diff options
| author | vvvv <[email protected]> | 2024-02-06 20:01:22 +0300 |
|---|---|---|
| committer | vvvv <[email protected]> | 2024-02-06 20:22:16 +0300 |
| commit | 0203b7a9a40828bb2bd4c32029b79ff0ea3d1f8f (patch) | |
| tree | e630d0d5bd0bd29fc8c2d2842ed2cfde781b993a /contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp | |
| parent | ba27db76d99d12a4f1c06960b5449423218614c4 (diff) | |
llvm16 targets
Diffstat (limited to 'contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp')
| -rw-r--r-- | contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp | 2403 |
1 files changed, 2403 insertions, 0 deletions
diff --git a/contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp b/contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp new file mode 100644 index 00000000000..b78757b855f --- /dev/null +++ b/contrib/libs/llvm16/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp @@ -0,0 +1,2403 @@ +//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// +/// \file VarLocBasedImpl.cpp +/// +/// LiveDebugValues is an optimistic "available expressions" dataflow +/// algorithm. The set of expressions is the set of machine locations +/// (registers, spill slots, constants, and target indices) that a variable +/// fragment might be located, qualified by a DIExpression and indirect-ness +/// flag, while each variable is identified by a DebugVariable object. The +/// availability of an expression begins when a DBG_VALUE instruction specifies +/// the location of a DebugVariable, and continues until that location is +/// clobbered or re-specified by a different DBG_VALUE for the same +/// DebugVariable. +/// +/// The output of LiveDebugValues is additional DBG_VALUE instructions, +/// placed to extend variable locations as far they're available. This file +/// and the VarLocBasedLDV class is an implementation that explicitly tracks +/// locations, using the VarLoc class. +/// +/// The canonical "available expressions" problem doesn't have expression +/// clobbering, instead when a variable is re-assigned, any expressions using +/// that variable get invalidated. LiveDebugValues can map onto "available +/// expressions" by having every register represented by a variable, which is +/// used in an expression that becomes available at a DBG_VALUE instruction. +/// When the register is clobbered, its variable is effectively reassigned, and +/// expressions computed from it become unavailable. A similar construct is +/// needed when a DebugVariable has its location re-specified, to invalidate +/// all other locations for that DebugVariable. +/// +/// Using the dataflow analysis to compute the available expressions, we create +/// a DBG_VALUE at the beginning of each block where the expression is +/// live-in. This propagates variable locations into every basic block where +/// the location can be determined, rather than only having DBG_VALUEs in blocks +/// where locations are specified due to an assignment or some optimization. +/// Movements of values between registers and spill slots are annotated with +/// DBG_VALUEs too to track variable values bewteen locations. All this allows +/// DbgEntityHistoryCalculator to focus on only the locations within individual +/// blocks, facilitating testing and improving modularity. +/// +/// We follow an optimisic dataflow approach, with this lattice: +/// +/// \verbatim +/// ┬ "Unknown" +/// | +/// v +/// True +/// | +/// v +/// ⊥ False +/// \endverbatim With "True" signifying that the expression is available (and +/// thus a DebugVariable's location is the corresponding register), while +/// "False" signifies that the expression is unavailable. "Unknown"s never +/// survive to the end of the analysis (see below). +/// +/// Formally, all DebugVariable locations that are live-out of a block are +/// initialized to \top. A blocks live-in values take the meet of the lattice +/// value for every predecessors live-outs, except for the entry block, where +/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer +/// function for a block assigns an expression for a DebugVariable to be "True" +/// if a DBG_VALUE in the block specifies it; "False" if the location is +/// clobbered; or the live-in value if it is unaffected by the block. We +/// visit each block in reverse post order until a fixedpoint is reached. The +/// solution produced is maximal. +/// +/// Intuitively, we start by assuming that every expression / variable location +/// is at least "True", and then propagate "False" from the entry block and any +/// clobbers until there are no more changes to make. This gives us an accurate +/// solution because all incorrect locations will have a "False" propagated into +/// them. It also gives us a solution that copes well with loops by assuming +/// that variable locations are live-through every loop, and then removing those +/// that are not through dataflow. +/// +/// Within LiveDebugValues: each variable location is represented by a +/// VarLoc object that identifies the source variable, the set of +/// machine-locations that currently describe it (a single location for +/// DBG_VALUE or multiple for DBG_VALUE_LIST), and the DBG_VALUE inst that +/// specifies the location. Each VarLoc is indexed in the (function-scope) \p +/// VarLocMap, giving each VarLoc a set of unique indexes, each of which +/// corresponds to one of the VarLoc's machine-locations and can be used to +/// lookup the VarLoc in the VarLocMap. Rather than operate directly on machine +/// locations, the dataflow analysis in this pass identifies locations by their +/// indices in the VarLocMap, meaning all the variable locations in a block can +/// be described by a sparse vector of VarLocMap indicies. +/// +/// All the storage for the dataflow analysis is local to the ExtendRanges +/// method and passed down to helper methods. "OutLocs" and "InLocs" record the +/// in and out lattice values for each block. "OpenRanges" maintains a list of +/// variable locations and, with the "process" method, evaluates the transfer +/// function of each block. "flushPendingLocs" installs debug value instructions +/// for each live-in location at the start of blocks, while "Transfers" records +/// transfers of values between machine-locations. +/// +/// We avoid explicitly representing the "Unknown" (\top) lattice value in the +/// implementation. Instead, unvisited blocks implicitly have all lattice +/// values set as "Unknown". After being visited, there will be path back to +/// the entry block where the lattice value is "False", and as the transfer +/// function cannot make new "Unknown" locations, there are no scenarios where +/// a block can have an "Unknown" location after being visited. Similarly, we +/// don't enumerate all possible variable locations before exploring the +/// function: when a new location is discovered, all blocks previously explored +/// were implicitly "False" but unrecorded, and become explicitly "False" when +/// a new VarLoc is created with its bit not set in predecessor InLocs or +/// OutLocs. +/// +//===----------------------------------------------------------------------===// + +#include "LiveDebugValues.h" + +#include "llvm/ADT/CoalescingBitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/BinaryFormat/Dwarf.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/TypeSize.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Target/TargetMachine.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <functional> +#include <map> +#include <optional> +#include <queue> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "livedebugvalues" + +STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); + +/// If \p Op is a stack or frame register return true, otherwise return false. +/// This is used to avoid basing the debug entry values on the registers, since +/// we do not support it at the moment. +static bool isRegOtherThanSPAndFP(const MachineOperand &Op, + const MachineInstr &MI, + const TargetRegisterInfo *TRI) { + if (!Op.isReg()) + return false; + + const MachineFunction *MF = MI.getParent()->getParent(); + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + Register FP = TRI->getFrameRegister(*MF); + Register Reg = Op.getReg(); + + return Reg && Reg != SP && Reg != FP; +} + +namespace { + +// Max out the number of statically allocated elements in DefinedRegsSet, as +// this prevents fallback to std::set::count() operations. +using DefinedRegsSet = SmallSet<Register, 32>; + +// The IDs in this set correspond to MachineLocs in VarLocs, as well as VarLocs +// that represent Entry Values; every VarLoc in the set will also appear +// exactly once at Location=0. +// As a result, each VarLoc may appear more than once in this "set", but each +// range corresponding to a Reg, SpillLoc, or EntryValue type will still be a +// "true" set (i.e. each VarLoc may appear only once), and the range Location=0 +// is the set of all VarLocs. +using VarLocSet = CoalescingBitVector<uint64_t>; + +/// A type-checked pair of {Register Location (or 0), Index}, used to index +/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int +/// for insertion into a \ref VarLocSet, and efficiently converted back. The +/// type-checker helps ensure that the conversions aren't lossy. +/// +/// Why encode a location /into/ the VarLocMap index? This makes it possible +/// to find the open VarLocs killed by a register def very quickly. This is a +/// performance-critical operation for LiveDebugValues. +struct LocIndex { + using u32_location_t = uint32_t; + using u32_index_t = uint32_t; + + u32_location_t Location; // Physical registers live in the range [1;2^30) (see + // \ref MCRegister), so we have plenty of range left + // here to encode non-register locations. + u32_index_t Index; + + /// The location that has an entry for every VarLoc in the map. + static constexpr u32_location_t kUniversalLocation = 0; + + /// The first location that is reserved for VarLocs with locations of kind + /// RegisterKind. + static constexpr u32_location_t kFirstRegLocation = 1; + + /// The first location greater than 0 that is not reserved for VarLocs with + /// locations of kind RegisterKind. + static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30; + + /// A special location reserved for VarLocs with locations of kind + /// SpillLocKind. + static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation; + + /// A special location reserved for VarLocs of kind EntryValueBackupKind and + /// EntryValueCopyBackupKind. + static constexpr u32_location_t kEntryValueBackupLocation = + kFirstInvalidRegLocation + 1; + + /// A special location reserved for VarLocs with locations of kind + /// WasmLocKind. + /// TODO Placing all Wasm target index locations in this single kWasmLocation + /// may cause slowdown in compilation time in very large functions. Consider + /// giving a each target index/offset pair its own u32_location_t if this + /// becomes a problem. + static constexpr