aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/openssl/crypto/ec/ecp_smpl.c
diff options
context:
space:
mode:
authortpashkin <tpashkin@yandex-team.ru>2022-02-10 16:46:42 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:46:42 +0300
commit656921707c02b816d730f31c1fdc1d615adbfe00 (patch)
tree49e222ea1c5804306084bb3ae065bb702625360f /contrib/libs/openssl/crypto/ec/ecp_smpl.c
parent5475379a04e37df30085bd1724f1c57e3f40996f (diff)
downloadydb-656921707c02b816d730f31c1fdc1d615adbfe00.tar.gz
Restoring authorship annotation for <tpashkin@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/openssl/crypto/ec/ecp_smpl.c')
-rw-r--r--contrib/libs/openssl/crypto/ec/ecp_smpl.c338
1 files changed, 169 insertions, 169 deletions
diff --git a/contrib/libs/openssl/crypto/ec/ecp_smpl.c b/contrib/libs/openssl/crypto/ec/ecp_smpl.c
index 6eba0ee39b..b3110ec89d 100644
--- a/contrib/libs/openssl/crypto/ec/ecp_smpl.c
+++ b/contrib/libs/openssl/crypto/ec/ecp_smpl.c
@@ -1,5 +1,5 @@
/*
- * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
+ * Copyright 2001-2020 The OpenSSL Project Authors. All Rights Reserved.
* Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved
*
* Licensed under the OpenSSL license (the "License"). You may not use
@@ -11,7 +11,7 @@
#include <openssl/err.h>
#include <openssl/symhacks.h>
-#include "ec_local.h"
+#include "ec_local.h"
const EC_METHOD *EC_GFp_simple_method(void)
{
@@ -1372,7 +1372,7 @@ int ec_GFp_simple_field_sqr(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
* Computes the multiplicative inverse of a in GF(p), storing the result in r.
* If a is zero (or equivalent), you'll get a EC_R_CANNOT_INVERT error.
* Since we don't have a Mont structure here, SCA hardening is with blinding.
- * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
+ * NB: "a" must be in _decoded_ form. (i.e. field_decode must precede.)
*/
int ec_GFp_simple_field_inv(const EC_GROUP *group, BIGNUM *r, const BIGNUM *a,
BN_CTX *ctx)
@@ -1432,108 +1432,108 @@ int ec_GFp_simple_blind_coordinates(const EC_GROUP *group, EC_POINT *p,
temp = BN_CTX_get(ctx);
if (temp == NULL) {
ECerr(EC_F_EC_GFP_SIMPLE_BLIND_COORDINATES, ERR_R_MALLOC_FAILURE);
- goto end;
+ goto end;
}
- /*-
- * Make sure lambda is not zero.
- * If the RNG fails, we cannot blind but nevertheless want
- * code to continue smoothly and not clobber the error stack.
- */
+ /*-
+ * Make sure lambda is not zero.
+ * If the RNG fails, we cannot blind but nevertheless want
+ * code to continue smoothly and not clobber the error stack.
+ */
do {
- ERR_set_mark();
- ret = BN_priv_rand_range(lambda, group->field);
- ERR_pop_to_mark();
- if (ret == 0) {
- ret = 1;
- goto end;
+ ERR_set_mark();
+ ret = BN_priv_rand_range(lambda, group->field);
+ ERR_pop_to_mark();
+ if (ret == 0) {
+ ret = 1;
+ goto end;
}
} while (BN_is_zero(lambda));
/* if field_encode defined convert between representations */
- if ((group->meth->field_encode != NULL
- && !group->meth->field_encode(group, lambda, lambda, ctx))
- || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
- || !group->meth->field_sqr(group, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
- || !group->meth->field_mul(group, temp, temp, lambda, ctx)
- || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
- goto end;
-
+ if ((group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, lambda, lambda, ctx))
+ || !group->meth->field_mul(group, p->Z, p->Z, lambda, ctx)
+ || !group->meth->field_sqr(group, temp, lambda, ctx)
+ || !group->meth->field_mul(group, p->X, p->X, temp, ctx)
+ || !group->meth->field_mul(group, temp, temp, lambda, ctx)
+ || !group->meth->field_mul(group, p->Y, p->Y, temp, ctx))
+ goto end;
+
p->Z_is_one = 0;
ret = 1;
- end:
+ end:
BN_CTX_end(ctx);
return ret;
}
/*-
- * Input:
- * - p: affine coordinates
+ * Input:
+ * - p: affine coordinates
+ *
+ * Output:
+ * - s := p, r := 2p: blinded projective (homogeneous) coordinates
*
- * Output:
- * - s := p, r := 2p: blinded projective (homogeneous) coordinates
- *
* For doubling we use Formula 3 from Izu-Takagi "A fast parallel elliptic curve
- * multiplication resistant against side channel attacks" appendix, described at
+ * multiplication resistant against side channel attacks" appendix, described at
* https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#doubling-dbl-2002-it-2
- * simplified for Z1=1.
