diff options
author | Vladislav Kuznetsov <va.kuznecov@physics.msu.ru> | 2022-02-10 16:46:54 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:46:54 +0300 |
commit | 3cbae1ba94bff7a82ee848c3e9b2cebd96a69dd5 (patch) | |
tree | 49e222ea1c5804306084bb3ae065bb702625360f /contrib/libs/t1ha/src/t1ha0.c | |
parent | de20f5598f0832a6e646f61b4feca942c00da928 (diff) | |
download | ydb-3cbae1ba94bff7a82ee848c3e9b2cebd96a69dd5.tar.gz |
Restoring authorship annotation for Vladislav Kuznetsov <va.kuznecov@physics.msu.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/t1ha/src/t1ha0.c')
-rw-r--r-- | contrib/libs/t1ha/src/t1ha0.c | 904 |
1 files changed, 452 insertions, 452 deletions
diff --git a/contrib/libs/t1ha/src/t1ha0.c b/contrib/libs/t1ha/src/t1ha0.c index c51d25957d..bde71299cb 100644 --- a/contrib/libs/t1ha/src/t1ha0.c +++ b/contrib/libs/t1ha/src/t1ha0.c @@ -1,462 +1,462 @@ -/* +/* * Copyright (c) 2016-2020 Positive Technologies, https://www.ptsecurity.com, - * Fast Positive Hash. - * + * Fast Positive Hash. + * * Portions Copyright (c) 2010-2020 Leonid Yuriev <leo@yuriev.ru>, - * The 1Hippeus project (t1h). - * - * This software is provided 'as-is', without any express or implied - * warranty. In no event will the authors be held liable for any damages - * arising from the use of this software. - * - * Permission is granted to anyone to use this software for any purpose, - * including commercial applications, and to alter it and redistribute it - * freely, subject to the following restrictions: - * - * 1. The origin of this software must not be misrepresented; you must not - * claim that you wrote the original software. If you use this software - * in a product, an acknowledgement in the product documentation would be - * appreciated but is not required. - * 2. Altered source versions must be plainly marked as such, and must not be - * misrepresented as being the original software. - * 3. This notice may not be removed or altered from any source distribution. - */ - -/* - * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" } - * by [Positive Technologies](https://www.ptsecurity.ru) - * - * Briefly, it is a 64-bit Hash Function: - * 1. Created for 64-bit little-endian platforms, in predominantly for x86_64, - * but portable and without penalties it can run on any 64-bit CPU. - * 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash - * and all others portable hash-functions (which do not use specific - * hardware tricks). - * 3. Not suitable for cryptography. - * + * The 1Hippeus project (t1h). + * + * This software is provided 'as-is', without any express or implied + * warranty. In no event will the authors be held liable for any damages + * arising from the use of this software. + * + * Permission is granted to anyone to use this software for any purpose, + * including commercial applications, and to alter it and redistribute it + * freely, subject to the following restrictions: + * + * 1. The origin of this software must not be misrepresented; you must not + * claim that you wrote the original software. If you use this software + * in a product, an acknowledgement in the product documentation would be + * appreciated but is not required. + * 2. Altered source versions must be plainly marked as such, and must not be + * misrepresented as being the original software. + * 3. This notice may not be removed or altered from any source distribution. + */ + +/* + * t1ha = { Fast Positive