aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc
diff options
context:
space:
mode:
authoranastasy888 <anastasy888@yandex-team.ru>2022-02-10 16:45:55 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:55 +0300
commit3a7a498715ef1b66f5054455421b845e45e3a653 (patch)
tree1a2c5ffcf89eb53ecd79dbc9bc0a195c27404d0c /contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc
parent49f765d71da452ea93138a25559dfa68dd76c7f3 (diff)
downloadydb-3a7a498715ef1b66f5054455421b845e45e3a653.tar.gz
Restoring authorship annotation for <anastasy888@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc')
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc1752
1 files changed, 876 insertions, 876 deletions
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc
index 965ce2e014..528d044fa6 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/strings/numbers.cc
@@ -1,35 +1,35 @@
-// Copyright 2017 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-// This file contains string processing functions related to
-// numeric values.
-
+// Copyright 2017 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+// This file contains string processing functions related to
+// numeric values.
+
#include "y_absl/strings/numbers.h"
-
-#include <algorithm>
-#include <cassert>
-#include <cfloat> // for DBL_DIG and FLT_DIG
-#include <cmath> // for HUGE_VAL
-#include <cstdint>
-#include <cstdio>
-#include <cstdlib>
-#include <cstring>
-#include <iterator>
-#include <limits>
-#include <memory>
-#include <utility>
-
+
+#include <algorithm>
+#include <cassert>
+#include <cfloat> // for DBL_DIG and FLT_DIG
+#include <cmath> // for HUGE_VAL
+#include <cstdint>
+#include <cstdio>
+#include <cstdlib>
+#include <cstring>
+#include <iterator>
+#include <limits>
+#include <memory>
+#include <utility>
+
#include "y_absl/base/attributes.h"
#include "y_absl/base/internal/raw_logging.h"
#include "y_absl/numeric/bits.h"
@@ -39,713 +39,713 @@
#include "y_absl/strings/internal/memutil.h"
#include "y_absl/strings/match.h"
#include "y_absl/strings/str_cat.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-
+
bool SimpleAtof(y_absl::string_view str, float* out) {
- *out = 0.0;
- str = StripAsciiWhitespace(str);
+ *out = 0.0;
+ str = StripAsciiWhitespace(str);
// std::from_chars doesn't accept an initial +, but SimpleAtof does, so if one
// is present, skip it, while avoiding accepting "+-0" as valid.
- if (!str.empty() && str[0] == '+') {
- str.remove_prefix(1);
+ if (!str.empty() && str[0] == '+') {
+ str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
- }
+ }
auto result = y_absl::from_chars(str.data(), str.data() + str.size(), *out);
- if (result.ec == std::errc::invalid_argument) {
- return false;
- }
- if (result.ptr != str.data() + str.size()) {
- // not all non-whitespace characters consumed
- return false;
- }
- // from_chars() with DR 3081's current wording will return max() on
- // overflow. SimpleAtof returns infinity instead.
- if (result.ec == std::errc::result_out_of_range) {
- if (*out > 1.0) {
- *out = std::numeric_limits<float>::infinity();
- } else if (*out < -1.0) {
- *out = -std::numeric_limits<float>::infinity();
- }
- }
- return true;
-}
-
+ if (result.ec == std::errc::invalid_argument) {
+ return false;
+ }
+ if (result.ptr != str.data() + str.size()) {
+ // not all non-whitespace characters consumed
+ return false;
+ }
+ // from_chars() with DR 3081's current wording will return max() on
+ // overflow. SimpleAtof returns infinity instead.
+ if (result.ec == std::errc::result_out_of_range) {
+ if (*out > 1.0) {
+ *out = std::numeric_limits<float>::infinity();
+ } else if (*out < -1.0) {
+ *out = -std::numeric_limits<float>::infinity();
+ }
+ }
+ return true;
+}
+
bool SimpleAtod(y_absl::string_view str, double* out) {
- *out = 0.0;
- str = StripAsciiWhitespace(str);
+ *out = 0.0;
+ str = StripAsciiWhitespace(str);
// std::from_chars doesn't accept an initial +, but SimpleAtod does, so if one
// is present, skip it, while avoiding accepting "+-0" as valid.
- if (!str.empty() && str[0] == '+') {
- str.remove_prefix(1);
+ if (!str.empty() && str[0] == '+') {
+ str.remove_prefix(1);
if (!str.empty() && str[0] == '-') {
return false;
}
- }
+ }
auto result = y_absl::from_chars(str.data(), str.data() + str.size(), *out);
- if (result.ec == std::errc::invalid_argument) {
- return false;
- }
- if (result.ptr != str.data() + str.size()) {
- // not all non-whitespace characters consumed
- return false;
- }
- // from_chars() with DR 3081's current wording will return max() on
- // overflow. SimpleAtod returns infinity instead.
- if (result.ec == std::errc::result_out_of_range) {
- if (*out > 1.0) {
- *out = std::numeric_limits<double>::infinity();
- } else if (*out < -1.0) {
- *out = -std::numeric_limits<double>::infinity();
- }
- }
- return true;
-}
-
+ if (result.ec == std::errc::invalid_argument) {
+ return false;
+ }
+ if (result.ptr != str.data() + str.size()) {
+ // not all non-whitespace characters consumed
+ return false;
+ }
+ // from_chars() with DR 3081's current wording will return max() on
+ // overflow. SimpleAtod returns infinity instead.
+ if (result.ec == std::errc::result_out_of_range) {
+ if (*out > 1.0) {
+ *out = std::numeric_limits<double>::infinity();
+ } else if (*out < -1.0) {
+ *out = -std::numeric_limits<double>::infinity();
+ }
+ }
+ return true;
+}
+
bool SimpleAtob(y_absl::string_view str, bool* out) {
- ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
- if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
- EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
- EqualsIgnoreCase(str, "1")) {
- *out = true;
- return true;
- }
- if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
- EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
- EqualsIgnoreCase(str, "0")) {
- *out = false;
- return true;
- }
- return false;
-}
-
-// ----------------------------------------------------------------------
-// FastIntToBuffer() overloads
-//
-// Like the Fast*ToBuffer() functions above, these are intended for speed.
-// Unlike the Fast*ToBuffer() functions, however, these functions write
-// their output to the beginning of the buffer. The caller is responsible
-// for ensuring that the buffer has enough space to hold the output.
-//
-// Returns a pointer to the end of the string (i.e. the null character
-// terminating the string).
-// ----------------------------------------------------------------------
-
-namespace {
-
-// Used to optimize printing a decimal number's final digit.
-const char one_ASCII_final_digits[10][2] {
- {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
- {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
-};
-
-} // namespace
-
-char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {
- uint32_t digits;
- // The idea of this implementation is to trim the number of divides to as few
- // as possible, and also reducing memory stores and branches, by going in
- // steps of two digits at a time rather than one whenever possible.
- // The huge-number case is first, in the hopes that the compiler will output
- // that case in one branch-free block of code, and only output conditional
- // branches into it from below.