u32_location_t kWasmLocation = kFirstInvalidRegLocation + 2; + + LocIndex(u32_location_t Location, u32_index_t Index) + : Location(Location), Index(Index) {} + + uint64_t getAsRawInteger() const { + return (static_cast<uint64_t>(Location) << 32) | Index; + } + + template<typename IntT> static LocIndex fromRawInteger(IntT ID) { + static_assert(std::is_unsigned_v<IntT> && sizeof(ID) == sizeof(uint64_t), + "Cannot convert raw integer to LocIndex"); + return {static_cast<u32_location_t>(ID >> 32), + static_cast<u32_index_t>(ID)}; + } + + /// Get the start of the interval reserved for VarLocs of kind RegisterKind + /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1. + static uint64_t rawIndexForReg(Register Reg) { + return LocIndex(Reg, 0).getAsRawInteger(); + } + + /// Return a range covering all set indices in the interval reserved for + /// \p Location in \p Set. + static auto indexRangeForLocation(const VarLocSet &Set, + u32_location_t Location) { + uint64_t Start = LocIndex(Location, 0).getAsRawInteger(); + uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger(); + return Set.half_open_range(Start, End); + } +}; + +// Simple Set for storing all the VarLoc Indices at a Location bucket. +using VarLocsInRange = SmallSet<LocIndex::u32_index_t, 32>; +// Vector of all `LocIndex`s for a given VarLoc; the same Location should not +// appear in any two of these, as each VarLoc appears at most once in any +// Location bucket. +using LocIndices = SmallVector<LocIndex, 2>; + +class VarLocBasedLDV : public LDVImpl { +private: + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + const TargetFrameLowering *TFI; + TargetPassConfig *TPC; + BitVector CalleeSavedRegs; + LexicalScopes LS; + VarLocSet::Allocator Alloc; + + const MachineInstr *LastNonDbgMI; + + enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore }; + + using FragmentInfo = DIExpression::FragmentInfo; + using OptFragmentInfo = std::optional<DIExpression::FragmentInfo>; + + /// A pair of debug variable and value location. + struct VarLoc { + // The location at which a spilled variable resides. It consists of a + // register and an offset. + struct SpillLoc { + unsigned SpillBase; + StackOffset SpillOffset; + bool operator==(const SpillLoc &Other) const { + return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset; + } + bool operator!=(const SpillLoc &Other) const { + return !(*this == Other); + } + }; + + // Target indices used for wasm-specific locations. + struct WasmLoc { + // One of TargetIndex values defined in WebAssembly.h. We deal with + // local-related TargetIndex in this analysis (TI_LOCAL and + // TI_LOCAL_INDIRECT). Stack operands (TI_OPERAND_STACK) will be handled + // separately WebAssemblyDebugFixup pass, and we don't associate debug + // info with values in global operands (TI_GLOBAL_RELOC) at the moment. + int Index; + int64_t Offset; + bool operator==(const WasmLoc &Other) const { + return Index == Other.Index && Offset == Other.Offset; + } + bool operator!=(const WasmLoc &Other) const { return !(*this == Other); } + }; + + /// Identity of the variable at this location. + const DebugVariable Var; + + /// The expression applied to this location. + const DIExpression *Expr; + + /// DBG_VALUE to clone var/expr information from if this location + /// is moved. + const MachineInstr &MI; + + enum class MachineLocKind { + InvalidKind = 0, + RegisterKind, + SpillLocKind, + ImmediateKind, + WasmLocKind + }; + + enum class EntryValueLocKind { + NonEntryValueKind = 0, + EntryValueKind, + EntryValueBackupKind, + EntryValueCopyBackupKind + } EVKind = EntryValueLocKind::NonEntryValueKind; + + /// The value location. Stored separately to avoid repeatedly + /// extracting it from MI. + union MachineLocValue { + uint64_t RegNo; + SpillLoc SpillLocation; + uint64_t Hash; + int64_t Immediate; + const ConstantFP *FPImm; + const ConstantInt *CImm; + WasmLoc WasmLocation; + MachineLocValue() : Hash(0) {} + }; + + /// A single machine location; its Kind is either a register, spill + /// location, or immediate value. + /// If the VarLoc is not a NonEntryValueKind, then it will use only a + /// single MachineLoc of RegisterKind. + struct MachineLoc { + MachineLocKind Kind; + MachineLocValue Value; + bool operator==(const MachineLoc &Other) const { + if (Kind != Other.Kind) + return false; + switch (Kind) { + case MachineLocKind::SpillLocKind: + return Value.SpillLocation == Other.Value.SpillLocation; + case MachineLocKind::WasmLocKind: + return Value.WasmLocation == Other.Value.WasmLocation; + case MachineLocKind::RegisterKind: + case MachineLocKind::ImmediateKind: + return Value.Hash == Other.Value.Hash; + default: + llvm_unreachable("Invalid kind"); + } + } + bool operator<(const MachineLoc &Other) const { + switch (Kind) { + case MachineLocKind::SpillLocKind: + return std::make_tuple( + Kind, Value.SpillLocation.SpillBase, + Value.SpillLocation.SpillOffset.getFixed(), + Value.SpillLocation.SpillOffset.getScalable()) < + std::make_tuple( + Other.Kind, Other.Value.SpillLocation.SpillBase, + Other.Value.SpillLocation.SpillOffset.getFixed(), + Other.Value.SpillLocation.SpillOffset.getScalable()); + case MachineLocKind::WasmLocKind: + return std::make_tuple(Kind, Value.WasmLocation.Index, + Value.WasmLocation.Offset) < + std::make_tuple(Other.Kind, Other.Value.WasmLocation.Index, + Other.Value.WasmLocation.Offset); + case MachineLocKind::RegisterKind: + case MachineLocKind::ImmediateKind: + return std::tie(Kind, Value.Hash) < + std::tie(Other.Kind, Other.Value.Hash); + default: + llvm_unreachable("Invalid kind"); + } + } + }; + + /// The set of machine locations used to determine the variable's value, in + /// conjunction with Expr. Initially populated with MI's debug operands, + /// but may be transformed independently afterwards. + SmallVector<MachineLoc, 8> Locs; + /// Used to map the index of each location in Locs back to the index of its + /// original debug operand in MI. Used when multiple location operands are + /// coalesced and the original MI's operands need to be accessed while + /// emitting a debug value. + SmallVector<unsigned, 8> OrigLocMap; + + VarLoc(const MachineInstr &MI) + : Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()), + Expr(MI.getDebugExpression()), MI(MI) { + assert(MI.isDebugValue() && "not a DBG_VALUE"); + assert((MI.isDebugValueList() || MI.getNumOperands() == 4) && + "malformed DBG_VALUE"); + for (const MachineOperand &Op : MI.debug_operands()) { + MachineLoc ML = GetLocForOp(Op); + auto It = find(Locs, ML); + if (It == Locs.end()) { + Locs.push_back(ML); + OrigLocMap.push_back(MI.getDebugOperandIndex(&Op)); + } else { + // ML duplicates an element in Locs; replace references to Op + // with references to the duplicating element. + unsigned OpIdx = Locs.size(); + unsigned DuplicatingIdx = std::distance(Locs.begin(), It); + Expr = DIExpression::replaceArg(Expr, OpIdx, DuplicatingIdx); + } + } + + // We create the debug entry values from the factory functions rather + // than from this ctor. + assert(EVKind != EntryValueLocKind::EntryValueKind && + !isEntryBackupLoc()); + } + + static MachineLoc GetLocForOp(const MachineOperand &Op) { + MachineLocKind Kind; + MachineLocValue Loc; + if (Op.isReg()) { + Kind = MachineLocKind::RegisterKind; + Loc.RegNo = Op.getReg(); + } else if (Op.isImm()) { + Kind = MachineLocKind::ImmediateKind; + Loc.Immediate = Op.getImm(); + } else if (Op.isFPImm()) { + Kind = MachineLocKind::ImmediateKind; + Loc.FPImm = Op.getFPImm(); + } else if (Op.isCImm()) { + Kind = MachineLocKind::ImmediateKind; + Loc.CImm = Op.getCImm(); + } else if (Op.isTargetIndex()) { + Kind = MachineLocKind::WasmLocKind; + Loc.WasmLocation = {Op.getIndex(), Op.getOffset()}; + } else + llvm_unreachable("Invalid Op kind for MachineLoc."); + return {Kind, Loc}; + } + + /// Take the variable and machine-location in DBG_VALUE MI, and build an + /// entry location using the given expression. + static VarLoc CreateEntryLoc(const MachineInstr &MI, + const DIExpression *EntryExpr, Register Reg) { + VarLoc VL(MI); + assert(VL.Locs.size() == 1 && + VL.Locs[0].Kind == MachineLocKind::RegisterKind); + VL.EVKind = EntryValueLocKind::EntryValueKind; + VL.Expr = EntryExpr; + VL.Locs[0].Value.RegNo = Reg; + return VL; + } + + /// Take the variable and machine-location from the DBG_VALUE (from the + /// function entry), and build an entry value backup location. The backup + /// location will turn into the normal location if the backup is valid at + /// the time of the primary location clobbering. + static VarLoc CreateEntryBackupLoc(const MachineInstr &MI, + const DIExpression *EntryExpr) { + VarLoc VL(MI); + assert(VL.Locs.size() == 1 && + VL.Locs[0].Kind == MachineLocKind::RegisterKind); + VL.EVKind = EntryValueLocKind::EntryValueBackupKind; + VL.Expr = EntryExpr; + return VL; + } + + /// Take the variable and machine-location from the DBG_VALUE (from the + /// function entry), and build a copy of an entry value backup location by + /// setting the register location to NewReg. + static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI, + const DIExpression *EntryExpr, + Register NewReg) { + VarLoc VL(MI); + assert(VL.Locs.size() == 1 && + VL.Locs[0].Kind == MachineLocKind::RegisterKind); + VL.EVKind = EntryValueLocKind::EntryValueCopyBackupKind; + VL.Expr = EntryExpr; + VL.Locs[0].Value.RegNo = NewReg; + return VL; + } + + /// Copy the register location in DBG_VALUE MI, updating the register to + /// be NewReg. + static VarLoc CreateCopyLoc(const VarLoc &OldVL, const MachineLoc &OldML, + Register NewReg) { + VarLoc VL = OldVL; + for (MachineLoc &ML : VL.Locs) + if (ML == OldML) { + ML.Kind = MachineLocKind::RegisterKind; + ML.Value.RegNo = NewReg; + return VL; + } + llvm_unreachable("Should have found OldML in new VarLoc."); + } + + /// Take the variable described by DBG_VALUE* MI, and create a VarLoc + /// locating it in the specified spill location. + static VarLoc CreateSpillLoc(const VarLoc &OldVL, const MachineLoc &OldML, + unsigned SpillBase, StackOffset SpillOffset) { + VarLoc VL = OldVL; + for (MachineLoc &ML : VL.Locs) + if (ML == OldML) { + ML.Kind = MachineLocKind::SpillLocKind; + ML.Value.SpillLocation = {SpillBase, SpillOffset}; + return VL; + } + llvm_unreachable("Should have found OldML in new VarLoc."); + } + + /// Create a DBG_VALUE representing this VarLoc in the given function. + /// Copies variable-specific information such as DILocalVariable and + /// inlining information from the original DBG_VALUE instruction, which may + /// have been several transfers ago. + MachineInstr *BuildDbgValue(MachineFunction &MF) const { + assert(!isEntryBackupLoc() && + "Tried to produce DBG_VALUE for backup VarLoc"); + const DebugLoc &DbgLoc = MI.getDebugLoc(); + bool Indirect = MI.isIndirectDebugValue(); + const auto &IID = MI.getDesc(); + const DILocalVariable *Var = MI.getDebugVariable(); + NumInserted++; + + const DIExpression *DIExpr = Expr; + SmallVector<MachineOperand, 