aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal
diff options
context:
space:
mode:
authoranastasy888 <anastasy888@yandex-team.ru>2022-02-10 16:45:54 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:54 +0300
commit49f765d71da452ea93138a25559dfa68dd76c7f3 (patch)
tree1016041feb637349e401dcc0fa85217dd2c2c639 /contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal
parent7353a3fdea9c67c256980c00a2b3b67f09b23a27 (diff)
downloadydb-49f765d71da452ea93138a25559dfa68dd76c7f3.tar.gz
Restoring authorship annotation for <anastasy888@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal')
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.cc636
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.h140
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.cc74
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.h1674
-rw-r--r--contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/spy_hash_state.h422
5 files changed, 1473 insertions, 1473 deletions
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.cc
index 5f1b655e7e..563cfb3f6f 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.cc
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.cc
@@ -1,349 +1,349 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// This file provides CityHash64() and related functions.
-//
-// It's probably possible to create even faster hash functions by
-// writing a program that systematically explores some of the space of
-// possible hash functions, by using SIMD instructions, or by
-// compromising on hash quality.
-
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// This file provides CityHash64() and related functions.
+//
+// It's probably possible to create even faster hash functions by
+// writing a program that systematically explores some of the space of
+// possible hash functions, by using SIMD instructions, or by
+// compromising on hash quality.
+
#include "y_absl/hash/internal/city.h"
-
-#include <string.h> // for memcpy and memset
-#include <algorithm>
-
+
+#include <string.h> // for memcpy and memset
+#include <algorithm>
+
#include "y_absl/base/config.h"
#include "y_absl/base/internal/endian.h"
#include "y_absl/base/internal/unaligned_access.h"
#include "y_absl/base/optimization.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace hash_internal {
-
-#ifdef ABSL_IS_BIG_ENDIAN
+namespace hash_internal {
+
+#ifdef ABSL_IS_BIG_ENDIAN
#define uint32_in_expected_order(x) (y_absl::gbswap_32(x))
#define uint64_in_expected_order(x) (y_absl::gbswap_64(x))
-#else
-#define uint32_in_expected_order(x) (x)
-#define uint64_in_expected_order(x) (x)
-#endif
-
-static uint64_t Fetch64(const char *p) {
- return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
-}
-
-static uint32_t Fetch32(const char *p) {
- return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
-}
-
-// Some primes between 2^63 and 2^64 for various uses.
-static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
-static const uint64_t k1 = 0xb492b66fbe98f273ULL;
-static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
-
-// Magic numbers for 32-bit hashing. Copied from Murmur3.
-static const uint32_t c1 = 0xcc9e2d51;
-static const uint32_t c2 = 0x1b873593;
-
-// A 32-bit to 32-bit integer hash copied from Murmur3.
-static uint32_t fmix(uint32_t h) {
- h ^= h >> 16;
- h *= 0x85ebca6b;
- h ^= h >> 13;
- h *= 0xc2b2ae35;
- h ^= h >> 16;
- return h;
-}
-
-static uint32_t Rotate32(uint32_t val, int shift) {
- // Avoid shifting by 32: doing so yields an undefined result.
- return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
-}
-
-#undef PERMUTE3
-#define PERMUTE3(a, b, c) \
- do { \
- std::swap(a, b); \
- std::swap(a, c); \
- } while (0)
-
-static uint32_t Mur(uint32_t a, uint32_t h) {
- // Helper from Murmur3 for combining two 32-bit values.
- a *= c1;
- a = Rotate32(a, 17);
- a *= c2;
- h ^= a;
- h = Rotate32(h, 19);
- return h * 5 + 0xe6546b64;
-}
-
-static uint32_t Hash32Len13to24(const char *s, size_t len) {
- uint32_t a = Fetch32(s - 4 + (len >> 1));
- uint32_t b = Fetch32(s + 4);
- uint32_t c = Fetch32(s + len - 8);
- uint32_t d = Fetch32(s + (len >> 1));
- uint32_t e = Fetch32(s);
- uint32_t f = Fetch32(s + len - 4);
- uint32_t h = len;
-
- return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
-}
-
-static uint32_t Hash32Len0to4(const char *s, size_t len) {
- uint32_t b = 0;
- uint32_t c = 9;
- for (size_t i = 0; i < len; i++) {
- signed char v = s[i];
- b = b * c1 + v;
- c ^= b;
- }
- return fmix(Mur(b, Mur(len, c)));
-}
-
-static uint32_t Hash32Len5to12(const char *s, size_t len) {
- uint32_t a = len, b = len * 5, c = 9, d = b;
- a += Fetch32(s);
- b += Fetch32(s + len - 4);
- c += Fetch32(s + ((len >> 1) & 4));
- return fmix(Mur(c, Mur(b, Mur(a, d))));
-}
-
-uint32_t CityHash32(const char *s, size_t len) {
- if (len <= 24) {
- return len <= 12
- ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
- : Hash32Len13to24(s, len);
- }
-
- // len > 24
- uint32_t h = len, g = c1 * len, f = g;
-
- uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
- uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
- uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
- uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
- uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
- h ^= a0;
- h = Rotate32(h, 19);
- h = h * 5 + 0xe6546b64;
- h ^= a2;
- h = Rotate32(h, 19);
- h = h * 5 + 0xe6546b64;
- g ^= a1;
- g = Rotate32(g, 19);
- g = g * 5 + 0xe6546b64;
- g ^= a3;
- g = Rotate32(g, 19);
- g = g * 5 + 0xe6546b64;
- f += a4;
- f = Rotate32(f, 19);
- f = f * 5 + 0xe6546b64;
- size_t iters = (len - 1) / 20;
- do {
- uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
- uint32_t b1 = Fetch32(s + 4);
- uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
- uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
- uint32_t b4 = Fetch32(s + 16);
- h ^= b0;
- h = Rotate32(h, 18);
- h = h * 5 + 0xe6546b64;
- f += b1;
- f = Rotate32(f, 19);
- f = f * c1;
- g += b2;
- g = Rotate32(g, 18);
- g = g * 5 + 0xe6546b64;
- h ^= b3 + b1;
- h = Rotate32(h, 19);
- h = h * 5 + 0xe6546b64;
- g ^= b4;
+#else
+#define uint32_in_expected_order(x) (x)
+#define uint64_in_expected_order(x) (x)
+#endif
+
+static uint64_t Fetch64(const char *p) {
+ return uint64_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD64(p));
+}
+
+static uint32_t Fetch32(const char *p) {
+ return uint32_in_expected_order(ABSL_INTERNAL_UNALIGNED_LOAD32(p));
+}
+
+// Some primes between 2^63 and 2^64 for various uses.
+static const uint64_t k0 = 0xc3a5c85c97cb3127ULL;
+static const uint64_t k1 = 0xb492b66fbe98f273ULL;
+static const uint64_t k2 = 0x9ae16a3b2f90404fULL;
+
+// Magic numbers for 32-bit hashing. Copied from Murmur3.
+static const uint32_t c1 = 0xcc9e2d51;
+static const uint32_t c2 = 0x1b873593;
+
+// A 32-bit to 32-bit integer hash copied from Murmur3.
+static uint32_t fmix(uint32_t h) {
+ h ^= h >> 16;
+ h *= 0x85ebca6b;
+ h ^= h >> 13;
+ h *= 0xc2b2ae35;
+ h ^= h >> 16;
+ return h;
+}
+
+static uint32_t Rotate32(uint32_t val, int shift) {
+ // Avoid shifting by 32: doing so yields an undefined result.
+ return shift == 0 ? val : ((val >> shift) | (val << (32 - shift)));
+}
+
+#undef PERMUTE3
+#define PERMUTE3(a, b, c) \
+ do { \
+ std::swap(a, b); \
+ std::swap(a, c); \
+ } while (0)
+
+static uint32_t Mur(uint32_t a, uint32_t h) {
+ // Helper from Murmur3 for combining two 32-bit values.
+ a *= c1;
+ a = Rotate32(a, 17);
+ a *= c2;
+ h ^= a;
+ h = Rotate32(h, 19);
+ return h * 5 + 0xe6546b64;
+}
+
+static uint32_t Hash32Len13to24(const char *s, size_t len) {
+ uint32_t a = Fetch32(s - 4 + (len >> 1));
+ uint32_t b = Fetch32(s + 4);
+ uint32_t c = Fetch32(s + len - 8);
+ uint32_t d = Fetch32(s + (len >> 1));
+ uint32_t e = Fetch32(s);
+ uint32_t f = Fetch32(s + len - 4);
+ uint32_t h = len;
+
+ return fmix(Mur(f, Mur(e, Mur(d, Mur(c, Mur(b, Mur(a, h)))))));
+}
+
+static uint32_t Hash32Len0to4(const char *s, size_t len) {
+ uint32_t b = 0;
+ uint32_t c = 9;
+ for (size_t i = 0; i < len; i++) {
+ signed char v = s[i];
+ b = b * c1 + v;
+ c ^= b;
+ }
+ return fmix(Mur(b, Mur(len, c)));
+}
+
+static uint32_t Hash32Len5to12(const char *s, size_t len) {
+ uint32_t a = len, b = len * 5, c = 9, d = b;
+ a += Fetch32(s);
+ b += Fetch32(s + len - 4);
+ c += Fetch32(s + ((len >> 1) & 4));
+ return fmix(Mur(c, Mur(b, Mur(a, d))));
+}
+
+uint32_t CityHash32(const char *s, size_t len) {
+ if (len <= 24) {
+ return len <= 12
+ ? (len <= 4 ? Hash32Len0to4(s, len) : Hash32Len5to12(s, len))
+ : Hash32Len13to24(s, len);
+ }
+
+ // len > 24
+ uint32_t h = len, g = c1 * len, f = g;
+
+ uint32_t a0 = Rotate32(Fetch32(s + len - 4) * c1, 17) * c2;
+ uint32_t a1 = Rotate32(Fetch32(s + len - 8) * c1, 17) * c2;
+ uint32_t a2 = Rotate32(Fetch32(s + len - 16) * c1, 17) * c2;
+ uint32_t a3 = Rotate32(Fetch32(s + len - 12) * c1, 17) * c2;
+ uint32_t a4 = Rotate32(Fetch32(s + len - 20) * c1, 17) * c2;
+ h ^= a0;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ h ^= a2;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ g ^= a1;
+ g = Rotate32(g, 19);
+ g = g * 5 + 0xe6546b64;
+ g ^= a3;
+ g = Rotate32(g, 19);
+ g = g * 5 + 0xe6546b64;
+ f += a4;
+ f = Rotate32(f, 19);
+ f = f * 5 + 0xe6546b64;
+ size_t iters = (len - 1) / 20;
+ do {
+ uint32_t b0 = Rotate32(Fetch32(s) * c1, 17) * c2;
+ uint32_t b1 = Fetch32(s + 4);
+ uint32_t b2 = Rotate32(Fetch32(s + 8) * c1, 17) * c2;
+ uint32_t b3 = Rotate32(Fetch32(s + 12) * c1, 17) * c2;
+ uint32_t b4 = Fetch32(s + 16);
+ h ^= b0;
+ h = Rotate32(h, 18);
+ h = h * 5 + 0xe6546b64;
+ f += b1;
+ f = Rotate32(f, 19);
+ f = f * c1;
+ g += b2;
+ g = Rotate32(g, 18);
+ g = g * 5 + 0xe6546b64;
+ h ^= b3 + b1;
+ h = Rotate32(h, 19);
+ h = h * 5 + 0xe6546b64;
+ g ^= b4;
g = y_absl::gbswap_32(g) * 5;
- h += b4 * 5;
+ h += b4 * 5;
h = y_absl::gbswap_32(h);
- f += b0;
- PERMUTE3(f, h, g);
- s += 20;
- } while (--iters != 0);
- g = Rotate32(g, 11) * c1;
- g = Rotate32(g, 17) * c1;
- f = Rotate32(f, 11) * c1;
- f = Rotate32(f, 17) * c1;
- h = Rotate32(h + g, 19);
- h = h * 5 + 0xe6546b64;
- h = Rotate32(h, 17) * c1;
- h = Rotate32(h + f, 19);
- h = h * 5 + 0xe6546b64;
- h = Rotate32(h, 17) * c1;
- return h;
-}
-
-// Bitwise right rotate. Normally this will compile to a single
-// instruction, especially if the shift is a manifest constant.
-static uint64_t Rotate(uint64_t val, int shift) {
- // Avoid shifting by 64: doing so yields an undefined result.
- return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
-}
-
-static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
-
-static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
- // Murmur-inspired hashing.
