aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/sparsehash/src
diff options
context:
space:
mode:
authornga <nga@yandex-team.ru>2022-02-10 16:48:09 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:48:09 +0300
commit1f553f46fb4f3c5eec631352cdd900a0709016af (patch)
treea231fba2c03b440becaea6c86a2702d0bfb0336e /contrib/libs/sparsehash/src
parentc4de7efdedc25b49cbea74bd589eecb61b55b60a (diff)
downloadydb-1f553f46fb4f3c5eec631352cdd900a0709016af.tar.gz
Restoring authorship annotation for <nga@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/sparsehash/src')
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/dense_hash_map738
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/dense_hash_set676
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/internal/densehashtable.h2632
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/internal/hashtable-common.h760
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/internal/libc_allocator_with_realloc.h236
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/internal/sparseconfig.h82
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/internal/sparsehashtable.h2488
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/sparse_hash_map726
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/sparse_hash_set676
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/sparsetable3634
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/template_util.h268
-rw-r--r--contrib/libs/sparsehash/src/sparsehash/type_traits.h684
12 files changed, 6800 insertions, 6800 deletions
diff --git a/contrib/libs/sparsehash/src/sparsehash/dense_hash_map b/contrib/libs/sparsehash/src/sparsehash/dense_hash_map
index 05fd580e64..693ada163f 100644
--- a/contrib/libs/sparsehash/src/sparsehash/dense_hash_map
+++ b/contrib/libs/sparsehash/src/sparsehash/dense_hash_map
@@ -1,369 +1,369 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ----
-//
-// This is just a very thin wrapper over densehashtable.h, just
-// like sgi stl's stl_hash_map is a very thin wrapper over
-// stl_hashtable. The major thing we define is operator[], because
-// we have a concept of a data_type which stl_hashtable doesn't
-// (it only has a key and a value).
-//
-// NOTE: this is exactly like sparse_hash_map.h, with the word
-// "sparse" replaced by "dense", except for the addition of
-// set_empty_key().
-//
-// YOU MUST CALL SET_EMPTY_KEY() IMMEDIATELY AFTER CONSTRUCTION.
-//
-// Otherwise your program will die in mysterious ways. (Note if you
-// use the constructor that takes an InputIterator range, you pass in
-// the empty key in the constructor, rather than after. As a result,
-// this constructor differs from the standard STL version.)
-//
-// In other respects, we adhere mostly to the STL semantics for
-// hash-map. One important exception is that insert() may invalidate
-// iterators entirely -- STL semantics are that insert() may reorder
-// iterators, but they all still refer to something valid in the
-// hashtable. Not so for us. Likewise, insert() may invalidate
-// pointers into the hashtable. (Whether insert invalidates iterators
-// and pointers depends on whether it results in a hashtable resize).
-// On the plus side, delete() doesn't invalidate iterators or pointers
-// at all, or even change the ordering of elements.
-//
-// Here are a few "power user" tips:
-//
-// 1) set_deleted_key():
-// If you want to use erase() you *must* call set_deleted_key(),
-// in addition to set_empty_key(), after construction.
-// The deleted and empty keys must differ.
-//
-// 2) resize(0):
-// When an item is deleted, its memory isn't freed right
-// away. This allows you to iterate over a hashtable,
-// and call erase(), without invalidating the iterator.
-// To force the memory to be freed, call resize(0).
-// For tr1 compatibility, this can also be called as rehash(0).
-//
-// 3) min_load_factor(0.0)
-// Setting the minimum load factor to 0.0 guarantees that
-// the hash table will never shrink.
-//
-// Roughly speaking:
-// (1) dense_hash_map: fastest, uses the most memory unless entries are small
-// (2) sparse_hash_map: slowest, uses the least memory
-// (3) hash_map / unordered_map (STL): in the middle
-//
-// Typically I use sparse_hash_map when I care about space and/or when
-// I need to save the hashtable on disk. I use hash_map otherwise. I
-// don't personally use dense_hash_set ever; some people use it for
-// small sets with lots of lookups.
-//
-// - dense_hash_map has, typically, about 78% memory overhead (if your
-// data takes up X bytes, the hash_map uses .78X more bytes in overhead).
-// - sparse_hash_map has about 4 bits overhead per entry.
-// - sparse_hash_map can be 3-7 times slower than the others for lookup and,
-// especially, inserts. See time_hash_map.cc for details.
-//
-// See /usr/(local/)?doc/sparsehash-*/dense_hash_map.html
-// for information about how to use this class.
-
-#ifndef _DENSE_HASH_MAP_H_
-#define _DENSE_HASH_MAP_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <algorithm> // needed by stl_alloc
-#include <functional> // for equal_to<>, select1st<>, etc
-#include <memory> // for alloc
-#include <utility> // for pair<>
-#include <sparsehash/internal/densehashtable.h> // IWYU pragma: export
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-#include HASH_FUN_H // for hash<>
-_START_GOOGLE_NAMESPACE_
-
-template <class Key, class T,
- class HashFcn = SPARSEHASH_HASH<Key>, // defined in sparseconfig.h
- class EqualKey = std::equal_to<Key>,
- class Alloc = libc_allocator_with_realloc<std::pair<const Key, T> > >
-class dense_hash_map {
- private:
- // Apparently select1st is not stl-standard, so we define our own
- struct SelectKey {
- typedef const Key& result_type;
- const Key& operator()(const std::pair<const Key, T>& p) const {
- return p.first;
- }
- };
- struct SetKey {
- void operator()(std::pair<const Key, T>* value, const Key& new_key) const {
- *const_cast<Key*>(&value->first) = new_key;
- // It would be nice to clear the rest of value here as well, in
- // case it's taking up a lot of memory. We do this by clearing
- // the value. This assumes T has a zero-arg constructor!
- value->second = T();
- }
- };
- // For operator[].
- struct DefaultValue {
- std::pair<const Key, T> operator()(const Key& key) {
- return std::make_pair(key, T());
- }
- };
-
- // The actual data
- typedef dense_hashtable<std::pair<const Key, T>, Key, HashFcn, SelectKey,
- SetKey, EqualKey, Alloc> ht;
- ht rep;
-
- public:
- typedef typename ht::key_type key_type;
- typedef T data_type;
- typedef T mapped_type;
- typedef typename ht::value_type value_type;
- typedef typename ht::hasher hasher;
- typedef typename ht::key_equal key_equal;
- typedef Alloc allocator_type;
-
- typedef typename ht::size_type size_type;
- typedef typename ht::difference_type difference_type;
- typedef typename ht::pointer pointer;
- typedef typename ht::const_pointer const_pointer;
- typedef typename ht::reference reference;
- typedef typename ht::const_reference const_reference;
-
- typedef typename ht::iterator iterator;
- typedef typename ht::const_iterator const_iterator;
- typedef typename ht::local_iterator local_iterator;
- typedef typename ht::const_local_iterator const_local_iterator;
-
- // Iterator functions
- iterator begin() { return rep.begin(); }
- iterator end() { return rep.end(); }
- const_iterator begin() const { return rep.begin(); }
- const_iterator end() const { return rep.end(); }
-
-
- // These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
- local_iterator begin(size_type i) { return rep.begin(i); }
- local_iterator end(size_type i) { return rep.end(i); }
- const_local_iterator begin(size_type i) const { return rep.begin(i); }
- const_local_iterator end(size_type i) const { return rep.end(i); }
-
- // Accessor functions
- allocator_type get_allocator() const { return rep.get_allocator(); }
- hasher hash_funct() const { return rep.hash_funct(); }
- hasher hash_function() const { return hash_funct(); }
- key_equal key_eq() const { return rep.key_eq(); }
-
-
- // Constructors
- explicit dense_hash_map(size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
- }
-
- template <class InputIterator>
- dense_hash_map(InputIterator f, InputIterator l,
- const key_type& empty_key_val,
- size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
- set_empty_key(empty_key_val);
- rep.insert(f, l);
- }
- // We use the default copy constructor
- // We use the default operator=()
- // We use the default destructor
-
- void clear() { rep.clear(); }
- // This clears the hash map without resizing it down to the minimum
- // bucket count, but rather keeps the number of buckets constant
- void clear_no_resize() { rep.clear_no_resize(); }
- void swap(dense_hash_map& hs) { rep.swap(hs.rep); }
-
-
- // Functions concerning size
- size_type size() const { return rep.size(); }
- size_type max_size() const { return rep.max_size(); }
- bool empty() const { return rep.empty(); }
- size_type bucket_count() const { return rep.bucket_count(); }
- size_type max_bucket_count() const { return rep.max_bucket_count(); }
-
- // These are tr1 methods. bucket() is the bucket the key is or would be in.
- size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
- size_type bucket(const key_type& key) const { return rep.bucket(key); }
- float load_factor() const {
- return size() * 1.0f / bucket_count();
- }
- float max_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return grow;
- }
- void max_load_factor(float new_grow) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(shrink, new_grow);
- }
- // These aren't tr1 methods but perhaps ought to be.
- float min_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return shrink;
- }
- void min_load_factor(float new_shrink) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(new_shrink, grow);
- }
- // Deprecated; use min_load_factor() or max_load_factor() instead.
- void set_resizing_parameters(float shrink, float grow) {
- rep.set_resizing_parameters(shrink, grow);
- }
-
- void resize(size_type hint) { rep.resize(hint); }
- void rehash(size_type hint) { resize(hint); } // the tr1 name
-
- // Lookup routines
- iterator find(const key_type& key) { return rep.find(key); }
- const_iterator find(const key_type& key) const { return rep.find(key); }
-
- data_type& operator[](const key_type& key) { // This is our value-add!
- // If key is in the hashtable, returns find(key)->second,
- // otherwise returns insert(value_type(key, T()).first->second.
- // Note it does not create an empty T unless the find fails.
- return rep.template find_or_insert<DefaultValue>(key).second;
- }
-
- size_type count(const key_type& key) const { return rep.count(key); }
-
- std::pair<iterator, iterator> equal_range(const key_type& key) {
- return rep.equal_range(key);
- }
- std::pair<const_iterator, const_iterator> equal_range(const key_type& key)
- const {
- return rep.equal_range(key);
- }
-
-
- // Insertion routines
- std::pair<iterator, bool> insert(const value_type& obj) {
- return rep.insert(obj);
- }
- template <class InputIterator> void insert(InputIterator f, InputIterator l) {
- rep.insert(f, l);
- }
- void insert(const_iterator f, const_iterator l) {
- rep.insert(f, l);
- }
- // Required for std::insert_iterator; the passed-in iterator is ignored.
- iterator insert(iterator, const value_type& obj) {
- return insert(obj).first;
- }
-
- // Deletion and empty routines
- // THESE ARE NON-STANDARD! I make you specify an "impossible" key
- // value to identify deleted and empty buckets. You can change the
- // deleted key as time goes on, or get rid of it entirely to be insert-only.
- void set_empty_key(const key_type& key) { // YOU MUST CALL THIS!
- rep.set_empty_key(value_type(key, data_type())); // rep wants a value
- }
- key_type empty_key() const {
- return rep.empty_key().first; // rep returns a value
- }
-
- void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
- void clear_deleted_key() { rep.clear_deleted_key(); }
- key_type deleted_key() const { return rep.deleted_key(); }
-
- // These are standard
- size_type erase(const key_type& key) { return rep.erase(key); }
- void erase(iterator it) { rep.erase(it); }
- void erase(iterator f, iterator l) { rep.erase(f, l); }
-
-
- // Comparison
- bool operator==(const dense_hash_map& hs) const { return rep == hs.rep; }
- bool operator!=(const dense_hash_map& hs) const { return rep != hs.rep; }
-
-
- // I/O -- this is an add-on for writing hash map to disk
- //
- // For maximum flexibility, this does not assume a particular
- // file type (though it will probably be a FILE *). We just pass
- // the fp through to rep.
-
- // If your keys and values are simple enough, you can pass this
- // serializer to serialize()/unserialize(). "Simple enough" means
- // value_type is a POD type that contains no pointers. Note,
- // however, we don't try to normalize endianness.
- typedef typename ht::NopointerSerializer NopointerSerializer;
-
- // serializer: a class providing operator()(OUTPUT*, const value_type&)
- // (writing value_type to OUTPUT). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
- // pointer to a class providing size_t Write(const void*, size_t),
- // which writes a buffer into a stream (which fp presumably
- // owns) and returns the number of bytes successfully written.
- // Note basic_ostream<not_char> is not currently supported.
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT* fp) {
- return rep.serialize(serializer, fp);
- }
-
- // serializer: a functor providing operator()(INPUT*, value_type*)
- // (reading from INPUT and into value_type). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
- // pointer to a class providing size_t Read(void*, size_t),
- // which reads into a buffer from a stream (which fp presumably
- // owns) and returns the number of bytes successfully read.
- // Note basic_istream<not_char> is not currently supported.
- // NOTE: Since value_type is std::pair<const Key, T>, ValueSerializer
- // may need to do a const cast in order to fill in the key.
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT* fp) {
- return rep.unserialize(serializer, fp);
- }
-};
-
-// We need a global swap as well
-template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
-inline void swap(dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
- dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2) {
- hm1.swap(hm2);
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _DENSE_HASH_MAP_H_ */
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ----
+//
+// This is just a very thin wrapper over densehashtable.h, just
+// like sgi stl's stl_hash_map is a very thin wrapper over
+// stl_hashtable. The major thing we define is operator[], because
+// we have a concept of a data_type which stl_hashtable doesn't
+// (it only has a key and a value).
+//
+// NOTE: this is exactly like sparse_hash_map.h, with the word
+// "sparse" replaced by "dense", except for the addition of
+// set_empty_key().
+//
+// YOU MUST CALL SET_EMPTY_KEY() IMMEDIATELY AFTER CONSTRUCTION.
+//
+// Otherwise your program will die in mysterious ways. (Note if you
+// use the constructor that takes an InputIterator range, you pass in
+// the empty key in the constructor, rather than after. As a result,
+// this constructor differs from the standard STL version.)
+//
+// In other respects, we adhere mostly to the STL semantics for
+// hash-map. One important exception is that insert() may invalidate
+// iterators entirely -- STL semantics are that insert() may reorder
+// iterators, but they all still refer to something valid in the
+// hashtable. Not so for us. Likewise, insert() may invalidate
+// pointers into the hashtable. (Whether insert invalidates iterators
+// and pointers depends on whether it results in a hashtable resize).
+// On the plus side, delete() doesn't invalidate iterators or pointers
+// at all, or even change the ordering of elements.
+//
+// Here are a few "power user" tips:
+//
+// 1) set_deleted_key():
+// If you want to use erase() you *must* call set_deleted_key(),
+// in addition to set_empty_key(), after construction.
+// The deleted and empty keys must differ.
+//
+// 2) resize(0):
+// When an item is deleted, its memory isn't freed right
+// away. This allows you to iterate over a hashtable,
+// and call erase(), without invalidating the iterator.
+// To force the memory to be freed, call resize(0).
+// For tr1 compatibility, this can also be called as rehash(0).
+//
+// 3) min_load_factor(0.0)
+// Setting the minimum load factor to 0.0 guarantees that
+// the hash table will never shrink.
+//
+// Roughly speaking:
+// (1) dense_hash_map: fastest, uses the most memory unless entries are small
+// (2) sparse_hash_map: slowest, uses the least memory
+// (3) hash_map / unordered_map (STL): in the middle
+//
+// Typically I use sparse_hash_map when I care about space and/or when
+// I need to save the hashtable on disk. I use hash_map otherwise. I
+// don't personally use dense_hash_set ever; some people use it for
+// small sets with lots of lookups.
+//
+// - dense_hash_map has, typically, about 78% memory overhead (if your
+// data takes up X bytes, the hash_map uses .78X more bytes in overhead).
+// - sparse_hash_map has about 4 bits overhead per entry.
+// - sparse_hash_map can be 3-7 times slower than the others for lookup and,
+// especially, inserts. See time_hash_map.cc for details.
+//
+// See /usr/(local/)?doc/sparsehash-*/dense_hash_map.html
+// for information about how to use this class.
+
+#ifndef _DENSE_HASH_MAP_H_
+#define _DENSE_HASH_MAP_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <algorithm> // needed by stl_alloc
+#include <functional> // for equal_to<>, select1st<>, etc
+#include <memory> // for alloc
+#include <utility> // for pair<>
+#include <sparsehash/internal/densehashtable.h> // IWYU pragma: export
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+#include HASH_FUN_H // for hash<>
+_START_GOOGLE_NAMESPACE_
+
+template <class Key, class T,
+ class HashFcn = SPARSEHASH_HASH<Key>, // defined in sparseconfig.h
+ class EqualKey = std::equal_to<Key>,
+ class Alloc = libc_allocator_with_realloc<std::pair<const Key, T> > >
+class dense_hash_map {
+ private:
+ // Apparently select1st is not stl-standard, so we define our own
+ struct SelectKey {
+ typedef const Key& result_type;
+ const Key& operator()(const std::pair<const Key, T>& p) const {
+ return p.first;
+ }
+ };
+ struct SetKey {
+ void operator()(std::pair<const Key, T>* value, const Key& new_key) const {
+ *const_cast<Key*>(&value->first) = new_key;
+ // It would be nice to clear the rest of value here as well, in
+ // case it's taking up a lot of memory. We do this by clearing
+ // the value. This assumes T has a zero-arg constructor!
+ value->second = T();
+ }
+ };
+ // For operator[].
+ struct DefaultValue {
+ std::pair<const Key, T> operator()(const Key& key) {
+ return std::make_pair(key, T());
+ }
+ };
+
+ // The actual data
+ typedef dense_hashtable<std::pair<const Key, T>, Key, HashFcn, SelectKey,
+ SetKey, EqualKey, Alloc> ht;
+ ht rep;
+
+ public:
+ typedef typename ht::key_type key_type;
+ typedef T data_type;
+ typedef T mapped_type;
+ typedef typename ht::value_type value_type;
+ typedef typename ht::hasher hasher;
+ typedef typename ht::key_equal key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename ht::size_type size_type;
+ typedef typename ht::difference_type difference_type;
+ typedef typename ht::pointer pointer;
+ typedef typename ht::const_pointer const_pointer;
+ typedef typename ht::reference reference;
+ typedef typename ht::const_reference const_reference;
+
+ typedef typename ht::iterator iterator;
+ typedef typename ht::const_iterator const_iterator;
+ typedef typename ht::local_iterator local_iterator;
+ typedef typename ht::const_local_iterator const_local_iterator;
+
+ // Iterator functions
+ iterator begin() { return rep.begin(); }
+ iterator end() { return rep.end(); }
+ const_iterator begin() const { return rep.begin(); }
+ const_iterator end() const { return rep.end(); }
+
+
+ // These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
+ local_iterator begin(size_type i) { return rep.begin(i); }
+ local_iterator end(size_type i) { return rep.end(i); }
+ const_local_iterator begin(size_type i) const { return rep.begin(i); }
+ const_local_iterator end(size_type i) const { return rep.end(i); }
+
+ // Accessor functions
+ allocator_type get_allocator() const { return rep.get_allocator(); }
+ hasher hash_funct() const { return rep.hash_funct(); }
+ hasher hash_function() const { return hash_funct(); }
+ key_equal key_eq() const { return rep.key_eq(); }
+
+
+ // Constructors
+ explicit dense_hash_map(size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
+ }
+
+ template <class InputIterator>
+ dense_hash_map(InputIterator f, InputIterator l,
+ const key_type& empty_key_val,
+ size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
+ set_empty_key(empty_key_val);
+ rep.insert(f, l);
+ }
+ // We use the default copy constructor
+ // We use the default operator=()
+ // We use the default destructor
+
+ void clear() { rep.clear(); }
+ // This clears the hash map without resizing it down to the minimum
+ // bucket count, but rather keeps the number of buckets constant
+ void clear_no_resize() { rep.clear_no_resize(); }
+ void swap(dense_hash_map& hs) { rep.swap(hs.rep); }
+
+
+ // Functions concerning size
+ size_type size() const { return rep.size(); }
+ size_type max_size() const { return rep.max_size(); }
+ bool empty() const { return rep.empty(); }
+ size_type bucket_count() const { return rep.bucket_count(); }
+ size_type max_bucket_count() const { return rep.max_bucket_count(); }
+
+ // These are tr1 methods. bucket() is the bucket the key is or would be in.
+ size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
+ size_type bucket(const key_type& key) const { return rep.bucket(key); }
+ float load_factor() const {
+ return size() * 1.0f / bucket_count();
+ }
+ float max_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return grow;
+ }
+ void max_load_factor(float new_grow) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(shrink, new_grow);
+ }
+ // These aren't tr1 methods but perhaps ought to be.
+ float min_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return shrink;
+ }
+ void min_load_factor(float new_shrink) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(new_shrink, grow);
+ }
+ // Deprecated; use min_load_factor() or max_load_factor() instead.
+ void set_resizing_parameters(float shrink, float grow) {
+ rep.set_resizing_parameters(shrink, grow);
+ }
+
+ void resize(size_type hint) { rep.resize(hint); }
+ void rehash(size_type hint) { resize(hint); } // the tr1 name
+
+ // Lookup routines
+ iterator find(const key_type& key) { return rep.find(key); }
+ const_iterator find(const key_type& key) const { return rep.find(key); }
+
+ data_type& operator[](const key_type& key) { // This is our value-add!
+ // If key is in the hashtable, returns find(key)->second,
+ // otherwise returns insert(value_type(key, T()).first->second.
+ // Note it does not create an empty T unless the find fails.
+ return rep.template find_or_insert<DefaultValue>(key).second;
+ }
+
+ size_type count(const key_type& key) const { return rep.count(key); }
+
+ std::pair<iterator, iterator> equal_range(const key_type& key) {
+ return rep.equal_range(key);
+ }
+ std::pair<const_iterator, const_iterator> equal_range(const key_type& key)
+ const {
+ return rep.equal_range(key);
+ }
+
+
+ // Insertion routines
+ std::pair<iterator, bool> insert(const value_type& obj) {
+ return rep.insert(obj);
+ }
+ template <class InputIterator> void insert(InputIterator f, InputIterator l) {
+ rep.insert(f, l);
+ }
+ void insert(const_iterator f, const_iterator l) {
+ rep.insert(f, l);
+ }
+ // Required for std::insert_iterator; the passed-in iterator is ignored.
+ iterator insert(iterator, const value_type& obj) {
+ return insert(obj).first;
+ }
+
+ // Deletion and empty routines
+ // THESE ARE NON-STANDARD! I make you specify an "impossible" key
+ // value to identify deleted and empty buckets. You can change the
+ // deleted key as time goes on, or get rid of it entirely to be insert-only.
+ void set_empty_key(const key_type& key) { // YOU MUST CALL THIS!
+ rep.set_empty_key(value_type(key, data_type())); // rep wants a value
+ }
+ key_type empty_key() const {
+ return rep.empty_key().first; // rep returns a value
+ }
+
+ void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
+ void clear_deleted_key() { rep.clear_deleted_key(); }
+ key_type deleted_key() const { return rep.deleted_key(); }
+
+ // These are standard
+ size_type erase(const key_type& key) { return rep.erase(key); }
+ void erase(iterator it) { rep.erase(it); }
+ void erase(iterator f, iterator l) { rep.erase(f, l); }
+
+
+ // Comparison
+ bool operator==(const dense_hash_map& hs) const { return rep == hs.rep; }
+ bool operator!=(const dense_hash_map& hs) const { return rep != hs.rep; }
+
+
+ // I/O -- this is an add-on for writing hash map to disk
+ //
+ // For maximum flexibility, this does not assume a particular
+ // file type (though it will probably be a FILE *). We just pass
+ // the fp through to rep.
+
+ // If your keys and values are simple enough, you can pass this
+ // serializer to serialize()/unserialize(). "Simple enough" means
+ // value_type is a POD type that contains no pointers. Note,
+ // however, we don't try to normalize endianness.
+ typedef typename ht::NopointerSerializer NopointerSerializer;
+
+ // serializer: a class providing operator()(OUTPUT*, const value_type&)
+ // (writing value_type to OUTPUT). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
+ // pointer to a class providing size_t Write(const void*, size_t),
+ // which writes a buffer into a stream (which fp presumably
+ // owns) and returns the number of bytes successfully written.
+ // Note basic_ostream<not_char> is not currently supported.
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT* fp) {
+ return rep.serialize(serializer, fp);
+ }
+
+ // serializer: a functor providing operator()(INPUT*, value_type*)
+ // (reading from INPUT and into value_type). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
+ // pointer to a class providing size_t Read(void*, size_t),
+ // which reads into a buffer from a stream (which fp presumably
+ // owns) and returns the number of bytes successfully read.
+ // Note basic_istream<not_char> is not currently supported.
+ // NOTE: Since value_type is std::pair<const Key, T>, ValueSerializer
+ // may need to do a const cast in order to fill in the key.
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT* fp) {
+ return rep.unserialize(serializer, fp);
+ }
+};
+
+// We need a global swap as well
+template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
+inline void swap(dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
+ dense_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2) {
+ hm1.swap(hm2);
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _DENSE_HASH_MAP_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/dense_hash_set b/contrib/libs/sparsehash/src/sparsehash/dense_hash_set
index 050b15d1d5..5238cd1e86 100644
--- a/contrib/libs/sparsehash/src/sparsehash/dense_hash_set
+++ b/contrib/libs/sparsehash/src/sparsehash/dense_hash_set
@@ -1,338 +1,338 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// This is just a very thin wrapper over densehashtable.h, just
-// like sgi stl's stl_hash_set is a very thin wrapper over
-// stl_hashtable. The major thing we define is operator[], because
-// we have a concept of a data_type which stl_hashtable doesn't
-// (it only has a key and a value).
-//
-// This is more different from dense_hash_map than you might think,
-// because all iterators for sets are const (you obviously can't
-// change the key, and for sets there is no value).
-//
-// NOTE: this is exactly like sparse_hash_set.h, with the word
-// "sparse" replaced by "dense", except for the addition of
-// set_empty_key().
-//
-// YOU MUST CALL SET_EMPTY_KEY() IMMEDIATELY AFTER CONSTRUCTION.
-//
-// Otherwise your program will die in mysterious ways. (Note if you
-// use the constructor that takes an InputIterator range, you pass in
-// the empty key in the constructor, rather than after. As a result,
-// this constructor differs from the standard STL version.)
-//
-// In other respects, we adhere mostly to the STL semantics for
-// hash-map. One important exception is that insert() may invalidate
-// iterators entirely -- STL semantics are that insert() may reorder
-// iterators, but they all still refer to something valid in the
-// hashtable. Not so for us. Likewise, insert() may invalidate
-// pointers into the hashtable. (Whether insert invalidates iterators
-// and pointers depends on whether it results in a hashtable resize).
-// On the plus side, delete() doesn't invalidate iterators or pointers
-// at all, or even change the ordering of elements.
-//
-// Here are a few "power user" tips:
-//
-// 1) set_deleted_key():
-// If you want to use erase() you must call set_deleted_key(),
-// in addition to set_empty_key(), after construction.
-// The deleted and empty keys must differ.
-//
-// 2) resize(0):
-// When an item is deleted, its memory isn't freed right
-// away. This allows you to iterate over a hashtable,
-// and call erase(), without invalidating the iterator.
-// To force the memory to be freed, call resize(0).
-// For tr1 compatibility, this can also be called as rehash(0).
-//
-// 3) min_load_factor(0.0)
-// Setting the minimum load factor to 0.0 guarantees that
-// the hash table will never shrink.
-//
-// Roughly speaking:
-// (1) dense_hash_set: fastest, uses the most memory unless entries are small
-// (2) sparse_hash_set: slowest, uses the least memory
-// (3) hash_set / unordered_set (STL): in the middle
-//
-// Typically I use sparse_hash_set when I care about space and/or when
-// I need to save the hashtable on disk. I use hash_set otherwise. I
-// don't personally use dense_hash_set ever; some people use it for
-// small sets with lots of lookups.
-//
-// - dense_hash_set has, typically, about 78% memory overhead (if your
-// data takes up X bytes, the hash_set uses .78X more bytes in overhead).
-// - sparse_hash_set has about 4 bits overhead per entry.
-// - sparse_hash_set can be 3-7 times slower than the others for lookup and,
-// especially, inserts. See time_hash_map.cc for details.
-//
-// See /usr/(local/)?doc/sparsehash-*/dense_hash_set.html
-// for information about how to use this class.
-
-#ifndef _DENSE_HASH_SET_H_
-#define _DENSE_HASH_SET_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <algorithm> // needed by stl_alloc
-#include <functional> // for equal_to<>, select1st<>, etc
-#include <memory> // for alloc
-#include <utility> // for pair<>
-#include <sparsehash/internal/densehashtable.h> // IWYU pragma: export
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-#include HASH_FUN_H // for hash<>
-_START_GOOGLE_NAMESPACE_
-
-template <class Value,
- class HashFcn = SPARSEHASH_HASH<Value>, // defined in sparseconfig.h
- class EqualKey = std::equal_to<Value>,
- class Alloc = libc_allocator_with_realloc<Value> >
-class dense_hash_set {
- private:
- // Apparently identity is not stl-standard, so we define our own
- struct Identity {
- typedef const Value& result_type;
- const Value& operator()(const Value& v) const { return v; }
- };
- struct SetKey {
- void operator()(Value* value, const Value& new_key) const {
- *value = new_key;
- }
- };
-
- // The actual data
- typedef dense_hashtable<Value, Value, HashFcn, Identity, SetKey,
- EqualKey, Alloc> ht;
- ht rep;
-
- public:
- typedef typename ht::key_type key_type;
- typedef typename ht::value_type value_type;
- typedef typename ht::hasher hasher;
- typedef typename ht::key_equal key_equal;
- typedef Alloc allocator_type;
-
- typedef typename ht::size_type size_type;
- typedef typename ht::difference_type difference_type;
- typedef typename ht::const_pointer pointer;
- typedef typename ht::const_pointer const_pointer;
- typedef typename ht::const_reference reference;
- typedef typename ht::const_reference const_reference;
-
- typedef typename ht::const_iterator iterator;
- typedef typename ht::const_iterator const_iterator;
- typedef typename ht::const_local_iterator local_iterator;
- typedef typename ht::const_local_iterator const_local_iterator;
-
-
- // Iterator functions -- recall all iterators are const
- iterator begin() const { return rep.begin(); }
- iterator end() const { return rep.end(); }
-
- // These come from tr1's unordered_set. For us, a bucket has 0 or 1 elements.
- local_iterator begin(size_type i) const { return rep.begin(i); }
- local_iterator end(size_type i) const { return rep.end(i); }
-
-
- // Accessor functions
- allocator_type get_allocator() const { return rep.get_allocator(); }
- hasher hash_funct() const { return rep.hash_funct(); }
- hasher hash_function() const { return hash_funct(); } // tr1 name
- key_equal key_eq() const { return rep.key_eq(); }
-
-
- // Constructors
- explicit dense_hash_set(size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
- }
-
- template <class InputIterator>
- dense_hash_set(InputIterator f, InputIterator l,
- const key_type& empty_key_val,
- size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
- set_empty_key(empty_key_val);
- rep.insert(f, l);
- }
- // We use the default copy constructor
- // We use the default operator=()
- // We use the default destructor
-
- void clear() { rep.clear(); }
- // This clears the hash set without resizing it down to the minimum
- // bucket count, but rather keeps the number of buckets constant
- void clear_no_resize() { rep.clear_no_resize(); }
- void swap(dense_hash_set& hs) { rep.swap(hs.rep); }
-
-
- // Functions concerning size
- size_type size() const { return rep.size(); }
- size_type max_size() const { return rep.max_size(); }
- bool empty() const { return rep.empty(); }
- size_type bucket_count() const { return rep.bucket_count(); }
- size_type max_bucket_count() const { return rep.max_bucket_count(); }
-
- // These are tr1 methods. bucket() is the bucket the key is or would be in.
- size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
- size_type bucket(const key_type& key) const { return rep.bucket(key); }
- float load_factor() const {
- return size() * 1.0f / bucket_count();
- }
- float max_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return grow;
- }
- void max_load_factor(float new_grow) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(shrink, new_grow);
- }
- // These aren't tr1 methods but perhaps ought to be.
- float min_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return shrink;
- }
- void min_load_factor(float new_shrink) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(new_shrink, grow);
- }
- // Deprecated; use min_load_factor() or max_load_factor() instead.
- void set_resizing_parameters(float shrink, float grow) {
- rep.set_resizing_parameters(shrink, grow);
- }
-
- void resize(size_type hint) { rep.resize(hint); }
- void rehash(size_type hint) { resize(hint); } // the tr1 name
-
- // Lookup routines
- iterator find(const key_type& key) const { return rep.find(key); }
-
- size_type count(const key_type& key) const { return rep.count(key); }
-
- std::pair<iterator, iterator> equal_range(const key_type& key) const {
- return rep.equal_range(key);
- }
-
-
- // Insertion routines
- std::pair<iterator, bool> insert(const value_type& obj) {
- std::pair<typename ht::iterator, bool> p = rep.insert(obj);
- return std::pair<iterator, bool>(p.first, p.second); // const to non-const
- }
- template <class InputIterator> void insert(InputIterator f, InputIterator l) {
- rep.insert(f, l);
- }
- void insert(const_iterator f, const_iterator l) {
- rep.insert(f, l);
- }
- // Required for std::insert_iterator; the passed-in iterator is ignored.
- iterator insert(iterator, const value_type& obj) {
- return insert(obj).first;
- }
-
- // Deletion and empty routines
- // THESE ARE NON-STANDARD! I make you specify an "impossible" key
- // value to identify deleted and empty buckets. You can change the
- // deleted key as time goes on, or get rid of it entirely to be insert-only.
- void set_empty_key(const key_type& key) { rep.set_empty_key(key); }
- key_type empty_key() const { return rep.empty_key(); }
-
- void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
- void clear_deleted_key() { rep.clear_deleted_key(); }
- key_type deleted_key() const { return rep.deleted_key(); }
-
- // These are standard
- size_type erase(const key_type& key) { return rep.erase(key); }
- void erase(iterator it) { rep.erase(it); }
- void erase(iterator f, iterator l) { rep.erase(f, l); }
-
-
- // Comparison
- bool operator==(const dense_hash_set& hs) const { return rep == hs.rep; }
- bool operator!=(const dense_hash_set& hs) const { return rep != hs.rep; }
-
-
- // I/O -- this is an add-on for writing metainformation to disk
- //
- // For maximum flexibility, this does not assume a particular
- // file type (though it will probably be a FILE *). We just pass
- // the fp through to rep.
-
- // If your keys and values are simple enough, you can pass this
- // serializer to serialize()/unserialize(). "Simple enough" means
- // value_type is a POD type that contains no pointers. Note,
- // however, we don't try to normalize endianness.
- typedef typename ht::NopointerSerializer NopointerSerializer;
-
- // serializer: a class providing operator()(OUTPUT*, const value_type&)
- // (writing value_type to OUTPUT). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
- // pointer to a class providing size_t Write(const void*, size_t),
- // which writes a buffer into a stream (which fp presumably
- // owns) and returns the number of bytes successfully written.
- // Note basic_ostream<not_char> is not currently supported.
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT* fp) {
- return rep.serialize(serializer, fp);
- }
-
- // serializer: a functor providing operator()(INPUT*, value_type*)
- // (reading from INPUT and into value_type). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
- // pointer to a class providing size_t Read(void*, size_t),
- // which reads into a buffer from a stream (which fp presumably
- // owns) and returns the number of bytes successfully read.
- // Note basic_istream<not_char> is not currently supported.
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT* fp) {
- return rep.unserialize(serializer, fp);
- }
-};
-
-template <class Val, class HashFcn, class EqualKey, class Alloc>
-inline void swap(dense_hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
- dense_hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
- hs1.swap(hs2);
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _DENSE_HASH_SET_H_ */
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// This is just a very thin wrapper over densehashtable.h, just
+// like sgi stl's stl_hash_set is a very thin wrapper over
+// stl_hashtable. The major thing we define is operator[], because
+// we have a concept of a data_type which stl_hashtable doesn't
+// (it only has a key and a value).
+//
+// This is more different from dense_hash_map than you might think,
+// because all iterators for sets are const (you obviously can't
+// change the key, and for sets there is no value).
+//
+// NOTE: this is exactly like sparse_hash_set.h, with the word
+// "sparse" replaced by "dense", except for the addition of
+// set_empty_key().
+//
+// YOU MUST CALL SET_EMPTY_KEY() IMMEDIATELY AFTER CONSTRUCTION.
+//
+// Otherwise your program will die in mysterious ways. (Note if you
+// use the constructor that takes an InputIterator range, you pass in
+// the empty key in the constructor, rather than after. As a result,
+// this constructor differs from the standard STL version.)
+//
+// In other respects, we adhere mostly to the STL semantics for
+// hash-map. One important exception is that insert() may invalidate
+// iterators entirely -- STL semantics are that insert() may reorder
+// iterators, but they all still refer to something valid in the
+// hashtable. Not so for us. Likewise, insert() may invalidate
+// pointers into the hashtable. (Whether insert invalidates iterators
+// and pointers depends on whether it results in a hashtable resize).
+// On the plus side, delete() doesn't invalidate iterators or pointers
+// at all, or even change the ordering of elements.
+//
+// Here are a few "power user" tips:
+//
+// 1) set_deleted_key():
+// If you want to use erase() you must call set_deleted_key(),
+// in addition to set_empty_key(), after construction.
+// The deleted and empty keys must differ.
+//
+// 2) resize(0):
+// When an item is deleted, its memory isn't freed right
+// away. This allows you to iterate over a hashtable,
+// and call erase(), without invalidating the iterator.
+// To force the memory to be freed, call resize(0).
+// For tr1 compatibility, this can also be called as rehash(0).
+//
+// 3) min_load_factor(0.0)
+// Setting the minimum load factor to 0.0 guarantees that
+// the hash table will never shrink.
+//
+// Roughly speaking:
+// (1) dense_hash_set: fastest, uses the most memory unless entries are small
+// (2) sparse_hash_set: slowest, uses the least memory
+// (3) hash_set / unordered_set (STL): in the middle
+//
+// Typically I use sparse_hash_set when I care about space and/or when
+// I need to save the hashtable on disk. I use hash_set otherwise. I
+// don't personally use dense_hash_set ever; some people use it for
+// small sets with lots of lookups.
+//
+// - dense_hash_set has, typically, about 78% memory overhead (if your
+// data takes up X bytes, the hash_set uses .78X more bytes in overhead).
+// - sparse_hash_set has about 4 bits overhead per entry.
+// - sparse_hash_set can be 3-7 times slower than the others for lookup and,
+// especially, inserts. See time_hash_map.cc for details.
+//
+// See /usr/(local/)?doc/sparsehash-*/dense_hash_set.html
+// for information about how to use this class.
+
+#ifndef _DENSE_HASH_SET_H_
+#define _DENSE_HASH_SET_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <algorithm> // needed by stl_alloc
+#include <functional> // for equal_to<>, select1st<>, etc
+#include <memory> // for alloc
+#include <utility> // for pair<>
+#include <sparsehash/internal/densehashtable.h> // IWYU pragma: export
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+#include HASH_FUN_H // for hash<>
+_START_GOOGLE_NAMESPACE_
+
+template <class Value,
+ class HashFcn = SPARSEHASH_HASH<Value>, // defined in sparseconfig.h
+ class EqualKey = std::equal_to<Value>,
+ class Alloc = libc_allocator_with_realloc<Value> >
+class dense_hash_set {
+ private:
+ // Apparently identity is not stl-standard, so we define our own
+ struct Identity {
+ typedef const Value& result_type;
+ const Value& operator()(const Value& v) const { return v; }
+ };
+ struct SetKey {
+ void operator()(Value* value, const Value& new_key) const {
+ *value = new_key;
+ }
+ };
+
+ // The actual data
+ typedef dense_hashtable<Value, Value, HashFcn, Identity, SetKey,
+ EqualKey, Alloc> ht;
+ ht rep;
+
+ public:
+ typedef typename ht::key_type key_type;
+ typedef typename ht::value_type value_type;
+ typedef typename ht::hasher hasher;
+ typedef typename ht::key_equal key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename ht::size_type size_type;
+ typedef typename ht::difference_type difference_type;
+ typedef typename ht::const_pointer pointer;
+ typedef typename ht::const_pointer const_pointer;
+ typedef typename ht::const_reference reference;
+ typedef typename ht::const_reference const_reference;
+
+ typedef typename ht::const_iterator iterator;
+ typedef typename ht::const_iterator const_iterator;
+ typedef typename ht::const_local_iterator local_iterator;
+ typedef typename ht::const_local_iterator const_local_iterator;
+
+
+ // Iterator functions -- recall all iterators are const
+ iterator begin() const { return rep.begin(); }
+ iterator end() const { return rep.end(); }
+
+ // These come from tr1's unordered_set. For us, a bucket has 0 or 1 elements.
+ local_iterator begin(size_type i) const { return rep.begin(i); }
+ local_iterator end(size_type i) const { return rep.end(i); }
+
+
+ // Accessor functions
+ allocator_type get_allocator() const { return rep.get_allocator(); }
+ hasher hash_funct() const { return rep.hash_funct(); }
+ hasher hash_function() const { return hash_funct(); } // tr1 name
+ key_equal key_eq() const { return rep.key_eq(); }
+
+
+ // Constructors
+ explicit dense_hash_set(size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
+ }
+
+ template <class InputIterator>
+ dense_hash_set(InputIterator f, InputIterator l,
+ const key_type& empty_key_val,
+ size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
+ set_empty_key(empty_key_val);
+ rep.insert(f, l);
+ }
+ // We use the default copy constructor
+ // We use the default operator=()
+ // We use the default destructor
+
+ void clear() { rep.clear(); }
+ // This clears the hash set without resizing it down to the minimum
+ // bucket count, but rather keeps the number of buckets constant
+ void clear_no_resize() { rep.clear_no_resize(); }
+ void swap(dense_hash_set& hs) { rep.swap(hs.rep); }
+
+
+ // Functions concerning size
+ size_type size() const { return rep.size(); }
+ size_type max_size() const { return rep.max_size(); }
+ bool empty() const { return rep.empty(); }
+ size_type bucket_count() const { return rep.bucket_count(); }
+ size_type max_bucket_count() const { return rep.max_bucket_count(); }
+
+ // These are tr1 methods. bucket() is the bucket the key is or would be in.
+ size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
+ size_type bucket(const key_type& key) const { return rep.bucket(key); }
+ float load_factor() const {
+ return size() * 1.0f / bucket_count();
+ }
+ float max_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return grow;
+ }
+ void max_load_factor(float new_grow) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(shrink, new_grow);
+ }
+ // These aren't tr1 methods but perhaps ought to be.
+ float min_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return shrink;
+ }
+ void min_load_factor(float new_shrink) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(new_shrink, grow);
+ }
+ // Deprecated; use min_load_factor() or max_load_factor() instead.
+ void set_resizing_parameters(float shrink, float grow) {
+ rep.set_resizing_parameters(shrink, grow);
+ }
+
+ void resize(size_type hint) { rep.resize(hint); }
+ void rehash(size_type hint) { resize(hint); } // the tr1 name
+
+ // Lookup routines
+ iterator find(const key_type& key) const { return rep.find(key); }
+
+ size_type count(const key_type& key) const { return rep.count(key); }
+
+ std::pair<iterator, iterator> equal_range(const key_type& key) const {
+ return rep.equal_range(key);
+ }
+
+
+ // Insertion routines
+ std::pair<iterator, bool> insert(const value_type& obj) {
+ std::pair<typename ht::iterator, bool> p = rep.insert(obj);
+ return std::pair<iterator, bool>(p.first, p.second); // const to non-const
+ }
+ template <class InputIterator> void insert(InputIterator f, InputIterator l) {
+ rep.insert(f, l);
+ }
+ void insert(const_iterator f, const_iterator l) {
+ rep.insert(f, l);
+ }
+ // Required for std::insert_iterator; the passed-in iterator is ignored.
+ iterator insert(iterator, const value_type& obj) {
+ return insert(obj).first;
+ }
+
+ // Deletion and empty routines
+ // THESE ARE NON-STANDARD! I make you specify an "impossible" key
+ // value to identify deleted and empty buckets. You can change the
+ // deleted key as time goes on, or get rid of it entirely to be insert-only.
+ void set_empty_key(const key_type& key) { rep.set_empty_key(key); }
+ key_type empty_key() const { return rep.empty_key(); }
+
+ void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
+ void clear_deleted_key() { rep.clear_deleted_key(); }
+ key_type deleted_key() const { return rep.deleted_key(); }
+
+ // These are standard
+ size_type erase(const key_type& key) { return rep.erase(key); }
+ void erase(iterator it) { rep.erase(it); }
+ void erase(iterator f, iterator l) { rep.erase(f, l); }
+
+
+ // Comparison
+ bool operator==(const dense_hash_set& hs) const { return rep == hs.rep; }
+ bool operator!=(const dense_hash_set& hs) const { return rep != hs.rep; }
+
+
+ // I/O -- this is an add-on for writing metainformation to disk
+ //
+ // For maximum flexibility, this does not assume a particular
+ // file type (though it will probably be a FILE *). We just pass
+ // the fp through to rep.
+
+ // If your keys and values are simple enough, you can pass this
+ // serializer to serialize()/unserialize(). "Simple enough" means
+ // value_type is a POD type that contains no pointers. Note,
+ // however, we don't try to normalize endianness.
+ typedef typename ht::NopointerSerializer NopointerSerializer;
+
+ // serializer: a class providing operator()(OUTPUT*, const value_type&)
+ // (writing value_type to OUTPUT). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
+ // pointer to a class providing size_t Write(const void*, size_t),
+ // which writes a buffer into a stream (which fp presumably
+ // owns) and returns the number of bytes successfully written.
+ // Note basic_ostream<not_char> is not currently supported.
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT* fp) {
+ return rep.serialize(serializer, fp);
+ }
+
+ // serializer: a functor providing operator()(INPUT*, value_type*)
+ // (reading from INPUT and into value_type). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
+ // pointer to a class providing size_t Read(void*, size_t),
+ // which reads into a buffer from a stream (which fp presumably
+ // owns) and returns the number of bytes successfully read.
+ // Note basic_istream<not_char> is not currently supported.
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT* fp) {
+ return rep.unserialize(serializer, fp);
+ }
+};
+
+template <class Val, class HashFcn, class EqualKey, class Alloc>
+inline void swap(dense_hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
+ dense_hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
+ hs1.swap(hs2);
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _DENSE_HASH_SET_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/internal/densehashtable.h b/contrib/libs/sparsehash/src/sparsehash/internal/densehashtable.h
index cdf4ff624a..7faa5913b5 100644
--- a/contrib/libs/sparsehash/src/sparsehash/internal/densehashtable.h
+++ b/contrib/libs/sparsehash/src/sparsehash/internal/densehashtable.h
@@ -1,1327 +1,1327 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// A dense hashtable is a particular implementation of
-// a hashtable: one that is meant to minimize memory allocation.
-// It does this by using an array to store all the data. We
-// steal a value from the key space to indicate "empty" array
-// elements (ie indices where no item lives) and another to indicate
-// "deleted" elements.
-//
-// (Note it is possible to change the value of the delete key
-// on the fly; you can even remove it, though after that point
-// the hashtable is insert_only until you set it again. The empty
-// value however can't be changed.)
-//
-// To minimize allocation and pointer overhead, we use internal
-// probing, in which the hashtable is a single table, and collisions
-// are resolved by trying to insert again in another bucket. The
-// most cache-efficient internal probing schemes are linear probing
-// (which suffers, alas, from clumping) and quadratic probing, which
-// is what we implement by default.
-//
-// Type requirements: value_type is required to be Copy Constructible
-// and Default Constructible. It is not required to be (and commonly
-// isn't) Assignable.
-//
-// You probably shouldn't use this code directly. Use dense_hash_map<>
-// or dense_hash_set<> instead.
-
-// You can change the following below:
-// HT_OCCUPANCY_PCT -- how full before we double size
-// HT_EMPTY_PCT -- how empty before we halve size
-// HT_MIN_BUCKETS -- default smallest bucket size
-//
-// You can also change enlarge_factor (which defaults to
-// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
-// HT_EMPTY_PCT) with set_resizing_parameters().
-//
-// How to decide what values to use?
-// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
-// HT_MIN_BUCKETS is probably unnecessary since you can specify
-// (indirectly) the starting number of buckets at construct-time.
-// For enlarge_factor, you can use this chart to try to trade-off
-// expected lookup time to the space taken up. By default, this
-// code uses quadratic probing, though you can change it to linear
-// via JUMP_ below if you really want to.
-//
-// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
-// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
-// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
-// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
-//
-// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
-// QUADRATIC COLLISION RES.
-// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
-// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
-// LINEAR COLLISION RES.
-// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
-// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
-
-#ifndef _DENSEHASHTABLE_H_
-#define _DENSEHASHTABLE_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <assert.h>
-#include <stdio.h> // for FILE, fwrite, fread
-#include <algorithm> // For swap(), eg
-#include <iterator> // For iterator tags
-#include <limits> // for numeric_limits
-#include <memory> // For uninitialized_fill
-#include <utility> // for pair
-#include <sparsehash/internal/hashtable-common.h>
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-#include <sparsehash/type_traits.h>
-#include <stdexcept> // For length_error
-
-_START_GOOGLE_NAMESPACE_
-
-namespace base { // just to make google->opensource transition easier
-using GOOGLE_NAMESPACE::true_type;
-using GOOGLE_NAMESPACE::false_type;
-using GOOGLE_NAMESPACE::integral_constant;
-using GOOGLE_NAMESPACE::is_same;
-using GOOGLE_NAMESPACE::remove_const;
-}
-
-// The probing method
-// Linear probing
-// #define JUMP_(key, num_probes) ( 1 )
-// Quadratic probing
-#define JUMP_(key, num_probes) ( num_probes )
-
-// Hashtable class, used to implement the hashed associative containers
-// hash_set and hash_map.
-
-// Value: what is stored in the table (each bucket is a Value).
-// Key: something in a 1-to-1 correspondence to a Value, that can be used
-// to search for a Value in the table (find() takes a Key).
-// HashFcn: Takes a Key and returns an integer, the more unique the better.
-// ExtractKey: given a Value, returns the unique Key associated with it.
-// Must inherit from unary_function, or at least have a
-// result_type enum indicating the return type of operator().
-// SetKey: given a Value* and a Key, modifies the value such that
-// ExtractKey(value) == key. We guarantee this is only called
-// with key == deleted_key or key == empty_key.
-// EqualKey: Given two Keys, says whether they are the same (that is,
-// if they are both associated with the same Value).
-// Alloc: STL allocator to use to allocate memory.
-
-template <class Value, class Key, class HashFcn,
- class ExtractKey, class SetKey, class EqualKey, class Alloc>
-class dense_hashtable;
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct dense_hashtable_iterator;
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct dense_hashtable_const_iterator;
-
-// We're just an array, but we need to skip over empty and deleted elements
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct dense_hashtable_iterator {
- private:
- typedef typename A::template rebind<V>::other value_alloc_type;
-
- public:
- typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
- typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
-
- typedef std::forward_iterator_tag iterator_category; // very little defined!
- typedef V value_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::pointer pointer;
-
- // "Real" constructor and default constructor
- dense_hashtable_iterator(const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
- pointer it, pointer it_end, bool advance)
- : ht(h), pos(it), end(it_end) {
- if (advance) advance_past_empty_and_deleted();
- }
- dense_hashtable_iterator() { }
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *pos; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic. The only hard part is making sure that
- // we're not on an empty or marked-deleted array element
- void advance_past_empty_and_deleted() {
- while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
- ++pos;
- }
- iterator& operator++() {
- assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
-
- // Comparison.
- bool operator==(const iterator& it) const { return pos == it.pos; }
- bool operator!=(const iterator& it) const { return pos != it.pos; }
-
-
- // The actual data
- const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
- pointer pos, end;
-};
-
-
-// Now do it all again, but with const-ness!
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct dense_hashtable_const_iterator {
- private:
- typedef typename A::template rebind<V>::other value_alloc_type;
-
- public:
- typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
- typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
-
- typedef std::forward_iterator_tag iterator_category; // very little defined!
- typedef V value_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::const_reference reference;
- typedef typename value_alloc_type::const_pointer pointer;
-
- // "Real" constructor and default constructor
- dense_hashtable_const_iterator(
- const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
- pointer it, pointer it_end, bool advance)
- : ht(h), pos(it), end(it_end) {
- if (advance) advance_past_empty_and_deleted();
- }
- dense_hashtable_const_iterator()
- : ht(NULL), pos(pointer()), end(pointer()) { }
- // This lets us convert regular iterators to const iterators
- dense_hashtable_const_iterator(const iterator &it)
- : ht(it.ht), pos(it.pos), end(it.end) { }
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *pos; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic. The only hard part is making sure that
- // we're not on an empty or marked-deleted array element
- void advance_past_empty_and_deleted() {
- while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
- ++pos;
- }
- const_iterator& operator++() {
- assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
- }
- const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
-
- // Comparison.
- bool operator==(const const_iterator& it) const { return pos == it.pos; }
- bool operator!=(const const_iterator& it) const { return pos != it.pos; }
-
-
- // The actual data
- const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
- pointer pos, end;
-};
-
-template <class Value, class Key, class HashFcn,
- class ExtractKey, class SetKey, class EqualKey, class Alloc>
-class dense_hashtable {
- private:
- typedef typename Alloc::template rebind<Value>::other value_alloc_type;
-
- public:
- typedef Key key_type;
- typedef Value value_type;
- typedef HashFcn hasher;
- typedef EqualKey key_equal;
- typedef Alloc allocator_type;
-
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::const_reference const_reference;
- typedef typename value_alloc_type::pointer pointer;
- typedef typename value_alloc_type::const_pointer const_pointer;
- typedef dense_hashtable_iterator<Value, Key, HashFcn,
- ExtractKey, SetKey, EqualKey, Alloc>
- iterator;
-
- typedef dense_hashtable_const_iterator<Value, Key, HashFcn,
- ExtractKey, SetKey, EqualKey, Alloc>
- const_iterator;
-
- // These come from tr1. For us they're the same as regular iterators.
- typedef iterator local_iterator;
- typedef const_iterator const_local_iterator;
-
- // How full we let the table get before we resize, by default.
- // Knuth says .8 is good -- higher causes us to probe too much,
- // though it saves memory.
- static const int HT_OCCUPANCY_PCT; // defined at the bottom of this file
-
- // How empty we let the table get before we resize lower, by default.
- // (0.0 means never resize lower.)
- // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
- static const int HT_EMPTY_PCT; // defined at the bottom of this file
-
- // Minimum size we're willing to let hashtables be.
- // Must be a power of two, and at least 4.
- // Note, however, that for a given hashtable, the initial size is a
- // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
- static const size_type HT_MIN_BUCKETS = 4;
-
- // By default, if you don't specify a hashtable size at
- // construction-time, we use this size. Must be a power of two, and
- // at least HT_MIN_BUCKETS.
- static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
-
- // ITERATOR FUNCTIONS
- iterator begin() { return iterator(this, table,
- table + num_buckets, true); }
- iterator end() { return iterator(this, table + num_buckets,
- table + num_buckets, true); }
- const_iterator begin() const { return const_iterator(this, table,
- table+num_buckets,true);}
- const_iterator end() const { return const_iterator(this, table + num_buckets,
- table+num_buckets,true);}
-
- // These come from tr1 unordered_map. They iterate over 'bucket' n.
- // We'll just consider bucket n to be the n-th element of the table.
- local_iterator begin(size_type i) {
- return local_iterator(this, table + i, table + i+1, false);
- }
- local_iterator end(size_type i) {
- local_iterator it = begin(i);
- if (!test_empty(i) && !test_deleted(i))
- ++it;
- return it;
- }
- const_local_iterator begin(size_type i) const {
- return const_local_iterator(this, table + i, table + i+1, false);
- }
- const_local_iterator end(size_type i) const {
- const_local_iterator it = begin(i);
- if (!test_empty(i) && !test_deleted(i))
- ++it;
- return it;
- }
-
- // ACCESSOR FUNCTIONS for the things we templatize on, basically
- hasher hash_funct() const { return settings; }
- key_equal key_eq() const { return key_info; }
- allocator_type get_allocator() const {
- return allocator_type(val_info);
- }
-
- // Accessor function for statistics gathering.
- int num_table_copies() const { return settings.num_ht_copies(); }
-
- private:
- // Annoyingly, we can't copy values around, because they might have
- // const components (they're probably pair<const X, Y>). We use
- // explicit destructor invocation and placement new to get around
- // this. Arg.
- void set_value(pointer dst, const_reference src) {
- dst->~value_type(); // delete the old value, if any
- new(dst) value_type(src);
- }
-
- void destroy_buckets(size_type first, size_type last) {
- for ( ; first != last; ++first)
- table[first].~value_type();
- }
-
- // DELETE HELPER FUNCTIONS
- // This lets the user describe a key that will indicate deleted
- // table entries. This key should be an "impossible" entry --
- // if you try to insert it for real, you won't be able to retrieve it!
- // (NB: while you pass in an entire value, only the key part is looked
- // at. This is just because I don't know how to assign just a key.)
- private:
- void squash_deleted() { // gets rid of any deleted entries we have
- if ( num_deleted ) { // get rid of deleted before writing
- dense_hashtable tmp(*this); // copying will get rid of deleted
- swap(tmp); // now we are tmp
- }
- assert(num_deleted == 0);
- }
-
- // Test if the given key is the deleted indicator. Requires
- // num_deleted > 0, for correctness of read(), and because that
- // guarantees that key_info.delkey is valid.
- bool test_deleted_key(const key_type& key) const {
- assert(num_deleted > 0);
- return equals(key_info.delkey, key);
- }
-
- public:
- void set_deleted_key(const key_type &key) {
- // the empty indicator (if specified) and the deleted indicator
- // must be different
- assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
- && "Passed the empty-key to set_deleted_key");
- // It's only safe to change what "deleted" means if we purge deleted guys
- squash_deleted();
- settings.set_use_deleted(true);
- key_info.delkey = key;
- }
- void clear_deleted_key() {
- squash_deleted();
- settings.set_use_deleted(false);
- }
- key_type deleted_key() const {
- assert(settings.use_deleted()
- && "Must set deleted key before calling deleted_key");
- return key_info.delkey;
- }
-
- // These are public so the iterators can use them
- // True if the item at position bucknum is "deleted" marker
- bool test_deleted(size_type bucknum) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(table[bucknum]));
- }
- bool test_deleted(const iterator &it) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(*it));
- }
- bool test_deleted(const const_iterator &it) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(*it));
- }
-
- private:
- void check_use_deleted(const char* caller) {
- (void)caller; // could log it if the assert failed
- assert(settings.use_deleted());
- }
-
- // Set it so test_deleted is true. true if object didn't used to be deleted.