- if (i >= 1000000000) { // >= 1,000,000,000
- digits = i / 100000000; // 100,000,000
- i -= digits * 100000000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- lt100_000_000:
- digits = i / 1000000; // 1,000,000
- i -= digits * 1000000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- lt1_000_000:
- digits = i / 10000; // 10,000
- i -= digits * 10000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- lt10_000:
- digits = i / 100;
- i -= digits * 100;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- lt100:
- digits = i;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- *buffer = 0;
- return buffer;
- }
-
- if (i < 100) {
- digits = i;
- if (i >= 10) goto lt100;
- memcpy(buffer, one_ASCII_final_digits[i], 2);
- return buffer + 1;
- }
- if (i < 10000) { // 10,000
- if (i >= 1000) goto lt10_000;
- digits = i / 100;
- i -= digits * 100;
- *buffer++ = '0' + digits;
- goto lt100;
- }
- if (i < 1000000) { // 1,000,000
- if (i >= 100000) goto lt1_000_000;
- digits = i / 10000; // 10,000
- i -= digits * 10000;
- *buffer++ = '0' + digits;
- goto lt10_000;
- }
- if (i < 100000000) { // 100,000,000
- if (i >= 10000000) goto lt100_000_000;
- digits = i / 1000000; // 1,000,000
- i -= digits * 1000000;
- *buffer++ = '0' + digits;
- goto lt1_000_000;
- }
- // we already know that i < 1,000,000,000
- digits = i / 100000000; // 100,000,000
- i -= digits * 100000000;
- *buffer++ = '0' + digits;
- goto lt100_000_000;
-}
-
-char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {
- uint32_t u = i;
- if (i < 0) {
- *buffer++ = '-';
- // We need to do the negation in modular (i.e., "unsigned")
- // arithmetic; MSVC++ apprently warns for plain "-u", so
- // we write the equivalent expression "0 - u" instead.
- u = 0 - u;
- }
- return numbers_internal::FastIntToBuffer(u, buffer);
-}
-
-char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {
- uint32_t u32 = static_cast<uint32_t>(i);
- if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);
-
- // Here we know i has at least 10 decimal digits.
- uint64_t top_1to11 = i / 1000000000;
- u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
- uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
-
- if (top_1to11_32 == top_1to11) {
- buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);
- } else {
- // top_1to11 has more than 32 bits too; print it in two steps.
- uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
- uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
- buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);
- PutTwoDigits(mid_2, buffer);
- buffer += 2;
- }
-
- // We have only 9 digits now, again the maximum uint32_t can handle fully.
- uint32_t digits = u32 / 10000000; // 10,000,000
- u32 -= digits * 10000000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- digits = u32 / 100000; // 100,000
- u32 -= digits * 100000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- digits = u32 / 1000; // 1,000
- u32 -= digits * 1000;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- digits = u32 / 10;
- u32 -= digits * 10;
- PutTwoDigits(digits, buffer);
- buffer += 2;
- memcpy(buffer, one_ASCII_final_digits[u32], 2);
- return buffer + 1;
-}
-
-char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {
- uint64_t u = i;
- if (i < 0) {
- *buffer++ = '-';
- u = 0 - u;
- }
- return numbers_internal::FastIntToBuffer(u, buffer);
-}
-
-// Given a 128-bit number expressed as a pair of uint64_t, high half first,
-// return that number multiplied by the given 32-bit value. If the result is
-// too large to fit in a 128-bit number, divide it by 2 until it fits.
-static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
- uint32_t mul) {
- uint64_t bits0_31 = num.second & 0xFFFFFFFF;
- uint64_t bits32_63 = num.second >> 32;
- uint64_t bits64_95 = num.first & 0xFFFFFFFF;
- uint64_t bits96_127 = num.first >> 32;
-
- // The picture so far: each of these 64-bit values has only the lower 32 bits
- // filled in.
- // bits96_127: [ 00000000 xxxxxxxx ]
- // bits64_95: [ 00000000 xxxxxxxx ]
- // bits32_63: [ 00000000 xxxxxxxx ]
- // bits0_31: [ 00000000 xxxxxxxx ]
-
- bits0_31 *= mul;
- bits32_63 *= mul;
- bits64_95 *= mul;
- bits96_127 *= mul;
-
- // Now the top halves may also have value, though all 64 of their bits will
- // never be set at the same time, since they are a result of a 32x32 bit
- // multiply. This makes the carry calculation slightly easier.
- // bits96_127: [ mmmmmmmm | mmmmmmmm ]
- // bits64_95: [ | mmmmmmmm mmmmmmmm | ]
- // bits32_63: | [ mmmmmmmm | mmmmmmmm ]
- // bits0_31: | [ | mmmmmmmm mmmmmmmm ]
- // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ]
-
- uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
- uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
- (bits0_63 < bits0_31);
- uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
- if (bits128_up == 0) return {bits64_127, bits0_63};
-
+ ABSL_RAW_CHECK(out != nullptr, "Output pointer must not be nullptr.");
+ if (EqualsIgnoreCase(str, "true") || EqualsIgnoreCase(str, "t") ||
+ EqualsIgnoreCase(str, "yes") || EqualsIgnoreCase(str, "y") ||
+ EqualsIgnoreCase(str, "1")) {
+ *out = true;
+ return true;
+ }
+ if (EqualsIgnoreCase(str, "false") || EqualsIgnoreCase(str, "f") ||
+ EqualsIgnoreCase(str, "no") || EqualsIgnoreCase(str, "n") ||
+ EqualsIgnoreCase(str, "0")) {
+ *out = false;
+ return true;
+ }
+ return false;
+}
+
+// ----------------------------------------------------------------------
+// FastIntToBuffer() overloads
+//
+// Like the Fast*ToBuffer() functions above, these are intended for speed.
+// Unlike the Fast*ToBuffer() functions, however, these functions write
+// their output to the beginning of the buffer. The caller is responsible
+// for ensuring that the buffer has enough space to hold the output.
+//
+// Returns a pointer to the end of the string (i.e. the null character
+// terminating the string).
+// ----------------------------------------------------------------------
+
+namespace {
+
+// Used to optimize printing a decimal number's final digit.
+const char one_ASCII_final_digits[10][2] {
+ {'0', 0}, {'1', 0}, {'2', 0}, {'3', 0}, {'4', 0},
+ {'5', 0}, {'6', 0}, {'7', 0}, {'8', 0}, {'9', 0},
+};
+
+} // namespace
+
+char* numbers_internal::FastIntToBuffer(uint32_t i, char* buffer) {
+ uint32_t digits;
+ // The idea of this implementation is to trim the number of divides to as few
+ // as possible, and also reducing memory stores and branches, by going in
+ // steps of two digits at a time rather than one whenever possible.
+ // The huge-number case is first, in the hopes that the compiler will output
+ // that case in one branch-free block of code, and only output conditional
+ // branches into it from below.
+ if (i >= 1000000000) { // >= 1,000,000,000
+ digits = i / 100000000; // 100,000,000
+ i -= digits * 100000000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ lt100_000_000:
+ digits = i / 1000000; // 1,000,000
+ i -= digits * 1000000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ lt1_000_000:
+ digits = i / 10000; // 10,000
+ i -= digits * 10000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ lt10_000:
+ digits = i / 100;
+ i -= digits * 100;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ lt100:
+ digits = i;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ *buffer = 0;
+ return buffer;
+ }
+
+ if (i < 100) {
+ digits = i;
+ if (i >= 10) goto lt100;
+ memcpy(buffer, one_ASCII_final_digits[i], 2);
+ return buffer + 1;
+ }
+ if (i < 10000) { // 10,000
+ if (i >= 1000) goto lt10_000;
+ digits = i / 100;
+ i -= digits * 100;
+ *buffer++ = '0' + digits;
+ goto lt100;
+ }
+ if (i < 1000000) { // 1,000,000
+ if (i >= 100000) goto lt1_000_000;
+ digits = i / 10000; // 10,000
+ i -= digits * 10000;
+ *buffer++ = '0' + digits;
+ goto lt10_000;
+ }
+ if (i < 100000000) { // 100,000,000
+ if (i >= 10000000) goto lt100_000_000;
+ digits = i / 1000000; // 1,000,000
+ i -= digits * 1000000;
+ *buffer++ = '0' + digits;
+ goto lt1_000_000;
+ }
+ // we already know that i < 1,000,000,000
+ digits = i / 100000000; // 100,000,000
+ i -= digits * 100000000;
+ *buffer++ = '0' + digits;
+ goto lt100_000_000;
+}
+
+char* numbers_internal::FastIntToBuffer(int32_t i, char* buffer) {
+ uint32_t u = i;
+ if (i < 0) {
+ *buffer++ = '-';
+ // We need to do the negation in modular (i.e., "unsigned")
+ // arithmetic; MSVC++ apprently warns for plain "-u", so
+ // we write the equivalent expression "0 - u" instead.
