aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
diff options
context:
space:
mode:
authorvvvv <vvvv@ydb.tech>2024-02-06 20:01:22 +0300
committerAlexander Smirnov <alex@ydb.tech>2024-02-09 19:18:27 +0300
commitee2b7fbda052aa09b6fdb83b8c6f0305fef3e193 (patch)
tree102765416c3866bde98a82facc7752d329ee0226 /contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
parent7494ca32d3a5aca00b7ac527b5f127989335102c (diff)
downloadydb-ee2b7fbda052aa09b6fdb83b8c6f0305fef3e193.tar.gz
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp')
-rw-r--r--contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp1435
1 files changed, 1435 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
new file mode 100644
index 00000000000..cd48c0d57eb
--- /dev/null
+++ b/contrib/libs/llvm16/lib/Transforms/Vectorize/LoopVectorizationLegality.cpp
@@ -0,0 +1,1435 @@
+//===- LoopVectorizationLegality.cpp --------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file provides loop vectorization legality analysis. Original code
+// resided in LoopVectorize.cpp for a long time.
+//
+// At this point, it is implemented as a utility class, not as an analysis
+// pass. It should be easy to create an analysis pass around it if there
+// is a need (but D45420 needs to happen first).
+//
+
+#include "llvm/Transforms/Vectorize/LoopVectorizationLegality.h"
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/Analysis/VectorUtils.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/Transforms/Utils/SizeOpts.h"
+#include "llvm/Transforms/Vectorize/LoopVectorize.h"
+
+using namespace llvm;
+using namespace PatternMatch;
+
+#define LV_NAME "loop-vectorize"
+#define DEBUG_TYPE LV_NAME
+
+static cl::opt<bool>
+ EnableIfConversion("enable-if-conversion", cl::init(true), cl::Hidden,
+ cl::desc("Enable if-conversion during vectorization."));
+
+namespace llvm {
+cl::opt<bool>
+ HintsAllowReordering("hints-allow-reordering", cl::init(true), cl::Hidden,
+ cl::desc("Allow enabling loop hints to reorder "
+ "FP operations during vectorization."));
+}
+
+// TODO: Move size-based thresholds out of legality checking, make cost based
+// decisions instead of hard thresholds.
+static cl::opt<unsigned> VectorizeSCEVCheckThreshold(
+ "vectorize-scev-check-threshold", cl::init(16), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed."));
+
+static cl::opt<unsigned> PragmaVectorizeSCEVCheckThreshold(
+ "pragma-vectorize-scev-check-threshold", cl::init(128), cl::Hidden,
+ cl::desc("The maximum number of SCEV checks allowed with a "
+ "vectorize(enable) pragma"));
+
+static cl::opt<LoopVectorizeHints::ScalableForceKind>
+ ForceScalableVectorization(
+ "scalable-vectorization", cl::init(LoopVectorizeHints::SK_Unspecified),
+ cl::Hidden,
+ cl::desc("Control whether the compiler can use scalable vectors to "
+ "vectorize a loop"),
+ cl::values(
+ clEnumValN(LoopVectorizeHints::SK_FixedWidthOnly, "off",
+ "Scalable vectorization is disabled."),
+ clEnumValN(
+ LoopVectorizeHints::SK_PreferScalable, "preferred",
+ "Scalable vectorization is available and favored when the "
+ "cost is inconclusive."),
+ clEnumValN(
+ LoopVectorizeHints::SK_PreferScalable, "on",
+ "Scalable vectorization is available and favored when the "
+ "cost is inconclusive.")));
+
+/// Maximum vectorization interleave count.
+static const unsigned MaxInterleaveFactor = 16;
+
+namespace llvm {
+
+bool LoopVectorizeHints::Hint::validate(unsigned Val) {
+ switch (Kind) {
+ case HK_WIDTH:
+ return isPowerOf2_32(Val) && Val <= VectorizerParams::MaxVectorWidth;
+ case HK_INTERLEAVE:
+ return isPowerOf2_32(Val) && Val <= MaxInterleaveFactor;
+ case HK_FORCE:
+ return (Val <= 1);
+ case HK_ISVECTORIZED:
+ case HK_PREDICATE:
+ case HK_SCALABLE:
+ return (Val == 0 || Val == 1);
+ }
+ return false;
+}
+
+LoopVectorizeHints::LoopVectorizeHints(const Loop *L,
+ bool InterleaveOnlyWhenForced,
+ OptimizationRemarkEmitter &ORE,
+ const TargetTransformInfo *TTI)
+ : Width("vectorize.width", VectorizerParams::VectorizationFactor, HK_WIDTH),
+ Interleave("interleave.count", InterleaveOnlyWhenForced, HK_INTERLEAVE),
+ Force("vectorize.enable", FK_Undefined, HK_FORCE),
+ IsVectorized("isvectorized", 0, HK_ISVECTORIZED),
+ Predicate("vectorize.predicate.enable", FK_Undefined, HK_PREDICATE),
+ Scalable("vectorize.scalable.enable", SK_Unspecified, HK_SCALABLE),
+ TheLoop(L), ORE(ORE) {
+ // Populate values with existing loop metadata.
+ getHintsFromMetadata();
+
+ // force-vector-interleave overrides DisableInterleaving.
+ if (VectorizerParams::isInterleaveForced())
+ Interleave.Value = VectorizerParams::VectorizationInterleave;
+
+ // If the metadata doesn't explicitly specify whether to enable scalable
+ // vectorization, then decide based on the following criteria (increasing
+ // level of priority):
+ // - Target default
+ // - Metadata width
+ // - Force option (always overrides)
+ if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified) {
+ if (TTI)
+ Scalable.Value = TTI->enableScalableVectorization() ? SK_PreferScalable
+ : SK_FixedWidthOnly;
+
+ if (Width.Value)
+ // If the width is set, but the metadata says nothing about the scalable
+ // property, then assume it concerns only a fixed-width UserVF.
+ // If width is not set, the flag takes precedence.
+ Scalable.Value = SK_FixedWidthOnly;
+ }
+
+ // If the flag is set to force any use of scalable vectors, override the loop
+ // hints.
+ if (ForceScalableVectorization.getValue() !=
+ LoopVectorizeHints::SK_Unspecified)
+ Scalable.Value = ForceScalableVectorization.getValue();
+
+ // Scalable vectorization is disabled if no preference is specified.
+ if ((LoopVectorizeHints::ScalableForceKind)Scalable.Value == SK_Unspecified)
+ Scalable.Value = SK_FixedWidthOnly;
+
+ if (IsVectorized.Value != 1)
+ // If the vectorization width and interleaving count are both 1 then
+ // consider the loop to have been already vectorized because there's
+ // nothing more that we can do.