8> MOs; + for (unsigned I = 0, E = Locs.size(); I < E; ++I) { + MachineLocKind LocKind = Locs[I].Kind; + MachineLocValue Loc = Locs[I].Value; + const MachineOperand &Orig = MI.getDebugOperand(OrigLocMap[I]); + switch (LocKind) { + case MachineLocKind::RegisterKind: + // An entry value is a register location -- but with an updated + // expression. The register location of such DBG_VALUE is always the + // one from the entry DBG_VALUE, it does not matter if the entry value + // was copied in to another register due to some optimizations. + // Non-entry value register locations are like the source + // DBG_VALUE, but with the register number from this VarLoc. + MOs.push_back(MachineOperand::CreateReg( + EVKind == EntryValueLocKind::EntryValueKind ? Orig.getReg() + : Register(Loc.RegNo), + false)); + break; + case MachineLocKind::SpillLocKind: { + // Spills are indirect DBG_VALUEs, with a base register and offset. + // Use the original DBG_VALUEs expression to build the spilt location + // on top of. FIXME: spill locations created before this pass runs + // are not recognized, and not handled here. + unsigned Base = Loc.SpillLocation.SpillBase; + auto *TRI = MF.getSubtarget().getRegisterInfo(); + if (MI.isNonListDebugValue()) { + auto Deref = Indirect ? DIExpression::DerefAfter : 0; + DIExpr = TRI->prependOffsetExpression( + DIExpr, DIExpression::ApplyOffset | Deref, + Loc.SpillLocation.SpillOffset); + Indirect = true; + } else { + SmallVector<uint64_t, 4> Ops; + TRI->getOffsetOpcodes(Loc.SpillLocation.SpillOffset, Ops); + Ops.push_back(dwarf::DW_OP_deref); + DIExpr = DIExpression::appendOpsToArg(DIExpr, Ops, I); + } + MOs.push_back(MachineOperand::CreateReg(Base, false)); + break; + } + case MachineLocKind::ImmediateKind: { + MOs.push_back(Orig); + break; + } + case MachineLocKind::WasmLocKind: { + MOs.push_back(Orig); + break; + } + case MachineLocKind::InvalidKind: + llvm_unreachable("Tried to produce DBG_VALUE for invalid VarLoc"); + } + } + return BuildMI(MF, DbgLoc, IID, Indirect, MOs, Var, DIExpr); + } + + /// Is the Loc field a constant or constant object? + bool isConstant(MachineLocKind Kind) const { + return Kind == MachineLocKind::ImmediateKind; + } + + /// Check if the Loc field is an entry backup location. + bool isEntryBackupLoc() const { + return EVKind == EntryValueLocKind::EntryValueBackupKind || + EVKind == EntryValueLocKind::EntryValueCopyBackupKind; + } + + /// If this variable is described by register \p Reg holding the entry + /// value, return true. + bool isEntryValueBackupReg(Register Reg) const { + return EVKind == EntryValueLocKind::EntryValueBackupKind && usesReg(Reg); + } + + /// If this variable is described by register \p Reg holding a copy of the + /// entry value, return true. + bool isEntryValueCopyBackupReg(Register Reg) const { + return EVKind == EntryValueLocKind::EntryValueCopyBackupKind && + usesReg(Reg); + } + + /// If this variable is described in whole or part by \p Reg, return true. + bool usesReg(Register Reg) const { + MachineLoc RegML; + RegML.Kind = MachineLocKind::RegisterKind; + RegML.Value.RegNo = Reg; + return is_contained(Locs, RegML); + } + + /// If this variable is described in whole or part by \p Reg, return true. + unsigned getRegIdx(Register Reg) const { + for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) + if (Locs[Idx].Kind == MachineLocKind::RegisterKind && + Register{static_cast<unsigned>(Locs[Idx].Value.RegNo)} == Reg) + return Idx; + llvm_unreachable("Could not find given Reg in Locs"); + } + + /// If this variable is described in whole or part by 1 or more registers, + /// add each of them to \p Regs and return true. + bool getDescribingRegs(SmallVectorImpl<uint32_t> &Regs) const { + bool AnyRegs = false; + for (const auto &Loc : Locs) + if (Loc.Kind == MachineLocKind::RegisterKind) { + Regs.push_back(Loc.Value.RegNo); + AnyRegs = true; + } + return AnyRegs; + } + + bool containsSpillLocs() const { + return any_of(Locs, [](VarLoc::MachineLoc ML) { + return ML.Kind == VarLoc::MachineLocKind::SpillLocKind; + }); + } + + /// If this variable is described in whole or part by \p SpillLocation, + /// return true. + bool usesSpillLoc(SpillLoc SpillLocation) const { + MachineLoc SpillML; + SpillML.Kind = MachineLocKind::SpillLocKind; + SpillML.Value.SpillLocation = SpillLocation; + return is_contained(Locs, SpillML); + } + + /// If this variable is described in whole or part by \p SpillLocation, + /// return the index . + unsigned getSpillLocIdx(SpillLoc SpillLocation) const { + for (unsigned Idx = 0; Idx < Locs.size(); ++Idx) + if (Locs[Idx].Kind == MachineLocKind::SpillLocKind && + Locs[Idx].Value.SpillLocation == SpillLocation) + return Idx; + llvm_unreachable("Could not find given SpillLoc in Locs"); + } + + bool containsWasmLocs() const { + return any_of(Locs, [](VarLoc::MachineLoc ML) { + return ML.Kind == VarLoc::MachineLocKind::WasmLocKind; + }); + } + + /// If this variable is described in whole or part by \p WasmLocation, + /// return true. + bool usesWasmLoc(WasmLoc WasmLocation) const { + MachineLoc WasmML; + WasmML.Kind = MachineLocKind::WasmLocKind; + WasmML.Value.WasmLocation = WasmLocation; + return is_contained(Locs, WasmML); + } + + /// Determine whether the lexical scope of this value's debug location + /// dominates MBB. + bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const { + return LS.dominates(MI.getDebugLoc().get(), &MBB); + } + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) + // TRI and TII can be null. + void dump(const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, + raw_ostream &Out = dbgs()) const { + Out << "VarLoc("; + for (const MachineLoc &MLoc : Locs) { + if (Locs.begin() != &MLoc) + Out << ", "; + switch (MLoc.Kind) { + case MachineLocKind::RegisterKind: + Out << printReg(MLoc.Value.RegNo, TRI); + break; + case MachineLocKind::SpillLocKind: + Out << printReg(MLoc.Value.SpillLocation.SpillBase, TRI); + Out << "[" << MLoc.Value.SpillLocation.SpillOffset.getFixed() << " + " + << MLoc.Value.SpillLocation.SpillOffset.getScalable() + << "x vscale" + << "]"; + break; + case MachineLocKind::ImmediateKind: + Out << MLoc.Value.Immediate; + break; + case MachineLocKind::WasmLocKind: { + if (TII) { + auto Indices = TII->getSerializableTargetIndices(); + auto Found = + find_if(Indices, [&](const std::pair<int, const char *> &I) { + return I.first == MLoc.Value.WasmLocation.Index; + }); + assert(Found != Indices.end()); + Out << Found->second; + if (MLoc.Value.WasmLocation.Offset > 0) + Out << " + " << MLoc.Value.WasmLocation.Offset; + } else { + Out << "WasmLoc"; + } + break; + } + case MachineLocKind::InvalidKind: + llvm_unreachable("Invalid VarLoc in dump method"); + } + } + + Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", "; + if (Var.getInlinedAt()) + Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n"; + else + Out << "(null))"; + + if (isEntryBackupLoc()) + Out << " (backup loc)\n"; + else + Out << "\n"; + } +#endif + + bool operator==(const VarLoc &Other) const { + return std::tie(EVKind, Var, Expr, Locs) == + std::tie(Other.EVKind, Other.Var, Other.Expr, Other.Locs); + } + + /// This operator guarantees that VarLocs are sorted by Variable first. + bool operator<(const VarLoc &Other) const { + return std::tie(Var, EVKind, Locs, Expr) < + std::tie(Other.Var, Other.EVKind, Other.Locs, Other.Expr); + } + }; + +#ifndef NDEBUG + using VarVec = SmallVector<VarLoc, 32>; +#endif + + /// VarLocMap is used for two things: + /// 1) Assigning LocIndices to a VarLoc. The LocIndices can be used to + /// virtually insert a VarLoc into a VarLocSet. + /// 2) Given a LocIndex, look up the unique associated VarLoc. + class VarLocMap { + /// Map a VarLoc to an index within the vector reserved for its location + /// within Loc2Vars. + std::map<VarLoc, LocIndices> Var2Indices; + + /// Map a location to a vector which holds VarLocs which live in that + /// location. + SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars; + + public: + /// Retrieve LocIndices for \p VL. + LocIndices insert(const VarLoc &VL) { + LocIndices &Indices = Var2Indices[VL]; + // If Indices is not empty, VL is already in the map. + if (!Indices.empty()) + return Indices; + SmallVector<LocIndex::u32_location_t, 4> Locations; + // LocIndices are determined by EVKind and MLs; each Register has a + // unique location, while all SpillLocs use a single bucket, and any EV + // VarLocs use only the Backup bucket or none at all (except the + // compulsory entry at the universal location index). LocIndices will + // always have an index at the universal location index as the last index. + if (VL.EVKind == VarLoc::EntryValueLocKind::NonEntryValueKind) { + VL.getDescribingRegs(Locations); + assert(all_of(Locations, + [](auto RegNo) { + return RegNo < LocIndex::kFirstInvalidRegLocation; + }) && + "Physreg out of range?"); + if (VL.containsSpillLocs()) + Locations.push_back(LocIndex::kSpillLocation); + if (VL.containsWasmLocs()) + Locations.push_back(LocIndex::kWasmLocation); + } else if (VL.EVKind != VarLoc::EntryValueLocKind::EntryValueKind) { + LocIndex::u32_location_t Loc = LocIndex::kEntryValueBackupLocation; + Locations.push_back(Loc); + } + Locations.push_back(LocIndex::kUniversalLocation); + for (LocIndex::u32_location_t Location : Locations) { + auto &Vars = Loc2Vars[Location]; + Indices.push_back( + {Location, static_cast<LocIndex::u32_index_t>(Vars.size())}); + Vars.push_back(VL); + } + return Indices; + } + + LocIndices getAllIndices(const VarLoc &VL) const { + auto IndIt = Var2Indices.find(VL); + assert(IndIt != Var2Indices.end() && "VarLoc not tracked"); + return IndIt->second; + } + + /// Retrieve the unique VarLoc associated with \p ID. + const VarLoc &operator[](LocIndex ID) const { + auto LocIt = Loc2Vars.find(ID.Location); + assert(LocIt != Loc2Vars.end() && "Location not tracked"); + return LocIt->second[ID.Index]; + } + }; + + using VarLocInMBB = + SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>; + struct TransferDebugPair { + MachineInstr *TransferInst; ///< Instruction where this transfer occurs. + LocIndex LocationID; ///< Location number for the transfer dest. + }; + using TransferMap = SmallVector<TransferDebugPair, 4>; + // Types for recording Entry Var Locations emitted by a single MachineInstr, + // as well as recording MachineInstr which last defined a register. + using InstToEntryLocMap = std::multimap<const MachineInstr *, LocIndex>; + using RegDefToInstMap = DenseMap<Register, MachineInstr *>; + + // Types for recording sets of variable fragments that overlap. For a given + // local variable, we record all other fragments of that variable that could + // overlap it, to reduce search time. + using FragmentOfVar = + std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; + using OverlapMap = + DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; + + // Helper while building OverlapMap, a map of all fragments seen for a given + // DILocalVariable. + using