Hash, aka "Позитивный Хэш" } + * by [Positive Technologies](https://www.ptsecurity.ru) + * + * Briefly, it is a 64-bit Hash Function: + * 1. Created for 64-bit little-endian platforms, in predominantly for x86_64, + * but portable and without penalties it can run on any 64-bit CPU. + * 2. In most cases up to 15% faster than City64, xxHash, mum-hash, metro-hash + * and all others portable hash-functions (which do not use specific + * hardware tricks). + * 3. Not suitable for cryptography. + * * The Future will (be) Positive. Всё будет хорошо. - * - * ACKNOWLEDGEMENT: - * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев) - * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta! - */ - -#ifndef T1HA0_DISABLED -#include "t1ha_bits.h" -#include "t1ha_selfcheck.h" - -static __maybe_unused __always_inline uint32_t tail32_le_aligned(const void *v, - size_t tail) { - const uint8_t *const p = (const uint8_t *)v; -#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__) - /* We can perform a 'oneshot' read, which is little bit faster. */ - const unsigned shift = ((4 - tail) & 3) << 3; - return fetch32_le_aligned(p) & ((~UINT32_C(0)) >> shift); -#else - uint32_t r = 0; - switch (tail & 3) { - default: - unreachable(); -/* fall through */ -#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ - /* For most CPUs this code is better when not needed - * copying for alignment or byte reordering. */ - case 0: - return fetch32_le_aligned(p); - case 3: - r = (uint32_t)p[2] << 16; - /* fall through */ - case 2: - return r + fetch16_le_aligned(p); - case 1: - return p[0]; -#else - case 0: - r += p[3]; - r <<= 8; - /* fall through */ - case 3: - r += p[2]; - r <<= 8; - /* fall through */ - case 2: - r += p[1]; - r <<= 8; - /* fall through */ - case 1: - return r + p[0]; -#endif - } -#endif /* T1HA_USE_FAST_ONESHOT_READ */ -} - -static __maybe_unused __always_inline uint32_t -tail32_le_unaligned(const void *v, size_t tail) { - const uint8_t *p = (const uint8_t *)v; -#ifdef can_read_underside - /* On some systems (e.g. x86) we can perform a 'oneshot' read, which - * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com> - * for the reminder. */ - const unsigned offset = (4 - tail) & 3; - const unsigned shift = offset << 3; - if (likely(can_read_underside(p, 4))) { - p -= offset; - return fetch32_le_unaligned(p) >> shift; - } - return fetch32_le_unaligned(p) & ((~UINT32_C(0)) >> shift); -#else - uint32_t r = 0; - switch (tail & 3) { - default: - unreachable(); -/* fall through */ -#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \ - __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ - /* For most CPUs this code is better when not needed - * copying for alignment or byte reordering. */ - case 0: - return fetch32_le_unaligned(p); - case 3: - r = (uint32_t)p[2] << 16; - /* fall through */ - case 2: - return r + fetch16_le_unaligned(p); - case 1: - return p[0]; -#else - /* For most CPUs this code is better than a - * copying for alignment and/or byte reordering. */ - case 0: - r += p[3]; - r <<= 8; - /* fall through */ - case 3: - r += p[2]; - r <<= 8; - /* fall through */ - case 2: - r += p[1]; - r <<= 8; - /* fall through */ - case 1: - return r + p[0]; -#endif - } -#endif /* can_read_underside */ -} - -static __maybe_unused __always_inline uint32_t tail32_be_aligned(const void *v, - size_t tail) { - const uint8_t *const p = (const uint8_t *)v; -#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__) - /* We can perform a 'oneshot' read, which is little bit faster. */ - const unsigned shift = ((4 - tail) & 3) << 3; - return fetch32_be_aligned(p) >> shift; -#else - switch (tail & 3) { - default: - unreachable(); -/* fall through */ -#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ - /* For most CPUs this code is better when not needed - * copying for alignment or byte reordering. */ - case 1: - return p[0]; - case 2: - return fetch16_be_aligned(p); - case 3: - return fetch16_be_aligned(p) << 8 | p[2]; - case 0: - return fetch32_be_aligned(p); -#else - case 1: - return p[0]; - case 2: - return p[1] | (uint32_t)p[0] << 8; - case 3: - return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16; - case 0: - return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 | - (uint32_t)p[0] << 24; -#endif - } -#endif /* T1HA_USE_FAST_ONESHOT_READ */ -} - -static __maybe_unused __always_inline uint32_t -tail32_be_unaligned(const void *v, size_t tail) { - const uint8_t *p = (const uint8_t *)v; -#ifdef can_read_underside - /* On some systems we can perform a 'oneshot' read, which is little bit - * faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com> for the - * reminder. */ - const unsigned offset = (4 - tail) & 3; - const unsigned shift = offset << 3; - if (likely(can_read_underside(p, 4))) { - p -= offset; - return fetch32_be_unaligned(p) & ((~UINT32_C(0)) >> shift); - } - return fetch32_be_unaligned(p) >> shift; -#else - switch (tail & 3) { - default: - unreachable(); -/* fall through */ -#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \ - __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ - /* For most CPUs this code is better when not needed - * copying for alignment or byte reordering. */ - case 1: - return p[0]; - case 2: - return fetch16_be_unaligned(p); - case 3: - return fetch16_be_unaligned(p) << 8 | p[2]; - case 0: - return fetch32_be_unaligned(p); -#else - /* For most CPUs this code is better than a - * copying for alignment and/or byte reordering. */ - case 1: - return p[0]; - case 2: - return p[1] | (uint32_t)p[0] << 8; - case 3: - return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16; - case 0: - return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 | - (uint32_t)p[0] << 24; -#endif - } -#endif /* can_read_underside */ -} - -/***************************************************************************/ - -#ifndef rot32 -static __maybe_unused __always_inline uint32_t rot32(uint32_t v, unsigned s) { - return (v >> s) | (v << (32 - s)); -} -#endif /* rot32 */ - -static __always_inline void mixup32(uint32_t *a, uint32_t *b, uint32_t v, - uint32_t prime) { - uint64_t l = mul_32x32_64(*b + v, prime); - *a ^= (uint32_t)l; - *b += (uint32_t)(l >> 32); -} - -static __always_inline uint64_t final32(uint32_t a, uint32_t b) { - uint64_t l = (b ^ rot32(a, 13)) | (uint64_t)a << 32; - l *= prime_0; - l ^= l >> 41; - l *= prime_4; - l ^= l >> 47; - l *= prime_6; - return l; -} - -/* 32-bit 'magic' primes */ -static const uint32_t prime32_0 = UINT32_C(0x92D78269); -static const uint32_t prime32_1 = UINT32_C(0xCA9B4735); -static const uint32_t prime32_2 = UINT32_C(0xA4ABA1C3); -static const uint32_t prime32_3 = UINT32_C(0xF6499843); -static const uint32_t prime32_4 = UINT32_C(0x86F0FD61); -static const uint32_t prime32_5 = UINT32_C(0xCA2DA6FB); -static const uint32_t prime32_6 = UINT32_C(0xC4BB3575); - -/* TODO: C++ template in the next version */ -#define T1HA0_BODY(ENDIANNES, ALIGNESS) \ - const uint32_t *v = (const uint32_t *)data; \ - if (unlikely(len > 16)) { \ - uint32_t c = ~a; \ - uint32_t d = rot32(b, 5); \ - const uint32_t *detent = \ - (const uint32_t *)((const uint8_t *)data + len - 15); \ - do { \ - const uint32_t w0 = fetch32_##ENDIANNES##_##ALIGNESS(v + 0); \ - const uint32_t w1 = fetch32_##ENDIANNES##_##ALIGNESS(v + 1); \ - const uint32_t w2 = fetch32_##ENDIANNES##_##ALIGNESS(v + 2); \ - const uint32_t w3 = fetch32_##ENDIANNES##_##ALIGNESS(v + 3); \ - v += 4; \ - prefetch(v); \ - \ - const uint32_t d13 = w1 + rot32(w3 + d, 17); \ - const uint32_t c02 = w0 ^ rot32(w2 + c, 11); \ - d ^= rot32(a + w0, 3); \ - c ^= rot32(b + w1, 7); \ - b = prime32_1 * (c02 + w3); \ - a = prime32_0 * (d13 ^ w2); \ - } while (likely(v < detent)); \ - \ - c += a; \ - d += b; \ - a ^= prime32_6 * (rot32(c, 16) + d); \ - b ^= prime32_5 * (c + rot32(d, 16)); \ - \ - len &= 15; \ - } \ - \ - switch (len) { \ - default: \ - mixup32(&a, &b, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_4); \ - /* fall through */ \ - case 12: \ - case 11: \ - case 10: \ - case 9: \ - mixup32(&b, &a, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_3); \ - /* fall through */ \ - case 8: \ - case 7: \ - case 6: \ - case 5: \ - mixup32(&a, &b, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_2); \ - /* fall through */ \ - case 4: \ - case 3: \ - case 2: \ - case 1: \ - mixup32(&b, &a, tail32_##ENDIANNES##_##ALIGNESS(v, len), prime32_1); \ - /* fall through */ \ - case 0: \ - return final32(a, b); \ - } - -uint64_t t1ha0_32le(const void *data, size_t len, uint64_t seed) { - uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed; - uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32); - -#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT - T1HA0_BODY(le, unaligned); -#else - const bool misaligned = (((uintptr_t)data) & (ALIGNMENT_32 - 1)) != 0; - if (misaligned) { - T1HA0_BODY(le, unaligned); - } else { - T1HA0_BODY(le, aligned); - } -#endif -} - -uint64_t t1ha0_32be(const void *data, size_t len, uint64_t seed) { - uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed; - uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32); - -#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT - T1HA0_BODY(be, unaligned); -#else - const bool misaligned = (((uintptr_t)data) & (ALIGNMENT_32 - 1)) != 0; - if (misaligned) { - T1HA0_BODY(be, unaligned); - } else { - T1HA0_BODY(be, aligned); - } -#endif -} - -/***************************************************************************/ - -#if T1HA0_AESNI_AVAILABLE && defined(__ia32__) -__cold uint64_t t1ha_ia32cpu_features(void) { - uint32_t features = 0; - uint32_t extended = 0; + * + * ACKNOWLEDGEMENT: + * The t1ha was originally developed by Leonid Yuriev (Леонид Юрьев) + * for The 1Hippeus project - zerocopy messaging in the spirit of Sparta! + */ + +#ifndef T1HA0_DISABLED +#include "t1ha_bits.h" +#include "t1ha_selfcheck.h" + +static __maybe_unused __always_inline uint32_t tail32_le_aligned(const void *v, + size_t tail) { + const uint8_t *const p = (const uint8_t *)v; +#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__) + /* We can perform a 'oneshot' read, which is little bit faster. */ + const unsigned shift = ((4 - tail) & 3) << 3; + return fetch32_le_aligned(p) & ((~UINT32_C(0)) >> shift); +#else + uint32_t r = 0; + switch (tail & 3) { + default: + unreachable(); +/* fall through */ +#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ + /* For most CPUs this code is better when not needed + * copying for alignment or byte reordering. */ + case 0: + return fetch32_le_aligned(p); + case 3: + r = (uint32_t)p[2] << 16; + /* fall through */ + case 2: + return r + fetch16_le_aligned(p); + case 1: + return p[0]; +#else + case 0: + r += p[3]; + r <<= 8; + /* fall through */ + case 3: + r += p[2]; + r <<= 8; + /* fall through */ + case 2: + r += p[1]; + r <<= 8; + /* fall through */ + case 1: + return r + p[0]; +#endif + } +#endif /* T1HA_USE_FAST_ONESHOT_READ */ +} + +static __maybe_unused __always_inline uint32_t +tail32_le_unaligned(const void *v, size_t tail) { + const uint8_t *p = (const uint8_t *)v; +#ifdef can_read_underside + /* On some systems (e.g. x86) we can perform a 'oneshot' read, which + * is little bit faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com> + * for the reminder. */ + const unsigned offset = (4 - tail) & 3; + const unsigned shift = offset << 3; + if (likely(can_read_underside(p, 4))) { + p -= offset; + return fetch32_le_unaligned(p) >> shift; + } + return fetch32_le_unaligned(p) & ((~UINT32_C(0)) >> shift); +#else + uint32_t r = 0; + switch (tail & 3) { + default: + unreachable(); +/* fall through */ +#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \ + __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__ + /* For most CPUs this code is better when not needed + * copying for alignment or byte reordering. */ + case 0: + return fetch32_le_unaligned(p); + case 3: + r = (uint32_t)p[2] << 16; + /* fall through */ + case 2: + return r + fetch16_le_unaligned(p); + case 1: + return p[0]; +#else + /* For most CPUs this code is better than a + * copying for alignment and/or byte reordering. */ + case 0: + r += p[3]; + r <<= 8; + /* fall through */ + case 3: + r += p[2]; + r <<= 8; + /* fall through */ + case 2: + r += p[1]; + r <<= 8; + /* fall through */ + case 1: + return r + p[0]; +#endif + } +#endif /* can_read_underside */ +} + +static __maybe_unused __always_inline uint32_t tail32_be_aligned(const void *v, + size_t tail) { + const uint8_t *const p = (const uint8_t *)v; +#if T1HA_USE_FAST_ONESHOT_READ && !defined(__SANITIZE_ADDRESS__) + /* We can perform a 'oneshot' read, which is little bit faster. */ + const unsigned shift = ((4 - tail) & 3) << 3; + return fetch32_be_aligned(p) >> shift; +#else + switch (tail & 3) { + default: + unreachable(); +/* fall through */ +#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ + /* For most CPUs this code is better when not needed + * copying for alignment or byte reordering. */ + case 1: + return p[0]; + case 2: + return fetch16_be_aligned(p); + case 3: + return fetch16_be_aligned(p) << 8 | p[2]; + case 0: + return fetch32_be_aligned(p); +#else + case 1: + return p[0]; + case 2: + return p[1] | (uint32_t)p[0] << 8; + case 3: + return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16; + case 0: + return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 | + (uint32_t)p[0] << 24; +#endif + } +#endif /* T1HA_USE_FAST_ONESHOT_READ */ +} + +static __maybe_unused __always_inline uint32_t +tail32_be_unaligned(const void *v, size_t tail) { + const uint8_t *p = (const uint8_t *)v; +#ifdef can_read_underside + /* On some systems we can perform a 'oneshot' read, which is little bit + * faster. Thanks Marcin Żukowski <marcin.zukowski@gmail.com> for the + * reminder. */ + const unsigned offset = (4 - tail) & 3; + const unsigned