diff options
author | vvvv <vvvv@ydb.tech> | 2024-02-06 20:01:22 +0300 |
---|---|---|
committer | Alexander Smirnov <alex@ydb.tech> | 2024-02-09 19:18:27 +0300 |
commit | ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch) | |
tree | 102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp | |
parent | 7494ca32d3a5aca00b7ac527b5f127989335102c (diff) | |
download | ydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp | 1435 |
1 files changed, 1435 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp new file mode 100644 index 00000000000..cd48c0d57eb --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp @@ -0,0 +1,1435 @@ +//===- LoopVectorizationLegality.cpp --------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file provides loop vectorization legality analysis. Original code +// resided in LoopVectorize.cpp for a long time. +// +// At this point, it is implemented as a utility class, not as an analysis +// pass. It should be easy to create an analysis pass around it if there +// is a need (but D45420 needs to happen first). +// + +#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Transforms/Utils/SizeOpts.h" +#include "llvm/Transforms/Vectorize/LoopVectorize.h" + +using namespace llvm; +using namespace PatternMatch; + +#define LV_NAME "loop-vectorize" +#define DEBUG_TYPE LV_NAME + +static cl::opt<bool> + EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden, + cl::desc("Enable if-conversion during vectorization.")); + +namespace llvm { +cl::opt<bool> + HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden, + cl::desc("Allow enabling loop hints to reorder " + "FP operations during vectorization.")); +} + +// TODO: Move size-based thresholds out of legality checking, make cost based +// decisions instead of hard thresholds. +static cl::opt<unsigned> VectorizeSCEVCheckThreshold( + "vectorize-scev-check-threshold", cl::init(16), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed.")); + +static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold( + "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden, + cl::desc("The maximum number of SCEV checks allowed with a " + "vectorize(enable) pragma")); + +static cl::opt<LoopVectorizeHints::ScalableForceKind> + ForceScalableVectorization( + "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified), + cl::Hidden, + cl::desc("Control whether the compiler can use scalable vectors to " + "vectorize a loop"), + cl::values( + clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off", + "Scalable vectorization is disabled."), + clEnumValN( + LoopVectorizeHints::SK_PreferScalable, "preferred", + "Scalable vectorization is available and favored when the " + "cost is inconclusive."), + clEnumValN( + LoopVectorizeHints::SK_PreferScalable, "on", + "Scalable vectorization is available and favored when the " + "cost is inconclusive."))); + +/// Maximum vectorization interleave count. +static const unsigned MaxInterleaveFactor = 16; + +namespace llvm { + +bool LoopVectorizeHints::Hint::validate(unsigned Val) { + switch (Kind) { + case HK_WIDTH: + return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth; + case HK_INTERLEAVE: + return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor; + case HK_FORCE: + return (Val <= 1); + case HK_ISVECTORIZED: + case HK_PREDICATE: + case HK_SCALABLE: + return (Val == 0 || Val == 1); + } + return false; +} + +LoopVectorizeHints::LoopVectorizeHints(const Loop *L, + bool InterleaveOnlyWhenForced, + OptimizationRemarkEmitter &ORE, + const TargetTransformInfo *TTI) + : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH), + Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE), + Force("vectorize.enable", FK_Undefined, HK_FORCE), + IsVectorized("isvectorized", 0, HK_ISVECTORIZED), + Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE), + Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE), + TheLoop(L), ORE(ORE) { + // Populate values with existing loop metadata. + getHintsFromMetadata(); + + // force-vector-interleave overrides DisableInterleaving. + if (VectorizerParams::isInterleaveForced()) + Interleave.Value = VectorizerParams::VectorizationInterleave; + + // If the metadata doesn't explicitly specify whether to enable scalable + // vectorization, then decide based on the following criteria (increasing + // level of priority): + // - Target default + // - Metadata width + // - Force option (always overrides) + if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) { + if (TTI) + Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable + : SK_FixedWidthOnly; + + if (Width.Value) + // If the width is set, but the metadata says nothing about the scalable + // property, then assume it concerns only a fixed-width UserVF. + // If width is not set, the flag takes precedence. + Scalable.Value = SK_FixedWidthOnly; + } + + // If the flag is set to force any use of scalable vectors, override the loop + // hints. + if (ForceScalableVectorization.getValue() != + LoopVectorizeHints::SK_Unspecified) + Scalable.Value = ForceScalableVectorization.getValue(); + + // Scalable vectorization is disabled if no preference is specified. + if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) + Scalable.Value = SK_FixedWidthOnly; + + if (IsVectorized.Value != 1) + // If the vectorization width and interleaving count are both 1 then + // consider the loop to have been already vectorized because there's + // nothing more that we can do. + IsVectorized.Value = + getWidth() == ElementCount::getFixed(1) && getInterleave() == 1; + LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs() + << "LV: Interleaving disabled by the pass manager\n"); +} + +void LoopVectorizeHints::setAlreadyVectorized() { + LLVMContext &Context = TheLoop->getHeader()->getContext(); + + MDNode *IsVectorizedMD = MDNode::get( + Context, + {MDString::get(Context, "llvm.loop.isvectorized"), + ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))}); + MDNode *LoopID = TheLoop->getLoopID(); + MDNode *NewLoopID = + makePostTransformationMetadata(Context, LoopID, + {Twine(Prefix(), "vectorize.").str(), + Twine(Prefix(), "interleave.").str()}, + {IsVectorizedMD}); + TheLoop->setLoopID(NewLoopID); + + // Update internal cache. + IsVectorized.Value = 1; +} + +bool LoopVectorizeHints::allowVectorization( + Function *F, Loop *L, bool VectorizeOnlyWhenForced) const { + if (getForce() == LoopVectorizeHints::FK_Disabled) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n"); + emitRemarkWithHints(); + return false; + } + + if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n"); + emitRemarkWithHints(); + return false; + } + + if (getIsVectorized() == 1) { + LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n"); + // FIXME: Add interleave.disable metadata. This will allow + // vectorize.disable to be used without disabling the pass and errors + // to differentiate between disabled vectorization and a width of 1. + ORE.emit([&]() { + return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(), + "AllDisabled", L->getStartLoc(), + L->getHeader()) + << "loop not vectorized: vectorization and interleaving are " + "explicitly disabled, or the loop has already been " + "vectorized"; + }); + return false; + } + + return true; +} + +void LoopVectorizeHints::emitRemarkWithHints() const { + using namespace ore; + + ORE.emit([&]() { + if (Force.Value == LoopVectorizeHints::FK_Disabled) + return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled", + TheLoop->getStartLoc(), + TheLoop->getHeader()) + << "loop not vectorized: vectorization is explicitly disabled"; + else { + OptimizationRemarkMissed R(LV_NAME, "MissedDetails", + TheLoop->getStartLoc(), TheLoop->getHeader()); + R << "loop not vectorized"; + if (Force.Value == LoopVectorizeHints::FK_Enabled) { + R << " (Force=" << NV("Force", true); + if (Width.Value != 0) + R << ", Vector Width=" << NV("VectorWidth", getWidth()); + if (getInterleave() != 0) + R << ", Interleave Count=" << NV("InterleaveCount", getInterleave()); + R << ")"; + } + return R; + } + }); +} + +const char *LoopVectorizeHints::vectorizeAnalysisPassName() const { + if (getWidth() == ElementCount::getFixed(1)) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Disabled) + return LV_NAME; + if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero()) + return LV_NAME; + return OptimizationRemarkAnalysis::AlwaysPrint; +} + +bool LoopVectorizeHints::allowReordering() const { + // Allow the vectorizer to change the order of operations if enabling + // loop hints are provided + ElementCount EC = getWidth(); + return HintsAllowReordering && + (getForce() == LoopVectorizeHints::FK_Enabled || + EC.getKnownMinValue() > 1); +} + +void LoopVectorizeHints::getHintsFromMetadata() { + MDNode *LoopID = TheLoop->getLoopID(); + if (!LoopID) + return; + + // First operand should refer to the loop id itself. + assert(LoopID->getNumOperands() > 0 && "requires at least one operand"); + assert(LoopID->getOperand(0) == LoopID && "invalid loop id"); + + for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) { + const MDString *S = nullptr; + SmallVector<Metadata *, 4> Args; + + // The expected hint is either a MDString or a MDNode with the first + // operand a MDString. + if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) { + if (!MD || MD->getNumOperands() == 0) + continue; + S = dyn_cast<MDString>(MD->getOperand(0)); + for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i) + Args.push_back(MD->getOperand(i)); + } else { + S = dyn_cast<MDString>(LoopID->getOperand(i)); + assert(Args.size() == 0 && "too many arguments for MDString"); + } + + if (!S) + continue; + + // Check if the hint starts with the loop metadata prefix. + StringRef Name = S->getString(); + if (Args.size() == 1) + setHint(Name, Args[0]); + } +} + +void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) { + if (!Name.startswith(Prefix())) + return; + Name = Name.substr(Prefix().size(), StringRef::npos); + + const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg); + if (!C) + return; + unsigned Val = C->getZExtValue(); + + Hint *Hints[] = {&Width, &Interleave, &Force, + &IsVectorized, &Predicate, &Scalable}; + for (auto *H : Hints) { + if (Name == H->Name) { + if (H->validate(Val)) + H->Value = Val; + else + LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n"); + break; + } + } +} + +// Return true if the inner loop \p Lp is uniform with regard to the outer loop +// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes +// executing the inner loop will execute the same iterations). This check is +// very constrained for now but it will be relaxed in the future. \p Lp is +// considered uniform if it meets all the following conditions: +// 1) it has a canonical IV (starting from 0 and with stride 1), +// 2) its latch terminator is a conditional branch and, +// 3) its latch condition is a compare instruction whose operands are the +// canonical IV and an OuterLp invariant. +// This check doesn't take into account the uniformity of other conditions not +// related to the loop latch because they don't affect the loop uniformity. +// +// NOTE: We decided to keep all these checks and its associated documentation +// together so that we can easily have a picture of the current supported loop +// nests. However, some of the current checks don't depend on \p OuterLp and +// would be redundantly executed for each \p Lp if we invoked this function for +// different candidate outer loops. This is not the case for now because we +// don't currently have the infrastructure to evaluate multiple candidate outer +// loops and \p OuterLp will be a fixed parameter while we only support explicit +// outer loop vectorization. It's also very likely that these checks go away +// before introducing the aforementioned infrastructure. However, if this is not +// the case, we should move the \p OuterLp independent checks to a separate +// function that is only executed once for each \p Lp. +static bool isUniformLoop(Loop *Lp, Loop *OuterLp) { + assert(Lp->getLoopLatch() && "Expected loop with a single latch."); + + // If Lp is the outer loop, it's uniform by definition. + if (Lp == OuterLp) + return true; + assert(OuterLp->contains(Lp) && "OuterLp must contain Lp."); + + // 1. + PHINode *IV = Lp->getCanonicalInductionVariable(); + if (!IV) { + LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n"); + return false; + } + + // 2. + BasicBlock *Latch = Lp->getLoopLatch(); + auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator()); + if (!LatchBr || LatchBr->isUnconditional()) { + LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n"); + return false; + } + + // 3. + auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition()); + if (!LatchCmp) { + LLVM_DEBUG( + dbgs() << "LV: Loop latch condition is not a compare instruction.