VarToFragments = + DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; + + /// Collects all VarLocs from \p CollectFrom. Each unique VarLoc is added + /// to \p Collected once, in order of insertion into \p VarLocIDs. + static void collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, + const VarLocSet &CollectFrom, + const VarLocMap &VarLocIDs); + + /// Get the registers which are used by VarLocs of kind RegisterKind tracked + /// by \p CollectFrom. + void getUsedRegs(const VarLocSet &CollectFrom, + SmallVectorImpl<Register> &UsedRegs) const; + + /// This holds the working set of currently open ranges. For fast + /// access, this is done both as a set of VarLocIDs, and a map of + /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all + /// previous open ranges for the same variable. In addition, we keep + /// two different maps (Vars/EntryValuesBackupVars), so erase/insert + /// methods act differently depending on whether a VarLoc is primary + /// location or backup one. In the case the VarLoc is backup location + /// we will erase/insert from the EntryValuesBackupVars map, otherwise + /// we perform the operation on the Vars. + class OpenRangesSet { + VarLocSet::Allocator &Alloc; + VarLocSet VarLocs; + // Map the DebugVariable to recent primary location ID. + SmallDenseMap<DebugVariable, LocIndices, 8> Vars; + // Map the DebugVariable to recent backup location ID. + SmallDenseMap<DebugVariable, LocIndices, 8> EntryValuesBackupVars; + OverlapMap &OverlappingFragments; + + public: + OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap) + : Alloc(Alloc), VarLocs(Alloc), OverlappingFragments(_OLapMap) {} + + const VarLocSet &getVarLocs() const { return VarLocs; } + + // Fetches all VarLocs in \p VarLocIDs and inserts them into \p Collected. + // This method is needed to get every VarLoc once, as each VarLoc may have + // multiple indices in a VarLocMap (corresponding to each applicable + // location), but all VarLocs appear exactly once at the universal location + // index. + void getUniqueVarLocs(SmallVectorImpl<VarLoc> &Collected, + const VarLocMap &VarLocIDs) const { + collectAllVarLocs(Collected, VarLocs, VarLocIDs); + } + + /// Terminate all open ranges for VL.Var by removing it from the set. + void erase(const VarLoc &VL); + + /// Terminate all open ranges listed as indices in \c KillSet with + /// \c Location by removing them from the set. + void erase(const VarLocsInRange &KillSet, const VarLocMap &VarLocIDs, + LocIndex::u32_location_t Location); + + /// Insert a new range into the set. + void insert(LocIndices VarLocIDs, const VarLoc &VL); + + /// Insert a set of ranges. + void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map); + + std::optional<LocIndices> getEntryValueBackup(DebugVariable Var); + + /// Empty the set. + void clear() { + VarLocs.clear(); + Vars.clear(); + EntryValuesBackupVars.clear(); + } + + /// Return whether the set is empty or not. + bool empty() const { + assert(Vars.empty() == EntryValuesBackupVars.empty() && + Vars.empty() == VarLocs.empty() && + "open ranges are inconsistent"); + return VarLocs.empty(); + } + + /// Get an empty range of VarLoc IDs. + auto getEmptyVarLocRange() const { + return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(), + getVarLocs().end()); + } + + /// Get all set IDs for VarLocs with MLs of kind RegisterKind in \p Reg. + auto getRegisterVarLocs(Register Reg) const { + return LocIndex::indexRangeForLocation(getVarLocs(), Reg); + } + + /// Get all set IDs for VarLocs with MLs of kind SpillLocKind. + auto getSpillVarLocs() const { + return LocIndex::indexRangeForLocation(getVarLocs(), + LocIndex::kSpillLocation); + } + + /// Get all set IDs for VarLocs of EVKind EntryValueBackupKind or + /// EntryValueCopyBackupKind. + auto getEntryValueBackupVarLocs() const { + return LocIndex::indexRangeForLocation( + getVarLocs(), LocIndex::kEntryValueBackupLocation); + } + + /// Get all set IDs for VarLocs with MLs of kind WasmLocKind. + auto getWasmVarLocs() const { + return LocIndex::indexRangeForLocation(getVarLocs(), + LocIndex::kWasmLocation); + } + }; + + /// Collect all VarLoc IDs from \p CollectFrom for VarLocs with MLs of kind + /// RegisterKind which are located in any reg in \p Regs. The IDs for each + /// VarLoc correspond to entries in the universal location bucket, which every + /// VarLoc has exactly 1 entry for. Insert collected IDs into \p Collected. + static void collectIDsForRegs(VarLocsInRange &Collected, + const DefinedRegsSet &Regs, + const VarLocSet &CollectFrom, + const VarLocMap &VarLocIDs); + + VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) { + std::unique_ptr<VarLocSet> &VLS = Locs[MBB]; + if (!VLS) + VLS = std::make_unique<VarLocSet>(Alloc); + return *VLS; + } + + const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, + const VarLocInMBB &Locs) const { + auto It = Locs.find(MBB); + assert(It != Locs.end() && "MBB not in map"); + return *It->second; + } + + /// Tests whether this instruction is a spill to a stack location. + bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); + + /// Decide if @MI is a spill instruction and return true if it is. We use 2 + /// criteria to make this decision: + /// - Is this instruction a store to a spill slot? + /// - Is there a register operand that is both used and killed? + /// TODO: Store optimization can fold spills into other stores (including + /// other spills). We do not handle this yet (more than one memory operand). + bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, + Register &Reg); + + /// Returns true if the given machine instruction is a debug value which we + /// can emit entry values for. + /// + /// Currently, we generate debug entry values only for parameters that are + /// unmodified throughout the function and located in a register. + bool isEntryValueCandidate(const MachineInstr &MI, + const DefinedRegsSet &Regs) const; + + /// If a given instruction is identified as a spill, return the spill location + /// and set \p Reg to the spilled register. + std::optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, + Register &Reg); + /// Given a spill instruction, extract the register and offset used to + /// address the spill location in a target independent way. + VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); + void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges, + TransferMap &Transfers, VarLocMap &VarLocIDs, + LocIndex OldVarID, TransferKind Kind, + const VarLoc::MachineLoc &OldLoc, + Register NewReg = Register()); + + void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs); + void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + void cleanupEntryValueTransfers(const MachineInstr *MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, const VarLoc &EntryVL, + InstToEntryLocMap &EntryValTransfers); + void removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, const VarLoc &EntryVL, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs); + void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + VarLocsInRange &KillSet); + void recordEntryValue(const MachineInstr &MI, + const DefinedRegsSet &DefinedRegs, + OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs); + void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers); + void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs); + void transferWasmDef(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs); + bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges, + VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs); + + void process(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs); + + void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments, + OverlapMap &OLapMap); + + bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, + const VarLocMap &VarLocIDs, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks); + + /// Create DBG_VALUE insts for inlocs that have been propagated but + /// had their instruction creation deferred. + void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs); + + bool ExtendRanges(MachineFunction &MF, MachineDominatorTree *DomTree, + TargetPassConfig *TPC, unsigned InputBBLimit, + unsigned InputDbgValLimit) override; + +public: + /// Default construct and initialize the pass. + VarLocBasedLDV(); + + ~VarLocBasedLDV(); + + /// Print to ostream with a message. + void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V, + const VarLocMap &VarLocIDs, const char *msg, + raw_ostream &Out) const; +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Implementation +//===----------------------------------------------------------------------===// + +VarLocBasedLDV::VarLocBasedLDV() = default; + +VarLocBasedLDV::~VarLocBasedLDV() = default; + +/// Erase a variable from the set of open ranges, and additionally erase any +/// fragments that may overlap it. If the VarLoc is a backup location, erase +/// the variable from the EntryValuesBackupVars set, indicating we should stop +/// tracking its backup entry location. Otherwise, if the VarLoc is primary +/// location, erase the variable from the Vars set. +void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) { + // Erasure helper. + auto DoErase = [VL, this](DebugVariable VarToErase) { + auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + auto It = EraseFrom->find(VarToErase); + if (It != EraseFrom->end()) { + LocIndices IDs = It->second; + for (LocIndex ID : IDs) + VarLocs.reset(ID.getAsRawInteger()); + EraseFrom->erase(It); + } + }; + + DebugVariable Var = VL.Var; + + // Erase the variable/fragment that ends here. + DoErase(Var); + + // Extract the fragment. Interpret an empty fragment as one that covers all + // possible bits. + FragmentInfo ThisFragment = Var.getFragmentOrDefault(); + + // There may be fragments that overlap the designated fragment. Look them up + // in the pre-computed overlap map, and erase them too. + auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment}); + if (MapIt != OverlappingFragments.end()) { + for (auto Fragment : MapIt->second) { + VarLocBasedLDV::OptFragmentInfo FragmentHolder; + if (!DebugVariable::isDefaultFragment(Fragment)) + FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment); + DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()}); + } + } +} + +void VarLocBasedLDV::OpenRangesSet::erase(const VarLocsInRange &KillSet, + const VarLocMap &VarLocIDs, + LocIndex::u32_location_t Location) { + VarLocSet RemoveSet(Alloc); + for (LocIndex::u32_index_t ID : KillSet) { + const VarLoc &VL = VarLocIDs[LocIndex(Location, ID)]; + auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + EraseFrom->erase(VL.Var); + LocIndices VLI = VarLocIDs.getAllIndices(VL); + for (LocIndex ID : VLI) + RemoveSet.set(ID.getAsRawInteger()); + } + VarLocs.intersectWithComplement(RemoveSet); +} + +void VarLocBasedLDV::OpenRangesSet::insertFromLocSet(const VarLocSet &ToLoad, + const VarLocMap &Map) { + VarLocsInRange UniqueVarLocIDs; + DefinedRegsSet