shift = offset << 3; + if (likely(can_read_underside(p, 4))) { + p -= offset; + return fetch32_be_unaligned(p) & ((~UINT32_C(0)) >> shift); + } + return fetch32_be_unaligned(p) >> shift; +#else + switch (tail & 3) { + default: + unreachable(); +/* fall through */ +#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT && \ + __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ + /* For most CPUs this code is better when not needed + * copying for alignment or byte reordering. */ + case 1: + return p[0]; + case 2: + return fetch16_be_unaligned(p); + case 3: + return fetch16_be_unaligned(p) << 8 | p[2]; + case 0: + return fetch32_be_unaligned(p); +#else + /* For most CPUs this code is better than a + * copying for alignment and/or byte reordering. */ + case 1: + return p[0]; + case 2: + return p[1] | (uint32_t)p[0] << 8; + case 3: + return p[2] | (uint32_t)p[1] << 8 | (uint32_t)p[0] << 16; + case 0: + return p[3] | (uint32_t)p[2] << 8 | (uint32_t)p[1] << 16 | + (uint32_t)p[0] << 24; +#endif + } +#endif /* can_read_underside */ +} + +/***************************************************************************/ + +#ifndef rot32 +static __maybe_unused __always_inline uint32_t rot32(uint32_t v, unsigned s) { + return (v >> s) | (v << (32 - s)); +} +#endif /* rot32 */ + +static __always_inline void mixup32(uint32_t *a, uint32_t *b, uint32_t v, + uint32_t prime) { + uint64_t l = mul_32x32_64(*b + v, prime); + *a ^= (uint32_t)l; + *b += (uint32_t)(l >> 32); +} + +static __always_inline uint64_t final32(uint32_t a, uint32_t b) { + uint64_t l = (b ^ rot32(a, 13)) | (uint64_t)a << 32; + l *= prime_0; + l ^= l >> 41; + l *= prime_4; + l ^= l >> 47; + l *= prime_6; + return l; +} + +/* 32-bit 'magic' primes */ +static const uint32_t prime32_0 = UINT32_C(0x92D78269); +static const uint32_t prime32_1 = UINT32_C(0xCA9B4735); +static const uint32_t prime32_2 = UINT32_C(0xA4ABA1C3); +static const uint32_t prime32_3 = UINT32_C(0xF6499843); +static const uint32_t prime32_4 = UINT32_C(0x86F0FD61); +static const uint32_t prime32_5 = UINT32_C(0xCA2DA6FB); +static const uint32_t prime32_6 = UINT32_C(0xC4BB3575); + +/* TODO: C++ template in the next version */ +#define T1HA0_BODY(ENDIANNES, ALIGNESS) \ + const uint32_t *v = (const uint32_t *)data; \ + if (unlikely(len > 16)) { \ + uint32_t c = ~a; \ + uint32_t d = rot32(b, 5); \ + const uint32_t *detent = \ + (const uint32_t *)((const uint8_t *)data + len - 15); \ + do { \ + const uint32_t w0 = fetch32_##ENDIANNES##_##ALIGNESS(v + 0); \ + const uint32_t w1 = fetch32_##ENDIANNES##_##ALIGNESS(v + 1); \ + const uint32_t w2 = fetch32_##ENDIANNES##_##ALIGNESS(v + 2); \ + const uint32_t w3 = fetch32_##ENDIANNES##_##ALIGNESS(v + 3); \ + v += 4; \ + prefetch(v); \ + \ + const uint32_t d13 = w1 + rot32(w3 + d, 17); \ + const uint32_t c02 = w0 ^ rot32(w2 + c, 11); \ + d ^= rot32(a + w0, 3); \ + c ^= rot32(b + w1, 7); \ + b = prime32_1 * (c02 + w3); \ + a = prime32_0 * (d13 ^ w2); \ + } while (likely(v < detent)); \ + \ + c += a; \ + d += b; \ + a ^= prime32_6 * (rot32(c, 16) + d); \ + b ^= prime32_5 * (c + rot32(d, 16)); \ + \ + len &= 15; \ + } \ + \ + switch (len) { \ + default: \ + mixup32(&a, &b, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_4); \ + /* fall through */ \ + case 12: \ + case 11: \ + case 10: \ + case 9: \ + mixup32(&b, &a, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_3); \ + /* fall through */ \ + case 8: \ + case 7: \ + case 6: \ + case 5: \ + mixup32(&a, &b, fetch32_##ENDIANNES##_##ALIGNESS(v++), prime32_2); \ + /* fall through */ \ + case 4: \ + case 3: \ + case 2: \ + case 1: \ + mixup32(&b, &a, tail32_##ENDIANNES##_##ALIGNESS(v, len), prime32_1); \ + /* fall through */ \ + case 0: \ + return final32(a, b); \ + } + +uint64_t t1ha0_32le(const void *data, size_t len, uint64_t seed) { + uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed; + uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32); + +#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT + T1HA0_BODY(le, unaligned); +#else + const bool misaligned = (((uintptr_t)data) & (ALIGNMENT_32 - 1)) != 0; + if (misaligned) { + T1HA0_BODY(le, unaligned); + } else { + T1HA0_BODY(le, aligned); + } +#endif +} + +uint64_t t1ha0_32be(const void *data, size_t len, uint64_t seed) { + uint32_t a = rot32((uint32_t)len, 17) + (uint32_t)seed; + uint32_t b = (uint32_t)len ^ (uint32_t)(seed >> 32); + +#if T1HA_SYS_UNALIGNED_ACCESS == T1HA_UNALIGNED_ACCESS__EFFICIENT + T1HA0_BODY(be, unaligned); +#else + const bool misaligned = (((uintptr_t)data) & (ALIGNMENT_32 - 1)) != 0; + if (misaligned) { + T1HA0_BODY(be, unaligned); + } else { + T1HA0_BODY(be, aligned); + } +#endif +} + +/***************************************************************************/ + +#if T1HA0_AESNI_AVAILABLE && defined(__ia32__) +__cold uint64_t t1ha_ia32cpu_features(void) { + uint32_t features = 0; + uint32_t extended = 0; #if defined(__GNUC__) || defined(__clang__) - uint32_t eax, ebx, ecx, edx; - const unsigned cpuid_max = __get_cpuid_max(0, NULL); - if (cpuid_max >= 1) { - __cpuid_count(1, 0, eax, ebx, features, edx); - if (cpuid_max >= 7) - __cpuid_count(7, 0, eax, extended, ecx, edx); - } -#elif defined(_MSC_VER) - int info[4]; - __cpuid(info, 0); - const unsigned cpuid_max = info[0]; - if (cpuid_max >= 1) { - __cpuidex(info, 1, 0); - features = info[2]; - if (cpuid_max >= 7) { - __cpuidex(info, 7, 0); - extended = info[1]; - } - } -#endif - return features | (uint64_t)extended << 32; -} -#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */ - -#if T1HA0_RUNTIME_SELECT - -__cold t1ha0_function_t t1ha0_resolve(void) { - -#if T1HA0_AESNI_AVAILABLE && defined(__ia32__) - uint64_t features = t1ha_ia32cpu_features(); - if (t1ha_ia32_AESNI_avail(features)) { - if (t1ha_ia32_AVX_avail(features)) - return t1ha_ia32_AVX2_avail(features) ? t1ha0_ia32aes_avx2 - : t1ha0_ia32aes_avx; - return t1ha0_ia32aes_noavx; - } -#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */ - -#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ -#if (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul) && \ - (!defined(T1HA1_DISABLED) || !defined(T1HA2_DISABLED)) -#ifndef T1HA1_DISABLED - return t1ha1_be; -#else - return t1ha2_atonce; -#endif /* T1HA1_DISABLED */ -#else - return t1ha0_32be; -#endif -#else /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */ -#if (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul) && \ - (!defined(T1HA1_DISABLED) || !defined(T1HA2_DISABLED)) -#ifndef T1HA1_DISABLED - return t1ha1_le; -#else - return t1ha2_atonce; -#endif /* T1HA1_DISABLED */ -#else - return t1ha0_32le; -#endif -#endif /* __BYTE_ORDER__ */ -} - -#if T1HA_USE_INDIRECT_FUNCTIONS -/* Use IFUNC (GNU ELF indirect functions) to choice implementation at runtime. - * For more info please see - * https://en.wikipedia.org/wiki/Executable_and_Linkable_Format - * and https://sourceware.org/glibc/wiki/GNU_IFUNC */ + uint32_t