- uint64_t a = (u ^ v) * mul;
- a ^= (a >> 47);
- uint64_t b = (v ^ a) * mul;
- b ^= (b >> 47);
- b *= mul;
- return b;
-}
-
+ f += b0;
+ PERMUTE3(f, h, g);
+ s += 20;
+ } while (--iters != 0);
+ g = Rotate32(g, 11) * c1;
+ g = Rotate32(g, 17) * c1;
+ f = Rotate32(f, 11) * c1;
+ f = Rotate32(f, 17) * c1;
+ h = Rotate32(h + g, 19);
+ h = h * 5 + 0xe6546b64;
+ h = Rotate32(h, 17) * c1;
+ h = Rotate32(h + f, 19);
+ h = h * 5 + 0xe6546b64;
+ h = Rotate32(h, 17) * c1;
+ return h;
+}
+
+// Bitwise right rotate. Normally this will compile to a single
+// instruction, especially if the shift is a manifest constant.
+static uint64_t Rotate(uint64_t val, int shift) {
+ // Avoid shifting by 64: doing so yields an undefined result.
+ return shift == 0 ? val : ((val >> shift) | (val << (64 - shift)));
+}
+
+static uint64_t ShiftMix(uint64_t val) { return val ^ (val >> 47); }
+
+static uint64_t HashLen16(uint64_t u, uint64_t v, uint64_t mul) {
+ // Murmur-inspired hashing.
+ uint64_t a = (u ^ v) * mul;
+ a ^= (a >> 47);
+ uint64_t b = (v ^ a) * mul;
+ b ^= (b >> 47);
+ b *= mul;
+ return b;
+}
+
static uint64_t HashLen16(uint64_t u, uint64_t v) {
const uint64_t kMul = 0x9ddfea08eb382d69ULL;
return HashLen16(u, v, kMul);
}
-static uint64_t HashLen0to16(const char *s, size_t len) {
- if (len >= 8) {
- uint64_t mul = k2 + len * 2;
- uint64_t a = Fetch64(s) + k2;
- uint64_t b = Fetch64(s + len - 8);
- uint64_t c = Rotate(b, 37) * mul + a;
- uint64_t d = (Rotate(a, 25) + b) * mul;
- return HashLen16(c, d, mul);
- }
- if (len >= 4) {
- uint64_t mul = k2 + len * 2;
- uint64_t a = Fetch32(s);
- return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
- }
- if (len > 0) {
- uint8_t a = s[0];
- uint8_t b = s[len >> 1];
- uint8_t c = s[len - 1];
- uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
- uint32_t z = len + (static_cast<uint32_t>(c) << 2);
- return ShiftMix(y * k2 ^ z * k0) * k2;
- }
- return k2;
-}
-
-// This probably works well for 16-byte strings as well, but it may be overkill
-// in that case.
-static uint64_t HashLen17to32(const char *s, size_t len) {
- uint64_t mul = k2 + len * 2;
- uint64_t a = Fetch64(s) * k1;
- uint64_t b = Fetch64(s + 8);
- uint64_t c = Fetch64(s + len - 8) * mul;
- uint64_t d = Fetch64(s + len - 16) * k2;
- return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
- a + Rotate(b + k2, 18) + c, mul);
-}
-
-// Return a 16-byte hash for 48 bytes. Quick and dirty.
-// Callers do best to use "random-looking" values for a and b.
+static uint64_t HashLen0to16(const char *s, size_t len) {
+ if (len >= 8) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) + k2;
+ uint64_t b = Fetch64(s + len - 8);
+ uint64_t c = Rotate(b, 37) * mul + a;
+ uint64_t d = (Rotate(a, 25) + b) * mul;
+ return HashLen16(c, d, mul);
+ }
+ if (len >= 4) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch32(s);
+ return HashLen16(len + (a << 3), Fetch32(s + len - 4), mul);
+ }
+ if (len > 0) {
+ uint8_t a = s[0];
+ uint8_t b = s[len >> 1];
+ uint8_t c = s[len - 1];
+ uint32_t y = static_cast<uint32_t>(a) + (static_cast<uint32_t>(b) << 8);
+ uint32_t z = len + (static_cast<uint32_t>(c) << 2);
+ return ShiftMix(y * k2 ^ z * k0) * k2;
+ }
+ return k2;
+}
+
+// This probably works well for 16-byte strings as well, but it may be overkill
+// in that case.
+static uint64_t HashLen17to32(const char *s, size_t len) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) * k1;
+ uint64_t b = Fetch64(s + 8);
+ uint64_t c = Fetch64(s + len - 8) * mul;
+ uint64_t d = Fetch64(s + len - 16) * k2;
+ return HashLen16(Rotate(a + b, 43) + Rotate(c, 30) + d,
+ a + Rotate(b + k2, 18) + c, mul);
+}
+
+// Return a 16-byte hash for 48 bytes. Quick and dirty.
+// Callers do best to use "random-looking" values for a and b.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(
uint64_t w, uint64_t x, uint64_t y, uint64_t z, uint64_t a, uint64_t b) {
- a += w;
- b = Rotate(b + a + z, 21);
- uint64_t c = a;
- a += x;
- a += y;
- b += Rotate(a, 44);
- return std::make_pair(a + z, b + c);
-}
-
-// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
+ a += w;
+ b = Rotate(b + a + z, 21);
+ uint64_t c = a;
+ a += x;
+ a += y;
+ b += Rotate(a, 44);
+ return std::make_pair(a + z, b + c);
+}
+
+// Return a 16-byte hash for s[0] ... s[31], a, and b. Quick and dirty.
static std::pair<uint64_t, uint64_t> WeakHashLen32WithSeeds(const char *s,
uint64_t a,
uint64_t b) {
- return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
- Fetch64(s + 24), a, b);
-}
-
-// Return an 8-byte hash for 33 to 64 bytes.
-static uint64_t HashLen33to64(const char *s, size_t len) {
- uint64_t mul = k2 + len * 2;
- uint64_t a = Fetch64(s) * k2;
- uint64_t b = Fetch64(s + 8);
- uint64_t c = Fetch64(s + len - 24);
- uint64_t d = Fetch64(s + len - 32);
- uint64_t e = Fetch64(s + 16) * k2;
- uint64_t f = Fetch64(s + 24) * 9;
- uint64_t g = Fetch64(s + len - 8);
- uint64_t h = Fetch64(s + len - 16) * mul;
- uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
- uint64_t v = ((a + g) ^ d) + f + 1;
+ return WeakHashLen32WithSeeds(Fetch64(s), Fetch64(s + 8), Fetch64(s + 16),
+ Fetch64(s + 24), a, b);
+}
+
+// Return an 8-byte hash for 33 to 64 bytes.
+static uint64_t HashLen33to64(const char *s, size_t len) {
+ uint64_t mul = k2 + len * 2;
+ uint64_t a = Fetch64(s) * k2;
+ uint64_t b = Fetch64(s + 8);
+ uint64_t c = Fetch64(s + len - 24);
+ uint64_t d = Fetch64(s + len - 32);
+ uint64_t e = Fetch64(s + 16) * k2;
+ uint64_t f = Fetch64(s + 24) * 9;
+ uint64_t g = Fetch64(s + len - 8);
+ uint64_t h = Fetch64(s + len - 16) * mul;
+ uint64_t u = Rotate(a + g, 43) + (Rotate(b, 30) + c) * 9;
+ uint64_t v = ((a + g) ^ d) + f + 1;
uint64_t w = y_absl::gbswap_64((u + v) * mul) + h;
- uint64_t x = Rotate(e + f, 42) + c;
+ uint64_t x = Rotate(e + f, 42) + c;
uint64_t y = (y_absl::gbswap_64((v + w) * mul) + g) * mul;
- uint64_t z = e + f + c;
+ uint64_t z = e + f + c;
a = y_absl::gbswap_64((x + z) * mul + y) + b;
- b = ShiftMix((z + a) * mul + d + h) * mul;
- return b + x;
-}
-
-uint64_t CityHash64(const char *s, size_t len) {
- if (len <= 32) {
- if (len <= 16) {
- return HashLen0to16(s, len);
- } else {
- return HashLen17to32(s, len);
- }
- } else if (len <= 64) {
- return HashLen33to64(s, len);
- }
-
- // For strings over 64 bytes we hash the end first, and then as we
- // loop we keep 56 bytes of state: v, w, x, y, and z.
- uint64_t x = Fetch64(s + len - 40);
- uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
- uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
+ b = ShiftMix((z + a) * mul + d + h) * mul;
+ return b + x;
+}
+
+uint64_t CityHash64(const char *s, size_t len) {
+ if (len <= 32) {
+ if (len <= 16) {
+ return HashLen0to16(s, len);
+ } else {
+ return HashLen17to32(s, len);
+ }
+ } else if (len <= 64) {
+ return HashLen33to64(s, len);
+ }
+
+ // For strings over 64 bytes we hash the end first, and then as we
+ // loop we keep 56 bytes of state: v, w, x, y, and z.
+ uint64_t x = Fetch64(s + len - 40);
+ uint64_t y = Fetch64(s + len - 16) + Fetch64(s + len - 56);
+ uint64_t z = HashLen16(Fetch64(s + len - 48) + len, Fetch64(s + len - 24));
std::pair<uint64_t, uint64_t> v =
WeakHashLen32WithSeeds(s + len - 64, len, z);
std::pair<uint64_t, uint64_t> w =
WeakHashLen32WithSeeds(s + len - 32, y + k1, x);
- x = x * k1 + Fetch64(s);
-
- // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
- len = (len - 1) & ~static_cast<size_t>(63);
- do {
- x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
- y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
- x ^= w.second;
- y += v.first + Fetch64(s + 40);
- z = Rotate(z + w.first, 33) * k1;
- v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
- w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
- std::swap(z, x);
- s += 64;
- len -= 64;
- } while (len != 0);
- return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
- HashLen16(v.second, w.second) + x);
-}
-
-uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
- return CityHash64WithSeeds(s, len, k2, seed);
-}
-
-uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
+ x = x * k1 + Fetch64(s);
+
+ // Decrease len to the nearest multiple of 64, and operate on 64-byte chunks.
+ len = (len - 1) & ~static_cast<size_t>(63);
+ do {
+ x = Rotate(x + y + v.first + Fetch64(s + 8), 37) * k1;
+ y = Rotate(y + v.second + Fetch64(s + 48), 42) * k1;
+ x ^= w.second;
+ y += v.first + Fetch64(s + 40);
+ z = Rotate(z + w.first, 33) * k1;
+ v = WeakHashLen32WithSeeds(s, v.second * k1, x + w.first);
+ w = WeakHashLen32WithSeeds(s + 32, z + w.second, y + Fetch64(s + 16));
+ std::swap(z, x);
+ s += 64;
+ len -= 64;
+ } while (len != 0);
+ return HashLen16(HashLen16(v.first, w.first) + ShiftMix(y) * k1 + z,
+ HashLen16(v.second, w.second) + x);
+}
+
+uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed) {
+ return CityHash64WithSeeds(s, len, k2, seed);
+}
+
+uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
uint64_t seed1) {
- return HashLen16(CityHash64(s, len) - seed0, seed1);
-}
-
-} // namespace hash_internal
+ return HashLen16(CityHash64(s, len) - seed0, seed1);
+}
+
+} // namespace hash_internal
ABSL_NAMESPACE_END
} // namespace y_absl
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.h b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.h
index d2b32f0068..6a229db1a5 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.h
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/city.h
@@ -1,78 +1,78 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// https://code.google.com/p/cityhash/
-//
-// This file provides a few functions for hashing strings. All of them are
-// high-quality functions in the sense that they pass standard tests such
-// as Austin Appleby's SMHasher. They are also fast.
-//
-// For 64-bit x86 code, on short strings, we don't know of anything faster than
-// CityHash64 that is of comparable quality. We believe our nearest competitor
-// is Murmur3. For 64-bit x86 code, CityHash64 is an excellent choice for hash
-// tables and most other hashing (excluding cryptography).
-//
-// For 32-bit x86 code, we don't know of anything faster than CityHash32 that
-// is of comparable quality. We believe our nearest competitor is Murmur3A.
-// (On 64-bit CPUs, it is typically faster to use the other CityHash variants.)
-//
-// Functions in the CityHash family are not suitable for cryptography.
-//
-// Please see CityHash's README file for more details on our performance
-// measurements and so on.
-//
-// WARNING: This code has been only lightly tested on big-endian platforms!
-// It is known to work well on little-endian platforms that have a small penalty
-// for unaligned reads, such as current Intel and AMD moderate-to-high-end CPUs.
-// It should work on all 32-bit and 64-bit platforms that allow unaligned reads;
-// bug reports are welcome.