Regs; + Regs.insert(LocIndex::kUniversalLocation); + collectIDsForRegs(UniqueVarLocIDs, Regs, ToLoad, Map); + for (uint64_t ID : UniqueVarLocIDs) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VarL = Map[Idx]; + const LocIndices Indices = Map.getAllIndices(VarL); + insert(Indices, VarL); + } +} + +void VarLocBasedLDV::OpenRangesSet::insert(LocIndices VarLocIDs, + const VarLoc &VL) { + auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars; + for (LocIndex ID : VarLocIDs) + VarLocs.set(ID.getAsRawInteger()); + InsertInto->insert({VL.Var, VarLocIDs}); +} + +/// Return the Loc ID of an entry value backup location, if it exists for the +/// variable. +std::optional<LocIndices> +VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) { + auto It = EntryValuesBackupVars.find(Var); + if (It != EntryValuesBackupVars.end()) + return It->second; + + return std::nullopt; +} + +void VarLocBasedLDV::collectIDsForRegs(VarLocsInRange &Collected, + const DefinedRegsSet &Regs, + const VarLocSet &CollectFrom, + const VarLocMap &VarLocIDs) { + assert(!Regs.empty() && "Nothing to collect"); + SmallVector<Register, 32> SortedRegs; + append_range(SortedRegs, Regs); + array_pod_sort(SortedRegs.begin(), SortedRegs.end()); + auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front())); + auto End = CollectFrom.end(); + for (Register Reg : SortedRegs) { + // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains + // all possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which + // live in Reg. + uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg); + uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1); + It.advanceToLowerBound(FirstIndexForReg); + + // Iterate through that half-open interval and collect all the set IDs. + for (; It != End && *It < FirstInvalidIndex; ++It) { + LocIndex ItIdx = LocIndex::fromRawInteger(*It); + const VarLoc &VL = VarLocIDs[ItIdx]; + LocIndices LI = VarLocIDs.getAllIndices(VL); + // For now, the back index is always the universal location index. + assert(LI.back().Location == LocIndex::kUniversalLocation && + "Unexpected order of LocIndices for VarLoc; was it inserted into " + "the VarLocMap correctly?"); + Collected.insert(LI.back().Index); + } + + if (It == End) + return; + } +} + +void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom, + SmallVectorImpl<Register> &UsedRegs) const { + // All register-based VarLocs are assigned indices greater than or equal to + // FirstRegIndex. + uint64_t FirstRegIndex = + LocIndex::rawIndexForReg(LocIndex::kFirstRegLocation); + uint64_t FirstInvalidIndex = + LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation); + for (auto It = CollectFrom.find(FirstRegIndex), + End = CollectFrom.find(FirstInvalidIndex); + It != End;) { + // We found a VarLoc ID for a VarLoc that lives in a register. Figure out + // which register and add it to UsedRegs. + uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location; + assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) && + "Duplicate used reg"); + UsedRegs.push_back(FoundReg); + + // Skip to the next /set/ register. Note that this finds a lower bound, so + // even if there aren't any VarLocs living in `FoundReg+1`, we're still + // guaranteed to move on to the next register (or to end()). + uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1); + It.advanceToLowerBound(NextRegIndex); + } +} + +//===----------------------------------------------------------------------===// +// Debug Range Extension Implementation +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF, + const VarLocInMBB &V, + const VarLocMap &VarLocIDs, + const char *msg, + raw_ostream &Out) const { + Out << '\n' << msg << '\n'; + for (const MachineBasicBlock &BB : MF) { + if (!V.count(&BB)) + continue; + const VarLocSet &L = getVarLocsInMBB(&BB, V); + if (L.empty()) + continue; + SmallVector<VarLoc, 32> VarLocs; + collectAllVarLocs(VarLocs, L, VarLocIDs); + Out << "MBB: " << BB.getNumber() << ":\n"; + for (const VarLoc &VL : VarLocs) { + Out << " Var: " << VL.Var.getVariable()->getName(); + Out << " MI: "; + VL.dump(TRI, TII, Out); + } + } + Out << "\n"; +} +#endif + +VarLocBasedLDV::VarLoc::SpillLoc +VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { + assert(MI.hasOneMemOperand() && + "Spill instruction does not have exactly one memory operand?"); + auto MMOI = MI.memoperands_begin(); + const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); + assert(PVal->kind() == PseudoSourceValue::FixedStack && + "Inconsistent memory operand in spill instruction"); + int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); + const MachineBasicBlock *MBB = MI.getParent(); + Register Reg; + StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); + return {Reg, Offset}; +} + +/// Do cleanup of \p EntryValTransfers created by \p TRInst, by removing the +/// Transfer, which uses the to-be-deleted \p EntryVL. +void VarLocBasedLDV::cleanupEntryValueTransfers( + const MachineInstr *TRInst, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs, + const VarLoc &EntryVL, InstToEntryLocMap &EntryValTransfers) { + if (EntryValTransfers.empty() || TRInst == nullptr) + return; + + auto TransRange = EntryValTransfers.equal_range(TRInst); + for (auto TDPair : llvm::make_range(TransRange.first, TransRange.second)) { + const VarLoc &EmittedEV = VarLocIDs[TDPair.second]; + if (std::tie(EntryVL.Var, EntryVL.Locs[0].Value.RegNo, EntryVL.Expr) == + std::tie(EmittedEV.Var, EmittedEV.Locs[0].Value.RegNo, + EmittedEV.Expr)) { + OpenRanges.erase(EmittedEV); + EntryValTransfers.erase(TRInst); + break; + } + } +} + +/// Try to salvage the debug entry value if we encounter a new debug value +/// describing the same parameter, otherwise stop tracking the value. Return +/// true if we should stop tracking the entry value and do the cleanup of +/// emitted Entry Value Transfers, otherwise return false. +void VarLocBasedLDV::removeEntryValue(const MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + const VarLoc &EntryVL, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs) { + // Skip the DBG_VALUE which is the debug entry value itself. + if (&MI == &EntryVL.MI) + return; + + // If the parameter's location is not register location, we can not track + // the entry value any more. It doesn't have the TransferInst which defines + // register, so no Entry Value Transfers have been emitted already. + if (!MI.getDebugOperand(0).isReg()) + return; + + // Try to get non-debug instruction responsible for the DBG_VALUE. + const MachineInstr *TransferInst = nullptr; + Register Reg = MI.getDebugOperand(0).getReg(); + if (Reg.isValid() && RegSetInstrs.find(Reg) != RegSetInstrs.end()) + TransferInst = RegSetInstrs.find(Reg)->second; + + // Case of the parameter's DBG_VALUE at the start of entry MBB. + if (!TransferInst && !LastNonDbgMI && MI.getParent()->isEntryBlock()) + return; + + // If the debug expression from the DBG_VALUE is not empty, we can assume the + // parameter's value has changed indicating that we should stop tracking its + // entry value as well. + if (MI.getDebugExpression()->getNumElements() == 0 && TransferInst) { + // If the DBG_VALUE comes from a copy instruction that copies the entry + // value, it means the parameter's value has not changed and we should be + // able to use its entry value. + // TODO: Try to keep tracking of an entry value if we encounter a propagated + // DBG_VALUE describing the copy of the entry value. (Propagated entry value + // does not indicate the parameter modification.) + auto DestSrc = TII->isCopyInstr(*TransferInst); + if (DestSrc) { + const MachineOperand *SrcRegOp, *DestRegOp; + SrcRegOp = DestSrc->Source; + DestRegOp = DestSrc->Destination; + if (Reg == DestRegOp->getReg()) { + for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { + const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)]; + if (VL.isEntryValueCopyBackupReg(Reg) && + // Entry Values should not be variadic. + VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg()) + return; + } + } + } + } + + LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: "; + MI.print(dbgs(), /*IsStandalone*/ false, + /*SkipOpers*/ false, /*SkipDebugLoc*/ false, + /*AddNewLine*/ true, TII)); + cleanupEntryValueTransfers(TransferInst, OpenRanges, VarLocIDs, EntryVL, + EntryValTransfers); + OpenRanges.erase(EntryVL); +} + +/// End all previous ranges related to @MI and start a new range from @MI +/// if it is a DBG_VALUE instr. +void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs) { + if (!MI.isDebugValue()) + return; + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + const DILocation *DebugLoc = MI.getDebugLoc(); + const DILocation *InlinedAt = DebugLoc->getInlinedAt(); + assert(Var->isValidLocationForIntrinsic(DebugLoc) && + "Expected inlined-at fields to agree"); + + DebugVariable V(Var, Expr, InlinedAt); + + // Check if this DBG_VALUE indicates a parameter's value changing. + // If that is the case, we should stop tracking its entry value. + auto EntryValBackupID = OpenRanges.getEntryValueBackup(V); + if (Var->isParameter() && EntryValBackupID) { + const VarLoc &EntryVL = VarLocIDs[EntryValBackupID->back()]; + removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL, EntryValTransfers, + RegSetInstrs); + } + + if (all_of(MI.debug_operands(), [](const MachineOperand &MO) { + return (MO.isReg() && MO.getReg()) || MO.isImm() || MO.isFPImm() || + MO.isCImm() || MO.isTargetIndex(); + })) { + // Use normal VarLoc constructor for registers and immediates. + VarLoc VL(MI); + // End all previous ranges of VL.Var. + OpenRanges.erase(VL); + + LocIndices IDs = VarLocIDs.insert(VL); + // Add the VarLoc to OpenRanges from this DBG_VALUE. + OpenRanges.insert(IDs, VL); + } else if (MI.memoperands().size() > 0) { + llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?"); + } else { + // This must be an undefined location. If it has an open range, erase it. + assert(MI.isUndefDebugValue() && + "Unexpected non-undef DBG_VALUE encountered"); + VarLoc VL(MI); + OpenRanges.erase(VL); + } +} + +// This should be removed later, doesn't fit the new design. +void VarLocBasedLDV::collectAllVarLocs(SmallVectorImpl<VarLoc> &Collected, + const VarLocSet &CollectFrom, + const VarLocMap &VarLocIDs) { + // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all + // possible VarLoc IDs for VarLocs with MLs of kind RegisterKind which live + // in Reg. + uint64_t FirstIndex = LocIndex::rawIndexForReg(LocIndex::kUniversalLocation); + uint64_t FirstInvalidIndex = + LocIndex::rawIndexForReg(LocIndex::kUniversalLocation + 1); + // Iterate through that half-open interval and collect all the set IDs. + for (auto It = CollectFrom.find(FirstIndex), End = CollectFrom.end(); + It != End && *It < FirstInvalidIndex; ++It) { + LocIndex RegIdx = LocIndex::fromRawInteger(*It); + Collected.push_back(VarLocIDs[RegIdx]); + } +} + +/// Turn the entry value backup locations into primary locations. +void