+ IsVectorized.Value =
+ getWidth() == ElementCount::getFixed(1) && getInterleave() == 1;
+ LLVM_DEBUG(if (InterleaveOnlyWhenForced && getInterleave() == 1) dbgs()
+ << "LV: Interleaving disabled by the pass manager\n");
+}
+
+void LoopVectorizeHints::setAlreadyVectorized() {
+ LLVMContext &Context = TheLoop->getHeader()->getContext();
+
+ MDNode *IsVectorizedMD = MDNode::get(
+ Context,
+ {MDString::get(Context, "llvm.loop.isvectorized"),
+ ConstantAsMetadata::get(ConstantInt::get(Context, APInt(32, 1)))});
+ MDNode *LoopID = TheLoop->getLoopID();
+ MDNode *NewLoopID =
+ makePostTransformationMetadata(Context, LoopID,
+ {Twine(Prefix(), "vectorize.").str(),
+ Twine(Prefix(), "interleave.").str()},
+ {IsVectorizedMD});
+ TheLoop->setLoopID(NewLoopID);
+
+ // Update internal cache.
+ IsVectorized.Value = 1;
+}
+
+bool LoopVectorizeHints::allowVectorization(
+ Function *F, Loop *L, bool VectorizeOnlyWhenForced) const {
+ if (getForce() == LoopVectorizeHints::FK_Disabled) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: #pragma vectorize disable.\n");
+ emitRemarkWithHints();
+ return false;
+ }
+
+ if (VectorizeOnlyWhenForced && getForce() != LoopVectorizeHints::FK_Enabled) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: No #pragma vectorize enable.\n");
+ emitRemarkWithHints();
+ return false;
+ }
+
+ if (getIsVectorized() == 1) {
+ LLVM_DEBUG(dbgs() << "LV: Not vectorizing: Disabled/already vectorized.\n");
+ // FIXME: Add interleave.disable metadata. This will allow
+ // vectorize.disable to be used without disabling the pass and errors
+ // to differentiate between disabled vectorization and a width of 1.
+ ORE.emit([&]() {
+ return OptimizationRemarkAnalysis(vectorizeAnalysisPassName(),
+ "AllDisabled", L->getStartLoc(),
+ L->getHeader())
+ << "loop not vectorized: vectorization and interleaving are "
+ "explicitly disabled, or the loop has already been "
+ "vectorized";
+ });
+ return false;
+ }
+
+ return true;
+}
+
+void LoopVectorizeHints::emitRemarkWithHints() const {
+ using namespace ore;
+
+ ORE.emit([&]() {
+ if (Force.Value == LoopVectorizeHints::FK_Disabled)
+ return OptimizationRemarkMissed(LV_NAME, "MissedExplicitlyDisabled",
+ TheLoop->getStartLoc(),
+ TheLoop->getHeader())
+ << "loop not vectorized: vectorization is explicitly disabled";
+ else {
+ OptimizationRemarkMissed R(LV_NAME, "MissedDetails",
+ TheLoop->getStartLoc(), TheLoop->getHeader());
+ R << "loop not vectorized";
+ if (Force.Value == LoopVectorizeHints::FK_Enabled) {
+ R << " (Force=" << NV("Force", true);
+ if (Width.Value != 0)
+ R << ", Vector Width=" << NV("VectorWidth", getWidth());
+ if (getInterleave() != 0)
+ R << ", Interleave Count=" << NV("InterleaveCount", getInterleave());
+ R << ")";
+ }
+ return R;
+ }
+ });
+}
+
+const char *LoopVectorizeHints::vectorizeAnalysisPassName() const {
+ if (getWidth() == ElementCount::getFixed(1))
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Disabled)
+ return LV_NAME;
+ if (getForce() == LoopVectorizeHints::FK_Undefined && getWidth().isZero())
+ return LV_NAME;
+ return OptimizationRemarkAnalysis::AlwaysPrint;
+}
+
+bool LoopVectorizeHints::allowReordering() const {
+ // Allow the vectorizer to change the order of operations if enabling
+ // loop hints are provided
+ ElementCount EC = getWidth();
+ return HintsAllowReordering &&
+ (getForce() == LoopVectorizeHints::FK_Enabled ||
+ EC.getKnownMinValue() > 1);
+}
+
+void LoopVectorizeHints::getHintsFromMetadata() {
+ MDNode *LoopID = TheLoop->getLoopID();
+ if (!LoopID)
+ return;
+
+ // First operand should refer to the loop id itself.
+ assert(LoopID->getNumOperands() > 0 && "requires at least one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop id");
+
+ for (unsigned i = 1, ie = LoopID->getNumOperands(); i < ie; ++i) {
+ const MDString *S = nullptr;
+ SmallVector<Metadata *, 4> Args;
+
+ // The expected hint is either a MDString or a MDNode with the first
+ // operand a MDString.
+ if (const MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i))) {
+ if (!MD || MD->getNumOperands() == 0)
+ continue;
+ S = dyn_cast<MDString>(MD->getOperand(0));
+ for (unsigned i = 1, ie = MD->getNumOperands(); i < ie; ++i)
+ Args.push_back(MD->getOperand(i));
+ } else {
+ S = dyn_cast<MDString>(LoopID->getOperand(i));
+ assert(Args.size() == 0 && "too many arguments for MDString");
+ }
+
+ if (!S)
+ continue;
+
+ // Check if the hint starts with the loop metadata prefix.
+ StringRef Name = S->getString();
+ if (Args.size() == 1)
+ setHint(Name, Args[0]);
+ }
+}
+
+void LoopVectorizeHints::setHint(StringRef Name, Metadata *Arg) {
+ if (!Name.startswith(Prefix()))
+ return;
+ Name = Name.substr(Prefix().size(), StringRef::npos);
+
+ const ConstantInt *C = mdconst::dyn_extract<ConstantInt>(Arg);
+ if (!C)
+ return;
+ unsigned Val = C->getZExtValue();
+
+ Hint *Hints[] = {&Width, &Interleave, &Force,
+ &IsVectorized, &Predicate, &Scalable};
+ for (auto *H : Hints) {
+ if (Name == H->Name) {
+ if (H->validate(Val))
+ H->Value = Val;
+ else
+ LLVM_DEBUG(dbgs() << "LV: ignoring invalid hint '" << Name << "'\n");
+ break;
+ }
+ }
+}
+
+// Return true if the inner loop \p Lp is uniform with regard to the outer loop
+// \p OuterLp (i.e., if the outer loop is vectorized, all the vector lanes
+// executing the inner loop will execute the same iterations). This check is
+// very constrained for now but it will be relaxed in the future. \p Lp is
+// considered uniform if it meets all the following conditions:
+// 1) it has a canonical IV (starting from 0 and with stride 1),
+// 2) its latch terminator is a conditional branch and,
+// 3) its latch condition is a compare instruction whose operands are the
+// canonical IV and an OuterLp invariant.
+// This check doesn't take into account the uniformity of other conditions not
+// related to the loop latch because they don't affect the loop uniformity.
+//
+// NOTE: We decided to keep all these checks and its associated documentation
+// together so that we can easily have a picture of the current supported loop
+// nests. However, some of the current checks don't depend on \p OuterLp and
+// would be redundantly executed for each \p Lp if we invoked this function for
+// different candidate outer loops. This is not the case for now because we
+// don't currently have the infrastructure to evaluate multiple candidate outer
+// loops and \p OuterLp will be a fixed parameter while we only support explicit
+// outer loop vectorization. It's also very likely that these checks go away
+// before introducing the aforementioned infrastructure. However, if this is not
+// the case, we should move the \p OuterLp independent checks to a separate
+// function that is only executed once for each \p Lp.