+ u = 0 - u;
+ }
+ return numbers_internal::FastIntToBuffer(u, buffer);
+}
+
+char* numbers_internal::FastIntToBuffer(uint64_t i, char* buffer) {
+ uint32_t u32 = static_cast<uint32_t>(i);
+ if (u32 == i) return numbers_internal::FastIntToBuffer(u32, buffer);
+
+ // Here we know i has at least 10 decimal digits.
+ uint64_t top_1to11 = i / 1000000000;
+ u32 = static_cast<uint32_t>(i - top_1to11 * 1000000000);
+ uint32_t top_1to11_32 = static_cast<uint32_t>(top_1to11);
+
+ if (top_1to11_32 == top_1to11) {
+ buffer = numbers_internal::FastIntToBuffer(top_1to11_32, buffer);
+ } else {
+ // top_1to11 has more than 32 bits too; print it in two steps.
+ uint32_t top_8to9 = static_cast<uint32_t>(top_1to11 / 100);
+ uint32_t mid_2 = static_cast<uint32_t>(top_1to11 - top_8to9 * 100);
+ buffer = numbers_internal::FastIntToBuffer(top_8to9, buffer);
+ PutTwoDigits(mid_2, buffer);
+ buffer += 2;
+ }
+
+ // We have only 9 digits now, again the maximum uint32_t can handle fully.
+ uint32_t digits = u32 / 10000000; // 10,000,000
+ u32 -= digits * 10000000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ digits = u32 / 100000; // 100,000
+ u32 -= digits * 100000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ digits = u32 / 1000; // 1,000
+ u32 -= digits * 1000;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ digits = u32 / 10;
+ u32 -= digits * 10;
+ PutTwoDigits(digits, buffer);
+ buffer += 2;
+ memcpy(buffer, one_ASCII_final_digits[u32], 2);
+ return buffer + 1;
+}
+
+char* numbers_internal::FastIntToBuffer(int64_t i, char* buffer) {
+ uint64_t u = i;
+ if (i < 0) {
+ *buffer++ = '-';
+ u = 0 - u;
+ }
+ return numbers_internal::FastIntToBuffer(u, buffer);
+}
+
+// Given a 128-bit number expressed as a pair of uint64_t, high half first,
+// return that number multiplied by the given 32-bit value. If the result is
+// too large to fit in a 128-bit number, divide it by 2 until it fits.
+static std::pair<uint64_t, uint64_t> Mul32(std::pair<uint64_t, uint64_t> num,
+ uint32_t mul) {
+ uint64_t bits0_31 = num.second & 0xFFFFFFFF;
+ uint64_t bits32_63 = num.second >> 32;
+ uint64_t bits64_95 = num.first & 0xFFFFFFFF;
+ uint64_t bits96_127 = num.first >> 32;
+
+ // The picture so far: each of these 64-bit values has only the lower 32 bits
+ // filled in.
+ // bits96_127: [ 00000000 xxxxxxxx ]
+ // bits64_95: [ 00000000 xxxxxxxx ]
+ // bits32_63: [ 00000000 xxxxxxxx ]
+ // bits0_31: [ 00000000 xxxxxxxx ]
+
+ bits0_31 *= mul;
+ bits32_63 *= mul;
+ bits64_95 *= mul;
+ bits96_127 *= mul;
+
+ // Now the top halves may also have value, though all 64 of their bits will
+ // never be set at the same time, since they are a result of a 32x32 bit
+ // multiply. This makes the carry calculation slightly easier.
+ // bits96_127: [ mmmmmmmm | mmmmmmmm ]
+ // bits64_95: [ | mmmmmmmm mmmmmmmm | ]
+ // bits32_63: | [ mmmmmmmm | mmmmmmmm ]
+ // bits0_31: | [ | mmmmmmmm mmmmmmmm ]
+ // eventually: [ bits128_up | ...bits64_127.... | ..bits0_63... ]
+
+ uint64_t bits0_63 = bits0_31 + (bits32_63 << 32);
+ uint64_t bits64_127 = bits64_95 + (bits96_127 << 32) + (bits32_63 >> 32) +
+ (bits0_63 < bits0_31);
+ uint64_t bits128_up = (bits96_127 >> 32) + (bits64_127 < bits64_95);
+ if (bits128_up == 0) return {bits64_127, bits0_63};
+
auto shift = static_cast<unsigned>(bit_width(bits128_up));
- uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
- uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
- return {hi, lo};
-}
-
-// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
-// where the first bit is always a one. So PowFive(1, 0) starts 0b100000,
-// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
-static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
- std::pair<uint64_t, uint64_t> result = {num, 0};
- while (expfive >= 13) {
- // 5^13 is the highest power of five that will fit in a 32-bit integer.
- result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
- expfive -= 13;
- }
- constexpr int powers_of_five[13] = {
- 1,
- 5,
- 5 * 5,
- 5 * 5 * 5,
- 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
- 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
- result = Mul32(result, powers_of_five[expfive & 15]);
+ uint64_t lo = (bits0_63 >> shift) + (bits64_127 << (64 - shift));
+ uint64_t hi = (bits64_127 >> shift) + (bits128_up << (64 - shift));
+ return {hi, lo};
+}
+
+// Compute num * 5 ^ expfive, and return the first 128 bits of the result,
+// where the first bit is always a one. So PowFive(1, 0) starts 0b100000,
+// PowFive(1, 1) starts 0b101000, PowFive(1, 2) starts 0b110010, etc.
+static std::pair<uint64_t, uint64_t> PowFive(uint64_t num, int expfive) {
+ std::pair<uint64_t, uint64_t> result = {num, 0};
+ while (expfive >= 13) {
+ // 5^13 is the highest power of five that will fit in a 32-bit integer.
+ result = Mul32(result, 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5);
+ expfive -= 13;
+ }
+ constexpr int powers_of_five[13] = {
+ 1,
+ 5,
+ 5 * 5,
+ 5 * 5 * 5,
+ 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5,
+ 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5 * 5};
+ result = Mul32(result, powers_of_five[expfive & 15]);
int shift = countl_zero(result.first);
- if (shift != 0) {
- result.first = (result.first << shift) + (result.second >> (64 - shift));
- result.second = (result.second << shift);
- }
- return result;
-}
-
-struct ExpDigits {
- int32_t exponent;
- char digits[6];
-};
-
-// SplitToSix converts value, a positive double-precision floating-point number,
-// into a base-10 exponent and 6 ASCII digits, where the first digit is never
-// zero. For example, SplitToSix(1) returns an exponent of zero and a digits
-// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between
-// two possible representations, e.g. value = 100000.5, then "round to even" is
-// performed.
-static ExpDigits SplitToSix(const double value) {
- ExpDigits exp_dig;
- int exp = 5;
- double d = value;
- // First step: calculate a close approximation of the output, where the
- // value d will be between 100,000 and 999,999, representing the digits
- // in the output ASCII array, and exp is the base-10 exponent. It would be
- // faster to use a table here, and to look up the base-2 exponent of value,
- // however value is an IEEE-754 64-bit number, so the table would have 2,000
- // entries, which is not cache-friendly.