VarLocBasedLDV::emitEntryValues(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + VarLocsInRange &KillSet) { + // Do not insert entry value locations after a terminator. + if (MI.isTerminator()) + return; + + for (uint32_t ID : KillSet) { + // The KillSet IDs are indices for the universal location bucket. + LocIndex Idx = LocIndex(LocIndex::kUniversalLocation, ID); + const VarLoc &VL = VarLocIDs[Idx]; + if (!VL.Var.getVariable()->isParameter()) + continue; + + auto DebugVar = VL.Var; + std::optional<LocIndices> EntryValBackupIDs = + OpenRanges.getEntryValueBackup(DebugVar); + + // If the parameter has the entry value backup, it means we should + // be able to use its entry value. + if (!EntryValBackupIDs) + continue; + + const VarLoc &EntryVL = VarLocIDs[EntryValBackupIDs->back()]; + VarLoc EntryLoc = VarLoc::CreateEntryLoc(EntryVL.MI, EntryVL.Expr, + EntryVL.Locs[0].Value.RegNo); + LocIndices EntryValueIDs = VarLocIDs.insert(EntryLoc); + assert(EntryValueIDs.size() == 1 && + "EntryValue loc should not be variadic"); + EntryValTransfers.insert({&MI, EntryValueIDs.back()}); + OpenRanges.insert(EntryValueIDs, EntryLoc); + } +} + +/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc +/// with \p OldVarID should be deleted form \p OpenRanges and replaced with +/// new VarLoc. If \p NewReg is different than default zero value then the +/// new location will be register location created by the copy like instruction, +/// otherwise it is variable's location on the stack. +void VarLocBasedLDV::insertTransferDebugPair( + MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers, + VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind, + const VarLoc::MachineLoc &OldLoc, Register NewReg) { + const VarLoc &OldVarLoc = VarLocIDs[OldVarID]; + + auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) { + LocIndices LocIds = VarLocIDs.insert(VL); + + // Close this variable's previous location range. + OpenRanges.erase(VL); + + // Record the new location as an open range, and a postponed transfer + // inserting a DBG_VALUE for this location. + OpenRanges.insert(LocIds, VL); + assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator"); + TransferDebugPair MIP = {&MI, LocIds.back()}; + Transfers.push_back(MIP); + }; + + // End all previous ranges of VL.Var. + OpenRanges.erase(VarLocIDs[OldVarID]); + switch (Kind) { + case TransferKind::TransferCopy: { + assert(NewReg && + "No register supplied when handling a copy of a debug value"); + // Create a DBG_VALUE instruction to describe the Var in its new + // register location. + VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for register copy:"; + VL.dump(TRI, TII); + }); + return; + } + case TransferKind::TransferSpill: { + // Create a DBG_VALUE instruction to describe the Var in its spilled + // location. + VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI); + VarLoc VL = VarLoc::CreateSpillLoc( + OldVarLoc, OldLoc, SpillLocation.SpillBase, SpillLocation.SpillOffset); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for spill:"; + VL.dump(TRI, TII); + }); + return; + } + case TransferKind::TransferRestore: { + assert(NewReg && + "No register supplied when handling a restore of a debug value"); + // DebugInstr refers to the pre-spill location, therefore we can reuse + // its expression. + VarLoc VL = VarLoc::CreateCopyLoc(OldVarLoc, OldLoc, NewReg); + ProcessVarLoc(VL); + LLVM_DEBUG({ + dbgs() << "Creating VarLoc for restore:"; + VL.dump(TRI, TII); + }); + return; + } + } + llvm_unreachable("Invalid transfer kind"); +} + +/// A definition of a register may mark the end of a range. +void VarLocBasedLDV::transferRegisterDef(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs) { + + // Meta Instructions do not affect the debug liveness of any register they + // define. + if (MI.isMetaInstruction()) + return; + + MachineFunction *MF = MI.getMF(); + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + + // Find the regs killed by MI, and find regmasks of preserved regs. + DefinedRegsSet DeadRegs; + SmallVector<const uint32_t *, 4> RegMasks; + for (const MachineOperand &MO : MI.operands()) { + // Determine whether the operand is a register def. + if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical() && + !(MI.isCall() && MO.getReg() == SP)) { + // Remove ranges of all aliased registers. + for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) + // FIXME: Can we break out of this loop early if no insertion occurs? + DeadRegs.insert(*RAI); + RegSetInstrs.erase(MO.getReg()); + RegSetInstrs.insert({MO.getReg(), &MI}); + } else if (MO.isRegMask()) { + RegMasks.push_back(MO.getRegMask()); + } + } + + // Erase VarLocs which reside in one of the dead registers. For performance + // reasons, it's critical to not iterate over the full set of open VarLocs. + // Iterate over the set of dying/used regs instead. + if (!RegMasks.empty()) { + SmallVector<Register, 32> UsedRegs; + getUsedRegs(OpenRanges.getVarLocs(), UsedRegs); + for (Register Reg : UsedRegs) { + // Remove ranges of all clobbered registers. Register masks don't usually + // list SP as preserved. Assume that call instructions never clobber SP, + // because some backends (e.g., AArch64) never list SP in the regmask. + // While the debug info may be off for an instruction or two around + // callee-cleanup calls, transferring the DEBUG_VALUE across the call is + // still a better user experience. + if (Reg == SP) + continue; + bool AnyRegMaskKillsReg = + any_of(RegMasks, [Reg](const uint32_t *RegMask) { + return MachineOperand::clobbersPhysReg(RegMask, Reg); + }); + if (AnyRegMaskKillsReg) + DeadRegs.insert(Reg); + if (AnyRegMaskKillsReg) { + RegSetInstrs.erase(Reg); + RegSetInstrs.insert({Reg, &MI}); + } + } + } + + if (DeadRegs.empty()) + return; + + VarLocsInRange KillSet; + collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs(), VarLocIDs); + OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kUniversalLocation); + + if (TPC) { + auto &TM = TPC->getTM<TargetMachine>(); + if (TM.Options.ShouldEmitDebugEntryValues()) + emitEntryValues(MI, OpenRanges, VarLocIDs, EntryValTransfers, KillSet); + } +} + +void VarLocBasedLDV::transferWasmDef(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs) { + // If this is not a Wasm local.set or local.tee, which sets local values, + // return. + int Index; + int64_t Offset; + if (!TII->isExplicitTargetIndexDef(MI, Index, Offset)) + return; + + // Find the target indices killed by MI, and delete those variable locations + // from the open range. + VarLocsInRange KillSet; + VarLoc::WasmLoc Loc{Index, Offset}; + for (uint64_t ID : OpenRanges.getWasmVarLocs()) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + assert(VL.containsWasmLocs() && "Broken VarLocSet?"); + if (VL.usesWasmLoc(Loc)) + KillSet.insert(ID); + } + OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kWasmLocation); +} + +bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI, + MachineFunction *MF) { + // TODO: Handle multiple stores folded into one. + if (!MI.hasOneMemOperand()) + return false; + + if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) + return false; // This is not a spill instruction, since no valid size was + // returned from either function. + + return true; +} + +bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI, + MachineFunction *MF, Register &Reg) { + if (!isSpillInstruction(MI, MF)) + return false; + + auto isKilledReg = [&](const MachineOperand MO, Register &Reg) { + if (!MO.isReg() || !MO.isUse()) { + Reg = 0; + return false; + } + Reg = MO.getReg(); + return MO.isKill(); + }; + + for (const MachineOperand &MO : MI.operands()) { + // In a spill instruction generated by the InlineSpiller the spilled + // register has its kill flag set. + if (isKilledReg(MO, Reg)) + return true; + if (Reg != 0) { + // Check whether next instruction kills the spilled register. + // FIXME: Current solution does not cover search for killed register in + // bundles and instructions further down the chain. + auto NextI = std::next(MI.getIterator()); + // Skip next instruction that points to basic block end iterator. + if (MI.getParent()->end() == NextI) + continue; + Register RegNext; + for (const MachineOperand &MONext : NextI->operands()) { + // Return true if we came across the register from the + // previous spill instruction that is killed in NextI. + if (isKilledReg(MONext, RegNext) && RegNext == Reg) + return true; + } + } + } + // Return false if we didn't find spilled register. + return false; +} + +std::optional<VarLocBasedLDV::VarLoc::SpillLoc> +VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, Register &Reg) { + if (!MI.hasOneMemOperand()) + return std::nullopt; + + // FIXME: Handle folded restore instructions with more than one memory + // operand. + if (MI.getRestoreSize(TII)) { + Reg = MI.getOperand(0).getReg(); + return extractSpillBaseRegAndOffset(MI); + } + return std::nullopt; +} + +/// A spilled register may indicate that we have to end the current range of +/// a variable and create a new one for the spill location. +/// A restored register may indicate the reverse situation. +/// We don't want to insert any instructions in process(), so we just create +/// the DBG_VALUE without inserting it and keep track of it in \p Transfers. +/// It will be inserted into the BB when we're done iterating over the +/// instructions. +void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + TransferMap &Transfers) { + MachineFunction *MF = MI.getMF(); + TransferKind TKind; + Register Reg; + std::optional<VarLoc::SpillLoc> Loc; + + LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); + + // First, if there are any DBG_VALUEs pointing at a spill slot that is + // written to, then close the variable location. The value in memory + // will have changed. + VarLocsInRange KillSet; + if (isSpillInstruction(MI, MF)) { + Loc = extractSpillBaseRegAndOffset(MI); + for (uint64_t ID : OpenRanges.getSpillVarLocs()) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + assert(VL.containsSpillLocs() && "Broken VarLocSet?"); + if (VL.usesSpillLoc(*Loc)) { + // This location is overwritten by the current instruction -- terminate + // the open range, and insert an explicit DBG_VALUE $noreg. + // + // Doing this at a later stage would require re-interpreting all + // DBG_VALUes and DIExpressions to identify whether they point at + // memory, and then analysing all memory writes to see if they + // overwrite that memory, which is expensive. + // + // At this stage, we already know which DBG_VALUEs are for spills and + // where they are located; it's best to fix handle overwrites now. + KillSet.insert(ID); + unsigned SpillLocIdx = VL.getSpillLocIdx(*Loc); + VarLoc::MachineLoc OldLoc = VL.Locs[SpillLocIdx]; + VarLoc UndefVL = VarLoc::CreateCopyLoc(VL, OldLoc, 0); + LocIndices UndefLocIDs = VarLocIDs.insert(UndefVL); + Transfers.push_back({&MI, UndefLocIDs.back()}); + } + } + OpenRanges.erase(KillSet, VarLocIDs, LocIndex::kSpillLocation); + } + + // Try to recognise spill and restore instructions that may create a new + // variable location. + if (isLocationSpill(MI, MF, Reg)) { + TKind = TransferKind::TransferSpill; + LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump();); + LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) + << "\n"); + } else { + if (!