-//
-// By the way, for some hash functions, given strings a and b, the hash
-// of a+b is easily derived from the hashes of a and b. This property
-// doesn't hold for any hash functions in this file.
-
-#ifndef ABSL_HASH_INTERNAL_CITY_H_
-#define ABSL_HASH_INTERNAL_CITY_H_
-
-#include <stdint.h>
-#include <stdlib.h> // for size_t.
-
-#include <utility>
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// https://code.google.com/p/cityhash/
+//
+// This file provides a few functions for hashing strings. All of them are
+// high-quality functions in the sense that they pass standard tests such
+// as Austin Appleby's SMHasher. They are also fast.
+//
+// For 64-bit x86 code, on short strings, we don't know of anything faster than
+// CityHash64 that is of comparable quality. We believe our nearest competitor
+// is Murmur3. For 64-bit x86 code, CityHash64 is an excellent choice for hash
+// tables and most other hashing (excluding cryptography).
+//
+// For 32-bit x86 code, we don't know of anything faster than CityHash32 that
+// is of comparable quality. We believe our nearest competitor is Murmur3A.
+// (On 64-bit CPUs, it is typically faster to use the other CityHash variants.)
+//
+// Functions in the CityHash family are not suitable for cryptography.
+//
+// Please see CityHash's README file for more details on our performance
+// measurements and so on.
+//
+// WARNING: This code has been only lightly tested on big-endian platforms!
+// It is known to work well on little-endian platforms that have a small penalty
+// for unaligned reads, such as current Intel and AMD moderate-to-high-end CPUs.
+// It should work on all 32-bit and 64-bit platforms that allow unaligned reads;
+// bug reports are welcome.
+//
+// By the way, for some hash functions, given strings a and b, the hash
+// of a+b is easily derived from the hashes of a and b. This property
+// doesn't hold for any hash functions in this file.
+
+#ifndef ABSL_HASH_INTERNAL_CITY_H_
+#define ABSL_HASH_INTERNAL_CITY_H_
+
+#include <stdint.h>
+#include <stdlib.h> // for size_t.
+#include <utility>
+
#include "y_absl/base/config.h"
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace hash_internal {
-
-// Hash function for a byte array.
-uint64_t CityHash64(const char *s, size_t len);
-
-// Hash function for a byte array. For convenience, a 64-bit seed is also
-// hashed into the result.
-uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed);
-
-// Hash function for a byte array. For convenience, two seeds are also
-// hashed into the result.
-uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
+namespace hash_internal {
+
+// Hash function for a byte array.
+uint64_t CityHash64(const char *s, size_t len);
+
+// Hash function for a byte array. For convenience, a 64-bit seed is also
+// hashed into the result.
+uint64_t CityHash64WithSeed(const char *s, size_t len, uint64_t seed);
+
+// Hash function for a byte array. For convenience, two seeds are also
+// hashed into the result.
+uint64_t CityHash64WithSeeds(const char *s, size_t len, uint64_t seed0,
uint64_t seed1);
-
-// Hash function for a byte array. Most useful in 32-bit binaries.
-uint32_t CityHash32(const char *s, size_t len);
-
-} // namespace hash_internal
+
+// Hash function for a byte array. Most useful in 32-bit binaries.
+uint32_t CityHash32(const char *s, size_t len);
+
+} // namespace hash_internal
ABSL_NAMESPACE_END
} // namespace y_absl
-
-#endif // ABSL_HASH_INTERNAL_CITY_H_
+
+#endif // ABSL_HASH_INTERNAL_CITY_H_
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.cc b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.cc
index fe075de43a..a8a6252323 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.cc
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.cc
@@ -1,51 +1,51 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
#include "y_absl/hash/internal/hash.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace hash_internal {
-
+namespace hash_internal {
+
uint64_t MixingHashState::CombineLargeContiguousImpl32(
uint64_t state, const unsigned char* first, size_t len) {
- while (len >= PiecewiseChunkSize()) {
+ while (len >= PiecewiseChunkSize()) {
state = Mix(state,
hash_internal::CityHash32(reinterpret_cast<const char*>(first),
PiecewiseChunkSize()));
- len -= PiecewiseChunkSize();
- first += PiecewiseChunkSize();
- }
- // Handle the remainder.
- return CombineContiguousImpl(state, first, len,
- std::integral_constant<int, 4>{});
-}
-
+ len -= PiecewiseChunkSize();
+ first += PiecewiseChunkSize();
+ }
+ // Handle the remainder.
+ return CombineContiguousImpl(state, first, len,
+ std::integral_constant<int, 4>{});
+}
+
uint64_t MixingHashState::CombineLargeContiguousImpl64(
uint64_t state, const unsigned char* first, size_t len) {
- while (len >= PiecewiseChunkSize()) {
+ while (len >= PiecewiseChunkSize()) {
state = Mix(state, Hash64(first, PiecewiseChunkSize()));
- len -= PiecewiseChunkSize();
- first += PiecewiseChunkSize();
- }
- // Handle the remainder.
- return CombineContiguousImpl(state, first, len,
- std::integral_constant<int, 8>{});
-}
-
+ len -= PiecewiseChunkSize();
+ first += PiecewiseChunkSize();
+ }
+ // Handle the remainder.
+ return CombineContiguousImpl(state, first, len,
+ std::integral_constant<int, 8>{});
+}
+
ABSL_CONST_INIT const void* const MixingHashState::kSeed = &kSeed;
-
+
// The salt array used by LowLevelHash. This array is NOT the mechanism used to
// make y_absl::Hash non-deterministic between program invocations. See `Seed()`
// for that mechanism.
@@ -64,6 +64,6 @@ uint64_t MixingHashState::LowLevelHashImpl(const unsigned char* data,
return LowLevelHash(data, len, Seed(), kHashSalt);
}
-} // namespace hash_internal
+} // namespace hash_internal
ABSL_NAMESPACE_END
} // namespace y_absl
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.h b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.h
index fcbe43accd..d44d650c21 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.h
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/hash.h
@@ -1,44 +1,44 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// -----------------------------------------------------------------------------
-// File: hash.h
-// -----------------------------------------------------------------------------
-//
-#ifndef ABSL_HASH_INTERNAL_HASH_H_
-#define ABSL_HASH_INTERNAL_HASH_H_
-
-#include <algorithm>
-#include <array>
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+//
+// -----------------------------------------------------------------------------
+// File: hash.h
+// -----------------------------------------------------------------------------
+//
+#ifndef ABSL_HASH_INTERNAL_HASH_H_
+#define ABSL_HASH_INTERNAL_HASH_H_
+
+#include <algorithm>
+#include <array>
#include <bitset>
-#include <cmath>
-#include <cstring>
-#include <deque>
-#include <forward_list>
-#include <functional>
-#include <iterator>
-#include <limits>
-#include <list>
-#include <map>
-#include <memory>
-#include <set>
+#include <cmath>
+#include <cstring>
+#include <deque>
+#include <forward_list>
+#include <functional>
+#include <iterator>
+#include <limits>
+#include <list>
+#include <map>
+#include <memory>
+#include <set>
#include <util/generic/string.h>
-#include <tuple>
-#include <type_traits>
-#include <utility>
-#include <vector>
-
+#include <tuple>
+#include <type_traits>
+#include <utility>
+#include <vector>
+
#include "y_absl/base/config.h"
#include "y_absl/base/internal/unaligned_access.h"
#include "y_absl/base/port.h"
@@ -51,15 +51,15 @@
#include "y_absl/types/optional.h"
#include "y_absl/types/variant.h"
#include "y_absl/utility/utility.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace hash_internal {
-
-// Internal detail: Large buffers are hashed in smaller chunks. This function
-// returns the size of these chunks.
+namespace hash_internal {
+
+// Internal detail: Large buffers are hashed in smaller chunks. This function
+// returns the size of these chunks.
constexpr size_t PiecewiseChunkSize() { return 1024; }
-
+
// PiecewiseCombiner
//
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise
@@ -115,393 +115,393 @@ class PiecewiseCombiner {
size_t position_;
};
-// HashStateBase
-//
-// A hash state object represents an intermediate state in the computation
-// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
-// base class for hash state implementations. Developers adding type support
+// HashStateBase
+//
+// A hash state object represents an intermediate state in the computation
+// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style
+// base class for hash state implementations. Developers adding type support
// for `y_absl::Hash` should not rely on any parts of the state object other than
-// the following member functions:
-//
-// * HashStateBase::combine()
-// * HashStateBase::combine_contiguous()
-//
-// A derived hash state class of type `H` must provide a static member function
-// with a signature similar to the following:
-//
-// `static H combine_contiguous(H state, const unsigned char*, size_t)`.
-//
-// `HashStateBase` will provide a complete implementation for a hash state
-// object in terms of this method.
-//
-// Example:
-//
-// // Use CRTP to define your derived class.
-// struct MyHashState : HashStateBase<MyHashState> {
-// static H combine_contiguous(H state, const unsigned char*, size_t);
-// using MyHashState::HashStateBase::combine;
-// using MyHashState::HashStateBase::combine_contiguous;
-// };
-template <typename H>
-class HashStateBase {
- public:
- // HashStateBase::combine()
- //
- // Combines an arbitrary number of values into a hash state, returning the
- // updated state.
- //
- // Each of the value types `T` must be separately hashable by the Abseil
- // hashing framework.
- //
- // NOTE:
- //
- // state = H::combine(std::move(state), value1, value2, value3);
- //
- // is guaranteed to produce the same hash expansion as:
- //
- // state = H::combine(std::move(state), value1);
- // state = H::combine(std::move(state), value2);
- // state = H::combine(std::move(state), value3);
- template <typename T, typename... Ts>
- static H combine(H state, const T& value, const Ts&... values);
- static H combine(H state) { return state; }
-
- // HashStateBase::combine_contiguous()
- //
- // Combines a contiguous array of `size` elements into a hash state, returning
- // the updated state.
- //
- // NOTE:
- //
- // state = H::combine_contiguous(std::move(state), data, size);
- //
- // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
- // perform internal optimizations). If you need this guarantee, use the
- // for-loop instead.
- template <typename T>
- static H combine_contiguous(H state, const T* data, size_t size);
-
+// the following member functions:
+//
+// * HashStateBase::combine()
+// * HashStateBase::combine_contiguous()
+//
+// A derived hash state class of type `H` must provide a static member function
+// with a signature similar to the following:
+//
+// `static H combine_contiguous(H state, const unsigned char*, size_t)`.
+//
+// `HashStateBase` will provide a complete implementation for a hash state
+// object in terms of this method.
+//
+// Example:
+//
+// // Use CRTP to define your derived class.
+// struct MyHashState : HashStateBase<MyHashState> {
+// static H combine_contiguous(H state, const unsigned char*, size_t);
+// using MyHashState::HashStateBase::combine;
+// using MyHashState::HashStateBase::combine_contiguous;
+// };
+template <typename H>
+class HashStateBase {
+ public:
+ // HashStateBase::combine()
+ //
+ // Combines an arbitrary number of values into a hash state, returning the
+ // updated state.
+ //
+ // Each of the value types `T` must be separately hashable by the Abseil
+ // hashing framework.
+ //
+ // NOTE:
+ //
+ // state = H::combine(std::move(state), value1, value2, value3);
+ //
+ // is guaranteed to produce the same hash expansion as:
+ //
+ // state = H::combine(std::move(state), value1);
+ // state = H::combine(std::move(state), value2);
+ // state = H::combine(std::move(state), value3);
+ template <typename T, typename... Ts>
+ static H combine(H state, const T& value, const Ts&... values);
+ static H combine(H state) { return state; }
+
+ // HashStateBase::combine_contiguous()
+ //
+ // Combines a contiguous array of `size` elements into a hash state, returning
+ // the updated state.
+ //
+ // NOTE:
+ //
+ // state = H::combine_contiguous(std::move(state), data, size);
+ //
+ // is NOT guaranteed to produce the same hash expansion as a for-loop (it may
+ // perform internal optimizations). If you need this guarantee, use the
+ // for-loop instead.
+ template <typename T>
+ static H combine_contiguous(H state, const T* data, size_t size);
+
using AbslInternalPiecewiseCombiner = PiecewiseCombiner;
-};
-
-// is_uniquely_represented
-//
-// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
-// is uniquely represented.
-//
-// A type is "uniquely represented" if two equal values of that type are
-// guaranteed to have the same bytes in their underlying storage. In other
-// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
-// zero. This property cannot be detected automatically, so this trait is false
-// by default, but can be specialized by types that wish to assert that they are
-// uniquely represented. This makes them eligible for certain optimizations.
-//
-// If you have any doubt whatsoever, do not specialize this template.