\n"); + return false; + } + + Value *CondOp0 = LatchCmp->getOperand(0); + Value *CondOp1 = LatchCmp->getOperand(1); + Value *IVUpdate = IV->getIncomingValueForBlock(Latch); + if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) && + !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) { + LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n"); + return false; + } + + return true; +} + +// Return true if \p Lp and all its nested loops are uniform with regard to \p +// OuterLp. +static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) { + if (!isUniformLoop(Lp, OuterLp)) + return false; + + // Check if nested loops are uniform. + for (Loop *SubLp : *Lp) + if (!isUniformLoopNest(SubLp, OuterLp)) + return false; + + return true; +} + +static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) { + if (Ty->isPointerTy()) + return DL.getIntPtrType(Ty); + + // It is possible that char's or short's overflow when we ask for the loop's + // trip count, work around this by changing the type size. + if (Ty->getScalarSizeInBits() < 32) + return Type::getInt32Ty(Ty->getContext()); + + return Ty; +} + +static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) { + Ty0 = convertPointerToIntegerType(DL, Ty0); + Ty1 = convertPointerToIntegerType(DL, Ty1); + if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits()) + return Ty0; + return Ty1; +} + +/// Check that the instruction has outside loop users and is not an +/// identified reduction variable. +static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst, + SmallPtrSetImpl<Value *> &AllowedExit) { + // Reductions, Inductions and non-header phis are allowed to have exit users. All + // other instructions must not have external users. + if (!AllowedExit.count(Inst)) + // Check that all of the users of the loop are inside the BB. + for (User *U : Inst->users()) { + Instruction *UI = cast<Instruction>(U); + // This user may be a reduction exit value. + if (!TheLoop->contains(UI)) { + LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n'); + return true; + } + } + return false; +} + +/// Returns true if A and B have same pointer operands or same SCEVs addresses +static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A, + StoreInst *B) { + // Compare store + if (A == B) + return true; + + // Otherwise Compare pointers + Value *APtr = A->getPointerOperand(); + Value *BPtr = B->getPointerOperand(); + if (APtr == BPtr) + return true; + + // Otherwise compare address SCEVs + if (SE->getSCEV(APtr) == SE->getSCEV(BPtr)) + return true; + + return false; +} + +int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy, + Value *Ptr) const { + const ValueToValueMap &Strides = + getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap(); + + Function *F = TheLoop->getHeader()->getParent(); + bool OptForSize = F->hasOptSize() || + llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI, + PGSOQueryType::IRPass); + bool CanAddPredicate = !OptForSize; + int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides, + CanAddPredicate, false).value_or(0); + if (Stride == 1 || Stride == -1) + return Stride; + return 0; +} + +bool LoopVectorizationLegality::isUniform(Value *V) const { + return LAI->isUniform(V); +} + +bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const { + Value *Ptr = getLoadStorePointerOperand(&I); + if (!Ptr) + return false; + // Note: There's nothing inherent which prevents predicated loads and + // stores from being uniform. The current lowering simply doesn't handle + // it; in particular, the cost model distinguishes scatter/gather from + // scalar w/predication, and we currently rely on the scalar path. + return isUniform(Ptr) && !blockNeedsPredication(I.getParent()); +} + +bool LoopVectorizationLegality::canVectorizeOuterLoop() { + assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop."); + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + + for (BasicBlock *BB : TheLoop->blocks()) { + // Check whether the BB terminator is a BranchInst. Any other terminator is + // not supported yet. + auto *Br = dyn_cast<BranchInst>(BB->getTerminator()); + if (!Br) { + reportVectorizationFailure("Unsupported basic block terminator", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Check whether the BranchInst is a supported one. Only unconditional + // branches, conditional branches with an outer loop invariant condition or + // backedges are supported. + // FIXME: We skip these checks when VPlan predication is enabled as we + // want to allow divergent branches. This whole check will be removed + // once VPlan predication is on by default. + if (Br && Br->isConditional() && + !TheLoop->isLoopInvariant(Br->getCondition()) && + !LI->isLoopHeader(Br->getSuccessor(0)) && + !LI->isLoopHeader(Br->getSuccessor(1))) { + reportVectorizationFailure("Unsupported conditional branch", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + } + + // Check whether inner loops are uniform. At this point, we only support + // simple outer loops scenarios with uniform nested loops. + if (!isUniformLoopNest(TheLoop /*loop nest*/, + TheLoop /*context outer loop*/)) { + reportVectorizationFailure("Outer loop contains divergent loops", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Check whether we are able to set up outer loop induction. + if (!setupOuterLoopInductions()) { + reportVectorizationFailure("Unsupported outer loop Phi(s)", + "Unsupported outer loop Phi(s)", + "UnsupportedPhi", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +void LoopVectorizationLegality::addInductionPhi( + PHINode *Phi, const InductionDescriptor &ID, + SmallPtrSetImpl<Value *> &AllowedExit) { + Inductions[Phi] = ID; + + // In case this induction also comes with casts that we know we can ignore + // in the vectorized loop body, record them here. All casts could be recorded + // here for ignoring, but suffices to record only the first (as it is the + // only one that may bw used outside the cast sequence). + const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts(); + if (!Casts.empty()) + InductionCastsToIgnore.insert(*Casts.begin()); + + Type *PhiTy = Phi->getType(); + const DataLayout &DL = Phi->getModule()->getDataLayout(); + + // Get the widest type. + if (!PhiTy->isFloatingPointTy()) { + if (!WidestIndTy) + WidestIndTy = convertPointerToIntegerType(DL, PhiTy); + else + WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy); + } + + // Int inductions are special because we only allow one IV. + if (ID.getKind() == InductionDescriptor::IK_IntInduction && + ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() && + isa<Constant>(ID.getStartValue()) && + cast<Constant>(ID.getStartValue())->isNullValue()) { + + // Use the phi node with the widest type as induction. Use the last + // one if there are multiple (no good reason for doing this other + // than it is expedient). We've checked that it begins at zero and + // steps by one, so this is a canonical induction variable. + if (!PrimaryInduction || PhiTy == WidestIndTy) + PrimaryInduction = Phi; + } + + // Both the PHI node itself, and the "post-increment" value feeding + // back into the PHI node may have external users. + // We can allow those uses, except if the SCEVs we have for them rely + // on predicates that only hold within the loop, since allowing the exit + // currently means re-using this SCEV outside the loop (see PR33706 for more + // details). + if (PSE.getPredicate().isAlwaysTrue()) { + AllowedExit.insert(Phi); + AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch())); + } + + LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n"); +} + +bool LoopVectorizationLegality::setupOuterLoopInductions() { + BasicBlock *Header = TheLoop->getHeader(); + + // Returns true if a given Phi is a supported induction. + auto isSupportedPhi = [&](PHINode &Phi) -> bool { + InductionDescriptor ID; + if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) && + ID.getKind() == InductionDescriptor::IK_IntInduction) { + addInductionPhi(&Phi, ID, AllowedExit); + return true; + } else { + // Bail out for any Phi in the outer loop header that is not a supported + // induction. + LLVM_DEBUG( + dbgs() + << "LV: Found unsupported PHI for outer loop vectorization.\n"); + return false; + } + }; + + if (llvm::all_of(Header->phis(), isSupportedPhi)) + return true; + else + return false; +} + +/// Checks if a function is scalarizable according to the TLI, in +/// the sense that it should be vectorized and then expanded in +/// multiple scalar calls. This is represented in the +/// TLI via mappings that do not specify a vector name, as in the +/// following example: +/// +/// const VecDesc VecIntrinsics[] = { +/// {"llvm.phx.abs.i32", "", 4} +/// }; +static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) { + const StringRef ScalarName = CI.getCalledFunction()->getName(); + bool Scalarize = TLI.isFunctionVectorizable(ScalarName); + // Check that all known VFs are not associated to a vector + // function, i.e. the vector name is emty. + if (Scalarize) { + ElementCount WidestFixedVF, WidestScalableVF; + TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF); + for (ElementCount VF = ElementCount::getFixed(2); + ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2) + Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); + for (ElementCount VF = ElementCount::getScalable(1); + ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2) + Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF); + assert((WidestScalableVF.isZero() || !Scalarize) && + "Caller may decide to scalarize a variant using a scalable VF"); + } + return Scalarize; +} + +bool LoopVectorizationLegality::canVectorizeInstrs() { + BasicBlock *Header = TheLoop->getHeader(); + + // For each block in the loop. + for (BasicBlock *BB : TheLoop->blocks()) { + // Scan the instructions in the block and look for hazards. + for (Instruction &I : *BB) { + if (auto *Phi = dyn_cast<PHINode>(&I)) { + Type *PhiTy = Phi->getType(); + // Check that this PHI type is allowed. + if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() && + !PhiTy->isPointerTy()) { + reportVectorizationFailure("Found a non-int non-pointer PHI", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + return false; + } + + // If this PHINode is not in the header block, then we know that we + // can convert it to select during if-conversion. No need to check if + // the PHIs in this block are induction or reduction variables. + if (BB != Header) { + // Non-header phi nodes that have outside uses can be vectorized. Add + // them to the list of allowed exits. + // Unsafe cyclic dependencies with header phis are identified during + // legalization for reduction, induction and fixed order + // recurrences. + AllowedExit.insert(&I); + continue; + } + + // We only allow if-converted PHIs with exactly two incoming values. + if (Phi->getNumIncomingValues() != 2) { + reportVectorizationFailure("Found an invalid PHI", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop, Phi); + return false; + } + + RecurrenceDescriptor RedDes; + if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC, + DT, PSE.getSE())) { + Requirements->addExactFPMathInst(RedDes.getExactFPMathInst()); + AllowedExit.insert(RedDes.getLoopExitInstr()); + Reductions[Phi] = RedDes; + continue; + } + + // TODO: Instead of recording the AllowedExit, it would be good to + // record the