- bool set_deleted(iterator &it) {
- check_use_deleted("set_deleted()");
- bool retval = !test_deleted(it);
- // &* converts from iterator to value-type.
- set_key(&(*it), key_info.delkey);
- return retval;
- }
- // Set it so test_deleted is false. true if object used to be deleted.
- bool clear_deleted(iterator &it) {
- check_use_deleted("clear_deleted()");
- // Happens automatically when we assign something else in its place.
- return test_deleted(it);
- }
-
- // We also allow to set/clear the deleted bit on a const iterator.
- // We allow a const_iterator for the same reason you can delete a
- // const pointer: it's convenient, and semantically you can't use
- // 'it' after it's been deleted anyway, so its const-ness doesn't
- // really matter.
- bool set_deleted(const_iterator &it) {
- check_use_deleted("set_deleted()");
- bool retval = !test_deleted(it);
- set_key(const_cast<pointer>(&(*it)), key_info.delkey);
- return retval;
- }
- // Set it so test_deleted is false. true if object used to be deleted.
- bool clear_deleted(const_iterator &it) {
- check_use_deleted("clear_deleted()");
- return test_deleted(it);
- }
-
- // EMPTY HELPER FUNCTIONS
- // This lets the user describe a key that will indicate empty (unused)
- // table entries. This key should be an "impossible" entry --
- // if you try to insert it for real, you won't be able to retrieve it!
- // (NB: while you pass in an entire value, only the key part is looked
- // at. This is just because I don't know how to assign just a key.)
- public:
- // These are public so the iterators can use them
- // True if the item at position bucknum is "empty" marker
- bool test_empty(size_type bucknum) const {
- assert(settings.use_empty()); // we always need to know what's empty!
- return equals(get_key(val_info.emptyval), get_key(table[bucknum]));
- }
- bool test_empty(const iterator &it) const {
- assert(settings.use_empty()); // we always need to know what's empty!
- return equals(get_key(val_info.emptyval), get_key(*it));
- }
- bool test_empty(const const_iterator &it) const {
- assert(settings.use_empty()); // we always need to know what's empty!
- return equals(get_key(val_info.emptyval), get_key(*it));
- }
-
- private:
- void fill_range_with_empty(pointer table_start, pointer table_end) {
- std::uninitialized_fill(table_start, table_end, val_info.emptyval);
- }
-
- public:
- // TODO(csilvers): change all callers of this to pass in a key instead,
- // and take a const key_type instead of const value_type.
- void set_empty_key(const_reference val) {
- // Once you set the empty key, you can't change it
- assert(!settings.use_empty() && "Calling set_empty_key multiple times");
- // The deleted indicator (if specified) and the empty indicator
- // must be different.
- assert((!settings.use_deleted() || !equals(get_key(val), key_info.delkey))
- && "Setting the empty key the same as the deleted key");
- settings.set_use_empty(true);
- set_value(&val_info.emptyval, val);
-
- assert(!table); // must set before first use
- // num_buckets was set in constructor even though table was NULL
- table = val_info.allocate(num_buckets);
- assert(table);
- fill_range_with_empty(table, table + num_buckets);
- }
- // TODO(user): return a key_type rather than a value_type
- value_type empty_key() const {
- assert(settings.use_empty());
- return val_info.emptyval;
- }
-
- // FUNCTIONS CONCERNING SIZE
- public:
- size_type size() const { return num_elements - num_deleted; }
- size_type max_size() const { return val_info.max_size(); }
- bool empty() const { return size() == 0; }
- size_type bucket_count() const { return num_buckets; }
- size_type max_bucket_count() const { return max_size(); }
- size_type nonempty_bucket_count() const { return num_elements; }
- // These are tr1 methods. Their idea of 'bucket' doesn't map well to
- // what we do. We just say every bucket has 0 or 1 items in it.
- size_type bucket_size(size_type i) const {
- return begin(i) == end(i) ? 0 : 1;
- }
-
- private:
- // Because of the above, size_type(-1) is never legal; use it for errors
- static const size_type ILLEGAL_BUCKET = size_type(-1);
-
- // Used after a string of deletes. Returns true if we actually shrunk.
- // TODO(csilvers): take a delta so we can take into account inserts
- // done after shrinking. Maybe make part of the Settings class?
- bool maybe_shrink() {
- assert(num_elements >= num_deleted);
- assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
- assert(bucket_count() >= HT_MIN_BUCKETS);
- bool retval = false;
-
- // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
- // we'll never shrink until you get relatively big, and we'll never
- // shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
- // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
- // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
- const size_type num_remain = num_elements - num_deleted;
- const size_type shrink_threshold = settings.shrink_threshold();
- if (shrink_threshold > 0 && num_remain < shrink_threshold &&
- bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
- const float shrink_factor = settings.shrink_factor();
- size_type sz = bucket_count() / 2; // find how much we should shrink
- while (sz > HT_DEFAULT_STARTING_BUCKETS &&
- num_remain < sz * shrink_factor) {
- sz /= 2; // stay a power of 2
- }
- dense_hashtable tmp(*this, sz); // Do the actual resizing
- swap(tmp); // now we are tmp
- retval = true;
- }
- settings.set_consider_shrink(false); // because we just considered it
- return retval;
- }
-
- // We'll let you resize a hashtable -- though this makes us copy all!
- // When you resize, you say, "make it big enough for this many more elements"
- // Returns true if we actually resized, false if size was already ok.
- bool resize_delta(size_type delta) {
- bool did_resize = false;
- if ( settings.consider_shrink() ) { // see if lots of deletes happened
- if ( maybe_shrink() )
- did_resize = true;
- }
- if (num_elements >=
- (std::numeric_limits<size_type>::max)() - delta) {
- throw std::length_error("resize overflow");
- }
- if ( bucket_count() >= HT_MIN_BUCKETS &&
- (num_elements + delta) <= settings.enlarge_threshold() )
- return did_resize; // we're ok as we are
-
- // Sometimes, we need to resize just to get rid of all the
- // "deleted" buckets that are clogging up the hashtable. So when
- // deciding whether to resize, count the deleted buckets (which
- // are currently taking up room). But later, when we decide what
- // size to resize to, *don't* count deleted buckets, since they
- // get discarded during the resize.
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// A dense hashtable is a particular implementation of
+// a hashtable: one that is meant to minimize memory allocation.
+// It does this by using an array to store all the data. We
+// steal a value from the key space to indicate "empty" array
+// elements (ie indices where no item lives) and another to indicate
+// "deleted" elements.
+//
+// (Note it is possible to change the value of the delete key
+// on the fly; you can even remove it, though after that point
+// the hashtable is insert_only until you set it again. The empty
+// value however can't be changed.)
+//
+// To minimize allocation and pointer overhead, we use internal
+// probing, in which the hashtable is a single table, and collisions
+// are resolved by trying to insert again in another bucket. The
+// most cache-efficient internal probing schemes are linear probing
+// (which suffers, alas, from clumping) and quadratic probing, which
+// is what we implement by default.
+//
+// Type requirements: value_type is required to be Copy Constructible
+// and Default Constructible. It is not required to be (and commonly
+// isn't) Assignable.
+//
+// You probably shouldn't use this code directly. Use dense_hash_map<>
+// or dense_hash_set<> instead.
+
+// You can change the following below:
+// HT_OCCUPANCY_PCT -- how full before we double size
+// HT_EMPTY_PCT -- how empty before we halve size
+// HT_MIN_BUCKETS -- default smallest bucket size
+//
+// You can also change enlarge_factor (which defaults to
+// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
+// HT_EMPTY_PCT) with set_resizing_parameters().
+//
+// How to decide what values to use?
+// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
+// HT_MIN_BUCKETS is probably unnecessary since you can specify
+// (indirectly) the starting number of buckets at construct-time.
+// For enlarge_factor, you can use this chart to try to trade-off
+// expected lookup time to the space taken up. By default, this
+// code uses quadratic probing, though you can change it to linear
+// via JUMP_ below if you really want to.
+//
+// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
+// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
+// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
+// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
+//
+// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
+// QUADRATIC COLLISION RES.
+// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
+// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
+// LINEAR COLLISION RES.
+// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
+// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
+
+#ifndef _DENSEHASHTABLE_H_
+#define _DENSEHASHTABLE_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <assert.h>
+#include <stdio.h> // for FILE, fwrite, fread
+#include <algorithm> // For swap(), eg
+#include <iterator> // For iterator tags
+#include <limits> // for numeric_limits
+#include <memory> // For uninitialized_fill
+#include <utility> // for pair
+#include <sparsehash/internal/hashtable-common.h>
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+#include <sparsehash/type_traits.h>
+#include <stdexcept> // For length_error
+
+_START_GOOGLE_NAMESPACE_
+
+namespace base { // just to make google->opensource transition easier
+using GOOGLE_NAMESPACE::true_type;
+using GOOGLE_NAMESPACE::false_type;
+using GOOGLE_NAMESPACE::integral_constant;
+using GOOGLE_NAMESPACE::is_same;
+using GOOGLE_NAMESPACE::remove_const;
+}
+
+// The probing method
+// Linear probing
+// #define JUMP_(key, num_probes) ( 1 )
+// Quadratic probing
+#define JUMP_(key, num_probes) ( num_probes )
+
+// Hashtable class, used to implement the hashed associative containers
+// hash_set and hash_map.
+
+// Value: what is stored in the table (each bucket is a Value).
+// Key: something in a 1-to-1 correspondence to a Value, that can be used
+// to search for a Value in the table (find() takes a Key).
+// HashFcn: Takes a Key and returns an integer, the more unique the better.
+// ExtractKey: given a Value, returns the unique Key associated with it.
+// Must inherit from unary_function, or at least have a
+// result_type enum indicating the return type of operator().
+// SetKey: given a Value* and a Key, modifies the value such that
+// ExtractKey(value) == key. We guarantee this is only called
+// with key == deleted_key or key == empty_key.
+// EqualKey: Given two Keys, says whether they are the same (that is,
+// if they are both associated with the same Value).
+// Alloc: STL allocator to use to allocate memory.
+
+template <class Value, class Key, class HashFcn,
+ class ExtractKey, class SetKey, class EqualKey, class Alloc>
+class dense_hashtable;
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct dense_hashtable_iterator;
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct dense_hashtable_const_iterator;
+
+// We're just an array, but we need to skip over empty and deleted elements
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct dense_hashtable_iterator {
+ private:
+ typedef typename A::template rebind<V>::other value_alloc_type;
+
+ public:
+ typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
+ typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
+
+ typedef std::forward_iterator_tag iterator_category; // very little defined!
+ typedef V value_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::pointer pointer;
+
+ // "Real" constructor and default constructor
+ dense_hashtable_iterator(const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
+ pointer it, pointer it_end, bool advance)
+ : ht(h), pos(it), end(it_end) {
+ if (advance) advance_past_empty_and_deleted();
+ }
+ dense_hashtable_iterator() { }
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *pos; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic. The only hard part is making sure that
+ // we're not on an empty or marked-deleted array element
+ void advance_past_empty_and_deleted() {
+ while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
+ ++pos;
+ }
+ iterator& operator++() {
+ assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+
+ // Comparison.
+ bool operator==(const iterator& it) const { return pos == it.pos; }
+ bool operator!=(const iterator& it) const { return pos != it.pos; }
+
+
+ // The actual data
+ const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
+ pointer pos, end;
+};
+
+
+// Now do it all again, but with const-ness!
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct dense_hashtable_const_iterator {
+ private:
+ typedef typename A::template rebind<V>::other value_alloc_type;
+
+ public:
+ typedef dense_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
+ typedef dense_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
+
+ typedef std::forward_iterator_tag iterator_category; // very little defined!
+ typedef V value_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::const_reference reference;
+ typedef typename value_alloc_type::const_pointer pointer;
+
+ // "Real" constructor and default constructor
+ dense_hashtable_const_iterator(
+ const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
+ pointer it, pointer it_end, bool advance)
+ : ht(h), pos(it), end(it_end) {
+ if (advance) advance_past_empty_and_deleted();
+ }
+ dense_hashtable_const_iterator()
+ : ht(NULL), pos(pointer()), end(pointer()) { }
+ // This lets us convert regular iterators to const iterators
+ dense_hashtable_const_iterator(const iterator &it)
+ : ht(it.ht), pos(it.pos), end(it.end) { }
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *pos; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic. The only hard part is making sure that
+ // we're not on an empty or marked-deleted array element
+ void advance_past_empty_and_deleted() {
+ while ( pos != end && (ht->test_empty(*this) || ht->test_deleted(*this)) )
+ ++pos;
+ }
+ const_iterator& operator++() {
+ assert(pos != end); ++pos; advance_past_empty_and_deleted(); return *this;
+ }
+ const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
+
+ // Comparison.
+ bool operator==(const const_iterator& it) const { return pos == it.pos; }
+ bool operator!=(const const_iterator& it) const { return pos != it.pos; }
+
+
+ // The actual data
+ const dense_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
+ pointer pos, end;
+};
+
+template <class Value, class Key, class HashFcn,
+ class ExtractKey, class SetKey, class EqualKey, class Alloc>
+class dense_hashtable {
+ private:
+ typedef typename Alloc::template rebind<Value>::other value_alloc_type;
+
+ public:
+ typedef Key key_type;
+ typedef Value value_type;
+ typedef HashFcn hasher;
+ typedef EqualKey key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::const_reference const_reference;
+ typedef typename value_alloc_type::pointer pointer;
+ typedef typename value_alloc_type::const_pointer const_pointer;
+ typedef dense_hashtable_iterator<Value, Key, HashFcn,
+ ExtractKey, SetKey, EqualKey, Alloc>
+ iterator;
+
+ typedef dense_hashtable_const_iterator<Value, Key, HashFcn,
+ ExtractKey, SetKey, EqualKey, Alloc>
+ const_iterator;
+
+ // These come from tr1. For us they're the same as regular iterators.
+ typedef iterator local_iterator;
+ typedef const_iterator const_local_iterator;
+
+ // How full we let the table get before we resize, by default.
+ // Knuth says .8 is good -- higher causes us to probe too much,
+ // though it saves memory.
+ static const int HT_OCCUPANCY_PCT; // defined at the bottom of this file
+
+ // How empty we let the table get before we resize lower, by default.
+ // (0.0 means never resize lower.)
+ // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
+ static const int HT_EMPTY_PCT; // defined at the bottom of this file
+
+ // Minimum size we're willing to let hashtables be.
+ // Must be a power of two, and at least 4.
+ // Note, however, that for a given hashtable, the initial size is a
+ // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
+ static const size_type HT_MIN_BUCKETS = 4;
+
+ // By default, if you don't specify a hashtable size at
+ // construction-time, we use this size. Must be a power of two, and
+ // at least HT_MIN_BUCKETS.
+ static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
+
+ // ITERATOR FUNCTIONS
+ iterator begin() { return iterator(this, table,
+ table + num_buckets, true); }
+ iterator end() { return iterator(this, table + num_buckets,
+ table + num_buckets, true); }
+ const_iterator begin() const { return const_iterator(this, table,
+ table+num_buckets,true);}
+ const_iterator end() const { return const_iterator(this, table + num_buckets,
+ table+num_buckets,true);}
+
+ // These come from tr1 unordered_map. They iterate over 'bucket' n.
+ // We'll just consider bucket n to be the n-th element of the table.
+ local_iterator begin(size_type i) {
+ return local_iterator(this, table + i, table + i+1, false);
+ }
+ local_iterator end(size_type i) {
+ local_iterator it = begin(i);
+ if (!test_empty(i) && !test_deleted(i))
+ ++it;
+ return it;
+ }
+ const_local_iterator begin(size_type i) const {
+ return const_local_iterator(this, table + i, table + i+1, false);
+ }
+ const_local_iterator end(size_type i) const {
+ const_local_iterator it = begin(i);
+ if (!test_empty(i) && !test_deleted(i))
+ ++it;
+ return it;
+ }
+
+ // ACCESSOR FUNCTIONS for the things we templatize on, basically
+ hasher hash_funct() const { return settings; }
+ key_equal key_eq() const { return key_info; }
+ allocator_type get_allocator() const {
+ return allocator_type(val_info);
+ }
+
+ // Accessor function for statistics gathering.
+ int num_table_copies() const { return settings.num_ht_copies(); }
+
+ private:
+ // Annoyingly, we can't copy values around, because they might have
+ // const components (they're probably pair<const X, Y>). We use
+ // explicit destructor invocation and placement new to get around
+ // this. Arg.
+ void set_value(pointer dst, const_reference src) {
+ dst->~value_type(); // delete the old value, if any
+ new(dst) value_type(src);
+ }
+
+ void destroy_buckets(size_type first, size_type last) {
+ for ( ; first != last; ++first)
+ table[first].~value_type();
+ }
+
+ // DELETE HELPER FUNCTIONS
+ // This lets the user describe a key that will indicate deleted
+ // table entries. This key should be an "impossible" entry --
+ // if you try to insert it for real, you won't be able to retrieve it!
+ // (NB: while you pass in an entire value, only the key part is looked
+ // at. This is just because I don't know how to assign just a key.)
+ private:
+ void squash_deleted() { // gets rid of any deleted entries we have
+ if ( num_deleted ) { // get rid of deleted before writing
+ dense_hashtable tmp(*this); // copying will get rid of deleted
+ swap(tmp); // now we are tmp
+ }
+ assert(num_deleted == 0);
+ }
+
+ // Test if the given key is the deleted indicator. Requires
+ // num_deleted > 0, for correctness of read(), and because that
+ // guarantees that key_info.delkey is valid.
+ bool test_deleted_key(const key_type& key) const {
+ assert(num_deleted > 0);
+ return equals(key_info.delkey, key);
+ }
+
+ public:
+ void set_deleted_key(const key_type &key) {
+ // the empty indicator (if specified) and the deleted indicator
+ // must be different
+ assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
+ && "Passed the empty-key to set_deleted_key");
+ // It's only safe to change what "deleted" means if we purge deleted guys
+ squash_deleted();
+ settings.set_use_deleted(true);
+ key_info.delkey = key;
+ }
+ void clear_deleted_key() {
+ squash_deleted();
+ settings.set_use_deleted(false);
+ }
+ key_type deleted_key() const {
+ assert(settings.use_deleted()
+ && "Must set deleted key before calling deleted_key");
+ return key_info.delkey;
+ }
+
+ // These are public so the iterators can use them
+ // True if the item at position bucknum is "deleted" marker
+ bool test_deleted(size_type bucknum) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(table[bucknum]));
+ }
+ bool test_deleted(const iterator &it) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(*it));
+ }
+ bool test_deleted(const const_iterator &it) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(*it));
+ }
+
+ private:
+ void check_use_deleted(const char* caller) {
+ (void)caller; // could log it if the assert failed
+ assert(settings.use_deleted());
+ }
+
+ // Set it so test_deleted is true. true if object didn't used to be deleted.
+ bool set_deleted(iterator &it) {
+ check_use_deleted("set_deleted()");
+ bool retval = !test_deleted(it);
+ // &* converts from iterator to value-type.
+ set_key(&(*it), key_info.delkey);
+ return retval;
+ }
+ // Set it so test_deleted is false. true if object used to be deleted.
+ bool clear_deleted(iterator &it) {
+ check_use_deleted("clear_deleted()");
+ // Happens automatically when we assign something else in its place.
+ return test_deleted(it);
+ }
+
+ // We also allow to set/clear the deleted bit on a const iterator.
+ // We allow a const_iterator for the same reason you can delete a
+ // const pointer: it's convenient, and semantically you can't use
+ // 'it' after it's been deleted anyway, so its const-ness doesn't
+ // really matter.
+ bool set_deleted(const_iterator &it) {
+ check_use_deleted("set_deleted()");
+ bool retval = !test_deleted(it);
+ set_key(const_cast<pointer>(&(*it)), key_info.delkey);
+ return retval;
+ }
+ // Set it so test_deleted is false. true if object used to be deleted.
+ bool clear_deleted(const_iterator &it) {
+ check_use_deleted("clear_deleted()");
+ return test_deleted(it);
+ }
+
+ // EMPTY HELPER FUNCTIONS
+ // This lets the user describe a key that will indicate empty (unused)
+ // table entries. This key should be an "impossible" entry --
+ // if you try to insert it for real, you won't be able to retrieve it!
+ // (NB: while you pass in an entire value, only the key part is looked
+ // at. This is just because I don't know how to assign just a key.)
+ public:
+ // These are public so the iterators can use them
+ // True if the item at position bucknum is "empty" marker
+ bool test_empty(size_type bucknum) const {
+ assert(settings.use_empty()); // we always need to know what's empty!
+ return equals(get_key(val_info.emptyval), get_key(table[bucknum]));
+ }
+ bool test_empty(const iterator &it) const {
+ assert(settings.use_empty()); // we always need to know what's empty!
+ return equals(get_key(val_info.emptyval), get_key(*it));
+ }
+ bool test_empty(const const_iterator &it) const {
+ assert(settings.use_empty()); // we always need to know what's empty!
+ return equals(get_key(val_info.emptyval), get_key(*it));
+ }
+
+ private:
+ void fill_range_with_empty(pointer table_start, pointer table_end) {
+ std::uninitialized_fill(table_start, table_end, val_info.emptyval);
+ }
+
+ public:
+ // TODO(csilvers): change all callers of this to pass in a key instead,
+ // and take a const key_type instead of const value_type.
+ void set_empty_key(const_reference val) {
+ // Once you set the empty key, you can't change it
+ assert(!settings.use_empty() && "Calling set_empty_key multiple times");
+ // The deleted indicator (if specified) and the empty indicator
+ // must be different.
+ assert((!settings.use_deleted() || !equals(get_key(val), key_info.delkey))
+ && "Setting the empty key the same as the deleted key");
+ settings.set_use_empty(true);
+ set_value(&val_info.emptyval, val);
+
+ assert(!table); // must set before first use
+ // num_buckets was set in constructor even though table was NULL
+ table = val_info.allocate(num_buckets);
+ assert(table);
+ fill_range_with_empty(table, table + num_buckets);
+ }
+ // TODO(user): return a key_type rather than a value_type
+ value_type empty_key() const {
+ assert(settings.use_empty());
+ return val_info.emptyval;
+ }
+
+ // FUNCTIONS CONCERNING SIZE
+ public:
+ size_type size() const { return num_elements - num_deleted; }
+ size_type max_size() const { return val_info.max_size(); }
+ bool empty() const { return size() == 0; }
+ size_type bucket_count() const { return num_buckets; }
+ size_type max_bucket_count() const { return max_size(); }
+ size_type nonempty_bucket_count() const { return num_elements; }
+ // These are tr1 methods. Their idea of 'bucket' doesn't map well to
+ // what we do. We just say every bucket has 0 or 1 items in it.
+ size_type bucket_size(size_type i) const {
+ return begin(i) == end(i) ? 0 : 1;
+ }
+
+ private:
+ // Because of the above, size_type(-1) is never legal; use it for errors
+ static const size_type ILLEGAL_BUCKET = size_type(-1);
+
+ // Used after a string of deletes. Returns true if we actually shrunk.
+ // TODO(csilvers): take a delta so we can take into account inserts
+ // done after shrinking. Maybe make part of the Settings class?
+ bool maybe_shrink() {
+ assert(num_elements >= num_deleted);
+ assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
+ assert(bucket_count() >= HT_MIN_BUCKETS);
+ bool retval = false;
+
+ // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
+ // we'll never shrink until you get relatively big, and we'll never
+ // shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
+ // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
+ // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
+ const size_type num_remain = num_elements - num_deleted;
+ const size_type shrink_threshold = settings.shrink_threshold();
+ if (shrink_threshold > 0 && num_remain < shrink_threshold &&
+ bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
+ const float shrink_factor = settings.shrink_factor();
+ size_type sz = bucket_count() / 2; // find how much we should shrink
+ while (sz > HT_DEFAULT_STARTING_BUCKETS &&
+ num_remain < sz * shrink_factor) {
+ sz /= 2; // stay a power of 2
+ }
+ dense_hashtable tmp(*this, sz); // Do the actual resizing
+ swap(tmp); // now we are tmp
+ retval = true;
+ }
+ settings.set_consider_shrink(false); // because we just considered it
+ return retval;
+ }
+
+ // We'll let you resize a hashtable -- though this makes us copy all!
+ // When you resize, you say, "make it big enough for this many more elements"
+ // Returns true if we actually resized, false if size was already ok.
+ bool resize_delta(size_type delta) {
+ bool did_resize = false;
+ if ( settings.consider_shrink() ) { // see if lots of deletes happened
+ if ( maybe_shrink() )
+ did_resize = true;
+ }
+ if (num_elements >=
+ (std::numeric_limits<size_type>::max)() - delta) {
+ throw std::length_error("resize overflow");
+ }
+ if ( bucket_count() >= HT_MIN_BUCKETS &&
+ (num_elements + delta) <= settings.enlarge_threshold() )
+ return did_resize; // we're ok as we are
+
+ // Sometimes, we need to resize just to get rid of all the
+ // "deleted" buckets that are clogging up the hashtable. So when
+ // deciding whether to resize, count the deleted buckets (which
+ // are currently taking up room). But later, when we decide what
+ // size to resize to, *don't* count deleted buckets, since they
+ // get discarded during the resize.
size_type needed_size = settings.min_buckets(num_elements + delta, 0);
- if ( needed_size <= bucket_count() ) // we have enough buckets
- return did_resize;
-
- size_type resize_to =
- settings.min_buckets(num_elements - num_deleted + delta, bucket_count());
-
+ if ( needed_size <= bucket_count() ) // we have enough buckets
+ return did_resize;
+
+ size_type resize_to =
+ settings.min_buckets(num_elements - num_deleted + delta, bucket_count());
+
// When num_deleted is large, we may still grow but we do not want to
// over expand. So we reduce needed_size by a portion of num_deleted
// (the exact portion does not matter). This is especially helpful
// when min_load_factor is zero (no shrink at all) to avoid doubling
// the bucket count to infinity. See also test ResizeWithoutShrink.
needed_size = settings.min_buckets(num_elements - num_deleted / 4 + delta, 0);
- if (resize_to < needed_size && // may double resize_to
- resize_to < (std::numeric_limits<size_type>::max)() / 2) {
- // This situation means that we have enough deleted elements,
- // that once we purge them, we won't actually have needed to
- // grow. But we may want to grow anyway: if we just purge one
- // element, say, we'll have to grow anyway next time we
- // insert. Might as well grow now, since we're already going
- // through the trouble of copying (in order to purge the
- // deleted elements).
- const size_type target =
- static_cast<size_type>(settings.shrink_size(resize_to*2));
- if (num_elements - num_deleted + delta >= target) {
- // Good, we won't be below the shrink threshhold even if we double.
- resize_to *= 2;
- }
- }
- dense_hashtable tmp(*this, resize_to);
- swap(tmp); // now we are tmp
- return true;
- }
-
- // We require table be not-NULL and empty before calling this.
- void resize_table(size_type /*old_size*/, size_type new_size,
- base::true_type) {
- table = val_info.realloc_or_die(table, new_size);
- }
-
- void resize_table(size_type old_size, size_type new_size, base::false_type) {
- val_info.deallocate(table, old_size);
- table = val_info.allocate(new_size);
- }
-
- // Used to actually do the rehashing when we grow/shrink a hashtable
- void copy_from(const dense_hashtable &ht, size_type min_buckets_wanted) {
- clear_to_size(settings.min_buckets(ht.size(), min_buckets_wanted));
-
- // We use a normal iterator to get non-deleted bcks from ht
- // We could use insert() here, but since we know there are
- // no duplicates and no deleted items, we can be more efficient
- assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
- for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
- size_type num_probes = 0; // how many times we've probed
- size_type bucknum;
- const size_type bucket_count_minus_one = bucket_count() - 1;
- for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
- !test_empty(bucknum); // not empty
- bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
- ++num_probes;
- assert(num_probes < bucket_count()
- && "Hashtable is full: an error in key_equal<> or hash<>");
- }
- set_value(&table[bucknum], *it); // copies the value to here
- num_elements++;
- }
- settings.inc_num_ht_copies();
- }
-
- // Required by the spec for hashed associative container
- public:
- // Though the docs say this should be num_buckets, I think it's much
- // more useful as num_elements. As a special feature, calling with
- // req_elements==0 will cause us to shrink if we can, saving space.
- void resize(size_type req_elements) { // resize to this or larger
- if ( settings.consider_shrink() || req_elements == 0 )
- maybe_shrink();
- if ( req_elements > num_elements )
- resize_delta(req_elements - num_elements);
- }
-
- // Get and change the value of shrink_factor and enlarge_factor. The
- // description at the beginning of this file explains how to choose
- // the values. Setting the shrink parameter to 0.0 ensures that the
- // table never shrinks.
- void get_resizing_parameters(float* shrink, float* grow) const {
- *shrink = settings.shrink_factor();
- *grow = settings.enlarge_factor();
- }
- void set_resizing_parameters(float shrink, float grow) {
- settings.set_resizing_parameters(shrink, grow);
- settings.reset_thresholds(bucket_count());
- }
-
- // CONSTRUCTORS -- as required by the specs, we take a size,
- // but also let you specify a hashfunction, key comparator,
- // and key extractor. We also define a copy constructor and =.
- // DESTRUCTOR -- needs to free the table
- explicit dense_hashtable(size_type expected_max_items_in_table = 0,
- const HashFcn& hf = HashFcn(),
- const EqualKey& eql = EqualKey(),
- const ExtractKey& ext = ExtractKey(),
- const SetKey& set = SetKey(),
- const Alloc& alloc = Alloc())
- : settings(hf),
- key_info(ext, set, eql),
- num_deleted(0),
- num_elements(0),
- num_buckets(expected_max_items_in_table == 0
- ? HT_DEFAULT_STARTING_BUCKETS
- : settings.min_buckets(expected_max_items_in_table, 0)),
- val_info(alloc_impl<value_alloc_type>(alloc)),
- table(NULL) {
- // table is NULL until emptyval is set. However, we set num_buckets
- // here so we know how much space to allocate once emptyval is set
- settings.reset_thresholds(bucket_count());
- }
-
- // As a convenience for resize(), we allow an optional second argument
- // which lets you make this new hashtable a different size than ht
- dense_hashtable(const dense_hashtable& ht,
- size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
- : settings(ht.settings),
- key_info(ht.key_info),
- num_deleted(0),
- num_elements(0),
- num_buckets(0),
- val_info(ht.val_info),
- table(NULL) {
- if (!ht.settings.use_empty()) {
- // If use_empty isn't set, copy_from will crash, so we do our own copying.
- assert(ht.empty());
- num_buckets = settings.min_buckets(ht.size(), min_buckets_wanted);
- settings.reset_thresholds(bucket_count());
- return;
- }
- settings.reset_thresholds(bucket_count());
- copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
- }
-
- dense_hashtable& operator= (const dense_hashtable& ht) {
- if (&ht == this) return *this; // don't copy onto ourselves
- if (!ht.settings.use_empty()) {
- assert(ht.empty());
- dense_hashtable empty_table(ht); // empty table with ht's thresholds
- this->swap(empty_table);
- return *this;
- }
- settings = ht.settings;
- key_info = ht.key_info;
- set_value(&val_info.emptyval, ht.val_info.emptyval);
- // copy_from() calls clear and sets num_deleted to 0 too
- copy_from(ht, HT_MIN_BUCKETS);
- // we purposefully don't copy the allocator, which may not be copyable
- return *this;
- }
-
- ~dense_hashtable() {
- if (table) {
- destroy_buckets(0, num_buckets);
- val_info.deallocate(table, num_buckets);
- }
- }
-
- // Many STL algorithms use swap instead of copy constructors
- void swap(dense_hashtable& ht) {
- std::swap(settings, ht.settings);
- std::swap(key_info, ht.key_info);
- std::swap(num_deleted, ht.num_deleted);
- std::swap(num_elements, ht.num_elements);
- std::swap(num_buckets, ht.num_buckets);
- { value_type tmp; // for annoying reasons, swap() doesn't work
- set_value(&tmp, val_info.emptyval);
- set_value(&val_info.emptyval, ht.val_info.emptyval);
- set_value(&ht.val_info.emptyval, tmp);
- }
- std::swap(table, ht.table);
- settings.reset_thresholds(bucket_count()); // also resets consider_shrink
- ht.settings.reset_thresholds(ht.bucket_count());
- // we purposefully don't swap the allocator, which may not be swap-able
- }
-
- private:
- void clear_to_size(size_type new_num_buckets) {
- if (!table) {
- table = val_info.allocate(new_num_buckets);
- } else {
- destroy_buckets(0, num_buckets);
- if (new_num_buckets != num_buckets) { // resize, if necessary
- typedef base::integral_constant<bool,
- base::is_same<value_alloc_type,
- libc_allocator_with_realloc<value_type> >::value>
- realloc_ok;
- resize_table(num_buckets, new_num_buckets, realloc_ok());
- }
- }
- assert(table);
- fill_range_with_empty(table, table + new_num_buckets);
- num_elements = 0;
- num_deleted = 0;
- num_buckets = new_num_buckets; // our new size
- settings.reset_thresholds(bucket_count());
- }
-
- public:
- // It's always nice to be able to clear a table without deallocating it
- void clear() {
- // If the table is already empty, and the number of buckets is
- // already as we desire, there's nothing to do.
- const size_type new_num_buckets = settings.min_buckets(0, 0);
- if (num_elements == 0 && new_num_buckets == num_buckets) {
- return;
- }
- clear_to_size(new_num_buckets);
- }
-
- // Clear the table without resizing it.
- // Mimicks the stl_hashtable's behaviour when clear()-ing in that it
- // does not modify the bucket count
- void clear_no_resize() {
- if (num_elements > 0) {
- assert(table);
- destroy_buckets(0, num_buckets);
- fill_range_with_empty(table, table + num_buckets);
- }
- // don't consider to shrink before another erase()
- settings.reset_thresholds(bucket_count());
- num_elements = 0;
- num_deleted = 0;
- }
-
- // LOOKUP ROUTINES
- private:
- // Returns a pair of positions: 1st where the object is, 2nd where
- // it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
- // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
- // Note: because of deletions where-to-insert is not trivial: it's the
- // first deleted bucket we see, as long as we don't find the key later
- std::pair<size_type, size_type> find_position(const key_type &key) const {
- size_type num_probes = 0; // how many times we've probed
- const size_type bucket_count_minus_one = bucket_count() - 1;
- size_type bucknum = hash(key) & bucket_count_minus_one;
- size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
- while ( 1 ) { // probe until something happens
- if ( test_empty(bucknum) ) { // bucket is empty
- if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
- return std::pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
- else
- return std::pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
-
- } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
- if ( insert_pos == ILLEGAL_BUCKET )
- insert_pos = bucknum;
-
- } else if ( equals(key, get_key(table[bucknum])) ) {
- return std::pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
- }
- ++num_probes; // we're doing another probe
- bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
- assert(num_probes < bucket_count()
- && "Hashtable is full: an error in key_equal<> or hash<>");
- }
- }
-
- public:
-
- iterator find(const key_type& key) {
- if ( size() == 0 ) return end();
- std::pair<size_type, size_type> pos = find_position(key);
- if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
- return end();
- else
- return iterator(this, table + pos.first, table + num_buckets, false);
- }
-
- const_iterator find(const key_type& key) const {
- if ( size() == 0 ) return end();
- std::pair<size_type, size_type> pos = find_position(key);
- if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
- return end();
- else
- return const_iterator(this, table + pos.first, table+num_buckets, false);
- }
-
- // This is a tr1 method: the bucket a given key is in, or what bucket
- // it would be put in, if it were to be inserted. Shrug.
- size_type bucket(const key_type& key) const {
- std::pair<size_type, size_type> pos = find_position(key);
- return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
- }
-
- // Counts how many elements have key key. For maps, it's either 0 or 1.
- size_type count(const key_type &key) const {
- std::pair<size_type, size_type> pos = find_position(key);
- return pos.first == ILLEGAL_BUCKET ? 0 : 1;
- }
-
- // Likewise, equal_range doesn't really make sense for us. Oh well.
- std::pair<iterator,iterator> equal_range(const key_type& key) {
- iterator pos = find(key); // either an iterator or end
- if (pos == end()) {
- return std::pair<iterator,iterator>(pos, pos);
- } else {
- const iterator startpos = pos++;
- return std::pair<iterator,iterator>(startpos, pos);
- }
- }
- std::pair<const_iterator,const_iterator> equal_range(const key_type& key)
- const {
- const_iterator pos = find(key); // either an iterator or end
- if (pos == end()) {
- return std::pair<const_iterator,const_iterator>(pos, pos);
- } else {
- const const_iterator startpos = pos++;
- return std::pair<const_iterator,const_iterator>(startpos, pos);
- }
- }
-
-
- // INSERTION ROUTINES
- private:
- // Private method used by insert_noresize and find_or_insert.
- iterator insert_at(const_reference obj, size_type pos) {
- if (size() >= max_size()) {
- throw std::length_error("insert overflow");
- }
- if ( test_deleted(pos) ) { // just replace if it's been del.
- // shrug: shouldn't need to be const.
- const_iterator delpos(this, table + pos, table + num_buckets, false);
- clear_deleted(delpos);
- assert( num_deleted > 0);
- --num_deleted; // used to be, now it isn't
- } else {
- ++num_elements; // replacing an empty bucket
- }
- set_value(&table[pos], obj);
- return iterator(this, table + pos, table + num_buckets, false);
- }
-
- // If you know *this is big enough to hold obj, use this routine
- std::pair<iterator, bool> insert_noresize(const_reference obj) {
- // First, double-check we're not inserting delkey or emptyval
- assert((!settings.use_empty() || !equals(get_key(obj),
- get_key(val_info.emptyval)))
- && "Inserting the empty key");
- assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
- && "Inserting the deleted key");
- const std::pair<size_type,size_type> pos = find_position(get_key(obj));
- if ( pos.first != ILLEGAL_BUCKET) { // object was already there
- return std::pair<iterator,bool>(iterator(this, table + pos.first,
- table + num_buckets, false),
- false); // false: we didn't insert
- } else { // pos.second says where to put it
- return std::pair<iterator,bool>(insert_at(obj, pos.second), true);
- }
- }
-
- // Specializations of insert(it, it) depending on the power of the iterator:
- // (1) Iterator supports operator-, resize before inserting
- template <class ForwardIterator>
- void insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag) {
- size_t dist = std::distance(f, l);
- if (dist >= (std::numeric_limits<size_type>::max)()) {
- throw std::length_error("insert-range overflow");
- }
- resize_delta(static_cast<size_type>(dist));
- for ( ; dist > 0; --dist, ++f) {
- insert_noresize(*f);
- }
- }
-
- // (2) Arbitrary iterator, can't tell how much to resize
- template <class InputIterator>
- void insert(InputIterator f, InputIterator l, std::input_iterator_tag) {
- for ( ; f != l; ++f)
- insert(*f);
- }
-
- public:
- // This is the normal insert routine, used by the outside world
- std::pair<iterator, bool> insert(const_reference obj) {
- resize_delta(1); // adding an object, grow if need be
- return insert_noresize(obj);
- }
-
- // When inserting a lot at a time, we specialize on the type of iterator
- template <class InputIterator>
- void insert(InputIterator f, InputIterator l) {
- // specializes on iterator type
- insert(f, l,
- typename std::iterator_traits<InputIterator>::iterator_category());
- }
-
- // DefaultValue is a functor that takes a key and returns a value_type
- // representing the default value to be inserted if none is found.
- template <class DefaultValue>
- value_type& find_or_insert(const key_type& key) {
- // First, double-check we're not inserting emptykey or delkey
- assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
- && "Inserting the empty key");
- assert((!settings.use_deleted() || !equals(key, key_info.delkey))
- && "Inserting the deleted key");
- const std::pair<size_type,size_type> pos = find_position(key);
- DefaultValue default_value;
- if ( pos.first != ILLEGAL_BUCKET) { // object was already there
- return table[pos.first];
- } else if (resize_delta(1)) { // needed to rehash to make room
- // Since we resized, we can't use pos, so recalculate where to insert.
- return *insert_noresize(default_value(key)).first;
- } else { // no need to rehash, insert right here
- return *insert_at(default_value(key), pos.second);
- }
- }
-
-
- // DELETION ROUTINES
- size_type erase(const key_type& key) {
- // First, double-check we're not trying to erase delkey or emptyval.
- assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
- && "Erasing the empty key");
- assert((!settings.use_deleted() || !equals(key, key_info.delkey))
- && "Erasing the deleted key");
- const_iterator pos = find(key); // shrug: shouldn't need to be const
- if ( pos != end() ) {
- assert(!test_deleted(pos)); // or find() shouldn't have returned it
- set_deleted(pos);
- ++num_deleted;
- settings.set_consider_shrink(true); // will think about shrink after next insert
- return 1; // because we deleted one thing
- } else {
- return 0; // because we deleted nothing
- }
- }
-
- // We return the iterator past the deleted item.
- void erase(iterator pos) {
- if ( pos == end() ) return; // sanity check
- if ( set_deleted(pos) ) { // true if object has been newly deleted
- ++num_deleted;
- settings.set_consider_shrink(true); // will think about shrink after next insert
- }
- }
-
- void erase(iterator f, iterator l) {
- for ( ; f != l; ++f) {
- if ( set_deleted(f) ) // should always be true
- ++num_deleted;
- }
- settings.set_consider_shrink(true); // will think about shrink after next insert
- }
-
- // We allow you to erase a const_iterator just like we allow you to
- // erase an iterator. This is in parallel to 'delete': you can delete
- // a const pointer just like a non-const pointer. The logic is that
- // you can't use the object after it's erased anyway, so it doesn't matter
- // if it's const or not.
- void erase(const_iterator pos) {
- if ( pos == end() ) return; // sanity check
- if ( set_deleted(pos) ) { // true if object has been newly deleted
- ++num_deleted;
- settings.set_consider_shrink(true); // will think about shrink after next insert
- }
- }
- void erase(const_iterator f, const_iterator l) {
- for ( ; f != l; ++f) {
- if ( set_deleted(f) ) // should always be true
- ++num_deleted;
- }
- settings.set_consider_shrink(true); // will think about shrink after next insert
- }
-
-
- // COMPARISON
- bool operator==(const dense_hashtable& ht) const {
- if (size() != ht.size()) {
- return false;
- } else if (this == &ht) {
- return true;
- } else {
- // Iterate through the elements in "this" and see if the
- // corresponding element is in ht
- for ( const_iterator it = begin(); it != end(); ++it ) {
- const_iterator it2 = ht.find(get_key(*it));
- if ((it2 == ht.end()) || (*it != *it2)) {
- return false;
- }
- }
- return true;
- }
- }
- bool operator!=(const dense_hashtable& ht) const {
- return !(*this == ht);
- }
-
-
- // I/O
- // We support reading and writing hashtables to disk. Alas, since
- // I don't know how to write a hasher or key_equal, you have to make
- // sure everything but the table is the same. We compact before writing.
- private:
- // Every time the disk format changes, this should probably change too
- typedef unsigned long MagicNumberType;
- static const MagicNumberType MAGIC_NUMBER = 0x13578642;
-
- public:
- // I/O -- this is an add-on for writing hash table to disk
- //
- // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
- // (istream, ostream, etc) *or* a class providing
- // Read(void*, size_t) and Write(const void*, size_t)
- // (respectively), which writes a buffer into a stream
- // (which the INPUT/OUTPUT instance presumably owns).
-
- typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
-
- // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT *fp) {
- squash_deleted(); // so we don't have to worry about delkey
- if ( !sparsehash_internal::write_bigendian_number(fp, MAGIC_NUMBER, 4) )
- return false;
- if ( !sparsehash_internal::write_bigendian_number(fp, num_buckets, 8) )
- return false;
- if ( !sparsehash_internal::write_bigendian_number(fp, num_elements, 8) )
- return false;
- // Now write a bitmap of non-empty buckets.
- for ( size_type i = 0; i < num_buckets; i += 8 ) {
- unsigned char bits = 0;
- for ( int bit = 0; bit < 8; ++bit ) {
- if ( i + bit < num_buckets && !test_empty(i + bit) )
- bits |= (1 << bit);
- }
- if ( !sparsehash_internal::write_data(fp, &bits, sizeof(bits)) )
- return false;
- for ( int bit = 0; bit < 8; ++bit ) {
- if ( bits & (1 << bit) ) {
- if ( !serializer(fp, table[i + bit]) ) return false;
- }
- }
- }
- return true;
- }
-
- // INPUT: anything we've written an overload of read_data() for.
- // ValueSerializer: a functor. operator()(INPUT*, value_type*)
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT *fp) {
- assert(settings.use_empty() && "empty_key not set for read");
-
- clear(); // just to be consistent
- MagicNumberType magic_read;
- if ( !sparsehash_internal::read_bigendian_number(fp, &magic_read, 4) )
- return false;
- if ( magic_read != MAGIC_NUMBER ) {
- return false;
- }
- size_type new_num_buckets;
- if ( !sparsehash_internal::read_bigendian_number(fp, &new_num_buckets, 8) )
- return false;
- clear_to_size(new_num_buckets);
- if ( !sparsehash_internal::read_bigendian_number(fp, &num_elements, 8) )
- return false;
-
- // Read the bitmap of non-empty buckets.
- for (size_type i = 0; i < num_buckets; i += 8) {
- unsigned char bits;
- if ( !sparsehash_internal::read_data(fp, &bits, sizeof(bits)) )
- return false;
- for ( int bit = 0; bit < 8; ++bit ) {
- if ( i + bit < num_buckets && (bits & (1 << bit)) ) { // not empty
- if ( !serializer(fp, &table[i + bit]) ) return false;
- }
- }
- }
- return true;
- }
-
- private:
- template <class A>
- class alloc_impl : public A {
- public:
- typedef typename A::pointer pointer;
- typedef typename A::size_type size_type;
-
- // Convert a normal allocator to one that has realloc_or_die()
- alloc_impl(const A& a) : A(a) { }
-
- // realloc_or_die should only be used when using the default
- // allocator (libc_allocator_with_realloc).
- pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
- fprintf(stderr, "realloc_or_die is only supported for "
- "libc_allocator_with_realloc\n");
- exit(1);
- return NULL;
- }
- };
-
- // A template specialization of alloc_impl for
- // libc_allocator_with_realloc that can handle realloc_or_die.
- template <class A>
- class alloc_impl<libc_allocator_with_realloc<A> >
- : public libc_allocator_with_realloc<A> {
- public:
- typedef typename libc_allocator_with_realloc<A>::pointer pointer;
- typedef typename libc_allocator_with_realloc<A>::size_type size_type;
-
- alloc_impl(const libc_allocator_with_realloc<A>& a)
- : libc_allocator_with_realloc<A>(a) { }
-
- pointer realloc_or_die(pointer ptr, size_type n) {
- pointer retval = this->reallocate(ptr, n);
- if (retval == NULL) {
+ if (resize_to < needed_size && // may double resize_to
+ resize_to < (std::numeric_limits<size_type>::max)() / 2) {
+ // This situation means that we have enough deleted elements,
+ // that once we purge them, we won't actually have needed to
+ // grow. But we may want to grow anyway: if we just purge one
+ // element, say, we'll have to grow anyway next time we
+ // insert. Might as well grow now, since we're already going
+ // through the trouble of copying (in order to purge the
+ // deleted elements).
+ const size_type target =
+ static_cast<size_type>(settings.shrink_size(resize_to*2));
+ if (num_elements - num_deleted + delta >= target) {
+ // Good, we won't be below the shrink threshhold even if we double.
+ resize_to *= 2;
+ }
+ }
+ dense_hashtable tmp(*this, resize_to);
+ swap(tmp); // now we are tmp
+ return true;
+ }
+
+ // We require table be not-NULL and empty before calling this.
+ void resize_table(size_type /*old_size*/, size_type new_size,
+ base::true_type) {
+ table = val_info.realloc_or_die(table, new_size);
+ }
+
+ void resize_table(size_type old_size, size_type new_size, base::false_type) {
+ val_info.deallocate(table, old_size);
+ table = val_info.allocate(new_size);
+ }
+
+ // Used to actually do the rehashing when we grow/shrink a hashtable
+ void copy_from(const dense_hashtable &ht, size_type min_buckets_wanted) {
+ clear_to_size(settings.min_buckets(ht.size(), min_buckets_wanted));
+
+ // We use a normal iterator to get non-deleted bcks from ht
+ // We could use insert() here, but since we know there are
+ // no duplicates and no deleted items, we can be more efficient
+ assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
+ for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
+ size_type num_probes = 0; // how many times we've probed
+ size_type bucknum;
+ const size_type bucket_count_minus_one = bucket_count() - 1;
+ for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
+ !test_empty(bucknum); // not empty
+ bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
+ ++num_probes;
+ assert(num_probes < bucket_count()
+ && "Hashtable is full: an error in key_equal<> or hash<>");
+ }
+ set_value(&table[bucknum], *it); // copies the value to here
+ num_elements++;
+ }
+ settings.inc_num_ht_copies();
+ }
+
+ // Required by the spec for hashed associative container
+ public:
+ // Though the docs say this should be num_buckets, I think it's much
+ // more useful as num_elements. As a special feature, calling with
+ // req_elements==0 will cause us to shrink if we can, saving space.
+ void resize(size_type req_elements) { // resize to this or larger
+ if ( settings.consider_shrink() || req_elements == 0 )
+ maybe_shrink();
+ if ( req_elements > num_elements )
+ resize_delta(req_elements - num_elements);
+ }
+
+ // Get and change the value of shrink_factor and enlarge_factor. The
+ // description at the beginning of this file explains how to choose
+ // the values. Setting the shrink parameter to 0.0 ensures that the
+ // table never shrinks.
+ void get_resizing_parameters(float* shrink, float* grow) const {
+ *shrink = settings.shrink_factor();
+ *grow = settings.enlarge_factor();
+ }
+ void set_resizing_parameters(float shrink, float grow) {
+ settings.set_resizing_parameters(shrink, grow);
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // CONSTRUCTORS -- as required by the specs, we take a size,
+ // but also let you specify a hashfunction, key comparator,
+ // and key extractor. We also define a copy constructor and =.
+ // DESTRUCTOR -- needs to free the table
+ explicit dense_hashtable(size_type expected_max_items_in_table = 0,
+ const HashFcn& hf = HashFcn(),
+ const EqualKey& eql = EqualKey(),
+ const ExtractKey& ext = ExtractKey(),
+ const SetKey& set = SetKey(),
+ const Alloc& alloc = Alloc())
+ : settings(hf),
+ key_info(ext, set, eql),
+ num_deleted(0),
+ num_elements(0),
+ num_buckets(expected_max_items_in_table == 0
+ ? HT_DEFAULT_STARTING_BUCKETS
+ : settings.min_buckets(expected_max_items_in_table, 0)),
+ val_info(alloc_impl<value_alloc_type>(alloc)),
+ table(NULL) {
+ // table is NULL until emptyval is set. However, we set num_buckets
+ // here so we know how much space to allocate once emptyval is set
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // As a convenience for resize(), we allow an optional second argument
+ // which lets you make this new hashtable a different size than ht
+ dense_hashtable(const dense_hashtable& ht,
+ size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
+ : settings(ht.settings),
+ key_info(ht.key_info),
+ num_deleted(0),
+ num_elements(0),
+ num_buckets(0),
+ val_info(ht.val_info),
+ table(NULL) {
+ if (!ht.settings.use_empty()) {
+ // If use_empty isn't set, copy_from will crash, so we do our own copying.
+ assert(ht.empty());
+ num_buckets = settings.min_buckets(ht.size(), min_buckets_wanted);
+ settings.reset_thresholds(bucket_count());
+ return;
+ }
+ settings.reset_thresholds(bucket_count());
+ copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
+ }
+
+ dense_hashtable& operator= (const dense_hashtable& ht) {
+ if (&ht == this) return *this; // don't copy onto ourselves
+ if (!ht.settings.use_empty()) {
+ assert(ht.empty());
+ dense_hashtable empty_table(ht); // empty table with ht's thresholds
+ this->swap(empty_table);
+ return *this;
+ }
+ settings = ht.settings;
+ key_info = ht.key_info;
+ set_value(&val_info.emptyval, ht.val_info.emptyval);
+ // copy_from() calls clear and sets num_deleted to 0 too
+ copy_from(ht, HT_MIN_BUCKETS);
+ // we purposefully don't copy the allocator, which may not be copyable
+ return *this;
+ }
+
+ ~dense_hashtable() {
+ if (table) {
+ destroy_buckets(0, num_buckets);
+ val_info.deallocate(table, num_buckets);
+ }
+ }
+
+ // Many STL algorithms use swap instead of copy constructors
+ void swap(dense_hashtable& ht) {
+ std::swap(settings, ht.settings);
+ std::swap(key_info, ht.key_info);
+ std::swap(num_deleted, ht.num_deleted);
+ std::swap(num_elements, ht.num_elements);
+ std::swap(num_buckets, ht.num_buckets);
+ { value_type tmp; // for annoying reasons, swap() doesn't work
+ set_value(&tmp, val_info.emptyval);
+ set_value(&val_info.emptyval, ht.val_info.emptyval);
+ set_value(&ht.val_info.emptyval, tmp);
+ }
+ std::swap(table, ht.table);
+ settings.reset_thresholds(bucket_count()); // also resets consider_shrink
+ ht.settings.reset_thresholds(ht.bucket_count());
+ // we purposefully don't swap the allocator, which may not be swap-able
+ }
+
+ private:
+ void clear_to_size(size_type new_num_buckets) {
+ if (!table) {
+ table = val_info.allocate(new_num_buckets);
+ } else {
+ destroy_buckets(0, num_buckets);
+ if (new_num_buckets != num_buckets) { // resize, if necessary
+ typedef base::integral_constant<bool,
+ base::is_same<value_alloc_type,
+ libc_allocator_with_realloc<value_type> >::value>
+ realloc_ok;
+ resize_table(num_buckets, new_num_buckets, realloc_ok());
+ }
+ }
+ assert(table);
+ fill_range_with_empty(table, table + new_num_buckets);
+ num_elements = 0;
+ num_deleted = 0;
+ num_buckets = new_num_buckets; // our new size
+ settings.reset_thresholds(bucket_count());
+ }
+
+ public:
+ // It's always nice to be able to clear a table without deallocating it
+ void clear() {
+ // If the table is already empty, and the number of buckets is
+ // already as we desire, there's nothing to do.
+ const size_type new_num_buckets = settings.min_buckets(0, 0);
+ if (num_elements == 0 && new_num_buckets == num_buckets) {
+ return;
+ }
+ clear_to_size(new_num_buckets);
+ }
+
+ // Clear the table without resizing it.
+ // Mimicks the stl_hashtable's behaviour when clear()-ing in that it
+ // does not modify the bucket count
+ void clear_no_resize() {
+ if (num_elements > 0) {
+ assert(table);
+ destroy_buckets(0, num_buckets);
+ fill_range_with_empty(table, table + num_buckets);
+ }
+ // don't consider to shrink before another erase()
+ settings.reset_thresholds(bucket_count());
+ num_elements = 0;
+ num_deleted = 0;
+ }
+
+ // LOOKUP ROUTINES
+ private:
+ // Returns a pair of positions: 1st where the object is, 2nd where
+ // it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
+ // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
+ // Note: because of deletions where-to-insert is not trivial: it's the
+ // first deleted bucket we see, as long as we don't find the key later
+ std::pair<size_type, size_type> find_position(const key_type &key) const {
+ size_type num_probes = 0; // how many times we've probed
+ const size_type bucket_count_minus_one = bucket_count() - 1;
+ size_type bucknum = hash(key) & bucket_count_minus_one;
+ size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
+ while ( 1 ) { // probe until something happens
+ if ( test_empty(bucknum) ) { // bucket is empty
+ if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
+ return std::pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
+ else
+ return std::pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
+
+ } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
+ if ( insert_pos == ILLEGAL_BUCKET )
+ insert_pos = bucknum;
+
+ } else if ( equals(key, get_key(table[bucknum])) ) {
+ return std::pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
+ }
+ ++num_probes; // we're doing another probe
+ bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
+ assert(num_probes < bucket_count()
+ && "Hashtable is full: an error in key_equal<> or hash<>");
+ }
+ }
+
+ public:
+
+ iterator find(const key_type& key) {
+ if ( size() == 0 ) return end();
+ std::pair<size_type, size_type> pos = find_position(key);
+ if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
+ return end();
+ else
+ return iterator(this, table + pos.first, table + num_buckets, false);
+ }
+
+ const_iterator find(const key_type& key) const {
+ if ( size() == 0 ) return end();
+ std::pair<size_type, size_type> pos = find_position(key);
+ if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
+ return end();
+ else
+ return const_iterator(this, table + pos.first, table+num_buckets, false);
+ }
+
+ // This is a tr1 method: the bucket a given key is in, or what bucket
+ // it would be put in, if it were to be inserted. Shrug.
+ size_type bucket(const key_type& key) const {
+ std::pair<size_type, size_type> pos = find_position(key);
+ return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
+ }
+
+ // Counts how many elements have key key. For maps, it's either 0 or 1.
+ size_type count(const key_type &key) const {
+ std::pair<size_type, size_type> pos = find_position(key);
+ return pos.first == ILLEGAL_BUCKET ? 0 : 1;
+ }
+
+ // Likewise, equal_range doesn't really make sense for us. Oh well.
+ std::pair<iterator,iterator> equal_range(const key_type& key) {
+ iterator pos = find(key); // either an iterator or end
+ if (pos == end()) {
+ return std::pair<iterator,iterator>(pos, pos);
+ } else {
+ const iterator startpos = pos++;
+ return std::pair<iterator,iterator>(startpos, pos);
+ }
+ }
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& key)
+ const {
+ const_iterator pos = find(key); // either an iterator or end
+ if (pos == end()) {
+ return std::pair<const_iterator,const_iterator>(pos, pos);
+ } else {
+ const const_iterator startpos = pos++;
+ return std::pair<const_iterator,const_iterator>(startpos, pos);
+ }
+ }
+
+
+ // INSERTION ROUTINES
+ private:
+ // Private method used by insert_noresize and find_or_insert.
