summaryrefslogtreecommitdiffstats
path: root/contrib/libs/mimalloc/src/segment.c
diff options
context:
space:
mode:
authorpg <[email protected]>2023-02-21 21:34:28 +0300
committerpg <[email protected]>2023-02-21 21:34:28 +0300
commitc20eadfbd3a39852d4153c9a7018840cf0a6d256 (patch)
tree2e97ff9fa13d4d72c0eb2205b456eb5a872852d2 /contrib/libs/mimalloc/src/segment.c
parent8a0803765349a801ec69038f281df1792835b682 (diff)
Diffstat (limited to 'contrib/libs/mimalloc/src/segment.c')
-rw-r--r--contrib/libs/mimalloc/src/segment.c1370
1 files changed, 1370 insertions, 0 deletions
diff --git a/contrib/libs/mimalloc/src/segment.c b/contrib/libs/mimalloc/src/segment.c
new file mode 100644
index 00000000000..1d59be9d06e
--- /dev/null
+++ b/contrib/libs/mimalloc/src/segment.c
@@ -0,0 +1,1370 @@
+/* ----------------------------------------------------------------------------
+Copyright (c) 2018-2020, Microsoft Research, Daan Leijen
+This is free software; you can redistribute it and/or modify it under the
+terms of the MIT license. A copy of the license can be found in the file
+"LICENSE" at the root of this distribution.
+-----------------------------------------------------------------------------*/
+#include "mimalloc.h"
+#include "mimalloc-internal.h"
+#include "mimalloc-atomic.h"
+
+#include <string.h> // memset
+#include <stdio.h>
+
+#define MI_PAGE_HUGE_ALIGN (256*1024)
+
+static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size);
+
+/* --------------------------------------------------------------------------------
+ Segment allocation
+ We allocate pages inside bigger "segments" (4mb on 64-bit). This is to avoid
+ splitting VMA's on Linux and reduce fragmentation on other OS's.
+ Each thread owns its own segments.
+
+ Currently we have:
+ - small pages (64kb), 64 in one segment
+ - medium pages (512kb), 8 in one segment
+ - large pages (4mb), 1 in one segment
+ - huge blocks > MI_LARGE_OBJ_SIZE_MAX become large segment with 1 page
+
+ In any case the memory for a segment is virtual and usually committed on demand.
+ (i.e. we are careful to not touch the memory until we actually allocate a block there)
+
+ If a thread ends, it "abandons" pages with used blocks
+ and there is an abandoned segment list whose segments can
+ be reclaimed by still running threads, much like work-stealing.
+-------------------------------------------------------------------------------- */
+
+
+/* -----------------------------------------------------------
+ Queue of segments containing free pages
+----------------------------------------------------------- */
+
+#if (MI_DEBUG>=3)
+static bool mi_segment_queue_contains(const mi_segment_queue_t* queue, const mi_segment_t* segment) {
+ mi_assert_internal(segment != NULL);
+ mi_segment_t* list = queue->first;
+ while (list != NULL) {
+ if (list == segment) break;
+ mi_assert_internal(list->next==NULL || list->next->prev == list);
+ mi_assert_internal(list->prev==NULL || list->prev->next == list);
+ list = list->next;
+ }
+ return (list == segment);
+}
+#endif
+
+static bool mi_segment_queue_is_empty(const mi_segment_queue_t* queue) {
+ return (queue->first == NULL);
+}
+
+static void mi_segment_queue_remove(mi_segment_queue_t* queue, mi_segment_t* segment) {
+ mi_assert_expensive(mi_segment_queue_contains(queue, segment));
+ if (segment->prev != NULL) segment->prev->next = segment->next;
+ if (segment->next != NULL) segment->next->prev = segment->prev;
+ if (segment == queue->first) queue->first = segment->next;
+ if (segment == queue->last) queue->last = segment->prev;
+ segment->next = NULL;
+ segment->prev = NULL;
+}
+
+static void mi_segment_enqueue(mi_segment_queue_t* queue, mi_segment_t* segment) {
+ mi_assert_expensive(!mi_segment_queue_contains(queue, segment));
+ segment->next = NULL;
+ segment->prev = queue->last;
+ if (queue->last != NULL) {
+ mi_assert_internal(queue->last->next == NULL);
+ queue->last->next = segment;
+ queue->last = segment;
+ }
+ else {
+ queue->last = queue->first = segment;
+ }
+}
+
+static mi_segment_queue_t* mi_segment_free_queue_of_kind(mi_page_kind_t kind, mi_segments_tld_t* tld) {
+ if (kind == MI_PAGE_SMALL) return &tld->small_free;
+ else if (kind == MI_PAGE_MEDIUM) return &tld->medium_free;
+ else return NULL;
+}
+
+static mi_segment_queue_t* mi_segment_free_queue(const mi_segment_t* segment, mi_segments_tld_t* tld) {
+ return mi_segment_free_queue_of_kind(segment->page_kind, tld);
+}
+
+// remove from free queue if it is in one
+static void mi_segment_remove_from_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_segment_queue_t* queue = mi_segment_free_queue(segment, tld); // may be NULL
+ bool in_queue = (queue!=NULL && (segment->next != NULL || segment->prev != NULL || queue->first == segment));
+ if (in_queue) {
+ mi_segment_queue_remove(queue, segment);
+ }
+}
+
+static void mi_segment_insert_in_free_queue(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_segment_enqueue(mi_segment_free_queue(segment, tld), segment);
+}
+
+
+/* -----------------------------------------------------------
+ Invariant checking
+----------------------------------------------------------- */
+
+#if (MI_DEBUG>=2)
+static bool mi_segment_is_in_free_queue(const mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_segment_queue_t* queue = mi_segment_free_queue(segment, tld);
+ bool in_queue = (queue!=NULL && (segment->next != NULL || segment->prev != NULL || queue->first == segment));
+ if (in_queue) {
+ mi_assert_expensive(mi_segment_queue_contains(queue, segment));
+ }
+ return in_queue;
+}
+#endif
+
+static size_t mi_segment_page_size(const mi_segment_t* segment) {
+ if (segment->capacity > 1) {
+ mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM);
+ return ((size_t)1 << segment->page_shift);
+ }
+ else {
+ mi_assert_internal(segment->page_kind >= MI_PAGE_LARGE);
+ return segment->segment_size;
+ }
+}
+
+
+#if (MI_DEBUG>=2)
+static bool mi_pages_reset_contains(const mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_page_t* p = tld->pages_reset.first;
+ while (p != NULL) {
+ if (p == page) return true;
+ p = p->next;
+ }
+ return false;
+}
+#endif
+
+#if (MI_DEBUG>=3)
+static bool mi_segment_is_valid(const mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(segment != NULL);
+ mi_assert_internal(_mi_ptr_cookie(segment) == segment->cookie);
+ mi_assert_internal(segment->used <= segment->capacity);
+ mi_assert_internal(segment->abandoned <= segment->used);
+ size_t nfree = 0;
+ for (size_t i = 0; i < segment->capacity; i++) {
+ const mi_page_t* const page = &segment->pages[i];
+ if (!page->segment_in_use) {
+ nfree++;
+ }
+ if (page->segment_in_use || page->is_reset) {
+ mi_assert_expensive(!mi_pages_reset_contains(page, tld));
+ }
+ }
+ mi_assert_internal(nfree + segment->used == segment->capacity);
+ // mi_assert_internal(segment->thread_id == _mi_thread_id() || (segment->thread_id==0)); // or 0
+ mi_assert_internal(segment->page_kind == MI_PAGE_HUGE ||
+ (mi_segment_page_size(segment) * segment->capacity == segment->segment_size));
+ return true;
+}
+#endif
+
+static bool mi_page_not_in_queue(const mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert_internal(page != NULL);
+ if (page->next != NULL || page->prev != NULL) {