+static bool isUniformLoop(Loop *Lp, Loop *OuterLp) {
+ assert(Lp->getLoopLatch() && "Expected loop with a single latch.");
+
+ // If Lp is the outer loop, it's uniform by definition.
+ if (Lp == OuterLp)
+ return true;
+ assert(OuterLp->contains(Lp) && "OuterLp must contain Lp.");
+
+ // 1.
+ PHINode *IV = Lp->getCanonicalInductionVariable();
+ if (!IV) {
+ LLVM_DEBUG(dbgs() << "LV: Canonical IV not found.\n");
+ return false;
+ }
+
+ // 2.
+ BasicBlock *Latch = Lp->getLoopLatch();
+ auto *LatchBr = dyn_cast<BranchInst>(Latch->getTerminator());
+ if (!LatchBr || LatchBr->isUnconditional()) {
+ LLVM_DEBUG(dbgs() << "LV: Unsupported loop latch branch.\n");
+ return false;
+ }
+
+ // 3.
+ auto *LatchCmp = dyn_cast<CmpInst>(LatchBr->getCondition());
+ if (!LatchCmp) {
+ LLVM_DEBUG(
+ dbgs() << "LV: Loop latch condition is not a compare instruction.\n");
+ return false;
+ }
+
+ Value *CondOp0 = LatchCmp->getOperand(0);
+ Value *CondOp1 = LatchCmp->getOperand(1);
+ Value *IVUpdate = IV->getIncomingValueForBlock(Latch);
+ if (!(CondOp0 == IVUpdate && OuterLp->isLoopInvariant(CondOp1)) &&
+ !(CondOp1 == IVUpdate && OuterLp->isLoopInvariant(CondOp0))) {
+ LLVM_DEBUG(dbgs() << "LV: Loop latch condition is not uniform.\n");
+ return false;
+ }
+
+ return true;
+}
+
+// Return true if \p Lp and all its nested loops are uniform with regard to \p
+// OuterLp.
+static bool isUniformLoopNest(Loop *Lp, Loop *OuterLp) {
+ if (!isUniformLoop(Lp, OuterLp))
+ return false;
+
+ // Check if nested loops are uniform.
+ for (Loop *SubLp : *Lp)
+ if (!isUniformLoopNest(SubLp, OuterLp))
+ return false;
+
+ return true;
+}
+
+static Type *convertPointerToIntegerType(const DataLayout &DL, Type *Ty) {
+ if (Ty->isPointerTy())
+ return DL.getIntPtrType(Ty);
+
+ // It is possible that char's or short's overflow when we ask for the loop's
+ // trip count, work around this by changing the type size.
+ if (Ty->getScalarSizeInBits() < 32)
+ return Type::getInt32Ty(Ty->getContext());
+
+ return Ty;
+}
+
+static Type *getWiderType(const DataLayout &DL, Type *Ty0, Type *Ty1) {
+ Ty0 = convertPointerToIntegerType(DL, Ty0);
+ Ty1 = convertPointerToIntegerType(DL, Ty1);
+ if (Ty0->getScalarSizeInBits() > Ty1->getScalarSizeInBits())
+ return Ty0;
+ return Ty1;
+}
+
+/// Check that the instruction has outside loop users and is not an
+/// identified reduction variable.
+static bool hasOutsideLoopUser(const Loop *TheLoop, Instruction *Inst,
+ SmallPtrSetImpl<Value *> &AllowedExit) {
+ // Reductions, Inductions and non-header phis are allowed to have exit users. All
+ // other instructions must not have external users.
+ if (!AllowedExit.count(Inst))
+ // Check that all of the users of the loop are inside the BB.
+ for (User *U : Inst->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ // This user may be a reduction exit value.
+ if (!TheLoop->contains(UI)) {
+ LLVM_DEBUG(dbgs() << "LV: Found an outside user for : " << *UI << '\n');
+ return true;
+ }
+ }
+ return false;
+}
+
+/// Returns true if A and B have same pointer operands or same SCEVs addresses
+static bool storeToSameAddress(ScalarEvolution *SE, StoreInst *A,
+ StoreInst *B) {
+ // Compare store
+ if (A == B)
+ return true;
+
+ // Otherwise Compare pointers
+ Value *APtr = A->getPointerOperand();
+ Value *BPtr = B->getPointerOperand();
+ if (APtr == BPtr)
+ return true;
+
+ // Otherwise compare address SCEVs
+ if (SE->getSCEV(APtr) == SE->getSCEV(BPtr))
+ return true;
+
+ return false;
+}
+
+int LoopVectorizationLegality::isConsecutivePtr(Type *AccessTy,
+ Value *Ptr) const {
+ const ValueToValueMap &Strides =
+ getSymbolicStrides() ? *getSymbolicStrides() : ValueToValueMap();
+
+ Function *F = TheLoop->getHeader()->getParent();
+ bool OptForSize = F->hasOptSize() ||
+ llvm::shouldOptimizeForSize(TheLoop->getHeader(), PSI, BFI,
+ PGSOQueryType::IRPass);
+ bool CanAddPredicate = !OptForSize;
+ int Stride = getPtrStride(PSE, AccessTy, Ptr, TheLoop, Strides,
+ CanAddPredicate, false).value_or(0);
+ if (Stride == 1 || Stride == -1)
+ return Stride;
+ return 0;
+}
+
+bool LoopVectorizationLegality::isUniform(Value *V) const {
+ return LAI->isUniform(V);
+}
+
+bool LoopVectorizationLegality::isUniformMemOp(Instruction &I) const {
+ Value *Ptr = getLoadStorePointerOperand(&I);
+ if (!Ptr)
+ return false;
+ // Note: There's nothing inherent which prevents predicated loads and
+ // stores from being uniform. The current lowering simply doesn't handle
+ // it; in particular, the cost model distinguishes scatter/gather from
+ // scalar w/predication, and we currently rely on the scalar path.
+ return isUniform(Ptr) && !blockNeedsPredication(I.getParent());
+}
+
+bool LoopVectorizationLegality::canVectorizeOuterLoop() {
+ assert(!TheLoop->isInnermost() && "We are not vectorizing an outer loop.");
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // Check whether the BB terminator is a BranchInst. Any other terminator is
+ // not supported yet.
+ auto *Br = dyn_cast<BranchInst>(BB->getTerminator());
+ if (!Br) {
+ reportVectorizationFailure("Unsupported basic block terminator",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Check whether the BranchInst is a supported one. Only unconditional
+ // branches, conditional branches with an outer loop invariant condition or
+ // backedges are supported.
+ // FIXME: We skip these checks when VPlan predication is enabled as we
+ // want to allow divergent branches. This whole check will be removed
+ // once VPlan predication is on by default.
+ if (Br && Br->isConditional() &&
+ !TheLoop->isLoopInvariant(Br->getCondition()) &&
+ !LI->isLoopHeader(Br->getSuccessor(0)) &&
+ !LI->isLoopHeader(Br->getSuccessor(1))) {
+ reportVectorizationFailure("Unsupported conditional branch",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+ }
+
+ // Check whether inner loops are uniform. At this point, we only support
+ // simple outer loops scenarios with uniform nested loops.
+ if (!isUniformLoopNest(TheLoop /*loop nest*/,
+ TheLoop /*context outer loop*/)) {
+ reportVectorizationFailure("Outer loop contains divergent loops",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Check whether we are able to set up outer loop induction.
+ if (!setupOuterLoopInductions()) {
+ reportVectorizationFailure("Unsupported outer loop Phi(s)",
+ "Unsupported outer loop Phi(s)",
+ "UnsupportedPhi", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+void LoopVectorizationLegality::addInductionPhi(
+ PHINode *Phi, const InductionDescriptor &ID,
+ SmallPtrSetImpl<Value *> &AllowedExit) {
+ Inductions[Phi] = ID;
+
+ // In case this induction also comes with casts that we know we can ignore
+ // in the vectorized loop body, record them here. All casts could be recorded
+ // here for ignoring, but suffices to record only the first (as it is the
+ // only one that may bw used outside the cast sequence).
+ const SmallVectorImpl<Instruction *> &Casts = ID.getCastInsts();
+ if (!Casts.empty())
+ InductionCastsToIgnore.insert(*Casts.begin());
+
+ Type *PhiTy = Phi->getType();
+ const DataLayout &DL = Phi->getModule()->getDataLayout();
+
+ // Get the widest type.
+ if (!PhiTy->isFloatingPointTy()) {
+ if (!WidestIndTy)
+ WidestIndTy = convertPointerToIntegerType(DL, PhiTy);
+ else
+ WidestIndTy = getWiderType(DL, PhiTy, WidestIndTy);
+ }
+
+ // Int inductions are special because we only allow one IV.
+ if (ID.getKind() == InductionDescriptor::IK_IntInduction &&
+ ID.getConstIntStepValue() && ID.getConstIntStepValue()->isOne() &&
+ isa<Constant>(ID.getStartValue()) &&
+ cast<Constant>(ID.getStartValue())->isNullValue()) {
+
+ // Use the phi node with the widest type as induction. Use the last
+ // one if there are multiple (no good reason for doing this other
+ // than it is expedient). We've checked that it begins at zero and
+ // steps by one, so this is a canonical induction variable.
+ if (!PrimaryInduction || PhiTy == WidestIndTy)
+ PrimaryInduction = Phi;
+ }
+
+ // Both the PHI node itself, and the "post-increment" value feeding
+ // back into the PHI node may have external users.
+ // We can allow those uses, except if the SCEVs we have for them rely
+ // on predicates that only hold within the loop, since allowing the exit
+ // currently means re-using this SCEV outside the loop (see PR33706 for more
+ // details).
+ if (PSE.getPredicate().isAlwaysTrue()) {
+ AllowedExit.insert(Phi);
+ AllowedExit.insert(Phi->getIncomingValueForBlock(TheLoop->getLoopLatch()));
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: Found an induction variable.\n");
+}
+
+bool LoopVectorizationLegality::setupOuterLoopInductions() {
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // Returns true if a given Phi is a supported induction.
+ auto isSupportedPhi = [&](PHINode &Phi) -> bool {
+ InductionDescriptor ID;
+ if (InductionDescriptor::isInductionPHI(&Phi, TheLoop, PSE, ID) &&
+ ID.getKind() == InductionDescriptor::IK_IntInduction) {
+ addInductionPhi(&Phi, ID, AllowedExit);
+ return true;
+ } else {
+ // Bail out for any Phi in the outer loop header that is not a supported
+ // induction.
+ LLVM_DEBUG(
+ dbgs()
+ << "LV: Found unsupported PHI for outer loop vectorization.\n");
+ return false;
+ }
+ };
+
+ if (llvm::all_of(Header->phis(), isSupportedPhi))
+ return true;
+ else
+ return false;
+}
+
+/// Checks if a function is scalarizable according to the TLI, in
+/// the sense that it should be vectorized and then expanded in
+/// multiple scalar calls. This is represented in the
+/// TLI via mappings that do not specify a vector name, as in the
+/// following example:
+///
+/// const VecDesc VecIntrinsics[] = {
+/// {"llvm.phx.abs.i32", "", 4}
+/// };
+static bool isTLIScalarize(const TargetLibraryInfo &TLI, const CallInst &CI) {
+ const StringRef ScalarName = CI.getCalledFunction()->getName();
+ bool Scalarize = TLI.isFunctionVectorizable(ScalarName);
+ // Check that all known VFs are not associated to a vector
+ // function, i.e. the vector name is emty.
+ if (Scalarize) {
+ ElementCount WidestFixedVF, WidestScalableVF;
+ TLI.getWidestVF(ScalarName, WidestFixedVF, WidestScalableVF);
+ for (ElementCount VF = ElementCount::getFixed(2);
+ ElementCount::isKnownLE(VF, WidestFixedVF); VF *= 2)
+ Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
+ for (ElementCount VF = ElementCount::getScalable(1);
+ ElementCount::isKnownLE(VF, WidestScalableVF); VF *= 2)
+ Scalarize &= !TLI.isFunctionVectorizable(ScalarName, VF);
+ assert((WidestScalableVF.isZero() || !Scalarize) &&
+ "Caller may decide to scalarize a variant using a scalable VF");
+ }
+ return Scalarize;
+}
+
+bool LoopVectorizationLegality::canVectorizeInstrs() {
+ BasicBlock *Header = TheLoop->getHeader();
+
+ // For each block in the loop.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // Scan the instructions in the block and look for hazards.
+ for (Instruction &I : *BB) {
+ if (auto *Phi = dyn_cast<PHINode>(&I)) {
+ Type *PhiTy = Phi->getType();
+ // Check that this PHI type is allowed.
+ if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
+ !PhiTy->isPointerTy()) {
+ reportVectorizationFailure("Found a non-int non-pointer PHI",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ return false;
+ }
+
+ // If this PHINode is not in the header block, then we know that we
+ // can convert it to select during if-conversion. No need to check if
+ // the PHIs in this block are induction or reduction variables.
+ if (BB != Header) {
+ // Non-header phi nodes that have outside uses can be vectorized. Add
+ // them to the list of allowed exits.
+ // Unsafe cyclic dependencies with header phis are identified during
+ // legalization for reduction, induction and fixed order
+ // recurrences.
+ AllowedExit.insert(&I);
+ continue;
+ }
+
+ // We only allow if-converted PHIs with exactly two incoming values.
+ if (Phi->getNumIncomingValues() != 2) {
+ reportVectorizationFailure("Found an invalid PHI",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop, Phi);
+ return false;
+ }
+
+ RecurrenceDescriptor RedDes;
+ if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop, RedDes, DB, AC,
+ DT, PSE.getSE())) {
+ Requirements->addExactFPMathInst(RedDes.getExactFPMathInst());
+ AllowedExit.insert(RedDes.getLoopExitInstr());
+ Reductions[Phi] = RedDes;
+ continue;
+ }
+
+ // TODO: Instead of recording the AllowedExit, it would be good to
+ // record the complementary set: NotAllowedExit. These include (but may
+ // not be limited to):
+ // 1. Reduction phis as they represent the one-before-last value, which
+ // is not available when vectorized
+ // 2. Induction phis and increment when SCEV predicates cannot be used
+ // outside the loop - see addInductionPhi
+ // 3. Non-Phis with outside uses when SCEV predicates cannot be used
+ // outside the loop - see call to hasOutsideLoopUser in the non-phi
+ // handling below
+ // 4. FixedOrderRecurrence phis that can possibly be handled by
+ // extraction.
+ // By recording these, we can then reason about ways to vectorize each
+ // of these NotAllowedExit.
+ InductionDescriptor ID;
+ if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID)) {
+ addInductionPhi(Phi, ID, AllowedExit);
+ Requirements->addExactFPMathInst(ID.getExactFPMathInst());
+ continue;
+ }
+
+ if (RecurrenceDescriptor::isFixedOrderRecurrence(Phi, TheLoop,
+ SinkAfter, DT)) {
+ AllowedExit.insert(Phi);
+ FixedOrderRecurrences.insert(Phi);
+ continue;
+ }
+
+ // As a last resort, coerce the PHI to a AddRec expression
+ // and re-try classifying it a an induction PHI.
+ if (InductionDescriptor::isInductionPHI(Phi, TheLoop, PSE, ID, true)) {
+ addInductionPhi(Phi, ID, AllowedExit);
+ continue;
+ }
+
+ reportVectorizationFailure("Found an unidentified PHI",
+ "value that could not be identified as "
+ "reduction is used outside the loop",
+ "NonReductionValueUsedOutsideLoop", ORE, TheLoop, Phi);
+ return false;
+ } // end of PHI handling
+
+ // We handle calls that:
+ // * Are debug info intrinsics.
+ // * Have a mapping to an IR intrinsic.
+ // * Have a vector version available.
+ auto *CI = dyn_cast<CallInst>(&I);
+
+ if (CI && !getVectorIntrinsicIDForCall(CI, TLI) &&
+ !isa<DbgInfoIntrinsic>(CI) &&
+ !(CI->getCalledFunction() && TLI &&
+ (!VFDatabase::getMappings(*CI).empty() ||
+ isTLIScalarize(*TLI, *CI)))) {
+ // If the call is a recognized math libary call, it is likely that
+ // we can vectorize it given loosened floating-point constraints.
+ LibFunc Func;
+ bool IsMathLibCall =
+ TLI && CI->getCalledFunction() &&
+ CI->getType()->isFloatingPointTy() &&
+ TLI->getLibFunc(CI->getCalledFunction()->getName(), Func) &&
+ TLI->hasOptimizedCodeGen(Func);
+
+ if (IsMathLibCall) {
+ // TODO: Ideally, we should not use clang-specific language here,
+ // but it's hard to provide meaningful yet generic advice.
+ // Also, should this be guarded by allowExtraAnalysis() and/or be part
+ // of the returned info from isFunctionVectorizable()?
+ reportVectorizationFailure(
+ "Found a non-intrinsic callsite",
+ "library call cannot be vectorized. "
+ "Try compiling with -fno-math-errno, -ffast-math, "
+ "or similar flags",
+ "CantVectorizeLibcall", ORE, TheLoop, CI);
+ } else {
+ reportVectorizationFailure("Found a non-intrinsic callsite",
+ "call instruction cannot be vectorized",
+ "CantVectorizeLibcall", ORE, TheLoop, CI);
+ }
+ return false;
+ }
+
+ // Some intrinsics have scalar arguments and should be same in order for
+ // them to be vectorized (i.e. loop invariant).
+ if (CI) {
+ auto *SE = PSE.getSE();
+ Intrinsic::ID IntrinID = getVectorIntrinsicIDForCall(CI, TLI);
+ for (unsigned i = 0, e = CI->arg_size(); i != e; ++i)
+ if (isVectorIntrinsicWithScalarOpAtArg(IntrinID, i)) {
+ if (!SE->isLoopInvariant(PSE.getSCEV(CI->getOperand(i)), TheLoop)) {
+ reportVectorizationFailure("Found unvectorizable intrinsic",
+ "intrinsic instruction cannot be vectorized",
+ "CantVectorizeIntrinsic", ORE, TheLoop, CI);
+ return false;
+ }
+ }
+ }
+
+ // Check that the instruction return type is vectorizable.
+ // Also, we can't vectorize extractelement instructions.
+ if ((!VectorType::isValidElementType(I.getType()) &&
+ !I.getType()->isVoidTy()) ||
+ isa<ExtractElementInst>(I)) {
+ reportVectorizationFailure("Found unvectorizable type",
+ "instruction return type cannot be vectorized",
+ "CantVectorizeInstructionReturnType", ORE, TheLoop, &I);
+ return false;
+ }
+
+ // Check that the stored type is vectorizable.
+ if (auto *ST = dyn_cast<StoreInst>(&I)) {
+ Type *T = ST->getValueOperand()->getType();
+ if (!VectorType::isValidElementType(T)) {
+ reportVectorizationFailure("Store instruction cannot be vectorized",
+ "store instruction cannot be vectorized",
+ "CantVectorizeStore", ORE, TheLoop, ST);
+ return false;
+ }
+
+ // For nontemporal stores, check that a nontemporal vector version is
+ // supported on the target.
+ if (ST->getMetadata(LLVMContext::MD_nontemporal)) {
+ // Arbitrarily try a vector of 2 elements.
+ auto *VecTy = FixedVectorType::get(T, /*NumElts=*/2);
+ assert(VecTy && "did not find vectorized version of stored type");
+ if (!TTI->isLegalNTStore(VecTy, ST->getAlign())) {
+ reportVectorizationFailure(
+ "nontemporal store instruction cannot be vectorized",
+ "nontemporal store instruction cannot be vectorized",
+ "CantVectorizeNontemporalStore", ORE, TheLoop, ST);
+ return false;
+ }
+ }
+
+ } else if (auto *LD = dyn_cast<LoadInst>(&I)) {
+ if (LD->getMetadata(LLVMContext::MD_nontemporal)) {
+ // For nontemporal loads, check that a nontemporal vector version is
+ // supported on the target (arbitrarily try a vector of 2 elements).
+ auto *VecTy = FixedVectorType::get(I.getType(), /*NumElts=*/2);
+ assert(VecTy && "did not find vectorized version of load type");
+ if (!TTI->isLegalNTLoad(VecTy, LD->getAlign())) {
+ reportVectorizationFailure(
+ "nontemporal load instruction cannot be vectorized",
+ "nontemporal load instruction cannot be vectorized",
+ "CantVectorizeNontemporalLoad", ORE, TheLoop, LD);
+ return false;
+ }
+ }
+
+ // FP instructions can allow unsafe algebra, thus vectorizable by
+ // non-IEEE-754 compliant SIMD units.
+ // This applies to floating-point math operations and calls, not memory
+ // operations, shuffles, or casts, as they don't change precision or
+ // semantics.
+ } else if (I.getType()->isFloatingPointTy() && (CI || I.isBinaryOp()) &&
+ !I.isFast()) {
+ LLVM_DEBUG(dbgs() << "LV: Found FP op with unsafe algebra.\n");
+ Hints->setPotentiallyUnsafe();
+ }
+
+ // Reduction instructions are allowed to have exit users.
+ // All other instructions must not have external users.
+ if (hasOutsideLoopUser(TheLoop, &I, AllowedExit)) {
+ // We can safely vectorize loops where instructions within the loop are
+ // used outside the loop only if the SCEV predicates within the loop is
+ // same as outside the loop. Allowing the exit means reusing the SCEV
+ // outside the loop.
+ if (PSE.getPredicate().isAlwaysTrue()) {
+ AllowedExit.insert(&I);
+ continue;
+ }
+ reportVectorizationFailure("Value cannot be used outside the loop",
+ "value cannot be used outside the loop",
+ "ValueUsedOutsideLoop", ORE, TheLoop, &I);
+ return false;
+ }
+ } // next instr.
+ }
+
+ if (!PrimaryInduction) {
+ if (Inductions.empty()) {
+ reportVectorizationFailure("Did not find one integer induction var",
+ "loop induction variable could not be identified",
+ "NoInductionVariable", ORE, TheLoop);
+ return false;
+ } else if (!WidestIndTy) {
+ reportVectorizationFailure("Did not find one integer induction var",
+ "integer loop induction variable could not be identified",
+ "NoIntegerInductionVariable", ORE, TheLoop);
+ return false;
+ } else {
+ LLVM_DEBUG(dbgs() << "LV: Did not find one integer induction var.\n");
+ }
+ }
+
+ // For fixed order recurrences, we use the previous value (incoming value from
+ // the latch) to check if it dominates all users of the recurrence. Bail out
+ // if we have to sink such an instruction for another recurrence, as the
+ // dominance requirement may not hold after sinking.
+ BasicBlock *LoopLatch = TheLoop->getLoopLatch();
+ if (any_of(FixedOrderRecurrences, [LoopLatch, this](const PHINode *Phi) {
+ Instruction *V =
+ cast<Instruction>(Phi->getIncomingValueForBlock(LoopLatch));
+ return SinkAfter.find(V) != SinkAfter.end();
+ }))
+ return false;
+
+ // Now we know the widest induction type, check if our found induction
+ // is the same size. If it's not, unset it here and InnerLoopVectorizer
+ // will create another.
+ if (PrimaryInduction && WidestIndTy != PrimaryInduction->getType())
+ PrimaryInduction = nullptr;
+
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeMemory() {
+ LAI = &LAIs.getInfo(*TheLoop);
+ const OptimizationRemarkAnalysis *LAR = LAI->getReport();
+ if (LAR) {
+ ORE->emit([&]() {
+ return OptimizationRemarkAnalysis(Hints->vectorizeAnalysisPassName(),
+ "loop not vectorized: ", *LAR);
+ });
+ }
+
+ if (!LAI->canVectorizeMemory())
+ return false;
+
+ // We can vectorize stores to invariant address when final reduction value is
+ // guaranteed to be stored at the end of the loop. Also, if decision to
+ // vectorize loop is made, runtime checks are added so as to make sure that
+ // invariant address won't alias with any other objects.
+ if (!LAI->getStoresToInvariantAddresses().empty()) {
+ // For each invariant address, check if last stored value is unconditional
+ // and the address is not calculated inside the loop.
+ for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
+ if (!isInvariantStoreOfReduction(SI))
+ continue;
+
+ if (blockNeedsPredication(SI->getParent())) {
+ reportVectorizationFailure(
+ "We don't allow storing to uniform addresses",
+ "write of conditional recurring variant value to a loop "
+ "invariant address could not be vectorized",
+ "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
+ return false;
+ }
+
+ // Invariant address should be defined outside of loop. LICM pass usually
+ // makes sure it happens, but in rare cases it does not, we do not want
+ // to overcomplicate vectorization to support this case.
+ if (Instruction *Ptr = dyn_cast<Instruction>(SI->getPointerOperand())) {
+ if (TheLoop->contains(Ptr)) {
+ reportVectorizationFailure(
+ "Invariant address is calculated inside the loop",
+ "write to a loop invariant address could not "
+ "be vectorized",
+ "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
+ return false;
+ }
+ }
+ }
+
+ if (LAI->hasDependenceInvolvingLoopInvariantAddress()) {
+ // For each invariant address, check its last stored value is the result
+ // of one of our reductions.
+ //
+ // We do not check if dependence with loads exists because they are
+ // currently rejected earlier in LoopAccessInfo::analyzeLoop. In case this
+ // behaviour changes we have to modify this code.
+ ScalarEvolution *SE = PSE.getSE();
+ SmallVector<StoreInst *, 4> UnhandledStores;
+ for (StoreInst *SI : LAI->getStoresToInvariantAddresses()) {
+ if (isInvariantStoreOfReduction(SI)) {
+ // Earlier stores to this address are effectively deadcode.
+ // With opaque pointers it is possible for one pointer to be used with
+ // different sizes of stored values:
+ // store i32 0, ptr %x
+ // store i8 0, ptr %x
+ // The latest store doesn't complitely overwrite the first one in the
+ // example. That is why we have to make sure that types of stored
+ // values are same.
+ // TODO: Check that bitwidth of unhandled store is smaller then the
+ // one that overwrites it and add a test.
+ erase_if(UnhandledStores, [SE, SI](StoreInst *I) {
+ return storeToSameAddress(SE, SI, I) &&
+ I->getValueOperand()->getType() ==
+ SI->getValueOperand()->getType();
+ });
+ continue;
+ }
+ UnhandledStores.push_back(SI);
+ }
+
+ bool IsOK = UnhandledStores.empty();
+ // TODO: we should also validate against InvariantMemSets.
+ if (!IsOK) {
+ reportVectorizationFailure(
+ "We don't allow storing to uniform addresses",
+ "write to a loop invariant address could not "
+ "be vectorized",
+ "CantVectorizeStoreToLoopInvariantAddress", ORE, TheLoop);
+ return false;
+ }
+ }
+ }
+
+ PSE.addPredicate(LAI->getPSE().getPredicate());
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeFPMath(
+ bool EnableStrictReductions) {
+
+ // First check if there is any ExactFP math or if we allow reassociations
+ if (!Requirements->getExactFPInst() || Hints->allowReordering())
+ return true;
+
+ // If the above is false, we have ExactFPMath & do not allow reordering.
+ // If the EnableStrictReductions flag is set, first check if we have any
+ // Exact FP induction vars, which we cannot vectorize.
+ if (!EnableStrictReductions ||
+ any_of(getInductionVars(), [&](auto &Induction) -> bool {
+ InductionDescriptor IndDesc = Induction.second;
+ return IndDesc.getExactFPMathInst();
+ }))
+ return false;
+
+ // We can now only vectorize if all reductions with Exact FP math also
+ // have the isOrdered flag set, which indicates that we can move the
+ // reduction operations in-loop.
+ return (all_of(getReductionVars(), [&](auto &Reduction) -> bool {
+ const RecurrenceDescriptor &RdxDesc = Reduction.second;
+ return !RdxDesc.hasExactFPMath() || RdxDesc.isOrdered();
+ }));
+}
+
+bool LoopVectorizationLegality::isInvariantStoreOfReduction(StoreInst *SI) {
+ return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
+ const RecurrenceDescriptor &RdxDesc = Reduction.second;
+ return RdxDesc.IntermediateStore == SI;
+ });
+}
+
+bool LoopVectorizationLegality::isInvariantAddressOfReduction(Value *V) {
+ return any_of(getReductionVars(), [&](auto &Reduction) -> bool {
+ const RecurrenceDescriptor &RdxDesc = Reduction.second;
+ if (!RdxDesc.IntermediateStore)
+ return false;
+
+ ScalarEvolution *SE = PSE.getSE();
+ Value *InvariantAddress = RdxDesc.IntermediateStore->getPointerOperand();
+ return V == InvariantAddress ||
+ SE->getSCEV(V) == SE->getSCEV(InvariantAddress);
+ });
+}
+
+bool LoopVectorizationLegality::isInductionPhi(const Value *V) const {
+ Value *In0 = const_cast<Value *>(V);
+ PHINode *PN = dyn_cast_or_null<PHINode>(In0);
+ if (!PN)
+ return false;
+
+ return Inductions.count(PN);
+}
+
+const InductionDescriptor *
+LoopVectorizationLegality::getIntOrFpInductionDescriptor(PHINode *Phi) const {
+ if (!isInductionPhi(Phi))
+ return nullptr;
+ auto &ID = getInductionVars().find(Phi)->second;
+ if (ID.getKind() == InductionDescriptor::IK_IntInduction ||
+ ID.getKind() == InductionDescriptor::IK_FpInduction)
+ return &ID;
+ return nullptr;
+}
+
+const InductionDescriptor *
+LoopVectorizationLegality::getPointerInductionDescriptor(PHINode *Phi) const {
+ if (!isInductionPhi(Phi))
+ return nullptr;
+ auto &ID = getInductionVars().find(Phi)->second;
+ if (ID.getKind() == InductionDescriptor::IK_PtrInduction)
+ return &ID;
+ return nullptr;
+}
+
+bool LoopVectorizationLegality::isCastedInductionVariable(
+ const Value *V) const {
+ auto *Inst = dyn_cast<Instruction>(V);
+ return (Inst && InductionCastsToIgnore.count(Inst));
+}
+
+bool LoopVectorizationLegality::isInductionVariable(const Value *V) const {
+ return isInductionPhi(V) || isCastedInductionVariable(V);
+}
+
+bool LoopVectorizationLegality::isFixedOrderRecurrence(
+ const PHINode *Phi) const {
+ return FixedOrderRecurrences.count(Phi);
+}
+
+bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) const {
+ return LoopAccessInfo::blockNeedsPredication(BB, TheLoop, DT);
+}
+
+bool LoopVectorizationLegality::blockCanBePredicated(
+ BasicBlock *BB, SmallPtrSetImpl<Value *> &SafePtrs,
+ SmallPtrSetImpl<const Instruction *> &MaskedOp,
+ SmallPtrSetImpl<Instruction *> &ConditionalAssumes) const {
+ for (Instruction &I : *BB) {
+ // We can predicate blocks with calls to assume, as long as we drop them in
+ // case we flatten the CFG via predication.
+ if (match(&I, m_Intrinsic<Intrinsic::assume>())) {
+ ConditionalAssumes.insert(&I);
+ continue;
+ }
+
+ // Do not let llvm.experimental.noalias.scope.decl block the vectorization.
+ // TODO: there might be cases that it should block the vectorization. Let's
+ // ignore those for now.
+ if (isa<NoAliasScopeDeclInst>(&I))
+ continue;
+
+ // Loads are handled via masking (or speculated if safe to do so.)
+ if (auto *LI = dyn_cast<LoadInst>(&I)) {
+ if (!SafePtrs.count(LI->getPointerOperand()))
+ MaskedOp.insert(LI);
+ continue;
+ }
+
+ // Predicated store requires some form of masking:
+ // 1) masked store HW instruction,
+ // 2) emulation via load-blend-store (only if safe and legal to do so,
+ // be aware on the race conditions), or
+ // 3) element-by-element predicate check and scalar store.
+ if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ MaskedOp.insert(SI);
+ continue;
+ }
+
+ if (I.mayReadFromMemory() || I.mayWriteToMemory() || I.mayThrow())
+ return false;
+ }
+
+ return true;
+}
+
+bool LoopVectorizationLegality::canVectorizeWithIfConvert() {
+ if (!EnableIfConversion) {
+ reportVectorizationFailure("If-conversion is disabled",
+ "if-conversion is disabled",
+ "IfConversionDisabled",
+ ORE, TheLoop);
+ return false;
+ }
+
+ assert(TheLoop->getNumBlocks() > 1 && "Single block loops are vectorizable");
+
+ // A list of pointers which are known to be dereferenceable within scope of
+ // the loop body for each iteration of the loop which executes. That is,
+ // the memory pointed to can be dereferenced (with the access size implied by
+ // the value's type) unconditionally within the loop header without
+ // introducing a new fault.
+ SmallPtrSet<Value *, 8> SafePointers;
+
+ // Collect safe addresses.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ if (!blockNeedsPredication(BB)) {
+ for (Instruction &I : *BB)
+ if (auto *Ptr = getLoadStorePointerOperand(&I))
+ SafePointers.insert(Ptr);
+ continue;
+ }
+
+ // For a block which requires predication, a address may be safe to access
+ // in the loop w/o predication if we can prove dereferenceability facts
+ // sufficient to ensure it'll never fault within the loop. For the moment,
+ // we restrict this to loads; stores are more complicated due to
+ // concurrency restrictions.
+ ScalarEvolution &SE = *PSE.getSE();
+ for (Instruction &I : *BB) {
+ LoadInst *LI = dyn_cast<LoadInst>(&I);
+ if (LI && !LI->getType()->isVectorTy() && !mustSuppressSpeculation(*LI) &&
+ isDereferenceableAndAlignedInLoop(LI, TheLoop, SE, *DT, AC))
+ SafePointers.insert(LI->getPointerOperand());
+ }
+ }
+
+ // Collect the blocks that need predication.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ // We don't support switch statements inside loops.
+ if (!isa<BranchInst>(BB->getTerminator())) {
+ reportVectorizationFailure("Loop contains a switch statement",
+ "loop contains a switch statement",
+ "LoopContainsSwitch", ORE, TheLoop,
+ BB->getTerminator());
+ return false;
+ }
+
+ // We must be able to predicate all blocks that need to be predicated.
+ if (blockNeedsPredication(BB)) {
+ if (!blockCanBePredicated(BB, SafePointers, MaskedOp,
+ ConditionalAssumes)) {
+ reportVectorizationFailure(
+ "Control flow cannot be substituted for a select",
+ "control flow cannot be substituted for a select",
+ "NoCFGForSelect", ORE, TheLoop,
+ BB->getTerminator());
+ return false;
+ }
+ }
+ }
+
+ // We can if-convert this loop.
+ return true;
+}
+
+// Helper function to canVectorizeLoopNestCFG.
+bool LoopVectorizationLegality::canVectorizeLoopCFG(Loop *Lp,
+ bool UseVPlanNativePath) {
+ assert((UseVPlanNativePath || Lp->isInnermost()) &&
+ "VPlan-native path is not enabled.");
+
+ // TODO: ORE should be improved to show more accurate information when an
+ // outer loop can't be vectorized because a nested loop is not understood or
+ // legal. Something like: "outer_loop_location: loop not vectorized:
+ // (inner_loop_location) loop control flow is not understood by vectorizer".
+
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+
+ // We must have a loop in canonical form. Loops with indirectbr in them cannot
+ // be canonicalized.
+ if (!Lp->getLoopPreheader()) {
+ reportVectorizationFailure("Loop doesn't have a legal pre-header",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We must have a single backedge.
+ if (Lp->getNumBackEdges() != 1) {
+ reportVectorizationFailure("The loop must have a single backedge",
+ "loop control flow is not understood by vectorizer",
+ "CFGNotUnderstood", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+bool LoopVectorizationLegality::canVectorizeLoopNestCFG(
+ Loop *Lp, bool UseVPlanNativePath) {
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+ if (!canVectorizeLoopCFG(Lp, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Recursively check whether the loop control flow of nested loops is
+ // understood.
+ for (Loop *SubLp : *Lp)
+ if (!canVectorizeLoopNestCFG(SubLp, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ return Result;
+}
+
+bool LoopVectorizationLegality::canVectorize(bool UseVPlanNativePath) {
+ // Store the result and return it at the end instead of exiting early, in case
+ // allowExtraAnalysis is used to report multiple reasons for not vectorizing.
+ bool Result = true;
+
+ bool DoExtraAnalysis = ORE->allowExtraAnalysis(DEBUG_TYPE);
+ // Check whether the loop-related control flow in the loop nest is expected by
+ // vectorizer.
+ if (!canVectorizeLoopNestCFG(TheLoop, UseVPlanNativePath)) {
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // We need to have a loop header.
+ LLVM_DEBUG(dbgs() << "LV: Found a loop: " << TheLoop->getHeader()->getName()
+ << '\n');
+
+ // Specific checks for outer loops. We skip the remaining legal checks at this
+ // point because they don't support outer loops.
+ if (!TheLoop->isInnermost()) {
+ assert(UseVPlanNativePath && "VPlan-native path is not enabled.");
+
+ if (!canVectorizeOuterLoop()) {
+ reportVectorizationFailure("Unsupported outer loop",
+ "unsupported outer loop",
+ "UnsupportedOuterLoop",
+ ORE, TheLoop);
+ // TODO: Implement DoExtraAnalysis when subsequent legal checks support
+ // outer loops.
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: We can vectorize this outer loop!\n");
+ return Result;
+ }
+
+ assert(TheLoop->isInnermost() && "Inner loop expected.");
+ // Check if we can if-convert non-single-bb loops.
+ unsigned NumBlocks = TheLoop->getNumBlocks();
+ if (NumBlocks != 1 && !canVectorizeWithIfConvert()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't if-convert the loop.\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Check if we can vectorize the instructions and CFG in this loop.
+ if (!canVectorizeInstrs()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't vectorize the instructions or CFG\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Go over each instruction and look at memory deps.
+ if (!canVectorizeMemory()) {
+ LLVM_DEBUG(dbgs() << "LV: Can't vectorize due to memory conflicts\n");
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: We can vectorize this loop"
+ << (LAI->getRuntimePointerChecking()->Need
+ ? " (with a runtime bound check)"
+ : "")
+ << "!\n");
+
+ unsigned SCEVThreshold = VectorizeSCEVCheckThreshold;
+ if (Hints->getForce() == LoopVectorizeHints::FK_Enabled)
+ SCEVThreshold = PragmaVectorizeSCEVCheckThreshold;
+
+ if (PSE.getPredicate().getComplexity() > SCEVThreshold) {
+ reportVectorizationFailure("Too many SCEV checks needed",
+ "Too many SCEV assumptions need to be made and checked at runtime",
+ "TooManySCEVRunTimeChecks", ORE, TheLoop);
+ if (DoExtraAnalysis)
+ Result = false;
+ else
+ return false;
+ }
+
+ // Okay! We've done all the tests. If any have failed, return false. Otherwise
+ // we can vectorize, and at this point we don't have any other mem analysis
+ // which may limit our maximum vectorization factor, so just return true with
+ // no restrictions.
+ return Result;
+}
+
+bool LoopVectorizationLegality::prepareToFoldTailByMasking() {
+
+ LLVM_DEBUG(dbgs() << "LV: checking if tail can be folded by masking.\n");
+
+ SmallPtrSet<const Value *, 8> ReductionLiveOuts;
+
+ for (const auto &Reduction : getReductionVars())
+ ReductionLiveOuts.insert(Reduction.second.getLoopExitInstr());
+
+ // TODO: handle non-reduction outside users when tail is folded by masking.
+ for (auto *AE : AllowedExit) {
+ // Check that all users of allowed exit values are inside the loop or
+ // are the live-out of a reduction.
+ if (ReductionLiveOuts.count(AE))
+ continue;
+ for (User *U : AE->users()) {
+ Instruction *UI = cast<Instruction>(U);
+ if (TheLoop->contains(UI))
+ continue;
+ LLVM_DEBUG(
+ dbgs()
+ << "LV: Cannot fold tail by masking, loop has an outside user for "
+ << *UI << "\n");
+ return false;
+ }
+ }
+
+ // The list of pointers that we can safely read and write to remains empty.
+ SmallPtrSet<Value *, 8> SafePointers;
+
+ SmallPtrSet<const Instruction *, 8> TmpMaskedOp;
+ SmallPtrSet<Instruction *, 8> TmpConditionalAssumes;
+
+ // Check and mark all blocks for predication, including those that ordinarily
+ // do not need predication such as the header block.
+ for (BasicBlock *BB : TheLoop->blocks()) {
+ if (!blockCanBePredicated(BB, SafePointers, TmpMaskedOp,
+ TmpConditionalAssumes)) {
+ LLVM_DEBUG(dbgs() << "LV: Cannot fold tail by masking as requested.\n");
+ return false;
+ }
+ }
+
+ LLVM_DEBUG(dbgs() << "LV: can fold tail by masking.\n");
+
+ MaskedOp.insert(TmpMaskedOp.begin(), TmpMaskedOp.end());
+ ConditionalAssumes.insert(TmpConditionalAssumes.begin(),
+ TmpConditionalAssumes.end());
+
+ return true;
+}
+
+} // namespace llvm