+ iterator insert_at(const_reference obj, size_type pos) {
+ if (size() >= max_size()) {
+ throw std::length_error("insert overflow");
+ }
+ if ( test_deleted(pos) ) { // just replace if it's been del.
+ // shrug: shouldn't need to be const.
+ const_iterator delpos(this, table + pos, table + num_buckets, false);
+ clear_deleted(delpos);
+ assert( num_deleted > 0);
+ --num_deleted; // used to be, now it isn't
+ } else {
+ ++num_elements; // replacing an empty bucket
+ }
+ set_value(&table[pos], obj);
+ return iterator(this, table + pos, table + num_buckets, false);
+ }
+
+ // If you know *this is big enough to hold obj, use this routine
+ std::pair<iterator, bool> insert_noresize(const_reference obj) {
+ // First, double-check we're not inserting delkey or emptyval
+ assert((!settings.use_empty() || !equals(get_key(obj),
+ get_key(val_info.emptyval)))
+ && "Inserting the empty key");
+ assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
+ && "Inserting the deleted key");
+ const std::pair<size_type,size_type> pos = find_position(get_key(obj));
+ if ( pos.first != ILLEGAL_BUCKET) { // object was already there
+ return std::pair<iterator,bool>(iterator(this, table + pos.first,
+ table + num_buckets, false),
+ false); // false: we didn't insert
+ } else { // pos.second says where to put it
+ return std::pair<iterator,bool>(insert_at(obj, pos.second), true);
+ }
+ }
+
+ // Specializations of insert(it, it) depending on the power of the iterator:
+ // (1) Iterator supports operator-, resize before inserting
+ template <class ForwardIterator>
+ void insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag) {
+ size_t dist = std::distance(f, l);
+ if (dist >= (std::numeric_limits<size_type>::max)()) {
+ throw std::length_error("insert-range overflow");
+ }
+ resize_delta(static_cast<size_type>(dist));
+ for ( ; dist > 0; --dist, ++f) {
+ insert_noresize(*f);
+ }
+ }
+
+ // (2) Arbitrary iterator, can't tell how much to resize
+ template <class InputIterator>
+ void insert(InputIterator f, InputIterator l, std::input_iterator_tag) {
+ for ( ; f != l; ++f)
+ insert(*f);
+ }
+
+ public:
+ // This is the normal insert routine, used by the outside world
+ std::pair<iterator, bool> insert(const_reference obj) {
+ resize_delta(1); // adding an object, grow if need be
+ return insert_noresize(obj);
+ }
+
+ // When inserting a lot at a time, we specialize on the type of iterator
+ template <class InputIterator>
+ void insert(InputIterator f, InputIterator l) {
+ // specializes on iterator type
+ insert(f, l,
+ typename std::iterator_traits<InputIterator>::iterator_category());
+ }
+
+ // DefaultValue is a functor that takes a key and returns a value_type
+ // representing the default value to be inserted if none is found.
+ template <class DefaultValue>
+ value_type& find_or_insert(const key_type& key) {
+ // First, double-check we're not inserting emptykey or delkey
+ assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
+ && "Inserting the empty key");
+ assert((!settings.use_deleted() || !equals(key, key_info.delkey))
+ && "Inserting the deleted key");
+ const std::pair<size_type,size_type> pos = find_position(key);
+ DefaultValue default_value;
+ if ( pos.first != ILLEGAL_BUCKET) { // object was already there
+ return table[pos.first];
+ } else if (resize_delta(1)) { // needed to rehash to make room
+ // Since we resized, we can't use pos, so recalculate where to insert.
+ return *insert_noresize(default_value(key)).first;
+ } else { // no need to rehash, insert right here
+ return *insert_at(default_value(key), pos.second);
+ }
+ }
+
+
+ // DELETION ROUTINES
+ size_type erase(const key_type& key) {
+ // First, double-check we're not trying to erase delkey or emptyval.
+ assert((!settings.use_empty() || !equals(key, get_key(val_info.emptyval)))
+ && "Erasing the empty key");
+ assert((!settings.use_deleted() || !equals(key, key_info.delkey))
+ && "Erasing the deleted key");
+ const_iterator pos = find(key); // shrug: shouldn't need to be const
+ if ( pos != end() ) {
+ assert(!test_deleted(pos)); // or find() shouldn't have returned it
+ set_deleted(pos);
+ ++num_deleted;
+ settings.set_consider_shrink(true); // will think about shrink after next insert
+ return 1; // because we deleted one thing
+ } else {
+ return 0; // because we deleted nothing
+ }
+ }
+
+ // We return the iterator past the deleted item.
+ void erase(iterator pos) {
+ if ( pos == end() ) return; // sanity check
+ if ( set_deleted(pos) ) { // true if object has been newly deleted
+ ++num_deleted;
+ settings.set_consider_shrink(true); // will think about shrink after next insert
+ }
+ }
+
+ void erase(iterator f, iterator l) {
+ for ( ; f != l; ++f) {
+ if ( set_deleted(f) ) // should always be true
+ ++num_deleted;
+ }
+ settings.set_consider_shrink(true); // will think about shrink after next insert
+ }
+
+ // We allow you to erase a const_iterator just like we allow you to
+ // erase an iterator. This is in parallel to 'delete': you can delete
+ // a const pointer just like a non-const pointer. The logic is that
+ // you can't use the object after it's erased anyway, so it doesn't matter
+ // if it's const or not.
+ void erase(const_iterator pos) {
+ if ( pos == end() ) return; // sanity check
+ if ( set_deleted(pos) ) { // true if object has been newly deleted
+ ++num_deleted;
+ settings.set_consider_shrink(true); // will think about shrink after next insert
+ }
+ }
+ void erase(const_iterator f, const_iterator l) {
+ for ( ; f != l; ++f) {
+ if ( set_deleted(f) ) // should always be true
+ ++num_deleted;
+ }
+ settings.set_consider_shrink(true); // will think about shrink after next insert
+ }
+
+
+ // COMPARISON
+ bool operator==(const dense_hashtable& ht) const {
+ if (size() != ht.size()) {
+ return false;
+ } else if (this == &ht) {
+ return true;
+ } else {
+ // Iterate through the elements in "this" and see if the
+ // corresponding element is in ht
+ for ( const_iterator it = begin(); it != end(); ++it ) {
+ const_iterator it2 = ht.find(get_key(*it));
+ if ((it2 == ht.end()) || (*it != *it2)) {
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+ bool operator!=(const dense_hashtable& ht) const {
+ return !(*this == ht);
+ }
+
+
+ // I/O
+ // We support reading and writing hashtables to disk. Alas, since
+ // I don't know how to write a hasher or key_equal, you have to make
+ // sure everything but the table is the same. We compact before writing.
+ private:
+ // Every time the disk format changes, this should probably change too
+ typedef unsigned long MagicNumberType;
+ static const MagicNumberType MAGIC_NUMBER = 0x13578642;
+
+ public:
+ // I/O -- this is an add-on for writing hash table to disk
+ //
+ // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
+ // (istream, ostream, etc) *or* a class providing
+ // Read(void*, size_t) and Write(const void*, size_t)
+ // (respectively), which writes a buffer into a stream
+ // (which the INPUT/OUTPUT instance presumably owns).
+
+ typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
+
+ // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT *fp) {
+ squash_deleted(); // so we don't have to worry about delkey
+ if ( !sparsehash_internal::write_bigendian_number(fp, MAGIC_NUMBER, 4) )
+ return false;
+ if ( !sparsehash_internal::write_bigendian_number(fp, num_buckets, 8) )
+ return false;
+ if ( !sparsehash_internal::write_bigendian_number(fp, num_elements, 8) )
+ return false;
+ // Now write a bitmap of non-empty buckets.
+ for ( size_type i = 0; i < num_buckets; i += 8 ) {
+ unsigned char bits = 0;
+ for ( int bit = 0; bit < 8; ++bit ) {
+ if ( i + bit < num_buckets && !test_empty(i + bit) )
+ bits |= (1 << bit);
+ }
+ if ( !sparsehash_internal::write_data(fp, &bits, sizeof(bits)) )
+ return false;
+ for ( int bit = 0; bit < 8; ++bit ) {
+ if ( bits & (1 << bit) ) {
+ if ( !serializer(fp, table[i + bit]) ) return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ // INPUT: anything we've written an overload of read_data() for.
+ // ValueSerializer: a functor. operator()(INPUT*, value_type*)
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT *fp) {
+ assert(settings.use_empty() && "empty_key not set for read");
+
+ clear(); // just to be consistent
+ MagicNumberType magic_read;
+ if ( !sparsehash_internal::read_bigendian_number(fp, &magic_read, 4) )
+ return false;
+ if ( magic_read != MAGIC_NUMBER ) {
+ return false;
+ }
+ size_type new_num_buckets;
+ if ( !sparsehash_internal::read_bigendian_number(fp, &new_num_buckets, 8) )
+ return false;
+ clear_to_size(new_num_buckets);
+ if ( !sparsehash_internal::read_bigendian_number(fp, &num_elements, 8) )
+ return false;
+
+ // Read the bitmap of non-empty buckets.
+ for (size_type i = 0; i < num_buckets; i += 8) {
+ unsigned char bits;
+ if ( !sparsehash_internal::read_data(fp, &bits, sizeof(bits)) )
+ return false;
+ for ( int bit = 0; bit < 8; ++bit ) {
+ if ( i + bit < num_buckets && (bits & (1 << bit)) ) { // not empty
+ if ( !serializer(fp, &table[i + bit]) ) return false;
+ }
+ }
+ }
+ return true;
+ }
+
+ private:
+ template <class A>
+ class alloc_impl : public A {
+ public:
+ typedef typename A::pointer pointer;
+ typedef typename A::size_type size_type;
+
+ // Convert a normal allocator to one that has realloc_or_die()
+ alloc_impl(const A& a) : A(a) { }
+
+ // realloc_or_die should only be used when using the default
+ // allocator (libc_allocator_with_realloc).
+ pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
+ fprintf(stderr, "realloc_or_die is only supported for "
+ "libc_allocator_with_realloc\n");
+ exit(1);
+ return NULL;
+ }
+ };
+
+ // A template specialization of alloc_impl for
+ // libc_allocator_with_realloc that can handle realloc_or_die.
+ template <class A>
+ class alloc_impl<libc_allocator_with_realloc<A> >
+ : public libc_allocator_with_realloc<A> {
+ public:
+ typedef typename libc_allocator_with_realloc<A>::pointer pointer;
+ typedef typename libc_allocator_with_realloc<A>::size_type size_type;
+
+ alloc_impl(const libc_allocator_with_realloc<A>& a)
+ : libc_allocator_with_realloc<A>(a) { }
+
+ pointer realloc_or_die(pointer ptr, size_type n) {
+ pointer retval = this->reallocate(ptr, n);
+ if (retval == NULL) {
fprintf(stderr,
"sparsehash: FATAL ERROR: failed to reallocate "
"%lu elements for ptr %p",
static_cast<unsigned long>(n), static_cast<void*>(ptr));
- exit(1);
- }
- return retval;
- }
- };
-
- // Package allocator with emptyval to eliminate memory needed for
- // the zero-size allocator.
- // If new fields are added to this class, we should add them to
- // operator= and swap.
- class ValInfo : public alloc_impl<value_alloc_type> {
- public:
- typedef typename alloc_impl<value_alloc_type>::value_type value_type;
-
- ValInfo(const alloc_impl<value_alloc_type>& a)
- : alloc_impl<value_alloc_type>(a), emptyval() { }
- ValInfo(const ValInfo& v)
- : alloc_impl<value_alloc_type>(v), emptyval(v.emptyval) { }
-
- value_type emptyval; // which key marks unused entries
- };
-
-
- // Package functors with another class to eliminate memory needed for
- // zero-size functors. Since ExtractKey and hasher's operator() might
- // have the same function signature, they must be packaged in
- // different classes.
- struct Settings :
- sparsehash_internal::sh_hashtable_settings<key_type, hasher,
- size_type, HT_MIN_BUCKETS> {
- explicit Settings(const hasher& hf)
- : sparsehash_internal::sh_hashtable_settings<key_type, hasher,
- size_type, HT_MIN_BUCKETS>(
- hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
- };
-
- // Packages ExtractKey and SetKey functors.
- class KeyInfo : public ExtractKey, public SetKey, public EqualKey {
- public:
- KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
- : ExtractKey(ek),
- SetKey(sk),
- EqualKey(eq) {
- }
-
- // We want to return the exact same type as ExtractKey: Key or const Key&
- typename ExtractKey::result_type get_key(const_reference v) const {
- return ExtractKey::operator()(v);
- }
- void set_key(pointer v, const key_type& k) const {
- SetKey::operator()(v, k);
- }
- bool equals(const key_type& a, const key_type& b) const {
- return EqualKey::operator()(a, b);
- }
-
- // Which key marks deleted entries.
- // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
- typename base::remove_const<key_type>::type delkey;
- };
-
- // Utility functions to access the templated operators
- size_type hash(const key_type& v) const {
- return settings.hash(v);
- }
- bool equals(const key_type& a, const key_type& b) const {
- return key_info.equals(a, b);
- }
- typename ExtractKey::result_type get_key(const_reference v) const {
- return key_info.get_key(v);
- }
- void set_key(pointer v, const key_type& k) const {
- key_info.set_key(v, k);
- }
-
- private:
- // Actual data
- Settings settings;
- KeyInfo key_info;
-
- size_type num_deleted; // how many occupied buckets are marked deleted
- size_type num_elements;
- size_type num_buckets;
- ValInfo val_info; // holds emptyval, and also the allocator
- pointer table;
-};
-
-
-// We need a global swap as well
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-inline void swap(dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
- dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
- x.swap(y);
-}
-
-#undef JUMP_
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const typename dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
- dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
-
-// How full we let the table get before we resize. Knuth says .8 is
-// good -- higher causes us to probe too much, though saves memory.
-// However, we go with .5, getting better performance at the cost of
-// more space (a trade-off densehashtable explicitly chooses to make).
-// Feel free to play around with different values, though, via
-// max_load_factor() and/or set_resizing_parameters().
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 50;
-
-// How empty we let the table get before we resize lower.
-// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing.
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
- = static_cast<int>(0.4 *
- dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _DENSEHASHTABLE_H_ */
+ exit(1);
+ }
+ return retval;
+ }
+ };
+
+ // Package allocator with emptyval to eliminate memory needed for
+ // the zero-size allocator.
+ // If new fields are added to this class, we should add them to
+ // operator= and swap.
+ class ValInfo : public alloc_impl<value_alloc_type> {
+ public:
+ typedef typename alloc_impl<value_alloc_type>::value_type value_type;
+
+ ValInfo(const alloc_impl<value_alloc_type>& a)
+ : alloc_impl<value_alloc_type>(a), emptyval() { }
+ ValInfo(const ValInfo& v)
+ : alloc_impl<value_alloc_type>(v), emptyval(v.emptyval) { }
+
+ value_type emptyval; // which key marks unused entries
+ };
+
+
+ // Package functors with another class to eliminate memory needed for
+ // zero-size functors. Since ExtractKey and hasher's operator() might
+ // have the same function signature, they must be packaged in
+ // different classes.
+ struct Settings :
+ sparsehash_internal::sh_hashtable_settings<key_type, hasher,
+ size_type, HT_MIN_BUCKETS> {
+ explicit Settings(const hasher& hf)
+ : sparsehash_internal::sh_hashtable_settings<key_type, hasher,
+ size_type, HT_MIN_BUCKETS>(
+ hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
+ };
+
+ // Packages ExtractKey and SetKey functors.
+ class KeyInfo : public ExtractKey, public SetKey, public EqualKey {
+ public:
+ KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
+ : ExtractKey(ek),
+ SetKey(sk),
+ EqualKey(eq) {
+ }
+
+ // We want to return the exact same type as ExtractKey: Key or const Key&
+ typename ExtractKey::result_type get_key(const_reference v) const {
+ return ExtractKey::operator()(v);
+ }
+ void set_key(pointer v, const key_type& k) const {
+ SetKey::operator()(v, k);
+ }
+ bool equals(const key_type& a, const key_type& b) const {
+ return EqualKey::operator()(a, b);
+ }
+
+ // Which key marks deleted entries.
+ // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
+ typename base::remove_const<key_type>::type delkey;
+ };
+
+ // Utility functions to access the templated operators
+ size_type hash(const key_type& v) const {
+ return settings.hash(v);
+ }
+ bool equals(const key_type& a, const key_type& b) const {
+ return key_info.equals(a, b);
+ }
+ typename ExtractKey::result_type get_key(const_reference v) const {
+ return key_info.get_key(v);
+ }
+ void set_key(pointer v, const key_type& k) const {
+ key_info.set_key(v, k);
+ }
+
+ private:
+ // Actual data
+ Settings settings;
+ KeyInfo key_info;
+
+ size_type num_deleted; // how many occupied buckets are marked deleted
+ size_type num_elements;
+ size_type num_buckets;
+ ValInfo val_info; // holds emptyval, and also the allocator
+ pointer table;
+};
+
+
+// We need a global swap as well
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+inline void swap(dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
+ dense_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
+ x.swap(y);
+}
+
+#undef JUMP_
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const typename dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
+ dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
+
+// How full we let the table get before we resize. Knuth says .8 is
+// good -- higher causes us to probe too much, though saves memory.
+// However, we go with .5, getting better performance at the cost of
+// more space (a trade-off densehashtable explicitly chooses to make).
+// Feel free to play around with different values, though, via
+// max_load_factor() and/or set_resizing_parameters().
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 50;
+
+// How empty we let the table get before we resize lower.
+// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing.
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const int dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
+ = static_cast<int>(0.4 *
+ dense_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _DENSEHASHTABLE_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/internal/hashtable-common.h b/contrib/libs/sparsehash/src/sparsehash/internal/hashtable-common.h
index 9e49ec890f..b22e853830 100644
--- a/contrib/libs/sparsehash/src/sparsehash/internal/hashtable-common.h
+++ b/contrib/libs/sparsehash/src/sparsehash/internal/hashtable-common.h
@@ -1,381 +1,381 @@
-// Copyright (c) 2010, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// Provides classes shared by both sparse and dense hashtable.
-//
-// sh_hashtable_settings has parameters for growing and shrinking
-// a hashtable. It also packages zero-size functor (ie. hasher).
-//
-// Other functions and classes provide common code for serializing
-// and deserializing hashtables to a stream (such as a FILE*).
-
-#ifndef UTIL_GTL_HASHTABLE_COMMON_H_
-#define UTIL_GTL_HASHTABLE_COMMON_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <assert.h>
-#include <stdio.h>
-#include <stddef.h> // for size_t
-#include <iosfwd>
-#include <stdexcept> // For length_error
-
-_START_GOOGLE_NAMESPACE_
-
-template <bool> struct SparsehashCompileAssert { };
-#define SPARSEHASH_COMPILE_ASSERT(expr, msg) \
+// Copyright (c) 2010, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// Provides classes shared by both sparse and dense hashtable.
+//
+// sh_hashtable_settings has parameters for growing and shrinking
+// a hashtable. It also packages zero-size functor (ie. hasher).
+//
+// Other functions and classes provide common code for serializing
+// and deserializing hashtables to a stream (such as a FILE*).
+
+#ifndef UTIL_GTL_HASHTABLE_COMMON_H_
+#define UTIL_GTL_HASHTABLE_COMMON_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <assert.h>
+#include <stdio.h>
+#include <stddef.h> // for size_t
+#include <iosfwd>
+#include <stdexcept> // For length_error
+
+_START_GOOGLE_NAMESPACE_
+
+template <bool> struct SparsehashCompileAssert { };
+#define SPARSEHASH_COMPILE_ASSERT(expr, msg) \
[[maybe_unused]] typedef SparsehashCompileAssert<(bool(expr))> msg[bool(expr) ? 1 : -1]
-
-namespace sparsehash_internal {
-
-// Adaptor methods for reading/writing data from an INPUT or OUPTUT
-// variable passed to serialize() or unserialize(). For now we
-// have implemented INPUT/OUTPUT for FILE*, istream*/ostream* (note
-// they are pointers, unlike typical use), or else a pointer to
-// something that supports a Read()/Write() method.
-//
-// For technical reasons, we implement read_data/write_data in two
-// stages. The actual work is done in *_data_internal, which takes
-// the stream argument twice: once as a template type, and once with
-// normal type information. (We only use the second version.) We do
-// this because of how C++ picks what function overload to use. If we
-// implemented this the naive way:
-// bool read_data(istream* is, const void* data, size_t length);
-// template<typename T> read_data(T* fp, const void* data, size_t length);
-// C++ would prefer the second version for every stream type except
-// istream. However, we want C++ to prefer the first version for
-// streams that are *subclasses* of istream, such as istringstream.
-// This is not possible given the way template types are resolved. So
-// we split the stream argument in two, one of which is templated and
-// one of which is not. The specialized functions (like the istream
-// version above) ignore the template arg and use the second, 'type'
-// arg, getting subclass matching as normal. The 'catch-all'
-// functions (the second version above) use the template arg to deduce
-// the type, and use a second, void* arg to achieve the desired
-// 'catch-all' semantics.
-
-// ----- low-level I/O for FILE* ----
-
-template<typename Ignored>
-inline bool read_data_internal(Ignored*, FILE* fp,
- void* data, size_t length) {
- return fread(data, length, 1, fp) == 1;
-}
-
-template<typename Ignored>
-inline bool write_data_internal(Ignored*, FILE* fp,
- const void* data, size_t length) {
- return fwrite(data, length, 1, fp) == 1;
-}
-
-// ----- low-level I/O for iostream ----
-
-// We want the caller to be responsible for #including <iostream>, not
-// us, because iostream is a big header! According to the standard,
-// it's only legal to delay the instantiation the way we want to if
-// the istream/ostream is a template type. So we jump through hoops.
-template<typename ISTREAM>
-inline bool read_data_internal_for_istream(ISTREAM* fp,
- void* data, size_t length) {
- return fp->read(reinterpret_cast<char*>(data), length).good();
-}
-template<typename Ignored>
-inline bool read_data_internal(Ignored*, std::istream* fp,
- void* data, size_t length) {
- return read_data_internal_for_istream(fp, data, length);
-}
-
-template<typename OSTREAM>
-inline bool write_data_internal_for_ostream(OSTREAM* fp,
- const void* data, size_t length) {
- return fp->write(reinterpret_cast<const char*>(data), length).good();
-}
-template<typename Ignored>
-inline bool write_data_internal(Ignored*, std::ostream* fp,
- const void* data, size_t length) {
- return write_data_internal_for_ostream(fp, data, length);
-}
-
-// ----- low-level I/O for custom streams ----
-
-// The INPUT type needs to support a Read() method that takes a
-// buffer and a length and returns the number of bytes read.
-template <typename INPUT>
-inline bool read_data_internal(INPUT* fp, void*,
- void* data, size_t length) {
- return static_cast<size_t>(fp->Read(data, length)) == length;
-}
-
-// The OUTPUT type needs to support a Write() operation that takes
-// a buffer and a length and returns the number of bytes written.
-template <typename OUTPUT>
-inline bool write_data_internal(OUTPUT* fp, void*,
- const void* data, size_t length) {
- return static_cast<size_t>(fp->Write(data, length)) == length;
-}
-
-// ----- low-level I/O: the public API ----
-
-template <typename INPUT>
-inline bool read_data(INPUT* fp, void* data, size_t length) {
- return read_data_internal(fp, fp, data, length);
-}
-
-template <typename OUTPUT>
-inline bool write_data(OUTPUT* fp, const void* data, size_t length) {
- return write_data_internal(fp, fp, data, length);
-}
-
-// Uses read_data() and write_data() to read/write an integer.
-// length is the number of bytes to read/write (which may differ
-// from sizeof(IntType), allowing us to save on a 32-bit system
-// and load on a 64-bit system). Excess bytes are taken to be 0.
-// INPUT and OUTPUT must match legal inputs to read/write_data (above).
-template <typename INPUT, typename IntType>
-bool read_bigendian_number(INPUT* fp, IntType* value, size_t length) {
- *value = 0;
- unsigned char byte;
- // We require IntType to be unsigned or else the shifting gets all screwy.
- SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
- serializing_int_requires_an_unsigned_type);
- for (size_t i = 0; i < length; ++i) {
- if (!read_data(fp, &byte, sizeof(byte))) return false;
- *value |= static_cast<IntType>(byte) << ((length - 1 - i) * 8);
- }
- return true;
-}
-
-template <typename OUTPUT, typename IntType>
-bool write_bigendian_number(OUTPUT* fp, IntType value, size_t length) {
- unsigned char byte;
- // We require IntType to be unsigned or else the shifting gets all screwy.
- SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
- serializing_int_requires_an_unsigned_type);
- for (size_t i = 0; i < length; ++i) {
- byte = (sizeof(value) <= length-1 - i)
- ? 0 : static_cast<unsigned char>((value >> ((length-1 - i) * 8)) & 255);
- if (!write_data(fp, &byte, sizeof(byte))) return false;
- }
- return true;
-}
-
-// If your keys and values are simple enough, you can pass this
-// serializer to serialize()/unserialize(). "Simple enough" means
-// value_type is a POD type that contains no pointers. Note,
-// however, we don't try to normalize endianness.
-// This is the type used for NopointerSerializer.
-template <typename value_type> struct pod_serializer {
- template <typename INPUT>
- bool operator()(INPUT* fp, value_type* value) const {
- return read_data(fp, value, sizeof(*value));
- }
-
- template <typename OUTPUT>
- bool operator()(OUTPUT* fp, const value_type& value) const {
- return write_data(fp, &value, sizeof(value));
- }
-};
-
-
-// Settings contains parameters for growing and shrinking the table.
-// It also packages zero-size functor (ie. hasher).
-//
-// It does some munging of the hash value in cases where we think
-// (fear) the original hash function might not be very good. In
-// particular, the default hash of pointers is the identity hash,
-// so probably all the low bits are 0. We identify when we think
-// we're hashing a pointer, and chop off the low bits. Note this
-// isn't perfect: even when the key is a pointer, we can't tell
-// for sure that the hash is the identity hash. If it's not, this
-// is needless work (and possibly, though not likely, harmful).
-
-template<typename Key, typename HashFunc,
- typename SizeType, int HT_MIN_BUCKETS>
-class sh_hashtable_settings : public HashFunc {
- public:
- typedef Key key_type;
- typedef HashFunc hasher;
- typedef SizeType size_type;
-
- public:
- sh_hashtable_settings(const hasher& hf,
- const float ht_occupancy_flt,
- const float ht_empty_flt)
- : hasher(hf),
- enlarge_threshold_(0),
- shrink_threshold_(0),
- consider_shrink_(false),
- use_empty_(false),
- use_deleted_(false),
- num_ht_copies_(0) {
- set_enlarge_factor(ht_occupancy_flt);
- set_shrink_factor(ht_empty_flt);
- }
-
- size_type hash(const key_type& v) const {
- // We munge the hash value when we don't trust hasher::operator().
- return hash_munger<Key>::MungedHash(hasher::operator()(v));
- }
-
- float enlarge_factor() const {
- return enlarge_factor_;
- }
- void set_enlarge_factor(float f) {
- enlarge_factor_ = f;
- }
- float shrink_factor() const {
- return shrink_factor_;
- }
- void set_shrink_factor(float f) {
- shrink_factor_ = f;
- }
-
- size_type enlarge_threshold() const {
- return enlarge_threshold_;
- }
- void set_enlarge_threshold(size_type t) {
- enlarge_threshold_ = t;
- }
- size_type shrink_threshold() const {
- return shrink_threshold_;
- }
- void set_shrink_threshold(size_type t) {
- shrink_threshold_ = t;
- }
-
- size_type enlarge_size(size_type x) const {
- return static_cast<size_type>(x * enlarge_factor_);
- }
- size_type shrink_size(size_type x) const {
- return static_cast<size_type>(x * shrink_factor_);
- }
-
- bool consider_shrink() const {
- return consider_shrink_;
- }
- void set_consider_shrink(bool t) {
- consider_shrink_ = t;
- }
-
- bool use_empty() const {
- return use_empty_;
- }
- void set_use_empty(bool t) {
- use_empty_ = t;
- }
-
- bool use_deleted() const {
- return use_deleted_;
- }
- void set_use_deleted(bool t) {
- use_deleted_ = t;
- }
-
- size_type num_ht_copies() const {
- return static_cast<size_type>(num_ht_copies_);
- }
- void inc_num_ht_copies() {
- ++num_ht_copies_;
- }
-
- // Reset the enlarge and shrink thresholds
- void reset_thresholds(size_type num_buckets) {
- set_enlarge_threshold(enlarge_size(num_buckets));
- set_shrink_threshold(shrink_size(num_buckets));
- // whatever caused us to reset already considered
- set_consider_shrink(false);
- }
-
- // Caller is resposible for calling reset_threshold right after
- // set_resizing_parameters.
- void set_resizing_parameters(float shrink, float grow) {
- assert(shrink >= 0.0);
- assert(grow <= 1.0);
- if (shrink > grow/2.0f)
- shrink = grow / 2.0f; // otherwise we thrash hashtable size
- set_shrink_factor(shrink);
- set_enlarge_factor(grow);
- }
-
- // This is the smallest size a hashtable can be without being too crowded
- // If you like, you can give a min #buckets as well as a min #elts
- size_type min_buckets(size_type num_elts, size_type min_buckets_wanted) {
- float enlarge = enlarge_factor();
- size_type sz = HT_MIN_BUCKETS; // min buckets allowed
- while ( sz < min_buckets_wanted ||
- num_elts >= static_cast<size_type>(sz * enlarge) ) {
- // This just prevents overflowing size_type, since sz can exceed
- // max_size() here.
- if (static_cast<size_type>(sz * 2) < sz) {
- throw std::length_error("resize overflow"); // protect against overflow
- }
- sz *= 2;
- }
- return sz;
- }
-
- private:
- template<class HashKey> class hash_munger {
- public:
- static size_t MungedHash(size_t hash) {
- return hash;
- }
- };
- // This matches when the hashtable key is a pointer.
- template<class HashKey> class hash_munger<HashKey*> {
- public:
- static size_t MungedHash(size_t hash) {
- // TODO(csilvers): consider rotating instead:
- // static const int shift = (sizeof(void *) == 4) ? 2 : 3;
- // return (hash << (sizeof(hash) * 8) - shift)) | (hash >> shift);
- // This matters if we ever change sparse/dense_hash_* to compare
- // hashes before comparing actual values. It's speedy on x86.
- return hash / sizeof(void*); // get rid of known-0 bits
- }
- };
-
- size_type enlarge_threshold_; // table.size() * enlarge_factor
- size_type shrink_threshold_; // table.size() * shrink_factor
- float enlarge_factor_; // how full before resize
- float shrink_factor_; // how empty before resize
- // consider_shrink=true if we should try to shrink before next insert
- bool consider_shrink_;
- bool use_empty_; // used only by densehashtable, not sparsehashtable
- bool use_deleted_; // false until delkey has been set
- // num_ht_copies is a counter incremented every Copy/Move
- unsigned int num_ht_copies_;
-};
-
-} // namespace sparsehash_internal
-
-#undef SPARSEHASH_COMPILE_ASSERT
-_END_GOOGLE_NAMESPACE_
-
-#endif // UTIL_GTL_HASHTABLE_COMMON_H_
+
+namespace sparsehash_internal {
+
+// Adaptor methods for reading/writing data from an INPUT or OUPTUT
+// variable passed to serialize() or unserialize(). For now we
+// have implemented INPUT/OUTPUT for FILE*, istream*/ostream* (note
+// they are pointers, unlike typical use), or else a pointer to
+// something that supports a Read()/Write() method.
+//
+// For technical reasons, we implement read_data/write_data in two
+// stages. The actual work is done in *_data_internal, which takes
+// the stream argument twice: once as a template type, and once with
+// normal type information. (We only use the second version.) We do
+// this because of how C++ picks what function overload to use. If we
+// implemented this the naive way:
+// bool read_data(istream* is, const void* data, size_t length);
+// template<typename T> read_data(T* fp, const void* data, size_t length);
+// C++ would prefer the second version for every stream type except
+// istream. However, we want C++ to prefer the first version for
+// streams that are *subclasses* of istream, such as istringstream.
+// This is not possible given the way template types are resolved. So
+// we split the stream argument in two, one of which is templated and
+// one of which is not. The specialized functions (like the istream
+// version above) ignore the template arg and use the second, 'type'
+// arg, getting subclass matching as normal. The 'catch-all'
+// functions (the second version above) use the template arg to deduce
+// the type, and use a second, void* arg to achieve the desired
+// 'catch-all' semantics.
+
+// ----- low-level I/O for FILE* ----
+
+template<typename Ignored>
+inline bool read_data_internal(Ignored*, FILE* fp,
+ void* data, size_t length) {
+ return fread(data, length, 1, fp) == 1;
+}
+
+template<typename Ignored>
+inline bool write_data_internal(Ignored*, FILE* fp,
+ const void* data, size_t length) {
+ return fwrite(data, length, 1, fp) == 1;
+}
+
+// ----- low-level I/O for iostream ----
+
+// We want the caller to be responsible for #including <iostream>, not
+// us, because iostream is a big header! According to the standard,
+// it's only legal to delay the instantiation the way we want to if
+// the istream/ostream is a template type. So we jump through hoops.
+template<typename ISTREAM>
+inline bool read_data_internal_for_istream(ISTREAM* fp,
+ void* data, size_t length) {
+ return fp->read(reinterpret_cast<char*>(data), length).good();
+}
+template<typename Ignored>
+inline bool read_data_internal(Ignored*, std::istream* fp,
+ void* data, size_t length) {
+ return read_data_internal_for_istream(fp, data, length);
+}
+
+template<typename OSTREAM>
+inline bool write_data_internal_for_ostream(OSTREAM* fp,
+ const void* data, size_t length) {
+ return fp->write(reinterpret_cast<const char*>(data), length).good();
+}
+template<typename Ignored>
+inline bool write_data_internal(Ignored*, std::ostream* fp,
+ const void* data, size_t length) {
+ return write_data_internal_for_ostream(fp, data, length);
+}
+
+// ----- low-level I/O for custom streams ----
+
+// The INPUT type needs to support a Read() method that takes a
+// buffer and a length and returns the number of bytes read.
+template <typename INPUT>
+inline bool read_data_internal(INPUT* fp, void*,
+ void* data, size_t length) {
+ return static_cast<size_t>(fp->Read(data, length)) == length;
+}
+
+// The OUTPUT type needs to support a Write() operation that takes
+// a buffer and a length and returns the number of bytes written.
+template <typename OUTPUT>
+inline bool write_data_internal(OUTPUT* fp, void*,
+ const void* data, size_t length) {
+ return static_cast<size_t>(fp->Write(data, length)) == length;
+}
+
+// ----- low-level I/O: the public API ----
+
+template <typename INPUT>
+inline bool read_data(INPUT* fp, void* data, size_t length) {
+ return read_data_internal(fp, fp, data, length);
+}
+
+template <typename OUTPUT>
+inline bool write_data(OUTPUT* fp, const void* data, size_t length) {
+ return write_data_internal(fp, fp, data, length);
+}
+
+// Uses read_data() and write_data() to read/write an integer.
+// length is the number of bytes to read/write (which may differ
+// from sizeof(IntType), allowing us to save on a 32-bit system
+// and load on a 64-bit system). Excess bytes are taken to be 0.
+// INPUT and OUTPUT must match legal inputs to read/write_data (above).
+template <typename INPUT, typename IntType>
+bool read_bigendian_number(INPUT* fp, IntType* value, size_t length) {
+ *value = 0;
+ unsigned char byte;
+ // We require IntType to be unsigned or else the shifting gets all screwy.
+ SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
+ serializing_int_requires_an_unsigned_type);
+ for (size_t i = 0; i < length; ++i) {
+ if (!read_data(fp, &byte, sizeof(byte))) return false;
+ *value |= static_cast<IntType>(byte) << ((length - 1 - i) * 8);
+ }
+ return true;
+}
+
+template <typename OUTPUT, typename IntType>
+bool write_bigendian_number(OUTPUT* fp, IntType value, size_t length) {
+ unsigned char byte;
+ // We require IntType to be unsigned or else the shifting gets all screwy.
+ SPARSEHASH_COMPILE_ASSERT(static_cast<IntType>(-1) > static_cast<IntType>(0),
+ serializing_int_requires_an_unsigned_type);
+ for (size_t i = 0; i < length; ++i) {
+ byte = (sizeof(value) <= length-1 - i)
+ ? 0 : static_cast<unsigned char>((value >> ((length-1 - i) * 8)) & 255);
+ if (!write_data(fp, &byte, sizeof(byte))) return false;
+ }
+ return true;
+}
+
+// If your keys and values are simple enough, you can pass this
+// serializer to serialize()/unserialize(). "Simple enough" means
+// value_type is a POD type that contains no pointers. Note,
+// however, we don't try to normalize endianness.
+// This is the type used for NopointerSerializer.
+template <typename value_type> struct pod_serializer {
+ template <typename INPUT>
+ bool operator()(INPUT* fp, value_type* value) const {
+ return read_data(fp, value, sizeof(*value));
+ }
+
+ template <typename OUTPUT>
+ bool operator()(OUTPUT* fp, const value_type& value) const {
+ return write_data(fp, &value, sizeof(value));
+ }
+};
+
+
+// Settings contains parameters for growing and shrinking the table.
+// It also packages zero-size functor (ie. hasher).
+//
+// It does some munging of the hash value in cases where we think
+// (fear) the original hash function might not be very good. In
+// particular, the default hash of pointers is the identity hash,
+// so probably all the low bits are 0. We identify when we think
+// we're hashing a pointer, and chop off the low bits. Note this
+// isn't perfect: even when the key is a pointer, we can't tell
+// for sure that the hash is the identity hash. If it's not, this
+// is needless work (and possibly, though not likely, harmful).
+
+template<typename Key, typename HashFunc,
+ typename SizeType, int HT_MIN_BUCKETS>
+class sh_hashtable_settings : public HashFunc {
+ public:
+ typedef Key key_type;
+ typedef HashFunc hasher;
+ typedef SizeType size_type;
+
+ public:
+ sh_hashtable_settings(const hasher& hf,
+ const float ht_occupancy_flt,
+ const float ht_empty_flt)
+ : hasher(hf),
+ enlarge_threshold_(0),
+ shrink_threshold_(0),
+ consider_shrink_(false),
+ use_empty_(false),
+ use_deleted_(false),
+ num_ht_copies_(0) {
+ set_enlarge_factor(ht_occupancy_flt);
+ set_shrink_factor(ht_empty_flt);
+ }
+
+ size_type hash(const key_type& v) const {
+ // We munge the hash value when we don't trust hasher::operator().
+ return hash_munger<Key>::MungedHash(hasher::operator()(v));
+ }
+
+ float enlarge_factor() const {
+ return enlarge_factor_;
+ }
+ void set_enlarge_factor(float f) {
+ enlarge_factor_ = f;
+ }
+ float shrink_factor() const {
+ return shrink_factor_;
+ }
+ void set_shrink_factor(float f) {
+ shrink_factor_ = f;
+ }
+
+ size_type enlarge_threshold() const {
+ return enlarge_threshold_;
+ }
+ void set_enlarge_threshold(size_type t) {
+ enlarge_threshold_ = t;
+ }
+ size_type shrink_threshold() const {
+ return shrink_threshold_;
+ }
+ void set_shrink_threshold(size_type t) {
+ shrink_threshold_ = t;
+ }
+
+ size_type enlarge_size(size_type x) const {
+ return static_cast<size_type>(x * enlarge_factor_);
+ }
+ size_type shrink_size(size_type x) const {
+ return static_cast<size_type>(x * shrink_factor_);
+ }
+
+ bool consider_shrink() const {
+ return consider_shrink_;
+ }
+ void set_consider_shrink(bool t) {
+ consider_shrink_ = t;
+ }
+
+ bool use_empty() const {
+ return use_empty_;
+ }
+ void set_use_empty(bool t) {
+ use_empty_ = t;
+ }
+
+ bool use_deleted() const {
+ return use_deleted_;
+ }
+ void set_use_deleted(bool t) {
+ use_deleted_ = t;
+ }
+
+ size_type num_ht_copies() const {
+ return static_cast<size_type>(num_ht_copies_);
+ }
+ void inc_num_ht_copies() {
+ ++num_ht_copies_;
+ }
+
+ // Reset the enlarge and shrink thresholds
+ void reset_thresholds(size_type num_buckets) {
+ set_enlarge_threshold(enlarge_size(num_buckets));
+ set_shrink_threshold(shrink_size(num_buckets));
+ // whatever caused us to reset already considered
+ set_consider_shrink(false);
+ }
+
+ // Caller is resposible for calling reset_threshold right after
+ // set_resizing_parameters.
+ void set_resizing_parameters(float shrink, float grow) {
+ assert(shrink >= 0.0);
+ assert(grow <= 1.0);
+ if (shrink > grow/2.0f)
+ shrink = grow / 2.0f; // otherwise we thrash hashtable size
+ set_shrink_factor(shrink);
+ set_enlarge_factor(grow);
+ }
+
+ // This is the smallest size a hashtable can be without being too crowded
+ // If you like, you can give a min #buckets as well as a min #elts
+ size_type min_buckets(size_type num_elts, size_type min_buckets_wanted) {
+ float enlarge = enlarge_factor();
+ size_type sz = HT_MIN_BUCKETS; // min buckets allowed
+ while ( sz < min_buckets_wanted ||
+ num_elts >= static_cast<size_type>(sz * enlarge) ) {
+ // This just prevents overflowing size_type, since sz can exceed
+ // max_size() here.
+ if (static_cast<size_type>(sz * 2) < sz) {
+ throw std::length_error("resize overflow"); // protect against overflow
+ }
+ sz *= 2;
+ }
+ return sz;
+ }
+
+ private:
+ template<class HashKey> class hash_munger {
+ public:
+ static size_t MungedHash(size_t hash) {
+ return hash;
+ }
+ };
+ // This matches when the hashtable key is a pointer.
+ template<class HashKey> class hash_munger<HashKey*> {
+ public:
+ static size_t MungedHash(size_t hash) {
+ // TODO(csilvers): consider rotating instead:
+ // static const int shift = (sizeof(void *) == 4) ? 2 : 3;
+ // return (hash << (sizeof(hash) * 8) - shift)) | (hash >> shift);
+ // This matters if we ever change sparse/dense_hash_* to compare
+ // hashes before comparing actual values. It's speedy on x86.
+ return hash / sizeof(void*); // get rid of known-0 bits
+ }
+ };
+
+ size_type enlarge_threshold_; // table.size() * enlarge_factor
+ size_type shrink_threshold_; // table.size() * shrink_factor
+ float enlarge_factor_; // how full before resize
+ float shrink_factor_; // how empty before resize
+ // consider_shrink=true if we should try to shrink before next insert
+ bool consider_shrink_;
+ bool use_empty_; // used only by densehashtable, not sparsehashtable
+ bool use_deleted_; // false until delkey has been set
+ // num_ht_copies is a counter incremented every Copy/Move
+ unsigned int num_ht_copies_;
+};
+
+} // namespace sparsehash_internal
+
+#undef SPARSEHASH_COMPILE_ASSERT
+_END_GOOGLE_NAMESPACE_
+
+#endif // UTIL_GTL_HASHTABLE_COMMON_H_
diff --git a/contrib/libs/sparsehash/src/sparsehash/internal/libc_allocator_with_realloc.h b/contrib/libs/sparsehash/src/sparsehash/internal/libc_allocator_with_realloc.h
index 769329fa6c..9429b84b7a 100644
--- a/contrib/libs/sparsehash/src/sparsehash/internal/libc_allocator_with_realloc.h
+++ b/contrib/libs/sparsehash/src/sparsehash/internal/libc_allocator_with_realloc.h
@@ -1,122 +1,122 @@
-// Copyright (c) 2010, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-
-#ifndef UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
-#define UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <stdlib.h> // for malloc/realloc/free
-#include <stddef.h> // for ptrdiff_t
-#include <new> // for placement new
-
-_START_GOOGLE_NAMESPACE_
-
-template<class T>
-class libc_allocator_with_realloc {
- public:
- typedef T value_type;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
-
- typedef T* pointer;
- typedef const T* const_pointer;
- typedef T& reference;
- typedef const T& const_reference;
-
- libc_allocator_with_realloc() {}
- libc_allocator_with_realloc(const libc_allocator_with_realloc&) {}
- ~libc_allocator_with_realloc() {}
-
- pointer address(reference r) const { return &r; }
- const_pointer address(const_reference r) const { return &r; }
-
- pointer allocate(size_type n, const_pointer = 0) {
- return static_cast<pointer>(malloc(n * sizeof(value_type)));
- }
- void deallocate(pointer p, size_type) {
- free(p);
- }
- pointer reallocate(pointer p, size_type n) {
+// Copyright (c) 2010, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+
+#ifndef UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
+#define UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <stdlib.h> // for malloc/realloc/free
+#include <stddef.h> // for ptrdiff_t
+#include <new> // for placement new
+
+_START_GOOGLE_NAMESPACE_
+
+template<class T>
+class libc_allocator_with_realloc {
+ public:
+ typedef T value_type;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+
+ typedef T* pointer;
+ typedef const T* const_pointer;
+ typedef T& reference;
+ typedef const T& const_reference;
+
+ libc_allocator_with_realloc() {}
+ libc_allocator_with_realloc(const libc_allocator_with_realloc&) {}
+ ~libc_allocator_with_realloc() {}
+
+ pointer address(reference r) const { return &r; }
+ const_pointer address(const_reference r) const { return &r; }
+
+ pointer allocate(size_type n, const_pointer = 0) {
+ return static_cast<pointer>(malloc(n * sizeof(value_type)));
+ }
+ void deallocate(pointer p, size_type) {
+ free(p);
+ }
+ pointer reallocate(pointer p, size_type n) {
// p points to a storage array whose objects have already been destroyed
// cast to void* to prevent compiler warnings about calling realloc() on
// an object which cannot be relocated in memory
return static_cast<pointer>(realloc(static_cast<void*>(p), n * sizeof(value_type)));
- }
-
- size_type max_size() const {
- return static_cast<size_type>(-1) / sizeof(value_type);
- }
-
- void construct(pointer p, const value_type& val) {
- new(p) value_type(val);
- }
- void destroy(pointer p) { p->~value_type(); }
-
- template <class U>
- libc_allocator_with_realloc(const libc_allocator_with_realloc<U>&) {}
-
- template<class U>
- struct rebind {
- typedef libc_allocator_with_realloc<U> other;
- };
-};
-
-// libc_allocator_with_realloc<void> specialization.
-template<>
-class libc_allocator_with_realloc<void> {
- public:
- typedef void value_type;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef void* pointer;
- typedef const void* const_pointer;
-
- template<class U>
- struct rebind {
- typedef libc_allocator_with_realloc<U> other;
- };
-};
-
-template<class T>
-inline bool operator==(const libc_allocator_with_realloc<T>&,
- const libc_allocator_with_realloc<T>&) {
- return true;
-}
-
-template<class T>
-inline bool operator!=(const libc_allocator_with_realloc<T>&,
- const libc_allocator_with_realloc<T>&) {
- return false;
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif // UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
+ }
+
+ size_type max_size() const {
+ return static_cast<size_type>(-1) / sizeof(value_type);
+ }
+
+ void construct(pointer p, const value_type& val) {
+ new(p) value_type(val);
+ }
+ void destroy(pointer p) { p->~value_type(); }
+
+ template <class U>
+ libc_allocator_with_realloc(const libc_allocator_with_realloc<U>&) {}
+
+ template<class U>
+ struct rebind {
+ typedef libc_allocator_with_realloc<U> other;
+ };
+};
+
+// libc_allocator_with_realloc<void> specialization.
+template<>
+class libc_allocator_with_realloc<void> {
+ public:
+ typedef void value_type;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+ typedef void* pointer;
+ typedef const void* const_pointer;
+
+ template<class U>
+ struct rebind {
+ typedef libc_allocator_with_realloc<U> other;
+ };
+};
+
+template<class T>
+inline bool operator==(const libc_allocator_with_realloc<T>&,
+ const libc_allocator_with_realloc<T>&) {
+ return true;
+}
+
+template<class T>
+inline bool operator!=(const libc_allocator_with_realloc<T>&,
+ const libc_allocator_with_realloc<T>&) {
+ return false;
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif // UTIL_GTL_LIBC_ALLOCATOR_WITH_REALLOC_H_
diff --git a/contrib/libs/sparsehash/src/sparsehash/internal/sparseconfig.h b/contrib/libs/sparsehash/src/sparsehash/internal/sparseconfig.h
index bb8c9a9428..42d3dab03d 100644
--- a/contrib/libs/sparsehash/src/sparsehash/internal/sparseconfig.h
+++ b/contrib/libs/sparsehash/src/sparsehash/internal/sparseconfig.h
@@ -1,48 +1,48 @@
-/*
- * NOTE: This file is for internal use only.
- * Do not use these #defines in your own program!
- */
-
-/* Namespace for Google classes */
+/*
+ * NOTE: This file is for internal use only.
+ * Do not use these #defines in your own program!
+ */
+
+/* Namespace for Google classes */
#define GOOGLE_NAMESPACE ::google
-
+
/* the location of the header defining hash functions */
#ifndef HASH_FUN_H
-#define HASH_FUN_H <util/generic/hash.h>
+#define HASH_FUN_H <util/generic/hash.h>
#endif
-
-/* the namespace of the hash<> function */
-#define HASH_NAMESPACE
-
-/* Define to 1 if you have the <inttypes.h> header file. */
-#define HAVE_INTTYPES_H 1
-
-/* Define to 1 if the system has the type `long long'. */
-#define HAVE_LONG_LONG 1
-
-/* Define to 1 if you have the `memcpy' function. */
-#define HAVE_MEMCPY 1
-
-/* Define to 1 if you have the <stdint.h> header file. */
-#define HAVE_STDINT_H 1
-
-/* Define to 1 if you have the <sys/types.h> header file. */
-#define HAVE_SYS_TYPES_H 1
-
-/* Define to 1 if the system has the type `uint16_t'. */
-#define HAVE_UINT16_T 1
-
-/* Define to 1 if the system has the type `u_int16_t'. */
-#define HAVE_U_INT16_T 1
-
-/* Define to 1 if the system has the type `__uint16'. */
-/* #undef HAVE___UINT16 */
-
-/* The system-provided hash function including the namespace. */
+
+/* the namespace of the hash<> function */
+#define HASH_NAMESPACE
+
+/* Define to 1 if you have the <inttypes.h> header file. */
+#define HAVE_INTTYPES_H 1
+
+/* Define to 1 if the system has the type `long long'. */
+#define HAVE_LONG_LONG 1
+
+/* Define to 1 if you have the `memcpy' function. */
+#define HAVE_MEMCPY 1
+
+/* Define to 1 if you have the <stdint.h> header file. */
+#define HAVE_STDINT_H 1
+
+/* Define to 1 if you have the <sys/types.h> header file. */
+#define HAVE_SYS_TYPES_H 1
+
+/* Define to 1 if the system has the type `uint16_t'. */
+#define HAVE_UINT16_T 1
+
+/* Define to 1 if the system has the type `u_int16_t'. */
+#define HAVE_U_INT16_T 1
+
+/* Define to 1 if the system has the type `__uint16'. */
+/* #undef HAVE___UINT16 */
+
+/* The system-provided hash function including the namespace. */
#define SPARSEHASH_HASH HASH_NAMESPACE::THash
-
-/* Stops putting the code inside the Google namespace */
+
+/* Stops putting the code inside the Google namespace */
#define _END_GOOGLE_NAMESPACE_ }
-
-/* Puts following code inside the Google namespace */
+
+/* Puts following code inside the Google namespace */
#define _START_GOOGLE_NAMESPACE_ namespace google {
diff --git a/contrib/libs/sparsehash/src/sparsehash/internal/sparsehashtable.h b/contrib/libs/sparsehash/src/sparsehash/internal/sparsehashtable.h
index f54ea51e9a..50eb01b767 100644
--- a/contrib/libs/sparsehash/src/sparsehash/internal/sparsehashtable.h
+++ b/contrib/libs/sparsehash/src/sparsehash/internal/sparsehashtable.h
@@ -1,1247 +1,1247 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// A sparse hashtable is a particular implementation of
-// a hashtable: one that is meant to minimize memory use.
-// It does this by using a *sparse table* (cf sparsetable.h),
-// which uses between 1 and 2 bits to store empty buckets
-// (we may need another bit for hashtables that support deletion).
-//
-// When empty buckets are so cheap, an appealing hashtable
-// implementation is internal probing, in which the hashtable
-// is a single table, and collisions are resolved by trying
-// to insert again in another bucket. The most cache-efficient
-// internal probing schemes are linear probing (which suffers,
-// alas, from clumping) and quadratic probing, which is what
-// we implement by default.
-//
-// Deleted buckets are a bit of a pain. We have to somehow mark
-// deleted buckets (the probing must distinguish them from empty
-// buckets). The most principled way is to have another bitmap,
-// but that's annoying and takes up space. Instead we let the
-// user specify an "impossible" key. We set deleted buckets
-// to have the impossible key.
-//
-// Note it is possible to change the value of the delete key
-// on the fly; you can even remove it, though after that point
-// the hashtable is insert_only until you set it again.
-//
-// You probably shouldn't use this code directly. Use
-// sparse_hash_map<> or sparse_hash_set<> instead.
-//
-// You can modify the following, below:
-// HT_OCCUPANCY_PCT -- how full before we double size
-// HT_EMPTY_PCT -- how empty before we halve size
-// HT_MIN_BUCKETS -- smallest bucket size
-// HT_DEFAULT_STARTING_BUCKETS -- default bucket size at construct-time
-//
-// You can also change enlarge_factor (which defaults to
-// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
-// HT_EMPTY_PCT) with set_resizing_parameters().
-//
-// How to decide what values to use?
-// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
-// HT_MIN_BUCKETS is probably unnecessary since you can specify
-// (indirectly) the starting number of buckets at construct-time.
-// For enlarge_factor, you can use this chart to try to trade-off
-// expected lookup time to the space taken up. By default, this
-// code uses quadratic probing, though you can change it to linear
-// via _JUMP below if you really want to.
-//
-// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
-// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
-// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
-// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
-//
-// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
-// QUADRATIC COLLISION RES.
-// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
-// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
-// LINEAR COLLISION RES.
-// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
-// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
-//
-// The value type is required to be copy constructible and default
-// constructible, but it need not be (and commonly isn't) assignable.
-
-#ifndef _SPARSEHASHTABLE_H_
-#define _SPARSEHASHTABLE_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <assert.h>
-#include <algorithm> // For swap(), eg
-#include <iterator> // for iterator tags
-#include <limits> // for numeric_limits
-#include <utility> // for pair
-#include <sparsehash/type_traits.h> // for remove_const
-#include <sparsehash/internal/hashtable-common.h>
-#include <sparsehash/sparsetable> // IWYU pragma: export
-#include <stdexcept> // For length_error
-
-_START_GOOGLE_NAMESPACE_
-
-namespace base { // just to make google->opensource transition easier
-using GOOGLE_NAMESPACE::remove_const;
-}
-
-#ifndef SPARSEHASH_STAT_UPDATE
-#define SPARSEHASH_STAT_UPDATE(x) ((void) 0)
-#endif
-
-// The probing method
-// Linear probing
-// #define JUMP_(key, num_probes) ( 1 )
-// Quadratic probing
-#define JUMP_(key, num_probes) ( num_probes )
-
-// The smaller this is, the faster lookup is (because the group bitmap is
-// smaller) and the faster insert is, because there's less to move.
-// On the other hand, there are more groups. Since group::size_type is
-// a short, this number should be of the form 32*x + 16 to avoid waste.
-static const u_int16_t DEFAULT_GROUP_SIZE = 48; // fits in 1.5 words
-
-// Hashtable class, used to implement the hashed associative containers
-// hash_set and hash_map.
-//
-// Value: what is stored in the table (each bucket is a Value).
-// Key: something in a 1-to-1 correspondence to a Value, that can be used
-// to search for a Value in the table (find() takes a Key).
-// HashFcn: Takes a Key and returns an integer, the more unique the better.
-// ExtractKey: given a Value, returns the unique Key associated with it.
-// Must inherit from unary_function, or at least have a
-// result_type enum indicating the return type of operator().
-// SetKey: given a Value* and a Key, modifies the value such that
-// ExtractKey(value) == key. We guarantee this is only called
-// with key == deleted_key.
-// EqualKey: Given two Keys, says whether they are the same (that is,
-// if they are both associated with the same Value).
-// Alloc: STL allocator to use to allocate memory.
-
-template <class Value, class Key, class HashFcn,
- class ExtractKey, class SetKey, class EqualKey, class Alloc>
-class sparse_hashtable;
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct sparse_hashtable_iterator;
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct sparse_hashtable_const_iterator;
-
-// As far as iterating, we're basically just a sparsetable
-// that skips over deleted elements.
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct sparse_hashtable_iterator {
- private:
- typedef typename A::template rebind<V>::other value_alloc_type;
-
- public:
- typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
- typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// A sparse hashtable is a particular implementation of
+// a hashtable: one that is meant to minimize memory use.
+// It does this by using a *sparse table* (cf sparsetable.h),
+// which uses between 1 and 2 bits to store empty buckets
+// (we may need another bit for hashtables that support deletion).
+//
+// When empty buckets are so cheap, an appealing hashtable
+// implementation is internal probing, in which the hashtable
+// is a single table, and collisions are resolved by trying
+// to insert again in another bucket. The most cache-efficient
+// internal probing schemes are linear probing (which suffers,
+// alas, from clumping) and quadratic probing, which is what
+// we implement by default.
+//
+// Deleted buckets are a bit of a pain. We have to somehow mark
+// deleted buckets (the probing must distinguish them from empty
+// buckets). The most principled way is to have another bitmap,
+// but that's annoying and takes up space. Instead we let the
+// user specify an "impossible" key. We set deleted buckets
+// to have the impossible key.
+//
+// Note it is possible to change the value of the delete key
+// on the fly; you can even remove it, though after that point
+// the hashtable is insert_only until you set it again.
+//
+// You probably shouldn't use this code directly. Use
+// sparse_hash_map<> or sparse_hash_set<> instead.
+//
+// You can modify the following, below:
+// HT_OCCUPANCY_PCT -- how full before we double size
+// HT_EMPTY_PCT -- how empty before we halve size
+// HT_MIN_BUCKETS -- smallest bucket size
+// HT_DEFAULT_STARTING_BUCKETS -- default bucket size at construct-time
+//
+// You can also change enlarge_factor (which defaults to
+// HT_OCCUPANCY_PCT), and shrink_factor (which defaults to
+// HT_EMPTY_PCT) with set_resizing_parameters().