+ mi_assert_internal(mi_pages_reset_contains(page, tld));
+ return false;
+ }
+ else {
+ // both next and prev are NULL, check for singleton list
+ return (tld->pages_reset.first != page && tld->pages_reset.last != page);
+ }
+}
+
+
+/* -----------------------------------------------------------
+ Guard pages
+----------------------------------------------------------- */
+
+static void mi_segment_protect_range(void* p, size_t size, bool protect) {
+ if (protect) {
+ _mi_mem_protect(p, size);
+ }
+ else {
+ _mi_mem_unprotect(p, size);
+ }
+}
+
+static void mi_segment_protect(mi_segment_t* segment, bool protect, mi_os_tld_t* tld) {
+ // add/remove guard pages
+ if (MI_SECURE != 0) {
+ // in secure mode, we set up a protected page in between the segment info and the page data
+ const size_t os_psize = _mi_os_page_size();
+ mi_assert_internal((segment->segment_info_size - os_psize) >= (sizeof(mi_segment_t) + ((segment->capacity - 1) * sizeof(mi_page_t))));
+ mi_assert_internal(((uintptr_t)segment + segment->segment_info_size) % os_psize == 0);
+ mi_segment_protect_range((uint8_t*)segment + segment->segment_info_size - os_psize, os_psize, protect);
+ if (MI_SECURE <= 1 || segment->capacity == 1) {
+ // and protect the last (or only) page too
+ mi_assert_internal(MI_SECURE <= 1 || segment->page_kind >= MI_PAGE_LARGE);
+ uint8_t* start = (uint8_t*)segment + segment->segment_size - os_psize;
+ if (protect && !segment->mem_is_committed) {
+ if (protect) {
+ // ensure secure page is committed
+ if (_mi_mem_commit(start, os_psize, NULL, tld)) { // if this fails that is ok (as it is an unaccessible page)
+ mi_segment_protect_range(start, os_psize, protect);
+ }
+ }
+ }
+ else {
+ mi_segment_protect_range(start, os_psize, protect);
+ }
+ }
+ else {
+ // or protect every page
+ const size_t page_size = mi_segment_page_size(segment);
+ for (size_t i = 0; i < segment->capacity; i++) {
+ if (segment->pages[i].is_committed) {
+ mi_segment_protect_range((uint8_t*)segment + (i+1)*page_size - os_psize, os_psize, protect);
+ }
+ }
+ }
+ }
+}
+
+/* -----------------------------------------------------------
+ Page reset
+----------------------------------------------------------- */
+
+static void mi_page_reset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld) {
+ mi_assert_internal(page->is_committed);
+ if (!mi_option_is_enabled(mi_option_page_reset)) return;
+ if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return;
+ size_t psize;
+ void* start = mi_segment_raw_page_start(segment, page, &psize);
+ page->is_reset = true;
+ mi_assert_internal(size <= psize);
+ size_t reset_size = ((size == 0 || size > psize) ? psize : size);
+ if (reset_size > 0) _mi_mem_reset(start, reset_size, tld->os);
+}
+
+static bool mi_page_unreset(mi_segment_t* segment, mi_page_t* page, size_t size, mi_segments_tld_t* tld)
+{
+ mi_assert_internal(page->is_reset);
+ mi_assert_internal(page->is_committed);
+ mi_assert_internal(!segment->mem_is_pinned);
+ if (segment->mem_is_pinned || !page->is_committed || !page->is_reset) return true;
+ page->is_reset = false;
+ size_t psize;
+ uint8_t* start = mi_segment_raw_page_start(segment, page, &psize);
+ size_t unreset_size = (size == 0 || size > psize ? psize : size);
+ bool is_zero = false;
+ bool ok = true;
+ if (unreset_size > 0) {
+ ok = _mi_mem_unreset(start, unreset_size, &is_zero, tld->os);
+ }
+ if (is_zero) page->is_zero_init = true;
+ return ok;
+}
+
+
+/* -----------------------------------------------------------
+ The free page queue
+----------------------------------------------------------- */
+
+// we re-use the `used` field for the expiration counter. Since this is a
+// a 32-bit field while the clock is always 64-bit we need to guard
+// against overflow, we use substraction to check for expiry which work
+// as long as the reset delay is under (2^30 - 1) milliseconds (~12 days)
+static void mi_page_reset_set_expire(mi_page_t* page) {
+ uint32_t expire = (uint32_t)_mi_clock_now() + mi_option_get(mi_option_reset_delay);
+ page->used = expire;
+}
+
+static bool mi_page_reset_is_expired(mi_page_t* page, mi_msecs_t now) {
+ int32_t expire = (int32_t)(page->used);
+ return (((int32_t)now - expire) >= 0);
+}
+
+static void mi_pages_reset_add(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert_internal(!page->segment_in_use || !page->is_committed);
+ mi_assert_internal(mi_page_not_in_queue(page,tld));
+ mi_assert_expensive(!mi_pages_reset_contains(page, tld));
+ mi_assert_internal(_mi_page_segment(page)==segment);
+ if (!mi_option_is_enabled(mi_option_page_reset)) return;
+ if (segment->mem_is_pinned || page->segment_in_use || !page->is_committed || page->is_reset) return;
+
+ if (mi_option_get(mi_option_reset_delay) == 0) {
+ // reset immediately?
+ mi_page_reset(segment, page, 0, tld);
+ }
+ else {
+ // otherwise push on the delayed page reset queue
+ mi_page_queue_t* pq = &tld->pages_reset;
+ // push on top
+ mi_page_reset_set_expire(page);
+ page->next = pq->first;
+ page->prev = NULL;
+ if (pq->first == NULL) {
+ mi_assert_internal(pq->last == NULL);
+ pq->first = pq->last = page;
+ }
+ else {
+ pq->first->prev = page;
+ pq->first = page;
+ }
+ }
+}
+
+static void mi_pages_reset_remove(mi_page_t* page, mi_segments_tld_t* tld) {
+ if (mi_page_not_in_queue(page,tld)) return;
+
+ mi_page_queue_t* pq = &tld->pages_reset;
+ mi_assert_internal(pq!=NULL);
+ mi_assert_internal(!page->segment_in_use);
+ mi_assert_internal(mi_pages_reset_contains(page, tld));
+ if (page->prev != NULL) page->prev->next = page->next;
+ if (page->next != NULL) page->next->prev = page->prev;
+ if (page == pq->last) pq->last = page->prev;
+ if (page == pq->first) pq->first = page->next;
+ page->next = page->prev = NULL;
+ page->used = 0;
+}
+
+static void mi_pages_reset_remove_all_in_segment(mi_segment_t* segment, bool force_reset, mi_segments_tld_t* tld) {
+ if (segment->mem_is_pinned) return; // never reset in huge OS pages
+ for (size_t i = 0; i < segment->capacity; i++) {
+ mi_page_t* page = &segment->pages[i];
+ if (!page->segment_in_use && page->is_committed && !page->is_reset) {
+ mi_pages_reset_remove(page, tld);
+ if (force_reset) {
+ mi_page_reset(segment, page, 0, tld);
+ }
+ }
+ else {
+ mi_assert_internal(mi_page_not_in_queue(page,tld));
+ }
+ }
+}
+
+static void mi_reset_delayed(mi_segments_tld_t* tld) {
+ if (!mi_option_is_enabled(mi_option_page_reset)) return;
+ mi_msecs_t now = _mi_clock_now();
+ mi_page_queue_t* pq = &tld->pages_reset;
+ // from oldest up to the first that has not expired yet
+ mi_page_t* page = pq->last;
+ while (page != NULL && mi_page_reset_is_expired(page,now)) {
+ mi_page_t* const prev = page->prev; // save previous field
+ mi_page_reset(_mi_page_segment(page), page, 0, tld);
+ page->used = 0;
+ page->prev = page->next = NULL;
+ page = prev;
+ }
+ // discard the reset pages from the queue
+ pq->last = page;
+ if (page != NULL){
+ page->next = NULL;
+ }
+ else {
+ pq->first = NULL;
+ }
+}
+
+
+/* -----------------------------------------------------------
+ Segment size calculations
+----------------------------------------------------------- */
+
+// Raw start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
+// The raw start is not taking aligned block allocation into consideration.