- if (d >= 999999.5) {
- if (d >= 1e+261) exp += 256, d *= 1e-256;
- if (d >= 1e+133) exp += 128, d *= 1e-128;
- if (d >= 1e+69) exp += 64, d *= 1e-64;
- if (d >= 1e+37) exp += 32, d *= 1e-32;
- if (d >= 1e+21) exp += 16, d *= 1e-16;
- if (d >= 1e+13) exp += 8, d *= 1e-8;
- if (d >= 1e+9) exp += 4, d *= 1e-4;
- if (d >= 1e+7) exp += 2, d *= 1e-2;
- if (d >= 1e+6) exp += 1, d *= 1e-1;
- } else {
- if (d < 1e-250) exp -= 256, d *= 1e256;
- if (d < 1e-122) exp -= 128, d *= 1e128;
- if (d < 1e-58) exp -= 64, d *= 1e64;
- if (d < 1e-26) exp -= 32, d *= 1e32;
- if (d < 1e-10) exp -= 16, d *= 1e16;
- if (d < 1e-2) exp -= 8, d *= 1e8;
- if (d < 1e+2) exp -= 4, d *= 1e4;
- if (d < 1e+4) exp -= 2, d *= 1e2;
- if (d < 1e+5) exp -= 1, d *= 1e1;
- }
- // At this point, d is in the range [99999.5..999999.5) and exp is in the
- // range [-324..308]. Since we need to round d up, we want to add a half
- // and truncate.
- // However, the technique above may have lost some precision, due to its
- // repeated multiplication by constants that each may be off by half a bit
- // of precision. This only matters if we're close to the edge though.
- // Since we'd like to know if the fractional part of d is close to a half,
- // we multiply it by 65536 and see if the fractional part is close to 32768.
- // (The number doesn't have to be a power of two,but powers of two are faster)
- uint64_t d64k = d * 65536;
- int dddddd; // A 6-digit decimal integer.
- if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
- // OK, it's fairly likely that precision was lost above, which is
- // not a surprise given only 52 mantissa bits are available. Therefore
- // redo the calculation using 128-bit numbers. (64 bits are not enough).
-
- // Start out with digits rounded down; maybe add one below.
- dddddd = static_cast<int>(d64k / 65536);
-
- // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual
- // value we're representing, of course, is M.mmm... * 2^exp2.
- int exp2;
- double m = std::frexp(value, &exp2);
- uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
- // std::frexp returns an m value in the range [0.5, 1.0), however we
- // can't multiply it by 2^64 and convert to an integer because some FPUs
- // throw an exception when converting an number higher than 2^63 into an
- // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter
- // since m only has 52 significant bits anyway.
- mantissa <<= 1;
- exp2 -= 64; // not needed, but nice for debugging
-
- // OK, we are here to compare:
- // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2
- // so we can round up dddddd if appropriate. Those values span the full
- // range of 600 orders of magnitude of IEE 64-bit floating-point.
- // Fortunately, we already know they are very close, so we don't need to
- // track the base-2 exponent of both sides. This greatly simplifies the
- // the math since the 2^exp2 calculation is unnecessary and the power-of-10
- // calculation can become a power-of-5 instead.
-
- std::pair<uint64_t, uint64_t> edge, val;
- if (exp >= 6) {
- // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
- // Since we're tossing powers of two, 2 * dddddd + 1 is the
- // same as dddddd + 0.5
- edge = PowFive(2 * dddddd + 1, exp - 5);
-
- val.first = mantissa;
- val.second = 0;
- } else {
- // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
- // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to
- // mantissa * 5 ^ (5 - exp)
- edge = PowFive(2 * dddddd + 1, 0);
-
- val = PowFive(mantissa, 5 - exp);
- }
- // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
- // val.second, edge.first, edge.second);
- if (val > edge) {
- dddddd++;
- } else if (val == edge) {
- dddddd += (dddddd & 1);
- }
- } else {
- // Here, we are not close to the edge.
- dddddd = static_cast<int>((d64k + 32768) / 65536);
- }
- if (dddddd == 1000000) {
- dddddd = 100000;
- exp += 1;
- }
- exp_dig.exponent = exp;
-
- int two_digits = dddddd / 10000;
- dddddd -= two_digits * 10000;
- numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);
-
- two_digits = dddddd / 100;
- dddddd -= two_digits * 100;
- numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);
-
- numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);
- return exp_dig;
-}
-
-// Helper function for fast formatting of floating-point.
-// The result is the same as "%g", a.k.a. "%.6g".
-size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
- static_assert(std::numeric_limits<float>::is_iec559,
- "IEEE-754/IEC-559 support only");
-
- char* out = buffer; // we write data to out, incrementing as we go, but
- // FloatToBuffer always returns the address of the buffer
- // passed in.
-
- if (std::isnan(d)) {
- strcpy(out, "nan"); // NOLINT(runtime/printf)
- return 3;
- }
- if (d == 0) { // +0 and -0 are handled here
- if (std::signbit(d)) *out++ = '-';
- *out++ = '0';
- *out = 0;
- return out - buffer;
- }
- if (d < 0) {
- *out++ = '-';
- d = -d;
- }
+ if (shift != 0) {
+ result.first = (result.first << shift) + (result.second >> (64 - shift));
+ result.second = (result.second << shift);
+ }
+ return result;
+}
+
+struct ExpDigits {
+ int32_t exponent;
+ char digits[6];
+};
+
+// SplitToSix converts value, a positive double-precision floating-point number,
+// into a base-10 exponent and 6 ASCII digits, where the first digit is never
+// zero. For example, SplitToSix(1) returns an exponent of zero and a digits
+// array of {'1', '0', '0', '0', '0', '0'}. If value is exactly halfway between
+// two possible representations, e.g. value = 100000.5, then "round to even" is
+// performed.
+static ExpDigits SplitToSix(const double value) {
+ ExpDigits exp_dig;
+ int exp = 5;
+ double d = value;
+ // First step: calculate a close approximation of the output, where the
+ // value d will be between 100,000 and 999,999, representing the digits
+ // in the output ASCII array, and exp is the base-10 exponent. It would be
+ // faster to use a table here, and to look up the base-2 exponent of value,
+ // however value is an IEEE-754 64-bit number, so the table would have 2,000
+ // entries, which is not cache-friendly.
+ if (d >= 999999.5) {
+ if (d >= 1e+261) exp += 256, d *= 1e-256;
+ if (d >= 1e+133) exp += 128, d *= 1e-128;
+ if (d >= 1e+69) exp += 64, d *= 1e-64;
+ if (d >= 1e+37) exp += 32, d *= 1e-32;
+ if (d >= 1e+21) exp += 16, d *= 1e-16;
+ if (d >= 1e+13) exp += 8, d *= 1e-8;
+ if (d >= 1e+9) exp += 4, d *= 1e-4;
+ if (d >= 1e+7) exp += 2, d *= 1e-2;
+ if (d >= 1e+6) exp += 1, d *= 1e-1;
+ } else {
+ if (d < 1e-250) exp -= 256, d *= 1e256;
+ if (d < 1e-122) exp -= 128, d *= 1e128;
+ if (d < 1e-58) exp -= 64, d *= 1e64;
+ if (d < 1e-26) exp -= 32, d *= 1e32;
+ if (d < 1e-10) exp -= 16, d *= 1e16;
+ if (d < 1e-2) exp -= 8, d *= 1e8;
+ if (d < 1e+2) exp -= 4, d *= 1e4;
+ if (d < 1e+4) exp -= 2, d *= 1e2;
+ if (d < 1e+5) exp -= 1, d *= 1e1;
+ }
+ // At this point, d is in the range [99999.5..999999.5) and exp is in the
+ // range [-324..308]. Since we need to round d up, we want to add a half
+ // and truncate.
+ // However, the technique above may have lost some precision, due to its
+ // repeated multiplication by constants that each may be off by half a bit
+ // of precision. This only matters if we're close to the edge though.