eax, ebx, ecx, edx; + const unsigned cpuid_max = __get_cpuid_max(0, NULL); + if (cpuid_max >= 1) { + __cpuid_count(1, 0, eax, ebx, features, edx); + if (cpuid_max >= 7) + __cpuid_count(7, 0, eax, extended, ecx, edx); + } +#elif defined(_MSC_VER) + int info[4]; + __cpuid(info, 0); + const unsigned cpuid_max = info[0]; + if (cpuid_max >= 1) { + __cpuidex(info, 1, 0); + features = info[2]; + if (cpuid_max >= 7) { + __cpuidex(info, 7, 0); + extended = info[1]; + } + } +#endif + return features | (uint64_t)extended << 32; +} +#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */ + +#if T1HA0_RUNTIME_SELECT + +__cold t1ha0_function_t t1ha0_resolve(void) { + +#if T1HA0_AESNI_AVAILABLE && defined(__ia32__) + uint64_t features = t1ha_ia32cpu_features(); + if (t1ha_ia32_AESNI_avail(features)) { + if (t1ha_ia32_AVX_avail(features)) + return t1ha_ia32_AVX2_avail(features) ? t1ha0_ia32aes_avx2 + : t1ha0_ia32aes_avx; + return t1ha0_ia32aes_noavx; + } +#endif /* T1HA0_AESNI_AVAILABLE && __ia32__ */ + +#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__ +#if (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul) && \ + (!defined(T1HA1_DISABLED) || !defined(T1HA2_DISABLED)) +#ifndef T1HA1_DISABLED + return t1ha1_be; +#else + return t1ha2_atonce; +#endif /* T1HA1_DISABLED */ +#else + return t1ha0_32be; +#endif +#else /* __BYTE_ORDER__ != __ORDER_BIG_ENDIAN__ */ +#if (UINTPTR_MAX > 0xffffFFFFul || ULONG_MAX > 0xffffFFFFul) && \ + (!defined(T1HA1_DISABLED) || !defined(T1HA2_DISABLED)) +#ifndef T1HA1_DISABLED + return t1ha1_le; +#else + return t1ha2_atonce; +#endif /* T1HA1_DISABLED */ +#else + return t1ha0_32le; +#endif +#endif /* __BYTE_ORDER__ */ +} + +#if T1HA_USE_INDIRECT_FUNCTIONS +/* Use IFUNC (GNU ELF indirect functions) to choice implementation at runtime. + * For more info please see + * https://en.wikipedia.org/wiki/Executable_and_Linkable_Format + * and https://sourceware.org/glibc/wiki/GNU_IFUNC */ #if __has_attribute(__ifunc__) -uint64_t t1ha0(const void *data, size_t len, uint64_t seed) +uint64_t t1ha0(const void *data, size_t len, uint64_t seed) __attribute__((__ifunc__("t1ha0_resolve"))); -#else -__asm("\t.globl\tt1ha0\n\t.type\tt1ha0, " - "%gnu_indirect_function\n\t.set\tt1ha0,t1ha0_resolve"); +#else +__asm("\t.globl\tt1ha0\n\t.type\tt1ha0, " + "%gnu_indirect_function\n\t.set\tt1ha0,t1ha0_resolve"); #endif /* __has_attribute(__ifunc__) */ - + #elif __GNUC_PREREQ(4, 0) || __has_attribute(__constructor__) - + uint64_t (*t1ha0_funcptr)(const void *, size_t, uint64_t); - + static __cold void __attribute__((__constructor__)) t1ha0_init(void) { - t1ha0_funcptr = t1ha0_resolve(); -} - -#else /* T1HA_USE_INDIRECT_FUNCTIONS */ - -static __cold uint64_t t1ha0_proxy(const void *data, size_t len, - uint64_t seed) { - t1ha0_funcptr = t1ha0_resolve(); - return t1ha0_funcptr(data, len, seed); -} - -uint64_t (*t1ha0_funcptr)(const void *, size_t, uint64_t) = t1ha0_proxy; - -#endif /* !T1HA_USE_INDIRECT_FUNCTIONS */ -#endif /* T1HA0_RUNTIME_SELECT */ - -#endif /* T1HA0_DISABLED */ + t1ha0_funcptr = t1ha0_resolve(); +} + +#else /* T1HA_USE_INDIRECT_FUNCTIONS */ + +static __cold uint64_t t1ha0_proxy(const void *data, size_t len, + uint64_t seed) { + t1ha0_funcptr = t1ha0_resolve(); + return t1ha0_funcptr(data, len, seed); +} + +uint64_t (*t1ha0_funcptr)(const void *, size_t, uint64_t) = t1ha0_proxy; + +#endif /* !T1HA_USE_INDIRECT_FUNCTIONS */ +#endif /* T1HA0_RUNTIME_SELECT */ + +#endif /* T1HA0_DISABLED */ |