complementary set: NotAllowedExit. These include (but may + // not be limited to): + // 1. Reduction phis as they represent the one-before-last value, which + // is not available when vectorized + // 2. Induction phis and increment when SCEV predicates cannot be used + // outside the loop - see addInductionPhi + // 3. Non-Phis with outside uses when SCEV predicates cannot be used + // outside the loop - see call to hasOutsideLoopUser in the non-phi + // handling below + // 4. FixedOrderRecurrence phis that can possibly be handled by + // extraction. + // By recording these, we can then reason about ways to vectorize each + // of these NotAllowedExit. + InductionDescriptor ID; + if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) { + addInductionPhi(Phi, ID, AllowedExit); + Requirements->addExactFPMathInst(ID.getExactFPMathInst()); + continue; + } + + if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop, + SinkAfter, DT)) { + AllowedExit.insert(Phi); + FixedOrderRecurrences.insert(Phi); + continue; + } + + // As a last resort, coerce the PHI to a AddRec expression + // and re-try classifying it a an induction PHI. + if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) { + addInductionPhi(Phi, ID, AllowedExit); + continue; + } + + reportVectorizationFailure("Found an unidentified PHI", + "value that could not be identified as " + "reduction is used outside the loop", + "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi); + return false; + } // end of PHI handling + + // We handle calls that: + // * Are debug info intrinsics. + // * Have a mapping to an IR intrinsic. + // * Have a vector version available. + auto *CI = dyn_cast<CallInst>(&I); + + if (CI && !getVectorIntrinsicIDForCall(CI, TLI) && + !isa<DbgInfoIntrinsic>(CI) && + !(CI->getCalledFunction() && TLI && + (!VFDatabase::getMappings(*CI).empty() || + isTLIScalarize(*TLI, *CI)))) { + // If the call is a recognized math libary call, it is likely that + // we can vectorize it given loosened floating-point constraints. + LibFunc Func; + bool IsMathLibCall = + TLI && CI->getCalledFunction() && + CI->getType()->isFloatingPointTy() && + TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) && + TLI->hasOptimizedCodeGen(Func); + + if (IsMathLibCall) { + // TODO: Ideally, we should not use clang-specific language here, + // but it's hard to provide meaningful yet generic advice. + // Also, should this be guarded by allowExtraAnalysis() and/or be part + // of the returned info from isFunctionVectorizable()? + reportVectorizationFailure( + "Found a non-intrinsic callsite", + "library call cannot be vectorized. " + "Try compiling with -fno-math-errno, -ffast-math, " + "or similar flags", + "CantVectorizeLibcall", ORE, TheLoop, CI); + } else { + reportVectorizationFailure("Found a non-intrinsic callsite", + "call instruction cannot be vectorized", + "CantVectorizeLibcall", ORE, TheLoop, CI); + } + return false; + } + + // Some intrinsics have scalar arguments and should be same in order for + // them to be vectorized (i.e. loop invariant). + if (CI) { + auto *SE = PSE.getSE(); + Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI); + for (unsigned i = 0, e = CI->arg_size(); i != e; ++i) + if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) { + if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) { + reportVectorizationFailure("Found unvectorizable intrinsic", + "intrinsic instruction cannot be vectorized", + "CantVectorizeIntrinsic", ORE, TheLoop, CI); + return false; + } + } + } + + // Check that the instruction return type is vectorizable. + // Also, we can't vectorize extractelement instructions. + if ((!VectorType::isValidElementType(I.getType()) && + !I.getType()->isVoidTy()) || + isa<ExtractElementInst>(I)) { + reportVectorizationFailure("Found unvectorizable type", + "instruction return type cannot be vectorized", + "CantVectorizeInstructionReturnType", ORE, TheLoop, &I); + return false; + } + + // Check that the stored type is vectorizable. + if (auto *ST = dyn_cast<StoreInst>(&I)) { + Type *T = ST->getValueOperand()->getType(); + if (!VectorType::isValidElementType(T)) { + reportVectorizationFailure("Store instruction cannot be vectorized", + "store instruction cannot be vectorized", + "CantVectorizeStore", ORE, TheLoop, ST); + return false; + } + + // For nontemporal stores, check that a nontemporal vector version is + // supported on the target. + if (ST->getMetadata(LLVMContext::MD_nontemporal)) { + // Arbitrarily try a vector of 2 elements. + auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2); + assert(VecTy && "did not find vectorized version of stored type"); + if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) { + reportVectorizationFailure( + "nontemporal store instruction cannot be vectorized", + "nontemporal store instruction cannot be vectorized", + "CantVectorizeNontemporalStore", ORE, TheLoop, ST); + return false; + } + } + + } else if (auto *LD = dyn_cast<LoadInst>(&I)) { + if (LD->getMetadata(LLVMContext::MD_nontemporal)) { + // For nontemporal loads, check that a nontemporal vector version is + // supported on the target (arbitrarily try a vector of 2 elements). + auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2); + assert(VecTy && "did not find vectorized version of load type"); + if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) { + reportVectorizationFailure( + "nontemporal load instruction cannot be vectorized", + "nontemporal load instruction cannot be vectorized", + "CantVectorizeNontemporalLoad", ORE, TheLoop, LD); + return false; + } + } + + // FP instructions can allow unsafe algebra, thus vectorizable by + // non-IEEE-754 compliant SIMD units. + // This applies to floating-point math operations and calls, not memory + // operations, shuffles, or casts, as they don't change precision or + // semantics. + } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) && + !I.isFast()) { + LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n"); + Hints->setPotentiallyUnsafe(); + } + + // Reduction instructions