-// The default is completely safe, and merely disables some optimizations
-// that will not matter for most types. Specializing this template,
-// on the other hand, can be very hazardous.
-//
-// To be uniquely represented, a type must not have multiple ways of
-// representing the same value; for example, float and double are not
-// uniquely represented, because they have distinct representations for
-// +0 and -0. Furthermore, the type's byte representation must consist
-// solely of user-controlled data, with no padding bits and no compiler-
-// controlled data such as vptrs or sanitizer metadata. This is usually
-// very difficult to guarantee, because in most cases the compiler can
-// insert data and padding bits at its own discretion.
-//
-// If you specialize this template for a type `T`, you must do so in the file
-// that defines that type (or in this file). If you define that specialization
-// anywhere else, `is_uniquely_represented<T>` could have different meanings
-// in different places.
-//
-// The Enable parameter is meaningless; it is provided as a convenience,
-// to support certain SFINAE techniques when defining specializations.
-template <typename T, typename Enable = void>
-struct is_uniquely_represented : std::false_type {};
-
-// is_uniquely_represented<unsigned char>
-//
-// unsigned char is a synonym for "byte", so it is guaranteed to be
-// uniquely represented.
-template <>
-struct is_uniquely_represented<unsigned char> : std::true_type {};
-
-// is_uniquely_represented for non-standard integral types
-//
-// Integral types other than bool should be uniquely represented on any
-// platform that this will plausibly be ported to.
-template <typename Integral>
-struct is_uniquely_represented<
- Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
- : std::true_type {};
-
-// is_uniquely_represented<bool>
-//
-//
-template <>
-struct is_uniquely_represented<bool> : std::false_type {};
-
-// hash_bytes()
-//
-// Convenience function that combines `hash_state` with the byte representation
-// of `value`.
-template <typename H, typename T>
-H hash_bytes(H hash_state, const T& value) {
- const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
- return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Basic Types
-// -----------------------------------------------------------------------------
-
-// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
-// allows us to block lexical scope lookup when doing an unqualified call to
-// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
-// only be found via ADL.
-
-// AbslHashValue() for hashing bool values
-//
-// We use SFINAE to ensure that this overload only accepts bool, not types that
-// are convertible to bool.
-template <typename H, typename B>
-typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
- H hash_state, B value) {
- return H::combine(std::move(hash_state),
- static_cast<unsigned char>(value ? 1 : 0));
-}
-
-// AbslHashValue() for hashing enum values
-template <typename H, typename Enum>
-typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
- H hash_state, Enum e) {
- // In practice, we could almost certainly just invoke hash_bytes directly,
- // but it's possible that a sanitizer might one day want to
- // store data in the unused bits of an enum. To avoid that risk, we
- // convert to the underlying type before hashing. Hopefully this will get
- // optimized away; if not, we can reopen discussion with c-toolchain-team.
- return H::combine(std::move(hash_state),
- static_cast<typename std::underlying_type<Enum>::type>(e));
-}
-// AbslHashValue() for hashing floating-point values
-template <typename H, typename Float>
-typename std::enable_if<std::is_same<Float, float>::value ||
- std::is_same<Float, double>::value,
- H>::type
-AbslHashValue(H hash_state, Float value) {
- return hash_internal::hash_bytes(std::move(hash_state),
- value == 0 ? 0 : value);
-}
-
-// Long double has the property that it might have extra unused bytes in it.
-// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
-// of it. This means we can't use hash_bytes on a long double and have to
-// convert it to something else first.
-template <typename H, typename LongDouble>
-typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
-AbslHashValue(H hash_state, LongDouble value) {
- const int category = std::fpclassify(value);
- switch (category) {
- case FP_INFINITE:
- // Add the sign bit to differentiate between +Inf and -Inf
- hash_state = H::combine(std::move(hash_state), std::signbit(value));
- break;
-
- case FP_NAN:
- case FP_ZERO:
- default:
- // Category is enough for these.
- break;
-
- case FP_NORMAL:
- case FP_SUBNORMAL:
- // We can't convert `value` directly to double because this would have
- // undefined behavior if the value is out of range.
- // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
- // guaranteed to be in range for `double`. The truncation is
- // implementation defined, but that works as long as it is deterministic.
- int exp;
- auto mantissa = static_cast<double>(std::frexp(value, &exp));
- hash_state = H::combine(std::move(hash_state), mantissa, exp);
- }
-
- return H::combine(std::move(hash_state), category);
-}
-
-// AbslHashValue() for hashing pointers
-template <typename H, typename T>
-H AbslHashValue(H hash_state, T* ptr) {
- auto v = reinterpret_cast<uintptr_t>(ptr);
- // Due to alignment, pointers tend to have low bits as zero, and the next few
- // bits follow a pattern since they are also multiples of some base value.
- // Mixing the pointer twice helps prevent stuck low bits for certain alignment
- // values.
- return H::combine(std::move(hash_state), v, v);
-}
-
-// AbslHashValue() for hashing nullptr_t
-template <typename H>
-H AbslHashValue(H hash_state, std::nullptr_t) {
- return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Composite Types
-// -----------------------------------------------------------------------------
-
-// is_hashable()
-//
+};
+
+// is_uniquely_represented
+//
+// `is_uniquely_represented<T>` is a trait class that indicates whether `T`
+// is uniquely represented.
+//
+// A type is "uniquely represented" if two equal values of that type are
+// guaranteed to have the same bytes in their underlying storage. In other
+// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be
+// zero. This property cannot be detected automatically, so this trait is false
+// by default, but can be specialized by types that wish to assert that they are
+// uniquely represented. This makes them eligible for certain optimizations.
+//
+// If you have any doubt whatsoever, do not specialize this template.
+// The default is completely safe, and merely disables some optimizations
+// that will not matter for most types. Specializing this template,
+// on the other hand, can be very hazardous.
+//
+// To be uniquely represented, a type must not have multiple ways of
+// representing the same value; for example, float and double are not
+// uniquely represented, because they have distinct representations for
+// +0 and -0. Furthermore, the type's byte representation must consist
+// solely of user-controlled data, with no padding bits and no compiler-
+// controlled data such as vptrs or sanitizer metadata. This is usually
+// very difficult to guarantee, because in most cases the compiler can
+// insert data and padding bits at its own discretion.
+//
+// If you specialize this template for a type `T`, you must do so in the file
+// that defines that type (or in this file). If you define that specialization
+// anywhere else, `is_uniquely_represented<T>` could have different meanings
+// in different places.
+//
+// The Enable parameter is meaningless; it is provided as a convenience,
+// to support certain SFINAE techniques when defining specializations.
+template <typename T, typename Enable = void>
+struct is_uniquely_represented : std::false_type {};
+
+// is_uniquely_represented<unsigned char>
+//
+// unsigned char is a synonym for "byte", so it is guaranteed to be
+// uniquely represented.
+template <>
+struct is_uniquely_represented<unsigned char> : std::true_type {};
+
+// is_uniquely_represented for non-standard integral types
+//
+// Integral types other than bool should be uniquely represented on any
+// platform that this will plausibly be ported to.
+template <typename Integral>
+struct is_uniquely_represented<
+ Integral, typename std::enable_if<std::is_integral<Integral>::value>::type>
+ : std::true_type {};
+
+// is_uniquely_represented<bool>
+//
+//
+template <>
+struct is_uniquely_represented<bool> : std::false_type {};
+
+// hash_bytes()
+//
+// Convenience function that combines `hash_state` with the byte representation
+// of `value`.
+template <typename H, typename T>
+H hash_bytes(H hash_state, const T& value) {
+ const unsigned char* start = reinterpret_cast<const unsigned char*>(&value);
+ return H::combine_contiguous(std::move(hash_state), start, sizeof(value));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Basic Types
+// -----------------------------------------------------------------------------
+
+// Note: Default `AbslHashValue` implementations live in `hash_internal`. This
+// allows us to block lexical scope lookup when doing an unqualified call to
+// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can
+// only be found via ADL.
+
+// AbslHashValue() for hashing bool values
+//
+// We use SFINAE to ensure that this overload only accepts bool, not types that
+// are convertible to bool.
+template <typename H, typename B>
+typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue(
+ H hash_state, B value) {
+ return H::combine(std::move(hash_state),
+ static_cast<unsigned char>(value ? 1 : 0));
+}
+
+// AbslHashValue() for hashing enum values
+template <typename H, typename Enum>
+typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue(
+ H hash_state, Enum e) {
+ // In practice, we could almost certainly just invoke hash_bytes directly,
+ // but it's possible that a sanitizer might one day want to
+ // store data in the unused bits of an enum. To avoid that risk, we
+ // convert to the underlying type before hashing. Hopefully this will get
+ // optimized away; if not, we can reopen discussion with c-toolchain-team.
+ return H::combine(std::move(hash_state),
+ static_cast<typename std::underlying_type<Enum>::type>(e));
+}
+// AbslHashValue() for hashing floating-point values
+template <typename H, typename Float>
+typename std::enable_if<std::is_same<Float, float>::value ||
+ std::is_same<Float, double>::value,
+ H>::type
+AbslHashValue(H hash_state, Float value) {
+ return hash_internal::hash_bytes(std::move(hash_state),
+ value == 0 ? 0 : value);
+}
+
+// Long double has the property that it might have extra unused bytes in it.
+// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits
+// of it. This means we can't use hash_bytes on a long double and have to
+// convert it to something else first.
+template <typename H, typename LongDouble>
+typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type
+AbslHashValue(H hash_state, LongDouble value) {
+ const int category = std::fpclassify(value);
+ switch (category) {
+ case FP_INFINITE:
+ // Add the sign bit to differentiate between +Inf and -Inf
+ hash_state = H::combine(std::move(hash_state), std::signbit(value));
+ break;
+
+ case FP_NAN:
+ case FP_ZERO:
+ default:
+ // Category is enough for these.
+ break;
+
+ case FP_NORMAL:
+ case FP_SUBNORMAL:
+ // We can't convert `value` directly to double because this would have
+ // undefined behavior if the value is out of range.
+ // std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is
+ // guaranteed to be in range for `double`. The truncation is
+ // implementation defined, but that works as long as it is deterministic.
+ int exp;
+ auto mantissa = static_cast<double>(std::frexp(value, &exp));
+ hash_state = H::combine(std::move(hash_state), mantissa, exp);
+ }
+
+ return H::combine(std::move(hash_state), category);
+}
+
+// AbslHashValue() for hashing pointers
+template <typename H, typename T>
+H AbslHashValue(H hash_state, T* ptr) {
+ auto v = reinterpret_cast<uintptr_t>(ptr);
+ // Due to alignment, pointers tend to have low bits as zero, and the next few
+ // bits follow a pattern since they are also multiples of some base value.
+ // Mixing the pointer twice helps prevent stuck low bits for certain alignment
+ // values.
+ return H::combine(std::move(hash_state), v, v);
+}
+
+// AbslHashValue() for hashing nullptr_t
+template <typename H>
+H AbslHashValue(H hash_state, std::nullptr_t) {
+ return H::combine(std::move(hash_state), static_cast<void*>(nullptr));
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Composite Types
+// -----------------------------------------------------------------------------
+
+// is_hashable()
+//
// Trait class which returns true if T is hashable by the y_absl::Hash framework.
-// Used for the AbslHashValue implementations for composite types below.
-template <typename T>
-struct is_hashable;
-
-// AbslHashValue() for hashing pairs
-template <typename H, typename T1, typename T2>
-typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
- H>::type
-AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
- return H::combine(std::move(hash_state), p.first, p.second);
-}
-
-// hash_tuple()
-//
-// Helper function for hashing a tuple. The third argument should
-// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
-template <typename H, typename Tuple, size_t... Is>
+// Used for the AbslHashValue implementations for composite types below.
+template <typename T>
+struct is_hashable;
+
+// AbslHashValue() for hashing pairs
+template <typename H, typename T1, typename T2>
+typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::pair<T1, T2>& p) {
+ return H::combine(std::move(hash_state), p.first, p.second);
+}
+
+// hash_tuple()
+//
+// Helper function for hashing a tuple. The third argument should
+// be an index_sequence running from 0 to tuple_size<Tuple> - 1.
+template <typename H, typename Tuple, size_t... Is>
H hash_tuple(H hash_state, const Tuple& t, y_absl::index_sequence<Is...>) {
- return H::combine(std::move(hash_state), std::get<Is>(t)...);
-}
-
-// AbslHashValue for hashing tuples
-template <typename H, typename... Ts>
-#if defined(_MSC_VER)
-// This SFINAE gets MSVC confused under some conditions. Let's just disable it
-// for now.