+static uint8_t* mi_segment_raw_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t* page_size) {
+ size_t psize = (segment->page_kind == MI_PAGE_HUGE ? segment->segment_size : (size_t)1 << segment->page_shift);
+ uint8_t* p = (uint8_t*)segment + page->segment_idx * psize;
+
+ if (page->segment_idx == 0) {
+ // the first page starts after the segment info (and possible guard page)
+ p += segment->segment_info_size;
+ psize -= segment->segment_info_size;
+ }
+
+#if (MI_SECURE > 1) // every page has an os guard page
+ psize -= _mi_os_page_size();
+#elif (MI_SECURE==1) // the last page has an os guard page at the end
+ if (page->segment_idx == segment->capacity - 1) {
+ psize -= _mi_os_page_size();
+ }
+#endif
+
+ if (page_size != NULL) *page_size = psize;
+ mi_assert_internal(page->xblock_size == 0 || _mi_ptr_page(p) == page);
+ mi_assert_internal(_mi_ptr_segment(p) == segment);
+ return p;
+}
+
+// Start of the page available memory; can be used on uninitialized pages (only `segment_idx` must be set)
+uint8_t* _mi_segment_page_start(const mi_segment_t* segment, const mi_page_t* page, size_t block_size, size_t* page_size, size_t* pre_size)
+{
+ size_t psize;
+ uint8_t* p = mi_segment_raw_page_start(segment, page, &psize);
+ if (pre_size != NULL) *pre_size = 0;
+ if (page->segment_idx == 0 && block_size > 0 && segment->page_kind <= MI_PAGE_MEDIUM) {
+ // for small and medium objects, ensure the page start is aligned with the block size (PR#66 by kickunderscore)
+ size_t adjust = block_size - ((uintptr_t)p % block_size);
+ if (adjust < block_size) {
+ p += adjust;
+ psize -= adjust;
+ if (pre_size != NULL) *pre_size = adjust;
+ }
+ mi_assert_internal((uintptr_t)p % block_size == 0);
+ }
+
+ if (page_size != NULL) *page_size = psize;
+ mi_assert_internal(page->xblock_size==0 || _mi_ptr_page(p) == page);
+ mi_assert_internal(_mi_ptr_segment(p) == segment);
+ return p;
+}
+
+static size_t mi_segment_size(size_t capacity, size_t required, size_t* pre_size, size_t* info_size)
+{
+ const size_t minsize = sizeof(mi_segment_t) + ((capacity - 1) * sizeof(mi_page_t)) + 16 /* padding */;
+ size_t guardsize = 0;
+ size_t isize = 0;
+
+ if (MI_SECURE == 0) {
+ // normally no guard pages
+ isize = _mi_align_up(minsize, 16 * MI_MAX_ALIGN_SIZE);
+ }
+ else {
+ // in secure mode, we set up a protected page in between the segment info
+ // and the page data (and one at the end of the segment)
+ const size_t page_size = _mi_os_page_size();
+ isize = _mi_align_up(minsize, page_size);
+ guardsize = page_size;
+ required = _mi_align_up(required, page_size);
+ }
+
+ if (info_size != NULL) *info_size = isize;
+ if (pre_size != NULL) *pre_size = isize + guardsize;
+ return (required==0 ? MI_SEGMENT_SIZE : _mi_align_up( required + isize + 2*guardsize, MI_PAGE_HUGE_ALIGN) );
+}
+
+
+/* ----------------------------------------------------------------------------
+Segment caches
+We keep a small segment cache per thread to increase local
+reuse and avoid setting/clearing guard pages in secure mode.
+------------------------------------------------------------------------------- */
+
+static void mi_segments_track_size(long segment_size, mi_segments_tld_t* tld) {
+ if (segment_size>=0) _mi_stat_increase(&tld->stats->segments,1);
+ else _mi_stat_decrease(&tld->stats->segments,1);
+ tld->count += (segment_size >= 0 ? 1 : -1);
+ if (tld->count > tld->peak_count) tld->peak_count = tld->count;
+ tld->current_size += segment_size;
+ if (tld->current_size > tld->peak_size) tld->peak_size = tld->current_size;
+}
+
+static void mi_segment_os_free(mi_segment_t* segment, size_t segment_size, mi_segments_tld_t* tld) {
+ segment->thread_id = 0;
+ mi_segments_track_size(-((long)segment_size),tld);
+ if (MI_SECURE != 0) {
+ mi_assert_internal(!segment->mem_is_pinned);
+ mi_segment_protect(segment, false, tld->os); // ensure no more guard pages are set
+ }
+
+ bool any_reset = false;
+ bool fully_committed = true;
+ for (size_t i = 0; i < segment->capacity; i++) {
+ mi_page_t* page = &segment->pages[i];
+ if (!page->is_committed) { fully_committed = false; }
+ if (page->is_reset) { any_reset = true; }
+ }
+ if (any_reset && mi_option_is_enabled(mi_option_reset_decommits)) {
+ fully_committed = false;
+ }
+ _mi_mem_free(segment, segment_size, segment->memid, fully_committed, any_reset, tld->os);
+}
+
+
+// The thread local segment cache is limited to be at most 1/8 of the peak size of segments in use,
+#define MI_SEGMENT_CACHE_FRACTION (8)
+
+// note: returned segment may be partially reset
+static mi_segment_t* mi_segment_cache_pop(size_t segment_size, mi_segments_tld_t* tld) {
+ if (segment_size != 0 && segment_size != MI_SEGMENT_SIZE) return NULL;
+ mi_segment_t* segment = tld->cache;
+ if (segment == NULL) return NULL;
+ tld->cache_count--;
+ tld->cache = segment->next;
+ segment->next = NULL;
+ mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
+ _mi_stat_decrease(&tld->stats->segments_cache, 1);
+ return segment;
+}
+
+static bool mi_segment_cache_full(mi_segments_tld_t* tld)
+{
+ // if (tld->count == 1 && tld->cache_count==0) return false; // always cache at least the final segment of a thread
+ size_t max_cache = mi_option_get(mi_option_segment_cache);
+ if (tld->cache_count < max_cache
+ && tld->cache_count < (1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION)) // at least allow a 1 element cache
+ ) {
+ return false;
+ }
+ // take the opportunity to reduce the segment cache if it is too large (now)
+ // TODO: this never happens as we check against peak usage, should we use current usage instead?
