aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
downloadydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h')
-rw-r--r--contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h2630
1 files changed, 1315 insertions, 1315 deletions
diff --git a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h
index bc939fe9ac..5284bd92f5 100644
--- a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h
+++ b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h
@@ -1,1317 +1,1317 @@
-//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file declares the CodeGenDAGPatterns class, which is used to read and
-// represent the patterns present in a .td file for instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
-#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
-
-#include "CodeGenIntrinsics.h"
-#include "CodeGenTarget.h"
-#include "SDNodeProperties.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/StringSet.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/MathExtras.h"
-#include <algorithm>
-#include <array>
-#include <functional>
-#include <map>
-#include <numeric>
-#include <set>
-#include <vector>
-
-namespace llvm {
-
-class Record;
-class Init;
-class ListInit;
-class DagInit;
-class SDNodeInfo;
-class TreePattern;
-class TreePatternNode;
-class CodeGenDAGPatterns;
-
-/// Shared pointer for TreePatternNode.
-using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
-
-/// This represents a set of MVTs. Since the underlying type for the MVT
-/// is uint8_t, there are at most 256 values. To reduce the number of memory
-/// allocations and deallocations, represent the set as a sequence of bits.
-/// To reduce the allocations even further, make MachineValueTypeSet own
-/// the storage and use std::array as the bit container.
-struct MachineValueTypeSet {
- static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
- uint8_t>::value,
- "Change uint8_t here to the SimpleValueType's type");
- static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
- using WordType = uint64_t;
- static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
- static unsigned constexpr NumWords = Capacity/WordWidth;
- static_assert(NumWords*WordWidth == Capacity,
- "Capacity should be a multiple of WordWidth");
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- MachineValueTypeSet() {
- clear();
- }
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- unsigned size() const {
- unsigned Count = 0;
- for (WordType W : Words)
- Count += countPopulation(W);
- return Count;
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- void clear() {
- std::memset(Words.data(), 0, NumWords*sizeof(WordType));
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool empty() const {
- for (WordType W : Words)
- if (W != 0)
- return false;
- return true;
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- unsigned count(MVT T) const {
- return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
- }
- std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
- bool V = count(T.SimpleTy);
- Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
- return {*this, V};
- }
- MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
- for (unsigned i = 0; i != NumWords; ++i)
- Words[i] |= S.Words[i];
- return *this;
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- void erase(MVT T) {
- Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
- }
-
- struct const_iterator {
- // Some implementations of the C++ library require these traits to be
- // defined.
- using iterator_category = std::forward_iterator_tag;
- using value_type = MVT;
- using difference_type = ptrdiff_t;
- using pointer = const MVT*;
- using reference = const MVT&;
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- MVT operator*() const {
- assert(Pos != Capacity);
- return MVT::SimpleValueType(Pos);
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
- Pos = End ? Capacity : find_from_pos(0);
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- const_iterator &operator++() {
- assert(Pos != Capacity);
- Pos = find_from_pos(Pos+1);
- return *this;
- }
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool operator==(const const_iterator &It) const {
- return Set == It.Set && Pos == It.Pos;
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool operator!=(const const_iterator &It) const {
- return !operator==(It);
- }
-
- private:
- unsigned find_from_pos(unsigned P) const {
- unsigned SkipWords = P / WordWidth;
- unsigned SkipBits = P % WordWidth;
- unsigned Count = SkipWords * WordWidth;
-
- // If P is in the middle of a word, process it manually here, because
- // the trailing bits need to be masked off to use findFirstSet.
- if (SkipBits != 0) {
- WordType W = Set->Words[SkipWords];
- W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
- if (W != 0)
- return Count + findFirstSet(W);
- Count += WordWidth;
- SkipWords++;
- }
-
- for (unsigned i = SkipWords; i != NumWords; ++i) {
- WordType W = Set->Words[i];
- if (W != 0)
- return Count + findFirstSet(W);
- Count += WordWidth;
- }
- return Capacity;
- }
-
- const MachineValueTypeSet *Set;
- unsigned Pos;
- };
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- const_iterator begin() const { return const_iterator(this, false); }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- const_iterator end() const { return const_iterator(this, true); }
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool operator==(const MachineValueTypeSet &S) const {
- return Words == S.Words;
- }
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool operator!=(const MachineValueTypeSet &S) const {
- return !operator==(S);
- }
-
-private:
- friend struct const_iterator;
- std::array<WordType,NumWords> Words;
-};
-
-struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
- using SetType = MachineValueTypeSet;
+//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the CodeGenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
+#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H
+
+#include "CodeGenIntrinsics.h"
+#include "CodeGenTarget.h"
+#include "SDNodeProperties.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <array>
+#include <functional>
+#include <map>
+#include <numeric>
+#include <set>
+#include <vector>
+
+namespace llvm {
+
+class Record;
+class Init;
+class ListInit;
+class DagInit;
+class SDNodeInfo;
+class TreePattern;
+class TreePatternNode;
+class CodeGenDAGPatterns;
+
+/// Shared pointer for TreePatternNode.