(Loc = isRestoreInstruction(MI, MF, Reg))) + return; + TKind = TransferKind::TransferRestore; + LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump();); + LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI) + << "\n"); + } + // Check if the register or spill location is the location of a debug value. + auto TransferCandidates = OpenRanges.getEmptyVarLocRange(); + if (TKind == TransferKind::TransferSpill) + TransferCandidates = OpenRanges.getRegisterVarLocs(Reg); + else if (TKind == TransferKind::TransferRestore) + TransferCandidates = OpenRanges.getSpillVarLocs(); + for (uint64_t ID : TransferCandidates) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + unsigned LocIdx; + if (TKind == TransferKind::TransferSpill) { + assert(VL.usesReg(Reg) && "Broken VarLocSet?"); + LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '(' + << VL.Var.getVariable()->getName() << ")\n"); + LocIdx = VL.getRegIdx(Reg); + } else { + assert(TKind == TransferKind::TransferRestore && VL.containsSpillLocs() && + "Broken VarLocSet?"); + if (!VL.usesSpillLoc(*Loc)) + // The spill location is not the location of a debug value. + continue; + LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '(' + << VL.Var.getVariable()->getName() << ")\n"); + LocIdx = VL.getSpillLocIdx(*Loc); + } + VarLoc::MachineLoc MLoc = VL.Locs[LocIdx]; + insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind, + MLoc, Reg); + // FIXME: A comment should explain why it's correct to return early here, + // if that is in fact correct. + return; + } +} + +/// If \p MI is a register copy instruction, that copies a previously tracked +/// value from one register to another register that is callee saved, we +/// create new DBG_VALUE instruction described with copy destination register. +void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, + TransferMap &Transfers) { + auto DestSrc = TII->isCopyInstr(MI); + if (!DestSrc) + return; + + const MachineOperand *DestRegOp = DestSrc->Destination; + const MachineOperand *SrcRegOp = DestSrc->Source; + + if (!DestRegOp->isDef()) + return; + + auto isCalleeSavedReg = [&](Register Reg) { + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + }; + + Register SrcReg = SrcRegOp->getReg(); + Register DestReg = DestRegOp->getReg(); + + // We want to recognize instructions where destination register is callee + // saved register. If register that could be clobbered by the call is + // included, there would be a great chance that it is going to be clobbered + // soon. It is more likely that previous register location, which is callee + // saved, is going to stay unclobbered longer, even if it is killed. + if (!isCalleeSavedReg(DestReg)) + return; + + // Remember an entry value movement. If we encounter a new debug value of + // a parameter describing only a moving of the value around, rather then + // modifying it, we are still able to use the entry value if needed. + if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) { + for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + const VarLoc &VL = VarLocIDs[Idx]; + if (VL.isEntryValueBackupReg(SrcReg)) { + LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump();); + VarLoc EntryValLocCopyBackup = + VarLoc::CreateEntryCopyBackupLoc(VL.MI, VL.Expr, DestReg); + // Stop tracking the original entry value. + OpenRanges.erase(VL); + + // Start tracking the entry value copy. + LocIndices EntryValCopyLocIDs = VarLocIDs.insert(EntryValLocCopyBackup); + OpenRanges.insert(EntryValCopyLocIDs, EntryValLocCopyBackup); + break; + } + } + } + + if (!SrcRegOp->isKill()) + return; + + for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + assert(VarLocIDs[Idx].usesReg(SrcReg) && "Broken VarLocSet?"); + VarLoc::MachineLocValue Loc; + Loc.RegNo = SrcReg; + VarLoc::MachineLoc MLoc{VarLoc::MachineLocKind::RegisterKind, Loc}; + insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, + TransferKind::TransferCopy, MLoc, DestReg); + // FIXME: A comment should explain why it's correct to return early here, + // if that is in fact correct. + return; + } +} + +/// Terminate all open ranges at the end of the current basic block. +bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB, + OpenRangesSet &OpenRanges, + VarLocInMBB &OutLocs, + const VarLocMap &VarLocIDs) { + bool Changed = false; + LLVM_DEBUG({ + VarVec VarLocs; + OpenRanges.getUniqueVarLocs(VarLocs, VarLocIDs); + for (VarLoc &VL : VarLocs) { + // Copy OpenRanges to OutLocs, if not already present. + dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": "; + VL.dump(TRI, TII); + } + }); + VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs); + Changed = VLS != OpenRanges.getVarLocs(); + // New OutLocs set may be different due to spill, restore or register + // copy instruction processing. + if (Changed) + VLS = OpenRanges.getVarLocs(); + OpenRanges.clear(); + return Changed; +} + +/// Accumulate a mapping between each DILocalVariable fragment and other +/// fragments of that DILocalVariable which overlap. This reduces work during +/// the data-flow stage from "Find any overlapping fragments" to "Check if the +/// known-to-overlap fragments are present". +/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for +/// fragment usage. +/// \param SeenFragments Map from DILocalVariable to all fragments of that +/// Variable which are known to exist. +/// \param OverlappingFragments The overlap map being constructed, from one +/// Var/Fragment pair to a vector of fragments known to overlap. +void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI, + VarToFragments &SeenFragments, + OverlapMap &OverlappingFragments) { + DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); + + // If this is the first sighting of this variable, then we are guaranteed + // there are currently no overlapping fragments either. Initialize the set + // of seen fragments, record no overlaps for the current one, and return. + auto SeenIt = SeenFragments.find(MIVar.getVariable()); + if (SeenIt == SeenFragments.end()) { + SmallSet<FragmentInfo, 4> OneFragment; + OneFragment.insert(ThisFragment); + SeenFragments.insert({MIVar.getVariable(), OneFragment}); + + OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + return; + } + + // If this particular Variable/Fragment pair already exists in the overlap + // map, it has already been accounted for. + auto IsInOLapMap = + OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + if (!IsInOLapMap.second) + return; + + auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; + auto &AllSeenFragments = SeenIt->second; + + // Otherwise, examine all other seen fragments for this variable, with "this" + // fragment being a previously unseen fragment. Record any pair of + // overlapping fragments. + for (const auto &ASeenFragment : AllSeenFragments) { + // Does this previously seen fragment overlap? + if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { + // Yes: Mark the current fragment as being overlapped. + ThisFragmentsOverlaps.push_back(ASeenFragment); + // Mark the previously seen fragment as being overlapped by the current + // one. + auto ASeenFragmentsOverlaps = + OverlappingFragments.find({MIVar.getVariable(), ASeenFragment}); + assert(ASeenFragmentsOverlaps != OverlappingFragments.end() && + "Previously seen var fragment has no vector of overlaps"); + ASeenFragmentsOverlaps->second.push_back(ThisFragment); + } + } + + AllSeenFragments.insert(ThisFragment); +} + +/// This routine creates OpenRanges. +void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs, TransferMap &Transfers, + InstToEntryLocMap &EntryValTransfers, + RegDefToInstMap &RegSetInstrs) { + if (!MI.isDebugInstr()) + LastNonDbgMI = &MI; + transferDebugValue(MI, OpenRanges, VarLocIDs, EntryValTransfers, + RegSetInstrs); + transferRegisterDef(MI, OpenRanges, VarLocIDs, EntryValTransfers, + RegSetInstrs); + transferWasmDef(MI, OpenRanges, VarLocIDs); + transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers); + transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers); +} + +/// This routine joins the analysis results of all incoming edges in @MBB by +/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same +/// source variable in all the predecessors of @MBB reside in the same location. +bool VarLocBasedLDV::join( + MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs, + const VarLocMap &VarLocIDs, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) { + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + + VarLocSet InLocsT(Alloc); // Temporary incoming locations. + + // For all predecessors of this MBB, find the set of VarLocs that + // can be joined. + int NumVisited = 0; + for (auto *p : MBB.predecessors()) { + // Ignore backedges if we have not visited the predecessor yet. As the + // predecessor hasn't yet had locations propagated into it, most locations + // will not yet be valid, so treat them as all being uninitialized and + // potentially valid. If a location guessed to be correct here is + // invalidated later, we will remove it when we revisit this block. + if (!Visited.count(p)) { + LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber() + << "\n"); + continue; + } + auto OL = OutLocs.find(p); + // Join is null in case of empty OutLocs from any of the pred. + if (OL == OutLocs.end()) + return false; + + // Just copy over the Out locs to incoming locs for the first visited + // predecessor, and for all other predecessors join the Out locs. + VarLocSet &OutLocVLS = *OL->second; + if (!NumVisited) + InLocsT = OutLocVLS; + else + InLocsT &= OutLocVLS; + + LLVM_DEBUG({ + if (!InLocsT.empty()) { + VarVec VarLocs; + collectAllVarLocs(VarLocs, InLocsT, VarLocIDs); + for (const VarLoc &VL : VarLocs) + dbgs() << " gathered candidate incoming var: " + << VL.Var.getVariable()->getName() << "\n"; + } + }); + + NumVisited++; + } + + // Filter out DBG_VALUES that are out of scope. + VarLocSet KillSet(Alloc); + bool IsArtificial = ArtificialBlocks.count(&MBB); + if (!IsArtificial) { + for (uint64_t ID : InLocsT) { + LocIndex Idx = LocIndex::fromRawInteger(ID); + if (!VarLocIDs[Idx].dominates(LS, MBB)) { + KillSet.set(ID); + LLVM_DEBUG({ + auto Name = VarLocIDs[Idx].Var.getVariable()->getName(); + dbgs() << " killing " << Name << ", it doesn't dominate MBB\n"; + }); + } + } + } + InLocsT.intersectWithComplement(KillSet); + + // As we are processing blocks in reverse post-order we + // should have processed at least one predecessor, unless it + // is the entry block which has no predecessor. + assert((NumVisited || MBB.pred_empty()) && + "Should have processed at least one predecessor"); + + VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs); + bool Changed = false; + if (ILS != InLocsT) { + ILS = InLocsT; + Changed = true; + } + + return Changed; +} + +void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs, + VarLocMap &VarLocIDs) { + // PendingInLocs records all locations propagated into blocks, which have + // not had DBG_VALUE insts created. Go through and create those insts now. + for (auto &Iter : PendingInLocs) { + // Map is keyed on a constant pointer, unwrap it so we can insert insts. + auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first); + VarLocSet &Pending = *Iter.second; + + SmallVector<VarLoc, 32> VarLocs; + collectAllVarLocs(VarLocs, Pending, VarLocIDs); + + for (VarLoc DiffIt : VarLocs) { + // The ID location is live-in to MBB -- work out what kind of machine + // location it is and create a DBG_VALUE. + if (DiffIt.isEntryBackupLoc()) + continue; + MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent()); + MBB.insert(MBB.instr_begin(), MI); + + (void)MI; + LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump();); + } + } +} + +bool VarLocBasedLDV::isEntryValueCandidate( + const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const { + assert(MI.isDebugValue() && "This must be DBG_VALUE."); + + // TODO: Add support for local variables that are expressed in terms of + // parameters entry values. + // TODO: Add support for modified arguments that can be expressed + // by using its entry value. + auto *DIVar = MI.getDebugVariable(); + if (!DIVar->isParameter()) + return false; + + // Do not consider parameters that belong to an inlined function. + if (MI.getDebugLoc()->getInlinedAt()) + return false; + + // Only consider parameters that are described using registers. Parameters + // that are passed on the stack are not yet supported, so ignore debug + // values that are described by the frame or stack pointer. + if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI)) + return false; + + // If a parameter's value has been propagated from the caller, then the + // parameter's DBG_VALUE may be described using a register defined by some + // instruction in the entry block, in which case we shouldn't create an + // entry value. + if (DefinedRegs.count(MI.getDebugOperand(0).getReg())) + return false; + + // TODO: Add support for parameters that have a pre-existing debug expressions + // (e.g. fragments). + if (MI.getDebugExpression()->getNumElements() > 0) + return false; + + return true; +} + +/// Collect all register defines (including aliases) for the given instruction. +static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs, + const TargetRegisterInfo *TRI) { + for (const MachineOperand &MO : MI.operands()) { + if (MO.isReg() && MO.isDef() && MO.getReg() && MO.getReg().isPhysical()) { + Regs.insert(MO.getReg()); + for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) + Regs.insert(*AI); + } + } +} + +/// This routine records the entry values of function parameters. The values +/// could be used as backup values. If we loose the track of some unmodified +/// parameters, the backup values will be used as a primary locations. +void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI, + const DefinedRegsSet &DefinedRegs, + OpenRangesSet &OpenRanges, + VarLocMap &VarLocIDs) { + if (TPC) { + auto &TM = TPC->getTM<TargetMachine>(); + if (!TM.Options.ShouldEmitDebugEntryValues()) + return; + } + + DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + + if (!isEntryValueCandidate(MI, DefinedRegs) || + OpenRanges.getEntryValueBackup(V)) + return; + + LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump();); + + // Create the entry value and use it as a backup location until it is + // valid. It is valid until a parameter is not changed. + DIExpression *NewExpr = + DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue); + VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, NewExpr); + LocIndices EntryValLocIDs = VarLocIDs.insert(EntryValLocAsBackup); + OpenRanges.insert(EntryValLocIDs, EntryValLocAsBackup); +} + +/// Calculate the liveness information for the given machine function and +/// extend ranges across basic blocks. +bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, + MachineDominatorTree *DomTree, + TargetPassConfig *TPC, unsigned InputBBLimit, + unsigned InputDbgValLimit) { + (void)DomTree; + LLVM_DEBUG(dbgs() << "\nDebug Range Extension: " << MF.getName() << "\n"); + + if (!MF.getFunction().getSubprogram()) + // VarLocBaseLDV will already have removed all DBG_VALUEs. + return false; + + // Skip functions from NoDebug compilation units. + if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() == + DICompileUnit::NoDebug) + return false; + + TRI = MF.getSubtarget().getRegisterInfo(); + TII = MF.getSubtarget().getInstrInfo(); + TFI = MF.getSubtarget().getFrameLowering(); + TFI->getCalleeSaves(MF, CalleeSavedRegs); + this->TPC = TPC; + LS.initialize(MF); + + bool Changed = false; + bool OLChanged = false; + bool MBBJoined = false; + + VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors. + OverlapMap OverlapFragments; // Map of overlapping variable fragments. + OpenRangesSet OpenRanges(Alloc, OverlapFragments); + // Ranges that are open until end of bb. + VarLocInMBB OutLocs; // Ranges that exist beyond bb. + VarLocInMBB InLocs; // Ranges that are incoming after joining. + TransferMap Transfers; // DBG_VALUEs associated with transfers (such as + // spills, copies and restores). + // Map responsible MI to attached Transfer emitted from Backup Entry Value. + InstToEntryLocMap EntryValTransfers; + // Map a Register to the last MI which clobbered it. + RegDefToInstMap RegSetInstrs; + + VarToFragments SeenFragments; + + // Blocks which are artificial, i.e. blocks which exclusively contain + // instructions without locations, or with line 0 locations. + SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; + + DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; + DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist; + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Pending; + + // Set of register defines that are seen when traversing the entry block + // looking for debug entry value candidates. + DefinedRegsSet DefinedRegs; + + // Only in the case of entry MBB collect DBG_VALUEs representing + // function parameters in order to generate debug entry values for them. + MachineBasicBlock &First_MBB = *(MF.begin()); + for (auto &MI : First_MBB) { + collectRegDefs(MI, DefinedRegs, TRI); + if (MI.isDebugValue()) + recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs); + } + + // Initialize per-block structures and scan for fragment overlaps. + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.isDebugValue()) + accumulateFragmentMap(MI, SeenFragments, OverlapFragments); + + auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { + if (const DebugLoc &DL = MI.getDebugLoc()) + return DL.getLine() != 0; + return false; + }; + for (auto &MBB : MF) + if (none_of(MBB.instrs(), hasNonArtificialLocation)) + ArtificialBlocks.insert(&MBB); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, + "OutLocs after initialization", dbgs())); + + ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); + unsigned int RPONumber = 0; + for (MachineBasicBlock *MBB : RPOT) { + OrderToBB[RPONumber] = MBB; + BBToOrder[MBB] = RPONumber; + Worklist.push(RPONumber); + ++RPONumber; + } + + if (RPONumber > InputBBLimit) { + unsigned NumInputDbgValues = 0; + for (auto &MBB : MF) + for (auto &MI : MBB) + if (MI.isDebugValue()) + ++NumInputDbgValues; + if (NumInputDbgValues > InputDbgValLimit) { + LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName() + << " has " << RPONumber << " basic blocks and " + << NumInputDbgValues + << " input DBG_VALUEs, exceeding limits.\n"); + return false; + } + } + + // This is a standard "union of predecessor outs" dataflow problem. + // To solve it, we perform join() and process() using the two worklist method + // until the ranges converge. + // Ranges have converged when both worklists are empty. + SmallPtrSet<const MachineBasicBlock *, 16> Visited; + while (!Worklist.empty() || !Pending.empty()) { + // We track what is on the pending worklist to avoid inserting the same + // thing twice. We could avoid this with a custom priority queue, but this + // is probably not worth it. + SmallPtrSet<MachineBasicBlock *, 16> OnPending; + LLVM_DEBUG(dbgs() << "Processing Worklist\n"); + while (!Worklist.empty()) { + MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; + Worklist.pop(); + MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited, + ArtificialBlocks); + MBBJoined |= Visited.insert(MBB).second; + if (MBBJoined) { + MBBJoined = false; + Changed = true; + // Now that we have started to extend ranges across BBs we need to + // examine spill, copy and restore instructions to see whether they + // operate with registers that correspond to user variables. + // First load any pending inlocs. + OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs); + LastNonDbgMI = nullptr; + RegSetInstrs.clear(); + for (auto &MI : *MBB) + process(MI, OpenRanges, VarLocIDs, Transfers, EntryValTransfers, + RegSetInstrs); + OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, + "OutLocs after propagating", dbgs())); + LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, + "InLocs after propagating", dbgs())); + + if (OLChanged) { + OLChanged = false; + for (auto *s : MBB->successors()) + if (OnPending.insert(s).second) { + Pending.push(BBToOrder[s]); + } + } + } + } + Worklist.swap(Pending); + // At this point, pending must be empty, since it was just the empty + // worklist + assert(Pending.empty() && "Pending should be empty"); + } + + // Add any DBG_VALUE instructions created by location transfers. + for (auto &TR : Transfers) { + assert(!TR.TransferInst->isTerminator() && + "Cannot insert DBG_VALUE after terminator"); + MachineBasicBlock *MBB = TR.TransferInst->getParent(); + const VarLoc &VL = VarLocIDs[TR.LocationID]; + MachineInstr *MI = VL.BuildDbgValue(MF); + MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI); + } + Transfers.clear(); + + // Add DBG_VALUEs created using Backup Entry Value location. + for (auto &TR : EntryValTransfers) { + MachineInstr *TRInst = const_cast<MachineInstr *>(TR.first); + assert(!TRInst->isTerminator() && + "Cannot insert DBG_VALUE after terminator"); + MachineBasicBlock *MBB = TRInst->getParent(); + const VarLoc &VL = VarLocIDs[TR.second]; + MachineInstr *MI = VL.BuildDbgValue(MF); + MBB->insertAfterBundle(TRInst->getIterator(), MI); + } + EntryValTransfers.clear(); + + // Deferred inlocs will not have had any DBG_VALUE insts created; do + // that now. + flushPendingLocs(InLocs, VarLocIDs); + + LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs())); + LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs())); + return Changed; +} + +LDVImpl * +llvm::makeVarLocBasedLiveDebugValues() +{ + return new VarLocBasedLDV(); +} |