+//
+// How to decide what values to use?
+// shrink_factor's default of .4 * OCCUPANCY_PCT, is probably good.
+// HT_MIN_BUCKETS is probably unnecessary since you can specify
+// (indirectly) the starting number of buckets at construct-time.
+// For enlarge_factor, you can use this chart to try to trade-off
+// expected lookup time to the space taken up. By default, this
+// code uses quadratic probing, though you can change it to linear
+// via _JUMP below if you really want to.
+//
+// From http://www.augustana.ca/~mohrj/courses/1999.fall/csc210/lecture_notes/hashing.html
+// NUMBER OF PROBES / LOOKUP Successful Unsuccessful
+// Quadratic collision resolution 1 - ln(1-L) - L/2 1/(1-L) - L - ln(1-L)
+// Linear collision resolution [1+1/(1-L)]/2 [1+1/(1-L)2]/2
+//
+// -- enlarge_factor -- 0.10 0.50 0.60 0.75 0.80 0.90 0.99
+// QUADRATIC COLLISION RES.
+// probes/successful lookup 1.05 1.44 1.62 2.01 2.21 2.85 5.11
+// probes/unsuccessful lookup 1.11 2.19 2.82 4.64 5.81 11.4 103.6
+// LINEAR COLLISION RES.
+// probes/successful lookup 1.06 1.5 1.75 2.5 3.0 5.5 50.5
+// probes/unsuccessful lookup 1.12 2.5 3.6 8.5 13.0 50.0 5000.0
+//
+// The value type is required to be copy constructible and default
+// constructible, but it need not be (and commonly isn't) assignable.
+
+#ifndef _SPARSEHASHTABLE_H_
+#define _SPARSEHASHTABLE_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <assert.h>
+#include <algorithm> // For swap(), eg
+#include <iterator> // for iterator tags
+#include <limits> // for numeric_limits
+#include <utility> // for pair
+#include <sparsehash/type_traits.h> // for remove_const
+#include <sparsehash/internal/hashtable-common.h>
+#include <sparsehash/sparsetable> // IWYU pragma: export
+#include <stdexcept> // For length_error
+
+_START_GOOGLE_NAMESPACE_
+
+namespace base { // just to make google->opensource transition easier
+using GOOGLE_NAMESPACE::remove_const;
+}
+
+#ifndef SPARSEHASH_STAT_UPDATE
+#define SPARSEHASH_STAT_UPDATE(x) ((void) 0)
+#endif
+
+// The probing method
+// Linear probing
+// #define JUMP_(key, num_probes) ( 1 )
+// Quadratic probing
+#define JUMP_(key, num_probes) ( num_probes )
+
+// The smaller this is, the faster lookup is (because the group bitmap is
+// smaller) and the faster insert is, because there's less to move.
+// On the other hand, there are more groups. Since group::size_type is
+// a short, this number should be of the form 32*x + 16 to avoid waste.
+static const u_int16_t DEFAULT_GROUP_SIZE = 48; // fits in 1.5 words
+
+// Hashtable class, used to implement the hashed associative containers
+// hash_set and hash_map.
+//
+// Value: what is stored in the table (each bucket is a Value).
+// Key: something in a 1-to-1 correspondence to a Value, that can be used
+// to search for a Value in the table (find() takes a Key).
+// HashFcn: Takes a Key and returns an integer, the more unique the better.
+// ExtractKey: given a Value, returns the unique Key associated with it.
+// Must inherit from unary_function, or at least have a
+// result_type enum indicating the return type of operator().
+// SetKey: given a Value* and a Key, modifies the value such that
+// ExtractKey(value) == key. We guarantee this is only called
+// with key == deleted_key.
+// EqualKey: Given two Keys, says whether they are the same (that is,
+// if they are both associated with the same Value).
+// Alloc: STL allocator to use to allocate memory.
+
+template <class Value, class Key, class HashFcn,
+ class ExtractKey, class SetKey, class EqualKey, class Alloc>
+class sparse_hashtable;
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct sparse_hashtable_iterator;
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct sparse_hashtable_const_iterator;
+
+// As far as iterating, we're basically just a sparsetable
+// that skips over deleted elements.
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct sparse_hashtable_iterator {
+ private:
+ typedef typename A::template rebind<V>::other value_alloc_type;
+
+ public:
+ typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
+ typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,value_alloc_type>::nonempty_iterator
- st_iterator;
-
- typedef std::forward_iterator_tag iterator_category; // very little defined!
- typedef V value_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::pointer pointer;
-
- // "Real" constructor and default constructor
- sparse_hashtable_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
- st_iterator it, st_iterator it_end)
- : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
- sparse_hashtable_iterator() { } // not ever used internally
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *pos; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic. The only hard part is making sure that
- // we're not on a marked-deleted array element
- void advance_past_deleted() {
- while ( pos != end && ht->test_deleted(*this) )
- ++pos;
- }
- iterator& operator++() {
- assert(pos != end); ++pos; advance_past_deleted(); return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
-
- // Comparison.
- bool operator==(const iterator& it) const { return pos == it.pos; }
- bool operator!=(const iterator& it) const { return pos != it.pos; }
-
-
- // The actual data
- const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
- st_iterator pos, end;
-};
-
-// Now do it all again, but with const-ness!
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct sparse_hashtable_const_iterator {
- private:
- typedef typename A::template rebind<V>::other value_alloc_type;
-
- public:
- typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
- typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
+ st_iterator;
+
+ typedef std::forward_iterator_tag iterator_category; // very little defined!
+ typedef V value_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::pointer pointer;
+
+ // "Real" constructor and default constructor
+ sparse_hashtable_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
+ st_iterator it, st_iterator it_end)
+ : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
+ sparse_hashtable_iterator() { } // not ever used internally
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *pos; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic. The only hard part is making sure that
+ // we're not on a marked-deleted array element
+ void advance_past_deleted() {
+ while ( pos != end && ht->test_deleted(*this) )
+ ++pos;
+ }
+ iterator& operator++() {
+ assert(pos != end); ++pos; advance_past_deleted(); return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+
+ // Comparison.
+ bool operator==(const iterator& it) const { return pos == it.pos; }
+ bool operator!=(const iterator& it) const { return pos != it.pos; }
+
+
+ // The actual data
+ const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
+ st_iterator pos, end;
+};
+
+// Now do it all again, but with const-ness!
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct sparse_hashtable_const_iterator {
+ private:
+ typedef typename A::template rebind<V>::other value_alloc_type;
+
+ public:
+ typedef sparse_hashtable_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
+ typedef sparse_hashtable_const_iterator<V,K,HF,ExK,SetK,EqK,A> const_iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,value_alloc_type>::const_nonempty_iterator
- st_iterator;
-
- typedef std::forward_iterator_tag iterator_category; // very little defined!
- typedef V value_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::const_reference reference;
- typedef typename value_alloc_type::const_pointer pointer;
-
- // "Real" constructor and default constructor
- sparse_hashtable_const_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
- st_iterator it, st_iterator it_end)
- : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
- // This lets us convert regular iterators to const iterators
- sparse_hashtable_const_iterator() { } // never used internally
- sparse_hashtable_const_iterator(const iterator &it)
- : ht(it.ht), pos(it.pos), end(it.end) { }
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *pos; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic. The only hard part is making sure that
- // we're not on a marked-deleted array element
- void advance_past_deleted() {
- while ( pos != end && ht->test_deleted(*this) )
- ++pos;
- }
- const_iterator& operator++() {
- assert(pos != end); ++pos; advance_past_deleted(); return *this;
- }
- const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
-
- // Comparison.
- bool operator==(const const_iterator& it) const { return pos == it.pos; }
- bool operator!=(const const_iterator& it) const { return pos != it.pos; }
-
-
- // The actual data
- const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
- st_iterator pos, end;
-};
-
-// And once again, but this time freeing up memory as we iterate
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-struct sparse_hashtable_destructive_iterator {
- private:
- typedef typename A::template rebind<V>::other value_alloc_type;
-
- public:
- typedef sparse_hashtable_destructive_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
+ st_iterator;
+
+ typedef std::forward_iterator_tag iterator_category; // very little defined!
+ typedef V value_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::const_reference reference;
+ typedef typename value_alloc_type::const_pointer pointer;
+
+ // "Real" constructor and default constructor
+ sparse_hashtable_const_iterator(const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
+ st_iterator it, st_iterator it_end)
+ : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
+ // This lets us convert regular iterators to const iterators
+ sparse_hashtable_const_iterator() { } // never used internally
+ sparse_hashtable_const_iterator(const iterator &it)
+ : ht(it.ht), pos(it.pos), end(it.end) { }
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *pos; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic. The only hard part is making sure that
+ // we're not on a marked-deleted array element
+ void advance_past_deleted() {
+ while ( pos != end && ht->test_deleted(*this) )
+ ++pos;
+ }
+ const_iterator& operator++() {
+ assert(pos != end); ++pos; advance_past_deleted(); return *this;
+ }
+ const_iterator operator++(int) { const_iterator tmp(*this); ++*this; return tmp; }
+
+ // Comparison.
+ bool operator==(const const_iterator& it) const { return pos == it.pos; }
+ bool operator!=(const const_iterator& it) const { return pos != it.pos; }
+
+
+ // The actual data
+ const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
+ st_iterator pos, end;
+};
+
+// And once again, but this time freeing up memory as we iterate
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+struct sparse_hashtable_destructive_iterator {
+ private:
+ typedef typename A::template rebind<V>::other value_alloc_type;
+
+ public:
+ typedef sparse_hashtable_destructive_iterator<V,K,HF,ExK,SetK,EqK,A> iterator;
typedef typename sparsetable<V,DEFAULT_GROUP_SIZE,value_alloc_type>::destructive_iterator
- st_iterator;
-
- typedef std::forward_iterator_tag iterator_category; // very little defined!
- typedef V value_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::pointer pointer;
-
- // "Real" constructor and default constructor
- sparse_hashtable_destructive_iterator(const
- sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
- st_iterator it, st_iterator it_end)
- : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
- sparse_hashtable_destructive_iterator() { } // never used internally
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *pos; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic. The only hard part is making sure that
- // we're not on a marked-deleted array element
- void advance_past_deleted() {
- while ( pos != end && ht->test_deleted(*this) )
- ++pos;
- }
- iterator& operator++() {
- assert(pos != end); ++pos; advance_past_deleted(); return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
-
- // Comparison.
- bool operator==(const iterator& it) const { return pos == it.pos; }
- bool operator!=(const iterator& it) const { return pos != it.pos; }
-
-
- // The actual data
- const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
- st_iterator pos, end;
-};
-
-
-template <class Value, class Key, class HashFcn,
- class ExtractKey, class SetKey, class EqualKey, class Alloc>
-class sparse_hashtable {
- private:
- typedef typename Alloc::template rebind<Value>::other value_alloc_type;
-
- public:
- typedef Key key_type;
- typedef Value value_type;
- typedef HashFcn hasher;
- typedef EqualKey key_equal;
- typedef Alloc allocator_type;
-
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::const_reference const_reference;
- typedef typename value_alloc_type::pointer pointer;
- typedef typename value_alloc_type::const_pointer const_pointer;
- typedef sparse_hashtable_iterator<Value, Key, HashFcn, ExtractKey,
- SetKey, EqualKey, Alloc>
- iterator;
-
- typedef sparse_hashtable_const_iterator<Value, Key, HashFcn, ExtractKey,
- SetKey, EqualKey, Alloc>
- const_iterator;
-
- typedef sparse_hashtable_destructive_iterator<Value, Key, HashFcn, ExtractKey,
- SetKey, EqualKey, Alloc>
- destructive_iterator;
-
- // These come from tr1. For us they're the same as regular iterators.
- typedef iterator local_iterator;
- typedef const_iterator const_local_iterator;
-
- // How full we let the table get before we resize, by default.
- // Knuth says .8 is good -- higher causes us to probe too much,
- // though it saves memory.
- static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);
-
- // How empty we let the table get before we resize lower, by default.
- // (0.0 means never resize lower.)
- // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
- static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;
-
- // Minimum size we're willing to let hashtables be.
- // Must be a power of two, and at least 4.
- // Note, however, that for a given hashtable, the initial size is a
- // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
- static const size_type HT_MIN_BUCKETS = 4;
-
- // By default, if you don't specify a hashtable size at
- // construction-time, we use this size. Must be a power of two, and
- // at least HT_MIN_BUCKETS.
- static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
-
- // ITERATOR FUNCTIONS
- iterator begin() { return iterator(this, table.nonempty_begin(),
- table.nonempty_end()); }
- iterator end() { return iterator(this, table.nonempty_end(),
- table.nonempty_end()); }
- const_iterator begin() const { return const_iterator(this,
- table.nonempty_begin(),
- table.nonempty_end()); }
- const_iterator end() const { return const_iterator(this,
- table.nonempty_end(),
- table.nonempty_end()); }
-
- // These come from tr1 unordered_map. They iterate over 'bucket' n.
- // For sparsehashtable, we could consider each 'group' to be a bucket,
- // I guess, but I don't really see the point. We'll just consider
- // bucket n to be the n-th element of the sparsetable, if it's occupied,
- // or some empty element, otherwise.
- local_iterator begin(size_type i) {
- if (table.test(i))
- return local_iterator(this, table.get_iter(i), table.nonempty_end());
- else
- return local_iterator(this, table.nonempty_end(), table.nonempty_end());
- }
- local_iterator end(size_type i) {
- local_iterator it = begin(i);
- if (table.test(i) && !test_deleted(i))
- ++it;
- return it;
- }
- const_local_iterator begin(size_type i) const {
- if (table.test(i))
- return const_local_iterator(this, table.get_iter(i),
- table.nonempty_end());
- else
- return const_local_iterator(this, table.nonempty_end(),
- table.nonempty_end());
- }
- const_local_iterator end(size_type i) const {
- const_local_iterator it = begin(i);
- if (table.test(i) && !test_deleted(i))
- ++it;
- return it;
- }
-
- // This is used when resizing
- destructive_iterator destructive_begin() {
- return destructive_iterator(this, table.destructive_begin(),
- table.destructive_end());
- }
- destructive_iterator destructive_end() {
- return destructive_iterator(this, table.destructive_end(),
- table.destructive_end());
- }
-
-
- // ACCESSOR FUNCTIONS for the things we templatize on, basically
- hasher hash_funct() const { return settings; }
- key_equal key_eq() const { return key_info; }
- allocator_type get_allocator() const { return table.get_allocator(); }
-
- // Accessor function for statistics gathering.
- int num_table_copies() const { return settings.num_ht_copies(); }
-
- private:
- // We need to copy values when we set the special marker for deleted
- // elements, but, annoyingly, we can't just use the copy assignment
- // operator because value_type might not be assignable (it's often
- // pair<const X, Y>). We use explicit destructor invocation and
- // placement new to get around this. Arg.
- void set_value(pointer dst, const_reference src) {
- dst->~value_type(); // delete the old value, if any
- new(dst) value_type(src);
- }
-
- // This is used as a tag for the copy constructor, saying to destroy its
- // arg We have two ways of destructively copying: with potentially growing
- // the hashtable as we copy, and without. To make sure the outside world
- // can't do a destructive copy, we make the typename private.
- enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};
-
- // DELETE HELPER FUNCTIONS
- // This lets the user describe a key that will indicate deleted
- // table entries. This key should be an "impossible" entry --
- // if you try to insert it for real, you won't be able to retrieve it!
- // (NB: while you pass in an entire value, only the key part is looked
- // at. This is just because I don't know how to assign just a key.)
- private:
- void squash_deleted() { // gets rid of any deleted entries we have
- if ( num_deleted ) { // get rid of deleted before writing
- sparse_hashtable tmp(MoveDontGrow, *this);
- swap(tmp); // now we are tmp
- }
- assert(num_deleted == 0);
- }
-
- // Test if the given key is the deleted indicator. Requires
- // num_deleted > 0, for correctness of read(), and because that
- // guarantees that key_info.delkey is valid.
- bool test_deleted_key(const key_type& key) const {
- assert(num_deleted > 0);
- return equals(key_info.delkey, key);
- }
-
- public:
- void set_deleted_key(const key_type &key) {
- // It's only safe to change what "deleted" means if we purge deleted guys
- squash_deleted();
- settings.set_use_deleted(true);
- key_info.delkey = key;
- }
- void clear_deleted_key() {
- squash_deleted();
- settings.set_use_deleted(false);
- }
- key_type deleted_key() const {
- assert(settings.use_deleted()
- && "Must set deleted key before calling deleted_key");
- return key_info.delkey;
- }
-
- // These are public so the iterators can use them
- // True if the item at position bucknum is "deleted" marker
- bool test_deleted(size_type bucknum) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && table.test(bucknum) &&
- test_deleted_key(get_key(table.unsafe_get(bucknum)));
- }
- bool test_deleted(const iterator &it) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(*it));
- }
- bool test_deleted(const const_iterator &it) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(*it));
- }
- bool test_deleted(const destructive_iterator &it) const {
- // Invariant: !use_deleted() implies num_deleted is 0.
- assert(settings.use_deleted() || num_deleted == 0);
- return num_deleted > 0 && test_deleted_key(get_key(*it));
- }
-
- private:
- void check_use_deleted(const char* caller) {
- (void)caller; // could log it if the assert failed
- assert(settings.use_deleted());
- }
-
- // Set it so test_deleted is true. true if object didn't used to be deleted.
- // TODO(csilvers): make these private (also in densehashtable.h)
- bool set_deleted(iterator &it) {
- check_use_deleted("set_deleted()");
- bool retval = !test_deleted(it);
- // &* converts from iterator to value-type.
- set_key(&(*it), key_info.delkey);
- return retval;
- }
- // Set it so test_deleted is false. true if object used to be deleted.
- bool clear_deleted(iterator &it) {
- check_use_deleted("clear_deleted()");
- // Happens automatically when we assign something else in its place.
- return test_deleted(it);
- }
-
- // We also allow to set/clear the deleted bit on a const iterator.
- // We allow a const_iterator for the same reason you can delete a
- // const pointer: it's convenient, and semantically you can't use
- // 'it' after it's been deleted anyway, so its const-ness doesn't
- // really matter.
- bool set_deleted(const_iterator &it) {
- check_use_deleted("set_deleted()");
- bool retval = !test_deleted(it);
- set_key(const_cast<pointer>(&(*it)), key_info.delkey);
- return retval;
- }
- // Set it so test_deleted is false. true if object used to be deleted.
- bool clear_deleted(const_iterator &it) {
- check_use_deleted("clear_deleted()");
- return test_deleted(it);
- }
-
- // FUNCTIONS CONCERNING SIZE
- public:
- size_type size() const { return table.num_nonempty() - num_deleted; }
- size_type max_size() const { return table.max_size(); }
- bool empty() const { return size() == 0; }
- size_type bucket_count() const { return table.size(); }
- size_type max_bucket_count() const { return max_size(); }
- // These are tr1 methods. Their idea of 'bucket' doesn't map well to
- // what we do. We just say every bucket has 0 or 1 items in it.
- size_type bucket_size(size_type i) const {
- return begin(i) == end(i) ? 0 : 1;
- }
-
- private:
- // Because of the above, size_type(-1) is never legal; use it for errors
- static const size_type ILLEGAL_BUCKET = size_type(-1);
-
- // Used after a string of deletes. Returns true if we actually shrunk.
- // TODO(csilvers): take a delta so we can take into account inserts
- // done after shrinking. Maybe make part of the Settings class?
- bool maybe_shrink() {
- assert(table.num_nonempty() >= num_deleted);
- assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
- assert(bucket_count() >= HT_MIN_BUCKETS);
- bool retval = false;
-
- // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
- // we'll never shrink until you get relatively big, and we'll never
- // shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
- // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
- // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
- const size_type num_remain = table.num_nonempty() - num_deleted;
- const size_type shrink_threshold = settings.shrink_threshold();
- if (shrink_threshold > 0 && num_remain < shrink_threshold &&
- bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
- const float shrink_factor = settings.shrink_factor();
- size_type sz = bucket_count() / 2; // find how much we should shrink
- while (sz > HT_DEFAULT_STARTING_BUCKETS &&
- num_remain < static_cast<size_type>(sz * shrink_factor)) {
- sz /= 2; // stay a power of 2
- }
- sparse_hashtable tmp(MoveDontCopy, *this, sz);
- swap(tmp); // now we are tmp
- retval = true;
- }
- settings.set_consider_shrink(false); // because we just considered it
- return retval;
- }
-
- // We'll let you resize a hashtable -- though this makes us copy all!
- // When you resize, you say, "make it big enough for this many more elements"
- // Returns true if we actually resized, false if size was already ok.
- bool resize_delta(size_type delta) {
- bool did_resize = false;
- if ( settings.consider_shrink() ) { // see if lots of deletes happened
- if ( maybe_shrink() )
- did_resize = true;
- }
- if (table.num_nonempty() >=
- (std::numeric_limits<size_type>::max)() - delta) {
- throw std::length_error("resize overflow");
- }
- if ( bucket_count() >= HT_MIN_BUCKETS &&
- (table.num_nonempty() + delta) <= settings.enlarge_threshold() )
- return did_resize; // we're ok as we are
-
- // Sometimes, we need to resize just to get rid of all the
- // "deleted" buckets that are clogging up the hashtable. So when
- // deciding whether to resize, count the deleted buckets (which
- // are currently taking up room). But later, when we decide what
- // size to resize to, *don't* count deleted buckets, since they
- // get discarded during the resize.
- const size_type needed_size =
- settings.min_buckets(table.num_nonempty() + delta, 0);
- if ( needed_size <= bucket_count() ) // we have enough buckets
- return did_resize;
-
- size_type resize_to =
- settings.min_buckets(table.num_nonempty() - num_deleted + delta,
- bucket_count());
- if (resize_to < needed_size && // may double resize_to
- resize_to < (std::numeric_limits<size_type>::max)() / 2) {
- // This situation means that we have enough deleted elements,
- // that once we purge them, we won't actually have needed to
- // grow. But we may want to grow anyway: if we just purge one
- // element, say, we'll have to grow anyway next time we
- // insert. Might as well grow now, since we're already going
- // through the trouble of copying (in order to purge the
- // deleted elements).
- const size_type target =
- static_cast<size_type>(settings.shrink_size(resize_to*2));
- if (table.num_nonempty() - num_deleted + delta >= target) {
- // Good, we won't be below the shrink threshhold even if we double.
- resize_to *= 2;
- }
- }
-
- sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
- swap(tmp); // now we are tmp
- return true;
- }
-
- // Used to actually do the rehashing when we grow/shrink a hashtable
- void copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted) {
- clear(); // clear table, set num_deleted to 0
-
- // If we need to change the size of our table, do it now
- const size_type resize_to =
- settings.min_buckets(ht.size(), min_buckets_wanted);
- if ( resize_to > bucket_count() ) { // we don't have enough buckets
- table.resize(resize_to); // sets the number of buckets
- settings.reset_thresholds(bucket_count());
- }
-
- // We use a normal iterator to get non-deleted bcks from ht
- // We could use insert() here, but since we know there are
- // no duplicates and no deleted items, we can be more efficient
- assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
- for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
- size_type num_probes = 0; // how many times we've probed
- size_type bucknum;
- const size_type bucket_count_minus_one = bucket_count() - 1;
- for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
- table.test(bucknum); // not empty
- bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
- ++num_probes;
- assert(num_probes < bucket_count()
- && "Hashtable is full: an error in key_equal<> or hash<>");
- }
- table.set(bucknum, *it); // copies the value to here
- }
- settings.inc_num_ht_copies();
- }
-
- // Implementation is like copy_from, but it destroys the table of the
- // "from" guy by freeing sparsetable memory as we iterate. This is
- // useful in resizing, since we're throwing away the "from" guy anyway.
- void move_from(MoveDontCopyT mover, sparse_hashtable &ht,
- size_type min_buckets_wanted) {
- clear(); // clear table, set num_deleted to 0
-
- // If we need to change the size of our table, do it now
- size_type resize_to;
- if ( mover == MoveDontGrow )
- resize_to = ht.bucket_count(); // keep same size as old ht
- else // MoveDontCopy
- resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
- if ( resize_to > bucket_count() ) { // we don't have enough buckets
- table.resize(resize_to); // sets the number of buckets
- settings.reset_thresholds(bucket_count());
- }
-
- // We use a normal iterator to get non-deleted bcks from ht
- // We could use insert() here, but since we know there are
- // no duplicates and no deleted items, we can be more efficient
- assert( (bucket_count() & (bucket_count()-1)) == 0); // a power of two
- // THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
- for ( destructive_iterator it = ht.destructive_begin();
- it != ht.destructive_end(); ++it ) {
- size_type num_probes = 0; // how many times we've probed
- size_type bucknum;
- for ( bucknum = hash(get_key(*it)) & (bucket_count()-1); // h % buck_cnt
- table.test(bucknum); // not empty
- bucknum = (bucknum + JUMP_(key, num_probes)) & (bucket_count()-1) ) {
- ++num_probes;
- assert(num_probes < bucket_count()
- && "Hashtable is full: an error in key_equal<> or hash<>");
- }
- table.set(bucknum, *it); // copies the value to here
- }
- settings.inc_num_ht_copies();
- }
-
-
- // Required by the spec for hashed associative container
- public:
- // Though the docs say this should be num_buckets, I think it's much
- // more useful as num_elements. As a special feature, calling with
- // req_elements==0 will cause us to shrink if we can, saving space.
- void resize(size_type req_elements) { // resize to this or larger
- if ( settings.consider_shrink() || req_elements == 0 )
- maybe_shrink();
- if ( req_elements > table.num_nonempty() ) // we only grow
- resize_delta(req_elements - table.num_nonempty());
- }
-
- // Get and change the value of shrink_factor and enlarge_factor. The
- // description at the beginning of this file explains how to choose
- // the values. Setting the shrink parameter to 0.0 ensures that the
- // table never shrinks.
- void get_resizing_parameters(float* shrink, float* grow) const {
- *shrink = settings.shrink_factor();
- *grow = settings.enlarge_factor();
- }
- void set_resizing_parameters(float shrink, float grow) {
- settings.set_resizing_parameters(shrink, grow);
- settings.reset_thresholds(bucket_count());
- }
-
- // CONSTRUCTORS -- as required by the specs, we take a size,
- // but also let you specify a hashfunction, key comparator,
- // and key extractor. We also define a copy constructor and =.
- // DESTRUCTOR -- the default is fine, surprisingly.
- explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
- const HashFcn& hf = HashFcn(),
- const EqualKey& eql = EqualKey(),
- const ExtractKey& ext = ExtractKey(),
- const SetKey& set = SetKey(),
- const Alloc& alloc = Alloc())
- : settings(hf),
- key_info(ext, set, eql),
- num_deleted(0),
- table((expected_max_items_in_table == 0
- ? HT_DEFAULT_STARTING_BUCKETS
- : settings.min_buckets(expected_max_items_in_table, 0)),
- alloc) {
- settings.reset_thresholds(bucket_count());
- }
-
- // As a convenience for resize(), we allow an optional second argument
- // which lets you make this new hashtable a different size than ht.
- // We also provide a mechanism of saying you want to "move" the ht argument
- // into us instead of copying.
- sparse_hashtable(const sparse_hashtable& ht,
- size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
- : settings(ht.settings),
- key_info(ht.key_info),
- num_deleted(0),
- table(0, ht.get_allocator()) {
- settings.reset_thresholds(bucket_count());
- copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
- }
- sparse_hashtable(MoveDontCopyT mover, sparse_hashtable& ht,
- size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
- : settings(ht.settings),
- key_info(ht.key_info),
- num_deleted(0),
- table(0, ht.get_allocator()) {
- settings.reset_thresholds(bucket_count());
- move_from(mover, ht, min_buckets_wanted); // ignores deleted entries
- }
-
- sparse_hashtable& operator= (const sparse_hashtable& ht) {
- if (&ht == this) return *this; // don't copy onto ourselves
- settings = ht.settings;
- key_info = ht.key_info;
- num_deleted = ht.num_deleted;
- // copy_from() calls clear and sets num_deleted to 0 too
- copy_from(ht, HT_MIN_BUCKETS);
- // we purposefully don't copy the allocator, which may not be copyable
- return *this;
- }
-
- // Many STL algorithms use swap instead of copy constructors
- void swap(sparse_hashtable& ht) {
- std::swap(settings, ht.settings);
- std::swap(key_info, ht.key_info);
- std::swap(num_deleted, ht.num_deleted);
- table.swap(ht.table);
- settings.reset_thresholds(bucket_count()); // also resets consider_shrink
- ht.settings.reset_thresholds(ht.bucket_count());
- // we purposefully don't swap the allocator, which may not be swap-able
- }
-
- // It's always nice to be able to clear a table without deallocating it
- void clear() {
- if (!empty() || (num_deleted != 0)) {
- table.clear();
- }
- settings.reset_thresholds(bucket_count());
- num_deleted = 0;
- }
-
- // LOOKUP ROUTINES
- private:
- // Returns a pair of positions: 1st where the object is, 2nd where
- // it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
- // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
- // Note: because of deletions where-to-insert is not trivial: it's the
- // first deleted bucket we see, as long as we don't find the key later
- std::pair<size_type, size_type> find_position(const key_type &key) const {
- size_type num_probes = 0; // how many times we've probed
- const size_type bucket_count_minus_one = bucket_count() - 1;
- size_type bucknum = hash(key) & bucket_count_minus_one;
- size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
- SPARSEHASH_STAT_UPDATE(total_lookups += 1);
- while ( 1 ) { // probe until something happens
- if ( !table.test(bucknum) ) { // bucket is empty
- SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
- if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
- return std::pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
- else
- return std::pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
-
- } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
- if ( insert_pos == ILLEGAL_BUCKET )
- insert_pos = bucknum;
-
- } else if ( equals(key, get_key(table.unsafe_get(bucknum))) ) {
- SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
- return std::pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
- }
- ++num_probes; // we're doing another probe
- bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
- assert(num_probes < bucket_count()
- && "Hashtable is full: an error in key_equal<> or hash<>");
- }
- }
-
- public:
-
- iterator find(const key_type& key) {
- if ( size() == 0 ) return end();
- std::pair<size_type, size_type> pos = find_position(key);
- if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
- return end();
- else
- return iterator(this, table.get_iter(pos.first), table.nonempty_end());
- }
-
- const_iterator find(const key_type& key) const {
- if ( size() == 0 ) return end();
- std::pair<size_type, size_type> pos = find_position(key);
- if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
- return end();
- else
- return const_iterator(this,
- table.get_iter(pos.first), table.nonempty_end());
- }
-
- // This is a tr1 method: the bucket a given key is in, or what bucket
- // it would be put in, if it were to be inserted. Shrug.
- size_type bucket(const key_type& key) const {
- std::pair<size_type, size_type> pos = find_position(key);
- return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
- }
-
- // Counts how many elements have key key. For maps, it's either 0 or 1.
- size_type count(const key_type &key) const {
- std::pair<size_type, size_type> pos = find_position(key);
- return pos.first == ILLEGAL_BUCKET ? 0 : 1;
- }
-
- // Likewise, equal_range doesn't really make sense for us. Oh well.
- std::pair<iterator,iterator> equal_range(const key_type& key) {
- iterator pos = find(key); // either an iterator or end
- if (pos == end()) {
- return std::pair<iterator,iterator>(pos, pos);
- } else {
- const iterator startpos = pos++;
- return std::pair<iterator,iterator>(startpos, pos);
- }
- }
- std::pair<const_iterator,const_iterator> equal_range(const key_type& key)
- const {
- const_iterator pos = find(key); // either an iterator or end
- if (pos == end()) {
- return std::pair<const_iterator,const_iterator>(pos, pos);
- } else {
- const const_iterator startpos = pos++;
- return std::pair<const_iterator,const_iterator>(startpos, pos);
- }
- }
-
-
- // INSERTION ROUTINES
- private:
- // Private method used by insert_noresize and find_or_insert.
- iterator insert_at(const_reference obj, size_type pos) {
- if (size() >= max_size()) {
- throw std::length_error("insert overflow");
- }
- if ( test_deleted(pos) ) { // just replace if it's been deleted
- // The set() below will undelete this object. We just worry about stats
- assert(num_deleted > 0);
- --num_deleted; // used to be, now it isn't
- }
- table.set(pos, obj);
- return iterator(this, table.get_iter(pos), table.nonempty_end());
- }
-
- // If you know *this is big enough to hold obj, use this routine
- std::pair<iterator, bool> insert_noresize(const_reference obj) {
- // First, double-check we're not inserting delkey
- assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
- && "Inserting the deleted key");
- const std::pair<size_type,size_type> pos = find_position(get_key(obj));
- if ( pos.first != ILLEGAL_BUCKET) { // object was already there
- return std::pair<iterator,bool>(iterator(this, table.get_iter(pos.first),
- table.nonempty_end()),
- false); // false: we didn't insert
- } else { // pos.second says where to put it
- return std::pair<iterator,bool>(insert_at(obj, pos.second), true);
- }
- }
-
- // Specializations of insert(it, it) depending on the power of the iterator:
- // (1) Iterator supports operator-, resize before inserting
- template <class ForwardIterator>
- void insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag) {
- size_t dist = std::distance(f, l);
- if (dist >= (std::numeric_limits<size_type>::max)()) {
- throw std::length_error("insert-range overflow");
- }
- resize_delta(static_cast<size_type>(dist));
- for ( ; dist > 0; --dist, ++f) {
- insert_noresize(*f);
- }
- }
-
- // (2) Arbitrary iterator, can't tell how much to resize
- template <class InputIterator>
- void insert(InputIterator f, InputIterator l, std::input_iterator_tag) {
- for ( ; f != l; ++f)
- insert(*f);
- }
-
- public:
- // This is the normal insert routine, used by the outside world
- std::pair<iterator, bool> insert(const_reference obj) {
- resize_delta(1); // adding an object, grow if need be
- return insert_noresize(obj);
- }
-
- // When inserting a lot at a time, we specialize on the type of iterator
- template <class InputIterator>
- void insert(InputIterator f, InputIterator l) {
- // specializes on iterator type
- insert(f, l,
- typename std::iterator_traits<InputIterator>::iterator_category());
- }
-
- // DefaultValue is a functor that takes a key and returns a value_type
- // representing the default value to be inserted if none is found.
- template <class DefaultValue>
- value_type& find_or_insert(const key_type& key) {
- // First, double-check we're not inserting delkey
- assert((!settings.use_deleted() || !equals(key, key_info.delkey))
- && "Inserting the deleted key");
- const std::pair<size_type,size_type> pos = find_position(key);
- DefaultValue default_value;
- if ( pos.first != ILLEGAL_BUCKET) { // object was already there
- return *table.get_iter(pos.first);
- } else if (resize_delta(1)) { // needed to rehash to make room
- // Since we resized, we can't use pos, so recalculate where to insert.
- return *insert_noresize(default_value(key)).first;
- } else { // no need to rehash, insert right here
- return *insert_at(default_value(key), pos.second);
- }
- }
-
- // DELETION ROUTINES
- size_type erase(const key_type& key) {
- // First, double-check we're not erasing delkey.
- assert((!settings.use_deleted() || !equals(key, key_info.delkey))
- && "Erasing the deleted key");
- assert(!settings.use_deleted() || !equals(key, key_info.delkey));
- const_iterator pos = find(key); // shrug: shouldn't need to be const
- if ( pos != end() ) {
- assert(!test_deleted(pos)); // or find() shouldn't have returned it
- set_deleted(pos);
- ++num_deleted;
- // will think about shrink after next insert
- settings.set_consider_shrink(true);
- return 1; // because we deleted one thing
- } else {
- return 0; // because we deleted nothing
- }
- }
-
- // We return the iterator past the deleted item.
- void erase(iterator pos) {
- if ( pos == end() ) return; // sanity check
- if ( set_deleted(pos) ) { // true if object has been newly deleted
- ++num_deleted;
- // will think about shrink after next insert
- settings.set_consider_shrink(true);
- }
- }
-
- void erase(iterator f, iterator l) {
- for ( ; f != l; ++f) {
- if ( set_deleted(f) ) // should always be true
- ++num_deleted;
- }
- // will think about shrink after next insert
- settings.set_consider_shrink(true);
- }
-
- // We allow you to erase a const_iterator just like we allow you to
- // erase an iterator. This is in parallel to 'delete': you can delete
- // a const pointer just like a non-const pointer. The logic is that
- // you can't use the object after it's erased anyway, so it doesn't matter
- // if it's const or not.
- void erase(const_iterator pos) {
- if ( pos == end() ) return; // sanity check
- if ( set_deleted(pos) ) { // true if object has been newly deleted
- ++num_deleted;
- // will think about shrink after next insert
- settings.set_consider_shrink(true);
- }
- }
- void erase(const_iterator f, const_iterator l) {
- for ( ; f != l; ++f) {
- if ( set_deleted(f) ) // should always be true
- ++num_deleted;
- }
- // will think about shrink after next insert
- settings.set_consider_shrink(true);
- }
-
-
- // COMPARISON
- bool operator==(const sparse_hashtable& ht) const {
- if (size() != ht.size()) {
- return false;
- } else if (this == &ht) {
- return true;
- } else {
- // Iterate through the elements in "this" and see if the
- // corresponding element is in ht
- for ( const_iterator it = begin(); it != end(); ++it ) {
- const_iterator it2 = ht.find(get_key(*it));
- if ((it2 == ht.end()) || (*it != *it2)) {
- return false;
- }
- }
- return true;
- }
- }
- bool operator!=(const sparse_hashtable& ht) const {
- return !(*this == ht);
- }
-
-
- // I/O
- // We support reading and writing hashtables to disk. NOTE that
- // this only stores the hashtable metadata, not the stuff you've
- // actually put in the hashtable! Alas, since I don't know how to
- // write a hasher or key_equal, you have to make sure everything
- // but the table is the same. We compact before writing.
- //
- // The OUTPUT type needs to support a Write() operation. File and
- // OutputBuffer are appropriate types to pass in.
- //
- // The INPUT type needs to support a Read() operation. File and
- // InputBuffer are appropriate types to pass in.
- template <typename OUTPUT>
- bool write_metadata(OUTPUT *fp) {
- squash_deleted(); // so we don't have to worry about delkey
- return table.write_metadata(fp);
- }
-
- template <typename INPUT>
- bool read_metadata(INPUT *fp) {
- num_deleted = 0; // since we got rid before writing
- const bool result = table.read_metadata(fp);
- settings.reset_thresholds(bucket_count());
- return result;
- }
-
- // Only meaningful if value_type is a POD.
- template <typename OUTPUT>
- bool write_nopointer_data(OUTPUT *fp) {
- return table.write_nopointer_data(fp);
- }
-
- // Only meaningful if value_type is a POD.
- template <typename INPUT>
- bool read_nopointer_data(INPUT *fp) {
- return table.read_nopointer_data(fp);
- }
-
- // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
- // (istream, ostream, etc) *or* a class providing
- // Read(void*, size_t) and Write(const void*, size_t)
- // (respectively), which writes a buffer into a stream
- // (which the INPUT/OUTPUT instance presumably owns).
-
- typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
-
- // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT *fp) {
- squash_deleted(); // so we don't have to worry about delkey
- return table.serialize(serializer, fp);
- }
-
- // ValueSerializer: a functor. operator()(INPUT*, value_type*)
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT *fp) {
- num_deleted = 0; // since we got rid before writing
- const bool result = table.unserialize(serializer, fp);
- settings.reset_thresholds(bucket_count());
- return result;
- }
-
- private:
- // Table is the main storage class.
- typedef sparsetable<value_type, DEFAULT_GROUP_SIZE, value_alloc_type> Table;
-
- // Package templated functors with the other types to eliminate memory
- // needed for storing these zero-size operators. Since ExtractKey and
- // hasher's operator() might have the same function signature, they
- // must be packaged in different classes.
- struct Settings :
- sparsehash_internal::sh_hashtable_settings<key_type, hasher,
- size_type, HT_MIN_BUCKETS> {
- explicit Settings(const hasher& hf)
- : sparsehash_internal::sh_hashtable_settings<key_type, hasher,
- size_type, HT_MIN_BUCKETS>(
- hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
- };
-
- // KeyInfo stores delete key and packages zero-size functors:
- // ExtractKey and SetKey.
- class KeyInfo : public ExtractKey, public SetKey, public EqualKey {
- public:
- KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
- : ExtractKey(ek),
- SetKey(sk),
- EqualKey(eq) {
- }
- // We want to return the exact same type as ExtractKey: Key or const Key&
- typename ExtractKey::result_type get_key(const_reference v) const {
- return ExtractKey::operator()(v);
- }
- void set_key(pointer v, const key_type& k) const {
- SetKey::operator()(v, k);
- }
- bool equals(const key_type& a, const key_type& b) const {
- return EqualKey::operator()(a, b);
- }
-
- // Which key marks deleted entries.
- // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
- typename base::remove_const<key_type>::type delkey;
- };
-
- // Utility functions to access the templated operators
- size_type hash(const key_type& v) const {
- return settings.hash(v);
- }
- bool equals(const key_type& a, const key_type& b) const {
- return key_info.equals(a, b);
- }
- typename ExtractKey::result_type get_key(const_reference v) const {
- return key_info.get_key(v);
- }
- void set_key(pointer v, const key_type& k) const {
- key_info.set_key(v, k);
- }
-
- private:
- // Actual data
- Settings settings;
- KeyInfo key_info;
- size_type num_deleted; // how many occupied buckets are marked deleted
- Table table; // holds num_buckets and num_elements too
-};
-
-
-// We need a global swap as well
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-inline void swap(sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
- sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
- x.swap(y);
-}
-
-#undef JUMP_
-
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
- sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
-
-// How full we let the table get before we resize. Knuth says .8 is
-// good -- higher causes us to probe too much, though saves memory
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 80;
-
-// How empty we let the table get before we resize lower.
-// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
-template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
-const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
- = static_cast<int>(0.4 *
- sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _SPARSEHASHTABLE_H_ */
+ st_iterator;
+
+ typedef std::forward_iterator_tag iterator_category; // very little defined!
+ typedef V value_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::pointer pointer;
+
+ // "Real" constructor and default constructor
+ sparse_hashtable_destructive_iterator(const
+ sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *h,
+ st_iterator it, st_iterator it_end)
+ : ht(h), pos(it), end(it_end) { advance_past_deleted(); }
+ sparse_hashtable_destructive_iterator() { } // never used internally
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *pos; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic. The only hard part is making sure that
+ // we're not on a marked-deleted array element
+ void advance_past_deleted() {
+ while ( pos != end && ht->test_deleted(*this) )
+ ++pos;
+ }
+ iterator& operator++() {
+ assert(pos != end); ++pos; advance_past_deleted(); return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+
+ // Comparison.
+ bool operator==(const iterator& it) const { return pos == it.pos; }
+ bool operator!=(const iterator& it) const { return pos != it.pos; }
+
+
+ // The actual data
+ const sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> *ht;
+ st_iterator pos, end;
+};
+
+
+template <class Value, class Key, class HashFcn,
+ class ExtractKey, class SetKey, class EqualKey, class Alloc>
+class sparse_hashtable {
+ private:
+ typedef typename Alloc::template rebind<Value>::other value_alloc_type;
+
+ public:
+ typedef Key key_type;
+ typedef Value value_type;
+ typedef HashFcn hasher;
+ typedef EqualKey key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::const_reference const_reference;
+ typedef typename value_alloc_type::pointer pointer;
+ typedef typename value_alloc_type::const_pointer const_pointer;
+ typedef sparse_hashtable_iterator<Value, Key, HashFcn, ExtractKey,
+ SetKey, EqualKey, Alloc>
+ iterator;
+
+ typedef sparse_hashtable_const_iterator<Value, Key, HashFcn, ExtractKey,
+ SetKey, EqualKey, Alloc>
+ const_iterator;
+
+ typedef sparse_hashtable_destructive_iterator<Value, Key, HashFcn, ExtractKey,
+ SetKey, EqualKey, Alloc>
+ destructive_iterator;
+
+ // These come from tr1. For us they're the same as regular iterators.
+ typedef iterator local_iterator;
+ typedef const_iterator const_local_iterator;
+
+ // How full we let the table get before we resize, by default.
+ // Knuth says .8 is good -- higher causes us to probe too much,
+ // though it saves memory.
+ static const int HT_OCCUPANCY_PCT; // = 80 (out of 100);
+
+ // How empty we let the table get before we resize lower, by default.
+ // (0.0 means never resize lower.)
+ // It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
+ static const int HT_EMPTY_PCT; // = 0.4 * HT_OCCUPANCY_PCT;
+
+ // Minimum size we're willing to let hashtables be.
+ // Must be a power of two, and at least 4.
+ // Note, however, that for a given hashtable, the initial size is a
+ // function of the first constructor arg, and may be >HT_MIN_BUCKETS.
+ static const size_type HT_MIN_BUCKETS = 4;
+
+ // By default, if you don't specify a hashtable size at
+ // construction-time, we use this size. Must be a power of two, and
+ // at least HT_MIN_BUCKETS.
+ static const size_type HT_DEFAULT_STARTING_BUCKETS = 32;
+
+ // ITERATOR FUNCTIONS
+ iterator begin() { return iterator(this, table.nonempty_begin(),
+ table.nonempty_end()); }
+ iterator end() { return iterator(this, table.nonempty_end(),
+ table.nonempty_end()); }
+ const_iterator begin() const { return const_iterator(this,
+ table.nonempty_begin(),
+ table.nonempty_end()); }
+ const_iterator end() const { return const_iterator(this,
+ table.nonempty_end(),
+ table.nonempty_end()); }
+
+ // These come from tr1 unordered_map. They iterate over 'bucket' n.
+ // For sparsehashtable, we could consider each 'group' to be a bucket,
+ // I guess, but I don't really see the point. We'll just consider
+ // bucket n to be the n-th element of the sparsetable, if it's occupied,
+ // or some empty element, otherwise.
+ local_iterator begin(size_type i) {
+ if (table.test(i))
+ return local_iterator(this, table.get_iter(i), table.nonempty_end());
+ else
+ return local_iterator(this, table.nonempty_end(), table.nonempty_end());
+ }
+ local_iterator end(size_type i) {
+ local_iterator it = begin(i);
+ if (table.test(i) && !test_deleted(i))
+ ++it;
+ return it;
+ }
+ const_local_iterator begin(size_type i) const {
+ if (table.test(i))
+ return const_local_iterator(this, table.get_iter(i),
+ table.nonempty_end());
+ else
+ return const_local_iterator(this, table.nonempty_end(),
+ table.nonempty_end());
+ }
+ const_local_iterator end(size_type i) const {
+ const_local_iterator it = begin(i);
+ if (table.test(i) && !test_deleted(i))
+ ++it;
+ return it;
+ }
+
+ // This is used when resizing
+ destructive_iterator destructive_begin() {
+ return destructive_iterator(this, table.destructive_begin(),
+ table.destructive_end());
+ }
+ destructive_iterator destructive_end() {
+ return destructive_iterator(this, table.destructive_end(),
+ table.destructive_end());
+ }
+
+
+ // ACCESSOR FUNCTIONS for the things we templatize on, basically
+ hasher hash_funct() const { return settings; }
+ key_equal key_eq() const { return key_info; }
+ allocator_type get_allocator() const { return table.get_allocator(); }
+
+ // Accessor function for statistics gathering.
+ int num_table_copies() const { return settings.num_ht_copies(); }
+
+ private:
+ // We need to copy values when we set the special marker for deleted
+ // elements, but, annoyingly, we can't just use the copy assignment
+ // operator because value_type might not be assignable (it's often
+ // pair<const X, Y>). We use explicit destructor invocation and
+ // placement new to get around this. Arg.
+ void set_value(pointer dst, const_reference src) {
+ dst->~value_type(); // delete the old value, if any
+ new(dst) value_type(src);
+ }
+
+ // This is used as a tag for the copy constructor, saying to destroy its
+ // arg We have two ways of destructively copying: with potentially growing
+ // the hashtable as we copy, and without. To make sure the outside world
+ // can't do a destructive copy, we make the typename private.
+ enum MoveDontCopyT {MoveDontCopy, MoveDontGrow};
+
+ // DELETE HELPER FUNCTIONS
+ // This lets the user describe a key that will indicate deleted
+ // table entries. This key should be an "impossible" entry --
+ // if you try to insert it for real, you won't be able to retrieve it!
+ // (NB: while you pass in an entire value, only the key part is looked
+ // at. This is just because I don't know how to assign just a key.)
+ private:
+ void squash_deleted() { // gets rid of any deleted entries we have
+ if ( num_deleted ) { // get rid of deleted before writing
+ sparse_hashtable tmp(MoveDontGrow, *this);
+ swap(tmp); // now we are tmp
+ }
+ assert(num_deleted == 0);
+ }
+
+ // Test if the given key is the deleted indicator. Requires
+ // num_deleted > 0, for correctness of read(), and because that
+ // guarantees that key_info.delkey is valid.
+ bool test_deleted_key(const key_type& key) const {
+ assert(num_deleted > 0);
+ return equals(key_info.delkey, key);
+ }
+
+ public:
+ void set_deleted_key(const key_type &key) {
+ // It's only safe to change what "deleted" means if we purge deleted guys
+ squash_deleted();
+ settings.set_use_deleted(true);
+ key_info.delkey = key;
+ }
+ void clear_deleted_key() {
+ squash_deleted();
+ settings.set_use_deleted(false);
+ }
+ key_type deleted_key() const {
+ assert(settings.use_deleted()
+ && "Must set deleted key before calling deleted_key");
+ return key_info.delkey;
+ }
+
+ // These are public so the iterators can use them
+ // True if the item at position bucknum is "deleted" marker
+ bool test_deleted(size_type bucknum) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && table.test(bucknum) &&
+ test_deleted_key(get_key(table.unsafe_get(bucknum)));
+ }
+ bool test_deleted(const iterator &it) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(*it));
+ }
+ bool test_deleted(const const_iterator &it) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(*it));
+ }
+ bool test_deleted(const destructive_iterator &it) const {
+ // Invariant: !use_deleted() implies num_deleted is 0.
+ assert(settings.use_deleted() || num_deleted == 0);
+ return num_deleted > 0 && test_deleted_key(get_key(*it));
+ }
+
+ private:
+ void check_use_deleted(const char* caller) {
+ (void)caller; // could log it if the assert failed
+ assert(settings.use_deleted());
+ }
+
+ // Set it so test_deleted is true. true if object didn't used to be deleted.
+ // TODO(csilvers): make these private (also in densehashtable.h)
+ bool set_deleted(iterator &it) {
+ check_use_deleted("set_deleted()");
+ bool retval = !test_deleted(it);
+ // &* converts from iterator to value-type.
+ set_key(&(*it), key_info.delkey);
+ return retval;
+ }
+ // Set it so test_deleted is false. true if object used to be deleted.
+ bool clear_deleted(iterator &it) {
+ check_use_deleted("clear_deleted()");
+ // Happens automatically when we assign something else in its place.
+ return test_deleted(it);
+ }
+
+ // We also allow to set/clear the deleted bit on a const iterator.
+ // We allow a const_iterator for the same reason you can delete a
+ // const pointer: it's convenient, and semantically you can't use
+ // 'it' after it's been deleted anyway, so its const-ness doesn't
+ // really matter.
+ bool set_deleted(const_iterator &it) {
+ check_use_deleted("set_deleted()");
+ bool retval = !test_deleted(it);
+ set_key(const_cast<pointer>(&(*it)), key_info.delkey);
+ return retval;
+ }
+ // Set it so test_deleted is false. true if object used to be deleted.
+ bool clear_deleted(const_iterator &it) {
+ check_use_deleted("clear_deleted()");
+ return test_deleted(it);
+ }
+
+ // FUNCTIONS CONCERNING SIZE
+ public:
+ size_type size() const { return table.num_nonempty() - num_deleted; }
+ size_type max_size() const { return table.max_size(); }
+ bool empty() const { return size() == 0; }
+ size_type bucket_count() const { return table.size(); }
+ size_type max_bucket_count() const { return max_size(); }
+ // These are tr1 methods. Their idea of 'bucket' doesn't map well to
+ // what we do. We just say every bucket has 0 or 1 items in it.
+ size_type bucket_size(size_type i) const {
+ return begin(i) == end(i) ? 0 : 1;
+ }
+
+ private:
+ // Because of the above, size_type(-1) is never legal; use it for errors
+ static const size_type ILLEGAL_BUCKET = size_type(-1);
+
+ // Used after a string of deletes. Returns true if we actually shrunk.
+ // TODO(csilvers): take a delta so we can take into account inserts
+ // done after shrinking. Maybe make part of the Settings class?
+ bool maybe_shrink() {
+ assert(table.num_nonempty() >= num_deleted);
+ assert((bucket_count() & (bucket_count()-1)) == 0); // is a power of two
+ assert(bucket_count() >= HT_MIN_BUCKETS);
+ bool retval = false;
+
+ // If you construct a hashtable with < HT_DEFAULT_STARTING_BUCKETS,
+ // we'll never shrink until you get relatively big, and we'll never
+ // shrink below HT_DEFAULT_STARTING_BUCKETS. Otherwise, something
+ // like "dense_hash_set<int> x; x.insert(4); x.erase(4);" will
+ // shrink us down to HT_MIN_BUCKETS buckets, which is too small.
+ const size_type num_remain = table.num_nonempty() - num_deleted;
+ const size_type shrink_threshold = settings.shrink_threshold();
+ if (shrink_threshold > 0 && num_remain < shrink_threshold &&
+ bucket_count() > HT_DEFAULT_STARTING_BUCKETS) {
+ const float shrink_factor = settings.shrink_factor();
+ size_type sz = bucket_count() / 2; // find how much we should shrink
+ while (sz > HT_DEFAULT_STARTING_BUCKETS &&
+ num_remain < static_cast<size_type>(sz * shrink_factor)) {
+ sz /= 2; // stay a power of 2
+ }
+ sparse_hashtable tmp(MoveDontCopy, *this, sz);
+ swap(tmp); // now we are tmp
+ retval = true;
+ }
+ settings.set_consider_shrink(false); // because we just considered it
+ return retval;
+ }
+
+ // We'll let you resize a hashtable -- though this makes us copy all!
+ // When you resize, you say, "make it big enough for this many more elements"
+ // Returns true if we actually resized, false if size was already ok.
+ bool resize_delta(size_type delta) {
+ bool did_resize = false;
+ if ( settings.consider_shrink() ) { // see if lots of deletes happened
+ if ( maybe_shrink() )
+ did_resize = true;
+ }
+ if (table.num_nonempty() >=
+ (std::numeric_limits<size_type>::max)() - delta) {
+ throw std::length_error("resize overflow");
+ }
+ if ( bucket_count() >= HT_MIN_BUCKETS &&
+ (table.num_nonempty() + delta) <= settings.enlarge_threshold() )
+ return did_resize; // we're ok as we are
+
+ // Sometimes, we need to resize just to get rid of all the
+ // "deleted" buckets that are clogging up the hashtable. So when
+ // deciding whether to resize, count the deleted buckets (which
+ // are currently taking up room). But later, when we decide what
+ // size to resize to, *don't* count deleted buckets, since they
+ // get discarded during the resize.
+ const size_type needed_size =
+ settings.min_buckets(table.num_nonempty() + delta, 0);
+ if ( needed_size <= bucket_count() ) // we have enough buckets
+ return did_resize;
+
+ size_type resize_to =
+ settings.min_buckets(table.num_nonempty() - num_deleted + delta,
+ bucket_count());
+ if (resize_to < needed_size && // may double resize_to
+ resize_to < (std::numeric_limits<size_type>::max)() / 2) {
+ // This situation means that we have enough deleted elements,
+ // that once we purge them, we won't actually have needed to
+ // grow. But we may want to grow anyway: if we just purge one
+ // element, say, we'll have to grow anyway next time we
+ // insert. Might as well grow now, since we're already going
+ // through the trouble of copying (in order to purge the
+ // deleted elements).
+ const size_type target =
+ static_cast<size_type>(settings.shrink_size(resize_to*2));
+ if (table.num_nonempty() - num_deleted + delta >= target) {
+ // Good, we won't be below the shrink threshhold even if we double.
+ resize_to *= 2;
+ }
+ }
+
+ sparse_hashtable tmp(MoveDontCopy, *this, resize_to);
+ swap(tmp); // now we are tmp
+ return true;
+ }
+
+ // Used to actually do the rehashing when we grow/shrink a hashtable
+ void copy_from(const sparse_hashtable &ht, size_type min_buckets_wanted) {
+ clear(); // clear table, set num_deleted to 0
+
+ // If we need to change the size of our table, do it now
+ const size_type resize_to =
+ settings.min_buckets(ht.size(), min_buckets_wanted);
+ if ( resize_to > bucket_count() ) { // we don't have enough buckets
+ table.resize(resize_to); // sets the number of buckets
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // We use a normal iterator to get non-deleted bcks from ht
+ // We could use insert() here, but since we know there are
+ // no duplicates and no deleted items, we can be more efficient
+ assert((bucket_count() & (bucket_count()-1)) == 0); // a power of two
+ for ( const_iterator it = ht.begin(); it != ht.end(); ++it ) {
+ size_type num_probes = 0; // how many times we've probed
+ size_type bucknum;
+ const size_type bucket_count_minus_one = bucket_count() - 1;
+ for (bucknum = hash(get_key(*it)) & bucket_count_minus_one;
+ table.test(bucknum); // not empty
+ bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one) {
+ ++num_probes;
+ assert(num_probes < bucket_count()
+ && "Hashtable is full: an error in key_equal<> or hash<>");
+ }
+ table.set(bucknum, *it); // copies the value to here
+ }
+ settings.inc_num_ht_copies();
+ }
+
+ // Implementation is like copy_from, but it destroys the table of the
+ // "from" guy by freeing sparsetable memory as we iterate. This is
+ // useful in resizing, since we're throwing away the "from" guy anyway.