are allowed to have exit users. + // All other instructions must not have external users. + if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) { + // We can safely vectorize loops where instructions within the loop are + // used outside the loop only if the SCEV predicates within the loop is + // same as outside the loop. Allowing the exit means reusing the SCEV + // outside the loop. + if (PSE.getPredicate().isAlwaysTrue()) { + AllowedExit.insert(&I); + continue; + } + reportVectorizationFailure("Value cannot be used outside the loop", + "value cannot be used outside the loop", + "ValueUsedOutsideLoop", ORE, TheLoop, &I); + return false; + } + } // next instr. + } + + if (!PrimaryInduction) { + if (Inductions.empty()) { + reportVectorizationFailure("Did not find one integer induction var", + "loop induction variable could not be identified", + "NoInductionVariable", ORE, TheLoop); + return false; + } else if (!WidestIndTy) { + reportVectorizationFailure("Did not find one integer induction var", + "integer loop induction variable could not be identified", + "NoIntegerInductionVariable", ORE, TheLoop); + return false; + } else { + LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n"); + } + } + + // For fixed order recurrences, we use the previous value (incoming value from + // the latch) to check if it dominates all users of the recurrence. Bail out + // if we have to sink such an instruction for another recurrence, as the + // dominance requirement may not hold after sinking. + BasicBlock *LoopLatch = TheLoop->getLoopLatch(); + if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) { + Instruction *V = + cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch)); + return SinkAfter.find(V) != SinkAfter.end(); + })) + return false; + + // Now we know the widest induction type, check if our found induction + // is the same size. If it's not, unset it here and InnerLoopVectorizer + // will create another. + if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType()) + PrimaryInduction = nullptr; + + return true; +} + +bool LoopVectorizationLegality::canVectorizeMemory() { + LAI = &LAIs.getInfo(*TheLoop); + const OptimizationRemarkAnalysis *LAR = LAI->getReport(); + if (LAR) { + ORE->emit([&]() { + return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(), + "loop not vectorized: ", *LAR); + }); + } + + if (!LAI->canVectorizeMemory()) + return false; + + // We can vectorize stores to invariant address when final reduction value is + // guaranteed to be stored at the end of the loop. Also, if decision to + // vectorize loop is made, runtime checks are added so as to make sure that + // invariant address won't alias with any other objects. + if (!LAI->getStoresToInvariantAddresses().empty()) { + // For each invariant address, check if last stored value is unconditional + // and the address is not calculated inside the loop. + for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { + if (!isInvariantStoreOfReduction(SI)) + continue; + + if (blockNeedsPredication(SI->getParent())) { + reportVectorizationFailure( + "We don't allow storing to uniform addresses", + "write of conditional recurring variant value to a loop " + "invariant address could not be vectorized", + "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); + return false; + } + + // Invariant address should be defined outside of loop. LICM pass usually + // makes sure it happens, but in rare cases it does not, we do not want + // to overcomplicate vectorization to support this case. + if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) { + if (TheLoop->contains(Ptr)) { + reportVectorizationFailure( + "Invariant address is calculated inside the loop", + "write to a loop invariant address could not " + "be vectorized", + "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); + return false; + } + } + } + + if (LAI->hasDependenceInvolvingLoopInvariantAddress()) { + // For each invariant address, check its last stored value is the result + // of one of our reductions. + // + // We do not check if dependence with loads exists because they are + // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this + // behaviour changes we have to modify this code. + ScalarEvolution *SE = PSE.getSE(); + SmallVector<StoreInst *, 4> UnhandledStores; + for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) { + if (isInvariantStoreOfReduction(SI)) { + // Earlier stores to this address are effectively deadcode. + // With opaque pointers it is possible for one pointer to be used with + // different sizes of stored values: + // store i32 0, ptr %x + // store i8 0, ptr %x + // The latest store doesn't complitely overwrite the first one in the + // example. That is why we have to make sure that types of stored + // values are same. + // TODO: Check that bitwidth of unhandled store is smaller then the + // one that overwrites it and add a test. + erase_if(UnhandledStores, [SE, SI](StoreInst *I) { + return storeToSameAddress(SE, SI, I) && + I->getValueOperand()->getType() == + SI->getValueOperand()->getType(); + }); + continue; + } + UnhandledStores.push_back(SI); + } + + bool IsOK = UnhandledStores.empty(); + // TODO: we should also validate against InvariantMemSets. + if (!IsOK) { + reportVectorizationFailure( + "We don't allow storing to uniform addresses", + "write to a loop invariant address could not " + "be vectorized", + "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop); + return false; + } + } + } + + PSE.addPredicate(LAI->getPSE().getPredicate()); + return true; +} + +bool LoopVectorizationLegality::canVectorizeFPMath( + bool EnableStrictReductions) { + + // First check if there is any ExactFP math or if we allow reassociations + if (!Requirements->getExactFPInst() || Hints->allowReordering()) + return true; + + // If the above is false, we have ExactFPMath & do not allow reordering. + // If the EnableStrictReductions flag is set, first check if we have any + // Exact FP induction vars, which we cannot vectorize. + if (!EnableStrictReductions || + any_of(getInductionVars(), [&](auto &Induction) -> bool { + InductionDescriptor IndDesc = Induction.second; + return IndDesc.getExactFPMathInst(); + })) + return false; + + // We can now only vectorize if all reductions with Exact FP math also + // have the isOrdered flag set, which indicates that we can move the + // reduction operations in-loop. + return (all_of(getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered(); + })); +} + +bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) { + return any_of(getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + return RdxDesc.IntermediateStore == SI; + }); +} + +bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) { + return any_of(getReductionVars(), [&](auto &Reduction) -> bool { + const RecurrenceDescriptor &RdxDesc = Reduction.second; + if (!RdxDesc.IntermediateStore) + return false; + + ScalarEvolution *SE = PSE.getSE(); + Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand(); + return V == InvariantAddress || + SE->getSCEV(V) == SE->getSCEV(InvariantAddress); + }); +} + +bool LoopVectorizationLegality::isInductionPhi(const Value *V) const { + Value *In0 = const_cast<Value *>(V); + PHINode *PN = dyn_cast_or_null<PHINode>(In0); + if (!PN) + return false; + + return Inductions.count(PN); +} + +const InductionDescriptor * +LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const { + if (!isInductionPhi(Phi)) + return nullptr; + auto &ID = getInductionVars().find(Phi)->second; + if (ID.getKind() == InductionDescriptor::IK_IntInduction || + ID.getKind() == InductionDescriptor::IK_FpInduction) + return &ID; + return nullptr; +} + +const InductionDescriptor * +LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const { + if (!isInductionPhi(Phi)) + return nullptr; + auto &ID = getInductionVars().find(Phi)->second; + if (ID.getKind() == InductionDescriptor::IK_PtrInduction) + return &ID; + return nullptr; +} + +bool LoopVectorizationLegality::isCastedInductionVariable( + const Value *V) const { + auto *Inst = dyn_cast<Instruction>(V); + return (Inst && InductionCastsToIgnore.count(Inst)); +} + +bool LoopVectorizationLegality::isInductionVariable(const Value *V) const { + return isInductionPhi(V) || isCastedInductionVariable(V); +} + +bool LoopVectorizationLegality::isFixedOrderRecurrence( + const PHINode *Phi) const { + return FixedOrderRecurrences.count(Phi); +} + +bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const { + return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT); +} + +bool LoopVectorizationLegality::blockCanBePredicated( + BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs, + SmallPtrSetImpl<const Instruction *> &MaskedOp, + SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const { + for (Instruction &I : *BB) { + // We can predicate blocks with calls to assume, as long as we drop them in + // case we flatten the CFG via predication. + if (match(&I, m_Intrinsic<Intrinsic::assume>())) { + ConditionalAssumes.insert(&I); + continue; + } + + // Do not let llvm.experimental.noalias.scope.decl block the vectorization. + // TODO: there might be cases that it should block the vectorization. Let's + // ignore those for now. + if (isa<NoAliasScopeDeclInst>(&I)) + continue; + + // Loads are handled via masking (or speculated if safe to do so.) + if (auto *LI = dyn_cast<LoadInst>(&I)) { + if (!SafePtrs.count(LI->getPointerOperand())) + MaskedOp.insert(LI); + continue; + } + + // Predicated store requires some form of masking: + // 1) masked store HW instruction, + // 2) emulation via load-blend-store (only if safe and legal to do so, + // be aware on the race conditions), or + // 3) element-by-element predicate check and scalar store. + if (auto *SI = dyn_cast<StoreInst>(&I)) { + MaskedOp.insert(SI); + continue; + } + + if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow()) + return false; + } + + return true; +} + +bool LoopVectorizationLegality::canVectorizeWithIfConvert() { + if (!EnableIfConversion) { + reportVectorizationFailure("If-conversion is disabled", + "if-conversion is disabled", + "IfConversionDisabled", + ORE, TheLoop); + return false; + } + + assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable"); + + // A list of pointers which are known to be dereferenceable within scope of + // the loop body for each iteration of the loop which executes. That is, + // the memory pointed to can be dereferenced (with the access size implied by + // the value's type) unconditionally within the loop header without + // introducing a new fault. + SmallPtrSet<Value *, 8> SafePointers; + + // Collect safe addresses. + for (BasicBlock *BB : TheLoop->blocks()) { + if (!blockNeedsPredication(BB)) { + for (Instruction &I : *BB) + if (auto *Ptr = getLoadStorePointerOperand(&I)) + SafePointers.insert(Ptr); + continue; + } + + // For a block which requires predication, a address may be safe to access + // in the loop w/o predication if we can prove dereferenceability facts + // sufficient to ensure it'll never fault within the loop. For the moment, + // we restrict this to loads; stores are more complicated due to + // concurrency restrictions. + ScalarEvolution &SE = *PSE.getSE(); + for (Instruction &I : *BB) { + LoadInst *LI = dyn_cast<LoadInst>(&I); + if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) && + isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC)) + SafePointers.insert(LI->getPointerOperand()); + } + } + + // Collect the blocks that need predication. + for (BasicBlock *BB : TheLoop->blocks()) { + // We don't support switch statements inside loops. + if (!isa<BranchInst>(BB->getTerminator())) { + reportVectorizationFailure("Loop contains a switch statement", + "loop contains a switch statement", + "LoopContainsSwitch", ORE, TheLoop, + BB->getTerminator()); + return false; + } + + // We must be able to predicate all blocks that need to be predicated. + if (blockNeedsPredication(BB)) { + if (!blockCanBePredicated(BB, SafePointers, MaskedOp, + ConditionalAssumes)) { + reportVectorizationFailure( + "Control flow cannot be