+ while (tld->cache_count > max_cache) { //(1 + (tld->peak_count / MI_SEGMENT_CACHE_FRACTION))) {
+ mi_segment_t* segment = mi_segment_cache_pop(0,tld);
+ mi_assert_internal(segment != NULL);
+ if (segment != NULL) mi_segment_os_free(segment, segment->segment_size, tld);
+ }
+ return true;
+}
+
+static bool mi_segment_cache_push(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(!mi_segment_is_in_free_queue(segment, tld));
+ mi_assert_internal(segment->next == NULL);
+ if (segment->segment_size != MI_SEGMENT_SIZE || mi_segment_cache_full(tld)) {
+ return false;
+ }
+ mi_assert_internal(segment->segment_size == MI_SEGMENT_SIZE);
+ segment->next = tld->cache;
+ tld->cache = segment;
+ tld->cache_count++;
+ _mi_stat_increase(&tld->stats->segments_cache,1);
+ return true;
+}
+
+// called by threads that are terminating to free cached segments
+void _mi_segment_thread_collect(mi_segments_tld_t* tld) {
+ mi_segment_t* segment;
+ while ((segment = mi_segment_cache_pop(0,tld)) != NULL) {
+ mi_segment_os_free(segment, segment->segment_size, tld);
+ }
+ mi_assert_internal(tld->cache_count == 0);
+ mi_assert_internal(tld->cache == NULL);
+#if MI_DEBUG>=2
+ if (!_mi_is_main_thread()) {
+ mi_assert_internal(tld->pages_reset.first == NULL);
+ mi_assert_internal(tld->pages_reset.last == NULL);
+ }
+#endif
+}
+
+
+/* -----------------------------------------------------------
+ Segment allocation
+----------------------------------------------------------- */
+
+// Allocate a segment from the OS aligned to `MI_SEGMENT_SIZE` .
+static mi_segment_t* mi_segment_init(mi_segment_t* segment, size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ // the segment parameter is non-null if it came from our cache
+ mi_assert_internal(segment==NULL || (required==0 && page_kind <= MI_PAGE_LARGE));
+
+ // calculate needed sizes first
+ size_t capacity;
+ if (page_kind == MI_PAGE_HUGE) {
+ mi_assert_internal(page_shift == MI_SEGMENT_SHIFT && required > 0);
+ capacity = 1;
+ }
+ else {
+ mi_assert_internal(required == 0);
+ size_t page_size = (size_t)1 << page_shift;
+ capacity = MI_SEGMENT_SIZE / page_size;
+ mi_assert_internal(MI_SEGMENT_SIZE % page_size == 0);
+ mi_assert_internal(capacity >= 1 && capacity <= MI_SMALL_PAGES_PER_SEGMENT);
+ }
+ size_t info_size;
+ size_t pre_size;
+ size_t segment_size = mi_segment_size(capacity, required, &pre_size, &info_size);
+ mi_assert_internal(segment_size >= required);
+
+ // Initialize parameters
+ const bool eager_delayed = (page_kind <= MI_PAGE_MEDIUM && tld->count < (size_t)mi_option_get(mi_option_eager_commit_delay));
+ const bool eager = !eager_delayed && mi_option_is_enabled(mi_option_eager_commit);
+ bool commit = eager; // || (page_kind >= MI_PAGE_LARGE);
+ bool pages_still_good = false;
+ bool is_zero = false;
+
+ // Try to get it from our thread local cache first
+ if (segment != NULL) {
+ // came from cache
+ mi_assert_internal(segment->segment_size == segment_size);
+ if (page_kind <= MI_PAGE_MEDIUM && segment->page_kind == page_kind && segment->segment_size == segment_size) {
+ pages_still_good = true;
+ }
+ else
+ {
+ if (MI_SECURE!=0) {
+ mi_assert_internal(!segment->mem_is_pinned);
+ mi_segment_protect(segment, false, tld->os); // reset protection if the page kind differs
+ }
+ // different page kinds; unreset any reset pages, and unprotect
+ // TODO: optimize cache pop to return fitting pages if possible?
+ for (size_t i = 0; i < segment->capacity; i++) {
+ mi_page_t* page = &segment->pages[i];
+ if (page->is_reset) {
+ if (!commit && mi_option_is_enabled(mi_option_reset_decommits)) {
+ page->is_reset = false;
+ }
+ else {
+ mi_page_unreset(segment, page, 0, tld); // todo: only unreset the part that was reset? (instead of the full page)
+ }
+ }
+ }
+ // ensure the initial info is committed
+ if (segment->capacity < capacity) {
+ bool commit_zero = false;
+ bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os);
+ if (commit_zero) is_zero = true;
+ if (!ok) {
+ return NULL;
+ }
+ }
+ }
+ }
+ else {
+ // Allocate the segment from the OS
+ size_t memid;
+ bool mem_large = (!eager_delayed && (MI_SECURE==0)); // only allow large OS pages once we are no longer lazy
+ bool is_pinned = false;
+ segment = (mi_segment_t*)_mi_mem_alloc_aligned(segment_size, MI_SEGMENT_SIZE, &commit, &mem_large, &is_pinned, &is_zero, &memid, os_tld);
+ if (segment == NULL) return NULL; // failed to allocate
+ if (!commit) {
+ // ensure the initial info is committed
+ mi_assert_internal(!mem_large && !is_pinned);
+ bool commit_zero = false;
+ bool ok = _mi_mem_commit(segment, pre_size, &commit_zero, tld->os);
+ if (commit_zero) is_zero = true;
+ if (!ok) {
+ // commit failed; we cannot touch the memory: free the segment directly and return `NULL`
+ _mi_mem_free(segment, MI_SEGMENT_SIZE, memid, false, false, os_tld);
+ return NULL;
+ }
+ }
+ segment->memid = memid;
+ segment->mem_is_pinned = (mem_large || is_pinned);
+ segment->mem_is_committed = commit;
+ mi_segments_track_size((long)segment_size, tld);
+ }
+ mi_assert_internal(segment != NULL && (uintptr_t)segment % MI_SEGMENT_SIZE == 0);
+ mi_assert_internal(segment->mem_is_pinned ? segment->mem_is_committed : true);
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL); // tsan
+ if (!pages_still_good) {
+ // zero the segment info (but not the `mem` fields)
+ ptrdiff_t ofs = offsetof(mi_segment_t, next);
+ memset((uint8_t*)segment + ofs, 0, info_size - ofs);
+
+ // initialize pages info
+ for (uint8_t i = 0; i < capacity; i++) {
+ segment->pages[i].segment_idx = i;
+ segment->pages[i].is_reset = false;
+ segment->pages[i].is_committed = commit;
+ segment->pages[i].is_zero_init = is_zero;
+ }
+ }
+ else {
+ // zero the segment info but not the pages info (and mem fields)
+ ptrdiff_t ofs = offsetof(mi_segment_t, next);
+ memset((uint8_t*)segment + ofs, 0, offsetof(mi_segment_t,pages) - ofs);
+ }
+
+ // initialize
+ segment->page_kind = page_kind;
+ segment->capacity = capacity;
+ segment->page_shift = page_shift;
+ segment->segment_size = segment_size;
+ segment->segment_info_size = pre_size;
+ segment->thread_id = _mi_thread_id();
+ segment->cookie = _mi_ptr_cookie(segment);
+ // _mi_stat_increase(&tld->stats->page_committed, segment->segment_info_size);
+
+ // set protection
+ mi_segment_protect(segment, true, tld->os);
+
+ // insert in free lists for small and medium pages
+ if (page_kind <= MI_PAGE_MEDIUM) {
+ mi_segment_insert_in_free_queue(segment, tld);
+ }
+
+ //fprintf(stderr,"mimalloc: alloc segment at %p\n", (void*)segment);
+ return segment;
+}
+
+static mi_segment_t* mi_segment_alloc(size_t required, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ return mi_segment_init(NULL, required, page_kind, page_shift, tld, os_tld);
+}
+
+static void mi_segment_free(mi_segment_t* segment, bool force, mi_segments_tld_t* tld) {
+ UNUSED(force);
+ mi_assert(segment != NULL);
+ // note: don't reset pages even on abandon as the whole segment is freed? (and ready for reuse)
+ bool force_reset = (force && mi_option_is_enabled(mi_option_abandoned_page_reset));
+ mi_pages_reset_remove_all_in_segment(segment, force_reset, tld);
+ mi_segment_remove_from_free_queue(segment,tld);
+
+ mi_assert_expensive(!mi_segment_queue_contains(&tld->small_free, segment));
+ mi_assert_expensive(!mi_segment_queue_contains(&tld->medium_free, segment));
+ mi_assert(segment->next == NULL);
+ mi_assert(segment->prev == NULL);
+ _mi_stat_decrease(&tld->stats->page_committed, segment->segment_info_size);
+
+ if (!force && mi_segment_cache_push(segment, tld)) {
+ // it is put in our cache
+ }
+ else {
+ // otherwise return it to the OS
+ mi_segment_os_free(segment, segment->segment_size, tld);
+ }
+}
+
+/* -----------------------------------------------------------
+ Free page management inside a segment
+----------------------------------------------------------- */
+
+
+static bool mi_segment_has_free(const mi_segment_t* segment) {
+ return (segment->used < segment->capacity);
+}
+
+static bool mi_segment_page_claim(mi_segment_t* segment, mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert_internal(_mi_page_segment(page) == segment);
+ mi_assert_internal(!page->segment_in_use);
+ mi_pages_reset_remove(page, tld);
+ // check commit
+ if (!page->is_committed) {
+ mi_assert_internal(!segment->mem_is_pinned);
+ mi_assert_internal(!page->is_reset);
+ size_t psize;
+ uint8_t* start = mi_segment_raw_page_start(segment, page, &psize);
+ bool is_zero = false;
+ const size_t gsize = (MI_SECURE >= 2 ? _mi_os_page_size() : 0);
+ bool ok = _mi_mem_commit(start, psize + gsize, &is_zero, tld->os);
+ if (!ok) return false; // failed to commit!