+ void move_from(MoveDontCopyT mover, sparse_hashtable &ht,
+ size_type min_buckets_wanted) {
+ clear(); // clear table, set num_deleted to 0
+
+ // If we need to change the size of our table, do it now
+ size_type resize_to;
+ if ( mover == MoveDontGrow )
+ resize_to = ht.bucket_count(); // keep same size as old ht
+ else // MoveDontCopy
+ resize_to = settings.min_buckets(ht.size(), min_buckets_wanted);
+ if ( resize_to > bucket_count() ) { // we don't have enough buckets
+ table.resize(resize_to); // sets the number of buckets
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // We use a normal iterator to get non-deleted bcks from ht
+ // We could use insert() here, but since we know there are
+ // no duplicates and no deleted items, we can be more efficient
+ assert( (bucket_count() & (bucket_count()-1)) == 0); // a power of two
+ // THIS IS THE MAJOR LINE THAT DIFFERS FROM COPY_FROM():
+ for ( destructive_iterator it = ht.destructive_begin();
+ it != ht.destructive_end(); ++it ) {
+ size_type num_probes = 0; // how many times we've probed
+ size_type bucknum;
+ for ( bucknum = hash(get_key(*it)) & (bucket_count()-1); // h % buck_cnt
+ table.test(bucknum); // not empty
+ bucknum = (bucknum + JUMP_(key, num_probes)) & (bucket_count()-1) ) {
+ ++num_probes;
+ assert(num_probes < bucket_count()
+ && "Hashtable is full: an error in key_equal<> or hash<>");
+ }
+ table.set(bucknum, *it); // copies the value to here
+ }
+ settings.inc_num_ht_copies();
+ }
+
+
+ // Required by the spec for hashed associative container
+ public:
+ // Though the docs say this should be num_buckets, I think it's much
+ // more useful as num_elements. As a special feature, calling with
+ // req_elements==0 will cause us to shrink if we can, saving space.
+ void resize(size_type req_elements) { // resize to this or larger
+ if ( settings.consider_shrink() || req_elements == 0 )
+ maybe_shrink();
+ if ( req_elements > table.num_nonempty() ) // we only grow
+ resize_delta(req_elements - table.num_nonempty());
+ }
+
+ // Get and change the value of shrink_factor and enlarge_factor. The
+ // description at the beginning of this file explains how to choose
+ // the values. Setting the shrink parameter to 0.0 ensures that the
+ // table never shrinks.
+ void get_resizing_parameters(float* shrink, float* grow) const {
+ *shrink = settings.shrink_factor();
+ *grow = settings.enlarge_factor();
+ }
+ void set_resizing_parameters(float shrink, float grow) {
+ settings.set_resizing_parameters(shrink, grow);
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // CONSTRUCTORS -- as required by the specs, we take a size,
+ // but also let you specify a hashfunction, key comparator,
+ // and key extractor. We also define a copy constructor and =.
+ // DESTRUCTOR -- the default is fine, surprisingly.
+ explicit sparse_hashtable(size_type expected_max_items_in_table = 0,
+ const HashFcn& hf = HashFcn(),
+ const EqualKey& eql = EqualKey(),
+ const ExtractKey& ext = ExtractKey(),
+ const SetKey& set = SetKey(),
+ const Alloc& alloc = Alloc())
+ : settings(hf),
+ key_info(ext, set, eql),
+ num_deleted(0),
+ table((expected_max_items_in_table == 0
+ ? HT_DEFAULT_STARTING_BUCKETS
+ : settings.min_buckets(expected_max_items_in_table, 0)),
+ alloc) {
+ settings.reset_thresholds(bucket_count());
+ }
+
+ // As a convenience for resize(), we allow an optional second argument
+ // which lets you make this new hashtable a different size than ht.
+ // We also provide a mechanism of saying you want to "move" the ht argument
+ // into us instead of copying.
+ sparse_hashtable(const sparse_hashtable& ht,
+ size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
+ : settings(ht.settings),
+ key_info(ht.key_info),
+ num_deleted(0),
+ table(0, ht.get_allocator()) {
+ settings.reset_thresholds(bucket_count());
+ copy_from(ht, min_buckets_wanted); // copy_from() ignores deleted entries
+ }
+ sparse_hashtable(MoveDontCopyT mover, sparse_hashtable& ht,
+ size_type min_buckets_wanted = HT_DEFAULT_STARTING_BUCKETS)
+ : settings(ht.settings),
+ key_info(ht.key_info),
+ num_deleted(0),
+ table(0, ht.get_allocator()) {
+ settings.reset_thresholds(bucket_count());
+ move_from(mover, ht, min_buckets_wanted); // ignores deleted entries
+ }
+
+ sparse_hashtable& operator= (const sparse_hashtable& ht) {
+ if (&ht == this) return *this; // don't copy onto ourselves
+ settings = ht.settings;
+ key_info = ht.key_info;
+ num_deleted = ht.num_deleted;
+ // copy_from() calls clear and sets num_deleted to 0 too
+ copy_from(ht, HT_MIN_BUCKETS);
+ // we purposefully don't copy the allocator, which may not be copyable
+ return *this;
+ }
+
+ // Many STL algorithms use swap instead of copy constructors
+ void swap(sparse_hashtable& ht) {
+ std::swap(settings, ht.settings);
+ std::swap(key_info, ht.key_info);
+ std::swap(num_deleted, ht.num_deleted);
+ table.swap(ht.table);
+ settings.reset_thresholds(bucket_count()); // also resets consider_shrink
+ ht.settings.reset_thresholds(ht.bucket_count());
+ // we purposefully don't swap the allocator, which may not be swap-able
+ }
+
+ // It's always nice to be able to clear a table without deallocating it
+ void clear() {
+ if (!empty() || (num_deleted != 0)) {
+ table.clear();
+ }
+ settings.reset_thresholds(bucket_count());
+ num_deleted = 0;
+ }
+
+ // LOOKUP ROUTINES
+ private:
+ // Returns a pair of positions: 1st where the object is, 2nd where
+ // it would go if you wanted to insert it. 1st is ILLEGAL_BUCKET
+ // if object is not found; 2nd is ILLEGAL_BUCKET if it is.
+ // Note: because of deletions where-to-insert is not trivial: it's the
+ // first deleted bucket we see, as long as we don't find the key later
+ std::pair<size_type, size_type> find_position(const key_type &key) const {
+ size_type num_probes = 0; // how many times we've probed
+ const size_type bucket_count_minus_one = bucket_count() - 1;
+ size_type bucknum = hash(key) & bucket_count_minus_one;
+ size_type insert_pos = ILLEGAL_BUCKET; // where we would insert
+ SPARSEHASH_STAT_UPDATE(total_lookups += 1);
+ while ( 1 ) { // probe until something happens
+ if ( !table.test(bucknum) ) { // bucket is empty
+ SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
+ if ( insert_pos == ILLEGAL_BUCKET ) // found no prior place to insert
+ return std::pair<size_type,size_type>(ILLEGAL_BUCKET, bucknum);
+ else
+ return std::pair<size_type,size_type>(ILLEGAL_BUCKET, insert_pos);
+
+ } else if ( test_deleted(bucknum) ) {// keep searching, but mark to insert
+ if ( insert_pos == ILLEGAL_BUCKET )
+ insert_pos = bucknum;
+
+ } else if ( equals(key, get_key(table.unsafe_get(bucknum))) ) {
+ SPARSEHASH_STAT_UPDATE(total_probes += num_probes);
+ return std::pair<size_type,size_type>(bucknum, ILLEGAL_BUCKET);
+ }
+ ++num_probes; // we're doing another probe
+ bucknum = (bucknum + JUMP_(key, num_probes)) & bucket_count_minus_one;
+ assert(num_probes < bucket_count()
+ && "Hashtable is full: an error in key_equal<> or hash<>");
+ }
+ }
+
+ public:
+
+ iterator find(const key_type& key) {
+ if ( size() == 0 ) return end();
+ std::pair<size_type, size_type> pos = find_position(key);
+ if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
+ return end();
+ else
+ return iterator(this, table.get_iter(pos.first), table.nonempty_end());
+ }
+
+ const_iterator find(const key_type& key) const {
+ if ( size() == 0 ) return end();
+ std::pair<size_type, size_type> pos = find_position(key);
+ if ( pos.first == ILLEGAL_BUCKET ) // alas, not there
+ return end();
+ else
+ return const_iterator(this,
+ table.get_iter(pos.first), table.nonempty_end());
+ }
+
+ // This is a tr1 method: the bucket a given key is in, or what bucket
+ // it would be put in, if it were to be inserted. Shrug.
+ size_type bucket(const key_type& key) const {
+ std::pair<size_type, size_type> pos = find_position(key);
+ return pos.first == ILLEGAL_BUCKET ? pos.second : pos.first;
+ }
+
+ // Counts how many elements have key key. For maps, it's either 0 or 1.
+ size_type count(const key_type &key) const {
+ std::pair<size_type, size_type> pos = find_position(key);
+ return pos.first == ILLEGAL_BUCKET ? 0 : 1;
+ }
+
+ // Likewise, equal_range doesn't really make sense for us. Oh well.
+ std::pair<iterator,iterator> equal_range(const key_type& key) {
+ iterator pos = find(key); // either an iterator or end
+ if (pos == end()) {
+ return std::pair<iterator,iterator>(pos, pos);
+ } else {
+ const iterator startpos = pos++;
+ return std::pair<iterator,iterator>(startpos, pos);
+ }
+ }
+ std::pair<const_iterator,const_iterator> equal_range(const key_type& key)
+ const {
+ const_iterator pos = find(key); // either an iterator or end
+ if (pos == end()) {
+ return std::pair<const_iterator,const_iterator>(pos, pos);
+ } else {
+ const const_iterator startpos = pos++;
+ return std::pair<const_iterator,const_iterator>(startpos, pos);
+ }
+ }
+
+
+ // INSERTION ROUTINES
+ private:
+ // Private method used by insert_noresize and find_or_insert.
+ iterator insert_at(const_reference obj, size_type pos) {
+ if (size() >= max_size()) {
+ throw std::length_error("insert overflow");
+ }
+ if ( test_deleted(pos) ) { // just replace if it's been deleted
+ // The set() below will undelete this object. We just worry about stats
+ assert(num_deleted > 0);
+ --num_deleted; // used to be, now it isn't
+ }
+ table.set(pos, obj);
+ return iterator(this, table.get_iter(pos), table.nonempty_end());
+ }
+
+ // If you know *this is big enough to hold obj, use this routine
+ std::pair<iterator, bool> insert_noresize(const_reference obj) {
+ // First, double-check we're not inserting delkey
+ assert((!settings.use_deleted() || !equals(get_key(obj), key_info.delkey))
+ && "Inserting the deleted key");
+ const std::pair<size_type,size_type> pos = find_position(get_key(obj));
+ if ( pos.first != ILLEGAL_BUCKET) { // object was already there
+ return std::pair<iterator,bool>(iterator(this, table.get_iter(pos.first),
+ table.nonempty_end()),
+ false); // false: we didn't insert
+ } else { // pos.second says where to put it
+ return std::pair<iterator,bool>(insert_at(obj, pos.second), true);
+ }
+ }
+
+ // Specializations of insert(it, it) depending on the power of the iterator:
+ // (1) Iterator supports operator-, resize before inserting
+ template <class ForwardIterator>
+ void insert(ForwardIterator f, ForwardIterator l, std::forward_iterator_tag) {
+ size_t dist = std::distance(f, l);
+ if (dist >= (std::numeric_limits<size_type>::max)()) {
+ throw std::length_error("insert-range overflow");
+ }
+ resize_delta(static_cast<size_type>(dist));
+ for ( ; dist > 0; --dist, ++f) {
+ insert_noresize(*f);
+ }
+ }
+
+ // (2) Arbitrary iterator, can't tell how much to resize
+ template <class InputIterator>
+ void insert(InputIterator f, InputIterator l, std::input_iterator_tag) {
+ for ( ; f != l; ++f)
+ insert(*f);
+ }
+
+ public:
+ // This is the normal insert routine, used by the outside world
+ std::pair<iterator, bool> insert(const_reference obj) {
+ resize_delta(1); // adding an object, grow if need be
+ return insert_noresize(obj);
+ }
+
+ // When inserting a lot at a time, we specialize on the type of iterator
+ template <class InputIterator>
+ void insert(InputIterator f, InputIterator l) {
+ // specializes on iterator type
+ insert(f, l,
+ typename std::iterator_traits<InputIterator>::iterator_category());
+ }
+
+ // DefaultValue is a functor that takes a key and returns a value_type
+ // representing the default value to be inserted if none is found.
+ template <class DefaultValue>
+ value_type& find_or_insert(const key_type& key) {
+ // First, double-check we're not inserting delkey
+ assert((!settings.use_deleted() || !equals(key, key_info.delkey))
+ && "Inserting the deleted key");
+ const std::pair<size_type,size_type> pos = find_position(key);
+ DefaultValue default_value;
+ if ( pos.first != ILLEGAL_BUCKET) { // object was already there
+ return *table.get_iter(pos.first);
+ } else if (resize_delta(1)) { // needed to rehash to make room
+ // Since we resized, we can't use pos, so recalculate where to insert.
+ return *insert_noresize(default_value(key)).first;
+ } else { // no need to rehash, insert right here
+ return *insert_at(default_value(key), pos.second);
+ }
+ }
+
+ // DELETION ROUTINES
+ size_type erase(const key_type& key) {
+ // First, double-check we're not erasing delkey.
+ assert((!settings.use_deleted() || !equals(key, key_info.delkey))
+ && "Erasing the deleted key");
+ assert(!settings.use_deleted() || !equals(key, key_info.delkey));
+ const_iterator pos = find(key); // shrug: shouldn't need to be const
+ if ( pos != end() ) {
+ assert(!test_deleted(pos)); // or find() shouldn't have returned it
+ set_deleted(pos);
+ ++num_deleted;
+ // will think about shrink after next insert
+ settings.set_consider_shrink(true);
+ return 1; // because we deleted one thing
+ } else {
+ return 0; // because we deleted nothing
+ }
+ }
+
+ // We return the iterator past the deleted item.
+ void erase(iterator pos) {
+ if ( pos == end() ) return; // sanity check
+ if ( set_deleted(pos) ) { // true if object has been newly deleted
+ ++num_deleted;
+ // will think about shrink after next insert
+ settings.set_consider_shrink(true);
+ }
+ }
+
+ void erase(iterator f, iterator l) {
+ for ( ; f != l; ++f) {
+ if ( set_deleted(f) ) // should always be true
+ ++num_deleted;
+ }
+ // will think about shrink after next insert
+ settings.set_consider_shrink(true);
+ }
+
+ // We allow you to erase a const_iterator just like we allow you to
+ // erase an iterator. This is in parallel to 'delete': you can delete
+ // a const pointer just like a non-const pointer. The logic is that
+ // you can't use the object after it's erased anyway, so it doesn't matter
+ // if it's const or not.
+ void erase(const_iterator pos) {
+ if ( pos == end() ) return; // sanity check
+ if ( set_deleted(pos) ) { // true if object has been newly deleted
+ ++num_deleted;
+ // will think about shrink after next insert
+ settings.set_consider_shrink(true);
+ }
+ }
+ void erase(const_iterator f, const_iterator l) {
+ for ( ; f != l; ++f) {
+ if ( set_deleted(f) ) // should always be true
+ ++num_deleted;
+ }
+ // will think about shrink after next insert
+ settings.set_consider_shrink(true);
+ }
+
+
+ // COMPARISON
+ bool operator==(const sparse_hashtable& ht) const {
+ if (size() != ht.size()) {
+ return false;
+ } else if (this == &ht) {
+ return true;
+ } else {
+ // Iterate through the elements in "this" and see if the
+ // corresponding element is in ht
+ for ( const_iterator it = begin(); it != end(); ++it ) {
+ const_iterator it2 = ht.find(get_key(*it));
+ if ((it2 == ht.end()) || (*it != *it2)) {
+ return false;
+ }
+ }
+ return true;
+ }
+ }
+ bool operator!=(const sparse_hashtable& ht) const {
+ return !(*this == ht);
+ }
+
+
+ // I/O
+ // We support reading and writing hashtables to disk. NOTE that
+ // this only stores the hashtable metadata, not the stuff you've
+ // actually put in the hashtable! Alas, since I don't know how to
+ // write a hasher or key_equal, you have to make sure everything
+ // but the table is the same. We compact before writing.
+ //
+ // The OUTPUT type needs to support a Write() operation. File and
+ // OutputBuffer are appropriate types to pass in.
+ //
+ // The INPUT type needs to support a Read() operation. File and
+ // InputBuffer are appropriate types to pass in.
+ template <typename OUTPUT>
+ bool write_metadata(OUTPUT *fp) {
+ squash_deleted(); // so we don't have to worry about delkey
+ return table.write_metadata(fp);
+ }
+
+ template <typename INPUT>
+ bool read_metadata(INPUT *fp) {
+ num_deleted = 0; // since we got rid before writing
+ const bool result = table.read_metadata(fp);
+ settings.reset_thresholds(bucket_count());
+ return result;
+ }
+
+ // Only meaningful if value_type is a POD.
+ template <typename OUTPUT>
+ bool write_nopointer_data(OUTPUT *fp) {
+ return table.write_nopointer_data(fp);
+ }
+
+ // Only meaningful if value_type is a POD.
+ template <typename INPUT>
+ bool read_nopointer_data(INPUT *fp) {
+ return table.read_nopointer_data(fp);
+ }
+
+ // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
+ // (istream, ostream, etc) *or* a class providing
+ // Read(void*, size_t) and Write(const void*, size_t)
+ // (respectively), which writes a buffer into a stream
+ // (which the INPUT/OUTPUT instance presumably owns).
+
+ typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
+
+ // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT *fp) {
+ squash_deleted(); // so we don't have to worry about delkey
+ return table.serialize(serializer, fp);
+ }
+
+ // ValueSerializer: a functor. operator()(INPUT*, value_type*)
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT *fp) {
+ num_deleted = 0; // since we got rid before writing
+ const bool result = table.unserialize(serializer, fp);
+ settings.reset_thresholds(bucket_count());
+ return result;
+ }
+
+ private:
+ // Table is the main storage class.
+ typedef sparsetable<value_type, DEFAULT_GROUP_SIZE, value_alloc_type> Table;
+
+ // Package templated functors with the other types to eliminate memory
+ // needed for storing these zero-size operators. Since ExtractKey and
+ // hasher's operator() might have the same function signature, they
+ // must be packaged in different classes.
+ struct Settings :
+ sparsehash_internal::sh_hashtable_settings<key_type, hasher,
+ size_type, HT_MIN_BUCKETS> {
+ explicit Settings(const hasher& hf)
+ : sparsehash_internal::sh_hashtable_settings<key_type, hasher,
+ size_type, HT_MIN_BUCKETS>(
+ hf, HT_OCCUPANCY_PCT / 100.0f, HT_EMPTY_PCT / 100.0f) {}
+ };
+
+ // KeyInfo stores delete key and packages zero-size functors:
+ // ExtractKey and SetKey.
+ class KeyInfo : public ExtractKey, public SetKey, public EqualKey {
+ public:
+ KeyInfo(const ExtractKey& ek, const SetKey& sk, const EqualKey& eq)
+ : ExtractKey(ek),
+ SetKey(sk),
+ EqualKey(eq) {
+ }
+ // We want to return the exact same type as ExtractKey: Key or const Key&
+ typename ExtractKey::result_type get_key(const_reference v) const {
+ return ExtractKey::operator()(v);
+ }
+ void set_key(pointer v, const key_type& k) const {
+ SetKey::operator()(v, k);
+ }
+ bool equals(const key_type& a, const key_type& b) const {
+ return EqualKey::operator()(a, b);
+ }
+
+ // Which key marks deleted entries.
+ // TODO(csilvers): make a pointer, and get rid of use_deleted (benchmark!)
+ typename base::remove_const<key_type>::type delkey;
+ };
+
+ // Utility functions to access the templated operators
+ size_type hash(const key_type& v) const {
+ return settings.hash(v);
+ }
+ bool equals(const key_type& a, const key_type& b) const {
+ return key_info.equals(a, b);
+ }
+ typename ExtractKey::result_type get_key(const_reference v) const {
+ return key_info.get_key(v);
+ }
+ void set_key(pointer v, const key_type& k) const {
+ key_info.set_key(v, k);
+ }
+
+ private:
+ // Actual data
+ Settings settings;
+ KeyInfo key_info;
+ size_type num_deleted; // how many occupied buckets are marked deleted
+ Table table; // holds num_buckets and num_elements too
+};
+
+
+// We need a global swap as well
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+inline void swap(sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &x,
+ sparse_hashtable<V,K,HF,ExK,SetK,EqK,A> &y) {
+ x.swap(y);
+}
+
+#undef JUMP_
+
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const typename sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::size_type
+ sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::ILLEGAL_BUCKET;
+
+// How full we let the table get before we resize. Knuth says .8 is
+// good -- higher causes us to probe too much, though saves memory
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT = 80;
+
+// How empty we let the table get before we resize lower.
+// It should be less than OCCUPANCY_PCT / 2 or we thrash resizing
+template <class V, class K, class HF, class ExK, class SetK, class EqK, class A>
+const int sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_EMPTY_PCT
+ = static_cast<int>(0.4 *
+ sparse_hashtable<V,K,HF,ExK,SetK,EqK,A>::HT_OCCUPANCY_PCT);
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _SPARSEHASHTABLE_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/sparse_hash_map b/contrib/libs/sparsehash/src/sparsehash/sparse_hash_map
index 1687a8b11c..2520deb505 100644
--- a/contrib/libs/sparsehash/src/sparsehash/sparse_hash_map
+++ b/contrib/libs/sparsehash/src/sparsehash/sparse_hash_map
@@ -1,363 +1,363 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// This is just a very thin wrapper over sparsehashtable.h, just
-// like sgi stl's stl_hash_map is a very thin wrapper over
-// stl_hashtable. The major thing we define is operator[], because
-// we have a concept of a data_type which stl_hashtable doesn't
-// (it only has a key and a value).
-//
-// We adhere mostly to the STL semantics for hash-map. One important
-// exception is that insert() may invalidate iterators entirely -- STL
-// semantics are that insert() may reorder iterators, but they all
-// still refer to something valid in the hashtable. Not so for us.
-// Likewise, insert() may invalidate pointers into the hashtable.
-// (Whether insert invalidates iterators and pointers depends on
-// whether it results in a hashtable resize). On the plus side,
-// delete() doesn't invalidate iterators or pointers at all, or even
-// change the ordering of elements.
-//
-// Here are a few "power user" tips:
-//
-// 1) set_deleted_key():
-// Unlike STL's hash_map, if you want to use erase() you
-// *must* call set_deleted_key() after construction.
-//
-// 2) resize(0):
-// When an item is deleted, its memory isn't freed right
-// away. This is what allows you to iterate over a hashtable
-// and call erase() without invalidating the iterator.
-// To force the memory to be freed, call resize(0).
-// For tr1 compatibility, this can also be called as rehash(0).
-//
-// 3) min_load_factor(0.0)
-// Setting the minimum load factor to 0.0 guarantees that
-// the hash table will never shrink.
-//
-// Roughly speaking:
-// (1) dense_hash_map: fastest, uses the most memory unless entries are small
-// (2) sparse_hash_map: slowest, uses the least memory
-// (3) hash_map / unordered_map (STL): in the middle
-//
-// Typically I use sparse_hash_map when I care about space and/or when
-// I need to save the hashtable on disk. I use hash_map otherwise. I
-// don't personally use dense_hash_map ever; some people use it for
-// small maps with lots of lookups.
-//
-// - dense_hash_map has, typically, about 78% memory overhead (if your
-// data takes up X bytes, the hash_map uses .78X more bytes in overhead).
-// - sparse_hash_map has about 4 bits overhead per entry.
-// - sparse_hash_map can be 3-7 times slower than the others for lookup and,
-// especially, inserts. See time_hash_map.cc for details.
-//
-// See /usr/(local/)?doc/sparsehash-*/sparse_hash_map.html
-// for information about how to use this class.
-
-#ifndef _SPARSE_HASH_MAP_H_
-#define _SPARSE_HASH_MAP_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <algorithm> // needed by stl_alloc
-#include <functional> // for equal_to<>, select1st<>, etc
-#include <memory> // for alloc
-#include <utility> // for pair<>
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-#include <sparsehash/internal/sparsehashtable.h> // IWYU pragma: export
-#include HASH_FUN_H // for hash<>
-_START_GOOGLE_NAMESPACE_
-
-template <class Key, class T,
- class HashFcn = SPARSEHASH_HASH<Key>, // defined in sparseconfig.h
- class EqualKey = std::equal_to<Key>,
- class Alloc = libc_allocator_with_realloc<std::pair<const Key, T> > >
-class sparse_hash_map {
- private:
- // Apparently select1st is not stl-standard, so we define our own
- struct SelectKey {
- typedef const Key& result_type;
- const Key& operator()(const std::pair<const Key, T>& p) const {
- return p.first;
- }
- };
- struct SetKey {
- void operator()(std::pair<const Key, T>* value, const Key& new_key) const {
- *const_cast<Key*>(&value->first) = new_key;
- // It would be nice to clear the rest of value here as well, in
- // case it's taking up a lot of memory. We do this by clearing
- // the value. This assumes T has a zero-arg constructor!
- value->second = T();
- }
- };
- // For operator[].
- struct DefaultValue {
- std::pair<const Key, T> operator()(const Key& key) {
- return std::make_pair(key, T());
- }
- };
-
- // The actual data
- typedef sparse_hashtable<std::pair<const Key, T>, Key, HashFcn, SelectKey,
- SetKey, EqualKey, Alloc> ht;
- ht rep;
-
- public:
- typedef typename ht::key_type key_type;
- typedef T data_type;
- typedef T mapped_type;
- typedef typename ht::value_type value_type;
- typedef typename ht::hasher hasher;
- typedef typename ht::key_equal key_equal;
- typedef Alloc allocator_type;
-
- typedef typename ht::size_type size_type;
- typedef typename ht::difference_type difference_type;
- typedef typename ht::pointer pointer;
- typedef typename ht::const_pointer const_pointer;
- typedef typename ht::reference reference;
- typedef typename ht::const_reference const_reference;
-
- typedef typename ht::iterator iterator;
- typedef typename ht::const_iterator const_iterator;
- typedef typename ht::local_iterator local_iterator;
- typedef typename ht::const_local_iterator const_local_iterator;
-
- // Iterator functions
- iterator begin() { return rep.begin(); }
- iterator end() { return rep.end(); }
- const_iterator begin() const { return rep.begin(); }
- const_iterator end() const { return rep.end(); }
-
- // These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
- local_iterator begin(size_type i) { return rep.begin(i); }
- local_iterator end(size_type i) { return rep.end(i); }
- const_local_iterator begin(size_type i) const { return rep.begin(i); }
- const_local_iterator end(size_type i) const { return rep.end(i); }
-
- // Accessor functions
- allocator_type get_allocator() const { return rep.get_allocator(); }
- hasher hash_funct() const { return rep.hash_funct(); }
- hasher hash_function() const { return hash_funct(); }
- key_equal key_eq() const { return rep.key_eq(); }
-
-
- // Constructors
- explicit sparse_hash_map(size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
- }
-
- template <class InputIterator>
- sparse_hash_map(InputIterator f, InputIterator l,
- size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
- rep.insert(f, l);
- }
- // We use the default copy constructor
- // We use the default operator=()
- // We use the default destructor
-
- void clear() { rep.clear(); }
- void swap(sparse_hash_map& hs) { rep.swap(hs.rep); }
-
-
- // Functions concerning size
- size_type size() const { return rep.size(); }
- size_type max_size() const { return rep.max_size(); }
- bool empty() const { return rep.empty(); }
- size_type bucket_count() const { return rep.bucket_count(); }
- size_type max_bucket_count() const { return rep.max_bucket_count(); }
-
- // These are tr1 methods. bucket() is the bucket the key is or would be in.
- size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
- size_type bucket(const key_type& key) const { return rep.bucket(key); }
- float load_factor() const {
- return size() * 1.0f / bucket_count();
- }
- float max_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return grow;
- }
- void max_load_factor(float new_grow) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(shrink, new_grow);
- }
- // These aren't tr1 methods but perhaps ought to be.
- float min_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return shrink;
- }
- void min_load_factor(float new_shrink) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(new_shrink, grow);
- }
- // Deprecated; use min_load_factor() or max_load_factor() instead.
- void set_resizing_parameters(float shrink, float grow) {
- rep.set_resizing_parameters(shrink, grow);
- }
-
- void resize(size_type hint) { rep.resize(hint); }
- void rehash(size_type hint) { resize(hint); } // the tr1 name
-
- // Lookup routines
- iterator find(const key_type& key) { return rep.find(key); }
- const_iterator find(const key_type& key) const { return rep.find(key); }
-
- data_type& operator[](const key_type& key) { // This is our value-add!
- // If key is in the hashtable, returns find(key)->second,
- // otherwise returns insert(value_type(key, T()).first->second.
- // Note it does not create an empty T unless the find fails.
- return rep.template find_or_insert<DefaultValue>(key).second;
- }
-
- size_type count(const key_type& key) const { return rep.count(key); }
-
- std::pair<iterator, iterator> equal_range(const key_type& key) {
- return rep.equal_range(key);
- }
- std::pair<const_iterator, const_iterator> equal_range(const key_type& key)
- const {
- return rep.equal_range(key);
- }
-
- // Insertion routines
- std::pair<iterator, bool> insert(const value_type& obj) {
- return rep.insert(obj);
- }
- template <class InputIterator> void insert(InputIterator f, InputIterator l) {
- rep.insert(f, l);
- }
- void insert(const_iterator f, const_iterator l) {
- rep.insert(f, l);
- }
- // Required for std::insert_iterator; the passed-in iterator is ignored.
- iterator insert(iterator, const value_type& obj) {
- return insert(obj).first;
- }
-
- // Deletion routines
- // THESE ARE NON-STANDARD! I make you specify an "impossible" key
- // value to identify deleted buckets. You can change the key as
- // time goes on, or get rid of it entirely to be insert-only.
- void set_deleted_key(const key_type& key) {
- rep.set_deleted_key(key);
- }
- void clear_deleted_key() { rep.clear_deleted_key(); }
- key_type deleted_key() const { return rep.deleted_key(); }
-
- // These are standard
- size_type erase(const key_type& key) { return rep.erase(key); }
- void erase(iterator it) { rep.erase(it); }
- void erase(iterator f, iterator l) { rep.erase(f, l); }
-
-
- // Comparison
- bool operator==(const sparse_hash_map& hs) const { return rep == hs.rep; }
- bool operator!=(const sparse_hash_map& hs) const { return rep != hs.rep; }
-
-
- // I/O -- this is an add-on for writing metainformation to disk
- //
- // For maximum flexibility, this does not assume a particular
- // file type (though it will probably be a FILE *). We just pass
- // the fp through to rep.
-
- // If your keys and values are simple enough, you can pass this
- // serializer to serialize()/unserialize(). "Simple enough" means
- // value_type is a POD type that contains no pointers. Note,
- // however, we don't try to normalize endianness.
- typedef typename ht::NopointerSerializer NopointerSerializer;
-
- // serializer: a class providing operator()(OUTPUT*, const value_type&)
- // (writing value_type to OUTPUT). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
- // pointer to a class providing size_t Write(const void*, size_t),
- // which writes a buffer into a stream (which fp presumably
- // owns) and returns the number of bytes successfully written.
- // Note basic_ostream<not_char> is not currently supported.
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT* fp) {
- return rep.serialize(serializer, fp);
- }
-
- // serializer: a functor providing operator()(INPUT*, value_type*)
- // (reading from INPUT and into value_type). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
- // pointer to a class providing size_t Read(void*, size_t),
- // which reads into a buffer from a stream (which fp presumably
- // owns) and returns the number of bytes successfully read.
- // Note basic_istream<not_char> is not currently supported.
- // NOTE: Since value_type is std::pair<const Key, T>, ValueSerializer
- // may need to do a const cast in order to fill in the key.
- // NOTE: if Key or T are not POD types, the serializer MUST use
- // placement-new to initialize their values, rather than a normal
- // equals-assignment or similar. (The value_type* passed into the
- // serializer points to garbage memory.)
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT* fp) {
- return rep.unserialize(serializer, fp);
- }
-
- // The four methods below are DEPRECATED.
- // Use serialize() and unserialize() for new code.
- template <typename OUTPUT>
- bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
-
- template <typename INPUT>
- bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
-
- template <typename OUTPUT>
- bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
-
- template <typename INPUT>
- bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
-};
-
-// We need a global swap as well
-template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
-inline void swap(sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
- sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2) {
- hm1.swap(hm2);
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _SPARSE_HASH_MAP_H_ */
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// This is just a very thin wrapper over sparsehashtable.h, just
+// like sgi stl's stl_hash_map is a very thin wrapper over
+// stl_hashtable. The major thing we define is operator[], because
+// we have a concept of a data_type which stl_hashtable doesn't
+// (it only has a key and a value).
+//
+// We adhere mostly to the STL semantics for hash-map. One important
+// exception is that insert() may invalidate iterators entirely -- STL
+// semantics are that insert() may reorder iterators, but they all
+// still refer to something valid in the hashtable. Not so for us.
+// Likewise, insert() may invalidate pointers into the hashtable.
+// (Whether insert invalidates iterators and pointers depends on
+// whether it results in a hashtable resize). On the plus side,
+// delete() doesn't invalidate iterators or pointers at all, or even
+// change the ordering of elements.
+//
+// Here are a few "power user" tips:
+//
+// 1) set_deleted_key():
+// Unlike STL's hash_map, if you want to use erase() you
+// *must* call set_deleted_key() after construction.
+//
+// 2) resize(0):
+// When an item is deleted, its memory isn't freed right
+// away. This is what allows you to iterate over a hashtable
+// and call erase() without invalidating the iterator.
+// To force the memory to be freed, call resize(0).
+// For tr1 compatibility, this can also be called as rehash(0).
+//
+// 3) min_load_factor(0.0)
+// Setting the minimum load factor to 0.0 guarantees that
+// the hash table will never shrink.
+//
+// Roughly speaking:
+// (1) dense_hash_map: fastest, uses the most memory unless entries are small
+// (2) sparse_hash_map: slowest, uses the least memory
+// (3) hash_map / unordered_map (STL): in the middle
+//
+// Typically I use sparse_hash_map when I care about space and/or when
+// I need to save the hashtable on disk. I use hash_map otherwise. I
+// don't personally use dense_hash_map ever; some people use it for
+// small maps with lots of lookups.
+//
+// - dense_hash_map has, typically, about 78% memory overhead (if your
+// data takes up X bytes, the hash_map uses .78X more bytes in overhead).
+// - sparse_hash_map has about 4 bits overhead per entry.
+// - sparse_hash_map can be 3-7 times slower than the others for lookup and,
+// especially, inserts. See time_hash_map.cc for details.
+//
+// See /usr/(local/)?doc/sparsehash-*/sparse_hash_map.html
+// for information about how to use this class.
+
+#ifndef _SPARSE_HASH_MAP_H_
+#define _SPARSE_HASH_MAP_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <algorithm> // needed by stl_alloc
+#include <functional> // for equal_to<>, select1st<>, etc
+#include <memory> // for alloc
+#include <utility> // for pair<>
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+#include <sparsehash/internal/sparsehashtable.h> // IWYU pragma: export
+#include HASH_FUN_H // for hash<>
+_START_GOOGLE_NAMESPACE_
+
+template <class Key, class T,
+ class HashFcn = SPARSEHASH_HASH<Key>, // defined in sparseconfig.h
+ class EqualKey = std::equal_to<Key>,
+ class Alloc = libc_allocator_with_realloc<std::pair<const Key, T> > >
+class sparse_hash_map {
+ private:
+ // Apparently select1st is not stl-standard, so we define our own
+ struct SelectKey {
+ typedef const Key& result_type;
+ const Key& operator()(const std::pair<const Key, T>& p) const {
+ return p.first;
+ }
+ };
+ struct SetKey {
+ void operator()(std::pair<const Key, T>* value, const Key& new_key) const {
+ *const_cast<Key*>(&value->first) = new_key;
+ // It would be nice to clear the rest of value here as well, in
+ // case it's taking up a lot of memory. We do this by clearing
+ // the value. This assumes T has a zero-arg constructor!
+ value->second = T();
+ }
+ };
+ // For operator[].
+ struct DefaultValue {
+ std::pair<const Key, T> operator()(const Key& key) {
+ return std::make_pair(key, T());
+ }
+ };
+
+ // The actual data
+ typedef sparse_hashtable<std::pair<const Key, T>, Key, HashFcn, SelectKey,
+ SetKey, EqualKey, Alloc> ht;
+ ht rep;
+
+ public:
+ typedef typename ht::key_type key_type;
+ typedef T data_type;
+ typedef T mapped_type;
+ typedef typename ht::value_type value_type;
+ typedef typename ht::hasher hasher;
+ typedef typename ht::key_equal key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename ht::size_type size_type;
+ typedef typename ht::difference_type difference_type;
+ typedef typename ht::pointer pointer;
+ typedef typename ht::const_pointer const_pointer;
+ typedef typename ht::reference reference;
+ typedef typename ht::const_reference const_reference;
+
+ typedef typename ht::iterator iterator;
+ typedef typename ht::const_iterator const_iterator;
+ typedef typename ht::local_iterator local_iterator;
+ typedef typename ht::const_local_iterator const_local_iterator;
+
+ // Iterator functions
+ iterator begin() { return rep.begin(); }
+ iterator end() { return rep.end(); }
+ const_iterator begin() const { return rep.begin(); }
+ const_iterator end() const { return rep.end(); }
+
+ // These come from tr1's unordered_map. For us, a bucket has 0 or 1 elements.
+ local_iterator begin(size_type i) { return rep.begin(i); }
+ local_iterator end(size_type i) { return rep.end(i); }
+ const_local_iterator begin(size_type i) const { return rep.begin(i); }
+ const_local_iterator end(size_type i) const { return rep.end(i); }
+
+ // Accessor functions
+ allocator_type get_allocator() const { return rep.get_allocator(); }
+ hasher hash_funct() const { return rep.hash_funct(); }
+ hasher hash_function() const { return hash_funct(); }
+ key_equal key_eq() const { return rep.key_eq(); }
+
+
+ // Constructors
+ explicit sparse_hash_map(size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
+ }
+
+ template <class InputIterator>
+ sparse_hash_map(InputIterator f, InputIterator l,
+ size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, SelectKey(), SetKey(), alloc) {
+ rep.insert(f, l);
+ }
+ // We use the default copy constructor
+ // We use the default operator=()
+ // We use the default destructor
+
+ void clear() { rep.clear(); }
+ void swap(sparse_hash_map& hs) { rep.swap(hs.rep); }
+
+
+ // Functions concerning size
+ size_type size() const { return rep.size(); }
+ size_type max_size() const { return rep.max_size(); }
+ bool empty() const { return rep.empty(); }
+ size_type bucket_count() const { return rep.bucket_count(); }
+ size_type max_bucket_count() const { return rep.max_bucket_count(); }
+
+ // These are tr1 methods. bucket() is the bucket the key is or would be in.
+ size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
+ size_type bucket(const key_type& key) const { return rep.bucket(key); }
+ float load_factor() const {
+ return size() * 1.0f / bucket_count();
+ }
+ float max_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return grow;
+ }
+ void max_load_factor(float new_grow) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(shrink, new_grow);
+ }
+ // These aren't tr1 methods but perhaps ought to be.
+ float min_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return shrink;
+ }
+ void min_load_factor(float new_shrink) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(new_shrink, grow);
+ }
+ // Deprecated; use min_load_factor() or max_load_factor() instead.
+ void set_resizing_parameters(float shrink, float grow) {
+ rep.set_resizing_parameters(shrink, grow);
+ }
+
+ void resize(size_type hint) { rep.resize(hint); }
+ void rehash(size_type hint) { resize(hint); } // the tr1 name
+
+ // Lookup routines
+ iterator find(const key_type& key) { return rep.find(key); }
+ const_iterator find(const key_type& key) const { return rep.find(key); }
+
+ data_type& operator[](const key_type& key) { // This is our value-add!
+ // If key is in the hashtable, returns find(key)->second,
+ // otherwise returns insert(value_type(key, T()).first->second.
+ // Note it does not create an empty T unless the find fails.
+ return rep.template find_or_insert<DefaultValue>(key).second;
+ }
+
+ size_type count(const key_type& key) const { return rep.count(key); }
+
+ std::pair<iterator, iterator> equal_range(const key_type& key) {
+ return rep.equal_range(key);
+ }
+ std::pair<const_iterator, const_iterator> equal_range(const key_type& key)
+ const {
+ return rep.equal_range(key);
+ }
+
+ // Insertion routines
+ std::pair<iterator, bool> insert(const value_type& obj) {
+ return rep.insert(obj);
+ }
+ template <class InputIterator> void insert(InputIterator f, InputIterator l) {
+ rep.insert(f, l);
+ }
+ void insert(const_iterator f, const_iterator l) {
+ rep.insert(f, l);
+ }
+ // Required for std::insert_iterator; the passed-in iterator is ignored.
+ iterator insert(iterator, const value_type& obj) {
+ return insert(obj).first;
+ }
+
+ // Deletion routines
+ // THESE ARE NON-STANDARD! I make you specify an "impossible" key
+ // value to identify deleted buckets. You can change the key as
+ // time goes on, or get rid of it entirely to be insert-only.
+ void set_deleted_key(const key_type& key) {
+ rep.set_deleted_key(key);
+ }
+ void clear_deleted_key() { rep.clear_deleted_key(); }
+ key_type deleted_key() const { return rep.deleted_key(); }
+
+ // These are standard
+ size_type erase(const key_type& key) { return rep.erase(key); }
+ void erase(iterator it) { rep.erase(it); }
+ void erase(iterator f, iterator l) { rep.erase(f, l); }
+
+
+ // Comparison
+ bool operator==(const sparse_hash_map& hs) const { return rep == hs.rep; }
+ bool operator!=(const sparse_hash_map& hs) const { return rep != hs.rep; }
+
+
+ // I/O -- this is an add-on for writing metainformation to disk
+ //
+ // For maximum flexibility, this does not assume a particular
+ // file type (though it will probably be a FILE *). We just pass
+ // the fp through to rep.
+
+ // If your keys and values are simple enough, you can pass this
+ // serializer to serialize()/unserialize(). "Simple enough" means
+ // value_type is a POD type that contains no pointers. Note,
+ // however, we don't try to normalize endianness.
+ typedef typename ht::NopointerSerializer NopointerSerializer;
+
+ // serializer: a class providing operator()(OUTPUT*, const value_type&)
+ // (writing value_type to OUTPUT). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
+ // pointer to a class providing size_t Write(const void*, size_t),
+ // which writes a buffer into a stream (which fp presumably
+ // owns) and returns the number of bytes successfully written.
+ // Note basic_ostream<not_char> is not currently supported.
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT* fp) {
+ return rep.serialize(serializer, fp);
+ }
+
+ // serializer: a functor providing operator()(INPUT*, value_type*)
+ // (reading from INPUT and into value_type). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
+ // pointer to a class providing size_t Read(void*, size_t),
+ // which reads into a buffer from a stream (which fp presumably
+ // owns) and returns the number of bytes successfully read.
+ // Note basic_istream<not_char> is not currently supported.
+ // NOTE: Since value_type is std::pair<const Key, T>, ValueSerializer
+ // may need to do a const cast in order to fill in the key.
+ // NOTE: if Key or T are not POD types, the serializer MUST use
+ // placement-new to initialize their values, rather than a normal
+ // equals-assignment or similar. (The value_type* passed into the
+ // serializer points to garbage memory.)
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT* fp) {
+ return rep.unserialize(serializer, fp);
+ }
+
+ // The four methods below are DEPRECATED.
+ // Use serialize() and unserialize() for new code.
+ template <typename OUTPUT>
+ bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
+
+ template <typename INPUT>
+ bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
+
+ template <typename OUTPUT>
+ bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
+
+ template <typename INPUT>
+ bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
+};
+
+// We need a global swap as well
+template <class Key, class T, class HashFcn, class EqualKey, class Alloc>
+inline void swap(sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm1,
+ sparse_hash_map<Key, T, HashFcn, EqualKey, Alloc>& hm2) {
+ hm1.swap(hm2);
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _SPARSE_HASH_MAP_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/sparse_hash_set b/contrib/libs/sparsehash/src/sparsehash/sparse_hash_set
index ae4a97a62c..555c425514 100644
--- a/contrib/libs/sparsehash/src/sparsehash/sparse_hash_set
+++ b/contrib/libs/sparsehash/src/sparsehash/sparse_hash_set
@@ -1,338 +1,338 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-// This is just a very thin wrapper over sparsehashtable.h, just
-// like sgi stl's stl_hash_set is a very thin wrapper over
-// stl_hashtable. The major thing we define is operator[], because
-// we have a concept of a data_type which stl_hashtable doesn't
-// (it only has a key and a value).
-//
-// This is more different from sparse_hash_map than you might think,
-// because all iterators for sets are const (you obviously can't
-// change the key, and for sets there is no value).
-//
-// We adhere mostly to the STL semantics for hash-map. One important
-// exception is that insert() may invalidate iterators entirely -- STL
-// semantics are that insert() may reorder iterators, but they all
-// still refer to something valid in the hashtable. Not so for us.
-// Likewise, insert() may invalidate pointers into the hashtable.
-// (Whether insert invalidates iterators and pointers depends on
-// whether it results in a hashtable resize). On the plus side,
-// delete() doesn't invalidate iterators or pointers at all, or even
-// change the ordering of elements.
-//
-// Here are a few "power user" tips:
-//
-// 1) set_deleted_key():
-// Unlike STL's hash_map, if you want to use erase() you
-// *must* call set_deleted_key() after construction.
-//
-// 2) resize(0):
-// When an item is deleted, its memory isn't freed right
-// away. This allows you to iterate over a hashtable,
-// and call erase(), without invalidating the iterator.
-// To force the memory to be freed, call resize(0).
-// For tr1 compatibility, this can also be called as rehash(0).
-//
-// 3) min_load_factor(0.0)
-// Setting the minimum load factor to 0.0 guarantees that
-// the hash table will never shrink.
-//
-// Roughly speaking:
-// (1) dense_hash_set: fastest, uses the most memory unless entries are small
-// (2) sparse_hash_set: slowest, uses the least memory
-// (3) hash_set / unordered_set (STL): in the middle
-//
-// Typically I use sparse_hash_set when I care about space and/or when
-// I need to save the hashtable on disk. I use hash_set otherwise. I
-// don't personally use dense_hash_set ever; some people use it for
-// small sets with lots of lookups.
-//
-// - dense_hash_set has, typically, about 78% memory overhead (if your
-// data takes up X bytes, the hash_set uses .78X more bytes in overhead).
-// - sparse_hash_set has about 4 bits overhead per entry.
-// - sparse_hash_set can be 3-7 times slower than the others for lookup and,
-// especially, inserts. See time_hash_map.cc for details.
-//
-// See /usr/(local/)?doc/sparsehash-*/sparse_hash_set.html
-// for information about how to use this class.
-
-#ifndef _SPARSE_HASH_SET_H_
-#define _SPARSE_HASH_SET_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <algorithm> // needed by stl_alloc
-#include <functional> // for equal_to<>
-#include <memory> // for alloc (which we don't use)
-#include <utility> // for pair<>
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-#include <sparsehash/internal/sparsehashtable.h> // IWYU pragma: export
-#include HASH_FUN_H // for hash<>
-
-_START_GOOGLE_NAMESPACE_
-
-template <class Value,
- class HashFcn = SPARSEHASH_HASH<Value>, // defined in sparseconfig.h
- class EqualKey = std::equal_to<Value>,
- class Alloc = libc_allocator_with_realloc<Value> >
-class sparse_hash_set {
- private:
- // Apparently identity is not stl-standard, so we define our own
- struct Identity {
- typedef const Value& result_type;
- const Value& operator()(const Value& v) const { return v; }
- };
- struct SetKey {
- void operator()(Value* value, const Value& new_key) const {
- *value = new_key;
- }
- };
-
- typedef sparse_hashtable<Value, Value, HashFcn, Identity, SetKey,
- EqualKey, Alloc> ht;
- ht rep;
-
- public:
- typedef typename ht::key_type key_type;
- typedef typename ht::value_type value_type;
- typedef typename ht::hasher hasher;
- typedef typename ht::key_equal key_equal;
- typedef Alloc allocator_type;
-
- typedef typename ht::size_type size_type;
- typedef typename ht::difference_type difference_type;
- typedef typename ht::const_pointer pointer;
- typedef typename ht::const_pointer const_pointer;
- typedef typename ht::const_reference reference;
- typedef typename ht::const_reference const_reference;
-
- typedef typename ht::const_iterator iterator;
- typedef typename ht::const_iterator const_iterator;
- typedef typename ht::const_local_iterator local_iterator;
- typedef typename ht::const_local_iterator const_local_iterator;
-
-
- // Iterator functions -- recall all iterators are const
- iterator begin() const { return rep.begin(); }
- iterator end() const { return rep.end(); }
-
- // These come from tr1's unordered_set. For us, a bucket has 0 or 1 elements.
- local_iterator begin(size_type i) const { return rep.begin(i); }
- local_iterator end(size_type i) const { return rep.end(i); }
-
-
- // Accessor functions
- allocator_type get_allocator() const { return rep.get_allocator(); }
- hasher hash_funct() const { return rep.hash_funct(); }
- hasher hash_function() const { return hash_funct(); } // tr1 name
- key_equal key_eq() const { return rep.key_eq(); }
-
-
- // Constructors
- explicit sparse_hash_set(size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
- }
-
- template <class InputIterator>
- sparse_hash_set(InputIterator f, InputIterator l,
- size_type expected_max_items_in_table = 0,
- const hasher& hf = hasher(),
- const key_equal& eql = key_equal(),
- const allocator_type& alloc = allocator_type())
- : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
- rep.insert(f, l);
- }
- // We use the default copy constructor
- // We use the default operator=()
- // We use the default destructor
-
- void clear() { rep.clear(); }
- void swap(sparse_hash_set& hs) { rep.swap(hs.rep); }
-
-
- // Functions concerning size
- size_type size() const { return rep.size(); }
- size_type max_size() const { return rep.max_size(); }
- bool empty() const { return rep.empty(); }
- size_type bucket_count() const { return rep.bucket_count(); }
- size_type max_bucket_count() const { return rep.max_bucket_count(); }
-
- // These are tr1 methods. bucket() is the bucket the key is or would be in.
- size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
- size_type bucket(const key_type& key) const { return rep.bucket(key); }
- float load_factor() const {
- return size() * 1.0f / bucket_count();
- }
- float max_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return grow;
- }
- void max_load_factor(float new_grow) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(shrink, new_grow);
- }
- // These aren't tr1 methods but perhaps ought to be.
- float min_load_factor() const {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- return shrink;
- }
- void min_load_factor(float new_shrink) {
- float shrink, grow;
- rep.get_resizing_parameters(&shrink, &grow);
- rep.set_resizing_parameters(new_shrink, grow);
- }
- // Deprecated; use min_load_factor() or max_load_factor() instead.
- void set_resizing_parameters(float shrink, float grow) {
- rep.set_resizing_parameters(shrink, grow);
- }
-
- void resize(size_type hint) { rep.resize(hint); }
- void rehash(size_type hint) { resize(hint); } // the tr1 name
-
- // Lookup routines
- iterator find(const key_type& key) const { return rep.find(key); }
-
- size_type count(const key_type& key) const { return rep.count(key); }
-
- std::pair<iterator, iterator> equal_range(const key_type& key) const {
- return rep.equal_range(key);
- }
-
-
- // Insertion routines
- std::pair<iterator, bool> insert(const value_type& obj) {
- std::pair<typename ht::iterator, bool> p = rep.insert(obj);
- return std::pair<iterator, bool>(p.first, p.second); // const to non-const
- }
- template <class InputIterator> void insert(InputIterator f, InputIterator l) {
- rep.insert(f, l);
- }
- void insert(const_iterator f, const_iterator l) {
- rep.insert(f, l);
- }
- // Required for std::insert_iterator; the passed-in iterator is ignored.
- iterator insert(iterator, const value_type& obj) {
- return insert(obj).first;
- }
-
- // Deletion routines
- // THESE ARE NON-STANDARD! I make you specify an "impossible" key
- // value to identify deleted buckets. You can change the key as
- // time goes on, or get rid of it entirely to be insert-only.
- void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
- void clear_deleted_key() { rep.clear_deleted_key(); }
- key_type deleted_key() const { return rep.deleted_key(); }
-
- // These are standard
- size_type erase(const key_type& key) { return rep.erase(key); }
- void erase(iterator it) { rep.erase(it); }
- void erase(iterator f, iterator l) { rep.erase(f, l); }
-
-
- // Comparison
- bool operator==(const sparse_hash_set& hs) const { return rep == hs.rep; }
- bool operator!=(const sparse_hash_set& hs) const { return rep != hs.rep; }
-
-
- // I/O -- this is an add-on for writing metainformation to disk
- //
- // For maximum flexibility, this does not assume a particular
- // file type (though it will probably be a FILE *). We just pass
- // the fp through to rep.
-
- // If your keys and values are simple enough, you can pass this
- // serializer to serialize()/unserialize(). "Simple enough" means
- // value_type is a POD type that contains no pointers. Note,
- // however, we don't try to normalize endianness.
- typedef typename ht::NopointerSerializer NopointerSerializer;
-
- // serializer: a class providing operator()(OUTPUT*, const value_type&)
- // (writing value_type to OUTPUT). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
- // pointer to a class providing size_t Write(const void*, size_t),
- // which writes a buffer into a stream (which fp presumably
- // owns) and returns the number of bytes successfully written.
- // Note basic_ostream<not_char> is not currently supported.
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT* fp) {
- return rep.serialize(serializer, fp);
- }
-
- // serializer: a functor providing operator()(INPUT*, value_type*)
- // (reading from INPUT and into value_type). You can specify a
- // NopointerSerializer object if appropriate (see above).
- // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
- // pointer to a class providing size_t Read(void*, size_t),
- // which reads into a buffer from a stream (which fp presumably
- // owns) and returns the number of bytes successfully read.
- // Note basic_istream<not_char> is not currently supported.
- // NOTE: Since value_type is const Key, ValueSerializer
- // may need to do a const cast in order to fill in the key.
- // NOTE: if Key is not a POD type, the serializer MUST use
- // placement-new to initialize its value, rather than a normal
- // equals-assignment or similar. (The value_type* passed into
- // the serializer points to garbage memory.)
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT* fp) {
- return rep.unserialize(serializer, fp);
- }
-
- // The four methods below are DEPRECATED.
- // Use serialize() and unserialize() for new code.
- template <typename OUTPUT>
- bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
-
- template <typename INPUT>
- bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
-
- template <typename OUTPUT>
- bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
-
- template <typename INPUT>
- bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
-};
-
-template <class Val, class HashFcn, class EqualKey, class Alloc>
-inline void swap(sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
- sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
- hs1.swap(hs2);
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif /* _SPARSE_HASH_SET_H_ */
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+// This is just a very thin wrapper over sparsehashtable.h, just
+// like sgi stl's stl_hash_set is a very thin wrapper over
+// stl_hashtable. The major thing we define is operator[], because
+// we have a concept of a data_type which stl_hashtable doesn't
+// (it only has a key and a value).
+//
+// This is more different from sparse_hash_map than you might think,
+// because all iterators for sets are const (you obviously can't
+// change the key, and for sets there is no value).
+//
+// We adhere mostly to the STL semantics for hash-map. One important
+// exception is that insert() may invalidate iterators entirely -- STL
+// semantics are that insert() may reorder iterators, but they all
+// still refer to something valid in the hashtable. Not so for us.
+// Likewise, insert() may invalidate pointers into the hashtable.
+// (Whether insert invalidates iterators and pointers depends on
+// whether it results in a hashtable resize). On the plus side,
+// delete() doesn't invalidate iterators or pointers at all, or even
+// change the ordering of elements.
+//
+// Here are a few "power user" tips:
+//
+// 1) set_deleted_key():
+// Unlike STL's hash_map, if you want to use erase() you
+// *must* call set_deleted_key() after construction.
+//
+// 2) resize(0):
+// When an item is deleted, its memory isn't freed right
+// away. This allows you to iterate over a hashtable,
+// and call erase(), without invalidating the iterator.
+// To force the memory to be freed, call resize(0).
+// For tr1 compatibility, this can also be called as rehash(0).
+//
+// 3) min_load_factor(0.0)
+// Setting the minimum load factor to 0.0 guarantees that
+// the hash table will never shrink.
+//
+// Roughly speaking:
+// (1) dense_hash_set: fastest, uses the most memory unless entries are small
+// (2) sparse_hash_set: slowest, uses the least memory
+// (3) hash_set / unordered_set (STL): in the middle
+//
+// Typically I use sparse_hash_set when I care about space and/or when
+// I need to save the hashtable on disk. I use hash_set otherwise. I
+// don't personally use dense_hash_set ever; some people use it for
+// small sets with lots of lookups.
+//
+// - dense_hash_set has, typically, about 78% memory overhead (if your
+// data takes up X bytes, the hash_set uses .78X more bytes in overhead).
+// - sparse_hash_set has about 4 bits overhead per entry.
+// - sparse_hash_set can be 3-7 times slower than the others for lookup and,
+// especially, inserts. See time_hash_map.cc for details.
+//
+// See /usr/(local/)?doc/sparsehash-*/sparse_hash_set.html
+// for information about how to use this class.
+
+#ifndef _SPARSE_HASH_SET_H_
+#define _SPARSE_HASH_SET_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <algorithm> // needed by stl_alloc
+#include <functional> // for equal_to<>
+#include <memory> // for alloc (which we don't use)
+#include <utility> // for pair<>
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+#include <sparsehash/internal/sparsehashtable.h> // IWYU pragma: export
+#include HASH_FUN_H // for hash<>
+
+_START_GOOGLE_NAMESPACE_
+
+template <class Value,
+ class HashFcn = SPARSEHASH_HASH<Value>, // defined in sparseconfig.h
+ class EqualKey = std::equal_to<Value>,
+ class Alloc = libc_allocator_with_realloc<Value> >
+class sparse_hash_set {
+ private:
+ // Apparently identity is not stl-standard, so we define our own
+ struct Identity {
+ typedef const Value& result_type;
+ const Value& operator()(const Value& v) const { return v; }
+ };
+ struct SetKey {
+ void operator()(Value* value, const Value& new_key) const {
+ *value = new_key;
+ }
+ };
+
+ typedef sparse_hashtable<Value, Value, HashFcn, Identity, SetKey,
+ EqualKey, Alloc> ht;
+ ht rep;
+
+ public:
+ typedef typename ht::key_type key_type;
+ typedef typename ht::value_type value_type;
+ typedef typename ht::hasher hasher;
+ typedef typename ht::key_equal key_equal;
+ typedef Alloc allocator_type;
+
+ typedef typename ht::size_type size_type;
+ typedef typename ht::difference_type difference_type;
+ typedef typename ht::const_pointer pointer;
+ typedef typename ht::const_pointer const_pointer;
+ typedef typename ht::const_reference reference;
+ typedef typename ht::const_reference const_reference;
+
+ typedef typename ht::const_iterator iterator;
+ typedef typename ht::const_iterator const_iterator;
+ typedef typename ht::const_local_iterator local_iterator;
+ typedef typename ht::const_local_iterator const_local_iterator;
+
+
+ // Iterator functions -- recall all iterators are const
+ iterator begin() const { return rep.begin(); }
+ iterator end() const { return rep.end(); }
+
+ // These come from tr1's unordered_set. For us, a bucket has 0 or 1 elements.
+ local_iterator begin(size_type i) const { return rep.begin(i); }
+ local_iterator end(size_type i) const { return rep.end(i); }
+
+
+ // Accessor functions
+ allocator_type get_allocator() const { return rep.get_allocator(); }
+ hasher hash_funct() const { return rep.hash_funct(); }
+ hasher hash_function() const { return hash_funct(); } // tr1 name
+ key_equal key_eq() const { return rep.key_eq(); }
+
+
+ // Constructors
+ explicit sparse_hash_set(size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
+ }
+
+ template <class InputIterator>
+ sparse_hash_set(InputIterator f, InputIterator l,
+ size_type expected_max_items_in_table = 0,
+ const hasher& hf = hasher(),
+ const key_equal& eql = key_equal(),
+ const allocator_type& alloc = allocator_type())
+ : rep(expected_max_items_in_table, hf, eql, Identity(), SetKey(), alloc) {
+ rep.insert(f, l);
+ }
+ // We use the default copy constructor
+ // We use the default operator=()
+ // We use the default destructor
+
+ void clear() { rep.clear(); }
+ void swap(sparse_hash_set& hs) { rep.swap(hs.rep); }
+
+
+ // Functions concerning size
+ size_type size() const { return rep.size(); }
+ size_type max_size() const { return rep.max_size(); }
+ bool empty() const { return rep.empty(); }
+ size_type bucket_count() const { return rep.bucket_count(); }
+ size_type max_bucket_count() const { return rep.max_bucket_count(); }
+
+ // These are tr1 methods. bucket() is the bucket the key is or would be in.
+ size_type bucket_size(size_type i) const { return rep.bucket_size(i); }
+ size_type bucket(const key_type& key) const { return rep.bucket(key); }
+ float load_factor() const {
+ return size() * 1.0f / bucket_count();
+ }
+ float max_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return grow;
+ }
+ void max_load_factor(float new_grow) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(shrink, new_grow);
+ }
+ // These aren't tr1 methods but perhaps ought to be.
+ float min_load_factor() const {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ return shrink;
+ }
+ void min_load_factor(float new_shrink) {
+ float shrink, grow;
+ rep.get_resizing_parameters(&shrink, &grow);
+ rep.set_resizing_parameters(new_shrink, grow);
+ }
+ // Deprecated; use min_load_factor() or max_load_factor() instead.
+ void set_resizing_parameters(float shrink, float grow) {
+ rep.set_resizing_parameters(shrink, grow);
+ }
+
+ void resize(size_type hint) { rep.resize(hint); }
+ void rehash(size_type hint) { resize(hint); } // the tr1 name
+
+ // Lookup routines
+ iterator find(const key_type& key) const { return rep.find(key); }
+
+ size_type count(const key_type& key) const { return rep.count(key); }
+
+ std::pair<iterator, iterator> equal_range(const key_type& key) const {
+ return rep.equal_range(key);
+ }
+
+
+ // Insertion routines
+ std::pair<iterator, bool> insert(const value_type& obj) {
+ std::pair<typename ht::iterator, bool> p = rep.insert(obj);
+ return std::pair<iterator, bool>(p.first, p.second); // const to non-const
+ }
+ template <class InputIterator> void insert(InputIterator f, InputIterator l) {
+ rep.insert(f, l);
+ }
+ void insert(const_iterator f, const_iterator l) {
+ rep.insert(f, l);
+ }
+ // Required for std::insert_iterator; the passed-in iterator is ignored.
+ iterator insert(iterator, const value_type& obj) {
+ return insert(obj).first;
+ }
+
+ // Deletion routines
+ // THESE ARE NON-STANDARD! I make you specify an "impossible" key
+ // value to identify deleted buckets. You can change the key as
+ // time goes on, or get rid of it entirely to be insert-only.
+ void set_deleted_key(const key_type& key) { rep.set_deleted_key(key); }
+ void clear_deleted_key() { rep.clear_deleted_key(); }
+ key_type deleted_key() const { return rep.deleted_key(); }
+
+ // These are standard
+ size_type erase(const key_type& key) { return rep.erase(key); }
+ void erase(iterator it) { rep.erase(it); }
+ void erase(iterator f, iterator l) { rep.erase(f, l); }
+
+
+ // Comparison
+ bool operator==(const sparse_hash_set& hs) const { return rep == hs.rep; }
+ bool operator!=(const sparse_hash_set& hs) const { return rep != hs.rep; }
+
+
+ // I/O -- this is an add-on for writing metainformation to disk
+ //
+ // For maximum flexibility, this does not assume a particular
+ // file type (though it will probably be a FILE *). We just pass
+ // the fp through to rep.
+
+ // If your keys and values are simple enough, you can pass this
+ // serializer to serialize()/unserialize(). "Simple enough" means
+ // value_type is a POD type that contains no pointers. Note,
+ // however, we don't try to normalize endianness.
+ typedef typename ht::NopointerSerializer NopointerSerializer;
+
+ // serializer: a class providing operator()(OUTPUT*, const value_type&)
+ // (writing value_type to OUTPUT). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an ostream*/subclass_of_ostream*, OR a
+ // pointer to a class providing size_t Write(const void*, size_t),
+ // which writes a buffer into a stream (which fp presumably
+ // owns) and returns the number of bytes successfully written.
+ // Note basic_ostream<not_char> is not currently supported.
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT* fp) {
+ return rep.serialize(serializer, fp);
+ }
+
+ // serializer: a functor providing operator()(INPUT*, value_type*)
+ // (reading from INPUT and into value_type). You can specify a
+ // NopointerSerializer object if appropriate (see above).
+ // fp: either a FILE*, OR an istream*/subclass_of_istream*, OR a
+ // pointer to a class providing size_t Read(void*, size_t),
+ // which reads into a buffer from a stream (which fp presumably
+ // owns) and returns the number of bytes successfully read.
+ // Note basic_istream<not_char> is not currently supported.
+ // NOTE: Since value_type is const Key, ValueSerializer
+ // may need to do a const cast in order to fill in the key.
+ // NOTE: if Key is not a POD type, the serializer MUST use
+ // placement-new to initialize its value, rather than a normal
+ // equals-assignment or similar. (The value_type* passed into
+ // the serializer points to garbage memory.)
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT* fp) {
+ return rep.unserialize(serializer, fp);
+ }
+
+ // The four methods below are DEPRECATED.
+ // Use serialize() and unserialize() for new code.
+ template <typename OUTPUT>
+ bool write_metadata(OUTPUT *fp) { return rep.write_metadata(fp); }
+
+ template <typename INPUT>
+ bool read_metadata(INPUT *fp) { return rep.read_metadata(fp); }
+
+ template <typename OUTPUT>
+ bool write_nopointer_data(OUTPUT *fp) { return rep.write_nopointer_data(fp); }
+
+ template <typename INPUT>
+ bool read_nopointer_data(INPUT *fp) { return rep.read_nopointer_data(fp); }
+};
+
+template <class Val, class HashFcn, class EqualKey, class Alloc>
+inline void swap(sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs1,
+ sparse_hash_set<Val, HashFcn, EqualKey, Alloc>& hs2) {
+ hs1.swap(hs2);
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif /* _SPARSE_HASH_SET_H_ */
diff --git a/contrib/libs/sparsehash/src/sparsehash/sparsetable b/contrib/libs/sparsehash/src/sparsehash/sparsetable
index 6259ebdb04..11fd3990ae 100644
--- a/contrib/libs/sparsehash/src/sparsehash/sparsetable
+++ b/contrib/libs/sparsehash/src/sparsehash/sparsetable
@@ -1,1825 +1,1825 @@
-// Copyright (c) 2005, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ---
-//
-//
-// A sparsetable is a random container that implements a sparse array,
-// that is, an array that uses very little memory to store unassigned
-// indices (in this case, between 1-2 bits per unassigned index). For
-// instance, if you allocate an array of size 5 and assign a[2] = <big
-// struct>, then a[2] will take up a lot of memory but a[0], a[1],
-// a[3], and a[4] will not. Array elements that have a value are
-// called "assigned". Array elements that have no value yet, or have
-// had their value cleared using erase() or clear(), are called
-// "unassigned".
-//
-// Unassigned values seem to have the default value of T (see below).
-// Nevertheless, there is a difference between an unassigned index and
-// one explicitly assigned the value of T(). The latter is considered
-// assigned.
-//
-// Access to an array element is constant time, as is insertion and
-// deletion. Insertion and deletion may be fairly slow, however:
-// because of this container's memory economy, each insert and delete
-// causes a memory reallocation.
-//
-// NOTE: You should not test(), get(), or set() any index that is
-// greater than sparsetable.size(). If you need to do that, call
-// resize() first.
-//
-// --- Template parameters
-// PARAMETER DESCRIPTION DEFAULT
-// T The value of the array: the type of --
-// object that is stored in the array.
-//
-// GROUP_SIZE How large each "group" in the table 48
-// is (see below). Larger values use
-// a little less memory but cause most
-// operations to be a little slower
-//
-// Alloc: Allocator to use to allocate memory. libc_allocator_with_realloc
-//
-// --- Model of
-// Random Access Container
-//
-// --- Type requirements
-// T must be Copy Constructible. It need not be Assignable.
-//
-// --- Public base classes
-// None.
-//
-// --- Members
-// Type members
-//
-// MEMBER WHERE DEFINED DESCRIPTION
-// value_type container The type of object, T, stored in the array
-// allocator_type container Allocator to use
-// pointer container Pointer to p
-// const_pointer container Const pointer to p
-// reference container Reference to t
-// const_reference container Const reference to t
-// size_type container An unsigned integral type
-// difference_type container A signed integral type
-// iterator [*] container Iterator used to iterate over a sparsetable
-// const_iterator container Const iterator used to iterate over a table
-// reverse_iterator reversible Iterator used to iterate backwards over
-// container a sparsetable
-// const_reverse_iterator reversible container Guess
-// nonempty_iterator [+] sparsetable Iterates over assigned
-// array elements only
-// const_nonempty_iterator sparsetable Iterates over assigned
-// array elements only
-// reverse_nonempty_iterator sparsetable Iterates backwards over
-// assigned array elements only
-// const_reverse_nonempty_iterator sparsetable Iterates backwards over
-// assigned array elements only
-//
-// [*] All iterators are const in a sparsetable (though nonempty_iterators
-// may not be). Use get() and set() to assign values, not iterators.
-//
-// [+] iterators are random-access iterators. nonempty_iterators are
-// bidirectional iterators.
-
-// Iterator members
-// MEMBER WHERE DEFINED DESCRIPTION
-//
-// iterator begin() container An iterator to the beginning of the table
-// iterator end() container An iterator to the end of the table
-// const_iterator container A const_iterator pointing to the
-// begin() const beginning of a sparsetable
-// const_iterator container A const_iterator pointing to the
-// end() const end of a sparsetable
-//
-// reverse_iterator reversable Points to beginning of a reversed
-// rbegin() container sparsetable
-// reverse_iterator reversable Points to end of a reversed table
-// rend() container
-// const_reverse_iterator reversable Points to beginning of a
-// rbegin() const container reversed sparsetable
-// const_reverse_iterator reversable Points to end of a reversed table
-// rend() const container
-//
-// nonempty_iterator sparsetable Points to first assigned element
-// begin() of a sparsetable
-// nonempty_iterator sparsetable Points past last assigned element
-// end() of a sparsetable
-// const_nonempty_iterator sparsetable Points to first assigned element
-// begin() const of a sparsetable
-// const_nonempty_iterator sparsetable Points past last assigned element
-// end() const of a sparsetable
-//
-// reverse_nonempty_iterator sparsetable Points to first assigned element
-// begin() of a reversed sparsetable
-// reverse_nonempty_iterator sparsetable Points past last assigned element
-// end() of a reversed sparsetable
-// const_reverse_nonempty_iterator sparsetable Points to first assigned
-// begin() const elt of a reversed sparsetable
-// const_reverse_nonempty_iterator sparsetable Points past last assigned
-// end() const elt of a reversed sparsetable
-//
-//
-// Other members
-// MEMBER WHERE DEFINED DESCRIPTION
-// sparsetable() sparsetable A table of size 0; must resize()
-// before using.
-// sparsetable(size_type size) sparsetable A table of size size. All
-// indices are unassigned.
-// sparsetable(
-// const sparsetable &tbl) sparsetable Copy constructor
-// ~sparsetable() sparsetable The destructor
-// sparsetable &operator=( sparsetable The assignment operator
-// const sparsetable &tbl)
-//
-// void resize(size_type size) sparsetable Grow or shrink a table to
-// have size indices [*]
-//
-// void swap(sparsetable &x) sparsetable Swap two sparsetables
-// void swap(sparsetable &x, sparsetable Swap two sparsetables
-// sparsetable &y) (global, not member, function)
-//
-// size_type size() const sparsetable Number of "buckets" in the table
-// size_type max_size() const sparsetable Max allowed size of a sparsetable
-// bool empty() const sparsetable true if size() == 0
-// size_type num_nonempty() const sparsetable Number of assigned "buckets"
-//
-// const_reference get( sparsetable Value at index i, or default
-// size_type i) const value if i is unassigned
-// const_reference operator[]( sparsetable Identical to get(i) [+]
-// difference_type i) const
-// reference set(size_type i, sparsetable Set element at index i to
-// const_reference val) be a copy of val
-// bool test(size_type i) sparsetable True if element at index i
-// const has been assigned to
-// bool test(iterator pos) sparsetable True if element pointed to
-// const by pos has been assigned to
-// void erase(iterator pos) sparsetable Set element pointed to by
-// pos to be unassigned [!]
-// void erase(size_type i) sparsetable Set element i to be unassigned
-// void erase(iterator start, sparsetable Erases all elements between
-// iterator end) start and end
-// void clear() sparsetable Erases all elements in the table
-//
-// I/O versions exist for both FILE* and for File* (Google2-style files):
-// bool write_metadata(FILE *fp) sparsetable Writes a sparsetable to the
-// bool write_metadata(File *fp) given file. true if write
-// completes successfully
-// bool read_metadata(FILE *fp) sparsetable Replaces sparsetable with
-// bool read_metadata(File *fp) version read from fp. true
-// if read completes sucessfully
-// bool write_nopointer_data(FILE *fp) Read/write the data stored in
-// bool read_nopointer_data(FILE*fp) the table, if it's simple
-//
-// bool operator==( forward Tests two tables for equality.
-// const sparsetable &t1, container This is a global function,
-// const sparsetable &t2) not a member function.
-// bool operator<( forward Lexicographical comparison.
-// const sparsetable &t1, container This is a global function,
-// const sparsetable &t2) not a member function.
-//
-// [*] If you shrink a sparsetable using resize(), assigned elements
-// past the end of the table are removed using erase(). If you grow
-// a sparsetable, new unassigned indices are created.
-//
-// [+] Note that operator[] returns a const reference. You must use
-// set() to change the value of a table element.
-//
-// [!] Unassignment also calls the destructor.
-//
-// Iterators are invalidated whenever an item is inserted or
-// deleted (ie set() or erase() is used) or when the size of
-// the table changes (ie resize() or clear() is used).
-//
-// See doc/sparsetable.html for more information about how to use this class.
-
-// Note: this uses STL style for naming, rather than Google naming.
-// That's because this is an STL-y container
-
-#ifndef UTIL_GTL_SPARSETABLE_H_
-#define UTIL_GTL_SPARSETABLE_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <stdlib.h> // for malloc/free
-#include <stdio.h> // to read/write tables
-#include <string.h> // for memcpy
-#ifdef HAVE_STDINT_H
-#include <stdint.h> // the normal place uint16_t is defined
-#endif
-#ifdef HAVE_SYS_TYPES_H
-#include <sys/types.h> // the normal place u_int16_t is defined
-#endif
-#ifdef HAVE_INTTYPES_H
-#include <inttypes.h> // a third place for uint16_t or u_int16_t
-#endif
-#include <assert.h> // for bounds checking
-#include <iterator> // to define reverse_iterator for me
-#include <algorithm> // equal, lexicographical_compare, swap,...
-#include <memory> // uninitialized_copy, uninitialized_fill
-#include <vector> // a sparsetable is a vector of groups
-#include <sparsehash/type_traits.h>
-#include <sparsehash/internal/hashtable-common.h>
-#include <sparsehash/internal/libc_allocator_with_realloc.h>
-
-// A lot of work to get a type that's guaranteed to be 16 bits...
-#ifndef HAVE_U_INT16_T
-# if defined HAVE_UINT16_T
- typedef uint16_t u_int16_t; // true on solaris, possibly other C99 libc's
-# elif defined HAVE___UINT16
- typedef __int16 int16_t; // true on vc++7
- typedef unsigned __int16 u_int16_t;
-# else
- // Cannot find a 16-bit integer type. Hoping for the best with "short"...
- typedef short int int16_t;
- typedef unsigned short int u_int16_t;
-# endif
-#endif
-
-_START_GOOGLE_NAMESPACE_
-
-namespace base { // just to make google->opensource transition easier
-using GOOGLE_NAMESPACE::true_type;
-using GOOGLE_NAMESPACE::false_type;
-using GOOGLE_NAMESPACE::integral_constant;
-using GOOGLE_NAMESPACE::has_trivial_copy;
-using GOOGLE_NAMESPACE::has_trivial_destructor;
-using GOOGLE_NAMESPACE::is_same;
-}
-
-
-// The smaller this is, the faster lookup is (because the group bitmap is
-// smaller) and the faster insert is, because there's less to move.
-// On the other hand, there are more groups. Since group::size_type is
-// a short, this number should be of the form 32*x + 16 to avoid waste.
-static const u_int16_t DEFAULT_SPARSEGROUP_SIZE = 48; // fits in 1.5 words
-
-
-// Our iterator as simple as iterators can be: basically it's just
-// the index into our table. Dereference, the only complicated
-// thing, we punt to the table class. This just goes to show how
-// much machinery STL requires to do even the most trivial tasks.
-//
-// A NOTE ON ASSIGNING:
-// A sparse table does not actually allocate memory for entries
-// that are not filled. Because of this, it becomes complicated
-// to have a non-const iterator: we don't know, if the iterator points
-// to a not-filled bucket, whether you plan to fill it with something
-// or whether you plan to read its value (in which case you'll get
-// the default bucket value). Therefore, while we can define const
-// operations in a pretty 'normal' way, for non-const operations, we
-// define something that returns a helper object with operator= and
-// operator& that allocate a bucket lazily. We use this for table[]
-// and also for regular table iterators.
-
-template <class tabletype>
-class table_element_adaptor {
- public:
- typedef typename tabletype::value_type value_type;
- typedef typename tabletype::size_type size_type;
- typedef typename tabletype::reference reference;
- typedef typename tabletype::pointer pointer;
-
- table_element_adaptor(tabletype *tbl, size_type p)
- : table(tbl), pos(p) { }
- table_element_adaptor& operator= (const value_type &val) {
- table->set(pos, val);
- return *this;
- }
- operator value_type() { return table->get(pos); } // we look like a value
- pointer operator& () { return &table->mutating_get(pos); }
-
- private:
- tabletype* table;
- size_type pos;
-};
-
-// Our iterator as simple as iterators can be: basically it's just
-// the index into our table. Dereference, the only complicated
-// thing, we punt to the table class. This just goes to show how
-// much machinery STL requires to do even the most trivial tasks.
-//
-// By templatizing over tabletype, we have one iterator type which
-// we can use for both sparsetables and sparsebins. In fact it
-// works on any class that allows size() and operator[] (eg vector),
-// as long as it does the standard STL typedefs too (eg value_type).
-
-template <class tabletype>
-class table_iterator {
- public:
- typedef table_iterator iterator;
-
- typedef std::random_access_iterator_tag iterator_category;
- typedef typename tabletype::value_type value_type;
- typedef typename tabletype::difference_type difference_type;
- typedef typename tabletype::size_type size_type;
- typedef table_element_adaptor<tabletype> reference;
- typedef table_element_adaptor<tabletype>* pointer;
-
- // The "real" constructor
- table_iterator(tabletype *tbl, size_type p)
- : table(tbl), pos(p) { }
- // The default constructor, used when I define vars of type table::iterator
- table_iterator() : table(NULL), pos(0) { }
- // The copy constructor, for when I say table::iterator foo = tbl.begin()
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // The main thing our iterator does is dereference. If the table entry
- // we point to is empty, we return the default value type.
- // This is the big different function from the const iterator.
- reference operator*() {
- return table_element_adaptor<tabletype>(table, pos);
- }
- pointer operator->() { return &(operator*()); }
-
- // Helper function to assert things are ok; eg pos is still in range
- void check() const {
- assert(table);
- assert(pos <= table->size());
- }
-
- // Arithmetic: we just do arithmetic on pos. We don't even need to
- // do bounds checking, since STL doesn't consider that its job. :-)
- iterator& operator+=(size_type t) { pos += t; check(); return *this; }
- iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
- iterator& operator++() { ++pos; check(); return *this; }
- iterator& operator--() { --pos; check(); return *this; }
- iterator operator++(int) { iterator tmp(*this); // for x++
- ++pos; check(); return tmp; }
- iterator operator--(int) { iterator tmp(*this); // for x--
- --pos; check(); return tmp; }
- iterator operator+(difference_type i) const { iterator tmp(*this);
- tmp += i; return tmp; }
- iterator operator-(difference_type i) const { iterator tmp(*this);
- tmp -= i; return tmp; }
- difference_type operator-(iterator it) const { // for "x = it2 - it"
- assert(table == it.table);
- return pos - it.pos;
- }
- reference operator[](difference_type n) const {
- return *(*this + n); // simple though not totally efficient
- }
-
- // Comparisons.
- bool operator==(const iterator& it) const {
- return table == it.table && pos == it.pos;
- }
- bool operator<(const iterator& it) const {
- assert(table == it.table); // life is bad bad bad otherwise
- return pos < it.pos;
- }
- bool operator!=(const iterator& it) const { return !(*this == it); }
- bool operator<=(const iterator& it) const { return !(it < *this); }
- bool operator>(const iterator& it) const { return it < *this; }
- bool operator>=(const iterator& it) const { return !(*this < it); }
-
- // Here's the info we actually need to be an iterator
- tabletype *table; // so we can dereference and bounds-check
- size_type pos; // index into the table
-};
-
-// support for "3 + iterator" has to be defined outside the class, alas
-template<class T>
-table_iterator<T> operator+(typename table_iterator<T>::difference_type i,
- table_iterator<T> it) {
- return it + i; // so people can say it2 = 3 + it
-}
-
-template <class tabletype>
-class const_table_iterator {
- public:
- typedef table_iterator<tabletype> iterator;
- typedef const_table_iterator const_iterator;
-
- typedef std::random_access_iterator_tag iterator_category;
- typedef typename tabletype::value_type value_type;
- typedef typename tabletype::difference_type difference_type;
- typedef typename tabletype::size_type size_type;
- typedef typename tabletype::const_reference reference; // we're const-only
- typedef typename tabletype::const_pointer pointer;
-
- // The "real" constructor
- const_table_iterator(const tabletype *tbl, size_type p)
- : table(tbl), pos(p) { }
- // The default constructor, used when I define vars of type table::iterator
- const_table_iterator() : table(NULL), pos(0) { }
- // The copy constructor, for when I say table::iterator foo = tbl.begin()
- // Also converts normal iterators to const iterators
- const_table_iterator(const iterator &from)
- : table(from.table), pos(from.pos) { }
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // The main thing our iterator does is dereference. If the table entry
- // we point to is empty, we return the default value type.
- reference operator*() const { return (*table)[pos]; }
- pointer operator->() const { return &(operator*()); }
-
- // Helper function to assert things are ok; eg pos is still in range
- void check() const {
- assert(table);
- assert(pos <= table->size());
- }
-
- // Arithmetic: we just do arithmetic on pos. We don't even need to
- // do bounds checking, since STL doesn't consider that its job. :-)
- const_iterator& operator+=(size_type t) { pos += t; check(); return *this; }
- const_iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
- const_iterator& operator++() { ++pos; check(); return *this; }
- const_iterator& operator--() { --pos; check(); return *this; }
- const_iterator operator++(int) { const_iterator tmp(*this); // for x++
- ++pos; check(); return tmp; }
- const_iterator operator--(int) { const_iterator tmp(*this); // for x--
- --pos; check(); return tmp; }
- const_iterator operator+(difference_type i) const { const_iterator tmp(*this);
- tmp += i; return tmp; }
- const_iterator operator-(difference_type i) const { const_iterator tmp(*this);
- tmp -= i; return tmp; }
- difference_type operator-(const_iterator it) const { // for "x = it2 - it"
- assert(table == it.table);
- return pos - it.pos;
- }
- reference operator[](difference_type n) const {
- return *(*this + n); // simple though not totally efficient
- }
-
- // Comparisons.
- bool operator==(const const_iterator& it) const {
- return table == it.table && pos == it.pos;
- }
- bool operator<(const const_iterator& it) const {
- assert(table == it.table); // life is bad bad bad otherwise
- return pos < it.pos;
- }
- bool operator!=(const const_iterator& it) const { return !(*this == it); }
- bool operator<=(const const_iterator& it) const { return !(it < *this); }
- bool operator>(const const_iterator& it) const { return it < *this; }
- bool operator>=(const const_iterator& it) const { return !(*this < it); }
-
- // Here's the info we actually need to be an iterator
- const tabletype *table; // so we can dereference and bounds-check
- size_type pos; // index into the table
-};
-
-// support for "3 + iterator" has to be defined outside the class, alas
-template<class T>
-const_table_iterator<T> operator+(typename
- const_table_iterator<T>::difference_type i,
- const_table_iterator<T> it) {
- return it + i; // so people can say it2 = 3 + it
-}
-
-
-// ---------------------------------------------------------------------------
-
-
-/*
-// This is a 2-D iterator. You specify a begin and end over a list
-// of *containers*. We iterate over each container by iterating over
-// it. It's actually simple:
-// VECTOR.begin() VECTOR[0].begin() --------> VECTOR[0].end() ---,
-// | ________________________________________________/
-// | \_> VECTOR[1].begin() --------> VECTOR[1].end() -,
-// | ___________________________________________________/
-// v \_> ......
-// VECTOR.end()
-//
-// It's impossible to do random access on one of these things in constant
-// time, so it's just a bidirectional iterator.
-//
-// Unfortunately, because we need to use this for a non-empty iterator,
-// we use nonempty_begin() and nonempty_end() instead of begin() and end()
-// (though only going across, not down).
-*/
-
-#define TWOD_BEGIN_ nonempty_begin
-#define TWOD_END_ nonempty_end
-#define TWOD_ITER_ nonempty_iterator
-#define TWOD_CONST_ITER_ const_nonempty_iterator
-
-template <class containertype>
-class two_d_iterator {
- public:
- typedef two_d_iterator iterator;
-
- typedef std::bidirectional_iterator_tag iterator_category;
- // apparently some versions of VC++ have trouble with two ::'s in a typename
- typedef typename containertype::value_type _tmp_vt;
- typedef typename _tmp_vt::value_type value_type;
- typedef typename _tmp_vt::difference_type difference_type;
- typedef typename _tmp_vt::reference reference;
- typedef typename _tmp_vt::pointer pointer;
-
- // The "real" constructor. begin and end specify how many rows we have
- // (in the diagram above); we always iterate over each row completely.
- two_d_iterator(typename containertype::iterator begin,
- typename containertype::iterator end,
- typename containertype::iterator curr)
- : row_begin(begin), row_end(end), row_current(curr), col_current() {
- if ( row_current != row_end ) {
- col_current = row_current->TWOD_BEGIN_();
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- }
- // If you want to start at an arbitrary place, you can, I guess
- two_d_iterator(typename containertype::iterator begin,
- typename containertype::iterator end,
- typename containertype::iterator curr,
- typename containertype::value_type::TWOD_ITER_ col)
- : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- // The default constructor, used when I define vars of type table::iterator
- two_d_iterator() : row_begin(), row_end(), row_current(), col_current() { }
- // The default destructor is fine; we don't define one
- // The default operator= is fine; we don't define one
-
- // Happy dereferencer
- reference operator*() const { return *col_current; }
- pointer operator->() const { return &(operator*()); }
-
- // Arithmetic: we just do arithmetic on pos. We don't even need to
- // do bounds checking, since STL doesn't consider that its job. :-)
- // NOTE: this is not amortized constant time! What do we do about it?
- void advance_past_end() { // used when col_current points to end()
- while ( col_current == row_current->TWOD_END_() ) { // end of current row
- ++row_current; // go to beginning of next
- if ( row_current != row_end ) // col is irrelevant at end
- col_current = row_current->TWOD_BEGIN_();
- else
- break; // don't go past row_end
- }
- }
-
- iterator& operator++() {
- assert(row_current != row_end); // how to ++ from there?
- ++col_current;
- advance_past_end(); // in case col_current is at end()
- return *this;
- }
- iterator& operator--() {
- while ( row_current == row_end ||
- col_current == row_current->TWOD_BEGIN_() ) {
- assert(row_current != row_begin);
- --row_current;
- col_current = row_current->TWOD_END_(); // this is 1 too far
- }
- --col_current;
- return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
- iterator operator--(int) { iterator tmp(*this); --*this; return tmp; }
-
-
- // Comparisons.
- bool operator==(const iterator& it) const {
- return ( row_begin == it.row_begin &&
- row_end == it.row_end &&
- row_current == it.row_current &&
- (row_current == row_end || col_current == it.col_current) );
- }
- bool operator!=(const iterator& it) const { return !(*this == it); }
-
-
- // Here's the info we actually need to be an iterator
- // These need to be public so we convert from iterator to const_iterator
- typename containertype::iterator row_begin, row_end, row_current;
- typename containertype::value_type::TWOD_ITER_ col_current;
-};
-
-// The same thing again, but this time const. :-(
-template <class containertype>
-class const_two_d_iterator {
- public:
- typedef const_two_d_iterator iterator;
-
- typedef std::bidirectional_iterator_tag iterator_category;
- // apparently some versions of VC++ have trouble with two ::'s in a typename
- typedef typename containertype::value_type _tmp_vt;
- typedef typename _tmp_vt::value_type value_type;
- typedef typename _tmp_vt::difference_type difference_type;
- typedef typename _tmp_vt::const_reference reference;
- typedef typename _tmp_vt::const_pointer pointer;
-
- const_two_d_iterator(typename containertype::const_iterator begin,
- typename containertype::const_iterator end,
- typename containertype::const_iterator curr)
- : row_begin(begin), row_end(end), row_current(curr), col_current() {
- if ( curr != end ) {
- col_current = curr->TWOD_BEGIN_();
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- }
- const_two_d_iterator(typename containertype::const_iterator begin,
- typename containertype::const_iterator end,
- typename containertype::const_iterator curr,
- typename containertype::value_type::TWOD_CONST_ITER_ col)
- : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- const_two_d_iterator()
- : row_begin(), row_end(), row_current(), col_current() {
- }
- // Need this explicitly so we can convert normal iterators to const iterators
- const_two_d_iterator(const two_d_iterator<containertype>& it) :
- row_begin(it.row_begin), row_end(it.row_end), row_current(it.row_current),
- col_current(it.col_current) { }
-
- typename containertype::const_iterator row_begin, row_end, row_current;
- typename containertype::value_type::TWOD_CONST_ITER_ col_current;
-
-
- // EVERYTHING FROM HERE DOWN IS THE SAME AS THE NON-CONST ITERATOR
- reference operator*() const { return *col_current; }
- pointer operator->() const { return &(operator*()); }
-
- void advance_past_end() { // used when col_current points to end()
- while ( col_current == row_current->TWOD_END_() ) { // end of current row
- ++row_current; // go to beginning of next
- if ( row_current != row_end ) // col is irrelevant at end
- col_current = row_current->TWOD_BEGIN_();
- else
- break; // don't go past row_end
- }
- }
- iterator& operator++() {
- assert(row_current != row_end); // how to ++ from there?
- ++col_current;
- advance_past_end(); // in case col_current is at end()
- return *this;
- }
- iterator& operator--() {
- while ( row_current == row_end ||
- col_current == row_current->TWOD_BEGIN_() ) {
- assert(row_current != row_begin);
- --row_current;
- col_current = row_current->TWOD_END_(); // this is 1 too far
- }
- --col_current;
- return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
- iterator operator--(int) { iterator tmp(*this); --*this; return tmp; }
-
- bool operator==(const iterator& it) const {
- return ( row_begin == it.row_begin &&
- row_end == it.row_end &&
- row_current == it.row_current &&
- (row_current == row_end || col_current == it.col_current) );
- }
- bool operator!=(const iterator& it) const { return !(*this == it); }
-};
-
-// We provide yet another version, to be as frugal with memory as
-// possible. This one frees each block of memory as it finishes
-// iterating over it. By the end, the entire table is freed.
-// For understandable reasons, you can only iterate over it once,
-// which is why it's an input iterator
-template <class containertype>
-class destructive_two_d_iterator {
- public:
- typedef destructive_two_d_iterator iterator;
-
- typedef std::input_iterator_tag iterator_category;
- // apparently some versions of VC++ have trouble with two ::'s in a typename
- typedef typename containertype::value_type _tmp_vt;
- typedef typename _tmp_vt::value_type value_type;
- typedef typename _tmp_vt::difference_type difference_type;
- typedef typename _tmp_vt::reference reference;
- typedef typename _tmp_vt::pointer pointer;
-
- destructive_two_d_iterator(typename containertype::iterator begin,
- typename containertype::iterator end,
- typename containertype::iterator curr)
- : row_begin(begin), row_end(end), row_current(curr), col_current() {
- if ( curr != end ) {
- col_current = curr->TWOD_BEGIN_();
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- }
- destructive_two_d_iterator(typename containertype::iterator begin,
- typename containertype::iterator end,
- typename containertype::iterator curr,
- typename containertype::value_type::TWOD_ITER_ col)
- : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
- advance_past_end(); // in case cur->begin() == cur->end()
- }
- destructive_two_d_iterator()
- : row_begin(), row_end(), row_current(), col_current() {
- }
-
- typename containertype::iterator row_begin, row_end, row_current;
- typename containertype::value_type::TWOD_ITER_ col_current;
-
- // This is the part that destroys
- void advance_past_end() { // used when col_current points to end()
- while ( col_current == row_current->TWOD_END_() ) { // end of current row
- row_current->clear(); // the destructive part
- // It would be nice if we could decrement sparsetable->num_buckets here
- ++row_current; // go to beginning of next
- if ( row_current != row_end ) // col is irrelevant at end
- col_current = row_current->TWOD_BEGIN_();
- else
- break; // don't go past row_end
- }
- }
-
- // EVERYTHING FROM HERE DOWN IS THE SAME AS THE REGULAR ITERATOR
- reference operator*() const { return *col_current; }
- pointer operator->() const { return &(operator*()); }
-
- iterator& operator++() {
- assert(row_current != row_end); // how to ++ from there?
- ++col_current;
- advance_past_end(); // in case col_current is at end()
- return *this;
- }
- iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
-
- bool operator==(const iterator& it) const {
- return ( row_begin == it.row_begin &&
- row_end == it.row_end &&
- row_current == it.row_current &&
- (row_current == row_end || col_current == it.col_current) );
- }
- bool operator!=(const iterator& it) const { return !(*this == it); }
-};
-
-#undef TWOD_BEGIN_
-#undef TWOD_END_
-#undef TWOD_ITER_
-#undef TWOD_CONST_ITER_
-
-
-
-
-// SPARSE-TABLE
-// ------------
-// The idea is that a table with (logically) t buckets is divided
-// into t/M *groups* of M buckets each. (M is a constant set in
-// GROUP_SIZE for efficiency.) Each group is stored sparsely.
-// Thus, inserting into the table causes some array to grow, which is
-// slow but still constant time. Lookup involves doing a
-// logical-position-to-sparse-position lookup, which is also slow but
-// constant time. The larger M is, the slower these operations are
-// but the less overhead (slightly).
-//
-// To store the sparse array, we store a bitmap B, where B[i] = 1 iff
-// bucket i is non-empty. Then to look up bucket i we really look up
-// array[# of 1s before i in B]. This is constant time for fixed M.
-//
-// Terminology: the position of an item in the overall table (from
-// 1 .. t) is called its "location." The logical position in a group
-// (from 1 .. M ) is called its "position." The actual location in
-// the array (from 1 .. # of non-empty buckets in the group) is
-// called its "offset."
-
-template <class T, u_int16_t GROUP_SIZE, class Alloc>
-class sparsegroup {
- private:
- typedef typename Alloc::template rebind<T>::other value_alloc_type;
-
- public:
- // Basic types
- typedef T value_type;
- typedef Alloc allocator_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::const_reference const_reference;
- typedef typename value_alloc_type::pointer pointer;
- typedef typename value_alloc_type::const_pointer const_pointer;
-
- typedef table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> > iterator;
- typedef const_table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> >
- const_iterator;
- typedef table_element_adaptor<sparsegroup<T, GROUP_SIZE, Alloc> >
- element_adaptor;
- typedef u_int16_t size_type; // max # of buckets
- typedef int16_t difference_type;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h
-
- // These are our special iterators, that go over non-empty buckets in a
- // group. These aren't const-only because you can change non-empty bcks.
- typedef pointer nonempty_iterator;
- typedef const_pointer const_nonempty_iterator;
- typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
- typedef std::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;
-
- // Iterator functions
- iterator begin() { return iterator(this, 0); }
- const_iterator begin() const { return const_iterator(this, 0); }
- iterator end() { return iterator(this, size()); }
- const_iterator end() const { return const_iterator(this, size()); }
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
-
- // We'll have versions for our special non-empty iterator too
- nonempty_iterator nonempty_begin() { return group; }
- const_nonempty_iterator nonempty_begin() const { return group; }
- nonempty_iterator nonempty_end() {
- return group + settings.num_buckets;
- }
- const_nonempty_iterator nonempty_end() const {
- return group + settings.num_buckets;
- }
- reverse_nonempty_iterator nonempty_rbegin() {
- return reverse_nonempty_iterator(nonempty_end());
- }
- const_reverse_nonempty_iterator nonempty_rbegin() const {
- return const_reverse_nonempty_iterator(nonempty_end());
- }
- reverse_nonempty_iterator nonempty_rend() {
- return reverse_nonempty_iterator(nonempty_begin());
- }
- const_reverse_nonempty_iterator nonempty_rend() const {
- return const_reverse_nonempty_iterator(nonempty_begin());
- }
-
-
- // This gives us the "default" value to return for an empty bucket.
- // We just use the default constructor on T, the template type
- const_reference default_value() const {
- static value_type defaultval = value_type();
- return defaultval;
- }
-
-
- private:
- // We need to do all this bit manipulation, of course. ick
- static size_type charbit(size_type i) { return i >> 3; }
- static size_type modbit(size_type i) { return 1 << (i&7); }
- int bmtest(size_type i) const { return bitmap[charbit(i)] & modbit(i); }
- void bmset(size_type i) { bitmap[charbit(i)] |= modbit(i); }
- void bmclear(size_type i) { bitmap[charbit(i)] &= ~modbit(i); }
-
- pointer allocate_group(size_type n) {
- pointer retval = settings.allocate(n);
- if (retval == NULL) {
- // We really should use PRIuS here, but I don't want to have to add
- // a whole new configure option, with concomitant macro namespace
- // pollution, just to print this (unlikely) error message. So I cast.
- fprintf(stderr, "sparsehash FATAL ERROR: failed to allocate %lu groups\n",
- static_cast<unsigned long>(n));
- exit(1);
- }
- return retval;
- }
-
- void free_group() {
- if (!group) return;
- pointer end_it = group + settings.num_buckets;
- for (pointer p = group; p != end_it; ++p)
- p->~value_type();
- settings.deallocate(group, settings.num_buckets);
- group = NULL;
- }
-
- static size_type bits_in_char(unsigned char c) {
- // We could make these ints. The tradeoff is size (eg does it overwhelm
- // the cache?) vs efficiency in referencing sub-word-sized array elements.
- static const char bits_in[256] = {
- 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
- 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
- };
- return bits_in[c];
- }
-
- public: // get_iter() in sparsetable needs it
- // We need a small function that tells us how many set bits there are
- // in positions 0..i-1 of the bitmap. It uses a big table.
- // We make it static so templates don't allocate lots of these tables.
- // There are lots of ways to do this calculation (called 'popcount').
- // The 8-bit table lookup is one of the fastest, though this
- // implementation suffers from not doing any loop unrolling. See, eg,
- // http://www.dalkescientific.com/writings/diary/archive/2008/07/03/hakmem_and_other_popcounts.html
- // http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/
- static size_type pos_to_offset(const unsigned char *bm, size_type pos) {
- size_type retval = 0;
-
- // [Note: condition pos > 8 is an optimization; convince yourself we
- // give exactly the same result as if we had pos >= 8 here instead.]
- for ( ; pos > 8; pos -= 8 ) // bm[0..pos/8-1]
- retval += bits_in_char(*bm++); // chars we want *all* bits in
- return retval + bits_in_char(*bm & ((1 << pos)-1)); // char including pos
- }
-
- size_type pos_to_offset(size_type pos) const { // not static but still const
- return pos_to_offset(bitmap, pos);
- }
-
- // Returns the (logical) position in the bm[] array, i, such that
- // bm[i] is the offset-th set bit in the array. It is the inverse
- // of pos_to_offset. get_pos() uses this function to find the index
- // of an nonempty_iterator in the table. Bit-twiddling from
- // http://hackersdelight.org/basics.pdf
- static size_type offset_to_pos(const unsigned char *bm, size_type offset) {
- size_type retval = 0;
- // This is sizeof(this->bitmap).
- const size_type group_size = (GROUP_SIZE-1) / 8 + 1;
- for (size_type i = 0; i < group_size; i++) { // forward scan
- const size_type pop_count = bits_in_char(*bm);
- if (pop_count > offset) {
- unsigned char last_bm = *bm;
- for (; offset > 0; offset--) {
- last_bm &= (last_bm-1); // remove right-most set bit
- }
- // Clear all bits to the left of the rightmost bit (the &),
- // and then clear the rightmost bit but set all bits to the
- // right of it (the -1).
- last_bm = (last_bm & -last_bm) - 1;
- retval += bits_in_char(last_bm);
- return retval;
- }
- offset -= pop_count;
- retval += 8;
- bm++;
- }
- return retval;
- }
-
- size_type offset_to_pos(size_type offset) const {
- return offset_to_pos(bitmap, offset);
- }
-
-
- public:
- // Constructors -- default and copy -- and destructor
- explicit sparsegroup(allocator_type& a) :
- group(0), settings(alloc_impl<value_alloc_type>(a)) {
- memset(bitmap, 0, sizeof(bitmap));
- }
- sparsegroup(const sparsegroup& x) : group(0), settings(x.settings) {
- if ( settings.num_buckets ) {
- group = allocate_group(x.settings.num_buckets);
- std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, group);
- }
- memcpy(bitmap, x.bitmap, sizeof(bitmap));
- }
- ~sparsegroup() { free_group(); }
-
- // Operator= is just like the copy constructor, I guess
- // TODO(austern): Make this exception safe. Handle exceptions in value_type's
- // copy constructor.
- sparsegroup &operator=(const sparsegroup& x) {
- if ( &x == this ) return *this; // x = x
- if ( x.settings.num_buckets == 0 ) {
- free_group();
- } else {
- pointer p = allocate_group(x.settings.num_buckets);
- std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, p);
- free_group();
- group = p;
- }
- memcpy(bitmap, x.bitmap, sizeof(bitmap));
- settings.num_buckets = x.settings.num_buckets;
- return *this;
- }
-
- // Many STL algorithms use swap instead of copy constructors
- void swap(sparsegroup& x) {
- std::swap(group, x.group); // defined in <algorithm>
- for ( int i = 0; i < sizeof(bitmap) / sizeof(*bitmap); ++i )
- std::swap(bitmap[i], x.bitmap[i]); // swap not defined on arrays
- std::swap(settings.num_buckets, x.settings.num_buckets);
- // we purposefully don't swap the allocator, which may not be swap-able
- }
-
- // It's always nice to be able to clear a table without deallocating it
- void clear() {
- free_group();
- memset(bitmap, 0, sizeof(bitmap));
- settings.num_buckets = 0;
- }
-
- // Functions that tell you about size. Alas, these aren't so useful
- // because our table is always fixed size.
- size_type size() const { return GROUP_SIZE; }
- size_type max_size() const { return GROUP_SIZE; }
- bool empty() const { return false; }
- // We also may want to know how many *used* buckets there are
- size_type num_nonempty() const { return settings.num_buckets; }
-
-
- // get()/set() are explicitly const/non-const. You can use [] if
- // you want something that can be either (potentially more expensive).
- const_reference get(size_type i) const {
- if ( bmtest(i) ) // bucket i is occupied
- return group[pos_to_offset(bitmap, i)];
- else
- return default_value(); // return the default reference
- }
-
- // TODO(csilvers): make protected + friend
- // This is used by sparse_hashtable to get an element from the table
- // when we know it exists.
- const_reference unsafe_get(size_type i) const {
- assert(bmtest(i));
- return group[pos_to_offset(bitmap, i)];
- }
-
- // TODO(csilvers): make protected + friend
- reference mutating_get(size_type i) { // fills bucket i before getting
- if ( !bmtest(i) )
- set(i, default_value());
- return group[pos_to_offset(bitmap, i)];
- }
-
- // Syntactic sugar. It's easy to return a const reference. To
- // return a non-const reference, we need to use the assigner adaptor.
- const_reference operator[](size_type i) const {
- return get(i);
- }
-
- element_adaptor operator[](size_type i) {
- return element_adaptor(this, i);
- }
-
- private:
- // Create space at group[offset], assuming value_type has trivial
- // copy constructor and destructor, and the allocator_type is
- // the default libc_allocator_with_alloc. (Really, we want it to have
- // "trivial move", because that's what realloc and memmove both do.
- // But there's no way to capture that using type_traits, so we
- // pretend that move(x, y) is equivalent to "x.~T(); new(x) T(y);"
- // which is pretty much correct, if a bit conservative.)
- void set_aux(size_type offset, base::true_type) {
- group = settings.realloc_or_die(group, settings.num_buckets+1);
- // This is equivalent to memmove(), but faster on my Intel P4,
- // at least with gcc4.1 -O2 / glibc 2.3.6.
- for (size_type i = settings.num_buckets; i > offset; --i)
+// Copyright (c) 2005, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ---
+//
+//
+// A sparsetable is a random container that implements a sparse array,
+// that is, an array that uses very little memory to store unassigned
+// indices (in this case, between 1-2 bits per unassigned index). For
+// instance, if you allocate an array of size 5 and assign a[2] = <big
+// struct>, then a[2] will take up a lot of memory but a[0], a[1],
+// a[3], and a[4] will not. Array elements that have a value are
+// called "assigned". Array elements that have no value yet, or have
+// had their value cleared using erase() or clear(), are called
+// "unassigned".
+//
+// Unassigned values seem to have the default value of T (see below).
+// Nevertheless, there is a difference between an unassigned index and
+// one explicitly assigned the value of T(). The latter is considered
+// assigned.
+//
+// Access to an array element is constant time, as is insertion and
+// deletion. Insertion and deletion may be fairly slow, however:
+// because of this container's memory economy, each insert and delete
+// causes a memory reallocation.
+//
+// NOTE: You should not test(), get(), or set() any index that is
+// greater than sparsetable.size(). If you need to do that, call
+// resize() first.
+//
+// --- Template parameters
+// PARAMETER DESCRIPTION DEFAULT
+// T The value of the array: the type of --
+// object that is stored in the array.
+//
+// GROUP_SIZE How large each "group" in the table 48
+// is (see below). Larger values use
+// a little less memory but cause most
+// operations to be a little slower
+//
+// Alloc: Allocator to use to allocate memory. libc_allocator_with_realloc
+//
+// --- Model of
+// Random Access Container
+//
+// --- Type requirements
+// T must be Copy Constructible. It need not be Assignable.
+//
+// --- Public base classes
+// None.
+//
+// --- Members
+// Type members
+//
+// MEMBER WHERE DEFINED DESCRIPTION
+// value_type container The type of object, T, stored in the array
+// allocator_type container Allocator to use
+// pointer container Pointer to p
+// const_pointer container Const pointer to p
+// reference container Reference to t
+// const_reference container Const reference to t
+// size_type container An unsigned integral type
+// difference_type container A signed integral type
+// iterator [*] container Iterator used to iterate over a sparsetable
+// const_iterator container Const iterator used to iterate over a table
+// reverse_iterator reversible Iterator used to iterate backwards over
+// container a sparsetable
+// const_reverse_iterator reversible container Guess
+// nonempty_iterator [+] sparsetable Iterates over assigned
+// array elements only
+// const_nonempty_iterator sparsetable Iterates over assigned
+// array elements only
+// reverse_nonempty_iterator sparsetable Iterates backwards over
+// assigned array elements only
+// const_reverse_nonempty_iterator sparsetable Iterates backwards over
+// assigned array elements only
+//
+// [*] All iterators are const in a sparsetable (though nonempty_iterators
+// may not be). Use get() and set() to assign values, not iterators.
+//
+// [+] iterators are random-access iterators. nonempty_iterators are
+// bidirectional iterators.
+
+// Iterator members
+// MEMBER WHERE DEFINED DESCRIPTION
+//
+// iterator begin() container An iterator to the beginning of the table
+// iterator end() container An iterator to the end of the table
+// const_iterator container A const_iterator pointing to the
+// begin() const beginning of a sparsetable
+// const_iterator container A const_iterator pointing to the
+// end() const end of a sparsetable
+//
+// reverse_iterator reversable Points to beginning of a reversed
+// rbegin() container sparsetable
+// reverse_iterator reversable Points to end of a reversed table
+// rend() container
+// const_reverse_iterator reversable Points to beginning of a
+// rbegin() const container reversed sparsetable
+// const_reverse_iterator reversable Points to end of a reversed table
+// rend() const container
+//
+// nonempty_iterator sparsetable Points to first assigned element
+// begin() of a sparsetable
+// nonempty_iterator sparsetable Points past last assigned element
+// end() of a sparsetable
+// const_nonempty_iterator sparsetable Points to first assigned element
+// begin() const of a sparsetable
+// const_nonempty_iterator sparsetable Points past last assigned element
+// end() const of a sparsetable
+//
+// reverse_nonempty_iterator sparsetable Points to first assigned element
+// begin() of a reversed sparsetable
+// reverse_nonempty_iterator sparsetable Points past last assigned element
+// end() of a reversed sparsetable
+// const_reverse_nonempty_iterator sparsetable Points to first assigned
+// begin() const elt of a reversed sparsetable
+// const_reverse_nonempty_iterator sparsetable Points past last assigned
+// end() const elt of a reversed sparsetable
+//
+//
+// Other members
+// MEMBER WHERE DEFINED DESCRIPTION
+// sparsetable() sparsetable A table of size 0; must resize()
+// before using.
+// sparsetable(size_type size) sparsetable A table of size size. All
+// indices are unassigned.
+// sparsetable(
+// const sparsetable &tbl) sparsetable Copy constructor
+// ~sparsetable() sparsetable The destructor
+// sparsetable &operator=( sparsetable The assignment operator
+// const sparsetable &tbl)
+//
+// void resize(size_type size) sparsetable Grow or shrink a table to
+// have size indices [*]
+//
+// void swap(sparsetable &x) sparsetable Swap two sparsetables
+// void swap(sparsetable &x, sparsetable Swap two sparsetables
+// sparsetable &y) (global, not member, function)
+//
+// size_type size() const sparsetable Number of "buckets" in the table
+// size_type max_size() const sparsetable Max allowed size of a sparsetable
+// bool empty() const sparsetable true if size() == 0
+// size_type num_nonempty() const sparsetable Number of assigned "buckets"
+//
+// const_reference get( sparsetable Value at index i, or default
+// size_type i) const value if i is unassigned
+// const_reference operator[]( sparsetable Identical to get(i) [+]
+// difference_type i) const
+// reference set(size_type i, sparsetable Set element at index i to
+// const_reference val) be a copy of val
+// bool test(size_type i) sparsetable True if element at index i
+// const has been assigned to
+// bool test(iterator pos) sparsetable True if element pointed to
+// const by pos has been assigned to
+// void erase(iterator pos) sparsetable Set element pointed to by
+// pos to be unassigned [!]
+// void erase(size_type i) sparsetable Set element i to be unassigned
+// void erase(iterator start, sparsetable Erases all elements between
+// iterator end) start and end
+// void clear() sparsetable Erases all elements in the table
+//
+// I/O versions exist for both FILE* and for File* (Google2-style files):
+// bool write_metadata(FILE *fp) sparsetable Writes a sparsetable to the
+// bool write_metadata(File *fp) given file. true if write
+// completes successfully
+// bool read_metadata(FILE *fp) sparsetable Replaces sparsetable with
+// bool read_metadata(File *fp) version read from fp. true
+// if read completes sucessfully
+// bool write_nopointer_data(FILE *fp) Read/write the data stored in
+// bool read_nopointer_data(FILE*fp) the table, if it's simple
+//
+// bool operator==( forward Tests two tables for equality.
+// const sparsetable &t1, container This is a global function,
+// const sparsetable &t2) not a member function.
+// bool operator<( forward Lexicographical comparison.
+// const sparsetable &t1, container This is a global function,
+// const sparsetable &t2) not a member function.
+//
+// [*] If you shrink a sparsetable using resize(), assigned elements
+// past the end of the table are removed using erase(). If you grow
+// a sparsetable, new unassigned indices are created.
+//
+// [+] Note that operator[] returns a const reference. You must use
+// set() to change the value of a table element.
+//
+// [!] Unassignment also calls the destructor.
+//
+// Iterators are invalidated whenever an item is inserted or
+// deleted (ie set() or erase() is used) or when the size of
+// the table changes (ie resize() or clear() is used).
+//
+// See doc/sparsetable.html for more information about how to use this class.
+
+// Note: this uses STL style for naming, rather than Google naming.
+// That's because this is an STL-y container
+
+#ifndef UTIL_GTL_SPARSETABLE_H_
+#define UTIL_GTL_SPARSETABLE_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <stdlib.h> // for malloc/free
+#include <stdio.h> // to read/write tables
+#include <string.h> // for memcpy
+#ifdef HAVE_STDINT_H
+#include <stdint.h> // the normal place uint16_t is defined
+#endif
+#ifdef HAVE_SYS_TYPES_H
+#include <sys/types.h> // the normal place u_int16_t is defined
+#endif
+#ifdef HAVE_INTTYPES_H
+#include <inttypes.h> // a third place for uint16_t or u_int16_t
+#endif
+#include <assert.h> // for bounds checking
+#include <iterator> // to define reverse_iterator for me
+#include <algorithm> // equal, lexicographical_compare, swap,...
+#include <memory> // uninitialized_copy, uninitialized_fill
+#include <vector> // a sparsetable is a vector of groups
+#include <sparsehash/type_traits.h>
+#include <sparsehash/internal/hashtable-common.h>
+#include <sparsehash/internal/libc_allocator_with_realloc.h>
+
+// A lot of work to get a type that's guaranteed to be 16 bits...
+#ifndef HAVE_U_INT16_T
+# if defined HAVE_UINT16_T
+ typedef uint16_t u_int16_t; // true on solaris, possibly other C99 libc's
+# elif defined HAVE___UINT16
+ typedef __int16 int16_t; // true on vc++7
+ typedef unsigned __int16 u_int16_t;
+# else
+ // Cannot find a 16-bit integer type. Hoping for the best with "short"...
+ typedef short int int16_t;
+ typedef unsigned short int u_int16_t;
+# endif
+#endif
+
+_START_GOOGLE_NAMESPACE_
+
+namespace base { // just to make google->opensource transition easier
+using GOOGLE_NAMESPACE::true_type;
+using GOOGLE_NAMESPACE::false_type;
+using GOOGLE_NAMESPACE::integral_constant;
+using GOOGLE_NAMESPACE::has_trivial_copy;
+using GOOGLE_NAMESPACE::has_trivial_destructor;
+using GOOGLE_NAMESPACE::is_same;
+}
+
+
+// The smaller this is, the faster lookup is (because the group bitmap is
+// smaller) and the faster insert is, because there's less to move.
+// On the other hand, there are more groups. Since group::size_type is
+// a short, this number should be of the form 32*x + 16 to avoid waste.
+static const u_int16_t DEFAULT_SPARSEGROUP_SIZE = 48; // fits in 1.5 words
+
+
+// Our iterator as simple as iterators can be: basically it's just
+// the index into our table. Dereference, the only complicated
+// thing, we punt to the table class. This just goes to show how
+// much machinery STL requires to do even the most trivial tasks.
+//
+// A NOTE ON ASSIGNING:
+// A sparse table does not actually allocate memory for entries
+// that are not filled. Because of this, it becomes complicated
+// to have a non-const iterator: we don't know, if the iterator points
+// to a not-filled bucket, whether you plan to fill it with something
+// or whether you plan to read its value (in which case you'll get
+// the default bucket value). Therefore, while we can define const
+// operations in a pretty 'normal' way, for non-const operations, we
+// define something that returns a helper object with operator= and
+// operator& that allocate a bucket lazily. We use this for table[]
+// and also for regular table iterators.
+
+template <class tabletype>
+class table_element_adaptor {
+ public:
+ typedef typename tabletype::value_type value_type;
+ typedef typename tabletype::size_type size_type;
+ typedef typename tabletype::reference reference;
+ typedef typename tabletype::pointer pointer;
+
+ table_element_adaptor(tabletype *tbl, size_type p)
+ : table(tbl), pos(p) { }
+ table_element_adaptor& operator= (const value_type &val) {
+ table->set(pos, val);
+ return *this;
+ }
+ operator value_type() { return table->get(pos); } // we look like a value
+ pointer operator& () { return &table->mutating_get(pos); }
+
+ private:
+ tabletype* table;
+ size_type pos;
+};
+
+// Our iterator as simple as iterators can be: basically it's just
+// the index into our table. Dereference, the only complicated
+// thing, we punt to the table class. This just goes to show how
+// much machinery STL requires to do even the most trivial tasks.