+ // Since we'd like to know if the fractional part of d is close to a half,
+ // we multiply it by 65536 and see if the fractional part is close to 32768.
+ // (The number doesn't have to be a power of two,but powers of two are faster)
+ uint64_t d64k = d * 65536;
+ int dddddd; // A 6-digit decimal integer.
+ if ((d64k % 65536) == 32767 || (d64k % 65536) == 32768) {
+ // OK, it's fairly likely that precision was lost above, which is
+ // not a surprise given only 52 mantissa bits are available. Therefore
+ // redo the calculation using 128-bit numbers. (64 bits are not enough).
+
+ // Start out with digits rounded down; maybe add one below.
+ dddddd = static_cast<int>(d64k / 65536);
+
+ // mantissa is a 64-bit integer representing M.mmm... * 2^63. The actual
+ // value we're representing, of course, is M.mmm... * 2^exp2.
+ int exp2;
+ double m = std::frexp(value, &exp2);
+ uint64_t mantissa = m * (32768.0 * 65536.0 * 65536.0 * 65536.0);
+ // std::frexp returns an m value in the range [0.5, 1.0), however we
+ // can't multiply it by 2^64 and convert to an integer because some FPUs
+ // throw an exception when converting an number higher than 2^63 into an
+ // integer - even an unsigned 64-bit integer! Fortunately it doesn't matter
+ // since m only has 52 significant bits anyway.
+ mantissa <<= 1;
+ exp2 -= 64; // not needed, but nice for debugging
+
+ // OK, we are here to compare:
+ // (dddddd + 0.5) * 10^(exp-5) vs. mantissa * 2^exp2
+ // so we can round up dddddd if appropriate. Those values span the full
+ // range of 600 orders of magnitude of IEE 64-bit floating-point.
+ // Fortunately, we already know they are very close, so we don't need to
+ // track the base-2 exponent of both sides. This greatly simplifies the
+ // the math since the 2^exp2 calculation is unnecessary and the power-of-10
+ // calculation can become a power-of-5 instead.
+
+ std::pair<uint64_t, uint64_t> edge, val;
+ if (exp >= 6) {
+ // Compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa
+ // Since we're tossing powers of two, 2 * dddddd + 1 is the
+ // same as dddddd + 0.5
+ edge = PowFive(2 * dddddd + 1, exp - 5);
+
+ val.first = mantissa;
+ val.second = 0;
+ } else {
+ // We can't compare (dddddd + 0.5) * 5 ^ (exp - 5) to mantissa as we did
+ // above because (exp - 5) is negative. So we compare (dddddd + 0.5) to
+ // mantissa * 5 ^ (5 - exp)
+ edge = PowFive(2 * dddddd + 1, 0);
+
+ val = PowFive(mantissa, 5 - exp);
+ }
+ // printf("exp=%d %016lx %016lx vs %016lx %016lx\n", exp, val.first,
+ // val.second, edge.first, edge.second);
+ if (val > edge) {
+ dddddd++;
+ } else if (val == edge) {
+ dddddd += (dddddd & 1);
+ }
+ } else {
+ // Here, we are not close to the edge.
+ dddddd = static_cast<int>((d64k + 32768) / 65536);
+ }
+ if (dddddd == 1000000) {
+ dddddd = 100000;
+ exp += 1;
+ }
+ exp_dig.exponent = exp;
+
+ int two_digits = dddddd / 10000;
+ dddddd -= two_digits * 10000;
+ numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[0]);
+
+ two_digits = dddddd / 100;
+ dddddd -= two_digits * 100;
+ numbers_internal::PutTwoDigits(two_digits, &exp_dig.digits[2]);
+
+ numbers_internal::PutTwoDigits(dddddd, &exp_dig.digits[4]);
+ return exp_dig;
+}
+
+// Helper function for fast formatting of floating-point.
+// The result is the same as "%g", a.k.a. "%.6g".
+size_t numbers_internal::SixDigitsToBuffer(double d, char* const buffer) {
+ static_assert(std::numeric_limits<float>::is_iec559,
+ "IEEE-754/IEC-559 support only");
+
+ char* out = buffer; // we write data to out, incrementing as we go, but
+ // FloatToBuffer always returns the address of the buffer
+ // passed in.
+
+ if (std::isnan(d)) {
+ strcpy(out, "nan"); // NOLINT(runtime/printf)
+ return 3;
+ }
+ if (d == 0) { // +0 and -0 are handled here
+ if (std::signbit(d)) *out++ = '-';
+ *out++ = '0';
+ *out = 0;
+ return out - buffer;
+ }
+ if (d < 0) {
+ *out++ = '-';
+ d = -d;
+ }
if (d > std::numeric_limits<double>::max()) {
- strcpy(out, "inf"); // NOLINT(runtime/printf)
- return out + 3 - buffer;
- }
-
- auto exp_dig = SplitToSix(d);
- int exp = exp_dig.exponent;
- const char* digits = exp_dig.digits;
- out[0] = '0';
- out[1] = '.';
- switch (exp) {
- case 5:
- memcpy(out, &digits[0], 6), out += 6;
- *out = 0;
- return out - buffer;
- case 4:
- memcpy(out, &digits[0], 5), out += 5;
- if (digits[5] != '0') {
- *out++ = '.';
- *out++ = digits[5];
- }
- *out = 0;
- return out - buffer;
- case 3:
- memcpy(out, &digits[0], 4), out += 4;
- if ((digits[5] | digits[4]) != '0') {
- *out++ = '.';
- *out++ = digits[4];
- if (digits[5] != '0') *out++ = digits[5];
- }
- *out = 0;
- return out - buffer;
- case 2:
- memcpy(out, &digits[0], 3), out += 3;
- *out++ = '.';
- memcpy(out, &digits[3], 3);
- out += 3;
- while (out[-1] == '0') --out;
- if (out[-1] == '.') --out;
- *out = 0;
- return out - buffer;
- case 1:
- memcpy(out, &digits[0], 2), out += 2;
- *out++ = '.';
- memcpy(out, &digits[2], 4);
- out += 4;
- while (out[-1] == '0') --out;
- if (out[-1] == '.') --out;
- *out = 0;
- return out - buffer;
- case 0:
- memcpy(out, &digits[0], 1), out += 1;
- *out++ = '.';
- memcpy(out, &digits[1], 5);
- out += 5;
- while (out[-1] == '0') --out;
- if (out[-1] == '.') --out;
- *out = 0;
- return out - buffer;
- case -4:
- out[2] = '0';
- ++out;
- ABSL_FALLTHROUGH_INTENDED;
- case -3:
- out[2] = '0';
- ++out;
- ABSL_FALLTHROUGH_INTENDED;
- case -2:
- out[2] = '0';
- ++out;
- ABSL_FALLTHROUGH_INTENDED;
- case -1:
- out += 2;
- memcpy(out, &digits[0], 6);
- out += 6;
- while (out[-1] == '0') --out;
- *out = 0;
- return out - buffer;
- }
- assert(exp < -4 || exp >= 6);
- out[0] = digits[0];
- assert(out[1] == '.');
- out += 2;
- memcpy(out, &digits[1], 5), out += 5;
- while (out[-1] == '0') --out;
- if (out[-1] == '.') --out;
- *out++ = 'e';
- if (exp > 0) {
- *out++ = '+';
- } else {
- *out++ = '-';
- exp = -exp;
- }
- if (exp > 99) {
- int dig1 = exp / 100;
- exp -= dig1 * 100;
- *out++ = '0' + dig1;
- }
- PutTwoDigits(exp, out);
- out += 2;
- *out = 0;
- return out - buffer;
-}
-
-namespace {
-// Represents integer values of digits.
-// Uses 36 to indicate an invalid character since we support
-// bases up to 36.
