frac_part); - while (ep[-1] == '0') --ep; - out->append(bp, ep - bp); - } + char* ep = buf + sizeof(buf); + double d = 0; + int64_t frac_part = Round(std::modf(n, &d) * unit.pow10); + int64_t int_part = d; + if (int_part != 0 || frac_part != 0) { + char* bp = Format64(ep, 0, int_part); // always < 1000 + out->append(bp, ep - bp); + if (frac_part != 0) { + out->push_back('.'); + bp = Format64(ep, prec, frac_part); + while (ep[-1] == '0') --ep; + out->append(bp, ep - bp); + } out->append(unit.abbr.data(), unit.abbr.size()); - } -} - -} // namespace - -// From Go's doc at https://golang.org/pkg/time/#Duration.String -// [FormatDuration] returns a string representing the duration in the -// form "72h3m0.5s". Leading zero units are omitted. As a special -// case, durations less than one second format use a smaller unit -// (milli-, micro-, or nanoseconds) to ensure that the leading digit + } +} + +} // namespace + +// From Go's doc at https://golang.org/pkg/time/#Duration.String +// [FormatDuration] returns a string representing the duration in the +// form "72h3m0.5s". Leading zero units are omitted. As a special +// case, durations less than one second format use a smaller unit +// (milli-, micro-, or nanoseconds) to ensure that the leading digit // is non-zero. // Unlike Go, we format the zero duration as 0, with no unit. -std::string FormatDuration(Duration d) { - const Duration min_duration = Seconds(kint64min); - if (d == min_duration) { - // Avoid needing to negate kint64min by directly returning what the - // following code should produce in that case. - return "-2562047788015215h30m8s"; - } - std::string s; - if (d < ZeroDuration()) { - s.append("-"); - d = -d; - } - if (d == InfiniteDuration()) { - s.append("inf"); - } else if (d < Seconds(1)) { - // Special case for durations with a magnitude < 1 second. The duration - // is printed as a fraction of a single unit, e.g., "1.2ms". - if (d < Microseconds(1)) { - AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); - } else if (d < Milliseconds(1)) { - AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); - } else { - AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); - } - } else { - AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); - AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); - AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); - } - if (s.empty() || s == "-") { - s = "0"; - } - return s; -} - -namespace { - -// A helper for ParseDuration() that parses a leading number from the given -// string and stores the result in *int_part/*frac_part/*frac_scale. The -// given string pointer is modified to point to the first unconsumed char. +std::string FormatDuration(Duration d) { + const Duration min_duration = Seconds(kint64min); + if (d == min_duration) { + // Avoid needing to negate kint64min by directly returning what the + // following code should produce in that case. + return "-2562047788015215h30m8s"; + } + std::string s; + if (d < ZeroDuration()) { + s.append("-"); + d = -d; + } + if (d == InfiniteDuration()) { + s.append("inf"); + } else if (d < Seconds(1)) { + // Special case for durations with a magnitude < 1 second. The duration + // is printed as a fraction of a single unit, e.g., "1.2ms". + if (d < Microseconds(1)) { + AppendNumberUnit(&s, FDivDuration(d, Nanoseconds(1)), kDisplayNano); + } else if (d < Milliseconds(1)) { + AppendNumberUnit(&s, FDivDuration(d, Microseconds(1)), kDisplayMicro); + } else { + AppendNumberUnit(&s, FDivDuration(d, Milliseconds(1)), kDisplayMilli); + } + } else { + AppendNumberUnit(&s, IDivDuration(d, Hours(1), &d), kDisplayHour); + AppendNumberUnit(&s, IDivDuration(d, Minutes(1), &d), kDisplayMin); + AppendNumberUnit(&s, FDivDuration(d, Seconds(1)), kDisplaySec); + } + if (s.empty() || s == "-") { + s = "0"; + } + return s; +} + +namespace { + +// A helper for ParseDuration() that parses a leading number from the given +// string and stores the result in *int_part/*frac_part/*frac_scale. The +// given string pointer is modified to point to the first unconsumed char. bool ConsumeDurationNumber(const char** dpp, const char* ep, int64_t* int_part, - int64_t* frac_part, int64_t* frac_scale) { - *int_part = 0; - *frac_part = 0; - *frac_scale = 1; // invariant: *frac_part < *frac_scale - const char* start = *dpp; + int64_t* frac_part, int64_t* frac_scale) { + *int_part = 0; + *frac_part = 0; + *frac_scale = 1; // invariant: *frac_part < *frac_scale + const char* start = *dpp; for (; *dpp != ep; *dpp += 1) { - const int d = **dpp - '0'; // contiguous digits + const int d = **dpp - '0'; // contiguous digits if (d < 0 || 10 <= d) break; - if (*int_part > kint64max / 10) return false; - *int_part *= 10; - if (*int_part > kint64max - d) return false; - *int_part += d; - } - const bool int_part_empty = (*dpp == start); + if (*int_part > kint64max / 10) return false; + *int_part *= 10; + if (*int_part > kint64max - d) return false; + *int_part += d; + } + const bool int_part_empty = (*dpp == start); if (*dpp == ep || **dpp != '.') return !int_part_empty; for (*dpp += 1; *dpp != ep; *dpp += 1) { - const int d = **dpp - '0'; // contiguous digits + const int d = **dpp - '0'; // contiguous digits if (d < 0 || 10 <= d) break; - if (*frac_scale <= kint64max / 10) { - *frac_part *= 10; - *frac_part += d; - *frac_scale *= 10; - } - } - return !int_part_empty || *frac_scale != 1; -} - -// A helper for ParseDuration() that parses a leading unit designator (e.g., -// ns, us, ms, s, m, h) from the given string and stores the resulting unit -// in "*unit". The given string pointer is modified to point to the first -// unconsumed char. + if (*frac_scale <= kint64max / 10) { + *frac_part *= 10; + *frac_part += d; + *frac_scale *= 10; + } + } + return !int_part_empty || *frac_scale != 1; +} + +// A helper for ParseDuration() that parses a leading unit designator (e.g., +// ns, us, ms, s, m, h) from the given string and stores the resulting unit +// in "*unit". The given string pointer is modified to point to the first +// unconsumed char. bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) { size_t size = end - *start; switch (size) { @@ -888,67 +888,67 @@ bool ConsumeDurationUnit(const char** start, const char* end, Duration* unit) { default: return false; } - } -} - -} // namespace - -// From Go's doc at https://golang.org/pkg/time/#ParseDuration -// [ParseDuration] parses a duration string. A duration string is -// a possibly signed sequence of decimal numbers, each with optional -// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". -// Valid time units are "ns", "us" "ms", "s", "m", "h". + } +} + +} // namespace + +// From Go's doc at https://golang.org/pkg/time/#ParseDuration +// [ParseDuration] parses a duration string. A duration string is +// a possibly signed sequence of decimal numbers, each with optional +// fraction and a unit suffix, such as "300ms", "-1.5h" or "2h45m". +// Valid time units are "ns", "us" "ms", "s", "m", "h". bool ParseDuration(absl::string_view dur_sv, Duration* d) { - int sign = 1; + int sign = 1; if (absl::ConsumePrefix(&dur_sv, "-")) { sign = -1; } else { absl::ConsumePrefix(&dur_sv, "+"); - } + } if (dur_sv.empty()) return false; - + // Special case for a string of "0". if (dur_sv == "0") { - *d = ZeroDuration(); - return true; - } - + *d = ZeroDuration(); + return true; + } + if (dur_sv == "inf") { - *d = sign * InfiniteDuration(); - return true; - } - + *d = sign * InfiniteDuration(); + return true; + } + const char* start = dur_sv.data(); const char* end = start + dur_sv.size(); - Duration dur; + Duration dur; while (start != end) { - int64_t int_part; - int64_t frac_part; - int64_t frac_scale; - Duration unit; + int64_t int_part; + int64_t frac_part; + int64_t frac_scale; + Duration unit; if (!ConsumeDurationNumber(&start, end, &int_part, &frac_part, &frac_scale) || !ConsumeDurationUnit(&start, end, &unit)) { - return false; - } - if (int_part != 0) dur += sign * int_part * unit; - if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; - } - *d = dur; - return true; -} - -bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { - return ParseDuration(text, dst); -} - -std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } -bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { + return false; + } + if (int_part != 0) dur += sign * int_part * unit; + if (frac_part != 0) dur += sign * frac_part * unit / frac_scale; + } + *d = dur; + return true; +} + +bool AbslParseFlag(absl::string_view text, Duration* dst, std::string*) { return ParseDuration(text, dst); -} - -std::string UnparseFlag(Duration d) { return FormatDuration(d); } - +} + +std::string AbslUnparseFlag(Duration d) { return FormatDuration(d); } +bool ParseFlag(const std::string& text, Duration* dst, std::string* ) { + return ParseDuration(text, dst); +} + +std::string UnparseFlag(Duration d) { return FormatDuration(d); } + ABSL_NAMESPACE_END -} // namespace absl +} // namespace absl |