+//
+// By templatizing over tabletype, we have one iterator type which
+// we can use for both sparsetables and sparsebins. In fact it
+// works on any class that allows size() and operator[] (eg vector),
+// as long as it does the standard STL typedefs too (eg value_type).
+
+template <class tabletype>
+class table_iterator {
+ public:
+ typedef table_iterator iterator;
+
+ typedef std::random_access_iterator_tag iterator_category;
+ typedef typename tabletype::value_type value_type;
+ typedef typename tabletype::difference_type difference_type;
+ typedef typename tabletype::size_type size_type;
+ typedef table_element_adaptor<tabletype> reference;
+ typedef table_element_adaptor<tabletype>* pointer;
+
+ // The "real" constructor
+ table_iterator(tabletype *tbl, size_type p)
+ : table(tbl), pos(p) { }
+ // The default constructor, used when I define vars of type table::iterator
+ table_iterator() : table(NULL), pos(0) { }
+ // The copy constructor, for when I say table::iterator foo = tbl.begin()
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // The main thing our iterator does is dereference. If the table entry
+ // we point to is empty, we return the default value type.
+ // This is the big different function from the const iterator.
+ reference operator*() {
+ return table_element_adaptor<tabletype>(table, pos);
+ }
+ pointer operator->() { return &(operator*()); }
+
+ // Helper function to assert things are ok; eg pos is still in range
+ void check() const {
+ assert(table);
+ assert(pos <= table->size());
+ }
+
+ // Arithmetic: we just do arithmetic on pos. We don't even need to
+ // do bounds checking, since STL doesn't consider that its job. :-)
+ iterator& operator+=(size_type t) { pos += t; check(); return *this; }
+ iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
+ iterator& operator++() { ++pos; check(); return *this; }
+ iterator& operator--() { --pos; check(); return *this; }
+ iterator operator++(int) { iterator tmp(*this); // for x++
+ ++pos; check(); return tmp; }
+ iterator operator--(int) { iterator tmp(*this); // for x--
+ --pos; check(); return tmp; }
+ iterator operator+(difference_type i) const { iterator tmp(*this);
+ tmp += i; return tmp; }
+ iterator operator-(difference_type i) const { iterator tmp(*this);
+ tmp -= i; return tmp; }
+ difference_type operator-(iterator it) const { // for "x = it2 - it"
+ assert(table == it.table);
+ return pos - it.pos;
+ }
+ reference operator[](difference_type n) const {
+ return *(*this + n); // simple though not totally efficient
+ }
+
+ // Comparisons.
+ bool operator==(const iterator& it) const {
+ return table == it.table && pos == it.pos;
+ }
+ bool operator<(const iterator& it) const {
+ assert(table == it.table); // life is bad bad bad otherwise
+ return pos < it.pos;
+ }
+ bool operator!=(const iterator& it) const { return !(*this == it); }
+ bool operator<=(const iterator& it) const { return !(it < *this); }
+ bool operator>(const iterator& it) const { return it < *this; }
+ bool operator>=(const iterator& it) const { return !(*this < it); }
+
+ // Here's the info we actually need to be an iterator
+ tabletype *table; // so we can dereference and bounds-check
+ size_type pos; // index into the table
+};
+
+// support for "3 + iterator" has to be defined outside the class, alas
+template<class T>
+table_iterator<T> operator+(typename table_iterator<T>::difference_type i,
+ table_iterator<T> it) {
+ return it + i; // so people can say it2 = 3 + it
+}
+
+template <class tabletype>
+class const_table_iterator {
+ public:
+ typedef table_iterator<tabletype> iterator;
+ typedef const_table_iterator const_iterator;
+
+ typedef std::random_access_iterator_tag iterator_category;
+ typedef typename tabletype::value_type value_type;
+ typedef typename tabletype::difference_type difference_type;
+ typedef typename tabletype::size_type size_type;
+ typedef typename tabletype::const_reference reference; // we're const-only
+ typedef typename tabletype::const_pointer pointer;
+
+ // The "real" constructor
+ const_table_iterator(const tabletype *tbl, size_type p)
+ : table(tbl), pos(p) { }
+ // The default constructor, used when I define vars of type table::iterator
+ const_table_iterator() : table(NULL), pos(0) { }
+ // The copy constructor, for when I say table::iterator foo = tbl.begin()
+ // Also converts normal iterators to const iterators
+ const_table_iterator(const iterator &from)
+ : table(from.table), pos(from.pos) { }
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // The main thing our iterator does is dereference. If the table entry
+ // we point to is empty, we return the default value type.
+ reference operator*() const { return (*table)[pos]; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Helper function to assert things are ok; eg pos is still in range
+ void check() const {
+ assert(table);
+ assert(pos <= table->size());
+ }
+
+ // Arithmetic: we just do arithmetic on pos. We don't even need to
+ // do bounds checking, since STL doesn't consider that its job. :-)
+ const_iterator& operator+=(size_type t) { pos += t; check(); return *this; }
+ const_iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
+ const_iterator& operator++() { ++pos; check(); return *this; }
+ const_iterator& operator--() { --pos; check(); return *this; }
+ const_iterator operator++(int) { const_iterator tmp(*this); // for x++
+ ++pos; check(); return tmp; }
+ const_iterator operator--(int) { const_iterator tmp(*this); // for x--
+ --pos; check(); return tmp; }
+ const_iterator operator+(difference_type i) const { const_iterator tmp(*this);
+ tmp += i; return tmp; }
+ const_iterator operator-(difference_type i) const { const_iterator tmp(*this);
+ tmp -= i; return tmp; }
+ difference_type operator-(const_iterator it) const { // for "x = it2 - it"
+ assert(table == it.table);
+ return pos - it.pos;
+ }
+ reference operator[](difference_type n) const {
+ return *(*this + n); // simple though not totally efficient
+ }
+
+ // Comparisons.
+ bool operator==(const const_iterator& it) const {
+ return table == it.table && pos == it.pos;
+ }
+ bool operator<(const const_iterator& it) const {
+ assert(table == it.table); // life is bad bad bad otherwise
+ return pos < it.pos;
+ }
+ bool operator!=(const const_iterator& it) const { return !(*this == it); }
+ bool operator<=(const const_iterator& it) const { return !(it < *this); }
+ bool operator>(const const_iterator& it) const { return it < *this; }
+ bool operator>=(const const_iterator& it) const { return !(*this < it); }
+
+ // Here's the info we actually need to be an iterator
+ const tabletype *table; // so we can dereference and bounds-check
+ size_type pos; // index into the table
+};
+
+// support for "3 + iterator" has to be defined outside the class, alas
+template<class T>
+const_table_iterator<T> operator+(typename
+ const_table_iterator<T>::difference_type i,
+ const_table_iterator<T> it) {
+ return it + i; // so people can say it2 = 3 + it
+}
+
+
+// ---------------------------------------------------------------------------
+
+
+/*
+// This is a 2-D iterator. You specify a begin and end over a list
+// of *containers*. We iterate over each container by iterating over
+// it. It's actually simple:
+// VECTOR.begin() VECTOR[0].begin() --------> VECTOR[0].end() ---,
+// | ________________________________________________/
+// | \_> VECTOR[1].begin() --------> VECTOR[1].end() -,
+// | ___________________________________________________/
+// v \_> ......
+// VECTOR.end()
+//
+// It's impossible to do random access on one of these things in constant
+// time, so it's just a bidirectional iterator.
+//
+// Unfortunately, because we need to use this for a non-empty iterator,
+// we use nonempty_begin() and nonempty_end() instead of begin() and end()
+// (though only going across, not down).
+*/
+
+#define TWOD_BEGIN_ nonempty_begin
+#define TWOD_END_ nonempty_end
+#define TWOD_ITER_ nonempty_iterator
+#define TWOD_CONST_ITER_ const_nonempty_iterator
+
+template <class containertype>
+class two_d_iterator {
+ public:
+ typedef two_d_iterator iterator;
+
+ typedef std::bidirectional_iterator_tag iterator_category;
+ // apparently some versions of VC++ have trouble with two ::'s in a typename
+ typedef typename containertype::value_type _tmp_vt;
+ typedef typename _tmp_vt::value_type value_type;
+ typedef typename _tmp_vt::difference_type difference_type;
+ typedef typename _tmp_vt::reference reference;
+ typedef typename _tmp_vt::pointer pointer;
+
+ // The "real" constructor. begin and end specify how many rows we have
+ // (in the diagram above); we always iterate over each row completely.
+ two_d_iterator(typename containertype::iterator begin,
+ typename containertype::iterator end,
+ typename containertype::iterator curr)
+ : row_begin(begin), row_end(end), row_current(curr), col_current() {
+ if ( row_current != row_end ) {
+ col_current = row_current->TWOD_BEGIN_();
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ }
+ // If you want to start at an arbitrary place, you can, I guess
+ two_d_iterator(typename containertype::iterator begin,
+ typename containertype::iterator end,
+ typename containertype::iterator curr,
+ typename containertype::value_type::TWOD_ITER_ col)
+ : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ // The default constructor, used when I define vars of type table::iterator
+ two_d_iterator() : row_begin(), row_end(), row_current(), col_current() { }
+ // The default destructor is fine; we don't define one
+ // The default operator= is fine; we don't define one
+
+ // Happy dereferencer
+ reference operator*() const { return *col_current; }
+ pointer operator->() const { return &(operator*()); }
+
+ // Arithmetic: we just do arithmetic on pos. We don't even need to
+ // do bounds checking, since STL doesn't consider that its job. :-)
+ // NOTE: this is not amortized constant time! What do we do about it?
+ void advance_past_end() { // used when col_current points to end()
+ while ( col_current == row_current->TWOD_END_() ) { // end of current row
+ ++row_current; // go to beginning of next
+ if ( row_current != row_end ) // col is irrelevant at end
+ col_current = row_current->TWOD_BEGIN_();
+ else
+ break; // don't go past row_end
+ }
+ }
+
+ iterator& operator++() {
+ assert(row_current != row_end); // how to ++ from there?
+ ++col_current;
+ advance_past_end(); // in case col_current is at end()
+ return *this;
+ }
+ iterator& operator--() {
+ while ( row_current == row_end ||
+ col_current == row_current->TWOD_BEGIN_() ) {
+ assert(row_current != row_begin);
+ --row_current;
+ col_current = row_current->TWOD_END_(); // this is 1 too far
+ }
+ --col_current;
+ return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+ iterator operator--(int) { iterator tmp(*this); --*this; return tmp; }
+
+
+ // Comparisons.
+ bool operator==(const iterator& it) const {
+ return ( row_begin == it.row_begin &&
+ row_end == it.row_end &&
+ row_current == it.row_current &&
+ (row_current == row_end || col_current == it.col_current) );
+ }
+ bool operator!=(const iterator& it) const { return !(*this == it); }
+
+
+ // Here's the info we actually need to be an iterator
+ // These need to be public so we convert from iterator to const_iterator
+ typename containertype::iterator row_begin, row_end, row_current;
+ typename containertype::value_type::TWOD_ITER_ col_current;
+};
+
+// The same thing again, but this time const. :-(
+template <class containertype>
+class const_two_d_iterator {
+ public:
+ typedef const_two_d_iterator iterator;
+
+ typedef std::bidirectional_iterator_tag iterator_category;
+ // apparently some versions of VC++ have trouble with two ::'s in a typename
+ typedef typename containertype::value_type _tmp_vt;
+ typedef typename _tmp_vt::value_type value_type;
+ typedef typename _tmp_vt::difference_type difference_type;
+ typedef typename _tmp_vt::const_reference reference;
+ typedef typename _tmp_vt::const_pointer pointer;
+
+ const_two_d_iterator(typename containertype::const_iterator begin,
+ typename containertype::const_iterator end,
+ typename containertype::const_iterator curr)
+ : row_begin(begin), row_end(end), row_current(curr), col_current() {
+ if ( curr != end ) {
+ col_current = curr->TWOD_BEGIN_();
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ }
+ const_two_d_iterator(typename containertype::const_iterator begin,
+ typename containertype::const_iterator end,
+ typename containertype::const_iterator curr,
+ typename containertype::value_type::TWOD_CONST_ITER_ col)
+ : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ const_two_d_iterator()
+ : row_begin(), row_end(), row_current(), col_current() {
+ }
+ // Need this explicitly so we can convert normal iterators to const iterators
+ const_two_d_iterator(const two_d_iterator<containertype>& it) :
+ row_begin(it.row_begin), row_end(it.row_end), row_current(it.row_current),
+ col_current(it.col_current) { }
+
+ typename containertype::const_iterator row_begin, row_end, row_current;
+ typename containertype::value_type::TWOD_CONST_ITER_ col_current;
+
+
+ // EVERYTHING FROM HERE DOWN IS THE SAME AS THE NON-CONST ITERATOR
+ reference operator*() const { return *col_current; }
+ pointer operator->() const { return &(operator*()); }
+
+ void advance_past_end() { // used when col_current points to end()
+ while ( col_current == row_current->TWOD_END_() ) { // end of current row
+ ++row_current; // go to beginning of next
+ if ( row_current != row_end ) // col is irrelevant at end
+ col_current = row_current->TWOD_BEGIN_();
+ else
+ break; // don't go past row_end
+ }
+ }
+ iterator& operator++() {
+ assert(row_current != row_end); // how to ++ from there?
+ ++col_current;
+ advance_past_end(); // in case col_current is at end()
+ return *this;
+ }
+ iterator& operator--() {
+ while ( row_current == row_end ||
+ col_current == row_current->TWOD_BEGIN_() ) {
+ assert(row_current != row_begin);
+ --row_current;
+ col_current = row_current->TWOD_END_(); // this is 1 too far
+ }
+ --col_current;
+ return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+ iterator operator--(int) { iterator tmp(*this); --*this; return tmp; }
+
+ bool operator==(const iterator& it) const {
+ return ( row_begin == it.row_begin &&
+ row_end == it.row_end &&
+ row_current == it.row_current &&
+ (row_current == row_end || col_current == it.col_current) );
+ }
+ bool operator!=(const iterator& it) const { return !(*this == it); }
+};
+
+// We provide yet another version, to be as frugal with memory as
+// possible. This one frees each block of memory as it finishes
+// iterating over it. By the end, the entire table is freed.
+// For understandable reasons, you can only iterate over it once,
+// which is why it's an input iterator
+template <class containertype>
+class destructive_two_d_iterator {
+ public:
+ typedef destructive_two_d_iterator iterator;
+
+ typedef std::input_iterator_tag iterator_category;
+ // apparently some versions of VC++ have trouble with two ::'s in a typename
+ typedef typename containertype::value_type _tmp_vt;
+ typedef typename _tmp_vt::value_type value_type;
+ typedef typename _tmp_vt::difference_type difference_type;
+ typedef typename _tmp_vt::reference reference;
+ typedef typename _tmp_vt::pointer pointer;
+
+ destructive_two_d_iterator(typename containertype::iterator begin,
+ typename containertype::iterator end,
+ typename containertype::iterator curr)
+ : row_begin(begin), row_end(end), row_current(curr), col_current() {
+ if ( curr != end ) {
+ col_current = curr->TWOD_BEGIN_();
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ }
+ destructive_two_d_iterator(typename containertype::iterator begin,
+ typename containertype::iterator end,
+ typename containertype::iterator curr,
+ typename containertype::value_type::TWOD_ITER_ col)
+ : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
+ advance_past_end(); // in case cur->begin() == cur->end()
+ }
+ destructive_two_d_iterator()
+ : row_begin(), row_end(), row_current(), col_current() {
+ }
+
+ typename containertype::iterator row_begin, row_end, row_current;
+ typename containertype::value_type::TWOD_ITER_ col_current;
+
+ // This is the part that destroys
+ void advance_past_end() { // used when col_current points to end()
+ while ( col_current == row_current->TWOD_END_() ) { // end of current row
+ row_current->clear(); // the destructive part
+ // It would be nice if we could decrement sparsetable->num_buckets here
+ ++row_current; // go to beginning of next
+ if ( row_current != row_end ) // col is irrelevant at end
+ col_current = row_current->TWOD_BEGIN_();
+ else
+ break; // don't go past row_end
+ }
+ }
+
+ // EVERYTHING FROM HERE DOWN IS THE SAME AS THE REGULAR ITERATOR
+ reference operator*() const { return *col_current; }
+ pointer operator->() const { return &(operator*()); }
+
+ iterator& operator++() {
+ assert(row_current != row_end); // how to ++ from there?
+ ++col_current;
+ advance_past_end(); // in case col_current is at end()
+ return *this;
+ }
+ iterator operator++(int) { iterator tmp(*this); ++*this; return tmp; }
+
+ bool operator==(const iterator& it) const {
+ return ( row_begin == it.row_begin &&
+ row_end == it.row_end &&
+ row_current == it.row_current &&
+ (row_current == row_end || col_current == it.col_current) );
+ }
+ bool operator!=(const iterator& it) const { return !(*this == it); }
+};
+
+#undef TWOD_BEGIN_
+#undef TWOD_END_
+#undef TWOD_ITER_
+#undef TWOD_CONST_ITER_
+
+
+
+
+// SPARSE-TABLE
+// ------------
+// The idea is that a table with (logically) t buckets is divided
+// into t/M *groups* of M buckets each. (M is a constant set in
+// GROUP_SIZE for efficiency.) Each group is stored sparsely.
+// Thus, inserting into the table causes some array to grow, which is
+// slow but still constant time. Lookup involves doing a
+// logical-position-to-sparse-position lookup, which is also slow but
+// constant time. The larger M is, the slower these operations are
+// but the less overhead (slightly).
+//
+// To store the sparse array, we store a bitmap B, where B[i] = 1 iff
+// bucket i is non-empty. Then to look up bucket i we really look up
+// array[# of 1s before i in B]. This is constant time for fixed M.
+//
+// Terminology: the position of an item in the overall table (from
+// 1 .. t) is called its "location." The logical position in a group
+// (from 1 .. M ) is called its "position." The actual location in
+// the array (from 1 .. # of non-empty buckets in the group) is
+// called its "offset."
+
+template <class T, u_int16_t GROUP_SIZE, class Alloc>
+class sparsegroup {
+ private:
+ typedef typename Alloc::template rebind<T>::other value_alloc_type;
+
+ public:
+ // Basic types
+ typedef T value_type;
+ typedef Alloc allocator_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::const_reference const_reference;
+ typedef typename value_alloc_type::pointer pointer;
+ typedef typename value_alloc_type::const_pointer const_pointer;
+
+ typedef table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> > iterator;
+ typedef const_table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> >
+ const_iterator;
+ typedef table_element_adaptor<sparsegroup<T, GROUP_SIZE, Alloc> >
+ element_adaptor;
+ typedef u_int16_t size_type; // max # of buckets
+ typedef int16_t difference_type;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h
+
+ // These are our special iterators, that go over non-empty buckets in a
+ // group. These aren't const-only because you can change non-empty bcks.
+ typedef pointer nonempty_iterator;
+ typedef const_pointer const_nonempty_iterator;
+ typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
+ typedef std::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;
+
+ // Iterator functions
+ iterator begin() { return iterator(this, 0); }
+ const_iterator begin() const { return const_iterator(this, 0); }
+ iterator end() { return iterator(this, size()); }
+ const_iterator end() const { return const_iterator(this, size()); }
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
+
+ // We'll have versions for our special non-empty iterator too
+ nonempty_iterator nonempty_begin() { return group; }
+ const_nonempty_iterator nonempty_begin() const { return group; }
+ nonempty_iterator nonempty_end() {
+ return group + settings.num_buckets;
+ }
+ const_nonempty_iterator nonempty_end() const {
+ return group + settings.num_buckets;
+ }
+ reverse_nonempty_iterator nonempty_rbegin() {
+ return reverse_nonempty_iterator(nonempty_end());
+ }
+ const_reverse_nonempty_iterator nonempty_rbegin() const {
+ return const_reverse_nonempty_iterator(nonempty_end());
+ }
+ reverse_nonempty_iterator nonempty_rend() {
+ return reverse_nonempty_iterator(nonempty_begin());
+ }
+ const_reverse_nonempty_iterator nonempty_rend() const {
+ return const_reverse_nonempty_iterator(nonempty_begin());
+ }
+
+
+ // This gives us the "default" value to return for an empty bucket.
+ // We just use the default constructor on T, the template type
+ const_reference default_value() const {
+ static value_type defaultval = value_type();
+ return defaultval;
+ }
+
+
+ private:
+ // We need to do all this bit manipulation, of course. ick
+ static size_type charbit(size_type i) { return i >> 3; }
+ static size_type modbit(size_type i) { return 1 << (i&7); }
+ int bmtest(size_type i) const { return bitmap[charbit(i)] & modbit(i); }
+ void bmset(size_type i) { bitmap[charbit(i)] |= modbit(i); }
+ void bmclear(size_type i) { bitmap[charbit(i)] &= ~modbit(i); }
+
+ pointer allocate_group(size_type n) {
+ pointer retval = settings.allocate(n);
+ if (retval == NULL) {
+ // We really should use PRIuS here, but I don't want to have to add
+ // a whole new configure option, with concomitant macro namespace
+ // pollution, just to print this (unlikely) error message. So I cast.
+ fprintf(stderr, "sparsehash FATAL ERROR: failed to allocate %lu groups\n",
+ static_cast<unsigned long>(n));
+ exit(1);
+ }
+ return retval;
+ }
+
+ void free_group() {
+ if (!group) return;
+ pointer end_it = group + settings.num_buckets;
+ for (pointer p = group; p != end_it; ++p)
+ p->~value_type();
+ settings.deallocate(group, settings.num_buckets);
+ group = NULL;
+ }
+
+ static size_type bits_in_char(unsigned char c) {
+ // We could make these ints. The tradeoff is size (eg does it overwhelm
+ // the cache?) vs efficiency in referencing sub-word-sized array elements.
+ static const char bits_in[256] = {
+ 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
+ 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
+ };
+ return bits_in[c];
+ }
+
+ public: // get_iter() in sparsetable needs it
+ // We need a small function that tells us how many set bits there are
+ // in positions 0..i-1 of the bitmap. It uses a big table.
+ // We make it static so templates don't allocate lots of these tables.
+ // There are lots of ways to do this calculation (called 'popcount').
+ // The 8-bit table lookup is one of the fastest, though this
+ // implementation suffers from not doing any loop unrolling. See, eg,
+ // http://www.dalkescientific.com/writings/diary/archive/2008/07/03/hakmem_and_other_popcounts.html
+ // http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/
+ static size_type pos_to_offset(const unsigned char *bm, size_type pos) {
+ size_type retval = 0;
+
+ // [Note: condition pos > 8 is an optimization; convince yourself we
+ // give exactly the same result as if we had pos >= 8 here instead.]
+ for ( ; pos > 8; pos -= 8 ) // bm[0..pos/8-1]
+ retval += bits_in_char(*bm++); // chars we want *all* bits in
+ return retval + bits_in_char(*bm & ((1 << pos)-1)); // char including pos
+ }
+
+ size_type pos_to_offset(size_type pos) const { // not static but still const
+ return pos_to_offset(bitmap, pos);
+ }
+
+ // Returns the (logical) position in the bm[] array, i, such that
+ // bm[i] is the offset-th set bit in the array. It is the inverse
+ // of pos_to_offset. get_pos() uses this function to find the index
+ // of an nonempty_iterator in the table. Bit-twiddling from
+ // http://hackersdelight.org/basics.pdf
+ static size_type offset_to_pos(const unsigned char *bm, size_type offset) {
+ size_type retval = 0;
+ // This is sizeof(this->bitmap).
+ const size_type group_size = (GROUP_SIZE-1) / 8 + 1;
+ for (size_type i = 0; i < group_size; i++) { // forward scan
+ const size_type pop_count = bits_in_char(*bm);
+ if (pop_count > offset) {
+ unsigned char last_bm = *bm;
+ for (; offset > 0; offset--) {
+ last_bm &= (last_bm-1); // remove right-most set bit
+ }
+ // Clear all bits to the left of the rightmost bit (the &),
+ // and then clear the rightmost bit but set all bits to the
+ // right of it (the -1).
+ last_bm = (last_bm & -last_bm) - 1;
+ retval += bits_in_char(last_bm);
+ return retval;
+ }
+ offset -= pop_count;
+ retval += 8;
+ bm++;
+ }
+ return retval;
+ }
+
+ size_type offset_to_pos(size_type offset) const {
+ return offset_to_pos(bitmap, offset);
+ }
+
+
+ public:
+ // Constructors -- default and copy -- and destructor
+ explicit sparsegroup(allocator_type& a) :
+ group(0), settings(alloc_impl<value_alloc_type>(a)) {
+ memset(bitmap, 0, sizeof(bitmap));
+ }
+ sparsegroup(const sparsegroup& x) : group(0), settings(x.settings) {
+ if ( settings.num_buckets ) {
+ group = allocate_group(x.settings.num_buckets);
+ std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, group);
+ }
+ memcpy(bitmap, x.bitmap, sizeof(bitmap));
+ }
+ ~sparsegroup() { free_group(); }
+
+ // Operator= is just like the copy constructor, I guess
+ // TODO(austern): Make this exception safe. Handle exceptions in value_type's
+ // copy constructor.
+ sparsegroup &operator=(const sparsegroup& x) {
+ if ( &x == this ) return *this; // x = x
+ if ( x.settings.num_buckets == 0 ) {
+ free_group();
+ } else {
+ pointer p = allocate_group(x.settings.num_buckets);
+ std::uninitialized_copy(x.group, x.group + x.settings.num_buckets, p);
+ free_group();
+ group = p;
+ }
+ memcpy(bitmap, x.bitmap, sizeof(bitmap));
+ settings.num_buckets = x.settings.num_buckets;
+ return *this;
+ }
+
+ // Many STL algorithms use swap instead of copy constructors
+ void swap(sparsegroup& x) {
+ std::swap(group, x.group); // defined in <algorithm>
+ for ( int i = 0; i < sizeof(bitmap) / sizeof(*bitmap); ++i )
+ std::swap(bitmap[i], x.bitmap[i]); // swap not defined on arrays
+ std::swap(settings.num_buckets, x.settings.num_buckets);
+ // we purposefully don't swap the allocator, which may not be swap-able
+ }
+
+ // It's always nice to be able to clear a table without deallocating it
+ void clear() {
+ free_group();
+ memset(bitmap, 0, sizeof(bitmap));
+ settings.num_buckets = 0;
+ }
+
+ // Functions that tell you about size. Alas, these aren't so useful
+ // because our table is always fixed size.
+ size_type size() const { return GROUP_SIZE; }
+ size_type max_size() const { return GROUP_SIZE; }
+ bool empty() const { return false; }
+ // We also may want to know how many *used* buckets there are
+ size_type num_nonempty() const { return settings.num_buckets; }
+
+
+ // get()/set() are explicitly const/non-const. You can use [] if
+ // you want something that can be either (potentially more expensive).
+ const_reference get(size_type i) const {
+ if ( bmtest(i) ) // bucket i is occupied
+ return group[pos_to_offset(bitmap, i)];
+ else
+ return default_value(); // return the default reference
+ }
+
+ // TODO(csilvers): make protected + friend
+ // This is used by sparse_hashtable to get an element from the table
+ // when we know it exists.
+ const_reference unsafe_get(size_type i) const {
+ assert(bmtest(i));
+ return group[pos_to_offset(bitmap, i)];
+ }
+
+ // TODO(csilvers): make protected + friend
+ reference mutating_get(size_type i) { // fills bucket i before getting
+ if ( !bmtest(i) )
+ set(i, default_value());
+ return group[pos_to_offset(bitmap, i)];
+ }
+
+ // Syntactic sugar. It's easy to return a const reference. To
+ // return a non-const reference, we need to use the assigner adaptor.
+ const_reference operator[](size_type i) const {
+ return get(i);
+ }
+
+ element_adaptor operator[](size_type i) {
+ return element_adaptor(this, i);
+ }
+
+ private:
+ // Create space at group[offset], assuming value_type has trivial
+ // copy constructor and destructor, and the allocator_type is
+ // the default libc_allocator_with_alloc. (Really, we want it to have
+ // "trivial move", because that's what realloc and memmove both do.
+ // But there's no way to capture that using type_traits, so we
+ // pretend that move(x, y) is equivalent to "x.~T(); new(x) T(y);"
+ // which is pretty much correct, if a bit conservative.)
+ void set_aux(size_type offset, base::true_type) {
+ group = settings.realloc_or_die(group, settings.num_buckets+1);
+ // This is equivalent to memmove(), but faster on my Intel P4,
+ // at least with gcc4.1 -O2 / glibc 2.3.6.
+ for (size_type i = settings.num_buckets; i > offset; --i)
// cast to void* to prevent compiler warnings about writing to an object
// with no trivial copy-assignment
memcpy(static_cast<void*>(group + i), group + i-1, sizeof(*group));
- }
-
- // Create space at group[offset], without special assumptions about value_type
- // and allocator_type.
- void set_aux(size_type offset, base::false_type) {
- // This is valid because 0 <= offset <= num_buckets
- pointer p = allocate_group(settings.num_buckets + 1);
- std::uninitialized_copy(group, group + offset, p);
- std::uninitialized_copy(group + offset, group + settings.num_buckets,
- p + offset + 1);
- free_group();
- group = p;
- }
-
- public:
- // This returns a reference to the inserted item (which is a copy of val).
- // TODO(austern): Make this exception safe: handle exceptions from
- // value_type's copy constructor.
- reference set(size_type i, const_reference val) {
- size_type offset = pos_to_offset(bitmap, i); // where we'll find (or insert)
- if ( bmtest(i) ) {
- // Delete the old value, which we're replacing with the new one
- group[offset].~value_type();
- } else {
- typedef base::integral_constant<bool,
- (base::has_trivial_copy<value_type>::value &&
- base::has_trivial_destructor<value_type>::value &&
- base::is_same<
- allocator_type,
- libc_allocator_with_realloc<value_type> >::value)>
- realloc_and_memmove_ok; // we pretend mv(x,y) == "x.~T(); new(x) T(y)"
- set_aux(offset, realloc_and_memmove_ok());
- ++settings.num_buckets;
- bmset(i);
- }
- // This does the actual inserting. Since we made the array using
- // malloc, we use "placement new" to just call the constructor.
- new(&group[offset]) value_type(val);
- return group[offset];
- }
-
- // We let you see if a bucket is non-empty without retrieving it
- bool test(size_type i) const {
- return bmtest(i) != 0;
- }
- bool test(iterator pos) const {
- return bmtest(pos.pos) != 0;
- }
-
- private:
- // Shrink the array, assuming value_type has trivial copy
- // constructor and destructor, and the allocator_type is the default
- // libc_allocator_with_alloc. (Really, we want it to have "trivial
- // move", because that's what realloc and memmove both do. But
- // there's no way to capture that using type_traits, so we pretend
- // that move(x, y) is equivalent to ""x.~T(); new(x) T(y);"
- // which is pretty much correct, if a bit conservative.)
- void erase_aux(size_type offset, base::true_type) {
- // This isn't technically necessary, since we know we have a
- // trivial destructor, but is a cheap way to get a bit more safety.
- group[offset].~value_type();
- // This is equivalent to memmove(), but faster on my Intel P4,
- // at lesat with gcc4.1 -O2 / glibc 2.3.6.
- assert(settings.num_buckets > 0);
- for (size_type i = offset; i < settings.num_buckets-1; ++i)
+ }
+
+ // Create space at group[offset], without special assumptions about value_type
+ // and allocator_type.
+ void set_aux(size_type offset, base::false_type) {
+ // This is valid because 0 <= offset <= num_buckets
+ pointer p = allocate_group(settings.num_buckets + 1);
+ std::uninitialized_copy(group, group + offset, p);
+ std::uninitialized_copy(group + offset, group + settings.num_buckets,
+ p + offset + 1);
+ free_group();
+ group = p;
+ }
+
+ public:
+ // This returns a reference to the inserted item (which is a copy of val).
+ // TODO(austern): Make this exception safe: handle exceptions from
+ // value_type's copy constructor.
+ reference set(size_type i, const_reference val) {
+ size_type offset = pos_to_offset(bitmap, i); // where we'll find (or insert)
+ if ( bmtest(i) ) {
+ // Delete the old value, which we're replacing with the new one
+ group[offset].~value_type();
+ } else {
+ typedef base::integral_constant<bool,
+ (base::has_trivial_copy<value_type>::value &&
+ base::has_trivial_destructor<value_type>::value &&
+ base::is_same<
+ allocator_type,
+ libc_allocator_with_realloc<value_type> >::value)>
+ realloc_and_memmove_ok; // we pretend mv(x,y) == "x.~T(); new(x) T(y)"
+ set_aux(offset, realloc_and_memmove_ok());
+ ++settings.num_buckets;
+ bmset(i);
+ }
+ // This does the actual inserting. Since we made the array using
+ // malloc, we use "placement new" to just call the constructor.
+ new(&group[offset]) value_type(val);
+ return group[offset];
+ }
+
+ // We let you see if a bucket is non-empty without retrieving it
+ bool test(size_type i) const {
+ return bmtest(i) != 0;
+ }
+ bool test(iterator pos) const {
+ return bmtest(pos.pos) != 0;
+ }
+
+ private:
+ // Shrink the array, assuming value_type has trivial copy
+ // constructor and destructor, and the allocator_type is the default
+ // libc_allocator_with_alloc. (Really, we want it to have "trivial
+ // move", because that's what realloc and memmove both do. But
+ // there's no way to capture that using type_traits, so we pretend
+ // that move(x, y) is equivalent to ""x.~T(); new(x) T(y);"
+ // which is pretty much correct, if a bit conservative.)
+ void erase_aux(size_type offset, base::true_type) {
+ // This isn't technically necessary, since we know we have a
+ // trivial destructor, but is a cheap way to get a bit more safety.
+ group[offset].~value_type();
+ // This is equivalent to memmove(), but faster on my Intel P4,
+ // at lesat with gcc4.1 -O2 / glibc 2.3.6.
+ assert(settings.num_buckets > 0);
+ for (size_type i = offset; i < settings.num_buckets-1; ++i)
// cast to void* to prevent compiler warnings about writing to an object
// with no trivial copy-assignment
// hopefully inlined!
memcpy(static_cast<void*>(group + i), group + i+1, sizeof(*group));
- group = settings.realloc_or_die(group, settings.num_buckets-1);
- }
-
- // Shrink the array, without any special assumptions about value_type and
- // allocator_type.
- void erase_aux(size_type offset, base::false_type) {
- // This is valid because 0 <= offset < num_buckets. Note the inequality.
- pointer p = allocate_group(settings.num_buckets - 1);
- std::uninitialized_copy(group, group + offset, p);
- std::uninitialized_copy(group + offset + 1, group + settings.num_buckets,
- p + offset);
- free_group();
- group = p;
- }
-
- public:
- // This takes the specified elements out of the group. This is
- // "undefining", rather than "clearing".
- // TODO(austern): Make this exception safe: handle exceptions from
- // value_type's copy constructor.
- void erase(size_type i) {
- if ( bmtest(i) ) { // trivial to erase empty bucket
- size_type offset = pos_to_offset(bitmap,i); // where we'll find (or insert)
- if ( settings.num_buckets == 1 ) {
- free_group();
- group = NULL;
- } else {
- typedef base::integral_constant<bool,
- (base::has_trivial_copy<value_type>::value &&
- base::has_trivial_destructor<value_type>::value &&
- base::is_same<
- allocator_type,
- libc_allocator_with_realloc<value_type> >::value)>
- realloc_and_memmove_ok; // pretend mv(x,y) == "x.~T(); new(x) T(y)"
- erase_aux(offset, realloc_and_memmove_ok());
- }
- --settings.num_buckets;
- bmclear(i);
- }
- }
-
- void erase(iterator pos) {
- erase(pos.pos);
- }
-
- void erase(iterator start_it, iterator end_it) {
- // This could be more efficient, but to do so we'd need to make
- // bmclear() clear a range of indices. Doesn't seem worth it.
- for ( ; start_it != end_it; ++start_it )
- erase(start_it);
- }
-
-
- // I/O
- // We support reading and writing groups to disk. We don't store
- // the actual array contents (which we don't know how to store),
- // just the bitmap and size. Meant to be used with table I/O.
-
- template <typename OUTPUT> bool write_metadata(OUTPUT *fp) const {
- // we explicitly set to u_int16_t
- assert(sizeof(settings.num_buckets) == 2);
- if ( !sparsehash_internal::write_bigendian_number(fp, settings.num_buckets,
- 2) )
- return false;
- if ( !sparsehash_internal::write_data(fp, bitmap, sizeof(bitmap)) )
- return false;
- return true;
- }
-
- // Reading destroys the old group contents! Returns true if all was ok.
- template <typename INPUT> bool read_metadata(INPUT *fp) {
- clear();
- if ( !sparsehash_internal::read_bigendian_number(fp, &settings.num_buckets,
- 2) )
- return false;
- if ( !sparsehash_internal::read_data(fp, bitmap, sizeof(bitmap)) )
- return false;
- // We'll allocate the space, but we won't fill it: it will be
- // left as uninitialized raw memory.
- group = allocate_group(settings.num_buckets);
- return true;
- }
-
- // Again, only meaningful if value_type is a POD.
- template <typename INPUT> bool read_nopointer_data(INPUT *fp) {
- for ( nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !sparsehash_internal::read_data(fp, &(*it), sizeof(*it)) )
- return false;
- }
- return true;
- }
-
- // If your keys and values are simple enough, we can write them
- // to disk for you. "simple enough" means POD and no pointers.
- // However, we don't try to normalize endianness.
- template <typename OUTPUT> bool write_nopointer_data(OUTPUT *fp) const {
- for ( const_nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !sparsehash_internal::write_data(fp, &(*it), sizeof(*it)) )
- return false;
- }
- return true;
- }
-
-
- // Comparisons. We only need to define == and < -- we get
- // != > <= >= via relops.h (which we happily included above).
- // Note the comparisons are pretty arbitrary: we compare
- // values of the first index that isn't equal (using default
- // value for empty buckets).
- bool operator==(const sparsegroup& x) const {
- return ( settings.num_buckets == x.settings.num_buckets &&
- memcmp(bitmap, x.bitmap, sizeof(bitmap)) == 0 &&
- std::equal(begin(), end(), x.begin()) ); // from <algorithm>
- }
-
- bool operator<(const sparsegroup& x) const { // also from <algorithm>
- return std::lexicographical_compare(begin(), end(), x.begin(), x.end());
- }
- bool operator!=(const sparsegroup& x) const { return !(*this == x); }
- bool operator<=(const sparsegroup& x) const { return !(x < *this); }
- bool operator>(const sparsegroup& x) const { return x < *this; }
- bool operator>=(const sparsegroup& x) const { return !(*this < x); }
-
- private:
- template <class A>
- class alloc_impl : public A {
- public:
- typedef typename A::pointer pointer;
- typedef typename A::size_type size_type;
-
- // Convert a normal allocator to one that has realloc_or_die()
- alloc_impl(const A& a) : A(a) { }
-
- // realloc_or_die should only be used when using the default
- // allocator (libc_allocator_with_realloc).
- pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
- fprintf(stderr, "realloc_or_die is only supported for "
- "libc_allocator_with_realloc\n");
- exit(1);
- return NULL;
- }
- };
-
- // A template specialization of alloc_impl for
- // libc_allocator_with_realloc that can handle realloc_or_die.
- template <class A>
- class alloc_impl<libc_allocator_with_realloc<A> >
- : public libc_allocator_with_realloc<A> {
- public:
- typedef typename libc_allocator_with_realloc<A>::pointer pointer;
- typedef typename libc_allocator_with_realloc<A>::size_type size_type;
-
- alloc_impl(const libc_allocator_with_realloc<A>& a)
- : libc_allocator_with_realloc<A>(a) { }
-
- pointer realloc_or_die(pointer ptr, size_type n) {
- pointer retval = this->reallocate(ptr, n);
- if (retval == NULL) {
- fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
- "%lu elements for ptr %p", static_cast<unsigned long>(n), ptr);
- exit(1);
- }
- return retval;
- }
- };
-
- // Package allocator with num_buckets to eliminate memory needed for the
- // zero-size allocator.
- // If new fields are added to this class, we should add them to
- // operator= and swap.
- class Settings : public alloc_impl<value_alloc_type> {
- public:
- Settings(const alloc_impl<value_alloc_type>& a, u_int16_t n = 0)
- : alloc_impl<value_alloc_type>(a), num_buckets(n) { }
- Settings(const Settings& s)
- : alloc_impl<value_alloc_type>(s), num_buckets(s.num_buckets) { }
-
- u_int16_t num_buckets; // limits GROUP_SIZE to 64K
- };
-
- // The actual data
- pointer group; // (small) array of T's
- Settings settings; // allocator and num_buckets
- unsigned char bitmap[(GROUP_SIZE-1)/8 + 1]; // fancy math is so we round up
-};
-
-// We need a global swap as well
-template <class T, u_int16_t GROUP_SIZE, class Alloc>
-inline void swap(sparsegroup<T,GROUP_SIZE,Alloc> &x,
- sparsegroup<T,GROUP_SIZE,Alloc> &y) {
- x.swap(y);
-}
-
-// ---------------------------------------------------------------------------
-
-
-template <class T, u_int16_t GROUP_SIZE = DEFAULT_SPARSEGROUP_SIZE,
- class Alloc = libc_allocator_with_realloc<T> >
-class sparsetable {
- private:
- typedef typename Alloc::template rebind<T>::other value_alloc_type;
- typedef typename Alloc::template rebind<
- sparsegroup<T, GROUP_SIZE, value_alloc_type> >::other vector_alloc;
-
- public:
- // Basic types
- typedef T value_type; // stolen from stl_vector.h
- typedef Alloc allocator_type;
- typedef typename value_alloc_type::size_type size_type;
- typedef typename value_alloc_type::difference_type difference_type;
- typedef typename value_alloc_type::reference reference;
- typedef typename value_alloc_type::const_reference const_reference;
- typedef typename value_alloc_type::pointer pointer;
- typedef typename value_alloc_type::const_pointer const_pointer;
- typedef table_iterator<sparsetable<T, GROUP_SIZE, Alloc> > iterator;
- typedef const_table_iterator<sparsetable<T, GROUP_SIZE, Alloc> >
- const_iterator;
- typedef table_element_adaptor<sparsetable<T, GROUP_SIZE, Alloc> >
- element_adaptor;
- typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
- typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h
-
- // These are our special iterators, that go over non-empty buckets in a
- // table. These aren't const only because you can change non-empty bcks.
- typedef two_d_iterator< std::vector< sparsegroup<value_type, GROUP_SIZE,
- value_alloc_type>,
- vector_alloc> >
- nonempty_iterator;
- typedef const_two_d_iterator< std::vector< sparsegroup<value_type,
- GROUP_SIZE,
- value_alloc_type>,
- vector_alloc> >
- const_nonempty_iterator;
- typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
- typedef std::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;
- // Another special iterator: it frees memory as it iterates (used to resize)
- typedef destructive_two_d_iterator< std::vector< sparsegroup<value_type,
- GROUP_SIZE,
- value_alloc_type>,
- vector_alloc> >
- destructive_iterator;
-
- // Iterator functions
- iterator begin() { return iterator(this, 0); }
- const_iterator begin() const { return const_iterator(this, 0); }
- iterator end() { return iterator(this, size()); }
- const_iterator end() const { return const_iterator(this, size()); }
- reverse_iterator rbegin() { return reverse_iterator(end()); }
- const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
- reverse_iterator rend() { return reverse_iterator(begin()); }
- const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
-
- // Versions for our special non-empty iterator
- nonempty_iterator nonempty_begin() {
- return nonempty_iterator(groups.begin(), groups.end(), groups.begin());
- }
- const_nonempty_iterator nonempty_begin() const {
- return const_nonempty_iterator(groups.begin(),groups.end(), groups.begin());
- }
- nonempty_iterator nonempty_end() {
- return nonempty_iterator(groups.begin(), groups.end(), groups.end());
- }
- const_nonempty_iterator nonempty_end() const {
- return const_nonempty_iterator(groups.begin(), groups.end(), groups.end());
- }
- reverse_nonempty_iterator nonempty_rbegin() {
- return reverse_nonempty_iterator(nonempty_end());
- }
- const_reverse_nonempty_iterator nonempty_rbegin() const {
- return const_reverse_nonempty_iterator(nonempty_end());
- }
- reverse_nonempty_iterator nonempty_rend() {
- return reverse_nonempty_iterator(nonempty_begin());
- }
- const_reverse_nonempty_iterator nonempty_rend() const {
- return const_reverse_nonempty_iterator(nonempty_begin());
- }
- destructive_iterator destructive_begin() {
- return destructive_iterator(groups.begin(), groups.end(), groups.begin());
- }
- destructive_iterator destructive_end() {
- return destructive_iterator(groups.begin(), groups.end(), groups.end());
- }
-
- typedef sparsegroup<value_type, GROUP_SIZE, allocator_type> group_type;
- typedef std::vector<group_type, vector_alloc > group_vector_type;
-
- typedef typename group_vector_type::reference GroupsReference;
- typedef typename group_vector_type::const_reference GroupsConstReference;
- typedef typename group_vector_type::iterator GroupsIterator;
- typedef typename group_vector_type::const_iterator GroupsConstIterator;
-
- // How to deal with the proper group
- static size_type num_groups(size_type num) { // how many to hold num buckets
- return num == 0 ? 0 : ((num-1) / GROUP_SIZE) + 1;
- }
-
- u_int16_t pos_in_group(size_type i) const {
- return static_cast<u_int16_t>(i % GROUP_SIZE);
- }
- size_type group_num(size_type i) const {
- return i / GROUP_SIZE;
- }
- GroupsReference which_group(size_type i) {
- return groups[group_num(i)];
- }
- GroupsConstReference which_group(size_type i) const {
- return groups[group_num(i)];
- }
-
- public:
- // Constructors -- default, normal (when you specify size), and copy
- explicit sparsetable(size_type sz = 0, Alloc alloc = Alloc())
- : groups(vector_alloc(alloc)), settings(alloc, sz) {
- groups.resize(num_groups(sz), group_type(settings));
- }
- // We can get away with using the default copy constructor,
- // and default destructor, and hence the default operator=. Huzzah!
-
- // Many STL algorithms use swap instead of copy constructors
- void swap(sparsetable& x) {
- std::swap(groups, x.groups); // defined in stl_algobase.h
- std::swap(settings.table_size, x.settings.table_size);
- std::swap(settings.num_buckets, x.settings.num_buckets);
- }
-
- // It's always nice to be able to clear a table without deallocating it
- void clear() {
- GroupsIterator group;
- for ( group = groups.begin(); group != groups.end(); ++group ) {
- group->clear();
- }
- settings.num_buckets = 0;
- }
-
- // ACCESSOR FUNCTIONS for the things we templatize on, basically
- allocator_type get_allocator() const {
- return allocator_type(settings);
- }
-
-
- // Functions that tell you about size.
- // NOTE: empty() is non-intuitive! It does not tell you the number
- // of not-empty buckets (use num_nonempty() for that). Instead
- // it says whether you've allocated any buckets or not.
- size_type size() const { return settings.table_size; }
- size_type max_size() const { return settings.max_size(); }
- bool empty() const { return settings.table_size == 0; }
- // We also may want to know how many *used* buckets there are
- size_type num_nonempty() const { return settings.num_buckets; }
-
- // OK, we'll let you resize one of these puppies
- void resize(size_type new_size) {
- groups.resize(num_groups(new_size), group_type(settings));
- if ( new_size < settings.table_size) {
- // lower num_buckets, clear last group
- if ( pos_in_group(new_size) > 0 ) // need to clear inside last group
- groups.back().erase(groups.back().begin() + pos_in_group(new_size),
- groups.back().end());
- settings.num_buckets = 0; // refigure # of used buckets
- GroupsConstIterator group;
- for ( group = groups.begin(); group != groups.end(); ++group )
- settings.num_buckets += group->num_nonempty();
- }
- settings.table_size = new_size;
- }
-
-
- // We let you see if a bucket is non-empty without retrieving it
- bool test(size_type i) const {
- assert(i < settings.table_size);
- return which_group(i).test(pos_in_group(i));
- }
- bool test(iterator pos) const {
- return which_group(pos.pos).test(pos_in_group(pos.pos));
- }
- bool test(const_iterator pos) const {
- return which_group(pos.pos).test(pos_in_group(pos.pos));
- }
-
- // We only return const_references because it's really hard to
- // return something settable for empty buckets. Use set() instead.
- const_reference get(size_type i) const {
- assert(i < settings.table_size);
- return which_group(i).get(pos_in_group(i));
- }
-
- // TODO(csilvers): make protected + friend
- // This is used by sparse_hashtable to get an element from the table
- // when we know it exists (because the caller has called test(i)).
- const_reference unsafe_get(size_type i) const {
- assert(i < settings.table_size);
- assert(test(i));
- return which_group(i).unsafe_get(pos_in_group(i));
- }
-
- // TODO(csilvers): make protected + friend element_adaptor
- reference mutating_get(size_type i) { // fills bucket i before getting
- assert(i < settings.table_size);
- typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
- reference retval = which_group(i).mutating_get(pos_in_group(i));
- settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
- return retval;
- }
-
- // Syntactic sugar. As in sparsegroup, the non-const version is harder
- const_reference operator[](size_type i) const {
- return get(i);
- }
-
- element_adaptor operator[](size_type i) {
- return element_adaptor(this, i);
- }
-
- // Needed for hashtables, gets as a nonempty_iterator. Crashes for empty bcks
- const_nonempty_iterator get_iter(size_type i) const {
- assert(test(i)); // how can a nonempty_iterator point to an empty bucket?
- return const_nonempty_iterator(
- groups.begin(), groups.end(),
- groups.begin() + group_num(i),
- (groups[group_num(i)].nonempty_begin() +
- groups[group_num(i)].pos_to_offset(pos_in_group(i))));
- }
- // For nonempty we can return a non-const version
- nonempty_iterator get_iter(size_type i) {
- assert(test(i)); // how can a nonempty_iterator point to an empty bucket?
- return nonempty_iterator(
- groups.begin(), groups.end(),
- groups.begin() + group_num(i),
- (groups[group_num(i)].nonempty_begin() +
- groups[group_num(i)].pos_to_offset(pos_in_group(i))));
- }
-
- // And the reverse transformation.
+ group = settings.realloc_or_die(group, settings.num_buckets-1);
+ }
+
+ // Shrink the array, without any special assumptions about value_type and
+ // allocator_type.
+ void erase_aux(size_type offset, base::false_type) {
+ // This is valid because 0 <= offset < num_buckets. Note the inequality.
+ pointer p = allocate_group(settings.num_buckets - 1);
+ std::uninitialized_copy(group, group + offset, p);
+ std::uninitialized_copy(group + offset + 1, group + settings.num_buckets,
+ p + offset);
+ free_group();
+ group = p;
+ }
+
+ public:
+ // This takes the specified elements out of the group. This is
+ // "undefining", rather than "clearing".
+ // TODO(austern): Make this exception safe: handle exceptions from
+ // value_type's copy constructor.
+ void erase(size_type i) {
+ if ( bmtest(i) ) { // trivial to erase empty bucket
+ size_type offset = pos_to_offset(bitmap,i); // where we'll find (or insert)
+ if ( settings.num_buckets == 1 ) {
+ free_group();
+ group = NULL;
+ } else {
+ typedef base::integral_constant<bool,
+ (base::has_trivial_copy<value_type>::value &&
+ base::has_trivial_destructor<value_type>::value &&
+ base::is_same<
+ allocator_type,
+ libc_allocator_with_realloc<value_type> >::value)>
+ realloc_and_memmove_ok; // pretend mv(x,y) == "x.~T(); new(x) T(y)"
+ erase_aux(offset, realloc_and_memmove_ok());
+ }
+ --settings.num_buckets;
+ bmclear(i);
+ }
+ }
+
+ void erase(iterator pos) {
+ erase(pos.pos);
+ }
+
+ void erase(iterator start_it, iterator end_it) {
+ // This could be more efficient, but to do so we'd need to make
+ // bmclear() clear a range of indices. Doesn't seem worth it.
+ for ( ; start_it != end_it; ++start_it )
+ erase(start_it);
+ }
+
+
+ // I/O
+ // We support reading and writing groups to disk. We don't store
+ // the actual array contents (which we don't know how to store),
+ // just the bitmap and size. Meant to be used with table I/O.
+
+ template <typename OUTPUT> bool write_metadata(OUTPUT *fp) const {
+ // we explicitly set to u_int16_t
+ assert(sizeof(settings.num_buckets) == 2);
+ if ( !sparsehash_internal::write_bigendian_number(fp, settings.num_buckets,
+ 2) )
+ return false;
+ if ( !sparsehash_internal::write_data(fp, bitmap, sizeof(bitmap)) )
+ return false;
+ return true;
+ }
+
+ // Reading destroys the old group contents! Returns true if all was ok.
+ template <typename INPUT> bool read_metadata(INPUT *fp) {
+ clear();
+ if ( !sparsehash_internal::read_bigendian_number(fp, &settings.num_buckets,
+ 2) )
+ return false;
+ if ( !sparsehash_internal::read_data(fp, bitmap, sizeof(bitmap)) )
+ return false;
+ // We'll allocate the space, but we won't fill it: it will be
+ // left as uninitialized raw memory.
+ group = allocate_group(settings.num_buckets);
+ return true;
+ }
+
+ // Again, only meaningful if value_type is a POD.
+ template <typename INPUT> bool read_nopointer_data(INPUT *fp) {
+ for ( nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !sparsehash_internal::read_data(fp, &(*it), sizeof(*it)) )
+ return false;
+ }
+ return true;
+ }
+
+ // If your keys and values are simple enough, we can write them
+ // to disk for you. "simple enough" means POD and no pointers.
+ // However, we don't try to normalize endianness.
+ template <typename OUTPUT> bool write_nopointer_data(OUTPUT *fp) const {
+ for ( const_nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !sparsehash_internal::write_data(fp, &(*it), sizeof(*it)) )
+ return false;
+ }
+ return true;
+ }
+
+
+ // Comparisons. We only need to define == and < -- we get
+ // != > <= >= via relops.h (which we happily included above).
+ // Note the comparisons are pretty arbitrary: we compare
+ // values of the first index that isn't equal (using default
+ // value for empty buckets).
+ bool operator==(const sparsegroup& x) const {
+ return ( settings.num_buckets == x.settings.num_buckets &&
+ memcmp(bitmap, x.bitmap, sizeof(bitmap)) == 0 &&
+ std::equal(begin(), end(), x.begin()) ); // from <algorithm>
+ }
+
+ bool operator<(const sparsegroup& x) const { // also from <algorithm>
+ return std::lexicographical_compare(begin(), end(), x.begin(), x.end());
+ }
+ bool operator!=(const sparsegroup& x) const { return !(*this == x); }
+ bool operator<=(const sparsegroup& x) const { return !(x < *this); }
+ bool operator>(const sparsegroup& x) const { return x < *this; }
+ bool operator>=(const sparsegroup& x) const { return !(*this < x); }
+
+ private:
+ template <class A>
+ class alloc_impl : public A {
+ public:
+ typedef typename A::pointer pointer;
+ typedef typename A::size_type size_type;
+
+ // Convert a normal allocator to one that has realloc_or_die()
+ alloc_impl(const A& a) : A(a) { }
+
+ // realloc_or_die should only be used when using the default
+ // allocator (libc_allocator_with_realloc).
+ pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
+ fprintf(stderr, "realloc_or_die is only supported for "
+ "libc_allocator_with_realloc\n");
+ exit(1);
+ return NULL;
+ }
+ };
+
+ // A template specialization of alloc_impl for
+ // libc_allocator_with_realloc that can handle realloc_or_die.
+ template <class A>
+ class alloc_impl<libc_allocator_with_realloc<A> >
+ : public libc_allocator_with_realloc<A> {
+ public:
+ typedef typename libc_allocator_with_realloc<A>::pointer pointer;
+ typedef typename libc_allocator_with_realloc<A>::size_type size_type;
+
+ alloc_impl(const libc_allocator_with_realloc<A>& a)
+ : libc_allocator_with_realloc<A>(a) { }
+
+ pointer realloc_or_die(pointer ptr, size_type n) {
+ pointer retval = this->reallocate(ptr, n);
+ if (retval == NULL) {
+ fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
+ "%lu elements for ptr %p", static_cast<unsigned long>(n), ptr);
+ exit(1);
+ }
+ return retval;
+ }
+ };
+
+ // Package allocator with num_buckets to eliminate memory needed for the
+ // zero-size allocator.
+ // If new fields are added to this class, we should add them to
+ // operator= and swap.
+ class Settings : public alloc_impl<value_alloc_type> {
+ public:
+ Settings(const alloc_impl<value_alloc_type>& a, u_int16_t n = 0)
+ : alloc_impl<value_alloc_type>(a), num_buckets(n) { }
+ Settings(const Settings& s)
+ : alloc_impl<value_alloc_type>(s), num_buckets(s.num_buckets) { }
+
+ u_int16_t num_buckets; // limits GROUP_SIZE to 64K
+ };
+
+ // The actual data
+ pointer group; // (small) array of T's
+ Settings settings; // allocator and num_buckets
+ unsigned char bitmap[(GROUP_SIZE-1)/8 + 1]; // fancy math is so we round up
+};
+
+// We need a global swap as well
+template <class T, u_int16_t GROUP_SIZE, class Alloc>
+inline void swap(sparsegroup<T,GROUP_SIZE,Alloc> &x,
+ sparsegroup<T,GROUP_SIZE,Alloc> &y) {
+ x.swap(y);
+}
+
+// ---------------------------------------------------------------------------
+
+
+template <class T, u_int16_t GROUP_SIZE = DEFAULT_SPARSEGROUP_SIZE,
+ class Alloc = libc_allocator_with_realloc<T> >
+class sparsetable {
+ private:
+ typedef typename Alloc::template rebind<T>::other value_alloc_type;
+ typedef typename Alloc::template rebind<
+ sparsegroup<T, GROUP_SIZE, value_alloc_type> >::other vector_alloc;
+
+ public:
+ // Basic types
+ typedef T value_type; // stolen from stl_vector.h
+ typedef Alloc allocator_type;
+ typedef typename value_alloc_type::size_type size_type;
+ typedef typename value_alloc_type::difference_type difference_type;
+ typedef typename value_alloc_type::reference reference;
+ typedef typename value_alloc_type::const_reference const_reference;
+ typedef typename value_alloc_type::pointer pointer;
+ typedef typename value_alloc_type::const_pointer const_pointer;
+ typedef table_iterator<sparsetable<T, GROUP_SIZE, Alloc> > iterator;
+ typedef const_table_iterator<sparsetable<T, GROUP_SIZE, Alloc> >
+ const_iterator;
+ typedef table_element_adaptor<sparsetable<T, GROUP_SIZE, Alloc> >
+ element_adaptor;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator; // from iterator.h
+
+ // These are our special iterators, that go over non-empty buckets in a
+ // table. These aren't const only because you can change non-empty bcks.