-H
+ return H::combine(std::move(hash_state), std::get<Is>(t)...);
+}
+
+// AbslHashValue for hashing tuples
+template <typename H, typename... Ts>
+#if defined(_MSC_VER)
+// This SFINAE gets MSVC confused under some conditions. Let's just disable it
+// for now.
+H
#else // _MSC_VER
typename std::enable_if<y_absl::conjunction<is_hashable<Ts>...>::value, H>::type
-#endif // _MSC_VER
-AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
- return hash_internal::hash_tuple(std::move(hash_state), t,
+#endif // _MSC_VER
+AbslHashValue(H hash_state, const std::tuple<Ts...>& t) {
+ return hash_internal::hash_tuple(std::move(hash_state), t,
y_absl::make_index_sequence<sizeof...(Ts)>());
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Pointers
-// -----------------------------------------------------------------------------
-
-// AbslHashValue for hashing unique_ptr
-template <typename H, typename T, typename D>
-H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
- return H::combine(std::move(hash_state), ptr.get());
-}
-
-// AbslHashValue for hashing shared_ptr
-template <typename H, typename T>
-H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
- return H::combine(std::move(hash_state), ptr.get());
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for String-Like Types
-// -----------------------------------------------------------------------------
-
-// AbslHashValue for hashing strings
-//
-// All the string-like types supported here provide the same hash expansion for
-// the same character sequence. These types are:
-//
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Pointers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing unique_ptr
+template <typename H, typename T, typename D>
+H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) {
+ return H::combine(std::move(hash_state), ptr.get());
+}
+
+// AbslHashValue for hashing shared_ptr
+template <typename H, typename T>
+H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) {
+ return H::combine(std::move(hash_state), ptr.get());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for String-Like Types
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing strings
+//
+// All the string-like types supported here provide the same hash expansion for
+// the same character sequence. These types are:
+//
// - `y_absl::Cord`
// - `TString` (and std::basic_string<char, std::char_traits<char>, A> for
-// any allocator A)
+// any allocator A)
// - `y_absl::string_view` and `std::string_view`
-//
-// For simplicity, we currently support only `char` strings. This support may
-// be broadened, if necessary, but with some caution - this overload would
-// misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
-// on the underlying character type.
-template <typename H>
+//
+// For simplicity, we currently support only `char` strings. This support may
+// be broadened, if necessary, but with some caution - this overload would
+// misbehave in cases where the traits' `eq()` member isn't equivalent to `==`
+// on the underlying character type.
+template <typename H>
H AbslHashValue(H hash_state, y_absl::string_view str) {
- return H::combine(
- H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
- str.size());
-}
-
-// Support std::wstring, std::u16string and std::u32string.
-template <typename Char, typename Alloc, typename H,
+ return H::combine(
+ H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
+ str.size());
+}
+
+// Support std::wstring, std::u16string and std::u32string.
+template <typename Char, typename Alloc, typename H,
typename = y_absl::enable_if_t<std::is_same<Char, wchar_t>::value ||
- std::is_same<Char, char16_t>::value ||
- std::is_same<Char, char32_t>::value>>
-H AbslHashValue(
- H hash_state,
- const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
- return H::combine(
- H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
- str.size());
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Sequence Containers
-// -----------------------------------------------------------------------------
-
-// AbslHashValue for hashing std::array
-template <typename H, typename T, size_t N>
-typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::array<T, N>& array) {
- return H::combine_contiguous(std::move(hash_state), array.data(),
- array.size());
-}
-
-// AbslHashValue for hashing std::deque
-template <typename H, typename T, typename Allocator>
-typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::deque<T, Allocator>& deque) {
- // TODO(gromer): investigate a more efficient implementation taking
- // advantage of the chunk structure.
- for (const auto& t : deque) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), deque.size());
-}
-
-// AbslHashValue for hashing std::forward_list
-template <typename H, typename T, typename Allocator>
-typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::forward_list<T, Allocator>& list) {
- size_t size = 0;
- for (const T& t : list) {
- hash_state = H::combine(std::move(hash_state), t);
- ++size;
- }
- return H::combine(std::move(hash_state), size);
-}
-
-// AbslHashValue for hashing std::list
-template <typename H, typename T, typename Allocator>
-typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
- H hash_state, const std::list<T, Allocator>& list) {
- for (const auto& t : list) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), list.size());
-}
-
-// AbslHashValue for hashing std::vector
-//
+ std::is_same<Char, char16_t>::value ||
+ std::is_same<Char, char32_t>::value>>
+H AbslHashValue(
+ H hash_state,
+ const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) {
+ return H::combine(
+ H::combine_contiguous(std::move(hash_state), str.data(), str.size()),
+ str.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Sequence Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::array
+template <typename H, typename T, size_t N>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::array<T, N>& array) {
+ return H::combine_contiguous(std::move(hash_state), array.data(),
+ array.size());
+}
+
+// AbslHashValue for hashing std::deque
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::deque<T, Allocator>& deque) {
+ // TODO(gromer): investigate a more efficient implementation taking
+ // advantage of the chunk structure.
+ for (const auto& t : deque) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), deque.size());
+}
+
+// AbslHashValue for hashing std::forward_list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::forward_list<T, Allocator>& list) {
+ size_t size = 0;
+ for (const T& t : list) {
+ hash_state = H::combine(std::move(hash_state), t);
+ ++size;
+ }
+ return H::combine(std::move(hash_state), size);
+}
+
+// AbslHashValue for hashing std::list
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+ H hash_state, const std::list<T, Allocator>& list) {
+ for (const auto& t : list) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), list.size());
+}
+
+// AbslHashValue for hashing std::vector
+//
// Do not use this for vector<bool> on platforms that have a working
// implementation of std::hash. It does not have a .data(), and a fallback for
// std::hash<> is most likely faster.
-template <typename H, typename T, typename Allocator>
-typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
- H>::type
-AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
- return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
- vector.size()),
- vector.size());
-}
-
+template <typename H, typename T, typename Allocator>
+typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
+ return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(),
+ vector.size()),
+ vector.size());
+}
+
#if defined(ABSL_IS_BIG_ENDIAN) && \
(defined(__GLIBCXX__) || defined(__GLIBCPP__))
// AbslHashValue for hashing std::vector<bool>
@@ -523,59 +523,59 @@ AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) {
}
#endif
-// -----------------------------------------------------------------------------
-// AbslHashValue for Ordered Associative Containers
-// -----------------------------------------------------------------------------
-
-// AbslHashValue for hashing std::map
-template <typename H, typename Key, typename T, typename Compare,
- typename Allocator>
-typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
-AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
- for (const auto& t : map) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), map.size());
-}
-
-// AbslHashValue for hashing std::multimap
-template <typename H, typename Key, typename T, typename Compare,
- typename Allocator>
-typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
- H>::type
-AbslHashValue(H hash_state,
- const std::multimap<Key, T, Compare, Allocator>& map) {
- for (const auto& t : map) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), map.size());
-}
-
-// AbslHashValue for hashing std::set
-template <typename H, typename Key, typename Compare, typename Allocator>
-typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state, const std::set<Key, Compare, Allocator>& set) {
- for (const auto& t : set) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), set.size());
-}
-
-// AbslHashValue for hashing std::multiset
-template <typename H, typename Key, typename Compare, typename Allocator>
-typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
- H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
- for (const auto& t : set) {
- hash_state = H::combine(std::move(hash_state), t);
- }
- return H::combine(std::move(hash_state), set.size());
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Wrapper Types
-// -----------------------------------------------------------------------------
-
+// -----------------------------------------------------------------------------
+// AbslHashValue for Ordered Associative Containers
+// -----------------------------------------------------------------------------
+
+// AbslHashValue for hashing std::map
+template <typename H, typename Key, typename T, typename Compare,
+ typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+ H>::type
+AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) {
+ for (const auto& t : map) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::multimap
+template <typename H, typename Key, typename T, typename Compare,
+ typename Allocator>
+typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value,
+ H>::type
+AbslHashValue(H hash_state,
+ const std::multimap<Key, T, Compare, Allocator>& map) {
+ for (const auto& t : map) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), map.size());
+}
+
+// AbslHashValue for hashing std::set
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+ H hash_state, const std::set<Key, Compare, Allocator>& set) {
+ for (const auto& t : set) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), set.size());
+}
+
+// AbslHashValue for hashing std::multiset
+template <typename H, typename Key, typename Compare, typename Allocator>
+typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue(
+ H hash_state, const std::multiset<Key, Compare, Allocator>& set) {
+ for (const auto& t : set) {
+ hash_state = H::combine(std::move(hash_state), t);
+ }
+ return H::combine(std::move(hash_state), set.size());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Wrapper Types
+// -----------------------------------------------------------------------------
+
// AbslHashValue for hashing std::reference_wrapper
template <typename H, typename T>
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
@@ -584,42 +584,42 @@ typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
}
// AbslHashValue for hashing y_absl::optional
-template <typename H, typename T>
-typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
+template <typename H, typename T>
+typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue(
H hash_state, const y_absl::optional<T>& opt) {
- if (opt) hash_state = H::combine(std::move(hash_state), *opt);
- return H::combine(std::move(hash_state), opt.has_value());
-}
-
-// VariantVisitor
-template <typename H>
-struct VariantVisitor {
- H&& hash_state;
- template <typename T>
- H operator()(const T& t) const {
- return H::combine(std::move(hash_state), t);
- }
-};
-
+ if (opt) hash_state = H::combine(std::move(hash_state), *opt);
+ return H::combine(std::move(hash_state), opt.has_value());
+}
+
+// VariantVisitor
+template <typename H>
+struct VariantVisitor {
+ H&& hash_state;
+ template <typename T>
+ H operator()(const T& t) const {
+ return H::combine(std::move(hash_state), t);
+ }
+};
+
// AbslHashValue for hashing y_absl::variant
-template <typename H, typename... T>
-typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
+template <typename H, typename... T>
+typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type
AbslHashValue(H hash_state, const y_absl::variant<T...>& v) {
- if (!v.valueless_by_exception()) {
+ if (!v.valueless_by_exception()) {
hash_state = y_absl::visit(VariantVisitor<H>{std::move(hash_state)}, v);
- }
- return H::combine(std::move(hash_state), v.index());
-}
-
-// -----------------------------------------------------------------------------
-// AbslHashValue for Other Types
-// -----------------------------------------------------------------------------
-
+ }
+ return H::combine(std::move(hash_state), v.index());
+}
+
+// -----------------------------------------------------------------------------
+// AbslHashValue for Other Types
+// -----------------------------------------------------------------------------
+
// AbslHashValue for hashing std::bitset is not defined on Little Endian
// platforms, for the same reason as for vector<bool> (see std::vector above):
// It does not expose the raw bytes, and a fallback to std::hash<> is most
// likely faster.
-
+
#if defined(ABSL_IS_BIG_ENDIAN) && \
(defined(__GLIBCXX__) || defined(__GLIBCPP__))
// AbslHashValue for hashing std::bitset
@@ -638,219 +638,219 @@ H AbslHashValue(H hash_state, const std::bitset<N>& set) {
}
#endif
-// -----------------------------------------------------------------------------
-
-// hash_range_or_bytes()
-//
-// Mixes all values in the range [data, data+size) into the hash state.
-// This overload accepts only uniquely-represented types, and hashes them by
-// hashing the entire range of bytes.
-template <typename H, typename T>
-typename std::enable_if<is_uniquely_represented<T>::value, H>::type
-hash_range_or_bytes(H hash_state, const T* data, size_t size) {
- const auto* bytes = reinterpret_cast<const unsigned char*>(data);
- return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
-}
-
-// hash_range_or_bytes()
-template <typename H, typename T>
-typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
-hash_range_or_bytes(H hash_state, const T* data, size_t size) {
- for (const auto end = data + size; data < end; ++data) {
- hash_state = H::combine(std::move(hash_state), *data);
- }
- return hash_state;
-}
-
-#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
- ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
-#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
-#else
-#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
-#endif
-
-// HashSelect
-//
-// Type trait to select the appropriate hash implementation to use.
-// HashSelect::type<T> will give the proper hash implementation, to be invoked
-// as:
-// HashSelect::type<T>::Invoke(state, value)
-// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
-// valid `Invoke` function. Types that are not hashable will have a ::value of
-// `false`.
-struct HashSelect {
- private:
- struct State : HashStateBase<State> {
- static State combine_contiguous(State hash_state, const unsigned char*,
- size_t);
- using State::HashStateBase::combine_contiguous;
- };
-
- struct UniquelyRepresentedProbe {
- template <typename H, typename T>
- static auto Invoke(H state, const T& value)
+// -----------------------------------------------------------------------------
+
+// hash_range_or_bytes()
+//
+// Mixes all values in the range [data, data+size) into the hash state.