+ * simplified for Z1=1.
*
- * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
- * for any non-zero \lambda that holds for projective (homogeneous) coords.
+ * Blinding uses the equivalence relation (\lambda X, \lambda Y, \lambda Z)
+ * for any non-zero \lambda that holds for projective (homogeneous) coords.
*/
int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
- BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
+ BIGNUM *t1, *t2, *t3, *t4, *t5 = NULL;
- t1 = s->Z;
- t2 = r->Z;
+ t1 = s->Z;
+ t2 = r->Z;
t3 = s->X;
t4 = r->X;
t5 = s->Y;
- if (!p->Z_is_one /* r := 2p */
- || !group->meth->field_sqr(group, t3, p->X, ctx)
- || !BN_mod_sub_quick(t4, t3, group->a, group->field)
- || !group->meth->field_sqr(group, t4, t4, ctx)
- || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
- || !BN_mod_lshift_quick(t5, t5, 3, group->field)
+ if (!p->Z_is_one /* r := 2p */
+ || !group->meth->field_sqr(group, t3, p->X, ctx)
+ || !BN_mod_sub_quick(t4, t3, group->a, group->field)
+ || !group->meth->field_sqr(group, t4, t4, ctx)
+ || !group->meth->field_mul(group, t5, p->X, group->b, ctx)
+ || !BN_mod_lshift_quick(t5, t5, 3, group->field)
/* r->X coord output */
- || !BN_mod_sub_quick(r->X, t4, t5, group->field)
- || !BN_mod_add_quick(t1, t3, group->a, group->field)
- || !group->meth->field_mul(group, t2, p->X, t1, ctx)
- || !BN_mod_add_quick(t2, group->b, t2, group->field)
+ || !BN_mod_sub_quick(r->X, t4, t5, group->field)
+ || !BN_mod_add_quick(t1, t3, group->a, group->field)
+ || !group->meth->field_mul(group, t2, p->X, t1, ctx)
+ || !BN_mod_add_quick(t2, group->b, t2, group->field)
/* r->Z coord output */
- || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
+ || !BN_mod_lshift_quick(r->Z, t2, 2, group->field))
+ return 0;
+
+ /* make sure lambda (r->Y here for storage) is not zero */
+ do {
+ if (!BN_priv_rand_range(r->Y, group->field))
+ return 0;
+ } while (BN_is_zero(r->Y));
+
+ /* make sure lambda (s->Z here for storage) is not zero */
+ do {
+ if (!BN_priv_rand_range(s->Z, group->field))
+ return 0;
+ } while (BN_is_zero(s->Z));
+
+ /* if field_encode defined convert between representations */
+ if (group->meth->field_encode != NULL
+ && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
+ || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
+ return 0;
+
+ /* blind r and s independently */
+ if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
+ || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
+ || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
return 0;
- /* make sure lambda (r->Y here for storage) is not zero */
- do {
- if (!BN_priv_rand_range(r->Y, group->field))
- return 0;
- } while (BN_is_zero(r->Y));
-
- /* make sure lambda (s->Z here for storage) is not zero */
- do {
- if (!BN_priv_rand_range(s->Z, group->field))
- return 0;
- } while (BN_is_zero(s->Z));
-
- /* if field_encode defined convert between representations */
- if (group->meth->field_encode != NULL