+ if (gsize > 0) { mi_segment_protect_range(start + psize, gsize, true); }
+ if (is_zero) { page->is_zero_init = true; }
+ page->is_committed = true;
+ }
+ // set in-use before doing unreset to prevent delayed reset
+ page->segment_in_use = true;
+ segment->used++;
+ // check reset
+ if (page->is_reset) {
+ mi_assert_internal(!segment->mem_is_pinned);
+ bool ok = mi_page_unreset(segment, page, 0, tld);
+ if (!ok) {
+ page->segment_in_use = false;
+ segment->used--;
+ return false;
+ }
+ }
+ mi_assert_internal(page->segment_in_use);
+ mi_assert_internal(segment->used <= segment->capacity);
+ if (segment->used == segment->capacity && segment->page_kind <= MI_PAGE_MEDIUM) {
+ // if no more free pages, remove from the queue
+ mi_assert_internal(!mi_segment_has_free(segment));
+ mi_segment_remove_from_free_queue(segment, tld);
+ }
+ return true;
+}
+
+
+/* -----------------------------------------------------------
+ Free
+----------------------------------------------------------- */
+
+static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld);
+
+// clear page data; can be called on abandoned segments
+static void mi_segment_page_clear(mi_segment_t* segment, mi_page_t* page, bool allow_reset, mi_segments_tld_t* tld)
+{
+ mi_assert_internal(page->segment_in_use);
+ mi_assert_internal(mi_page_all_free(page));
+ mi_assert_internal(page->is_committed);
+ mi_assert_internal(mi_page_not_in_queue(page, tld));
+
+ size_t inuse = page->capacity * mi_page_block_size(page);
+ _mi_stat_decrease(&tld->stats->page_committed, inuse);
+ _mi_stat_decrease(&tld->stats->pages, 1);
+
+ // calculate the used size from the raw (non-aligned) start of the page
+ //size_t pre_size;
+ //_mi_segment_page_start(segment, page, page->block_size, NULL, &pre_size);
+ //size_t used_size = pre_size + (page->capacity * page->block_size);
+
+ page->is_zero_init = false;
+ page->segment_in_use = false;
+
+ // reset the page memory to reduce memory pressure?
+ // note: must come after setting `segment_in_use` to false but before block_size becomes 0
+ //mi_page_reset(segment, page, 0 /*used_size*/, tld);
+
+ // zero the page data, but not the segment fields and capacity, and block_size (for page size calculations)
+ uint32_t block_size = page->xblock_size;
+ uint16_t capacity = page->capacity;
+ uint16_t reserved = page->reserved;
+ ptrdiff_t ofs = offsetof(mi_page_t,capacity);
+ memset((uint8_t*)page + ofs, 0, sizeof(*page) - ofs);
+ page->capacity = capacity;
+ page->reserved = reserved;
+ page->xblock_size = block_size;
+ segment->used--;
+
+ // add to the free page list for reuse/reset
+ if (allow_reset) {
+ mi_pages_reset_add(segment, page, tld);
+ }
+
+ page->capacity = 0; // after reset these can be zero'd now
+ page->reserved = 0;
+}
+
+void _mi_segment_page_free(mi_page_t* page, bool force, mi_segments_tld_t* tld)
+{
+ mi_assert(page != NULL);
+ mi_segment_t* segment = _mi_page_segment(page);
+ mi_assert_expensive(mi_segment_is_valid(segment,tld));
+ mi_reset_delayed(tld);
+
+ // mark it as free now
+ mi_segment_page_clear(segment, page, true, tld);
+
+ if (segment->used == 0) {
+ // no more used pages; remove from the free list and free the segment
+ mi_segment_free(segment, force, tld);
+ }
+ else {
+ if (segment->used == segment->abandoned) {
+ // only abandoned pages; remove from free list and abandon
+ mi_segment_abandon(segment,tld);
+ }
+ else if (segment->used + 1 == segment->capacity) {
+ mi_assert_internal(segment->page_kind <= MI_PAGE_MEDIUM); // for now we only support small and medium pages
+ // move back to segments free list
+ mi_segment_insert_in_free_queue(segment,tld);
+ }
+ }
+}
+
+
+/* -----------------------------------------------------------
+Abandonment
+
+When threads terminate, they can leave segments with
+live blocks (reached through other threads). Such segments
+are "abandoned" and will be reclaimed by other threads to
+reuse their pages and/or free them eventually
+
+We maintain a global list of abandoned segments that are
+reclaimed on demand. Since this is shared among threads
+the implementation needs to avoid the A-B-A problem on
+popping abandoned segments: <https://en.wikipedia.org/wiki/ABA_problem>
+We use tagged pointers to avoid accidentially identifying
+reused segments, much like stamped references in Java.
+Secondly, we maintain a reader counter to avoid resetting
+or decommitting segments that have a pending read operation.
+
+Note: the current implementation is one possible design;
+another way might be to keep track of abandoned segments
+in the regions. This would have the advantage of keeping
+all concurrent code in one place and not needing to deal
+with ABA issues. The drawback is that it is unclear how to
+scan abandoned segments efficiently in that case as they
+would be spread among all other segments in the regions.
+----------------------------------------------------------- */
+
+// Use the bottom 20-bits (on 64-bit) of the aligned segment pointers
+// to put in a tag that increments on update to avoid the A-B-A problem.
+#define MI_TAGGED_MASK MI_SEGMENT_MASK
+typedef uintptr_t mi_tagged_segment_t;
+
+static mi_segment_t* mi_tagged_segment_ptr(mi_tagged_segment_t ts) {
+ return (mi_segment_t*)(ts & ~MI_TAGGED_MASK);
+}
+
+static mi_tagged_segment_t mi_tagged_segment(mi_segment_t* segment, mi_tagged_segment_t ts) {
+ mi_assert_internal(((uintptr_t)segment & MI_TAGGED_MASK) == 0);
+ uintptr_t tag = ((ts & MI_TAGGED_MASK) + 1) & MI_TAGGED_MASK;
+ return ((uintptr_t)segment | tag);
+}
+
+// This is a list of visited abandoned pages that were full at the time.
+// this list migrates to `abandoned` when that becomes NULL. The use of
+// this list reduces contention and the rate at which segments are visited.
+static mi_decl_cache_align _Atomic(mi_segment_t*) abandoned_visited; // = NULL
+
+// The abandoned page list (tagged as it supports pop)
+static mi_decl_cache_align _Atomic(mi_tagged_segment_t) abandoned; // = NULL
+
+// Maintain these for debug purposes (these counts may be a bit off)
+static mi_decl_cache_align _Atomic(uintptr_t) abandoned_count;
+static mi_decl_cache_align _Atomic(uintptr_t) abandoned_visited_count;
+
+// We also maintain a count of current readers of the abandoned list
+// in order to prevent resetting/decommitting segment memory if it might
+// still be read.
+static mi_decl_cache_align _Atomic(uintptr_t) abandoned_readers; // = 0
+
+// Push on the visited list
+static void mi_abandoned_visited_push(mi_segment_t* segment) {
+ mi_assert_internal(segment->thread_id == 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t,&segment->abandoned_next) == NULL);
+ mi_assert_internal(segment->next == NULL && segment->prev == NULL);
+ mi_assert_internal(segment->used > 0);
+ mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited);
+ do {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, anext);
+ } while (!mi_atomic_cas_ptr_weak_release(mi_segment_t, &abandoned_visited, &anext, segment));
+ mi_atomic_increment_relaxed(&abandoned_visited_count);
+}
+
+// Move the visited list to the abandoned list.
+static bool mi_abandoned_visited_revisit(void)
+{
+ // quick check if the visited list is empty
+ if (mi_atomic_load_ptr_relaxed(mi_segment_t, &abandoned_visited) == NULL) return false;
+
+ // grab the whole visited list
+ mi_segment_t* first = mi_atomic_exchange_ptr_acq_rel(mi_segment_t, &abandoned_visited, NULL);
+ if (first == NULL) return false;
+
+ // first try to swap directly if the abandoned list happens to be NULL
+ mi_tagged_segment_t afirst;
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ if (mi_tagged_segment_ptr(ts)==NULL) {
+ uintptr_t count = mi_atomic_load_relaxed(&abandoned_visited_count);
+ afirst = mi_tagged_segment(first, ts);
+ if (mi_atomic_cas_strong_acq_rel(&abandoned, &ts, afirst)) {
+ mi_atomic_add_relaxed(&abandoned_count, count);
+ mi_atomic_sub_relaxed(&abandoned_visited_count, count);
+ return true;
+ }
+ }
+
+ // find the last element of the visited list: O(n)
+ mi_segment_t* last = first;
+ mi_segment_t* next;
+ while ((next = mi_atomic_load_ptr_relaxed(mi_segment_t, &last->abandoned_next)) != NULL) {
+ last = next;
+ }
+
+ // and atomically prepend to the abandoned list
+ // (no need to increase the readers as we don't access the abandoned segments)
+ mi_tagged_segment_t anext = mi_atomic_load_relaxed(&abandoned);
+ uintptr_t count;
+ do {
+ count = mi_atomic_load_relaxed(&abandoned_visited_count);
+ mi_atomic_store_ptr_release(mi_segment_t, &last->abandoned_next, mi_tagged_segment_ptr(anext));
+ afirst = mi_tagged_segment(first, anext);
+ } while (!mi_atomic_cas_weak_release(&abandoned, &anext, afirst));
+ mi_atomic_add_relaxed(&abandoned_count, count);
+ mi_atomic_sub_relaxed(&abandoned_visited_count, count);
+ return true;
+}
+
+// Push on the abandoned list.
+static void mi_abandoned_push(mi_segment_t* segment) {
+ mi_assert_internal(segment->thread_id == 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ mi_assert_internal(segment->next == NULL && segment->prev == NULL);
+ mi_assert_internal(segment->used > 0);
+ mi_tagged_segment_t next;
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ do {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, mi_tagged_segment_ptr(ts));
+ next = mi_tagged_segment(segment, ts);
+ } while (!mi_atomic_cas_weak_release(&abandoned, &ts, next));
+ mi_atomic_increment_relaxed(&abandoned_count);
+}
+
+// Wait until there are no more pending reads on segments that used to be in the abandoned list
+void _mi_abandoned_await_readers(void) {
+ uintptr_t n;
+ do {
+ n = mi_atomic_load_acquire(&abandoned_readers);
+ if (n != 0) mi_atomic_yield();
+ } while (n != 0);
+}
+
+// Pop from the abandoned list
+static mi_segment_t* mi_abandoned_pop(void) {
+ mi_segment_t* segment;
+ // Check efficiently if it is empty (or if the visited list needs to be moved)
+ mi_tagged_segment_t ts = mi_atomic_load_relaxed(&abandoned);
+ segment = mi_tagged_segment_ptr(ts);
+ if (mi_likely(segment == NULL)) {
+ if (mi_likely(!mi_abandoned_visited_revisit())) { // try to swap in the visited list on NULL
+ return NULL;
+ }
+ }
+
+ // Do a pop. We use a reader count to prevent
+ // a segment to be decommitted while a read is still pending,
+ // and a tagged pointer to prevent A-B-A link corruption.
+ // (this is called from `region.c:_mi_mem_free` for example)
+ mi_atomic_increment_relaxed(&abandoned_readers); // ensure no segment gets decommitted
+ mi_tagged_segment_t next = 0;
+ ts = mi_atomic_load_acquire(&abandoned);
+ do {
+ segment = mi_tagged_segment_ptr(ts);
+ if (segment != NULL) {
+ mi_segment_t* anext = mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next);
+ next = mi_tagged_segment(anext, ts); // note: reads the segment's `abandoned_next` field so should not be decommitted
+ }
+ } while (segment != NULL && !mi_atomic_cas_weak_acq_rel(&abandoned, &ts, next));
+ mi_atomic_decrement_relaxed(&abandoned_readers); // release reader lock
+ if (segment != NULL) {
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
+ mi_atomic_decrement_relaxed(&abandoned_count);
+ }
+ return segment;
+}
+
+/* -----------------------------------------------------------
+ Abandon segment/page
+----------------------------------------------------------- */
+
+static void mi_segment_abandon(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(segment->used == segment->abandoned);
+ mi_assert_internal(segment->used > 0);
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+
+ // remove the segment from the free page queue if needed
+ mi_reset_delayed(tld);
+ mi_pages_reset_remove_all_in_segment(segment, mi_option_is_enabled(mi_option_abandoned_page_reset), tld);
+ mi_segment_remove_from_free_queue(segment, tld);
+ mi_assert_internal(segment->next == NULL && segment->prev == NULL);
+
+ // all pages in the segment are abandoned; add it to the abandoned list
+ _mi_stat_increase(&tld->stats->segments_abandoned, 1);
+ mi_segments_track_size(-((long)segment->segment_size), tld);
+ segment->thread_id = 0;
+ segment->abandoned_visits = 0;
+ mi_atomic_store_ptr_release(mi_segment_t, &segment->abandoned_next, NULL);
+ mi_abandoned_push(segment);
+}
+
+void _mi_segment_page_abandon(mi_page_t* page, mi_segments_tld_t* tld) {
+ mi_assert(page != NULL);
+ mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
+ mi_assert_internal(mi_page_heap(page) == NULL);
+ mi_segment_t* segment = _mi_page_segment(page);
+ mi_assert_expensive(!mi_pages_reset_contains(page, tld));
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+ segment->abandoned++;
+ _mi_stat_increase(&tld->stats->pages_abandoned, 1);
+ mi_assert_internal(segment->abandoned <= segment->used);
+ if (segment->used == segment->abandoned) {
+ // all pages are abandoned, abandon the entire segment
+ mi_segment_abandon(segment, tld);
+ }
+}
+
+/* -----------------------------------------------------------
+ Reclaim abandoned pages
+----------------------------------------------------------- */
+
+// Possibly clear pages and check if free space is available
+static bool mi_segment_check_free(mi_segment_t* segment, size_t block_size, bool* all_pages_free)
+{
+ mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
+ bool has_page = false;
+ size_t pages_used = 0;
+ size_t pages_used_empty = 0;
+ for (size_t i = 0; i < segment->capacity; i++) {
+ mi_page_t* page = &segment->pages[i];
+ if (page->segment_in_use) {
+ pages_used++;
+ // ensure used count is up to date and collect potential concurrent frees
+ _mi_page_free_collect(page, false);
+ if (mi_page_all_free(page)) {
+ // if everything free already, page can be reused for some block size
+ // note: don't clear the page yet as we can only OS reset it once it is reclaimed
+ pages_used_empty++;
+ has_page = true;
+ }
+ else if (page->xblock_size == block_size && mi_page_has_any_available(page)) {
+ // a page has available free blocks of the right size
+ has_page = true;
+ }
+ }
+ else {
+ // whole empty page
+ has_page = true;
+ }
+ }
+ mi_assert_internal(pages_used == segment->used && pages_used >= pages_used_empty);
+ if (all_pages_free != NULL) {
+ *all_pages_free = ((pages_used - pages_used_empty) == 0);
+ }
+ return has_page;
+}
+
+
+// Reclaim a segment; returns NULL if the segment was freed
+// set `right_page_reclaimed` to `true` if it reclaimed a page of the right `block_size` that was not full.
+static mi_segment_t* mi_segment_reclaim(mi_segment_t* segment, mi_heap_t* heap, size_t requested_block_size, bool* right_page_reclaimed, mi_segments_tld_t* tld) {
+ mi_assert_internal(mi_atomic_load_ptr_relaxed(mi_segment_t, &segment->abandoned_next) == NULL);
+ if (right_page_reclaimed != NULL) { *right_page_reclaimed = false; }
+
+ segment->thread_id = _mi_thread_id();
+ segment->abandoned_visits = 0;
+ mi_segments_track_size((long)segment->segment_size, tld);
+ mi_assert_internal(segment->next == NULL && segment->prev == NULL);
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+ _mi_stat_decrease(&tld->stats->segments_abandoned, 1);
+
+ for (size_t i = 0; i < segment->capacity; i++) {
+ mi_page_t* page = &segment->pages[i];
+ if (page->segment_in_use) {
+ mi_assert_internal(!page->is_reset);
+ mi_assert_internal(page->is_committed);
+ mi_assert_internal(mi_page_not_in_queue(page, tld));
+ mi_assert_internal(mi_page_thread_free_flag(page)==MI_NEVER_DELAYED_FREE);
+ mi_assert_internal(mi_page_heap(page) == NULL);
+ segment->abandoned--;
+ mi_assert(page->next == NULL);
+ _mi_stat_decrease(&tld->stats->pages_abandoned, 1);
+ // set the heap again and allow heap thread delayed free again.
+ mi_page_set_heap(page, heap);
+ _mi_page_use_delayed_free(page, MI_USE_DELAYED_FREE, true); // override never (after heap is set)
+ // TODO: should we not collect again given that we just collected in `check_free`?
+ _mi_page_free_collect(page, false); // ensure used count is up to date
+ if (mi_page_all_free(page)) {
+ // if everything free already, clear the page directly
+ mi_segment_page_clear(segment, page, true, tld); // reset is ok now
+ }
+ else {
+ // otherwise reclaim it into the heap
+ _mi_page_reclaim(heap, page);
+ if (requested_block_size == page->xblock_size && mi_page_has_any_available(page)) {
+ if (right_page_reclaimed != NULL) { *right_page_reclaimed = true; }
+ }
+ }
+ }
+ else if (page->is_committed && !page->is_reset) { // not in-use, and not reset yet
+ // note: do not reset as this includes pages that were not touched before
+ // mi_pages_reset_add(segment, page, tld);
+ }
+ }
+ mi_assert_internal(segment->abandoned == 0);
+ if (segment->used == 0) {
+ mi_assert_internal(right_page_reclaimed == NULL || !(*right_page_reclaimed));
+ mi_segment_free(segment, false, tld);
+ return NULL;
+ }
+ else {
+ if (segment->page_kind <= MI_PAGE_MEDIUM && mi_segment_has_free(segment)) {
+ mi_segment_insert_in_free_queue(segment, tld);
+ }
+ return segment;
+ }
+}
+
+
+void _mi_abandoned_reclaim_all(mi_heap_t* heap, mi_segments_tld_t* tld) {
+ mi_segment_t* segment;
+ while ((segment = mi_abandoned_pop()) != NULL) {
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+}
+
+static mi_segment_t* mi_segment_try_reclaim(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, bool* reclaimed, mi_segments_tld_t* tld)
+{
+ *reclaimed = false;
+ mi_segment_t* segment;
+ int max_tries = 8; // limit the work to bound allocation times
+ while ((max_tries-- > 0) && ((segment = mi_abandoned_pop()) != NULL)) {
+ segment->abandoned_visits++;
+ bool all_pages_free;
+ bool has_page = mi_segment_check_free(segment,block_size,&all_pages_free); // try to free up pages (due to concurrent frees)
+ if (all_pages_free) {
+ // free the segment (by forced reclaim) to make it available to other threads.
+ // note1: we prefer to free a segment as that might lead to reclaiming another
+ // segment that is still partially used.
+ // note2: we could in principle optimize this by skipping reclaim and directly
+ // freeing but that would violate some invariants temporarily)
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+ else if (has_page && segment->page_kind == page_kind) {
+ // found a free page of the right kind, or page of the right block_size with free space
+ // we return the result of reclaim (which is usually `segment`) as it might free
+ // the segment due to concurrent frees (in which case `NULL` is returned).
+ return mi_segment_reclaim(segment, heap, block_size, reclaimed, tld);
+ }
+ else if (segment->abandoned_visits >= 3) {
+ // always reclaim on 3rd visit to limit the list length.
+ mi_segment_reclaim(segment, heap, 0, NULL, tld);
+ }
+ else {
+ // otherwise, push on the visited list so it gets not looked at too quickly again
+ mi_abandoned_visited_push(segment);
+ }
+ }
+ return NULL;
+}
+
+
+/* -----------------------------------------------------------
+ Reclaim or allocate
+----------------------------------------------------------- */
+
+static mi_segment_t* mi_segment_reclaim_or_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t page_kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ mi_assert_internal(page_kind <= MI_PAGE_LARGE);
+ mi_assert_internal(block_size < MI_HUGE_BLOCK_SIZE);
+ // 1. try to get a segment from our cache
+ mi_segment_t* segment = mi_segment_cache_pop(MI_SEGMENT_SIZE, tld);
+ if (segment != NULL) {
+ mi_segment_init(segment, 0, page_kind, page_shift, tld, os_tld);
+ return segment;
+ }
+ // 2. try to reclaim an abandoned segment
+ bool reclaimed;
+ segment = mi_segment_try_reclaim(heap, block_size, page_kind, &reclaimed, tld);
+ if (reclaimed) {
+ // reclaimed the right page right into the heap
+ mi_assert_internal(segment != NULL && segment->page_kind == page_kind && page_kind <= MI_PAGE_LARGE);
+ return NULL; // pretend out-of-memory as the page will be in the page queue of the heap with available blocks
+ }
+ else if (segment != NULL) {
+ // reclaimed a segment with empty pages (of `page_kind`) in it
+ return segment;
+ }
+ // 3. otherwise allocate a fresh segment
+ return mi_segment_alloc(0, page_kind, page_shift, tld, os_tld);
+}
+
+
+/* -----------------------------------------------------------
+ Small page allocation
+----------------------------------------------------------- */
+
+static mi_page_t* mi_segment_find_free(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(mi_segment_has_free(segment));
+ mi_assert_expensive(mi_segment_is_valid(segment, tld));
+ for (size_t i = 0; i < segment->capacity; i++) { // TODO: use a bitmap instead of search?
+ mi_page_t* page = &segment->pages[i];
+ if (!page->segment_in_use) {
+ bool ok = mi_segment_page_claim(segment, page, tld);
+ if (ok) return page;
+ }
+ }
+ mi_assert(false);
+ return NULL;
+}
+
+// Allocate a page inside a segment. Requires that the page has free pages
+static mi_page_t* mi_segment_page_alloc_in(mi_segment_t* segment, mi_segments_tld_t* tld) {
+ mi_assert_internal(mi_segment_has_free(segment));
+ return mi_segment_find_free(segment, tld);
+}
+
+static mi_page_t* mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_page_kind_t kind, size_t page_shift, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ // find an available segment the segment free queue
+ mi_segment_queue_t* const free_queue = mi_segment_free_queue_of_kind(kind, tld);
+ if (mi_segment_queue_is_empty(free_queue)) {
+ // possibly allocate or reclaim a fresh segment
+ mi_segment_t* const segment = mi_segment_reclaim_or_alloc(heap, block_size, kind, page_shift, tld, os_tld);
+ if (segment == NULL) return NULL; // return NULL if out-of-memory (or reclaimed)
+ mi_assert_internal(free_queue->first == segment);
+ mi_assert_internal(segment->page_kind==kind);
+ mi_assert_internal(segment->used < segment->capacity);
+ }
+ mi_assert_internal(free_queue->first != NULL);
+ mi_page_t* const page = mi_segment_page_alloc_in(free_queue->first, tld);
+ mi_assert_internal(page != NULL);
+#if MI_DEBUG>=2
+ // verify it is committed
+ _mi_segment_page_start(_mi_page_segment(page), page, sizeof(void*), NULL, NULL)[0] = 0;
+#endif
+ return page;
+}
+
+static mi_page_t* mi_segment_small_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ return mi_segment_page_alloc(heap, block_size, MI_PAGE_SMALL,MI_SMALL_PAGE_SHIFT,tld,os_tld);
+}
+
+static mi_page_t* mi_segment_medium_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ return mi_segment_page_alloc(heap, block_size, MI_PAGE_MEDIUM, MI_MEDIUM_PAGE_SHIFT, tld, os_tld);
+}
+
+/* -----------------------------------------------------------
+ large page allocation
+----------------------------------------------------------- */
+
+static mi_page_t* mi_segment_large_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ mi_segment_t* segment = mi_segment_reclaim_or_alloc(heap,block_size,MI_PAGE_LARGE,MI_LARGE_PAGE_SHIFT,tld,os_tld);
+ if (segment == NULL) return NULL;
+ mi_page_t* page = mi_segment_find_free(segment, tld);
+ mi_assert_internal(page != NULL);
+#if MI_DEBUG>=2
+ _mi_segment_page_start(segment, page, sizeof(void*), NULL, NULL)[0] = 0;
+#endif
+ return page;
+}
+
+static mi_page_t* mi_segment_huge_page_alloc(size_t size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld)
+{
+ mi_segment_t* segment = mi_segment_alloc(size, MI_PAGE_HUGE, MI_SEGMENT_SHIFT,tld,os_tld);
+ if (segment == NULL) return NULL;
+ mi_assert_internal(mi_segment_page_size(segment) - segment->segment_info_size - (2*(MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= size);
+ segment->thread_id = 0; // huge pages are immediately abandoned
+ mi_segments_track_size(-(long)segment->segment_size, tld);
+ mi_page_t* page = mi_segment_find_free(segment, tld);
+ mi_assert_internal(page != NULL);
+ return page;
+}
+
+// free huge block from another thread
+void _mi_segment_huge_page_free(mi_segment_t* segment, mi_page_t* page, mi_block_t* block) {
+ // huge page segments are always abandoned and can be freed immediately by any thread
+ mi_assert_internal(segment->page_kind==MI_PAGE_HUGE);
+ mi_assert_internal(segment == _mi_page_segment(page));
+ mi_assert_internal(mi_atomic_load_relaxed(&segment->thread_id)==0);
+
+ // claim it and free
+ mi_heap_t* heap = mi_heap_get_default(); // issue #221; don't use the internal get_default_heap as we need to ensure the thread is initialized.
+ // paranoia: if this it the last reference, the cas should always succeed
+ uintptr_t expected_tid = 0;
+ if (mi_atomic_cas_strong_acq_rel(&segment->thread_id, &expected_tid, heap->thread_id)) {
+ mi_block_set_next(page, block, page->free);
+ page->free = block;
+ page->used--;
+ page->is_zero = false;
+ mi_assert(page->used == 0);
+ mi_tld_t* tld = heap->tld;
+ mi_segments_track_size((long)segment->segment_size, &tld->segments);
+ _mi_segment_page_free(page, true, &tld->segments);
+ }
+#if (MI_DEBUG!=0)
+ else {
+ mi_assert_internal(false);
+ }
+#endif
+}
+
+/* -----------------------------------------------------------
+ Page allocation
+----------------------------------------------------------- */
+
+mi_page_t* _mi_segment_page_alloc(mi_heap_t* heap, size_t block_size, mi_segments_tld_t* tld, mi_os_tld_t* os_tld) {
+ mi_page_t* page;
+ if (block_size <= MI_SMALL_OBJ_SIZE_MAX) {
+ page = mi_segment_small_page_alloc(heap, block_size, tld, os_tld);
+ }
+ else if (block_size <= MI_MEDIUM_OBJ_SIZE_MAX) {
+ page = mi_segment_medium_page_alloc(heap, block_size, tld, os_tld);
+ }
+ else if (block_size <= MI_LARGE_OBJ_SIZE_MAX) {
+ page = mi_segment_large_page_alloc(heap, block_size, tld, os_tld);
+ }
+ else {
+ page = mi_segment_huge_page_alloc(block_size,tld,os_tld);
+ }
+ mi_assert_expensive(page == NULL || mi_segment_is_valid(_mi_page_segment(page),tld));
+ mi_assert_internal(page == NULL || (mi_segment_page_size(_mi_page_segment(page)) - (MI_SECURE == 0 ? 0 : _mi_os_page_size())) >= block_size);
+ mi_reset_delayed(tld);
+ mi_assert_internal(page == NULL || mi_page_not_in_queue(page, tld));
+ return page;
+}