+// This overload accepts only uniquely-represented types, and hashes them by
+// hashing the entire range of bytes.
+template <typename H, typename T>
+typename std::enable_if<is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+ const auto* bytes = reinterpret_cast<const unsigned char*>(data);
+ return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size);
+}
+
+// hash_range_or_bytes()
+template <typename H, typename T>
+typename std::enable_if<!is_uniquely_represented<T>::value, H>::type
+hash_range_or_bytes(H hash_state, const T* data, size_t size) {
+ for (const auto end = data + size; data < end; ++data) {
+ hash_state = H::combine(std::move(hash_state), *data);
+ }
+ return hash_state;
+}
+
+#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \
+ ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_
+#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1
+#else
+#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0
+#endif
+
+// HashSelect
+//
+// Type trait to select the appropriate hash implementation to use.
+// HashSelect::type<T> will give the proper hash implementation, to be invoked
+// as:
+// HashSelect::type<T>::Invoke(state, value)
+// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a
+// valid `Invoke` function. Types that are not hashable will have a ::value of
+// `false`.
+struct HashSelect {
+ private:
+ struct State : HashStateBase<State> {
+ static State combine_contiguous(State hash_state, const unsigned char*,
+ size_t);
+ using State::HashStateBase::combine_contiguous;
+ };
+
+ struct UniquelyRepresentedProbe {
+ template <typename H, typename T>
+ static auto Invoke(H state, const T& value)
-> y_absl::enable_if_t<is_uniquely_represented<T>::value, H> {
- return hash_internal::hash_bytes(std::move(state), value);
- }
- };
-
- struct HashValueProbe {
- template <typename H, typename T>
+ return hash_internal::hash_bytes(std::move(state), value);
+ }
+ };
+
+ struct HashValueProbe {
+ template <typename H, typename T>
static auto Invoke(H state, const T& value) -> y_absl::enable_if_t<
- std::is_same<H,
- decltype(AbslHashValue(std::move(state), value))>::value,
- H> {
- return AbslHashValue(std::move(state), value);
- }
- };
-
- struct LegacyHashProbe {
-#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
- template <typename H, typename T>
+ std::is_same<H,
+ decltype(AbslHashValue(std::move(state), value))>::value,
+ H> {
+ return AbslHashValue(std::move(state), value);
+ }
+ };
+
+ struct LegacyHashProbe {
+#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ template <typename H, typename T>
static auto Invoke(H state, const T& value) -> y_absl::enable_if_t<
- std::is_convertible<
- decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
- size_t>::value,
- H> {
- return hash_internal::hash_bytes(
- std::move(state),
- ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
- }
-#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
- };
-
- struct StdHashProbe {
- template <typename H, typename T>
- static auto Invoke(H state, const T& value)
+ std::is_convertible<
+ decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)),
+ size_t>::value,
+ H> {
+ return hash_internal::hash_bytes(
+ std::move(state),
+ ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value));
+ }
+#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_
+ };
+
+ struct StdHashProbe {
+ template <typename H, typename T>
+ static auto Invoke(H state, const T& value)
-> y_absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> {
- return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
- }
- };
-
- template <typename Hash, typename T>
- struct Probe : Hash {
- private:
- template <typename H, typename = decltype(H::Invoke(
- std::declval<State>(), std::declval<const T&>()))>
- static std::true_type Test(int);
- template <typename U>
- static std::false_type Test(char);
-
- public:
- static constexpr bool value = decltype(Test<Hash>(0))::value;
- };
-
- public:
- // Probe each implementation in order.
- // disjunction provides short circuiting wrt instantiation.
- template <typename T>
+ return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value));
+ }
+ };
+
+ template <typename Hash, typename T>
+ struct Probe : Hash {
+ private:
+ template <typename H, typename = decltype(H::Invoke(
+ std::declval<State>(), std::declval<const T&>()))>
+ static std::true_type Test(int);
+ template <typename U>
+ static std::false_type Test(char);
+
+ public:
+ static constexpr bool value = decltype(Test<Hash>(0))::value;
+ };
+
+ public:
+ // Probe each implementation in order.
+ // disjunction provides short circuiting wrt instantiation.
+ template <typename T>
using Apply = y_absl::disjunction< //
- Probe<UniquelyRepresentedProbe, T>, //
- Probe<HashValueProbe, T>, //
- Probe<LegacyHashProbe, T>, //
- Probe<StdHashProbe, T>, //
- std::false_type>;
-};
-
-template <typename T>
-struct is_hashable
- : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
-
+ Probe<UniquelyRepresentedProbe, T>, //
+ Probe<HashValueProbe, T>, //
+ Probe<LegacyHashProbe, T>, //
+ Probe<StdHashProbe, T>, //
+ std::false_type>;
+};
+
+template <typename T>
+struct is_hashable
+ : std::integral_constant<bool, HashSelect::template Apply<T>::value> {};
+
// MixingHashState
class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
// y_absl::uint128 is not an alias or a thin wrapper around the intrinsic.
- // We use the intrinsic when available to improve performance.
-#ifdef ABSL_HAVE_INTRINSIC_INT128
- using uint128 = __uint128_t;
-#else // ABSL_HAVE_INTRINSIC_INT128
+ // We use the intrinsic when available to improve performance.
+#ifdef ABSL_HAVE_INTRINSIC_INT128
+ using uint128 = __uint128_t;
+#else // ABSL_HAVE_INTRINSIC_INT128
using uint128 = y_absl::uint128;
-#endif // ABSL_HAVE_INTRINSIC_INT128
-
- static constexpr uint64_t kMul =
- sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
- : uint64_t{0x9ddfea08eb382d69};
-
- template <typename T>
- using IntegralFastPath =
- conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
-
- public:
- // Move only
+#endif // ABSL_HAVE_INTRINSIC_INT128
+
+ static constexpr uint64_t kMul =
+ sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51}
+ : uint64_t{0x9ddfea08eb382d69};
+
+ template <typename T>
+ using IntegralFastPath =
+ conjunction<std::is_integral<T>, is_uniquely_represented<T>>;
+
+ public:
+ // Move only
MixingHashState(MixingHashState&&) = default;
MixingHashState& operator=(MixingHashState&&) = default;
-
+
// MixingHashState::combine_contiguous()
- //
- // Fundamental base case for hash recursion: mixes the given range of bytes
- // into the hash state.
+ //
+ // Fundamental base case for hash recursion: mixes the given range of bytes
+ // into the hash state.
static MixingHashState combine_contiguous(MixingHashState hash_state,
const unsigned char* first,
size_t size) {
return MixingHashState(
- CombineContiguousImpl(hash_state.state_, first, size,
- std::integral_constant<int, sizeof(size_t)>{}));
- }
+ CombineContiguousImpl(hash_state.state_, first, size,
+ std::integral_constant<int, sizeof(size_t)>{}));
+ }
using MixingHashState::HashStateBase::combine_contiguous;
-
+
// MixingHashState::hash()
- //
- // For performance reasons in non-opt mode, we specialize this for
- // integral types.
- // Otherwise we would be instantiating and calling dozens of functions for
- // something that is just one multiplication and a couple xor's.
- // The result should be the same as running the whole algorithm, but faster.
+ //
+ // For performance reasons in non-opt mode, we specialize this for
+ // integral types.
+ // Otherwise we would be instantiating and calling dozens of functions for
+ // something that is just one multiplication and a couple xor's.
+ // The result should be the same as running the whole algorithm, but faster.
template <typename T, y_absl::enable_if_t<IntegralFastPath<T>::value, int> = 0>
- static size_t hash(T value) {
- return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
- }
-
+ static size_t hash(T value) {
+ return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value)));
+ }
+
// Overload of MixingHashState::hash()
template <typename T, y_absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0>
- static size_t hash(const T& value) {
+ static size_t hash(const T& value) {
return static_cast<size_t>(combine(MixingHashState{}, value).state_);
- }
-
- private:
- // Invoked only once for a given argument; that plus the fact that this is
- // move-only ensures that there is only one non-moved-from object.
+ }
+
+ private:
+ // Invoked only once for a given argument; that plus the fact that this is
+ // move-only ensures that there is only one non-moved-from object.
MixingHashState() : state_(Seed()) {}
-
- // Workaround for MSVC bug.
- // We make the type copyable to fix the calling convention, even though we
- // never actually copy it. Keep it private to not affect the public API of the
- // type.
+
+ // Workaround for MSVC bug.
+ // We make the type copyable to fix the calling convention, even though we
+ // never actually copy it. Keep it private to not affect the public API of the
+ // type.
MixingHashState(const MixingHashState&) = default;
-
+
explicit MixingHashState(uint64_t state) : state_(state) {}
-
- // Implementation of the base case for combine_contiguous where we actually
- // mix the bytes into the state.
- // Dispatch to different implementations of the combine_contiguous depending
- // on the value of `sizeof(size_t)`.
- static uint64_t CombineContiguousImpl(uint64_t state,
- const unsigned char* first, size_t len,
- std::integral_constant<int, 4>
+
+ // Implementation of the base case for combine_contiguous where we actually
+ // mix the bytes into the state.
+ // Dispatch to different implementations of the combine_contiguous depending
+ // on the value of `sizeof(size_t)`.
+ static uint64_t CombineContiguousImpl(uint64_t state,
+ const unsigned char* first, size_t len,
+ std::integral_constant<int, 4>
+ /* sizeof_size_t */);
+ static uint64_t CombineContiguousImpl(uint64_t state,
+ const unsigned char* first, size_t len,
+ std::integral_constant<int, 8>
/* sizeof_size_t */);
- static uint64_t CombineContiguousImpl(uint64_t state,
- const unsigned char* first, size_t len,
- std::integral_constant<int, 8>
- /* sizeof_size_t */);
-
- // Slow dispatch path for calls to CombineContiguousImpl with a size argument
- // larger than PiecewiseChunkSize(). Has the same effect as calling
- // CombineContiguousImpl() repeatedly with the chunk stride size.
- static uint64_t CombineLargeContiguousImpl32(uint64_t state,
- const unsigned char* first,
- size_t len);
- static uint64_t CombineLargeContiguousImpl64(uint64_t state,
- const unsigned char* first,
- size_t len);
-
- // Reads 9 to 16 bytes from p.
+
+ // Slow dispatch path for calls to CombineContiguousImpl with a size argument
+ // larger than PiecewiseChunkSize(). Has the same effect as calling
+ // CombineContiguousImpl() repeatedly with the chunk stride size.
+ static uint64_t CombineLargeContiguousImpl32(uint64_t state,
+ const unsigned char* first,
+ size_t len);
+ static uint64_t CombineLargeContiguousImpl64(uint64_t state,
+ const unsigned char* first,
+ size_t len);
+
+ // Reads 9 to 16 bytes from p.
// The least significant 8 bytes are in .first, the rest (zero padded) bytes
// are in .second.
- static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
- size_t len) {
+ static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p,
+ size_t len) {
uint64_t low_mem = y_absl::base_internal::UnalignedLoad64(p);
uint64_t high_mem = y_absl::base_internal::UnalignedLoad64(p + len - 8);
#ifdef ABSL_IS_LITTLE_ENDIAN
@@ -861,10 +861,10 @@ class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
uint64_t least_significant = high_mem;
#endif
return {least_significant, most_significant >> (128 - len * 8)};
- }
-
- // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
- static uint64_t Read4To8(const unsigned char* p, size_t len) {
+ }
+
+ // Reads 4 to 8 bytes from p. Zero pads to fill uint64_t.
+ static uint64_t Read4To8(const unsigned char* p, size_t len) {
uint32_t low_mem = y_absl::base_internal::UnalignedLoad32(p);
uint32_t high_mem = y_absl::base_internal::UnalignedLoad32(p + len - 4);
#ifdef ABSL_IS_LITTLE_ENDIAN
@@ -876,10 +876,10 @@ class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
#endif
return (static_cast<uint64_t>(most_significant) << (len - 4) * 8) |
least_significant;
- }
-
- // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
- static uint32_t Read1To3(const unsigned char* p, size_t len) {
+ }
+
+ // Reads 1 to 3 bytes from p. Zero pads to fill uint32_t.