- && (!group->meth->field_encode(group, r->Y, r->Y, ctx)
- || !group->meth->field_encode(group, s->Z, s->Z, ctx)))
- return 0;
-
- /* blind r and s independently */
- if (!group->meth->field_mul(group, r->Z, r->Z, r->Y, ctx)
- || !group->meth->field_mul(group, r->X, r->X, r->Y, ctx)
- || !group->meth->field_mul(group, s->X, p->X, s->Z, ctx)) /* s := p */
- return 0;
-
r->Z_is_one = 0;
s->Z_is_one = 0;
@@ -1541,24 +1541,24 @@ int ec_GFp_simple_ladder_pre(const EC_GROUP *group,
}
/*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - s := r + s, r := 2r: projective (homogeneous) coordinates
- *
- * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
+ * Input:
+ * - s, r: projective (homogeneous) coordinates
+ * - p: affine coordinates
+ *
+ * Output:
+ * - s := r + s, r := 2r: projective (homogeneous) coordinates
+ *
+ * Differential addition-and-doubling using Eq. (9) and (10) from Izu-Takagi
* "A fast parallel elliptic curve multiplication resistant against side channel
* attacks", as described at
- * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
+ * https://hyperelliptic.org/EFD/g1p/auto-shortw-xz.html#ladder-mladd-2002-it-4
*/
int ec_GFp_simple_ladder_step(const EC_GROUP *group,
EC_POINT *r, EC_POINT *s,
EC_POINT *p, BN_CTX *ctx)
{
int ret = 0;
- BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
+ BIGNUM *t0, *t1, *t2, *t3, *t4, *t5, *t6 = NULL;
BN_CTX_start(ctx);
t0 = BN_CTX_get(ctx);
@@ -1569,46 +1569,46 @@ int ec_GFp_simple_ladder_step(const EC_GROUP *group,
t5 = BN_CTX_get(ctx);
t6 = BN_CTX_get(ctx);
- if (t6 == NULL
- || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
- || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
- || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
+ if (t6 == NULL
+ || !group->meth->field_mul(group, t6, r->X, s->X, ctx)
+ || !group->meth->field_mul(group, t0, r->Z, s->Z, ctx)
+ || !group->meth->field_mul(group, t4, r->X, s->Z, ctx)
|| !group->meth->field_mul(group, t3, r->Z, s->X, ctx)
- || !group->meth->field_mul(group, t5, group->a, t0, ctx)
- || !BN_mod_add_quick(t5, t6, t5, group->field)
- || !BN_mod_add_quick(t6, t3, t4, group->field)
- || !group->meth->field_mul(group, t5, t6, t5, ctx)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
- || !BN_mod_lshift1_quick(t5, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t3, group->field)
- /* s->Z coord output */
- || !group->meth->field_sqr(group, s->Z, t3, ctx)
- || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
- || !BN_mod_add_quick(t0, t0, t5, group->field)
- /* s->X coord output */
- || !BN_mod_sub_quick(s->X, t0, t4, group->field)
- || !group->meth->field_sqr(group, t4, r->X, ctx)
- || !group->meth->field_sqr(group, t5, r->Z, ctx)
- || !group->meth->field_mul(group, t6, t5, group->a, ctx)
- || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
+ || !group->meth->field_mul(group, t5, group->a, t0, ctx)
+ || !BN_mod_add_quick(t5, t6, t5, group->field)
+ || !BN_mod_add_quick(t6, t3, t4, group->field)
+ || !group->meth->field_mul(group, t5, t6, t5, ctx)