-static const int8_t kAsciiToInt[256] = {
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
- 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
- 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
- 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
- 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
- 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
-
-// Parse the sign and optional hex or oct prefix in text.
+ strcpy(out, "inf"); // NOLINT(runtime/printf)
+ return out + 3 - buffer;
+ }
+
+ auto exp_dig = SplitToSix(d);
+ int exp = exp_dig.exponent;
+ const char* digits = exp_dig.digits;
+ out[0] = '0';
+ out[1] = '.';
+ switch (exp) {
+ case 5:
+ memcpy(out, &digits[0], 6), out += 6;
+ *out = 0;
+ return out - buffer;
+ case 4:
+ memcpy(out, &digits[0], 5), out += 5;
+ if (digits[5] != '0') {
+ *out++ = '.';
+ *out++ = digits[5];
+ }
+ *out = 0;
+ return out - buffer;
+ case 3:
+ memcpy(out, &digits[0], 4), out += 4;
+ if ((digits[5] | digits[4]) != '0') {
+ *out++ = '.';
+ *out++ = digits[4];
+ if (digits[5] != '0') *out++ = digits[5];
+ }
+ *out = 0;
+ return out - buffer;
+ case 2:
+ memcpy(out, &digits[0], 3), out += 3;
+ *out++ = '.';
+ memcpy(out, &digits[3], 3);
+ out += 3;
+ while (out[-1] == '0') --out;
+ if (out[-1] == '.') --out;
+ *out = 0;
+ return out - buffer;
+ case 1:
+ memcpy(out, &digits[0], 2), out += 2;
+ *out++ = '.';
+ memcpy(out, &digits[2], 4);
+ out += 4;
+ while (out[-1] == '0') --out;
+ if (out[-1] == '.') --out;
+ *out = 0;
+ return out - buffer;
+ case 0:
+ memcpy(out, &digits[0], 1), out += 1;
+ *out++ = '.';
+ memcpy(out, &digits[1], 5);
+ out += 5;
+ while (out[-1] == '0') --out;
+ if (out[-1] == '.') --out;
+ *out = 0;
+ return out - buffer;
+ case -4:
+ out[2] = '0';
+ ++out;
+ ABSL_FALLTHROUGH_INTENDED;
+ case -3:
+ out[2] = '0';
+ ++out;
+ ABSL_FALLTHROUGH_INTENDED;
+ case -2:
+ out[2] = '0';
+ ++out;
+ ABSL_FALLTHROUGH_INTENDED;
+ case -1:
+ out += 2;
+ memcpy(out, &digits[0], 6);
+ out += 6;
+ while (out[-1] == '0') --out;
+ *out = 0;
+ return out - buffer;
+ }
+ assert(exp < -4 || exp >= 6);
+ out[0] = digits[0];
+ assert(out[1] == '.');
+ out += 2;
+ memcpy(out, &digits[1], 5), out += 5;
+ while (out[-1] == '0') --out;
+ if (out[-1] == '.') --out;
+ *out++ = 'e';
+ if (exp > 0) {
+ *out++ = '+';
+ } else {
+ *out++ = '-';
+ exp = -exp;
+ }
+ if (exp > 99) {
+ int dig1 = exp / 100;
+ exp -= dig1 * 100;
+ *out++ = '0' + dig1;
+ }
+ PutTwoDigits(exp, out);
+ out += 2;
+ *out = 0;
+ return out - buffer;
+}
+
+namespace {
+// Represents integer values of digits.
+// Uses 36 to indicate an invalid character since we support
+// bases up to 36.
+static const int8_t kAsciiToInt[256] = {
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 16 36s.
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 0, 1, 2, 3, 4, 5,
+ 6, 7, 8, 9, 36, 36, 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17,
+ 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
+ 36, 36, 36, 36, 36, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23,
+ 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,
+ 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36};
+
+// Parse the sign and optional hex or oct prefix in text.
inline bool safe_parse_sign_and_base(y_absl::string_view* text /*inout*/,
- int* base_ptr /*inout*/,
- bool* negative_ptr /*output*/) {
- if (text->data() == nullptr) {
- return false;
- }
-
- const char* start = text->data();
- const char* end = start + text->size();
- int base = *base_ptr;
-
- // Consume whitespace.
+ int* base_ptr /*inout*/,
+ bool* negative_ptr /*output*/) {
+ if (text->data() == nullptr) {
+ return false;
+ }
+
+ const char* start = text->data();
+ const char* end = start + text->size();
+ int base = *base_ptr;
+
+ // Consume whitespace.
while (start < end && y_absl::ascii_isspace(start[0])) {
- ++start;
- }
+ ++start;
+ }
while (start < end && y_absl::ascii_isspace(end[-1])) {
- --end;
- }
- if (start >= end) {
- return false;
- }
-
- // Consume sign.
- *negative_ptr = (start[0] == '-');
- if (*negative_ptr || start[0] == '+') {
- ++start;
- if (start >= end) {
- return false;
- }
- }
-
- // Consume base-dependent prefix.
- // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
- // base 16: "0x" -> base 16
- // Also validate the base.
- if (base == 0) {
- if (end - start >= 2 && start[0] == '0' &&
- (start[1] == 'x' || start[1] == 'X')) {
- base = 16;
- start += 2;
- if (start >= end) {
- // "0x" with no digits after is invalid.
- return false;
- }
- } else if (end - start >= 1 && start[0] == '0') {
- base = 8;
- start += 1;
- } else {
- base = 10;
- }
- } else if (base == 16) {
- if (end - start >= 2 && start[0] == '0' &&
- (start[1] == 'x' || start[1] == 'X')) {
- start += 2;
- if (start >= end) {
- // "0x" with no digits after is invalid.
- return false;
- }
- }
- } else if (base >= 2 && base <= 36) {
- // okay
- } else {
- return false;
- }
+ --end;
+ }
+ if (start >= end) {
+ return false;
+ }
+
+ // Consume sign.
+ *negative_ptr = (start[0] == '-');
+ if (*negative_ptr || start[0] == '+') {
+ ++start;
+ if (start >= end) {
+ return false;
+ }
+ }
+
+ // Consume base-dependent prefix.
+ // base 0: "0x" -> base 16, "0" -> base 8, default -> base 10
+ // base 16: "0x" -> base 16
+ // Also validate the base.
+ if (base == 0) {
+ if (end - start >= 2 && start[0] == '0' &&
+ (start[1] == 'x' || start[1] == 'X')) {
+ base = 16;
+ start += 2;
+ if (start >= end) {
+ // "0x" with no digits after is invalid.
+ return false;
+ }
+ } else if (end - start >= 1 && start[0] == '0') {
+ base = 8;
+ start += 1;
+ } else {
+ base = 10;
+ }
+ } else if (base == 16) {
+ if (end - start >= 2 && start[0] == '0' &&
+ (start[1] == 'x' || start[1] == 'X')) {
+ start += 2;
+ if (start >= end) {
+ // "0x" with no digits after is invalid.
+ return false;
+ }
+ }
+ } else if (base >= 2 && base <= 36) {
+ // okay
+ } else {
+ return false;
+ }
*text = y_absl::string_view(start, end - start);
- *base_ptr = base;
- return true;
-}
-
-// Consume digits.
-//
-// The classic loop:
-//
-// for each digit
-// value = value * base + digit
-// value *= sign
-//
-// The classic loop needs overflow checking. It also fails on the most
-// negative integer, -2147483648 in 32-bit two's complement representation.
-//
-// My improved loop:
-//
-// if (!negative)
-// for each digit
-// value = value * base
-// value = value + digit
-// else
-// for each digit
-// value = value * base
-// value = value - digit
-//
-// Overflow checking becomes simple.