substituted for a select", + "control flow cannot be substituted for a select", + "NoCFGForSelect", ORE, TheLoop, + BB->getTerminator()); + return false; + } + } + } + + // We can if-convert this loop. + return true; +} + +// Helper function to canVectorizeLoopNestCFG. +bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp, + bool UseVPlanNativePath) { + assert((UseVPlanNativePath || Lp->isInnermost()) && + "VPlan-native path is not enabled."); + + // TODO: ORE should be improved to show more accurate information when an + // outer loop can't be vectorized because a nested loop is not understood or + // legal. Something like: "outer_loop_location: loop not vectorized: + // (inner_loop_location) loop control flow is not understood by vectorizer". + + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + + // We must have a loop in canonical form. Loops with indirectbr in them cannot + // be canonicalized. + if (!Lp->getLoopPreheader()) { + reportVectorizationFailure("Loop doesn't have a legal pre-header", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We must have a single backedge. + if (Lp->getNumBackEdges() != 1) { + reportVectorizationFailure("The loop must have a single backedge", + "loop control flow is not understood by vectorizer", + "CFGNotUnderstood", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +bool LoopVectorizationLegality::canVectorizeLoopNestCFG( + Loop *Lp, bool UseVPlanNativePath) { + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Recursively check whether the loop control flow of nested loops is + // understood. + for (Loop *SubLp : *Lp) + if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + return Result; +} + +bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) { + // Store the result and return it at the end instead of exiting early, in case + // allowExtraAnalysis is used to report multiple reasons for not vectorizing. + bool Result = true; + + bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE); + // Check whether the loop-related control flow in the loop nest is expected by + // vectorizer. + if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) { + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // We need to have a loop header. + LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName() + << '\n'); + + // Specific checks for outer loops. We skip the remaining legal checks at this + // point because they don't support outer loops. + if (!TheLoop->isInnermost()) { + assert(UseVPlanNativePath && "VPlan-native path is not enabled."); + + if (!canVectorizeOuterLoop()) { + reportVectorizationFailure("Unsupported outer loop", + "unsupported outer loop", + "UnsupportedOuterLoop", + ORE, TheLoop); + // TODO: Implement DoExtraAnalysis when subsequent legal checks support + // outer loops. + return false; + } + + LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n"); + return Result; + } + + assert(TheLoop->isInnermost() && "Inner loop expected."); + // Check if we can if-convert non-single-bb loops. + unsigned NumBlocks = TheLoop->getNumBlocks(); + if (NumBlocks != 1 && !canVectorizeWithIfConvert()) { + LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Check if we can vectorize the instructions and CFG in this loop. + if (!canVectorizeInstrs()) { + LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Go over each instruction and look at memory deps. + if (!canVectorizeMemory()) { + LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n"); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop" + << (LAI->getRuntimePointerChecking()->Need + ? " (with a runtime bound check)" + : "") + << "!\n"); + + unsigned SCEVThreshold = VectorizeSCEVCheckThreshold; + if (Hints->getForce() == LoopVectorizeHints::FK_Enabled) + SCEVThreshold = PragmaVectorizeSCEVCheckThreshold; + + if (PSE.getPredicate().getComplexity() > SCEVThreshold) { + reportVectorizationFailure("Too many SCEV checks needed", + "Too many SCEV assumptions need to be made and checked at runtime", + "TooManySCEVRunTimeChecks", ORE, TheLoop); + if (DoExtraAnalysis) + Result = false; + else + return false; + } + + // Okay! We've done all the tests. If any have failed, return false. Otherwise + // we can vectorize, and at this point we don't have any other mem analysis + // which may limit our maximum vectorization factor, so just return true with + // no restrictions. + return Result; +} + +bool LoopVectorizationLegality::prepareToFoldTailByMasking() { + + LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n"); + + SmallPtrSet<const Value *, 8> ReductionLiveOuts; + + for (const auto &Reduction : getReductionVars()) + ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr()); + + // TODO: handle non-reduction outside users when tail is folded by masking. + for (auto *AE : AllowedExit) { + // Check that all users of allowed exit values are inside the loop or + // are the live-out of a reduction. + if (ReductionLiveOuts.count(AE)) + continue; + for (User *U : AE->users()) { + Instruction *UI = cast<Instruction>(U); + if (TheLoop->contains(UI)) + continue; + LLVM_DEBUG( + dbgs() + << "LV: Cannot fold tail by masking, loop has an outside user for " + << *UI << "\n"); + return false; + } + } + + // The list of pointers that we can safely read and write to remains empty. + SmallPtrSet<Value *, 8> SafePointers; + + SmallPtrSet<const Instruction *, 8> TmpMaskedOp; + SmallPtrSet<Instruction *, 8> TmpConditionalAssumes; + + // Check and mark all blocks for predication, including those that ordinarily + // do not need predication such as the header block. + for (BasicBlock *BB : TheLoop->blocks()) { + if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp, + TmpConditionalAssumes)) { + LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n"); + return false; + } + } + + LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n"); + + MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end()); + ConditionalAssumes.insert(TmpConditionalAssumes.begin(), + TmpConditionalAssumes.end()); + + return true; +} + +} // namespace llvm |