+ || !group->meth->field_sqr(group, t0, t0, ctx)
+ || !BN_mod_lshift_quick(t2, group->b, 2, group->field)
+ || !group->meth->field_mul(group, t0, t2, t0, ctx)
+ || !BN_mod_lshift1_quick(t5, t5, group->field)
+ || !BN_mod_sub_quick(t3, t4, t3, group->field)
+ /* s->Z coord output */
+ || !group->meth->field_sqr(group, s->Z, t3, ctx)
+ || !group->meth->field_mul(group, t4, s->Z, p->X, ctx)
+ || !BN_mod_add_quick(t0, t0, t5, group->field)
+ /* s->X coord output */
+ || !BN_mod_sub_quick(s->X, t0, t4, group->field)
+ || !group->meth->field_sqr(group, t4, r->X, ctx)
+ || !group->meth->field_sqr(group, t5, r->Z, ctx)
+ || !group->meth->field_mul(group, t6, t5, group->a, ctx)
+ || !BN_mod_add_quick(t1, r->X, r->Z, group->field)
|| !group->meth->field_sqr(group, t1, t1, ctx)
- || !BN_mod_sub_quick(t1, t1, t4, group->field)
- || !BN_mod_sub_quick(t1, t1, t5, group->field)
- || !BN_mod_sub_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t3, t3, ctx)
- || !group->meth->field_mul(group, t0, t5, t1, ctx)
- || !group->meth->field_mul(group, t0, t2, t0, ctx)
+ || !BN_mod_sub_quick(t1, t1, t4, group->field)
+ || !BN_mod_sub_quick(t1, t1, t5, group->field)
+ || !BN_mod_sub_quick(t3, t4, t6, group->field)
+ || !group->meth->field_sqr(group, t3, t3, ctx)
+ || !group->meth->field_mul(group, t0, t5, t1, ctx)
+ || !group->meth->field_mul(group, t0, t2, t0, ctx)
/* r->X coord output */
- || !BN_mod_sub_quick(r->X, t3, t0, group->field)
- || !BN_mod_add_quick(t3, t4, t6, group->field)
- || !group->meth->field_sqr(group, t4, t5, ctx)
- || !group->meth->field_mul(group, t4, t4, t2, ctx)
- || !group->meth->field_mul(group, t1, t1, t3, ctx)
- || !BN_mod_lshift1_quick(t1, t1, group->field)
+ || !BN_mod_sub_quick(r->X, t3, t0, group->field)
+ || !BN_mod_add_quick(t3, t4, t6, group->field)
+ || !group->meth->field_sqr(group, t4, t5, ctx)
+ || !group->meth->field_mul(group, t4, t4, t2, ctx)
+ || !group->meth->field_mul(group, t1, t1, t3, ctx)
+ || !BN_mod_lshift1_quick(t1, t1, group->field)
/* r->Z coord output */
- || !BN_mod_add_quick(r->Z, t4, t1, group->field))
+ || !BN_mod_add_quick(r->Z, t4, t1, group->field))
goto err;
ret = 1;
@@ -1619,21 +1619,21 @@ int ec_GFp_simple_ladder_step(const EC_GROUP *group,
}
/*-
- * Input:
- * - s, r: projective (homogeneous) coordinates
- * - p: affine coordinates
- *
- * Output:
- * - r := (x,y): affine coordinates
- *
+ * Input:
+ * - s, r: projective (homogeneous) coordinates
+ * - p: affine coordinates
+ *
+ * Output:
+ * - r := (x,y): affine coordinates
+ *
* Recovers the y-coordinate of r using Eq. (8) from Brier-Joye, "Weierstrass
- * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
- * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
- * coords, and return r in affine coordinates.
+ * Elliptic Curves and Side-Channel Attacks", modified to work in mixed
+ * projective coords, i.e. p is affine and (r,s) in projective (homogeneous)
+ * coords, and return r in affine coordinates.