+ static uint32_t Read1To3(const unsigned char* p, size_t len) {
unsigned char mem0 = p[0];
unsigned char mem1 = p[len / 2];
unsigned char mem2 = p[len - 1];
@@ -895,27 +895,27 @@ class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
return static_cast<uint32_t>(significant0 | //
(significant1 << (len / 2 * 8)) | //
(significant2 << ((len - 1) * 8)));
- }
-
- ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
+ }
+
+ ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) {
#if defined(__aarch64__)
// On AArch64, calculating a 128-bit product is inefficient, because it
// requires a sequence of two instructions to calculate the upper and lower
// halves of the result.
using MultType = uint64_t;
#else
- using MultType =
+ using MultType =
y_absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>;
#endif
- // We do the addition in 64-bit space to make sure the 128-bit
- // multiplication is fast. If we were to do it as MultType the compiler has
- // to assume that the high word is non-zero and needs to perform 2
- // multiplications instead of one.
- MultType m = state + v;
- m *= kMul;
- return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
- }
-
+ // We do the addition in 64-bit space to make sure the 128-bit
+ // multiplication is fast. If we were to do it as MultType the compiler has
+ // to assume that the high word is non-zero and needs to perform 2
+ // multiplications instead of one.
+ MultType m = state + v;
+ m *= kMul;
+ return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2)));
+ }
+
// An extern to avoid bloat on a direct call to LowLevelHash() with fixed
// values for both the seed and salt parameters.
static uint64_t LowLevelHashImpl(const unsigned char* data, size_t len);
@@ -929,137 +929,137 @@ class ABSL_DLL MixingHashState : public HashStateBase<MixingHashState> {
#endif
}
- // Seed()
- //
- // A non-deterministic seed.
- //
- // The current purpose of this seed is to generate non-deterministic results
- // and prevent having users depend on the particular hash values.
- // It is not meant as a security feature right now, but it leaves the door
- // open to upgrade it to a true per-process random seed. A true random seed
- // costs more and we don't need to pay for that right now.
- //
- // On platforms with ASLR, we take advantage of it to make a per-process
- // random value.
- // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
- //
- // On other platforms this is still going to be non-deterministic but most
- // probably per-build and not per-process.
- ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
+ // Seed()
+ //
+ // A non-deterministic seed.
+ //
+ // The current purpose of this seed is to generate non-deterministic results
+ // and prevent having users depend on the particular hash values.
+ // It is not meant as a security feature right now, but it leaves the door
+ // open to upgrade it to a true per-process random seed. A true random seed
+ // costs more and we don't need to pay for that right now.
+ //
+ // On platforms with ASLR, we take advantage of it to make a per-process
+ // random value.
+ // See https://en.wikipedia.org/wiki/Address_space_layout_randomization
+ //
+ // On other platforms this is still going to be non-deterministic but most
+ // probably per-build and not per-process.
+ ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() {
#if (!defined(__clang__) || __clang_major__ > 11) && \
!defined(__apple_build_version__)
return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(&kSeed));
#else
// Workaround the absence of
// https://github.com/llvm/llvm-project/commit/bc15bf66dcca76cc06fe71fca35b74dc4d521021.
- return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
+ return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed));
#endif
- }
- static const void* const kSeed;
-
- uint64_t state_;
-};
-
+ }
+ static const void* const kSeed;
+
+ uint64_t state_;
+};
+
// MixingHashState::CombineContiguousImpl()
inline uint64_t MixingHashState::CombineContiguousImpl(
- uint64_t state, const unsigned char* first, size_t len,
- std::integral_constant<int, 4> /* sizeof_size_t */) {
- // For large values we use CityHash, for small ones we just use a
- // multiplicative hash.
- uint64_t v;
- if (len > 8) {
- if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
- return CombineLargeContiguousImpl32(state, first, len);
- }
+ uint64_t state, const unsigned char* first, size_t len,
+ std::integral_constant<int, 4> /* sizeof_size_t */) {
+ // For large values we use CityHash, for small ones we just use a
+ // multiplicative hash.
+ uint64_t v;
+ if (len > 8) {
+ if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
+ return CombineLargeContiguousImpl32(state, first, len);
+ }
v = hash_internal::CityHash32(reinterpret_cast<const char*>(first), len);
- } else if (len >= 4) {
- v = Read4To8(first, len);
- } else if (len > 0) {
- v = Read1To3(first, len);
- } else {
- // Empty ranges have no effect.
- return state;
- }
- return Mix(state, v);
-}
-
+ } else if (len >= 4) {
+ v = Read4To8(first, len);
+ } else if (len > 0) {
+ v = Read1To3(first, len);
+ } else {
+ // Empty ranges have no effect.
+ return state;
+ }
+ return Mix(state, v);
+}
+
// Overload of MixingHashState::CombineContiguousImpl()
inline uint64_t MixingHashState::CombineContiguousImpl(
- uint64_t state, const unsigned char* first, size_t len,
- std::integral_constant<int, 8> /* sizeof_size_t */) {
+ uint64_t state, const unsigned char* first, size_t len,
+ std::integral_constant<int, 8> /* sizeof_size_t */) {
// For large values we use LowLevelHash or CityHash depending on the platform,
// for small ones we just use a multiplicative hash.
- uint64_t v;
- if (len > 16) {
- if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
- return CombineLargeContiguousImpl64(state, first, len);
- }
+ uint64_t v;
+ if (len > 16) {
+ if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) {
+ return CombineLargeContiguousImpl64(state, first, len);
+ }
v = Hash64(first, len);
- } else if (len > 8) {
- auto p = Read9To16(first, len);
- state = Mix(state, p.first);
- v = p.second;
- } else if (len >= 4) {
- v = Read4To8(first, len);
- } else if (len > 0) {
- v = Read1To3(first, len);
- } else {
- // Empty ranges have no effect.
- return state;
- }
- return Mix(state, v);
-}
-
-struct AggregateBarrier {};
-
-// HashImpl
-
-// Add a private base class to make sure this type is not an aggregate.
-// Aggregates can be aggregate initialized even if the default constructor is
-// deleted.
-struct PoisonedHash : private AggregateBarrier {
- PoisonedHash() = delete;
- PoisonedHash(const PoisonedHash&) = delete;
- PoisonedHash& operator=(const PoisonedHash&) = delete;
-};
-
-template <typename T>
-struct HashImpl {
+ } else if (len > 8) {
+ auto p = Read9To16(first, len);
+ state = Mix(state, p.first);
+ v = p.second;
+ } else if (len >= 4) {
+ v = Read4To8(first, len);
+ } else if (len > 0) {
+ v = Read1To3(first, len);
+ } else {
+ // Empty ranges have no effect.
+ return state;
+ }
+ return Mix(state, v);
+}
+
+struct AggregateBarrier {};
+
+// HashImpl
+
+// Add a private base class to make sure this type is not an aggregate.
+// Aggregates can be aggregate initialized even if the default constructor is
+// deleted.
+struct PoisonedHash : private AggregateBarrier {
+ PoisonedHash() = delete;
+ PoisonedHash(const PoisonedHash&) = delete;
+ PoisonedHash& operator=(const PoisonedHash&) = delete;
+};
+
+template <typename T>
+struct HashImpl {
size_t operator()(const T& value) const {
return MixingHashState::hash(value);
}
-};
-
-template <typename T>
-struct Hash
+};
+
+template <typename T>
+struct Hash
: y_absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {};
-
-template <typename H>
-template <typename T, typename... Ts>
-H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
- return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
- std::move(state), value),
- values...);
-}
-
-// HashStateBase::combine_contiguous()
-template <typename H>
-template <typename T>
-H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
- return hash_internal::hash_range_or_bytes(std::move(state), data, size);
-}
-
-// HashStateBase::PiecewiseCombiner::add_buffer()
-template <typename H>
-H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
- size_t size) {
- if (position_ + size < PiecewiseChunkSize()) {
- // This partial chunk does not fill our existing buffer
- memcpy(buf_ + position_, data, size);
- position_ += size;
+
+template <typename H>
+template <typename T, typename... Ts>
+H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) {
+ return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke(
+ std::move(state), value),
+ values...);
+}
+
+// HashStateBase::combine_contiguous()
+template <typename H>
+template <typename T>
+H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) {
+ return hash_internal::hash_range_or_bytes(std::move(state), data, size);
+}
+
+// HashStateBase::PiecewiseCombiner::add_buffer()
+template <typename H>
+H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
+ size_t size) {
+ if (position_ + size < PiecewiseChunkSize()) {
+ // This partial chunk does not fill our existing buffer
+ memcpy(buf_ + position_, data, size);
+ position_ += size;
return state;
- }
-
+ }
+
// If the buffer is partially filled we need to complete the buffer
// and hash it.
if (position_ != 0) {
@@ -1069,28 +1069,28 @@ H PiecewiseCombiner::add_buffer(H state, const unsigned char* data,
data += bytes_needed;
size -= bytes_needed;
}
-
- // Hash whatever chunks we can without copying
- while (size >= PiecewiseChunkSize()) {
- state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
- data += PiecewiseChunkSize();
- size -= PiecewiseChunkSize();
- }
- // Fill the buffer with the remainder
- memcpy(buf_, data, size);
- position_ = size;
+
+ // Hash whatever chunks we can without copying
+ while (size >= PiecewiseChunkSize()) {
+ state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize());
+ data += PiecewiseChunkSize();
+ size -= PiecewiseChunkSize();
+ }
+ // Fill the buffer with the remainder
+ memcpy(buf_, data, size);
+ position_ = size;
return state;
-}
-
-// HashStateBase::PiecewiseCombiner::finalize()
-template <typename H>
-H PiecewiseCombiner::finalize(H state) {
- // Hash the remainder left in the buffer, which may be empty
- return H::combine_contiguous(std::move(state), buf_, position_);
-}
-
-} // namespace hash_internal
+}
+
+// HashStateBase::PiecewiseCombiner::finalize()
+template <typename H>
+H PiecewiseCombiner::finalize(H state) {
+ // Hash the remainder left in the buffer, which may be empty
+ return H::combine_contiguous(std::move(state), buf_, position_);
+}
+
+} // namespace hash_internal
ABSL_NAMESPACE_END
} // namespace y_absl
-
-#endif // ABSL_HASH_INTERNAL_HASH_H_
+
+#endif // ABSL_HASH_INTERNAL_HASH_H_
diff --git a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/spy_hash_state.h b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/spy_hash_state.h
index 520cbf904f..a3e09aba2e 100644
--- a/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/spy_hash_state.h
+++ b/contrib/restricted/abseil-cpp-tstring/y_absl/hash/internal/spy_hash_state.h
@@ -1,231 +1,231 @@
-// Copyright 2018 The Abseil Authors.
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// https://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-
-#ifndef ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
-#define ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
-
-#include <ostream>
+// Copyright 2018 The Abseil Authors.
+//
+// Licensed under the Apache License, Version 2.0 (the "License");
+// you may not use this file except in compliance with the License.
+// You may obtain a copy of the License at
+//
+// https://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing, software
+// distributed under the License is distributed on an "AS IS" BASIS,
+// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+// See the License for the specific language governing permissions and
+// limitations under the License.
+
+#ifndef ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
+#define ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
+
+#include <ostream>
#include <util/generic/string.h>
-#include <vector>
-
+#include <vector>
+
#include "y_absl/hash/hash.h"
#include "y_absl/strings/match.h"
#include "y_absl/strings/str_format.h"
#include "y_absl/strings/str_join.h"
-
+
namespace y_absl {
ABSL_NAMESPACE_BEGIN
-namespace hash_internal {
-
-// SpyHashState is an implementation of the HashState API that simply
-// accumulates all input bytes in an internal buffer. This makes it useful
-// for testing AbslHashValue overloads (so long as they are templated on the
-// HashState parameter), since it can report the exact hash representation
-// that the AbslHashValue overload produces.
-//
-// Sample usage:
-// EXPECT_EQ(SpyHashState::combine(SpyHashState(), foo),
-// SpyHashState::combine(SpyHashState(), bar));
-template <typename T>
-class SpyHashStateImpl : public HashStateBase<SpyHashStateImpl<T>> {
- public:
+namespace hash_internal {
+
+// SpyHashState is an implementation of the HashState API that simply
+// accumulates all input bytes in an internal buffer. This makes it useful
+// for testing AbslHashValue overloads (so long as they are templated on the
+// HashState parameter), since it can report the exact hash representation
+// that the AbslHashValue overload produces.
+//
+// Sample usage:
+// EXPECT_EQ(SpyHashState::combine(SpyHashState(), foo),
+// SpyHashState::combine(SpyHashState(), bar));
+template <typename T>
+class SpyHashStateImpl : public HashStateBase<SpyHashStateImpl<T>> {
+ public:
SpyHashStateImpl() : error_(std::make_shared<y_absl::optional<TString>>()) {
- static_assert(std::is_void<T>::value, "");
- }
-
- // Move-only
- SpyHashStateImpl(const SpyHashStateImpl&) = delete;
- SpyHashStateImpl& operator=(const SpyHashStateImpl&) = delete;
-
- SpyHashStateImpl(SpyHashStateImpl&& other) noexcept {
- *this = std::move(other);
- }
-
- SpyHashStateImpl& operator=(SpyHashStateImpl&& other) noexcept {
- hash_representation_ = std::move(other.hash_representation_);
- error_ = other.error_;
- moved_from_ = other.moved_from_;
- other.moved_from_ = true;
- return *this;
- }
-
- template <typename U>
- SpyHashStateImpl(SpyHashStateImpl<U>&& other) { // NOLINT
- hash_representation_ = std::move(other.hash_representation_);
- error_ = other.error_;
- moved_from_ = other.moved_from_;
- other.moved_from_ = true;
- }
-
- template <typename A, typename... Args>
- static SpyHashStateImpl combine(SpyHashStateImpl s, const A& a,
- const Args&... args) {
- // Pass an instance of SpyHashStateImpl<A> when trying to combine `A`. This
- // allows us to test that the user only uses this instance for combine calls
- // and does not call AbslHashValue directly.
- // See AbslHashValue implementation at the bottom.
- s = SpyHashStateImpl<A>::HashStateBase::combine(std::move(s), a);
- return SpyHashStateImpl::combine(std::move(s), args...);
- }
- static SpyHashStateImpl combine(SpyHashStateImpl s) {
- if (direct_absl_hash_value_error_) {
- *s.error_ = "AbslHashValue should not be invoked directly.";
- } else if (s.moved_from_) {
- *s.error_ = "Used moved-from instance of the hash state object.";
- }
- return s;
- }
-
- static void SetDirectAbslHashValueError() {
- direct_absl_hash_value_error_ = true;
- }
-
- // Two SpyHashStateImpl objects are equal if they hold equal hash
- // representations.
- friend bool operator==(const SpyHashStateImpl& lhs,
- const SpyHashStateImpl& rhs) {
- return lhs.hash_representation_ == rhs.hash_representation_;
- }
-
- friend bool operator!=(const SpyHashStateImpl& lhs,
- const SpyHashStateImpl& rhs) {
- return !(lhs == rhs);
- }
-
- enum class CompareResult {
- kEqual,
- kASuffixB,
- kBSuffixA,
- kUnequal,
- };
-
- static CompareResult Compare(const SpyHashStateImpl& a,
- const SpyHashStateImpl& b) {
+ static_assert(std::is_void<T>::value, "");
+ }
+
+ // Move-only
+ SpyHashStateImpl(const SpyHashStateImpl&) = delete;
+ SpyHashStateImpl& operator=(const SpyHashStateImpl&) = delete;
+
+ SpyHashStateImpl(SpyHashStateImpl&& other) noexcept {
+ *this = std::move(other);
+ }
+
+ SpyHashStateImpl& operator=(SpyHashStateImpl&& other) noexcept {
+ hash_representation_ = std::move(other.hash_representation_);
+ error_ = other.error_;
+ moved_from_ = other.moved_from_;
+ other.moved_from_ = true;
+ return *this;
+ }
+
+ template <typename U>
+ SpyHashStateImpl(SpyHashStateImpl<U>&& other) { // NOLINT
+ hash_representation_ = std::move(other.hash_representation_);
+ error_ = other.error_;
+ moved_from_ = other.moved_from_;
+ other.moved_from_ = true;
+ }
+
+ template <typename A, typename... Args>
+ static SpyHashStateImpl combine(SpyHashStateImpl s, const A& a,
+ const Args&... args) {
+ // Pass an instance of SpyHashStateImpl<A> when trying to combine `A`. This
+ // allows us to test that the user only uses this instance for combine calls
+ // and does not call AbslHashValue directly.
+ // See AbslHashValue implementation at the bottom.
+ s = SpyHashStateImpl<A>::HashStateBase::combine(std::move(s), a);
+ return SpyHashStateImpl::combine(std::move(s), args...);
+ }
+ static SpyHashStateImpl combine(SpyHashStateImpl s) {
+ if (direct_absl_hash_value_error_) {
+ *s.error_ = "AbslHashValue should not be invoked directly.";
+ } else if (s.moved_from_) {
+ *s.error_ = "Used moved-from instance of the hash state object.";
+ }
+ return s;
+ }
+
+ static void SetDirectAbslHashValueError() {
+ direct_absl_hash_value_error_ = true;
+ }
+
+ // Two SpyHashStateImpl objects are equal if they hold equal hash
+ // representations.
+ friend bool operator==(const SpyHashStateImpl& lhs,
+ const SpyHashStateImpl& rhs) {
+ return lhs.hash_representation_ == rhs.hash_representation_;
+ }
+
+ friend bool operator!=(const SpyHashStateImpl& lhs,
+ const SpyHashStateImpl& rhs) {
+ return !(lhs == rhs);
+ }
+
+ enum class CompareResult {
+ kEqual,
+ kASuffixB,
+ kBSuffixA,
+ kUnequal,
+ };
+
+ static CompareResult Compare(const SpyHashStateImpl& a,
+ const SpyHashStateImpl& b) {
const TString a_flat = y_absl::StrJoin(a.hash_representation_, "");
const TString b_flat = y_absl::StrJoin(b.hash_representation_, "");
- if (a_flat == b_flat) return CompareResult::kEqual;
+ if (a_flat == b_flat) return CompareResult::kEqual;
if (y_absl::EndsWith(a_flat, b_flat)) return CompareResult::kBSuffixA;
if (y_absl::EndsWith(b_flat, a_flat)) return CompareResult::kASuffixB;
- return CompareResult::kUnequal;
- }
-
- // operator<< prints the hash representation as a hex and ASCII dump, to
- // facilitate debugging.
- friend std::ostream& operator<<(std::ostream& out,
- const SpyHashStateImpl& hash_state) {
- out << "[\n";
- for (auto& s : hash_state.hash_representation_) {
- size_t offset = 0;
- for (char c : s) {
- if (offset % 16 == 0) {
+ return CompareResult::kUnequal;
+ }
+
+ // operator<< prints the hash representation as a hex and ASCII dump, to
+ // facilitate debugging.
+ friend std::ostream& operator<<(std::ostream& out,
+ const SpyHashStateImpl& hash_state) {
+ out << "[\n";
+ for (auto& s : hash_state.hash_representation_) {
+ size_t offset = 0;
+ for (char c : s) {
+ if (offset % 16 == 0) {
out << y_absl::StreamFormat("\n0x%04x: ", offset);
- }
- if (offset % 2 == 0) {
- out << " ";
- }
+ }
+ if (offset % 2 == 0) {
+ out << " ";
+ }
out << y_absl::StreamFormat("%02x", c);
- ++offset;
- }
- out << "\n";
- }
- return out << "]";
- }
-
- // The base case of the combine recursion, which writes raw bytes into the
- // internal buffer.
- static SpyHashStateImpl combine_contiguous(SpyHashStateImpl hash_state,
- const unsigned char* begin,
- size_t size) {
- const size_t large_chunk_stride = PiecewiseChunkSize();
- if (size > large_chunk_stride) {
- // Combining a large contiguous buffer must have the same effect as
- // doing it piecewise by the stride length, followed by the (possibly
- // empty) remainder.
- while (size >= large_chunk_stride) {
- hash_state = SpyHashStateImpl::combine_contiguous(
- std::move(hash_state), begin, large_chunk_stride);
- begin += large_chunk_stride;
- size -= large_chunk_stride;
- }
- }
-
- hash_state.hash_representation_.emplace_back(
- reinterpret_cast<const char*>(begin), size);
- return hash_state;
- }
-
- using SpyHashStateImpl::HashStateBase::combine_contiguous;
-
+ ++offset;
+ }
+ out << "\n";
+ }
+ return out << "]";
+ }
+
+ // The base case of the combine recursion, which writes raw bytes into the
+ // internal buffer.
+ static SpyHashStateImpl combine_contiguous(SpyHashStateImpl hash_state,
+ const unsigned char* begin,
+ size_t size) {
+ const size_t large_chunk_stride = PiecewiseChunkSize();
+ if (size > large_chunk_stride) {
+ // Combining a large contiguous buffer must have the same effect as
+ // doing it piecewise by the stride length, followed by the (possibly
+ // empty) remainder.
+ while (size >= large_chunk_stride) {
+ hash_state = SpyHashStateImpl::combine_contiguous(
+ std::move(hash_state), begin, large_chunk_stride);
+ begin += large_chunk_stride;
+ size -= large_chunk_stride;
+ }
+ }
+
+ hash_state.hash_representation_.emplace_back(
+ reinterpret_cast<const char*>(begin), size);
+ return hash_state;
+ }
+
+ using SpyHashStateImpl::HashStateBase::combine_contiguous;
+
y_absl::optional<TString> error() const {
- if (moved_from_) {
- return "Returned a moved-from instance of the hash state object.";
- }
- return *error_;
- }
-
- private:
- template <typename U>
- friend class SpyHashStateImpl;
-
- // This is true if SpyHashStateImpl<T> has been passed to a call of
- // AbslHashValue with the wrong type. This detects that the user called
- // AbslHashValue directly (because the hash state type does not match).
- static bool direct_absl_hash_value_error_;
-
+ if (moved_from_) {
+ return "Returned a moved-from instance of the hash state object.";
+ }
+ return *error_;
+ }
+
+ private:
+ template <typename U>
+ friend class SpyHashStateImpl;
+
+ // This is true if SpyHashStateImpl<T> has been passed to a call of
+ // AbslHashValue with the wrong type. This detects that the user called
+ // AbslHashValue directly (because the hash state type does not match).
+ static bool direct_absl_hash_value_error_;
+
std::vector<TString> hash_representation_;
- // This is a shared_ptr because we want all instances of the particular
- // SpyHashState run to share the field. This way we can set the error for
- // use-after-move and all the copies will see it.
+ // This is a shared_ptr because we want all instances of the particular
+ // SpyHashState run to share the field. This way we can set the error for
+ // use-after-move and all the copies will see it.
std::shared_ptr<y_absl::optional<TString>> error_;
- bool moved_from_ = false;
-};
-
-template <typename T>
-bool SpyHashStateImpl<T>::direct_absl_hash_value_error_;
-
-template <bool& B>
-struct OdrUse {
- constexpr OdrUse() {}
- bool& b = B;
-};
-
-template <void (*)()>
-struct RunOnStartup {
- static bool run;
- static constexpr OdrUse<run> kOdrUse{};
-};
-
-template <void (*f)()>
-bool RunOnStartup<f>::run = (f(), true);
-
-template <
- typename T, typename U,
- // Only trigger for when (T != U),
+ bool moved_from_ = false;
+};
+
+template <typename T>
+bool SpyHashStateImpl<T>::direct_absl_hash_value_error_;
+
+template <bool& B>
+struct OdrUse {
+ constexpr OdrUse() {}
+ bool& b = B;
+};
+
+template <void (*)()>
+struct RunOnStartup {
+ static bool run;
+ static constexpr OdrUse<run> kOdrUse{};
+};
+
+template <void (*f)()>
+bool RunOnStartup<f>::run = (f(), true);
+
+template <
+ typename T, typename U,
+ // Only trigger for when (T != U),
typename = y_absl::enable_if_t<!std::is_same<T, U>::value>,
- // This statement works in two ways:
- // - First, it instantiates RunOnStartup and forces the initialization of
- // `run`, which set the global variable.
- // - Second, it triggers a SFINAE error disabling the overload to prevent
- // compile time errors. If we didn't disable the overload we would get
- // ambiguous overload errors, which we don't want.
- int = RunOnStartup<SpyHashStateImpl<T>::SetDirectAbslHashValueError>::run>
-void AbslHashValue(SpyHashStateImpl<T>, const U&);
-
-using SpyHashState = SpyHashStateImpl<void>;
-
-} // namespace hash_internal
+ // This statement works in two ways:
+ // - First, it instantiates RunOnStartup and forces the initialization of
+ // `run`, which set the global variable.
+ // - Second, it triggers a SFINAE error disabling the overload to prevent
+ // compile time errors. If we didn't disable the overload we would get
+ // ambiguous overload errors, which we don't want.
+ int = RunOnStartup<SpyHashStateImpl<T>::SetDirectAbslHashValueError>::run>
+void AbslHashValue(SpyHashStateImpl<T>, const U&);
+
+using SpyHashState = SpyHashStateImpl<void>;
+
+} // namespace hash_internal
ABSL_NAMESPACE_END
} // namespace y_absl
-
-#endif // ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_
+
+#endif // ABSL_HASH_INTERNAL_SPY_HASH_STATE_H_