-
-// Lookup tables per IntType:
-// vmax/base and vmin/base are precomputed because division costs at least 8ns.
-// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
-// struct of arrays) would probably be better in terms of d-cache for the most
-// commonly used bases.
-template <typename IntType>
-struct LookupTables {
+ *base_ptr = base;
+ return true;
+}
+
+// Consume digits.
+//
+// The classic loop:
+//
+// for each digit
+// value = value * base + digit
+// value *= sign
+//
+// The classic loop needs overflow checking. It also fails on the most
+// negative integer, -2147483648 in 32-bit two's complement representation.
+//
+// My improved loop:
+//
+// if (!negative)
+// for each digit
+// value = value * base
+// value = value + digit
+// else
+// for each digit
+// value = value * base
+// value = value - digit
+//
+// Overflow checking becomes simple.
+
+// Lookup tables per IntType:
+// vmax/base and vmin/base are precomputed because division costs at least 8ns.
+// TODO(junyer): Doing this per base instead (i.e. an array of structs, not a
+// struct of arrays) would probably be better in terms of d-cache for the most
+// commonly used bases.
+template <typename IntType>
+struct LookupTables {
ABSL_CONST_INIT static const IntType kVmaxOverBase[];
ABSL_CONST_INIT static const IntType kVminOverBase[];
-};
-
-// An array initializer macro for X/base where base in [0, 36].
-// However, note that lookups for base in [0, 1] should never happen because
-// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
-#define X_OVER_BASE_INITIALIZER(X) \
- { \
- 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
- X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \
- X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \
- X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \
- X / 35, X / 36, \
- }
-
+};
+
+// An array initializer macro for X/base where base in [0, 36].
+// However, note that lookups for base in [0, 1] should never happen because
+// base has been validated to be in [2, 36] by safe_parse_sign_and_base().
+#define X_OVER_BASE_INITIALIZER(X) \
+ { \
+ 0, 0, X / 2, X / 3, X / 4, X / 5, X / 6, X / 7, X / 8, X / 9, X / 10, \
+ X / 11, X / 12, X / 13, X / 14, X / 15, X / 16, X / 17, X / 18, \
+ X / 19, X / 20, X / 21, X / 22, X / 23, X / 24, X / 25, X / 26, \
+ X / 27, X / 28, X / 29, X / 30, X / 31, X / 32, X / 33, X / 34, \
+ X / 35, X / 36, \
+ }
+
// This kVmaxOverBase is generated with
// for (int base = 2; base < 37; ++base) {
// y_absl::uint128 max = std::numeric_limits<y_absl::uint128>::max();
@@ -903,191 +903,191 @@ const int128 LookupTables<int128>::kVminOverBase[] = {
MakeInt128(-256204778801521551, 14347467612885206813u),
};
-template <typename IntType>
-const IntType LookupTables<IntType>::kVmaxOverBase[] =
- X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
-
-template <typename IntType>
-const IntType LookupTables<IntType>::kVminOverBase[] =
- X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
-
-#undef X_OVER_BASE_INITIALIZER
-
-template <typename IntType>
+template <typename IntType>
+const IntType LookupTables<IntType>::kVmaxOverBase[] =
+ X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::max());
+
+template <typename IntType>
+const IntType LookupTables<IntType>::kVminOverBase[] =
+ X_OVER_BASE_INITIALIZER(std::numeric_limits<IntType>::min());
+
+#undef X_OVER_BASE_INITIALIZER
+
+template <typename IntType>
inline bool safe_parse_positive_int(y_absl::string_view text, int base,
- IntType* value_p) {
- IntType value = 0;
- const IntType vmax = std::numeric_limits<IntType>::max();
- assert(vmax > 0);
- assert(base >= 0);
- assert(vmax >= static_cast<IntType>(base));
- const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
+ IntType* value_p) {
+ IntType value = 0;
+ const IntType vmax = std::numeric_limits<IntType>::max();
+ assert(vmax > 0);
+ assert(base >= 0);
+ assert(vmax >= static_cast<IntType>(base));
+ const IntType vmax_over_base = LookupTables<IntType>::kVmaxOverBase[base];
assert(base < 2 ||
std::numeric_limits<IntType>::max() / base == vmax_over_base);
- const char* start = text.data();
- const char* end = start + text.size();
- // loop over digits
- for (; start < end; ++start) {
- unsigned char c = static_cast<unsigned char>(start[0]);
- int digit = kAsciiToInt[c];
- if (digit >= base) {
- *value_p = value;
- return false;
- }
- if (value > vmax_over_base) {
- *value_p = vmax;
- return false;
- }
- value *= base;
- if (value > vmax - digit) {
- *value_p = vmax;
- return false;
- }
- value += digit;
- }
- *value_p = value;
- return true;
-}
-
-template <typename IntType>
+ const char* start = text.data();
+ const char* end = start + text.size();
+ // loop over digits
+ for (; start < end; ++start) {
+ unsigned char c = static_cast<unsigned char>(start[0]);
+ int digit = kAsciiToInt[c];
+ if (digit >= base) {
+ *value_p = value;
+ return false;
+ }
+ if (value > vmax_over_base) {
+ *value_p = vmax;
+ return false;
+ }
+ value *= base;
+ if (value > vmax - digit) {
+ *value_p = vmax;
+ return false;
+ }
+ value += digit;
+ }
+ *value_p = value;
+ return true;
+}
+
+template <typename IntType>
inline bool safe_parse_negative_int(y_absl::string_view text, int base,
- IntType* value_p) {
- IntType value = 0;
- const IntType vmin = std::numeric_limits<IntType>::min();
- assert(vmin < 0);
- assert(vmin <= 0 - base);
- IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
+ IntType* value_p) {
+ IntType value = 0;
+ const IntType vmin = std::numeric_limits<IntType>::min();
+ assert(vmin < 0);
+ assert(vmin <= 0 - base);
+ IntType vmin_over_base = LookupTables<IntType>::kVminOverBase[base];
assert(base < 2 ||
std::numeric_limits<IntType>::min() / base == vmin_over_base);
- // 2003 c++ standard [expr.mul]
- // "... the sign of the remainder is implementation-defined."
- // Although (vmin/base)*base + vmin%base is always vmin.
- // 2011 c++ standard tightens the spec but we cannot rely on it.
- // TODO(junyer): Handle this in the lookup table generation.
- if (vmin % base > 0) {
- vmin_over_base += 1;
- }
- const char* start = text.data();
- const char* end = start + text.size();
- // loop over digits
- for (; start < end; ++start) {
- unsigned char c = static_cast<unsigned char>(start[0]);
- int digit = kAsciiToInt[c];
- if (digit >= base) {
- *value_p = value;
- return false;
- }
- if (value < vmin_over_base) {
- *value_p = vmin;
- return false;
- }
- value *= base;
- if (value < vmin + digit) {
- *value_p = vmin;
- return false;
- }
- value -= digit;
- }
- *value_p = value;
- return true;
-}
-
-// Input format based on POSIX.1-2008 strtol
-// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
-template <typename IntType>
+ // 2003 c++ standard [expr.mul]
+ // "... the sign of the remainder is implementation-defined."
+ // Although (vmin/base)*base + vmin%base is always vmin.
+ // 2011 c++ standard tightens the spec but we cannot rely on it.
+ // TODO(junyer): Handle this in the lookup table generation.
+ if (vmin % base > 0) {
+ vmin_over_base += 1;
+ }
+ const char* start = text.data();
+ const char* end = start + text.size();
+ // loop over digits
+ for (; start < end; ++start) {
+ unsigned char c = static_cast<unsigned char>(start[0]);
+ int digit = kAsciiToInt[c];
+ if (digit >= base) {
+ *value_p = value;
+ return false;
+ }
+ if (value < vmin_over_base) {
+ *value_p = vmin;
+ return false;
+ }
+ value *= base;
+ if (value < vmin + digit) {
+ *value_p = vmin;
+ return false;
+ }
+ value -= digit;
+ }
+ *value_p = value;
+ return true;
+}
+
+// Input format based on POSIX.1-2008 strtol
+// http://pubs.opengroup.org/onlinepubs/9699919799/functions/strtol.html
+template <typename IntType>
inline bool safe_int_internal(y_absl::string_view text, IntType* value_p,
- int base) {
- *value_p = 0;
- bool negative;
- if (!safe_parse_sign_and_base(&text, &base, &negative)) {
- return false;
- }
- if (!negative) {
- return safe_parse_positive_int(text, base, value_p);
- } else {
- return safe_parse_negative_int(text, base, value_p);
- }
-}
-
-template <typename IntType>
+ int base) {
+ *value_p = 0;
+ bool negative;
+ if (!safe_parse_sign_and_base(&text, &base, &negative)) {
+ return false;
+ }
+ if (!negative) {
+ return safe_parse_positive_int(text, base, value_p);
+ } else {
+ return safe_parse_negative_int(text, base, value_p);
+ }
+}
+
+template <typename IntType>
inline bool safe_uint_internal(y_absl::string_view text, IntType* value_p,
- int base) {
- *value_p = 0;
- bool negative;
- if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
- return false;
- }
- return safe_parse_positive_int(text, base, value_p);
-}
-} // anonymous namespace
-
-namespace numbers_internal {
-
-// Digit conversion.
+ int base) {
+ *value_p = 0;
+ bool negative;
+ if (!safe_parse_sign_and_base(&text, &base, &negative) || negative) {
+ return false;
+ }
+ return safe_parse_positive_int(text, base, value_p);
+}
+} // anonymous namespace
+
+namespace numbers_internal {
+
+// Digit conversion.
ABSL_CONST_INIT ABSL_DLL const char kHexChar[] =
"0123456789abcdef";
-
+
ABSL_CONST_INIT ABSL_DLL const char kHexTable[513] =
- "000102030405060708090a0b0c0d0e0f"
- "101112131415161718191a1b1c1d1e1f"
- "202122232425262728292a2b2c2d2e2f"
- "303132333435363738393a3b3c3d3e3f"
- "404142434445464748494a4b4c4d4e4f"
- "505152535455565758595a5b5c5d5e5f"
- "606162636465666768696a6b6c6d6e6f"
- "707172737475767778797a7b7c7d7e7f"
- "808182838485868788898a8b8c8d8e8f"
- "909192939495969798999a9b9c9d9e9f"
- "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
- "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
- "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
- "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
- "e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
- "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
-
+ "000102030405060708090a0b0c0d0e0f"
+ "101112131415161718191a1b1c1d1e1f"
+ "202122232425262728292a2b2c2d2e2f"
+ "303132333435363738393a3b3c3d3e3f"
+ "404142434445464748494a4b4c4d4e4f"
+ "505152535455565758595a5b5c5d5e5f"
+ "606162636465666768696a6b6c6d6e6f"
+ "707172737475767778797a7b7c7d7e7f"
+ "808182838485868788898a8b8c8d8e8f"
+ "909192939495969798999a9b9c9d9e9f"
+ "a0a1a2a3a4a5a6a7a8a9aaabacadaeaf"
+ "b0b1b2b3b4b5b6b7b8b9babbbcbdbebf"
+ "c0c1c2c3c4c5c6c7c8c9cacbcccdcecf"
+ "d0d1d2d3d4d5d6d7d8d9dadbdcdddedf"
+ "e0e1e2e3e4e5e6e7e8e9eaebecedeeef"
+ "f0f1f2f3f4f5f6f7f8f9fafbfcfdfeff";
+
ABSL_CONST_INIT ABSL_DLL const char two_ASCII_digits[100][2] = {
- {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
- {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
- {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
- {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
- {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
- {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
- {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
- {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
- {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
- {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
- {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
- {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
- {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
- {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
- {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
- {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
- {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
-
+ {'0', '0'}, {'0', '1'}, {'0', '2'}, {'0', '3'}, {'0', '4'}, {'0', '5'},
+ {'0', '6'}, {'0', '7'}, {'0', '8'}, {'0', '9'}, {'1', '0'}, {'1', '1'},
+ {'1', '2'}, {'1', '3'}, {'1', '4'}, {'1', '5'}, {'1', '6'}, {'1', '7'},
+ {'1', '8'}, {'1', '9'}, {'2', '0'}, {'2', '1'}, {'2', '2'}, {'2', '3'},
+ {'2', '4'}, {'2', '5'}, {'2', '6'}, {'2', '7'}, {'2', '8'}, {'2', '9'},
+ {'3', '0'}, {'3', '1'}, {'3', '2'}, {'3', '3'}, {'3', '4'}, {'3', '5'},
+ {'3', '6'}, {'3', '7'}, {'3', '8'}, {'3', '9'}, {'4', '0'}, {'4', '1'},
+ {'4', '2'}, {'4', '3'}, {'4', '4'}, {'4', '5'}, {'4', '6'}, {'4', '7'},
+ {'4', '8'}, {'4', '9'}, {'5', '0'}, {'5', '1'}, {'5', '2'}, {'5', '3'},
+ {'5', '4'}, {'5', '5'}, {'5', '6'}, {'5', '7'}, {'5', '8'}, {'5', '9'},
+ {'6', '0'}, {'6', '1'}, {'6', '2'}, {'6', '3'}, {'6', '4'}, {'6', '5'},
+ {'6', '6'}, {'6', '7'}, {'6', '8'}, {'6', '9'}, {'7', '0'}, {'7', '1'},
+ {'7', '2'}, {'7', '3'}, {'7', '4'}, {'7', '5'}, {'7', '6'}, {'7', '7'},
+ {'7', '8'}, {'7', '9'}, {'8', '0'}, {'8', '1'}, {'8', '2'}, {'8', '3'},
+ {'8', '4'}, {'8', '5'}, {'8', '6'}, {'8', '7'}, {'8', '8'}, {'8', '9'},
+ {'9', '0'}, {'9', '1'}, {'9', '2'}, {'9', '3'}, {'9', '4'}, {'9', '5'},
+ {'9', '6'}, {'9', '7'}, {'9', '8'}, {'9', '9'}};
+
bool safe_strto32_base(y_absl::string_view text, int32_t* value, int base) {
- return safe_int_internal<int32_t>(text, value, base);
-}
-
+ return safe_int_internal<int32_t>(text, value, base);
+}
+
bool safe_strto64_base(y_absl::string_view text, int64_t* value, int base) {
- return safe_int_internal<int64_t>(text, value, base);
-}
-
+ return safe_int_internal<int64_t>(text, value, base);
+}
+
bool safe_strto128_base(y_absl::string_view text, int128* value, int base) {
return safe_int_internal<y_absl::int128>(text, value, base);
}
bool safe_strtou32_base(y_absl::string_view text, uint32_t* value, int base) {
- return safe_uint_internal<uint32_t>(text, value, base);
-}
-
+ return safe_uint_internal<uint32_t>(text, value, base);
+}
+
bool safe_strtou64_base(y_absl::string_view text, uint64_t* value, int base) {
- return safe_uint_internal<uint64_t>(text, value, base);
-}
-
+ return safe_uint_internal<uint64_t>(text, value, base);
+}
+
bool safe_strtou128_base(y_absl::string_view text, uint128* value, int base) {
return safe_uint_internal<y_absl::uint128>(text, value, base);
-}
-
-} // namespace numbers_internal
+}
+
+} // namespace numbers_internal
ABSL_NAMESPACE_END
} // namespace y_absl