*
- * X4 = two*Y1*X2*Z3*Z2;
- * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
- * Z4 = two*Y1*Z3*SQR(Z2);
+ * X4 = two*Y1*X2*Z3*Z2;
+ * Y4 = two*b*Z3*SQR(Z2) + Z3*(a*Z2+X1*X2)*(X1*Z2+X2) - X3*SQR(X1*Z2-X2);
+ * Z4 = two*Y1*Z3*SQR(Z2);
*
* Z4 != 0 because:
* - Z2==0 implies r is at infinity (handled by the BN_is_zero(r->Z) branch);
@@ -1652,7 +1652,7 @@ int ec_GFp_simple_ladder_post(const EC_GROUP *group,
return EC_POINT_set_to_infinity(group, r);
if (BN_is_zero(s->Z)) {
- if (!EC_POINT_copy(r, p)
+ if (!EC_POINT_copy(r, p)
|| !EC_POINT_invert(group, r, ctx))
return 0;
return 1;
@@ -1668,46 +1668,46 @@ int ec_GFp_simple_ladder_post(const EC_GROUP *group,
t6 = BN_CTX_get(ctx);
if (t6 == NULL
- || !BN_mod_lshift1_quick(t4, p->Y, group->field)
- || !group->meth->field_mul(group, t6, r->X, t4, ctx)
- || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
- || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
- || !BN_mod_lshift1_quick(t1, group->b, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
+ || !BN_mod_lshift1_quick(t4, p->Y, group->field)
+ || !group->meth->field_mul(group, t6, r->X, t4, ctx)
+ || !group->meth->field_mul(group, t6, s->Z, t6, ctx)
+ || !group->meth->field_mul(group, t5, r->Z, t6, ctx)
+ || !BN_mod_lshift1_quick(t1, group->b, group->field)
+ || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
|| !group->meth->field_sqr(group, t3, r->Z, ctx)
- || !group->meth->field_mul(group, t2, t3, t1, ctx)
- || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
- || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
- || !BN_mod_add_quick(t1, t1, t6, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
- || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
- || !BN_mod_add_quick(t6, r->X, t0, group->field)
- || !group->meth->field_mul(group, t6, t6, t1, ctx)
- || !BN_mod_add_quick(t6, t6, t2, group->field)
- || !BN_mod_sub_quick(t0, t0, r->X, group->field)
- || !group->meth->field_sqr(group, t0, t0, ctx)
- || !group->meth->field_mul(group, t0, t0, s->X, ctx)
- || !BN_mod_sub_quick(t0, t6, t0, group->field)
- || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
- || !group->meth->field_mul(group, t1, t3, t1, ctx)
- || (group->meth->field_decode != NULL
- && !group->meth->field_decode(group, t1, t1, ctx))
- || !group->meth->field_inv(group, t1, t1, ctx)
- || (group->meth->field_encode != NULL
- && !group->meth->field_encode(group, t1, t1, ctx))
- || !group->meth->field_mul(group, r->X, t5, t1, ctx)
- || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
+ || !group->meth->field_mul(group, t2, t3, t1, ctx)
+ || !group->meth->field_mul(group, t6, r->Z, group->a, ctx)
+ || !group->meth->field_mul(group, t1, p->X, r->X, ctx)
+ || !BN_mod_add_quick(t1, t1, t6, group->field)
+ || !group->meth->field_mul(group, t1, s->Z, t1, ctx)
+ || !group->meth->field_mul(group, t0, p->X, r->Z, ctx)
+ || !BN_mod_add_quick(t6, r->X, t0, group->field)
+ || !group->meth->field_mul(group, t6, t6, t1, ctx)
+ || !BN_mod_add_quick(t6, t6, t2, group->field)
+ || !BN_mod_sub_quick(t0, t0, r->X, group->field)
+ || !group->meth->field_sqr(group, t0, t0, ctx)
+ || !group->meth->field_mul(group, t0, t0, s->X, ctx)
+ || !BN_mod_sub_quick(t0, t6, t0, group->field)
+ || !group->meth->field_mul(group, t1, s->Z, t4, ctx)
+ || !group->meth->field_mul(group, t1, t3, t1, ctx)
+ || (group->meth->field_decode != NULL
+ && !group->meth->field_decode(group, t1, t1, ctx))
+ || !group->meth->field_inv(group, t1, t1, ctx)
+ || (group->meth->field_encode != NULL
+ && !group->meth->field_encode(group, t1, t1, ctx))
+ || !group->meth->field_mul(group, r->X, t5, t1, ctx)
+ || !group->meth->field_mul(group, r->Y, t0, t1, ctx))
goto err;
- if (group->meth->field_set_to_one != NULL) {
- if (!group->meth->field_set_to_one(group, r->Z, ctx))
- goto err;
- } else {
- if (!BN_one(r->Z))
- goto err;
- }
-
- r->Z_is_one = 1;
+ if (group->meth->field_set_to_one != NULL) {
+ if (!group->meth->field_set_to_one(group, r->Z, ctx))
+ goto err;
+ } else {
+ if (!BN_one(r->Z))
+ goto err;
+ }
+
+ r->Z_is_one = 1;
ret = 1;
err: