diff options
author | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
---|---|---|
committer | vitalyisaev <vitalyisaev@yandex-team.com> | 2023-06-29 10:00:50 +0300 |
commit | 6ffe9e53658409f212834330e13564e4952558f6 (patch) | |
tree | 85b1e00183517648b228aafa7c8fb07f5276f419 /contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp | |
parent | 726057070f9c5a91fc10fde0d5024913d10f1ab9 (diff) | |
download | ydb-6ffe9e53658409f212834330e13564e4952558f6.tar.gz |
YQ Connector: support managed ClickHouse
Со стороны dqrun можно обратиться к инстансу коннектора, который работает на streaming стенде, и извлечь данные из облачного CH.
Diffstat (limited to 'contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r-- | contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp | 2392 |
1 files changed, 2392 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp b/contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp new file mode 100644 index 0000000000..2865dece87 --- /dev/null +++ b/contrib/libs/llvm16/lib/Transforms/Scalar/LICM.cpp @@ -0,0 +1,2392 @@ +//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass performs loop invariant code motion, attempting to remove as much +// code from the body of a loop as possible. It does this by either hoisting +// code into the preheader block, or by sinking code to the exit blocks if it is +// safe. This pass also promotes must-aliased memory locations in the loop to +// live in registers, thus hoisting and sinking "invariant" loads and stores. +// +// Hoisting operations out of loops is a canonicalization transform. It +// enables and simplifies subsequent optimizations in the middle-end. +// Rematerialization of hoisted instructions to reduce register pressure is the +// responsibility of the back-end, which has more accurate information about +// register pressure and also handles other optimizations than LICM that +// increase live-ranges. +// +// This pass uses alias analysis for two purposes: +// +// 1. Moving loop invariant loads and calls out of loops. If we can determine +// that a load or call inside of a loop never aliases anything stored to, +// we can hoist it or sink it like any other instruction. +// 2. Scalar Promotion of Memory - If there is a store instruction inside of +// the loop, we try to move the store to happen AFTER the loop instead of +// inside of the loop. This can only happen if a few conditions are true: +// A. The pointer stored through is loop invariant +// B. There are no stores or loads in the loop which _may_ alias the +// pointer. There are no calls in the loop which mod/ref the pointer. +// If these conditions are true, we can promote the loads and stores in the +// loop of the pointer to use a temporary alloca'd variable. We then use +// the SSAUpdater to construct the appropriate SSA form for the value. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LICM.h" +#include "llvm/ADT/PriorityWorklist.h" +#include "llvm/ADT/SetOperations.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/AliasSetTracker.h" +#include "llvm/Analysis/AssumptionCache.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/ConstantFolding.h" +#include "llvm/Analysis/GuardUtils.h" +#include "llvm/Analysis/LazyBlockFrequencyInfo.h" +#include "llvm/Analysis/Loads.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/LoopIterator.h" +#include "llvm/Analysis/LoopNestAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/MemorySSA.h" +#include "llvm/Analysis/MemorySSAUpdater.h" +#include "llvm/Analysis/MustExecute.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/IR/PredIteratorCache.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetOptions.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/AssumeBundleBuilder.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/LoopUtils.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include <algorithm> +#include <utility> +using namespace llvm; + +namespace llvm { +class LPMUpdater; +} // namespace llvm + +#define DEBUG_TYPE "licm" + +STATISTIC(NumCreatedBlocks, "Number of blocks created"); +STATISTIC(NumClonedBranches, "Number of branches cloned"); +STATISTIC(NumSunk, "Number of instructions sunk out of loop"); +STATISTIC(NumHoisted, "Number of instructions hoisted out of loop"); +STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk"); +STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk"); +STATISTIC(NumPromotionCandidates, "Number of promotion candidates"); +STATISTIC(NumLoadPromoted, "Number of load-only promotions"); +STATISTIC(NumLoadStorePromoted, "Number of load and store promotions"); + +/// Memory promotion is enabled by default. +static cl::opt<bool> + DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false), + cl::desc("Disable memory promotion in LICM pass")); + +static cl::opt<bool> ControlFlowHoisting( + "licm-control-flow-hoisting", cl::Hidden, cl::init(false), + cl::desc("Enable control flow (and PHI) hoisting in LICM")); + +static cl::opt<bool> + SingleThread("licm-force-thread-model-single", cl::Hidden, cl::init(false), + cl::desc("Force thread model single in LICM pass")); + +static cl::opt<uint32_t> MaxNumUsesTraversed( + "licm-max-num-uses-traversed", cl::Hidden, cl::init(8), + cl::desc("Max num uses visited for identifying load " + "invariance in loop using invariant start (default = 8)")); + +// Experimental option to allow imprecision in LICM in pathological cases, in +// exchange for faster compile. This is to be removed if MemorySSA starts to +// address the same issue. LICM calls MemorySSAWalker's +// getClobberingMemoryAccess, up to the value of the Cap, getting perfect +// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess, +// which may not be precise, since optimizeUses is capped. The result is +// correct, but we may not get as "far up" as possible to get which access is +// clobbering the one queried. +cl::opt<unsigned> llvm::SetLicmMssaOptCap( + "licm-mssa-optimization-cap", cl::init(100), cl::Hidden, + cl::desc("Enable imprecision in LICM in pathological cases, in exchange " + "for faster compile. Caps the MemorySSA clobbering calls.")); + +// Experimentally, memory promotion carries less importance than sinking and +// hoisting. Limit when we do promotion when using MemorySSA, in order to save +// compile time. +cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap( + "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden, + cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no " + "effect. When MSSA in LICM is enabled, then this is the maximum " + "number of accesses allowed to be present in a loop in order to " + "enable memory promotion.")); + +static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI); +static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, + const LoopSafetyInfo *SafetyInfo, + TargetTransformInfo *TTI, bool &FreeInLoop, + bool LoopNestMode); +static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, + BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, + MemorySSAUpdater &MSSAU, ScalarEvolution *SE, + OptimizationRemarkEmitter *ORE); +static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, + const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, + MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE); +static bool isSafeToExecuteUnconditionally( + Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, + const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, + OptimizationRemarkEmitter *ORE, const Instruction *CtxI, + AssumptionCache *AC, bool AllowSpeculation); +static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, + Loop *CurLoop, Instruction &I, + SinkAndHoistLICMFlags &Flags); +static bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, + MemoryUse &MU); +static Instruction *cloneInstructionInExitBlock( + Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, + const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU); + +static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, + MemorySSAUpdater &MSSAU); + +static void moveInstructionBefore(Instruction &I, Instruction &Dest, + ICFLoopSafetyInfo &SafetyInfo, + MemorySSAUpdater &MSSAU, ScalarEvolution *SE); + +static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, + function_ref<void(Instruction *)> Fn); +using PointersAndHasReadsOutsideSet = + std::pair<SmallSetVector<Value *, 8>, bool>; +static SmallVector<PointersAndHasReadsOutsideSet, 0> +collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L); + +namespace { +struct LoopInvariantCodeMotion { + bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT, + AssumptionCache *AC, TargetLibraryInfo *TLI, + TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA, + OptimizationRemarkEmitter *ORE, bool LoopNestMode = false); + + LoopInvariantCodeMotion(unsigned LicmMssaOptCap, + unsigned LicmMssaNoAccForPromotionCap, + bool LicmAllowSpeculation) + : LicmMssaOptCap(LicmMssaOptCap), + LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), + LicmAllowSpeculation(LicmAllowSpeculation) {} + +private: + unsigned LicmMssaOptCap; + unsigned LicmMssaNoAccForPromotionCap; + bool LicmAllowSpeculation; +}; + +struct LegacyLICMPass : public LoopPass { + static char ID; // Pass identification, replacement for typeid + LegacyLICMPass( + unsigned LicmMssaOptCap = SetLicmMssaOptCap, + unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap, + bool LicmAllowSpeculation = true) + : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, + LicmAllowSpeculation) { + initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM) override { + if (skipLoop(L)) + return false; + + LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block " + << L->getHeader()->getNameOrAsOperand() << "\n"); + + Function *F = L->getHeader()->getParent(); + + auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); + MemorySSA *MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA(); + // For the old PM, we can't use OptimizationRemarkEmitter as an analysis + // pass. Function analyses need to be preserved across loop transformations + // but ORE cannot be preserved (see comment before the pass definition). + OptimizationRemarkEmitter ORE(L->getHeader()->getParent()); + return LICM.runOnLoop( + L, &getAnalysis<AAResultsWrapperPass>().getAAResults(), + &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(), + &getAnalysis<DominatorTreeWrapperPass>().getDomTree(), + &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(*F), + &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(*F), + &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(*F), + SE ? &SE->getSE() : nullptr, MSSA, &ORE); + } + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG... + /// + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<MemorySSAWrapperPass>(); + AU.addPreserved<MemorySSAWrapperPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<AssumptionCacheTracker>(); + getLoopAnalysisUsage(AU); + LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU); + AU.addPreserved<LazyBlockFrequencyInfoPass>(); + AU.addPreserved<LazyBranchProbabilityInfoPass>(); + } + +private: + LoopInvariantCodeMotion LICM; +}; +} // namespace + +PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, LPMUpdater &) { + if (!AR.MSSA) + report_fatal_error("LICM requires MemorySSA (loop-mssa)", + /*GenCrashDiag*/false); + + // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis + // pass. Function analyses need to be preserved across loop transformations + // but ORE cannot be preserved (see comment before the pass definition). + OptimizationRemarkEmitter ORE(L.getHeader()->getParent()); + + LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, + Opts.AllowSpeculation); + if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.AC, &AR.TLI, &AR.TTI, + &AR.SE, AR.MSSA, &ORE)) + return PreservedAnalyses::all(); + + auto PA = getLoopPassPreservedAnalyses(); + + PA.preserve<DominatorTreeAnalysis>(); + PA.preserve<LoopAnalysis>(); + PA.preserve<MemorySSAAnalysis>(); + + return PA; +} + +void LICMPass::printPipeline( + raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { + static_cast<PassInfoMixin<LICMPass> *>(this)->printPipeline( + OS, MapClassName2PassName); + + OS << "<"; + OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; + OS << ">"; +} + +PreservedAnalyses LNICMPass::run(LoopNest &LN, LoopAnalysisManager &AM, + LoopStandardAnalysisResults &AR, + LPMUpdater &) { + if (!AR.MSSA) + report_fatal_error("LNICM requires MemorySSA (loop-mssa)", + /*GenCrashDiag*/false); + + // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis + // pass. Function analyses need to be preserved across loop transformations + // but ORE cannot be preserved (see comment before the pass definition). + OptimizationRemarkEmitter ORE(LN.getParent()); + + LoopInvariantCodeMotion LICM(Opts.MssaOptCap, Opts.MssaNoAccForPromotionCap, + Opts.AllowSpeculation); + + Loop &OutermostLoop = LN.getOutermostLoop(); + bool Changed = LICM.runOnLoop(&OutermostLoop, &AR.AA, &AR.LI, &AR.DT, &AR.AC, + &AR.TLI, &AR.TTI, &AR.SE, AR.MSSA, &ORE, true); + + if (!Changed) + return PreservedAnalyses::all(); + + auto PA = getLoopPassPreservedAnalyses(); + + PA.preserve<DominatorTreeAnalysis>(); + PA.preserve<LoopAnalysis>(); + PA.preserve<MemorySSAAnalysis>(); + + return PA; +} + +void LNICMPass::printPipeline( + raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { + static_cast<PassInfoMixin<LNICMPass> *>(this)->printPipeline( + OS, MapClassName2PassName); + + OS << "<"; + OS << (Opts.AllowSpeculation ? "" : "no-") << "allowspeculation"; + OS << ">"; +} + +char LegacyLICMPass::ID = 0; +INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion", + false, false) +INITIALIZE_PASS_DEPENDENCY(LoopPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LazyBFIPass) +INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false, + false) + +Pass *llvm::createLICMPass() { return new LegacyLICMPass(); } +Pass *llvm::createLICMPass(unsigned LicmMssaOptCap, + unsigned LicmMssaNoAccForPromotionCap, + bool LicmAllowSpeculation) { + return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, + LicmAllowSpeculation); +} + +llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L, + MemorySSA *MSSA) + : SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap, + IsSink, L, MSSA) {} + +llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags( + unsigned LicmMssaOptCap, unsigned LicmMssaNoAccForPromotionCap, bool IsSink, + Loop *L, MemorySSA *MSSA) + : LicmMssaOptCap(LicmMssaOptCap), + LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap), + IsSink(IsSink) { + assert(((L != nullptr) == (MSSA != nullptr)) && + "Unexpected values for SinkAndHoistLICMFlags"); + if (!MSSA) + return; + + unsigned AccessCapCount = 0; + for (auto *BB : L->getBlocks()) + if (const auto *Accesses = MSSA->getBlockAccesses(BB)) + for (const auto &MA : *Accesses) { + (void)MA; + ++AccessCapCount; + if (AccessCapCount > LicmMssaNoAccForPromotionCap) { + NoOfMemAccTooLarge = true; + return; + } + } +} + +/// Hoist expressions out of the specified loop. Note, alias info for inner +/// loop is not preserved so it is not a good idea to run LICM multiple +/// times on one loop. +bool LoopInvariantCodeMotion::runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, + DominatorTree *DT, AssumptionCache *AC, + TargetLibraryInfo *TLI, + TargetTransformInfo *TTI, + ScalarEvolution *SE, MemorySSA *MSSA, + OptimizationRemarkEmitter *ORE, + bool LoopNestMode) { + bool Changed = false; + + assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form."); + MSSA->ensureOptimizedUses(); + + // If this loop has metadata indicating that LICM is not to be performed then + // just exit. + if (hasDisableLICMTransformsHint(L)) { + return false; + } + + // Don't sink stores from loops with coroutine suspend instructions. + // LICM would sink instructions into the default destination of + // the coroutine switch. The default destination of the switch is to + // handle the case where the coroutine is suspended, by which point the + // coroutine frame may have been destroyed. No instruction can be sunk there. + // FIXME: This would unfortunately hurt the performance of coroutines, however + // there is currently no general solution for this. Similar issues could also + // potentially happen in other passes where instructions are being moved + // across that edge. + bool HasCoroSuspendInst = llvm::any_of(L->getBlocks(), [](BasicBlock *BB) { + return llvm::any_of(*BB, [](Instruction &I) { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); + return II && II->getIntrinsicID() == Intrinsic::coro_suspend; + }); + }); + + MemorySSAUpdater MSSAU(MSSA); + SinkAndHoistLICMFlags Flags(LicmMssaOptCap, LicmMssaNoAccForPromotionCap, + /*IsSink=*/true, L, MSSA); + + // Get the preheader block to move instructions into... + BasicBlock *Preheader = L->getLoopPreheader(); + + // Compute loop safety information. + ICFLoopSafetyInfo SafetyInfo; + SafetyInfo.computeLoopSafetyInfo(L); + + // We want to visit all of the instructions in this loop... that are not parts + // of our subloops (they have already had their invariants hoisted out of + // their loop, into this loop, so there is no need to process the BODIES of + // the subloops). + // + // Traverse the body of the loop in depth first order on the dominator tree so + // that we are guaranteed to see definitions before we see uses. This allows + // us to sink instructions in one pass, without iteration. After sinking + // instructions, we perform another pass to hoist them out of the loop. + if (L->hasDedicatedExits()) + Changed |= + LoopNestMode + ? sinkRegionForLoopNest(DT->getNode(L->getHeader()), AA, LI, DT, + TLI, TTI, L, MSSAU, &SafetyInfo, Flags, ORE) + : sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, + MSSAU, &SafetyInfo, Flags, ORE); + Flags.setIsSink(false); + if (Preheader) + Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, AC, TLI, L, + MSSAU, SE, &SafetyInfo, Flags, ORE, LoopNestMode, + LicmAllowSpeculation); + + // Now that all loop invariants have been removed from the loop, promote any + // memory references to scalars that we can. + // Don't sink stores from loops without dedicated block exits. Exits + // containing indirect branches are not transformed by loop simplify, + // make sure we catch that. An additional load may be generated in the + // preheader for SSA updater, so also avoid sinking when no preheader + // is available. + if (!DisablePromotion && Preheader && L->hasDedicatedExits() && + !Flags.tooManyMemoryAccesses() && !HasCoroSuspendInst) { + // Figure out the loop exits and their insertion points + SmallVector<BasicBlock *, 8> ExitBlocks; + L->getUniqueExitBlocks(ExitBlocks); + + // We can't insert into a catchswitch. + bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) { + return isa<CatchSwitchInst>(Exit->getTerminator()); + }); + + if (!HasCatchSwitch) { + SmallVector<Instruction *, 8> InsertPts; + SmallVector<MemoryAccess *, 8> MSSAInsertPts; + InsertPts.reserve(ExitBlocks.size()); + MSSAInsertPts.reserve(ExitBlocks.size()); + for (BasicBlock *ExitBlock : ExitBlocks) { + InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); + MSSAInsertPts.push_back(nullptr); + } + + PredIteratorCache PIC; + + // Promoting one set of accesses may make the pointers for another set + // loop invariant, so run this in a loop. + bool Promoted = false; + bool LocalPromoted; + do { + LocalPromoted = false; + for (auto [PointerMustAliases, HasReadsOutsideSet] : + collectPromotionCandidates(MSSA, AA, L)) { + LocalPromoted |= promoteLoopAccessesToScalars( + PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI, + DT, AC, TLI, TTI, L, MSSAU, &SafetyInfo, ORE, + LicmAllowSpeculation, HasReadsOutsideSet); + } + Promoted |= LocalPromoted; + } while (LocalPromoted); + + // Once we have promoted values across the loop body we have to + // recursively reform LCSSA as any nested loop may now have values defined + // within the loop used in the outer loop. + // FIXME: This is really heavy handed. It would be a bit better to use an + // SSAUpdater strategy during promotion that was LCSSA aware and reformed + // it as it went. + if (Promoted) + formLCSSARecursively(*L, *DT, LI, SE); + + Changed |= Promoted; + } + } + + // Check that neither this loop nor its parent have had LCSSA broken. LICM is + // specifically moving instructions across the loop boundary and so it is + // especially in need of basic functional correctness checking here. + assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!"); + assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) && + "Parent loop not left in LCSSA form after LICM!"); + + if (VerifyMemorySSA) + MSSA->verifyMemorySSA(); + + if (Changed && SE) + SE->forgetLoopDispositions(); + return Changed; +} + +/// Walk the specified region of the CFG (defined by all blocks dominated by +/// the specified block, and that are in the current loop) in reverse depth +/// first order w.r.t the DominatorTree. This allows us to visit uses before +/// definitions, allowing us to sink a loop body in one pass without iteration. +/// +bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, + DominatorTree *DT, TargetLibraryInfo *TLI, + TargetTransformInfo *TTI, Loop *CurLoop, + MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, + SinkAndHoistLICMFlags &Flags, + OptimizationRemarkEmitter *ORE, Loop *OutermostLoop) { + + // Verify inputs. + assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && + CurLoop != nullptr && SafetyInfo != nullptr && + "Unexpected input to sinkRegion."); + + // We want to visit children before parents. We will enqueue all the parents + // before their children in the worklist and process the worklist in reverse + // order. + SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop); + + bool Changed = false; + for (DomTreeNode *DTN : reverse(Worklist)) { + BasicBlock *BB = DTN->getBlock(); + // Only need to process the contents of this block if it is not part of a + // subloop (which would already have been processed). + if (inSubLoop(BB, CurLoop, LI)) + continue; + + for (BasicBlock::iterator II = BB->end(); II != BB->begin();) { + Instruction &I = *--II; + + // The instruction is not used in the loop if it is dead. In this case, + // we just delete it instead of sinking it. + if (isInstructionTriviallyDead(&I, TLI)) { + LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n'); + salvageKnowledge(&I); + salvageDebugInfo(I); + ++II; + eraseInstruction(I, *SafetyInfo, MSSAU); + Changed = true; + continue; + } + + // Check to see if we can sink this instruction to the exit blocks + // of the loop. We can do this if the all users of the instruction are + // outside of the loop. In this case, it doesn't even matter if the + // operands of the instruction are loop invariant. + // + bool FreeInLoop = false; + bool LoopNestMode = OutermostLoop != nullptr; + if (!I.mayHaveSideEffects() && + isNotUsedOrFreeInLoop(I, LoopNestMode ? OutermostLoop : CurLoop, + SafetyInfo, TTI, FreeInLoop, LoopNestMode) && + canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE)) { + if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) { + if (!FreeInLoop) { + ++II; + salvageDebugInfo(I); + eraseInstruction(I, *SafetyInfo, MSSAU); + } + Changed = true; + } + } + } + } + if (VerifyMemorySSA) + MSSAU.getMemorySSA()->verifyMemorySSA(); + return Changed; +} + +bool llvm::sinkRegionForLoopNest(DomTreeNode *N, AAResults *AA, LoopInfo *LI, + DominatorTree *DT, TargetLibraryInfo *TLI, + TargetTransformInfo *TTI, Loop *CurLoop, + MemorySSAUpdater &MSSAU, + ICFLoopSafetyInfo *SafetyInfo, + SinkAndHoistLICMFlags &Flags, + OptimizationRemarkEmitter *ORE) { + + bool Changed = false; + SmallPriorityWorklist<Loop *, 4> Worklist; + Worklist.insert(CurLoop); + appendLoopsToWorklist(*CurLoop, Worklist); + while (!Worklist.empty()) { + Loop *L = Worklist.pop_back_val(); + Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L, + MSSAU, SafetyInfo, Flags, ORE, CurLoop); + } + return Changed; +} + +namespace { +// This is a helper class for hoistRegion to make it able to hoist control flow +// in order to be able to hoist phis. The way this works is that we initially +// start hoisting to the loop preheader, and when we see a loop invariant branch +// we make note of this. When we then come to hoist an instruction that's +// conditional on such a branch we duplicate the branch and the relevant control +// flow, then hoist the instruction into the block corresponding to its original +// block in the duplicated control flow. +class ControlFlowHoister { +private: + // Information about the loop we are hoisting from + LoopInfo *LI; + DominatorTree *DT; + Loop *CurLoop; + MemorySSAUpdater &MSSAU; + + // A map of blocks in the loop to the block their instructions will be hoisted + // to. + DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap; + + // The branches that we can hoist, mapped to the block that marks a + // convergence point of their control flow. + DenseMap<BranchInst *, BasicBlock *> HoistableBranches; + +public: + ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop, + MemorySSAUpdater &MSSAU) + : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {} + + void registerPossiblyHoistableBranch(BranchInst *BI) { + // We can only hoist conditional branches with loop invariant operands. + if (!ControlFlowHoisting || !BI->isConditional() || + !CurLoop->hasLoopInvariantOperands(BI)) + return; + + // The branch destinations need to be in the loop, and we don't gain + // anything by duplicating conditional branches with duplicate successors, + // as it's essentially the same as an unconditional branch. + BasicBlock *TrueDest = BI->getSuccessor(0); + BasicBlock *FalseDest = BI->getSuccessor(1); + if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) || + TrueDest == FalseDest) + return; + + // We can hoist BI if one branch destination is the successor of the other, + // or both have common successor which we check by seeing if the + // intersection of their successors is non-empty. + // TODO: This could be expanded to allowing branches where both ends + // eventually converge to a single block. + SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc; + TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest)); + FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest)); + BasicBlock *CommonSucc = nullptr; + if (TrueDestSucc.count(FalseDest)) { + CommonSucc = FalseDest; + } else if (FalseDestSucc.count(TrueDest)) { + CommonSucc = TrueDest; + } else { + set_intersect(TrueDestSucc, FalseDestSucc); + // If there's one common successor use that. + if (TrueDestSucc.size() == 1) + CommonSucc = *TrueDestSucc.begin(); + // If there's more than one pick whichever appears first in the block list + // (we can't use the value returned by TrueDestSucc.begin() as it's + // unpredicatable which element gets returned). + else if (!TrueDestSucc.empty()) { + Function *F = TrueDest->getParent(); + auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); }; + auto It = llvm::find_if(*F, IsSucc); + assert(It != F->end() && "Could not find successor in function"); + CommonSucc = &*It; + } + } + // The common successor has to be dominated by the branch, as otherwise + // there will be some other path to the successor that will not be + // controlled by this branch so any phi we hoist would be controlled by the + // wrong condition. This also takes care of avoiding hoisting of loop back + // edges. + // TODO: In some cases this could be relaxed if the successor is dominated + // by another block that's been hoisted and we can guarantee that the + // control flow has been replicated exactly. + if (CommonSucc && DT->dominates(BI, CommonSucc)) + HoistableBranches[BI] = CommonSucc; + } + + bool canHoistPHI(PHINode *PN) { + // The phi must have loop invariant operands. + if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN)) + return false; + // We can hoist phis if the block they are in is the target of hoistable + // branches which cover all of the predecessors of the block. + SmallPtrSet<BasicBlock *, 8> PredecessorBlocks; + BasicBlock *BB = PN->getParent(); + for (BasicBlock *PredBB : predecessors(BB)) + PredecessorBlocks.insert(PredBB); + // If we have less predecessor blocks than predecessors then the phi will + // have more than one incoming value for the same block which we can't + // handle. + // TODO: This could be handled be erasing some of the duplicate incoming + // values. + if (PredecessorBlocks.size() != pred_size(BB)) + return false; + for (auto &Pair : HoistableBranches) { + if (Pair.second == BB) { + // Which blocks are predecessors via this branch depends on if the + // branch is triangle-like or diamond-like. + if (Pair.first->getSuccessor(0) == BB) { + PredecessorBlocks.erase(Pair.first->getParent()); + PredecessorBlocks.erase(Pair.first->getSuccessor(1)); + } else if (Pair.first->getSuccessor(1) == BB) { + PredecessorBlocks.erase(Pair.first->getParent()); + PredecessorBlocks.erase(Pair.first->getSuccessor(0)); + } else { + PredecessorBlocks.erase(Pair.first->getSuccessor(0)); + PredecessorBlocks.erase(Pair.first->getSuccessor(1)); + } + } + } + // PredecessorBlocks will now be empty if for every predecessor of BB we + // found a hoistable branch source. + return PredecessorBlocks.empty(); + } + + BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) { + if (!ControlFlowHoisting) + return CurLoop->getLoopPreheader(); + // If BB has already been hoisted, return that + if (HoistDestinationMap.count(BB)) + return HoistDestinationMap[BB]; + + // Check if this block is conditional based on a pending branch + auto HasBBAsSuccessor = + [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) { + return BB != Pair.second && (Pair.first->getSuccessor(0) == BB || + Pair.first->getSuccessor(1) == BB); + }; + auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor); + + // If not involved in a pending branch, hoist to preheader + BasicBlock *InitialPreheader = CurLoop->getLoopPreheader(); + if (It == HoistableBranches.end()) { + LLVM_DEBUG(dbgs() << "LICM using " + << InitialPreheader->getNameOrAsOperand() + << " as hoist destination for " + << BB->getNameOrAsOperand() << "\n"); + HoistDestinationMap[BB] = InitialPreheader; + return InitialPreheader; + } + BranchInst *BI = It->first; + assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) == + HoistableBranches.end() && + "BB is expected to be the target of at most one branch"); + + LLVMContext &C = BB->getContext(); + BasicBlock *TrueDest = BI->getSuccessor(0); + BasicBlock *FalseDest = BI->getSuccessor(1); + BasicBlock *CommonSucc = HoistableBranches[BI]; + BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent()); + + // Create hoisted versions of blocks that currently don't have them + auto CreateHoistedBlock = [&](BasicBlock *Orig) { + if (HoistDestinationMap.count(Orig)) + return HoistDestinationMap[Orig]; + BasicBlock *New = + BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent()); + HoistDestinationMap[Orig] = New; + DT->addNewBlock(New, HoistTarget); + if (CurLoop->getParentLoop()) + CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI); + ++NumCreatedBlocks; + LLVM_DEBUG(dbgs() << "LICM created " << New->getName() + << " as hoist destination for " << Orig->getName() + << "\n"); + return New; + }; + BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest); + BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest); + BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc); + + // Link up these blocks with branches. + if (!HoistCommonSucc->getTerminator()) { + // The new common successor we've generated will branch to whatever that + // hoist target branched to. + BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor(); + assert(TargetSucc && "Expected hoist target to have a single successor"); + HoistCommonSucc->moveBefore(TargetSucc); + BranchInst::Create(TargetSucc, HoistCommonSucc); + } + if (!HoistTrueDest->getTerminator()) { + HoistTrueDest->moveBefore(HoistCommonSucc); + BranchInst::Create(HoistCommonSucc, HoistTrueDest); + } + if (!HoistFalseDest->getTerminator()) { + HoistFalseDest->moveBefore(HoistCommonSucc); + BranchInst::Create(HoistCommonSucc, HoistFalseDest); + } + + // If BI is being cloned to what was originally the preheader then + // HoistCommonSucc will now be the new preheader. + if (HoistTarget == InitialPreheader) { + // Phis in the loop header now need to use the new preheader. + InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc); + MSSAU.wireOldPredecessorsToNewImmediatePredecessor( + HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget}); + // The new preheader dominates the loop header. + DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc); + DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader()); + DT->changeImmediateDominator(HeaderNode, PreheaderNode); + // The preheader hoist destination is now the new preheader, with the + // exception of the hoist destination of this branch. + for (auto &Pair : HoistDestinationMap) + if (Pair.second == InitialPreheader && Pair.first != BI->getParent()) + Pair.second = HoistCommonSucc; + } + + // Now finally clone BI. + ReplaceInstWithInst( + HoistTarget->getTerminator(), + BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition())); + ++NumClonedBranches; + + assert(CurLoop->getLoopPreheader() && + "Hoisting blocks should not have destroyed preheader"); + return HoistDestinationMap[BB]; + } +}; +} // namespace + +/// Walk the specified region of the CFG (defined by all blocks dominated by +/// the specified block, and that are in the current loop) in depth first +/// order w.r.t the DominatorTree. This allows us to visit definitions before +/// uses, allowing us to hoist a loop body in one pass without iteration. +/// +bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI, + DominatorTree *DT, AssumptionCache *AC, + TargetLibraryInfo *TLI, Loop *CurLoop, + MemorySSAUpdater &MSSAU, ScalarEvolution *SE, + ICFLoopSafetyInfo *SafetyInfo, + SinkAndHoistLICMFlags &Flags, + OptimizationRemarkEmitter *ORE, bool LoopNestMode, + bool AllowSpeculation) { + // Verify inputs. + assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr && + CurLoop != nullptr && SafetyInfo != nullptr && + "Unexpected input to hoistRegion."); + + ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU); + + // Keep track of instructions that have been hoisted, as they may need to be + // re-hoisted if they end up not dominating all of their uses. + SmallVector<Instruction *, 16> HoistedInstructions; + + // For PHI hoisting to work we need to hoist blocks before their successors. + // We can do this by iterating through the blocks in the loop in reverse + // post-order. + LoopBlocksRPO Worklist(CurLoop); + Worklist.perform(LI); + bool Changed = false; + for (BasicBlock *BB : Worklist) { + // Only need to process the contents of this block if it is not part of a + // subloop (which would already have been processed). + if (!LoopNestMode && inSubLoop(BB, CurLoop, LI)) + continue; + + for (Instruction &I : llvm::make_early_inc_range(*BB)) { + // Try constant folding this instruction. If all the operands are + // constants, it is technically hoistable, but it would be better to + // just fold it. + if (Constant *C = ConstantFoldInstruction( + &I, I.getModule()->getDataLayout(), TLI)) { + LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C + << '\n'); + // FIXME MSSA: Such replacements may make accesses unoptimized (D51960). + I.replaceAllUsesWith(C); + if (isInstructionTriviallyDead(&I, TLI)) + eraseInstruction(I, *SafetyInfo, MSSAU); + Changed = true; + continue; + } + + // Try hoisting the instruction out to the preheader. We can only do + // this if all of the operands of the instruction are loop invariant and + // if it is safe to hoist the instruction. We also check block frequency + // to make sure instruction only gets hoisted into colder blocks. + // TODO: It may be safe to hoist if we are hoisting to a conditional block + // and we have accurately duplicated the control flow from the loop header + // to that block. + if (CurLoop->hasLoopInvariantOperands(&I) && + canSinkOrHoistInst(I, AA, DT, CurLoop, MSSAU, true, Flags, ORE) && + isSafeToExecuteUnconditionally( + I, DT, TLI, CurLoop, SafetyInfo, ORE, + CurLoop->getLoopPreheader()->getTerminator(), AC, + AllowSpeculation)) { + hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, + MSSAU, SE, ORE); + HoistedInstructions.push_back(&I); + Changed = true; + continue; + } + + // Attempt to remove floating point division out of the loop by + // converting it to a reciprocal multiplication. + if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() && + CurLoop->isLoopInvariant(I.getOperand(1))) { + auto Divisor = I.getOperand(1); + auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0); + auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor); + ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags()); + SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent()); + ReciprocalDivisor->insertBefore(&I); + + auto Product = + BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor); + Product->setFastMathFlags(I.getFastMathFlags()); + SafetyInfo->insertInstructionTo(Product, I.getParent()); + Product->insertAfter(&I); + I.replaceAllUsesWith(Product); + eraseInstruction(I, *SafetyInfo, MSSAU); + + hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), + SafetyInfo, MSSAU, SE, ORE); + HoistedInstructions.push_back(ReciprocalDivisor); + Changed = true; + continue; + } + + auto IsInvariantStart = [&](Instruction &I) { + using namespace PatternMatch; + return I.use_empty() && + match(&I, m_Intrinsic<Intrinsic::invariant_start>()); + }; + auto MustExecuteWithoutWritesBefore = [&](Instruction &I) { + return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) && + SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop); + }; + if ((IsInvariantStart(I) || isGuard(&I)) && + CurLoop->hasLoopInvariantOperands(&I) && + MustExecuteWithoutWritesBefore(I)) { + hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, + MSSAU, SE, ORE); + HoistedInstructions.push_back(&I); + Changed = true; + continue; + } + + if (PHINode *PN = dyn_cast<PHINode>(&I)) { + if (CFH.canHoistPHI(PN)) { + // Redirect incoming blocks first to ensure that we create hoisted + // versions of those blocks before we hoist the phi. + for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i) + PN->setIncomingBlock( + i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i))); + hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo, + MSSAU, SE, ORE); + assert(DT->dominates(PN, BB) && "Conditional PHIs not expected"); + Changed = true; + continue; + } + } + + // Remember possibly hoistable branches so we can actually hoist them + // later if needed. + if (BranchInst *BI = dyn_cast<BranchInst>(&I)) + CFH.registerPossiblyHoistableBranch(BI); + } + } + + // If we hoisted instructions to a conditional block they may not dominate + // their uses that weren't hoisted (such as phis where some operands are not + // loop invariant). If so make them unconditional by moving them to their + // immediate dominator. We iterate through the instructions in reverse order + // which ensures that when we rehoist an instruction we rehoist its operands, + // and also keep track of where in the block we are rehoisting to to make sure + // that we rehoist instructions before the instructions that use them. + Instruction *HoistPoint = nullptr; + if (ControlFlowHoisting) { + for (Instruction *I : reverse(HoistedInstructions)) { + if (!llvm::all_of(I->uses(), + [&](Use &U) { return DT->dominates(I, U); })) { + BasicBlock *Dominator = + DT->getNode(I->getParent())->getIDom()->getBlock(); + if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) { + if (HoistPoint) + assert(DT->dominates(Dominator, HoistPoint->getParent()) && + "New hoist point expected to dominate old hoist point"); + HoistPoint = Dominator->getTerminator(); + } + LLVM_DEBUG(dbgs() << "LICM rehoisting to " + << HoistPoint->getParent()->getNameOrAsOperand() + << ": " << *I << "\n"); + moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE); + HoistPoint = I; + Changed = true; + } + } + } + if (VerifyMemorySSA) + MSSAU.getMemorySSA()->verifyMemorySSA(); + + // Now that we've finished hoisting make sure that LI and DT are still + // valid. +#ifdef EXPENSIVE_CHECKS + if (Changed) { + assert(DT->verify(DominatorTree::VerificationLevel::Fast) && + "Dominator tree verification failed"); + LI->verify(*DT); + } +#endif + + return Changed; +} + +// Return true if LI is invariant within scope of the loop. LI is invariant if +// CurLoop is dominated by an invariant.start representing the same memory +// location and size as the memory location LI loads from, and also the +// invariant.start has no uses. +static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT, + Loop *CurLoop) { + Value *Addr = LI->getOperand(0); + const DataLayout &DL = LI->getModule()->getDataLayout(); + const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType()); + + // It is not currently possible for clang to generate an invariant.start + // intrinsic with scalable vector types because we don't support thread local + // sizeless types and we don't permit sizeless types in structs or classes. + // Furthermore, even if support is added for this in future the intrinsic + // itself is defined to have a size of -1 for variable sized objects. This + // makes it impossible to verify if the intrinsic envelops our region of + // interest. For example, both <vscale x 32 x i8> and <vscale x 16 x i8> + // types would have a -1 parameter, but the former is clearly double the size + // of the latter. + if (LocSizeInBits.isScalable()) + return false; + + // if the type is i8 addrspace(x)*, we know this is the type of + // llvm.invariant.start operand + auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()), + LI->getPointerAddressSpace()); + unsigned BitcastsVisited = 0; + // Look through bitcasts until we reach the i8* type (this is invariant.start + // operand type). + while (Addr->getType() != PtrInt8Ty) { + auto *BC = dyn_cast<BitCastInst>(Addr); + // Avoid traversing high number of bitcast uses. + if (++BitcastsVisited > MaxNumUsesTraversed || !BC) + return false; + Addr = BC->getOperand(0); + } + // If we've ended up at a global/constant, bail. We shouldn't be looking at + // uselists for non-local Values in a loop pass. + if (isa<Constant>(Addr)) + return false; + + unsigned UsesVisited = 0; + // Traverse all uses of the load operand value, to see if invariant.start is + // one of the uses, and whether it dominates the load instruction. + for (auto *U : Addr->users()) { + // Avoid traversing for Load operand with high number of users. + if (++UsesVisited > MaxNumUsesTraversed) + return false; + IntrinsicInst *II = dyn_cast<IntrinsicInst>(U); + // If there are escaping uses of invariant.start instruction, the load maybe + // non-invariant. + if (!II || II->getIntrinsicID() != Intrinsic::invariant_start || + !II->use_empty()) + continue; + ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0)); + // The intrinsic supports having a -1 argument for variable sized objects + // so we should check for that here. + if (InvariantSize->isNegative()) + continue; + uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8; + // Confirm the invariant.start location size contains the load operand size + // in bits. Also, the invariant.start should dominate the load, and we + // should not hoist the load out of a loop that contains this dominating + // invariant.start. + if (LocSizeInBits.getFixedValue() <= InvariantSizeInBits && + DT->properlyDominates(II->getParent(), CurLoop->getHeader())) + return true; + } + + return false; +} + +namespace { +/// Return true if-and-only-if we know how to (mechanically) both hoist and +/// sink a given instruction out of a loop. Does not address legality +/// concerns such as aliasing or speculation safety. +bool isHoistableAndSinkableInst(Instruction &I) { + // Only these instructions are hoistable/sinkable. + return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) || + isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) || + isa<BinaryOperator>(I) || isa<SelectInst>(I) || + isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || + isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || + isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || + isa<InsertValueInst>(I) || isa<FreezeInst>(I)); +} +/// Return true if MSSA knows there are no MemoryDefs in the loop. +bool isReadOnly(const MemorySSAUpdater &MSSAU, const Loop *L) { + for (auto *BB : L->getBlocks()) + if (MSSAU.getMemorySSA()->getBlockDefs(BB)) + return false; + return true; +} + +/// Return true if I is the only Instruction with a MemoryAccess in L. +bool isOnlyMemoryAccess(const Instruction *I, const Loop *L, + const MemorySSAUpdater &MSSAU) { + for (auto *BB : L->getBlocks()) + if (auto *Accs = MSSAU.getMemorySSA()->getBlockAccesses(BB)) { + int NotAPhi = 0; + for (const auto &Acc : *Accs) { + if (isa<MemoryPhi>(&Acc)) + continue; + const auto *MUD = cast<MemoryUseOrDef>(&Acc); + if (MUD->getMemoryInst() != I || NotAPhi++ == 1) + return false; + } + } + return true; +} +} + +bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT, + Loop *CurLoop, MemorySSAUpdater &MSSAU, + bool TargetExecutesOncePerLoop, + SinkAndHoistLICMFlags &Flags, + OptimizationRemarkEmitter *ORE) { + // If we don't understand the instruction, bail early. + if (!isHoistableAndSinkableInst(I)) + return false; + + MemorySSA *MSSA = MSSAU.getMemorySSA(); + // Loads have extra constraints we have to verify before we can hoist them. + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + if (!LI->isUnordered()) + return false; // Don't sink/hoist volatile or ordered atomic loads! + + // Loads from constant memory are always safe to move, even if they end up + // in the same alias set as something that ends up being modified. + if (!isModSet(AA->getModRefInfoMask(LI->getOperand(0)))) + return true; + if (LI->hasMetadata(LLVMContext::MD_invariant_load)) + return true; + + if (LI->isAtomic() && !TargetExecutesOncePerLoop) + return false; // Don't risk duplicating unordered loads + + // This checks for an invariant.start dominating the load. + if (isLoadInvariantInLoop(LI, DT, CurLoop)) + return true; + + bool Invalidated = pointerInvalidatedByLoop( + MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, Flags); + // Check loop-invariant address because this may also be a sinkable load + // whose address is not necessarily loop-invariant. + if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand())) + ORE->emit([&]() { + return OptimizationRemarkMissed( + DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI) + << "failed to move load with loop-invariant address " + "because the loop may invalidate its value"; + }); + + return !Invalidated; + } else if (CallInst *CI = dyn_cast<CallInst>(&I)) { + // Don't sink or hoist dbg info; it's legal, but not useful. + if (isa<DbgInfoIntrinsic>(I)) + return false; + + // Don't sink calls which can throw. + if (CI->mayThrow()) + return false; + + // Convergent attribute has been used on operations that involve + // inter-thread communication which results are implicitly affected by the + // enclosing control flows. It is not safe to hoist or sink such operations + // across control flow. + if (CI->isConvergent()) + return false; + + using namespace PatternMatch; + if (match(CI, m_Intrinsic<Intrinsic::assume>())) + // Assumes don't actually alias anything or throw + return true; + + if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>())) + // Widenable conditions don't actually alias anything or throw + return true; + + // Handle simple cases by querying alias analysis. + MemoryEffects Behavior = AA->getMemoryEffects(CI); + if (Behavior.doesNotAccessMemory()) + return true; + if (Behavior.onlyReadsMemory()) { + // A readonly argmemonly function only reads from memory pointed to by + // it's arguments with arbitrary offsets. If we can prove there are no + // writes to this memory in the loop, we can hoist or sink. + if (Behavior.onlyAccessesArgPointees()) { + // TODO: expand to writeable arguments + for (Value *Op : CI->args()) + if (Op->getType()->isPointerTy() && + pointerInvalidatedByLoop( + MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I, + Flags)) + return false; + return true; + } + + // If this call only reads from memory and there are no writes to memory + // in the loop, we can hoist or sink the call as appropriate. + if (isReadOnly(MSSAU, CurLoop)) + return true; + } + + // FIXME: This should use mod/ref information to see if we can hoist or + // sink the call. + + return false; + } else if (auto *FI = dyn_cast<FenceInst>(&I)) { + // Fences alias (most) everything to provide ordering. For the moment, + // just give up if there are any other memory operations in the loop. + return isOnlyMemoryAccess(FI, CurLoop, MSSAU); + } else if (auto *SI = dyn_cast<StoreInst>(&I)) { + if (!SI->isUnordered()) + return false; // Don't sink/hoist volatile or ordered atomic store! + + // We can only hoist a store that we can prove writes a value which is not + // read or overwritten within the loop. For those cases, we fallback to + // load store promotion instead. TODO: We can extend this to cases where + // there is exactly one write to the location and that write dominates an + // arbitrary number of reads in the loop. + if (isOnlyMemoryAccess(SI, CurLoop, MSSAU)) + return true; + // If there are more accesses than the Promotion cap or no "quota" to + // check clobber, then give up as we're not walking a list that long. + if (Flags.tooManyMemoryAccesses() || Flags.tooManyClobberingCalls()) + return false; + // If there are interfering Uses (i.e. their defining access is in the + // loop), or ordered loads (stored as Defs!), don't move this store. + // Could do better here, but this is conservatively correct. + // TODO: Cache set of Uses on the first walk in runOnLoop, update when + // moving accesses. Can also extend to dominating uses. + auto *SIMD = MSSA->getMemoryAccess(SI); + for (auto *BB : CurLoop->getBlocks()) + if (auto *Accesses = MSSA->getBlockAccesses(BB)) { + for (const auto &MA : *Accesses) + if (const auto *MU = dyn_cast<MemoryUse>(&MA)) { + auto *MD = MU->getDefiningAccess(); + if (!MSSA->isLiveOnEntryDef(MD) && + CurLoop->contains(MD->getBlock())) + return false; + // Disable hoisting past potentially interfering loads. Optimized + // Uses may point to an access outside the loop, as getClobbering + // checks the previous iteration when walking the backedge. + // FIXME: More precise: no Uses that alias SI. + if (!Flags.getIsSink() && !MSSA->dominates(SIMD, MU)) + return false; + } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) { + if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) { + (void)LI; // Silence warning. + assert(!LI->isUnordered() && "Expected unordered load"); + return false; + } + // Any call, while it may not be clobbering SI, it may be a use. + if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) { + // Check if the call may read from the memory location written + // to by SI. Check CI's attributes and arguments; the number of + // such checks performed is limited above by NoOfMemAccTooLarge. + ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI)); + if (isModOrRefSet(MRI)) + return false; + } + } + } + auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI); + Flags.incrementClobberingCalls(); + // If there are no clobbering Defs in the loop, store is safe to hoist. + return MSSA->isLiveOnEntryDef(Source) || + !CurLoop->contains(Source->getBlock()); + } + + assert(!I.mayReadOrWriteMemory() && "unhandled aliasing"); + + // We've established mechanical ability and aliasing, it's up to the caller + // to check fault safety + return true; +} + +/// Returns true if a PHINode is a trivially replaceable with an +/// Instruction. +/// This is true when all incoming values are that instruction. +/// This pattern occurs most often with LCSSA PHI nodes. +/// +static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) { + for (const Value *IncValue : PN.incoming_values()) + if (IncValue != &I) + return false; + + return true; +} + +/// Return true if the instruction is free in the loop. +static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop, + const TargetTransformInfo *TTI) { + InstructionCost CostI = + TTI->getInstructionCost(&I, TargetTransformInfo::TCK_SizeAndLatency); + + if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) { + if (CostI != TargetTransformInfo::TCC_Free) + return false; + // For a GEP, we cannot simply use getInstructionCost because currently + // it optimistically assumes that a GEP will fold into addressing mode + // regardless of its users. + const BasicBlock *BB = GEP->getParent(); + for (const User *U : GEP->users()) { + const Instruction *UI = cast<Instruction>(U); + if (CurLoop->contains(UI) && + (BB != UI->getParent() || + (!isa<StoreInst>(UI) && !isa<LoadInst>(UI)))) + return false; + } + return true; + } + + return CostI == TargetTransformInfo::TCC_Free; +} + +/// Return true if the only users of this instruction are outside of +/// the loop. If this is true, we can sink the instruction to the exit +/// blocks of the loop. +/// +/// We also return true if the instruction could be folded away in lowering. +/// (e.g., a GEP can be folded into a load as an addressing mode in the loop). +static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop, + const LoopSafetyInfo *SafetyInfo, + TargetTransformInfo *TTI, bool &FreeInLoop, + bool LoopNestMode) { + const auto &BlockColors = SafetyInfo->getBlockColors(); + bool IsFree = isFreeInLoop(I, CurLoop, TTI); + for (const User *U : I.users()) { + const Instruction *UI = cast<Instruction>(U); + if (const PHINode *PN = dyn_cast<PHINode>(UI)) { + const BasicBlock *BB = PN->getParent(); + // We cannot sink uses in catchswitches. + if (isa<CatchSwitchInst>(BB->getTerminator())) + return false; + + // We need to sink a callsite to a unique funclet. Avoid sinking if the + // phi use is too muddled. + if (isa<CallInst>(I)) + if (!BlockColors.empty() && + BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1) + return false; + + if (LoopNestMode) { + while (isa<PHINode>(UI) && UI->hasOneUser() && + UI->getNumOperands() == 1) { + if (!CurLoop->contains(UI)) + break; + UI = cast<Instruction>(UI->user_back()); + } + } + } + + if (CurLoop->contains(UI)) { + if (IsFree) { + FreeInLoop = true; + continue; + } + return false; + } + } + return true; +} + +static Instruction *cloneInstructionInExitBlock( + Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI, + const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater &MSSAU) { + Instruction *New; + if (auto *CI = dyn_cast<CallInst>(&I)) { + const auto &BlockColors = SafetyInfo->getBlockColors(); + + // Sinking call-sites need to be handled differently from other + // instructions. The cloned call-site needs a funclet bundle operand + // appropriate for its location in the CFG. + SmallVector<OperandBundleDef, 1> OpBundles; + for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles(); + BundleIdx != BundleEnd; ++BundleIdx) { + OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx); + if (Bundle.getTagID() == LLVMContext::OB_funclet) + continue; + + OpBundles.emplace_back(Bundle); + } + + if (!BlockColors.empty()) { + const ColorVector &CV = BlockColors.find(&ExitBlock)->second; + assert(CV.size() == 1 && "non-unique color for exit block!"); + BasicBlock *BBColor = CV.front(); + Instruction *EHPad = BBColor->getFirstNonPHI(); + if (EHPad->isEHPad()) + OpBundles.emplace_back("funclet", EHPad); + } + + New = CallInst::Create(CI, OpBundles); + } else { + New = I.clone(); + } + + New->insertInto(&ExitBlock, ExitBlock.getFirstInsertionPt()); + if (!I.getName().empty()) + New->setName(I.getName() + ".le"); + + if (MSSAU.getMemorySSA()->getMemoryAccess(&I)) { + // Create a new MemoryAccess and let MemorySSA set its defining access. + MemoryAccess *NewMemAcc = MSSAU.createMemoryAccessInBB( + New, nullptr, New->getParent(), MemorySSA::Beginning); + if (NewMemAcc) { + if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc)) + MSSAU.insertDef(MemDef, /*RenameUses=*/true); + else { + auto *MemUse = cast<MemoryUse>(NewMemAcc); + MSSAU.insertUse(MemUse, /*RenameUses=*/true); + } + } + } + + // Build LCSSA PHI nodes for any in-loop operands (if legal). Note that + // this is particularly cheap because we can rip off the PHI node that we're + // replacing for the number and blocks of the predecessors. + // OPT: If this shows up in a profile, we can instead finish sinking all + // invariant instructions, and then walk their operands to re-establish + // LCSSA. That will eliminate creating PHI nodes just to nuke them when + // sinking bottom-up. + for (Use &Op : New->operands()) + if (LI->wouldBeOutOfLoopUseRequiringLCSSA(Op.get(), PN.getParent())) { + auto *OInst = cast<Instruction>(Op.get()); + PHINode *OpPN = + PHINode::Create(OInst->getType(), PN.getNumIncomingValues(), + OInst->getName() + ".lcssa", &ExitBlock.front()); + for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) + OpPN->addIncoming(OInst, PN.getIncomingBlock(i)); + Op = OpPN; + } + return New; +} + +static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo, + MemorySSAUpdater &MSSAU) { + MSSAU.removeMemoryAccess(&I); + SafetyInfo.removeInstruction(&I); + I.eraseFromParent(); +} + +static void moveInstructionBefore(Instruction &I, Instruction &Dest, + ICFLoopSafetyInfo &SafetyInfo, + MemorySSAUpdater &MSSAU, + ScalarEvolution *SE) { + SafetyInfo.removeInstruction(&I); + SafetyInfo.insertInstructionTo(&I, Dest.getParent()); + I.moveBefore(&Dest); + if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>( + MSSAU.getMemorySSA()->getMemoryAccess(&I))) + MSSAU.moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::BeforeTerminator); + if (SE) + SE->forgetValue(&I); +} + +static Instruction *sinkThroughTriviallyReplaceablePHI( + PHINode *TPN, Instruction *I, LoopInfo *LI, + SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies, + const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop, + MemorySSAUpdater &MSSAU) { + assert(isTriviallyReplaceablePHI(*TPN, *I) && + "Expect only trivially replaceable PHI"); + BasicBlock *ExitBlock = TPN->getParent(); + Instruction *New; + auto It = SunkCopies.find(ExitBlock); + if (It != SunkCopies.end()) + New = It->second; + else + New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock( + *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU); + return New; +} + +static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) { + BasicBlock *BB = PN->getParent(); + if (!BB->canSplitPredecessors()) + return false; + // It's not impossible to split EHPad blocks, but if BlockColors already exist + // it require updating BlockColors for all offspring blocks accordingly. By + // skipping such corner case, we can make updating BlockColors after splitting + // predecessor fairly simple. + if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad()) + return false; + for (BasicBlock *BBPred : predecessors(BB)) { + if (isa<IndirectBrInst>(BBPred->getTerminator())) + return false; + } + return true; +} + +static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT, + LoopInfo *LI, const Loop *CurLoop, + LoopSafetyInfo *SafetyInfo, + MemorySSAUpdater *MSSAU) { +#ifndef NDEBUG + SmallVector<BasicBlock *, 32> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), + ExitBlocks.end()); +#endif + BasicBlock *ExitBB = PN->getParent(); + assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block."); + + // Split predecessors of the loop exit to make instructions in the loop are + // exposed to exit blocks through trivially replaceable PHIs while keeping the + // loop in the canonical form where each predecessor of each exit block should + // be contained within the loop. For example, this will convert the loop below + // from + // + // LB1: + // %v1 = + // br %LE, %LB2 + // LB2: + // %v2 = + // br %LE, %LB1 + // LE: + // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable + // + // to + // + // LB1: + // %v1 = + // br %LE.split, %LB2 + // LB2: + // %v2 = + // br %LE.split2, %LB1 + // LE.split: + // %p1 = phi [%v1, %LB1] <-- trivially replaceable + // br %LE + // LE.split2: + // %p2 = phi [%v2, %LB2] <-- trivially replaceable + // br %LE + // LE: + // %p = phi [%p1, %LE.split], [%p2, %LE.split2] + // + const auto &BlockColors = SafetyInfo->getBlockColors(); + SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB)); + while (!PredBBs.empty()) { + BasicBlock *PredBB = *PredBBs.begin(); + assert(CurLoop->contains(PredBB) && + "Expect all predecessors are in the loop"); + if (PN->getBasicBlockIndex(PredBB) >= 0) { + BasicBlock *NewPred = SplitBlockPredecessors( + ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true); + // Since we do not allow splitting EH-block with BlockColors in + // canSplitPredecessors(), we can simply assign predecessor's color to + // the new block. + if (!BlockColors.empty()) + // Grab a reference to the ColorVector to be inserted before getting the + // reference to the vector we are copying because inserting the new + // element in BlockColors might cause the map to be reallocated. + SafetyInfo->copyColors(NewPred, PredBB); + } + PredBBs.remove(PredBB); + } +} + +/// When an instruction is found to only be used outside of the loop, this +/// function moves it to the exit blocks and patches up SSA form as needed. +/// This method is guaranteed to remove the original instruction from its +/// position, and may either delete it or move it to outside of the loop. +/// +static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT, + const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo, + MemorySSAUpdater &MSSAU, OptimizationRemarkEmitter *ORE) { + bool Changed = false; + LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n"); + + // Iterate over users to be ready for actual sinking. Replace users via + // unreachable blocks with undef and make all user PHIs trivially replaceable. + SmallPtrSet<Instruction *, 8> VisitedUsers; + for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) { + auto *User = cast<Instruction>(*UI); + Use &U = UI.getUse(); + ++UI; + + if (VisitedUsers.count(User) || CurLoop->contains(User)) + continue; + + if (!DT->isReachableFromEntry(User->getParent())) { + U = PoisonValue::get(I.getType()); + Changed = true; + continue; + } + + // The user must be a PHI node. + PHINode *PN = cast<PHINode>(User); + + // Surprisingly, instructions can be used outside of loops without any + // exits. This can only happen in PHI nodes if the incoming block is + // unreachable. + BasicBlock *BB = PN->getIncomingBlock(U); + if (!DT->isReachableFromEntry(BB)) { + U = PoisonValue::get(I.getType()); + Changed = true; + continue; + } + + VisitedUsers.insert(PN); + if (isTriviallyReplaceablePHI(*PN, I)) + continue; + + if (!canSplitPredecessors(PN, SafetyInfo)) + return Changed; + + // Split predecessors of the PHI so that we can make users trivially + // replaceable. + splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, &MSSAU); + + // Should rebuild the iterators, as they may be invalidated by + // splitPredecessorsOfLoopExit(). + UI = I.user_begin(); + UE = I.user_end(); + } + + if (VisitedUsers.empty()) + return Changed; + + ORE->emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I) + << "sinking " << ore::NV("Inst", &I); + }); + if (isa<LoadInst>(I)) + ++NumMovedLoads; + else if (isa<CallInst>(I)) + ++NumMovedCalls; + ++NumSunk; + +#ifndef NDEBUG + SmallVector<BasicBlock *, 32> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(), + ExitBlocks.end()); +#endif + + // Clones of this instruction. Don't create more than one per exit block! + SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies; + + // If this instruction is only used outside of the loop, then all users are + // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of + // the instruction. + // First check if I is worth sinking for all uses. Sink only when it is worth + // across all uses. + SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end()); + for (auto *UI : Users) { + auto *User = cast<Instruction>(UI); + + if (CurLoop->contains(User)) + continue; + + PHINode *PN = cast<PHINode>(User); + assert(ExitBlockSet.count(PN->getParent()) && + "The LCSSA PHI is not in an exit block!"); + + // The PHI must be trivially replaceable. + Instruction *New = sinkThroughTriviallyReplaceablePHI( + PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU); + PN->replaceAllUsesWith(New); + eraseInstruction(*PN, *SafetyInfo, MSSAU); + Changed = true; + } + return Changed; +} + +/// When an instruction is found to only use loop invariant operands that +/// is safe to hoist, this instruction is called to do the dirty work. +/// +static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop, + BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo, + MemorySSAUpdater &MSSAU, ScalarEvolution *SE, + OptimizationRemarkEmitter *ORE) { + LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": " + << I << "\n"); + ORE->emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting " + << ore::NV("Inst", &I); + }); + + // Metadata can be dependent on conditions we are hoisting above. + // Conservatively strip all metadata on the instruction unless we were + // guaranteed to execute I if we entered the loop, in which case the metadata + // is valid in the loop preheader. + // Similarly, If I is a call and it is not guaranteed to execute in the loop, + // then moving to the preheader means we should strip attributes on the call + // that can cause UB since we may be hoisting above conditions that allowed + // inferring those attributes. They may not be valid at the preheader. + if ((I.hasMetadataOtherThanDebugLoc() || isa<CallInst>(I)) && + // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning + // time in isGuaranteedToExecute if we don't actually have anything to + // drop. It is a compile time optimization, not required for correctness. + !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop)) + I.dropUndefImplyingAttrsAndUnknownMetadata(); + + if (isa<PHINode>(I)) + // Move the new node to the end of the phi list in the destination block. + moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE); + else + // Move the new node to the destination block, before its terminator. + moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE); + + I.updateLocationAfterHoist(); + + if (isa<LoadInst>(I)) + ++NumMovedLoads; + else if (isa<CallInst>(I)) + ++NumMovedCalls; + ++NumHoisted; +} + +/// Only sink or hoist an instruction if it is not a trapping instruction, +/// or if the instruction is known not to trap when moved to the preheader. +/// or if it is a trapping instruction and is guaranteed to execute. +static bool isSafeToExecuteUnconditionally( + Instruction &Inst, const DominatorTree *DT, const TargetLibraryInfo *TLI, + const Loop *CurLoop, const LoopSafetyInfo *SafetyInfo, + OptimizationRemarkEmitter *ORE, const Instruction *CtxI, + AssumptionCache *AC, bool AllowSpeculation) { + if (AllowSpeculation && + isSafeToSpeculativelyExecute(&Inst, CtxI, AC, DT, TLI)) + return true; + + bool GuaranteedToExecute = + SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop); + + if (!GuaranteedToExecute) { + auto *LI = dyn_cast<LoadInst>(&Inst); + if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand())) + ORE->emit([&]() { + return OptimizationRemarkMissed( + DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI) + << "failed to hoist load with loop-invariant address " + "because load is conditionally executed"; + }); + } + + return GuaranteedToExecute; +} + +namespace { +class LoopPromoter : public LoadAndStorePromoter { + Value *SomePtr; // Designated pointer to store to. + SmallVectorImpl<BasicBlock *> &LoopExitBlocks; + SmallVectorImpl<Instruction *> &LoopInsertPts; + SmallVectorImpl<MemoryAccess *> &MSSAInsertPts; + PredIteratorCache &PredCache; + MemorySSAUpdater &MSSAU; + LoopInfo &LI; + DebugLoc DL; + Align Alignment; + bool UnorderedAtomic; + AAMDNodes AATags; + ICFLoopSafetyInfo &SafetyInfo; + bool CanInsertStoresInExitBlocks; + ArrayRef<const Instruction *> Uses; + + // We're about to add a use of V in a loop exit block. Insert an LCSSA phi + // (if legal) if doing so would add an out-of-loop use to an instruction + // defined in-loop. + Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const { + if (!LI.wouldBeOutOfLoopUseRequiringLCSSA(V, BB)) + return V; + + Instruction *I = cast<Instruction>(V); + // We need to create an LCSSA PHI node for the incoming value and + // store that. + PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB), + I->getName() + ".lcssa", &BB->front()); + for (BasicBlock *Pred : PredCache.get(BB)) + PN->addIncoming(I, Pred); + return PN; + } + +public: + LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S, + SmallVectorImpl<BasicBlock *> &LEB, + SmallVectorImpl<Instruction *> &LIP, + SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC, + MemorySSAUpdater &MSSAU, LoopInfo &li, DebugLoc dl, + Align Alignment, bool UnorderedAtomic, const AAMDNodes &AATags, + ICFLoopSafetyInfo &SafetyInfo, bool CanInsertStoresInExitBlocks) + : LoadAndStorePromoter(Insts, S), SomePtr(SP), LoopExitBlocks(LEB), + LoopInsertPts(LIP), MSSAInsertPts(MSSAIP), PredCache(PIC), MSSAU(MSSAU), + LI(li), DL(std::move(dl)), Alignment(Alignment), + UnorderedAtomic(UnorderedAtomic), AATags(AATags), + SafetyInfo(SafetyInfo), + CanInsertStoresInExitBlocks(CanInsertStoresInExitBlocks), Uses(Insts) {} + + void insertStoresInLoopExitBlocks() { + // Insert stores after in the loop exit blocks. Each exit block gets a + // store of the live-out values that feed them. Since we've already told + // the SSA updater about the defs in the loop and the preheader + // definition, it is all set and we can start using it. + DIAssignID *NewID = nullptr; + for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) { + BasicBlock *ExitBlock = LoopExitBlocks[i]; + Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); + LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock); + Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock); + Instruction *InsertPos = LoopInsertPts[i]; + StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos); + if (UnorderedAtomic) + NewSI->setOrdering(AtomicOrdering::Unordered); + NewSI->setAlignment(Alignment); + NewSI->setDebugLoc(DL); + // Attach DIAssignID metadata to the new store, generating it on the + // first loop iteration. + if (i == 0) { + // NewSI will have its DIAssignID set here if there are any stores in + // Uses with a DIAssignID attachment. This merged ID will then be + // attached to the other inserted stores (in the branch below). + NewSI->mergeDIAssignID(Uses); + NewID = cast_or_null<DIAssignID>( + NewSI->getMetadata(LLVMContext::MD_DIAssignID)); + } else { + // Attach the DIAssignID (or nullptr) merged from Uses in the branch + // above. + NewSI->setMetadata(LLVMContext::MD_DIAssignID, NewID); + } + + if (AATags) + NewSI->setAAMetadata(AATags); + + MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i]; + MemoryAccess *NewMemAcc; + if (!MSSAInsertPoint) { + NewMemAcc = MSSAU.createMemoryAccessInBB( + NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning); + } else { + NewMemAcc = + MSSAU.createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint); + } + MSSAInsertPts[i] = NewMemAcc; + MSSAU.insertDef(cast<MemoryDef>(NewMemAcc), true); + // FIXME: true for safety, false may still be correct. + } + } + + void doExtraRewritesBeforeFinalDeletion() override { + if (CanInsertStoresInExitBlocks) + insertStoresInLoopExitBlocks(); + } + + void instructionDeleted(Instruction *I) const override { + SafetyInfo.removeInstruction(I); + MSSAU.removeMemoryAccess(I); + } + + bool shouldDelete(Instruction *I) const override { + if (isa<StoreInst>(I)) + return CanInsertStoresInExitBlocks; + return true; + } +}; + +bool isNotCapturedBeforeOrInLoop(const Value *V, const Loop *L, + DominatorTree *DT) { + // We can perform the captured-before check against any instruction in the + // loop header, as the loop header is reachable from any instruction inside + // the loop. + // TODO: ReturnCaptures=true shouldn't be necessary here. + return !PointerMayBeCapturedBefore(V, /* ReturnCaptures */ true, + /* StoreCaptures */ true, + L->getHeader()->getTerminator(), DT); +} + +/// Return true if we can prove that a caller cannot inspect the object if an +/// unwind occurs inside the loop. +bool isNotVisibleOnUnwindInLoop(const Value *Object, const Loop *L, + DominatorTree *DT) { + bool RequiresNoCaptureBeforeUnwind; + if (!isNotVisibleOnUnwind(Object, RequiresNoCaptureBeforeUnwind)) + return false; + + return !RequiresNoCaptureBeforeUnwind || + isNotCapturedBeforeOrInLoop(Object, L, DT); +} + +bool isWritableObject(const Value *Object) { + // TODO: Alloca might not be writable after its lifetime ends. + // See https://github.com/llvm/llvm-project/issues/51838. + if (isa<AllocaInst>(Object)) + return true; + + // TODO: Also handle sret. + if (auto *A = dyn_cast<Argument>(Object)) + return A->hasByValAttr(); + + if (auto *G = dyn_cast<GlobalVariable>(Object)) + return !G->isConstant(); + + // TODO: Noalias has nothing to do with writability, this should check for + // an allocator function. + return isNoAliasCall(Object); +} + +bool isThreadLocalObject(const Value *Object, const Loop *L, DominatorTree *DT, + TargetTransformInfo *TTI) { + // The object must be function-local to start with, and then not captured + // before/in the loop. + return (isIdentifiedFunctionLocal(Object) && + isNotCapturedBeforeOrInLoop(Object, L, DT)) || + (TTI->isSingleThreaded() || SingleThread); +} + +} // namespace + +/// Try to promote memory values to scalars by sinking stores out of the +/// loop and moving loads to before the loop. We do this by looping over +/// the stores in the loop, looking for stores to Must pointers which are +/// loop invariant. +/// +bool llvm::promoteLoopAccessesToScalars( + const SmallSetVector<Value *, 8> &PointerMustAliases, + SmallVectorImpl<BasicBlock *> &ExitBlocks, + SmallVectorImpl<Instruction *> &InsertPts, + SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC, + LoopInfo *LI, DominatorTree *DT, AssumptionCache *AC, + const TargetLibraryInfo *TLI, TargetTransformInfo *TTI, Loop *CurLoop, + MemorySSAUpdater &MSSAU, ICFLoopSafetyInfo *SafetyInfo, + OptimizationRemarkEmitter *ORE, bool AllowSpeculation, + bool HasReadsOutsideSet) { + // Verify inputs. + assert(LI != nullptr && DT != nullptr && CurLoop != nullptr && + SafetyInfo != nullptr && + "Unexpected Input to promoteLoopAccessesToScalars"); + + LLVM_DEBUG({ + dbgs() << "Trying to promote set of must-aliased pointers:\n"; + for (Value *Ptr : PointerMustAliases) + dbgs() << " " << *Ptr << "\n"; + }); + ++NumPromotionCandidates; + + Value *SomePtr = *PointerMustAliases.begin(); + BasicBlock *Preheader = CurLoop->getLoopPreheader(); + + // It is not safe to promote a load/store from the loop if the load/store is + // conditional. For example, turning: + // + // for () { if (c) *P += 1; } + // + // into: + // + // tmp = *P; for () { if (c) tmp +=1; } *P = tmp; + // + // is not safe, because *P may only be valid to access if 'c' is true. + // + // The safety property divides into two parts: + // p1) The memory may not be dereferenceable on entry to the loop. In this + // case, we can't insert the required load in the preheader. + // p2) The memory model does not allow us to insert a store along any dynamic + // path which did not originally have one. + // + // If at least one store is guaranteed to execute, both properties are + // satisfied, and promotion is legal. + // + // This, however, is not a necessary condition. Even if no store/load is + // guaranteed to execute, we can still establish these properties. + // We can establish (p1) by proving that hoisting the load into the preheader + // is safe (i.e. proving dereferenceability on all paths through the loop). We + // can use any access within the alias set to prove dereferenceability, + // since they're all must alias. + // + // There are two ways establish (p2): + // a) Prove the location is thread-local. In this case the memory model + // requirement does not apply, and stores are safe to insert. + // b) Prove a store dominates every exit block. In this case, if an exit + // blocks is reached, the original dynamic path would have taken us through + // the store, so inserting a store into the exit block is safe. Note that this + // is different from the store being guaranteed to execute. For instance, + // if an exception is thrown on the first iteration of the loop, the original + // store is never executed, but the exit blocks are not executed either. + + bool DereferenceableInPH = false; + bool StoreIsGuanteedToExecute = false; + bool FoundLoadToPromote = false; + // Goes from Unknown to either Safe or Unsafe, but can't switch between them. + enum { + StoreSafe, + StoreUnsafe, + StoreSafetyUnknown, + } StoreSafety = StoreSafetyUnknown; + + SmallVector<Instruction *, 64> LoopUses; + + // We start with an alignment of one and try to find instructions that allow + // us to prove better alignment. + Align Alignment; + // Keep track of which types of access we see + bool SawUnorderedAtomic = false; + bool SawNotAtomic = false; + AAMDNodes AATags; + + const DataLayout &MDL = Preheader->getModule()->getDataLayout(); + + // If there are reads outside the promoted set, then promoting stores is + // definitely not safe. + if (HasReadsOutsideSet) + StoreSafety = StoreUnsafe; + + if (StoreSafety == StoreSafetyUnknown && SafetyInfo->anyBlockMayThrow()) { + // If a loop can throw, we have to insert a store along each unwind edge. + // That said, we can't actually make the unwind edge explicit. Therefore, + // we have to prove that the store is dead along the unwind edge. We do + // this by proving that the caller can't have a reference to the object + // after return and thus can't possibly load from the object. + Value *Object = getUnderlyingObject(SomePtr); + if (!isNotVisibleOnUnwindInLoop(Object, CurLoop, DT)) + StoreSafety = StoreUnsafe; + } + + // Check that all accesses to pointers in the alias set use the same type. + // We cannot (yet) promote a memory location that is loaded and stored in + // different sizes. While we are at it, collect alignment and AA info. + Type *AccessTy = nullptr; + for (Value *ASIV : PointerMustAliases) { + for (Use &U : ASIV->uses()) { + // Ignore instructions that are outside the loop. + Instruction *UI = dyn_cast<Instruction>(U.getUser()); + if (!UI || !CurLoop->contains(UI)) + continue; + + // If there is an non-load/store instruction in the loop, we can't promote + // it. + if (LoadInst *Load = dyn_cast<LoadInst>(UI)) { + if (!Load->isUnordered()) + return false; + + SawUnorderedAtomic |= Load->isAtomic(); + SawNotAtomic |= !Load->isAtomic(); + FoundLoadToPromote = true; + + Align InstAlignment = Load->getAlign(); + + // Note that proving a load safe to speculate requires proving + // sufficient alignment at the target location. Proving it guaranteed + // to execute does as well. Thus we can increase our guaranteed + // alignment as well. + if (!DereferenceableInPH || (InstAlignment > Alignment)) + if (isSafeToExecuteUnconditionally( + *Load, DT, TLI, CurLoop, SafetyInfo, ORE, + Preheader->getTerminator(), AC, AllowSpeculation)) { + DereferenceableInPH = true; + Alignment = std::max(Alignment, InstAlignment); + } + } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) { + // Stores *of* the pointer are not interesting, only stores *to* the + // pointer. + if (U.getOperandNo() != StoreInst::getPointerOperandIndex()) + continue; + if (!Store->isUnordered()) + return false; + + SawUnorderedAtomic |= Store->isAtomic(); + SawNotAtomic |= !Store->isAtomic(); + + // If the store is guaranteed to execute, both properties are satisfied. + // We may want to check if a store is guaranteed to execute even if we + // already know that promotion is safe, since it may have higher + // alignment than any other guaranteed stores, in which case we can + // raise the alignment on the promoted store. + Align InstAlignment = Store->getAlign(); + bool GuaranteedToExecute = + SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop); + StoreIsGuanteedToExecute |= GuaranteedToExecute; + if (GuaranteedToExecute) { + DereferenceableInPH = true; + if (StoreSafety == StoreSafetyUnknown) + StoreSafety = StoreSafe; + Alignment = std::max(Alignment, InstAlignment); + } + + // If a store dominates all exit blocks, it is safe to sink. + // As explained above, if an exit block was executed, a dominating + // store must have been executed at least once, so we are not + // introducing stores on paths that did not have them. + // Note that this only looks at explicit exit blocks. If we ever + // start sinking stores into unwind edges (see above), this will break. + if (StoreSafety == StoreSafetyUnknown && + llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) { + return DT->dominates(Store->getParent(), Exit); + })) + StoreSafety = StoreSafe; + + // If the store is not guaranteed to execute, we may still get + // deref info through it. + if (!DereferenceableInPH) { + DereferenceableInPH = isDereferenceableAndAlignedPointer( + Store->getPointerOperand(), Store->getValueOperand()->getType(), + Store->getAlign(), MDL, Preheader->getTerminator(), AC, DT, TLI); + } + } else + continue; // Not a load or store. + + if (!AccessTy) + AccessTy = getLoadStoreType(UI); + else if (AccessTy != getLoadStoreType(UI)) + return false; + + // Merge the AA tags. + if (LoopUses.empty()) { + // On the first load/store, just take its AA tags. + AATags = UI->getAAMetadata(); + } else if (AATags) { + AATags = AATags.merge(UI->getAAMetadata()); + } + + LoopUses.push_back(UI); + } + } + + // If we found both an unordered atomic instruction and a non-atomic memory + // access, bail. We can't blindly promote non-atomic to atomic since we + // might not be able to lower the result. We can't downgrade since that + // would violate memory model. Also, align 0 is an error for atomics. + if (SawUnorderedAtomic && SawNotAtomic) + return false; + + // If we're inserting an atomic load in the preheader, we must be able to + // lower it. We're only guaranteed to be able to lower naturally aligned + // atomics. + if (SawUnorderedAtomic && Alignment < MDL.getTypeStoreSize(AccessTy)) + return false; + + // If we couldn't prove we can hoist the load, bail. + if (!DereferenceableInPH) { + LLVM_DEBUG(dbgs() << "Not promoting: Not dereferenceable in preheader\n"); + return false; + } + + // We know we can hoist the load, but don't have a guaranteed store. + // Check whether the location is writable and thread-local. If it is, then we + // can insert stores along paths which originally didn't have them without + // violating the memory model. + if (StoreSafety == StoreSafetyUnknown) { + Value *Object = getUnderlyingObject(SomePtr); + if (isWritableObject(Object) && + isThreadLocalObject(Object, CurLoop, DT, TTI)) + StoreSafety = StoreSafe; + } + + // If we've still failed to prove we can sink the store, hoist the load + // only, if possible. + if (StoreSafety != StoreSafe && !FoundLoadToPromote) + // If we cannot hoist the load either, give up. + return false; + + // Lets do the promotion! + if (StoreSafety == StoreSafe) { + LLVM_DEBUG(dbgs() << "LICM: Promoting load/store of the value: " << *SomePtr + << '\n'); + ++NumLoadStorePromoted; + } else { + LLVM_DEBUG(dbgs() << "LICM: Promoting load of the value: " << *SomePtr + << '\n'); + ++NumLoadPromoted; + } + + ORE->emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar", + LoopUses[0]) + << "Moving accesses to memory location out of the loop"; + }); + + // Look at all the loop uses, and try to merge their locations. + std::vector<const DILocation *> LoopUsesLocs; + for (auto *U : LoopUses) + LoopUsesLocs.push_back(U->getDebugLoc().get()); + auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs)); + + // We use the SSAUpdater interface to insert phi nodes as required. + SmallVector<PHINode *, 16> NewPHIs; + SSAUpdater SSA(&NewPHIs); + LoopPromoter Promoter(SomePtr, LoopUses, SSA, ExitBlocks, InsertPts, + MSSAInsertPts, PIC, MSSAU, *LI, DL, Alignment, + SawUnorderedAtomic, AATags, *SafetyInfo, + StoreSafety == StoreSafe); + + // Set up the preheader to have a definition of the value. It is the live-out + // value from the preheader that uses in the loop will use. + LoadInst *PreheaderLoad = nullptr; + if (FoundLoadToPromote || !StoreIsGuanteedToExecute) { + PreheaderLoad = + new LoadInst(AccessTy, SomePtr, SomePtr->getName() + ".promoted", + Preheader->getTerminator()); + if (SawUnorderedAtomic) + PreheaderLoad->setOrdering(AtomicOrdering::Unordered); + PreheaderLoad->setAlignment(Alignment); + PreheaderLoad->setDebugLoc(DebugLoc()); + if (AATags) + PreheaderLoad->setAAMetadata(AATags); + + MemoryAccess *PreheaderLoadMemoryAccess = MSSAU.createMemoryAccessInBB( + PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End); + MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess); + MSSAU.insertUse(NewMemUse, /*RenameUses=*/true); + SSA.AddAvailableValue(Preheader, PreheaderLoad); + } else { + SSA.AddAvailableValue(Preheader, PoisonValue::get(AccessTy)); + } + + if (VerifyMemorySSA) + MSSAU.getMemorySSA()->verifyMemorySSA(); + // Rewrite all the loads in the loop and remember all the definitions from + // stores in the loop. + Promoter.run(LoopUses); + + if (VerifyMemorySSA) + MSSAU.getMemorySSA()->verifyMemorySSA(); + // If the SSAUpdater didn't use the load in the preheader, just zap it now. + if (PreheaderLoad && PreheaderLoad->use_empty()) + eraseInstruction(*PreheaderLoad, *SafetyInfo, MSSAU); + + return true; +} + +static void foreachMemoryAccess(MemorySSA *MSSA, Loop *L, + function_ref<void(Instruction *)> Fn) { + for (const BasicBlock *BB : L->blocks()) + if (const auto *Accesses = MSSA->getBlockAccesses(BB)) + for (const auto &Access : *Accesses) + if (const auto *MUD = dyn_cast<MemoryUseOrDef>(&Access)) + Fn(MUD->getMemoryInst()); +} + +// The bool indicates whether there might be reads outside the set, in which +// case only loads may be promoted. +static SmallVector<PointersAndHasReadsOutsideSet, 0> +collectPromotionCandidates(MemorySSA *MSSA, AliasAnalysis *AA, Loop *L) { + BatchAAResults BatchAA(*AA); + AliasSetTracker AST(BatchAA); + + auto IsPotentiallyPromotable = [L](const Instruction *I) { + if (const auto *SI = dyn_cast<StoreInst>(I)) + return L->isLoopInvariant(SI->getPointerOperand()); + if (const auto *LI = dyn_cast<LoadInst>(I)) + return L->isLoopInvariant(LI->getPointerOperand()); + return false; + }; + + // Populate AST with potentially promotable accesses. + SmallPtrSet<Value *, 16> AttemptingPromotion; + foreachMemoryAccess(MSSA, L, [&](Instruction *I) { + if (IsPotentiallyPromotable(I)) { + AttemptingPromotion.insert(I); + AST.add(I); + } + }); + + // We're only interested in must-alias sets that contain a mod. + SmallVector<PointerIntPair<const AliasSet *, 1, bool>, 8> Sets; + for (AliasSet &AS : AST) + if (!AS.isForwardingAliasSet() && AS.isMod() && AS.isMustAlias()) + Sets.push_back({&AS, false}); + + if (Sets.empty()) + return {}; // Nothing to promote... + + // Discard any sets for which there is an aliasing non-promotable access. + foreachMemoryAccess(MSSA, L, [&](Instruction *I) { + if (AttemptingPromotion.contains(I)) + return; + + llvm::erase_if(Sets, [&](PointerIntPair<const AliasSet *, 1, bool> &Pair) { + ModRefInfo MR = Pair.getPointer()->aliasesUnknownInst(I, BatchAA); + // Cannot promote if there are writes outside the set. + if (isModSet(MR)) + return true; + if (isRefSet(MR)) { + // Remember reads outside the set. + Pair.setInt(true); + // If this is a mod-only set and there are reads outside the set, + // we will not be able to promote, so bail out early. + return !Pair.getPointer()->isRef(); + } + return false; + }); + }); + + SmallVector<std::pair<SmallSetVector<Value *, 8>, bool>, 0> Result; + for (auto [Set, HasReadsOutsideSet] : Sets) { + SmallSetVector<Value *, 8> PointerMustAliases; + for (const auto &ASI : *Set) + PointerMustAliases.insert(ASI.getValue()); + Result.emplace_back(std::move(PointerMustAliases), HasReadsOutsideSet); + } + + return Result; +} + +static bool pointerInvalidatedByLoop(MemorySSA *MSSA, MemoryUse *MU, + Loop *CurLoop, Instruction &I, + SinkAndHoistLICMFlags &Flags) { + // For hoisting, use the walker to determine safety + if (!Flags.getIsSink()) { + MemoryAccess *Source; + // See declaration of SetLicmMssaOptCap for usage details. + if (Flags.tooManyClobberingCalls()) + Source = MU->getDefiningAccess(); + else { + Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU); + Flags.incrementClobberingCalls(); + } + return !MSSA->isLiveOnEntryDef(Source) && + CurLoop->contains(Source->getBlock()); + } + + // For sinking, we'd need to check all Defs below this use. The getClobbering + // call will look on the backedge of the loop, but will check aliasing with + // the instructions on the previous iteration. + // For example: + // for (i ... ) + // load a[i] ( Use (LoE) + // store a[i] ( 1 = Def (2), with 2 = Phi for the loop. + // i++; + // The load sees no clobbering inside the loop, as the backedge alias check + // does phi translation, and will check aliasing against store a[i-1]. + // However sinking the load outside the loop, below the store is incorrect. + + // For now, only sink if there are no Defs in the loop, and the existing ones + // precede the use and are in the same block. + // FIXME: Increase precision: Safe to sink if Use post dominates the Def; + // needs PostDominatorTreeAnalysis. + // FIXME: More precise: no Defs that alias this Use. + if (Flags.tooManyMemoryAccesses()) + return true; + for (auto *BB : CurLoop->getBlocks()) + if (pointerInvalidatedByBlock(*BB, *MSSA, *MU)) + return true; + // When sinking, the source block may not be part of the loop so check it. + if (!CurLoop->contains(&I)) + return pointerInvalidatedByBlock(*I.getParent(), *MSSA, *MU); + + return false; +} + +bool pointerInvalidatedByBlock(BasicBlock &BB, MemorySSA &MSSA, MemoryUse &MU) { + if (const auto *Accesses = MSSA.getBlockDefs(&BB)) + for (const auto &MA : *Accesses) + if (const auto *MD = dyn_cast<MemoryDef>(&MA)) + if (MU.getBlock() != MD->getBlock() || !MSSA.locallyDominates(MD, &MU)) + return true; + return false; +} + +/// Little predicate that returns true if the specified basic block is in +/// a subloop of the current one, not the current one itself. +/// +static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) { + assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop"); + return LI->getLoopFor(BB) != CurLoop; +} |