+ typedef two_d_iterator< std::vector< sparsegroup<value_type, GROUP_SIZE,
+ value_alloc_type>,
+ vector_alloc> >
+ nonempty_iterator;
+ typedef const_two_d_iterator< std::vector< sparsegroup<value_type,
+ GROUP_SIZE,
+ value_alloc_type>,
+ vector_alloc> >
+ const_nonempty_iterator;
+ typedef std::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
+ typedef std::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;
+ // Another special iterator: it frees memory as it iterates (used to resize)
+ typedef destructive_two_d_iterator< std::vector< sparsegroup<value_type,
+ GROUP_SIZE,
+ value_alloc_type>,
+ vector_alloc> >
+ destructive_iterator;
+
+ // Iterator functions
+ iterator begin() { return iterator(this, 0); }
+ const_iterator begin() const { return const_iterator(this, 0); }
+ iterator end() { return iterator(this, size()); }
+ const_iterator end() const { return const_iterator(this, size()); }
+ reverse_iterator rbegin() { return reverse_iterator(end()); }
+ const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
+ reverse_iterator rend() { return reverse_iterator(begin()); }
+ const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }
+
+ // Versions for our special non-empty iterator
+ nonempty_iterator nonempty_begin() {
+ return nonempty_iterator(groups.begin(), groups.end(), groups.begin());
+ }
+ const_nonempty_iterator nonempty_begin() const {
+ return const_nonempty_iterator(groups.begin(),groups.end(), groups.begin());
+ }
+ nonempty_iterator nonempty_end() {
+ return nonempty_iterator(groups.begin(), groups.end(), groups.end());
+ }
+ const_nonempty_iterator nonempty_end() const {
+ return const_nonempty_iterator(groups.begin(), groups.end(), groups.end());
+ }
+ reverse_nonempty_iterator nonempty_rbegin() {
+ return reverse_nonempty_iterator(nonempty_end());
+ }
+ const_reverse_nonempty_iterator nonempty_rbegin() const {
+ return const_reverse_nonempty_iterator(nonempty_end());
+ }
+ reverse_nonempty_iterator nonempty_rend() {
+ return reverse_nonempty_iterator(nonempty_begin());
+ }
+ const_reverse_nonempty_iterator nonempty_rend() const {
+ return const_reverse_nonempty_iterator(nonempty_begin());
+ }
+ destructive_iterator destructive_begin() {
+ return destructive_iterator(groups.begin(), groups.end(), groups.begin());
+ }
+ destructive_iterator destructive_end() {
+ return destructive_iterator(groups.begin(), groups.end(), groups.end());
+ }
+
+ typedef sparsegroup<value_type, GROUP_SIZE, allocator_type> group_type;
+ typedef std::vector<group_type, vector_alloc > group_vector_type;
+
+ typedef typename group_vector_type::reference GroupsReference;
+ typedef typename group_vector_type::const_reference GroupsConstReference;
+ typedef typename group_vector_type::iterator GroupsIterator;
+ typedef typename group_vector_type::const_iterator GroupsConstIterator;
+
+ // How to deal with the proper group
+ static size_type num_groups(size_type num) { // how many to hold num buckets
+ return num == 0 ? 0 : ((num-1) / GROUP_SIZE) + 1;
+ }
+
+ u_int16_t pos_in_group(size_type i) const {
+ return static_cast<u_int16_t>(i % GROUP_SIZE);
+ }
+ size_type group_num(size_type i) const {
+ return i / GROUP_SIZE;
+ }
+ GroupsReference which_group(size_type i) {
+ return groups[group_num(i)];
+ }
+ GroupsConstReference which_group(size_type i) const {
+ return groups[group_num(i)];
+ }
+
+ public:
+ // Constructors -- default, normal (when you specify size), and copy
+ explicit sparsetable(size_type sz = 0, Alloc alloc = Alloc())
+ : groups(vector_alloc(alloc)), settings(alloc, sz) {
+ groups.resize(num_groups(sz), group_type(settings));
+ }
+ // We can get away with using the default copy constructor,
+ // and default destructor, and hence the default operator=. Huzzah!
+
+ // Many STL algorithms use swap instead of copy constructors
+ void swap(sparsetable& x) {
+ std::swap(groups, x.groups); // defined in stl_algobase.h
+ std::swap(settings.table_size, x.settings.table_size);
+ std::swap(settings.num_buckets, x.settings.num_buckets);
+ }
+
+ // It's always nice to be able to clear a table without deallocating it
+ void clear() {
+ GroupsIterator group;
+ for ( group = groups.begin(); group != groups.end(); ++group ) {
+ group->clear();
+ }
+ settings.num_buckets = 0;
+ }
+
+ // ACCESSOR FUNCTIONS for the things we templatize on, basically
+ allocator_type get_allocator() const {
+ return allocator_type(settings);
+ }
+
+
+ // Functions that tell you about size.
+ // NOTE: empty() is non-intuitive! It does not tell you the number
+ // of not-empty buckets (use num_nonempty() for that). Instead
+ // it says whether you've allocated any buckets or not.
+ size_type size() const { return settings.table_size; }
+ size_type max_size() const { return settings.max_size(); }
+ bool empty() const { return settings.table_size == 0; }
+ // We also may want to know how many *used* buckets there are
+ size_type num_nonempty() const { return settings.num_buckets; }
+
+ // OK, we'll let you resize one of these puppies
+ void resize(size_type new_size) {
+ groups.resize(num_groups(new_size), group_type(settings));
+ if ( new_size < settings.table_size) {
+ // lower num_buckets, clear last group
+ if ( pos_in_group(new_size) > 0 ) // need to clear inside last group
+ groups.back().erase(groups.back().begin() + pos_in_group(new_size),
+ groups.back().end());
+ settings.num_buckets = 0; // refigure # of used buckets
+ GroupsConstIterator group;
+ for ( group = groups.begin(); group != groups.end(); ++group )
+ settings.num_buckets += group->num_nonempty();
+ }
+ settings.table_size = new_size;
+ }
+
+
+ // We let you see if a bucket is non-empty without retrieving it
+ bool test(size_type i) const {
+ assert(i < settings.table_size);
+ return which_group(i).test(pos_in_group(i));
+ }
+ bool test(iterator pos) const {
+ return which_group(pos.pos).test(pos_in_group(pos.pos));
+ }
+ bool test(const_iterator pos) const {
+ return which_group(pos.pos).test(pos_in_group(pos.pos));
+ }
+
+ // We only return const_references because it's really hard to
+ // return something settable for empty buckets. Use set() instead.
+ const_reference get(size_type i) const {
+ assert(i < settings.table_size);
+ return which_group(i).get(pos_in_group(i));
+ }
+
+ // TODO(csilvers): make protected + friend
+ // This is used by sparse_hashtable to get an element from the table
+ // when we know it exists (because the caller has called test(i)).
+ const_reference unsafe_get(size_type i) const {
+ assert(i < settings.table_size);
+ assert(test(i));
+ return which_group(i).unsafe_get(pos_in_group(i));
+ }
+
+ // TODO(csilvers): make protected + friend element_adaptor
+ reference mutating_get(size_type i) { // fills bucket i before getting
+ assert(i < settings.table_size);
+ typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
+ reference retval = which_group(i).mutating_get(pos_in_group(i));
+ settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
+ return retval;
+ }
+
+ // Syntactic sugar. As in sparsegroup, the non-const version is harder
+ const_reference operator[](size_type i) const {
+ return get(i);
+ }
+
+ element_adaptor operator[](size_type i) {
+ return element_adaptor(this, i);
+ }
+
+ // Needed for hashtables, gets as a nonempty_iterator. Crashes for empty bcks
+ const_nonempty_iterator get_iter(size_type i) const {
+ assert(test(i)); // how can a nonempty_iterator point to an empty bucket?
+ return const_nonempty_iterator(
+ groups.begin(), groups.end(),
+ groups.begin() + group_num(i),
+ (groups[group_num(i)].nonempty_begin() +
+ groups[group_num(i)].pos_to_offset(pos_in_group(i))));
+ }
+ // For nonempty we can return a non-const version
+ nonempty_iterator get_iter(size_type i) {
+ assert(test(i)); // how can a nonempty_iterator point to an empty bucket?
+ return nonempty_iterator(
+ groups.begin(), groups.end(),
+ groups.begin() + group_num(i),
+ (groups[group_num(i)].nonempty_begin() +
+ groups[group_num(i)].pos_to_offset(pos_in_group(i))));
+ }
+
+ // And the reverse transformation.
size_type get_pos(const const_nonempty_iterator& it) const {
- difference_type current_row = it.row_current - it.row_begin;
- difference_type current_col = (it.col_current -
- groups[current_row].nonempty_begin());
- return ((current_row * GROUP_SIZE) +
- groups[current_row].offset_to_pos(current_col));
- }
-
-
- // This returns a reference to the inserted item (which is a copy of val)
- // The trick is to figure out whether we're replacing or inserting anew
- reference set(size_type i, const_reference val) {
- assert(i < settings.table_size);
- typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
- reference retval = which_group(i).set(pos_in_group(i), val);
- settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
- return retval;
- }
-
- // This takes the specified elements out of the table. This is
- // "undefining", rather than "clearing".
- void erase(size_type i) {
- assert(i < settings.table_size);
- typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
- which_group(i).erase(pos_in_group(i));
- settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
- }
-
- void erase(iterator pos) {
- erase(pos.pos);
- }
-
- void erase(iterator start_it, iterator end_it) {
- // This could be more efficient, but then we'd need to figure
- // out if we spanned groups or not. Doesn't seem worth it.
- for ( ; start_it != end_it; ++start_it )
- erase(start_it);
- }
-
-
- // We support reading and writing tables to disk. We don't store
- // the actual array contents (which we don't know how to store),
- // just the groups and sizes. Returns true if all went ok.
-
- private:
- // Every time the disk format changes, this should probably change too
- typedef unsigned long MagicNumberType;
- static const MagicNumberType MAGIC_NUMBER = 0x24687531;
-
- // Old versions of this code write all data in 32 bits. We need to
- // support these files as well as having support for 64-bit systems.
- // So we use the following encoding scheme: for values < 2^32-1, we
- // store in 4 bytes in big-endian order. For values > 2^32, we
- // store 0xFFFFFFF followed by 8 bytes in big-endian order. This
- // causes us to mis-read old-version code that stores exactly
- // 0xFFFFFFF, but I don't think that is likely to have happened for
- // these particular values.
- template <typename OUTPUT, typename IntType>
- static bool write_32_or_64(OUTPUT* fp, IntType value) {
- if ( value < 0xFFFFFFFFULL ) { // fits in 4 bytes
- if ( !sparsehash_internal::write_bigendian_number(fp, value, 4) )
- return false;
- } else {
- if ( !sparsehash_internal::write_bigendian_number(fp, 0xFFFFFFFFUL, 4) )
- return false;
- if ( !sparsehash_internal::write_bigendian_number(fp, value, 8) )
- return false;
- }
- return true;
- }
-
- template <typename INPUT, typename IntType>
- static bool read_32_or_64(INPUT* fp, IntType *value) { // reads into value
- MagicNumberType first4 = 0; // a convenient 32-bit unsigned type
- if ( !sparsehash_internal::read_bigendian_number(fp, &first4, 4) )
- return false;
- if ( first4 < 0xFFFFFFFFULL ) {
- *value = first4;
- } else {
- if ( !sparsehash_internal::read_bigendian_number(fp, value, 8) )
- return false;
- }
- return true;
- }
-
- public:
- // read/write_metadata() and read_write/nopointer_data() are DEPRECATED.
- // Use serialize() and unserialize(), below, for new code.
-
- template <typename OUTPUT> bool write_metadata(OUTPUT *fp) const {
- if ( !write_32_or_64(fp, MAGIC_NUMBER) ) return false;
- if ( !write_32_or_64(fp, settings.table_size) ) return false;
- if ( !write_32_or_64(fp, settings.num_buckets) ) return false;
-
- GroupsConstIterator group;
- for ( group = groups.begin(); group != groups.end(); ++group )
- if ( group->write_metadata(fp) == false ) return false;
- return true;
- }
-
- // Reading destroys the old table contents! Returns true if read ok.
- template <typename INPUT> bool read_metadata(INPUT *fp) {
- size_type magic_read = 0;
- if ( !read_32_or_64(fp, &magic_read) ) return false;
- if ( magic_read != MAGIC_NUMBER ) {
- clear(); // just to be consistent
- return false;
- }
-
- if ( !read_32_or_64(fp, &settings.table_size) ) return false;
- if ( !read_32_or_64(fp, &settings.num_buckets) ) return false;
-
- resize(settings.table_size); // so the vector's sized ok
- GroupsIterator group;
- for ( group = groups.begin(); group != groups.end(); ++group )
- if ( group->read_metadata(fp) == false ) return false;
- return true;
- }
-
- // This code is identical to that for SparseGroup
- // If your keys and values are simple enough, we can write them
- // to disk for you. "simple enough" means no pointers.
- // However, we don't try to normalize endianness
- bool write_nopointer_data(FILE *fp) const {
- for ( const_nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !fwrite(&*it, sizeof(*it), 1, fp) ) return false;
- }
- return true;
- }
-
- // When reading, we have to override the potential const-ness of *it
- bool read_nopointer_data(FILE *fp) {
- for ( nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) )
- return false;
- }
- return true;
- }
-
- // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
- // (istream, ostream, etc) *or* a class providing
- // Read(void*, size_t) and Write(const void*, size_t)
- // (respectively), which writes a buffer into a stream
- // (which the INPUT/OUTPUT instance presumably owns).
-
- typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
-
- // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
- template <typename ValueSerializer, typename OUTPUT>
- bool serialize(ValueSerializer serializer, OUTPUT *fp) {
- if ( !write_metadata(fp) )
- return false;
- for ( const_nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !serializer(fp, *it) ) return false;
- }
- return true;
- }
-
- // ValueSerializer: a functor. operator()(INPUT*, value_type*)
- template <typename ValueSerializer, typename INPUT>
- bool unserialize(ValueSerializer serializer, INPUT *fp) {
- clear();
- if ( !read_metadata(fp) )
- return false;
- for ( nonempty_iterator it = nonempty_begin();
- it != nonempty_end(); ++it ) {
- if ( !serializer(fp, &*it) ) return false;
- }
- return true;
- }
-
- // Comparisons. Note the comparisons are pretty arbitrary: we
- // compare values of the first index that isn't equal (using default
- // value for empty buckets).
- bool operator==(const sparsetable& x) const {
- return ( settings.table_size == x.settings.table_size &&
- settings.num_buckets == x.settings.num_buckets &&
- groups == x.groups );
- }
-
- bool operator<(const sparsetable& x) const {
- return std::lexicographical_compare(begin(), end(), x.begin(), x.end());
- }
- bool operator!=(const sparsetable& x) const { return !(*this == x); }
- bool operator<=(const sparsetable& x) const { return !(x < *this); }
- bool operator>(const sparsetable& x) const { return x < *this; }
- bool operator>=(const sparsetable& x) const { return !(*this < x); }
-
-
- private:
- // Package allocator with table_size and num_buckets to eliminate memory
- // needed for the zero-size allocator.
- // If new fields are added to this class, we should add them to
- // operator= and swap.
- class Settings : public allocator_type {
- public:
- typedef typename allocator_type::size_type size_type;
-
- Settings(const allocator_type& a, size_type sz = 0, size_type n = 0)
- : allocator_type(a), table_size(sz), num_buckets(n) { }
-
- Settings(const Settings& s)
- : allocator_type(s),
- table_size(s.table_size), num_buckets(s.num_buckets) { }
-
- size_type table_size; // how many buckets they want
- size_type num_buckets; // number of non-empty buckets
- };
-
- // The actual data
- group_vector_type groups; // our list of groups
- Settings settings; // allocator, table size, buckets
-};
-
-// We need a global swap as well
-template <class T, u_int16_t GROUP_SIZE, class Alloc>
-inline void swap(sparsetable<T,GROUP_SIZE,Alloc> &x,
- sparsetable<T,GROUP_SIZE,Alloc> &y) {
- x.swap(y);
-}
-
-_END_GOOGLE_NAMESPACE_
-
-#endif // UTIL_GTL_SPARSETABLE_H_
+ difference_type current_row = it.row_current - it.row_begin;
+ difference_type current_col = (it.col_current -
+ groups[current_row].nonempty_begin());
+ return ((current_row * GROUP_SIZE) +
+ groups[current_row].offset_to_pos(current_col));
+ }
+
+
+ // This returns a reference to the inserted item (which is a copy of val)
+ // The trick is to figure out whether we're replacing or inserting anew
+ reference set(size_type i, const_reference val) {
+ assert(i < settings.table_size);
+ typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
+ reference retval = which_group(i).set(pos_in_group(i), val);
+ settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
+ return retval;
+ }
+
+ // This takes the specified elements out of the table. This is
+ // "undefining", rather than "clearing".
+ void erase(size_type i) {
+ assert(i < settings.table_size);
+ typename group_type::size_type old_numbuckets = which_group(i).num_nonempty();
+ which_group(i).erase(pos_in_group(i));
+ settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
+ }
+
+ void erase(iterator pos) {
+ erase(pos.pos);
+ }
+
+ void erase(iterator start_it, iterator end_it) {
+ // This could be more efficient, but then we'd need to figure
+ // out if we spanned groups or not. Doesn't seem worth it.
+ for ( ; start_it != end_it; ++start_it )
+ erase(start_it);
+ }
+
+
+ // We support reading and writing tables to disk. We don't store
+ // the actual array contents (which we don't know how to store),
+ // just the groups and sizes. Returns true if all went ok.
+
+ private:
+ // Every time the disk format changes, this should probably change too
+ typedef unsigned long MagicNumberType;
+ static const MagicNumberType MAGIC_NUMBER = 0x24687531;
+
+ // Old versions of this code write all data in 32 bits. We need to
+ // support these files as well as having support for 64-bit systems.
+ // So we use the following encoding scheme: for values < 2^32-1, we
+ // store in 4 bytes in big-endian order. For values > 2^32, we
+ // store 0xFFFFFFF followed by 8 bytes in big-endian order. This
+ // causes us to mis-read old-version code that stores exactly
+ // 0xFFFFFFF, but I don't think that is likely to have happened for
+ // these particular values.
+ template <typename OUTPUT, typename IntType>
+ static bool write_32_or_64(OUTPUT* fp, IntType value) {
+ if ( value < 0xFFFFFFFFULL ) { // fits in 4 bytes
+ if ( !sparsehash_internal::write_bigendian_number(fp, value, 4) )
+ return false;
+ } else {
+ if ( !sparsehash_internal::write_bigendian_number(fp, 0xFFFFFFFFUL, 4) )
+ return false;
+ if ( !sparsehash_internal::write_bigendian_number(fp, value, 8) )
+ return false;
+ }
+ return true;
+ }
+
+ template <typename INPUT, typename IntType>
+ static bool read_32_or_64(INPUT* fp, IntType *value) { // reads into value
+ MagicNumberType first4 = 0; // a convenient 32-bit unsigned type
+ if ( !sparsehash_internal::read_bigendian_number(fp, &first4, 4) )
+ return false;
+ if ( first4 < 0xFFFFFFFFULL ) {
+ *value = first4;
+ } else {
+ if ( !sparsehash_internal::read_bigendian_number(fp, value, 8) )
+ return false;
+ }
+ return true;
+ }
+
+ public:
+ // read/write_metadata() and read_write/nopointer_data() are DEPRECATED.
+ // Use serialize() and unserialize(), below, for new code.
+
+ template <typename OUTPUT> bool write_metadata(OUTPUT *fp) const {
+ if ( !write_32_or_64(fp, MAGIC_NUMBER) ) return false;
+ if ( !write_32_or_64(fp, settings.table_size) ) return false;
+ if ( !write_32_or_64(fp, settings.num_buckets) ) return false;
+
+ GroupsConstIterator group;
+ for ( group = groups.begin(); group != groups.end(); ++group )
+ if ( group->write_metadata(fp) == false ) return false;
+ return true;
+ }
+
+ // Reading destroys the old table contents! Returns true if read ok.
+ template <typename INPUT> bool read_metadata(INPUT *fp) {
+ size_type magic_read = 0;
+ if ( !read_32_or_64(fp, &magic_read) ) return false;
+ if ( magic_read != MAGIC_NUMBER ) {
+ clear(); // just to be consistent
+ return false;
+ }
+
+ if ( !read_32_or_64(fp, &settings.table_size) ) return false;
+ if ( !read_32_or_64(fp, &settings.num_buckets) ) return false;
+
+ resize(settings.table_size); // so the vector's sized ok
+ GroupsIterator group;
+ for ( group = groups.begin(); group != groups.end(); ++group )
+ if ( group->read_metadata(fp) == false ) return false;
+ return true;
+ }
+
+ // This code is identical to that for SparseGroup
+ // If your keys and values are simple enough, we can write them
+ // to disk for you. "simple enough" means no pointers.
+ // However, we don't try to normalize endianness
+ bool write_nopointer_data(FILE *fp) const {
+ for ( const_nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !fwrite(&*it, sizeof(*it), 1, fp) ) return false;
+ }
+ return true;
+ }
+
+ // When reading, we have to override the potential const-ness of *it
+ bool read_nopointer_data(FILE *fp) {
+ for ( nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) )
+ return false;
+ }
+ return true;
+ }
+
+ // INPUT and OUTPUT must be either a FILE, *or* a C++ stream
+ // (istream, ostream, etc) *or* a class providing
+ // Read(void*, size_t) and Write(const void*, size_t)
+ // (respectively), which writes a buffer into a stream
+ // (which the INPUT/OUTPUT instance presumably owns).
+
+ typedef sparsehash_internal::pod_serializer<value_type> NopointerSerializer;
+
+ // ValueSerializer: a functor. operator()(OUTPUT*, const value_type&)
+ template <typename ValueSerializer, typename OUTPUT>
+ bool serialize(ValueSerializer serializer, OUTPUT *fp) {
+ if ( !write_metadata(fp) )
+ return false;
+ for ( const_nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !serializer(fp, *it) ) return false;
+ }
+ return true;
+ }
+
+ // ValueSerializer: a functor. operator()(INPUT*, value_type*)
+ template <typename ValueSerializer, typename INPUT>
+ bool unserialize(ValueSerializer serializer, INPUT *fp) {
+ clear();
+ if ( !read_metadata(fp) )
+ return false;
+ for ( nonempty_iterator it = nonempty_begin();
+ it != nonempty_end(); ++it ) {
+ if ( !serializer(fp, &*it) ) return false;
+ }
+ return true;
+ }
+
+ // Comparisons. Note the comparisons are pretty arbitrary: we
+ // compare values of the first index that isn't equal (using default
+ // value for empty buckets).
+ bool operator==(const sparsetable& x) const {
+ return ( settings.table_size == x.settings.table_size &&
+ settings.num_buckets == x.settings.num_buckets &&
+ groups == x.groups );
+ }
+
+ bool operator<(const sparsetable& x) const {
+ return std::lexicographical_compare(begin(), end(), x.begin(), x.end());
+ }
+ bool operator!=(const sparsetable& x) const { return !(*this == x); }
+ bool operator<=(const sparsetable& x) const { return !(x < *this); }
+ bool operator>(const sparsetable& x) const { return x < *this; }
+ bool operator>=(const sparsetable& x) const { return !(*this < x); }
+
+
+ private:
+ // Package allocator with table_size and num_buckets to eliminate memory
+ // needed for the zero-size allocator.
+ // If new fields are added to this class, we should add them to
+ // operator= and swap.
+ class Settings : public allocator_type {
+ public:
+ typedef typename allocator_type::size_type size_type;
+
+ Settings(const allocator_type& a, size_type sz = 0, size_type n = 0)
+ : allocator_type(a), table_size(sz), num_buckets(n) { }
+
+ Settings(const Settings& s)
+ : allocator_type(s),
+ table_size(s.table_size), num_buckets(s.num_buckets) { }
+
+ size_type table_size; // how many buckets they want
+ size_type num_buckets; // number of non-empty buckets
+ };
+
+ // The actual data
+ group_vector_type groups; // our list of groups
+ Settings settings; // allocator, table size, buckets
+};
+
+// We need a global swap as well
+template <class T, u_int16_t GROUP_SIZE, class Alloc>
+inline void swap(sparsetable<T,GROUP_SIZE,Alloc> &x,
+ sparsetable<T,GROUP_SIZE,Alloc> &y) {
+ x.swap(y);
+}
+
+_END_GOOGLE_NAMESPACE_
+
+#endif // UTIL_GTL_SPARSETABLE_H_
diff --git a/contrib/libs/sparsehash/src/sparsehash/template_util.h b/contrib/libs/sparsehash/src/sparsehash/template_util.h
index 6fec3d0924..182cef24a1 100644
--- a/contrib/libs/sparsehash/src/sparsehash/template_util.h
+++ b/contrib/libs/sparsehash/src/sparsehash/template_util.h
@@ -1,134 +1,134 @@
-// Copyright 2005 Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ----
-//
-// Template metaprogramming utility functions.
-//
-// This code is compiled directly on many platforms, including client
-// platforms like Windows, Mac, and embedded systems. Before making
-// any changes here, make sure that you're not breaking any platforms.
-//
-//
-// The names choosen here reflect those used in tr1 and the boost::mpl
-// library, there are similar operations used in the Loki library as
-// well. I prefer the boost names for 2 reasons:
-// 1. I think that portions of the Boost libraries are more likely to
-// be included in the c++ standard.
-// 2. It is not impossible that some of the boost libraries will be
-// included in our own build in the future.
-// Both of these outcomes means that we may be able to directly replace
-// some of these with boost equivalents.
-//
-#ifndef BASE_TEMPLATE_UTIL_H_
-#define BASE_TEMPLATE_UTIL_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-_START_GOOGLE_NAMESPACE_
-
-// Types small_ and big_ are guaranteed such that sizeof(small_) <
-// sizeof(big_)
-typedef char small_;
-
-struct big_ {
- char dummy[2];
-};
-
-// Identity metafunction.
-template <class T>
-struct identity_ {
- typedef T type;
-};
-
-// integral_constant, defined in tr1, is a wrapper for an integer
-// value. We don't really need this generality; we could get away
-// with hardcoding the integer type to bool. We use the fully
-// general integer_constant for compatibility with tr1.
-
-template<class T, T v>
-struct integral_constant {
- static const T value = v;
- typedef T value_type;
- typedef integral_constant<T, v> type;
-};
-
-template <class T, T v> const T integral_constant<T, v>::value;
-
-
-// Abbreviations: true_type and false_type are structs that represent boolean
-// true and false values. Also define the boost::mpl versions of those names,
-// true_ and false_.
-typedef integral_constant<bool, true> true_type;
-typedef integral_constant<bool, false> false_type;
-typedef true_type true_;
-typedef false_type false_;
-
-// if_ is a templatized conditional statement.
-// if_<cond, A, B> is a compile time evaluation of cond.
-// if_<>::type contains A if cond is true, B otherwise.
-template<bool cond, typename A, typename B>
-struct if_{
- typedef A type;
-};
-
-template<typename A, typename B>
-struct if_<false, A, B> {
- typedef B type;
-};
-
-
-// type_equals_ is a template type comparator, similar to Loki IsSameType.
-// type_equals_<A, B>::value is true iff "A" is the same type as "B".
-//
-// New code should prefer base::is_same, defined in base/type_traits.h.
-// It is functionally identical, but is_same is the standard spelling.
-template<typename A, typename B>
-struct type_equals_ : public false_ {
-};
-
-template<typename A>
-struct type_equals_<A, A> : public true_ {
-};
-
-// and_ is a template && operator.
-// and_<A, B>::value evaluates "A::value && B::value".
-template<typename A, typename B>
-struct and_ : public integral_constant<bool, (A::value && B::value)> {
-};
-
-// or_ is a template || operator.
-// or_<A, B>::value evaluates "A::value || B::value".
-template<typename A, typename B>
-struct or_ : public integral_constant<bool, (A::value || B::value)> {
-};
-
-
-_END_GOOGLE_NAMESPACE_
-
-#endif // BASE_TEMPLATE_UTIL_H_
+// Copyright 2005 Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ----
+//
+// Template metaprogramming utility functions.
+//
+// This code is compiled directly on many platforms, including client
+// platforms like Windows, Mac, and embedded systems. Before making
+// any changes here, make sure that you're not breaking any platforms.
+//
+//
+// The names choosen here reflect those used in tr1 and the boost::mpl
+// library, there are similar operations used in the Loki library as
+// well. I prefer the boost names for 2 reasons:
+// 1. I think that portions of the Boost libraries are more likely to
+// be included in the c++ standard.
+// 2. It is not impossible that some of the boost libraries will be
+// included in our own build in the future.
+// Both of these outcomes means that we may be able to directly replace
+// some of these with boost equivalents.
+//
+#ifndef BASE_TEMPLATE_UTIL_H_
+#define BASE_TEMPLATE_UTIL_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+_START_GOOGLE_NAMESPACE_
+
+// Types small_ and big_ are guaranteed such that sizeof(small_) <
+// sizeof(big_)
+typedef char small_;
+
+struct big_ {
+ char dummy[2];
+};
+
+// Identity metafunction.
+template <class T>
+struct identity_ {
+ typedef T type;
+};
+
+// integral_constant, defined in tr1, is a wrapper for an integer
+// value. We don't really need this generality; we could get away
+// with hardcoding the integer type to bool. We use the fully
+// general integer_constant for compatibility with tr1.
+
+template<class T, T v>
+struct integral_constant {
+ static const T value = v;
+ typedef T value_type;
+ typedef integral_constant<T, v> type;
+};
+
+template <class T, T v> const T integral_constant<T, v>::value;
+
+
+// Abbreviations: true_type and false_type are structs that represent boolean
+// true and false values. Also define the boost::mpl versions of those names,
+// true_ and false_.
+typedef integral_constant<bool, true> true_type;
+typedef integral_constant<bool, false> false_type;
+typedef true_type true_;
+typedef false_type false_;
+
+// if_ is a templatized conditional statement.
+// if_<cond, A, B> is a compile time evaluation of cond.
+// if_<>::type contains A if cond is true, B otherwise.
+template<bool cond, typename A, typename B>
+struct if_{
+ typedef A type;
+};
+
+template<typename A, typename B>
+struct if_<false, A, B> {
+ typedef B type;
+};
+
+
+// type_equals_ is a template type comparator, similar to Loki IsSameType.
+// type_equals_<A, B>::value is true iff "A" is the same type as "B".
+//
+// New code should prefer base::is_same, defined in base/type_traits.h.
+// It is functionally identical, but is_same is the standard spelling.
+template<typename A, typename B>
+struct type_equals_ : public false_ {
+};
+
+template<typename A>
+struct type_equals_<A, A> : public true_ {
+};
+
+// and_ is a template && operator.
+// and_<A, B>::value evaluates "A::value && B::value".
+template<typename A, typename B>
+struct and_ : public integral_constant<bool, (A::value && B::value)> {
+};
+
+// or_ is a template || operator.
+// or_<A, B>::value evaluates "A::value || B::value".
+template<typename A, typename B>
+struct or_ : public integral_constant<bool, (A::value || B::value)> {
+};
+
+
+_END_GOOGLE_NAMESPACE_
+
+#endif // BASE_TEMPLATE_UTIL_H_
diff --git a/contrib/libs/sparsehash/src/sparsehash/type_traits.h b/contrib/libs/sparsehash/src/sparsehash/type_traits.h
index f909cf9a37..478d9068a7 100644
--- a/contrib/libs/sparsehash/src/sparsehash/type_traits.h
+++ b/contrib/libs/sparsehash/src/sparsehash/type_traits.h
@@ -1,342 +1,342 @@
-// Copyright (c) 2006, Google Inc.
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions are
-// met:
-//
-// * Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-// * Redistributions in binary form must reproduce the above
-// copyright notice, this list of conditions and the following disclaimer
-// in the documentation and/or other materials provided with the
-// distribution.
-// * Neither the name of Google Inc. nor the names of its
-// contributors may be used to endorse or promote products derived from
-// this software without specific prior written permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// ----
-//
-// This code is compiled directly on many platforms, including client
-// platforms like Windows, Mac, and embedded systems. Before making
-// any changes here, make sure that you're not breaking any platforms.
-//
-// Define a small subset of tr1 type traits. The traits we define are:
-// is_integral
-// is_floating_point
-// is_pointer
-// is_enum
-// is_reference
-// is_pod
-// has_trivial_constructor
-// has_trivial_copy
-// has_trivial_assign
-// has_trivial_destructor
-// remove_const
-// remove_volatile
-// remove_cv
-// remove_reference
-// add_reference
-// remove_pointer
-// is_same
-// is_convertible
-// We can add more type traits as required.
-
-#ifndef BASE_TYPE_TRAITS_H_
-#define BASE_TYPE_TRAITS_H_
-
-#include <sparsehash/internal/sparseconfig.h>
-#include <utility> // For pair
-
-#include <sparsehash/template_util.h> // For true_type and false_type
-
-_START_GOOGLE_NAMESPACE_
-
-template <class T> struct is_integral;
-template <class T> struct is_floating_point;
-template <class T> struct is_pointer;
-// MSVC can't compile this correctly, and neither can gcc 3.3.5 (at least)
-#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
-// is_enum uses is_convertible, which is not available on MSVC.
-template <class T> struct is_enum;
-#endif
-template <class T> struct is_reference;
-template <class T> struct is_pod;
-template <class T> struct has_trivial_constructor;
-template <class T> struct has_trivial_copy;
-template <class T> struct has_trivial_assign;
-template <class T> struct has_trivial_destructor;
-template <class T> struct remove_const;
-template <class T> struct remove_volatile;
-template <class T> struct remove_cv;
-template <class T> struct remove_reference;
-template <class T> struct add_reference;
-template <class T> struct remove_pointer;
-template <class T, class U> struct is_same;
-#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
-template <class From, class To> struct is_convertible;
-#endif
-
-// is_integral is false except for the built-in integer types. A
-// cv-qualified type is integral if and only if the underlying type is.
-template <class T> struct is_integral : false_type { };
-template<> struct is_integral<bool> : true_type { };
-template<> struct is_integral<char> : true_type { };
-template<> struct is_integral<unsigned char> : true_type { };
-template<> struct is_integral<signed char> : true_type { };
-#if defined(_MSC_VER)
-// wchar_t is not by default a distinct type from unsigned short in
-// Microsoft C.
-// See http://msdn2.microsoft.com/en-us/library/dh8che7s(VS.80).aspx
-template<> struct is_integral<__wchar_t> : true_type { };
-#else
-template<> struct is_integral<wchar_t> : true_type { };
-#endif
-template<> struct is_integral<short> : true_type { };
-template<> struct is_integral<unsigned short> : true_type { };
-template<> struct is_integral<int> : true_type { };
-template<> struct is_integral<unsigned int> : true_type { };
-template<> struct is_integral<long> : true_type { };
-template<> struct is_integral<unsigned long> : true_type { };
-#ifdef HAVE_LONG_LONG
-template<> struct is_integral<long long> : true_type { };
-template<> struct is_integral<unsigned long long> : true_type { };
-#endif
-template <class T> struct is_integral<const T> : is_integral<T> { };
-template <class T> struct is_integral<volatile T> : is_integral<T> { };
-template <class T> struct is_integral<const volatile T> : is_integral<T> { };
-
-// is_floating_point is false except for the built-in floating-point types.
-// A cv-qualified type is integral if and only if the underlying type is.
-template <class T> struct is_floating_point : false_type { };
-template<> struct is_floating_point<float> : true_type { };
-template<> struct is_floating_point<double> : true_type { };
-template<> struct is_floating_point<long double> : true_type { };
-template <class T> struct is_floating_point<const T>
- : is_floating_point<T> { };
-template <class T> struct is_floating_point<volatile T>
- : is_floating_point<T> { };
-template <class T> struct is_floating_point<const volatile T>
- : is_floating_point<T> { };
-
-// is_pointer is false except for pointer types. A cv-qualified type (e.g.
-// "int* const", as opposed to "int const*") is cv-qualified if and only if
-// the underlying type is.
-template <class T> struct is_pointer : false_type { };
-template <class T> struct is_pointer<T*> : true_type { };
-template <class T> struct is_pointer<const T> : is_pointer<T> { };
-template <class T> struct is_pointer<volatile T> : is_pointer<T> { };
-template <class T> struct is_pointer<const volatile T> : is_pointer<T> { };
-
-#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
-
-namespace internal {
-
-template <class T> struct is_class_or_union {
- template <class U> static small_ tester(void (U::*)());
- template <class U> static big_ tester(...);
- static const bool value = sizeof(tester<T>(0)) == sizeof(small_);
-};
-
-// is_convertible chokes if the first argument is an array. That's why
-// we use add_reference here.
-template <bool NotUnum, class T> struct is_enum_impl
- : is_convertible<typename add_reference<T>::type, int> { };
-
-template <class T> struct is_enum_impl<true, T> : false_type { };
-
-} // namespace internal
-
-// Specified by TR1 [4.5.1] primary type categories.
-
-// Implementation note:
-//
-// Each type is either void, integral, floating point, array, pointer,
-// reference, member object pointer, member function pointer, enum,
-// union or class. Out of these, only integral, floating point, reference,
-// class and enum types are potentially convertible to int. Therefore,
-// if a type is not a reference, integral, floating point or class and
-// is convertible to int, it's a enum. Adding cv-qualification to a type
-// does not change whether it's an enum.
-//
-// Is-convertible-to-int check is done only if all other checks pass,
-// because it can't be used with some types (e.g. void or classes with
-// inaccessible conversion operators).
-template <class T> struct is_enum
- : internal::is_enum_impl<
- is_same<T, void>::value ||
- is_integral<T>::value ||
- is_floating_point<T>::value ||
- is_reference<T>::value ||
- internal::is_class_or_union<T>::value,
- T> { };
-
-template <class T> struct is_enum<const T> : is_enum<T> { };
-template <class T> struct is_enum<volatile T> : is_enum<T> { };
-template <class T> struct is_enum<const volatile T> : is_enum<T> { };
-
-#endif
-
-// is_reference is false except for reference types.
-template<typename T> struct is_reference : false_type {};
-template<typename T> struct is_reference<T&> : true_type {};
-
-
-// We can't get is_pod right without compiler help, so fail conservatively.
-// We will assume it's false except for arithmetic types, enumerations,
-// pointers and cv-qualified versions thereof. Note that std::pair<T,U>
-// is not a POD even if T and U are PODs.
-template <class T> struct is_pod
- : integral_constant<bool, (is_integral<T>::value ||
- is_floating_point<T>::value ||
-#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
- // is_enum is not available on MSVC.
- is_enum<T>::value ||
-#endif
- is_pointer<T>::value)> { };
-template <class T> struct is_pod<const T> : is_pod<T> { };
-template <class T> struct is_pod<volatile T> : is_pod<T> { };
-template <class T> struct is_pod<const volatile T> : is_pod<T> { };
-
-
-// We can't get has_trivial_constructor right without compiler help, so
-// fail conservatively. We will assume it's false except for: (1) types
-// for which is_pod is true. (2) std::pair of types with trivial
-// constructors. (3) array of a type with a trivial constructor.
-// (4) const versions thereof.
-template <class T> struct has_trivial_constructor : is_pod<T> { };
-template <class T, class U> struct has_trivial_constructor<std::pair<T, U> >
- : integral_constant<bool,
- (has_trivial_constructor<T>::value &&
- has_trivial_constructor<U>::value)> { };
-template <class A, int N> struct has_trivial_constructor<A[N]>
- : has_trivial_constructor<A> { };
-template <class T> struct has_trivial_constructor<const T>
- : has_trivial_constructor<T> { };
-
-// We can't get has_trivial_copy right without compiler help, so fail
-// conservatively. We will assume it's false except for: (1) types
-// for which is_pod is true. (2) std::pair of types with trivial copy
-// constructors. (3) array of a type with a trivial copy constructor.
-// (4) const versions thereof.
-template <class T> struct has_trivial_copy : is_pod<T> { };
-template <class T, class U> struct has_trivial_copy<std::pair<T, U> >
- : integral_constant<bool,
- (has_trivial_copy<T>::value &&
- has_trivial_copy<U>::value)> { };
-template <class A, int N> struct has_trivial_copy<A[N]>
- : has_trivial_copy<A> { };
-template <class T> struct has_trivial_copy<const T> : has_trivial_copy<T> { };
-
-// We can't get has_trivial_assign right without compiler help, so fail
-// conservatively. We will assume it's false except for: (1) types
-// for which is_pod is true. (2) std::pair of types with trivial copy
-// constructors. (3) array of a type with a trivial assign constructor.
-template <class T> struct has_trivial_assign : is_pod<T> { };
-template <class T, class U> struct has_trivial_assign<std::pair<T, U> >
- : integral_constant<bool,
- (has_trivial_assign<T>::value &&
- has_trivial_assign<U>::value)> { };
-template <class A, int N> struct has_trivial_assign<A[N]>
- : has_trivial_assign<A> { };
-
-// We can't get has_trivial_destructor right without compiler help, so
-// fail conservatively. We will assume it's false except for: (1) types
-// for which is_pod is true. (2) std::pair of types with trivial
-// destructors. (3) array of a type with a trivial destructor.
-// (4) const versions thereof.
-template <class T> struct has_trivial_destructor : is_pod<T> { };
-template <class T, class U> struct has_trivial_destructor<std::pair<T, U> >
- : integral_constant<bool,
- (has_trivial_destructor<T>::value &&
- has_trivial_destructor<U>::value)> { };
-template <class A, int N> struct has_trivial_destructor<A[N]>
- : has_trivial_destructor<A> { };
-template <class T> struct has_trivial_destructor<const T>
- : has_trivial_destructor<T> { };
-
-// Specified by TR1 [4.7.1]
-template<typename T> struct remove_const { typedef T type; };
-template<typename T> struct remove_const<T const> { typedef T type; };
-template<typename T> struct remove_volatile { typedef T type; };
-template<typename T> struct remove_volatile<T volatile> { typedef T type; };
-template<typename T> struct remove_cv {
- typedef typename remove_const<typename remove_volatile<T>::type>::type type;
-};
-
-
-// Specified by TR1 [4.7.2] Reference modifications.
-template<typename T> struct remove_reference { typedef T type; };
-template<typename T> struct remove_reference<T&> { typedef T type; };
-
-template <typename T> struct add_reference { typedef T& type; };
-template <typename T> struct add_reference<T&> { typedef T& type; };
-
-// Specified by TR1 [4.7.4] Pointer modifications.
-template<typename T> struct remove_pointer { typedef T type; };
-template<typename T> struct remove_pointer<T*> { typedef T type; };
-template<typename T> struct remove_pointer<T* const> { typedef T type; };
-template<typename T> struct remove_pointer<T* volatile> { typedef T type; };
-template<typename T> struct remove_pointer<T* const volatile> {
- typedef T type; };
-
-// Specified by TR1 [4.6] Relationships between types
-template<typename T, typename U> struct is_same : public false_type { };
-template<typename T> struct is_same<T, T> : public true_type { };
-
-// Specified by TR1 [4.6] Relationships between types
-#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
-namespace internal {
-
-// This class is an implementation detail for is_convertible, and you
-// don't need to know how it works to use is_convertible. For those
-// who care: we declare two different functions, one whose argument is
-// of type To and one with a variadic argument list. We give them
-// return types of different size, so we can use sizeof to trick the
-// compiler into telling us which function it would have chosen if we
-// had called it with an argument of type From. See Alexandrescu's
-// _Modern C++ Design_ for more details on this sort of trick.
-
-template <typename From, typename To>
-struct ConvertHelper {
- static small_ Test(To);
- static big_ Test(...);
- static From Create();
-};
-} // namespace internal
-
-// Inherits from true_type if From is convertible to To, false_type otherwise.
-template <typename From, typename To>
-struct is_convertible
- : integral_constant<bool,
- sizeof(internal::ConvertHelper<From, To>::Test(
- internal::ConvertHelper<From, To>::Create()))
- == sizeof(small_)> {
-};
-#endif
-
-_END_GOOGLE_NAMESPACE_
-
-// Right now these macros are no-ops, and mostly just document the fact
-// these types are PODs, for human use. They may be made more contentful
-// later. The typedef is just to make it legal to put a semicolon after
-// these macros.
-#define DECLARE_POD(TypeName) typedef int Dummy_Type_For_DECLARE_POD
-#define DECLARE_NESTED_POD(TypeName) DECLARE_POD(TypeName)
-#define PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT(TemplateName) \
- typedef int Dummy_Type_For_PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT
-#define ENFORCE_POD(TypeName) typedef int Dummy_Type_For_ENFORCE_POD
-
-#endif // BASE_TYPE_TRAITS_H_
+// Copyright (c) 2006, Google Inc.
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following disclaimer
+// in the documentation and/or other materials provided with the
+// distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived from
+// this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+// ----
+//
+// This code is compiled directly on many platforms, including client
+// platforms like Windows, Mac, and embedded systems. Before making
+// any changes here, make sure that you're not breaking any platforms.
+//
+// Define a small subset of tr1 type traits. The traits we define are:
+// is_integral
+// is_floating_point
+// is_pointer
+// is_enum
+// is_reference
+// is_pod
+// has_trivial_constructor
+// has_trivial_copy
+// has_trivial_assign
+// has_trivial_destructor
+// remove_const
+// remove_volatile
+// remove_cv
+// remove_reference
+// add_reference
+// remove_pointer
+// is_same
+// is_convertible
+// We can add more type traits as required.
+
+#ifndef BASE_TYPE_TRAITS_H_
+#define BASE_TYPE_TRAITS_H_
+
+#include <sparsehash/internal/sparseconfig.h>
+#include <utility> // For pair
+
+#include <sparsehash/template_util.h> // For true_type and false_type
+
+_START_GOOGLE_NAMESPACE_
+
+template <class T> struct is_integral;
+template <class T> struct is_floating_point;
+template <class T> struct is_pointer;
+// MSVC can't compile this correctly, and neither can gcc 3.3.5 (at least)
+#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
+// is_enum uses is_convertible, which is not available on MSVC.
+template <class T> struct is_enum;
+#endif
+template <class T> struct is_reference;
+template <class T> struct is_pod;
+template <class T> struct has_trivial_constructor;
+template <class T> struct has_trivial_copy;
+template <class T> struct has_trivial_assign;
+template <class T> struct has_trivial_destructor;
+template <class T> struct remove_const;
+template <class T> struct remove_volatile;
+template <class T> struct remove_cv;
+template <class T> struct remove_reference;
+template <class T> struct add_reference;
+template <class T> struct remove_pointer;
+template <class T, class U> struct is_same;
+#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
+template <class From, class To> struct is_convertible;
+#endif
+
+// is_integral is false except for the built-in integer types. A
+// cv-qualified type is integral if and only if the underlying type is.
+template <class T> struct is_integral : false_type { };
+template<> struct is_integral<bool> : true_type { };
+template<> struct is_integral<char> : true_type { };
+template<> struct is_integral<unsigned char> : true_type { };
+template<> struct is_integral<signed char> : true_type { };
+#if defined(_MSC_VER)
+// wchar_t is not by default a distinct type from unsigned short in
+// Microsoft C.
+// See http://msdn2.microsoft.com/en-us/library/dh8che7s(VS.80).aspx
+template<> struct is_integral<__wchar_t> : true_type { };
+#else
+template<> struct is_integral<wchar_t> : true_type { };
+#endif
+template<> struct is_integral<short> : true_type { };
+template<> struct is_integral<unsigned short> : true_type { };
+template<> struct is_integral<int> : true_type { };
+template<> struct is_integral<unsigned int> : true_type { };
+template<> struct is_integral<long> : true_type { };
+template<> struct is_integral<unsigned long> : true_type { };
+#ifdef HAVE_LONG_LONG
+template<> struct is_integral<long long> : true_type { };
+template<> struct is_integral<unsigned long long> : true_type { };
+#endif
+template <class T> struct is_integral<const T> : is_integral<T> { };
+template <class T> struct is_integral<volatile T> : is_integral<T> { };
+template <class T> struct is_integral<const volatile T> : is_integral<T> { };
+
+// is_floating_point is false except for the built-in floating-point types.
+// A cv-qualified type is integral if and only if the underlying type is.
+template <class T> struct is_floating_point : false_type { };
+template<> struct is_floating_point<float> : true_type { };
+template<> struct is_floating_point<double> : true_type { };
+template<> struct is_floating_point<long double> : true_type { };
+template <class T> struct is_floating_point<const T>
+ : is_floating_point<T> { };
+template <class T> struct is_floating_point<volatile T>
+ : is_floating_point<T> { };
+template <class T> struct is_floating_point<const volatile T>
+ : is_floating_point<T> { };
+
+// is_pointer is false except for pointer types. A cv-qualified type (e.g.
+// "int* const", as opposed to "int const*") is cv-qualified if and only if
+// the underlying type is.
+template <class T> struct is_pointer : false_type { };
+template <class T> struct is_pointer<T*> : true_type { };
+template <class T> struct is_pointer<const T> : is_pointer<T> { };
+template <class T> struct is_pointer<volatile T> : is_pointer<T> { };
+template <class T> struct is_pointer<const volatile T> : is_pointer<T> { };
+
+#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
+
+namespace internal {
+
+template <class T> struct is_class_or_union {
+ template <class U> static small_ tester(void (U::*)());
+ template <class U> static big_ tester(...);
+ static const bool value = sizeof(tester<T>(0)) == sizeof(small_);
+};
+
+// is_convertible chokes if the first argument is an array. That's why
+// we use add_reference here.
+template <bool NotUnum, class T> struct is_enum_impl
+ : is_convertible<typename add_reference<T>::type, int> { };
+
+template <class T> struct is_enum_impl<true, T> : false_type { };
+
+} // namespace internal
+
+// Specified by TR1 [4.5.1] primary type categories.
+
+// Implementation note:
+//
+// Each type is either void, integral, floating point, array, pointer,
+// reference, member object pointer, member function pointer, enum,
+// union or class. Out of these, only integral, floating point, reference,
+// class and enum types are potentially convertible to int. Therefore,
+// if a type is not a reference, integral, floating point or class and
+// is convertible to int, it's a enum. Adding cv-qualification to a type
+// does not change whether it's an enum.
+//
+// Is-convertible-to-int check is done only if all other checks pass,
+// because it can't be used with some types (e.g. void or classes with
+// inaccessible conversion operators).
+template <class T> struct is_enum
+ : internal::is_enum_impl<
+ is_same<T, void>::value ||
+ is_integral<T>::value ||
+ is_floating_point<T>::value ||
+ is_reference<T>::value ||
+ internal::is_class_or_union<T>::value,
+ T> { };
+
+template <class T> struct is_enum<const T> : is_enum<T> { };
+template <class T> struct is_enum<volatile T> : is_enum<T> { };
+template <class T> struct is_enum<const volatile T> : is_enum<T> { };
+
+#endif
+
+// is_reference is false except for reference types.
+template<typename T> struct is_reference : false_type {};
+template<typename T> struct is_reference<T&> : true_type {};
+
+
+// We can't get is_pod right without compiler help, so fail conservatively.
+// We will assume it's false except for arithmetic types, enumerations,
+// pointers and cv-qualified versions thereof. Note that std::pair<T,U>
+// is not a POD even if T and U are PODs.
+template <class T> struct is_pod
+ : integral_constant<bool, (is_integral<T>::value ||
+ is_floating_point<T>::value ||
+#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
+ // is_enum is not available on MSVC.
+ is_enum<T>::value ||
+#endif
+ is_pointer<T>::value)> { };
+template <class T> struct is_pod<const T> : is_pod<T> { };
+template <class T> struct is_pod<volatile T> : is_pod<T> { };
+template <class T> struct is_pod<const volatile T> : is_pod<T> { };
+
+
+// We can't get has_trivial_constructor right without compiler help, so
+// fail conservatively. We will assume it's false except for: (1) types
+// for which is_pod is true. (2) std::pair of types with trivial
+// constructors. (3) array of a type with a trivial constructor.
+// (4) const versions thereof.
+template <class T> struct has_trivial_constructor : is_pod<T> { };
+template <class T, class U> struct has_trivial_constructor<std::pair<T, U> >
+ : integral_constant<bool,
+ (has_trivial_constructor<T>::value &&
+ has_trivial_constructor<U>::value)> { };
+template <class A, int N> struct has_trivial_constructor<A[N]>
+ : has_trivial_constructor<A> { };
+template <class T> struct has_trivial_constructor<const T>
+ : has_trivial_constructor<T> { };
+
+// We can't get has_trivial_copy right without compiler help, so fail
+// conservatively. We will assume it's false except for: (1) types
+// for which is_pod is true. (2) std::pair of types with trivial copy
+// constructors. (3) array of a type with a trivial copy constructor.
+// (4) const versions thereof.
+template <class T> struct has_trivial_copy : is_pod<T> { };
+template <class T, class U> struct has_trivial_copy<std::pair<T, U> >
+ : integral_constant<bool,
+ (has_trivial_copy<T>::value &&
+ has_trivial_copy<U>::value)> { };
+template <class A, int N> struct has_trivial_copy<A[N]>
+ : has_trivial_copy<A> { };
+template <class T> struct has_trivial_copy<const T> : has_trivial_copy<T> { };
+
+// We can't get has_trivial_assign right without compiler help, so fail
+// conservatively. We will assume it's false except for: (1) types
+// for which is_pod is true. (2) std::pair of types with trivial copy
+// constructors. (3) array of a type with a trivial assign constructor.
+template <class T> struct has_trivial_assign : is_pod<T> { };
+template <class T, class U> struct has_trivial_assign<std::pair<T, U> >
+ : integral_constant<bool,
+ (has_trivial_assign<T>::value &&
+ has_trivial_assign<U>::value)> { };
+template <class A, int N> struct has_trivial_assign<A[N]>
+ : has_trivial_assign<A> { };
+
+// We can't get has_trivial_destructor right without compiler help, so
+// fail conservatively. We will assume it's false except for: (1) types
+// for which is_pod is true. (2) std::pair of types with trivial
+// destructors. (3) array of a type with a trivial destructor.
+// (4) const versions thereof.
+template <class T> struct has_trivial_destructor : is_pod<T> { };
+template <class T, class U> struct has_trivial_destructor<std::pair<T, U> >
+ : integral_constant<bool,
+ (has_trivial_destructor<T>::value &&
+ has_trivial_destructor<U>::value)> { };
+template <class A, int N> struct has_trivial_destructor<A[N]>
+ : has_trivial_destructor<A> { };
+template <class T> struct has_trivial_destructor<const T>
+ : has_trivial_destructor<T> { };
+
+// Specified by TR1 [4.7.1]
+template<typename T> struct remove_const { typedef T type; };
+template<typename T> struct remove_const<T const> { typedef T type; };
+template<typename T> struct remove_volatile { typedef T type; };
+template<typename T> struct remove_volatile<T volatile> { typedef T type; };
+template<typename T> struct remove_cv {
+ typedef typename remove_const<typename remove_volatile<T>::type>::type type;
+};
+
+
+// Specified by TR1 [4.7.2] Reference modifications.
+template<typename T> struct remove_reference { typedef T type; };
+template<typename T> struct remove_reference<T&> { typedef T type; };
+
+template <typename T> struct add_reference { typedef T& type; };
+template <typename T> struct add_reference<T&> { typedef T& type; };
+
+// Specified by TR1 [4.7.4] Pointer modifications.
+template<typename T> struct remove_pointer { typedef T type; };
+template<typename T> struct remove_pointer<T*> { typedef T type; };
+template<typename T> struct remove_pointer<T* const> { typedef T type; };
+template<typename T> struct remove_pointer<T* volatile> { typedef T type; };
+template<typename T> struct remove_pointer<T* const volatile> {
+ typedef T type; };
+
+// Specified by TR1 [4.6] Relationships between types
+template<typename T, typename U> struct is_same : public false_type { };
+template<typename T> struct is_same<T, T> : public true_type { };
+
+// Specified by TR1 [4.6] Relationships between types
+#if !defined(_MSC_VER) && !(defined(__GNUC__) && __GNUC__ <= 3)
+namespace internal {
+
+// This class is an implementation detail for is_convertible, and you
+// don't need to know how it works to use is_convertible. For those
+// who care: we declare two different functions, one whose argument is
+// of type To and one with a variadic argument list. We give them
+// return types of different size, so we can use sizeof to trick the
+// compiler into telling us which function it would have chosen if we
+// had called it with an argument of type From. See Alexandrescu's
+// _Modern C++ Design_ for more details on this sort of trick.
+
+template <typename From, typename To>
+struct ConvertHelper {
+ static small_ Test(To);
+ static big_ Test(...);
+ static From Create();
+};
+} // namespace internal
+
+// Inherits from true_type if From is convertible to To, false_type otherwise.
+template <typename From, typename To>
+struct is_convertible
+ : integral_constant<bool,
+ sizeof(internal::ConvertHelper<From, To>::Test(
+ internal::ConvertHelper<From, To>::Create()))
+ == sizeof(small_)> {
+};
+#endif
+
+_END_GOOGLE_NAMESPACE_
+
+// Right now these macros are no-ops, and mostly just document the fact
+// these types are PODs, for human use. They may be made more contentful
+// later. The typedef is just to make it legal to put a semicolon after
+// these macros.
+#define DECLARE_POD(TypeName) typedef int Dummy_Type_For_DECLARE_POD
+#define DECLARE_NESTED_POD(TypeName) DECLARE_POD(TypeName)
+#define PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT(TemplateName) \
+ typedef int Dummy_Type_For_PROPAGATE_POD_FROM_TEMPLATE_ARGUMENT
+#define ENFORCE_POD(TypeName) typedef int Dummy_Type_For_ENFORCE_POD
+
+#endif // BASE_TYPE_TRAITS_H_