+using TreePatternNodePtr = std::shared_ptr<TreePatternNode>;
+
+/// This represents a set of MVTs. Since the underlying type for the MVT
+/// is uint8_t, there are at most 256 values. To reduce the number of memory
+/// allocations and deallocations, represent the set as a sequence of bits.
+/// To reduce the allocations even further, make MachineValueTypeSet own
+/// the storage and use std::array as the bit container.
+struct MachineValueTypeSet {
+ static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type,
+ uint8_t>::value,
+ "Change uint8_t here to the SimpleValueType's type");
+ static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1;
+ using WordType = uint64_t;
+ static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType);
+ static unsigned constexpr NumWords = Capacity/WordWidth;
+ static_assert(NumWords*WordWidth == Capacity,
+ "Capacity should be a multiple of WordWidth");
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MachineValueTypeSet() {
+ clear();
+ }
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ unsigned size() const {
+ unsigned Count = 0;
+ for (WordType W : Words)
+ Count += countPopulation(W);
+ return Count;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ void clear() {
+ std::memset(Words.data(), 0, NumWords*sizeof(WordType));
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool empty() const {
+ for (WordType W : Words)
+ if (W != 0)
+ return false;
+ return true;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ unsigned count(MVT T) const {
+ return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1;
+ }
+ std::pair<MachineValueTypeSet&,bool> insert(MVT T) {
+ bool V = count(T.SimpleTy);
+ Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth);
+ return {*this, V};
+ }
+ MachineValueTypeSet &insert(const MachineValueTypeSet &S) {
+ for (unsigned i = 0; i != NumWords; ++i)
+ Words[i] |= S.Words[i];
+ return *this;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ void erase(MVT T) {
+ Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth));
+ }
+
+ struct const_iterator {
+ // Some implementations of the C++ library require these traits to be
+ // defined.
+ using iterator_category = std::forward_iterator_tag;
+ using value_type = MVT;
+ using difference_type = ptrdiff_t;
+ using pointer = const MVT*;
+ using reference = const MVT&;
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MVT operator*() const {
+ assert(Pos != Capacity);
+ return MVT::SimpleValueType(Pos);
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) {
+ Pos = End ? Capacity : find_from_pos(0);
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator &operator++() {
+ assert(Pos != Capacity);
+ Pos = find_from_pos(Pos+1);
+ return *this;
+ }
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator==(const const_iterator &It) const {
+ return Set == It.Set && Pos == It.Pos;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator!=(const const_iterator &It) const {
+ return !operator==(It);
+ }
+
+ private:
+ unsigned find_from_pos(unsigned P) const {
+ unsigned SkipWords = P / WordWidth;
+ unsigned SkipBits = P % WordWidth;
+ unsigned Count = SkipWords * WordWidth;
+
+ // If P is in the middle of a word, process it manually here, because
+ // the trailing bits need to be masked off to use findFirstSet.
+ if (SkipBits != 0) {
+ WordType W = Set->Words[SkipWords];
+ W &= maskLeadingOnes<WordType>(WordWidth-SkipBits);
+ if (W != 0)
+ return Count + findFirstSet(W);
+ Count += WordWidth;
+ SkipWords++;
+ }
+
+ for (unsigned i = SkipWords; i != NumWords; ++i) {
+ WordType W = Set->Words[i];
+ if (W != 0)
+ return Count + findFirstSet(W);
+ Count += WordWidth;
+ }
+ return Capacity;
+ }
+
+ const MachineValueTypeSet *Set;
+ unsigned Pos;
+ };
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator begin() const { return const_iterator(this, false); }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ const_iterator end() const { return const_iterator(this, true); }
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator==(const MachineValueTypeSet &S) const {
+ return Words == S.Words;
+ }
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool operator!=(const MachineValueTypeSet &S) const {
+ return !operator==(S);
+ }
+
+private:
+ friend struct const_iterator;
+ std::array<WordType,NumWords> Words;
+};
+
+struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> {
+ using SetType = MachineValueTypeSet;
SmallVector<unsigned, 16> AddrSpaces;
-
- TypeSetByHwMode() = default;
- TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
- TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
- TypeSetByHwMode(MVT::SimpleValueType VT)
- : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
- TypeSetByHwMode(ValueTypeByHwMode VT)
- : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
- TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
-
- SetType &getOrCreate(unsigned Mode) {
- if (hasMode(Mode))
- return get(Mode);
- return Map.insert({Mode,SetType()}).first->second;
- }
-
- bool isValueTypeByHwMode(bool AllowEmpty) const;
- ValueTypeByHwMode getValueTypeByHwMode() const;
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool isMachineValueType() const {
- return isDefaultOnly() && Map.begin()->second.size() == 1;
- }
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- MVT getMachineValueType() const {
- assert(isMachineValueType());
- return *Map.begin()->second.begin();
- }
-
- bool isPossible() const;
-
- LLVM_ATTRIBUTE_ALWAYS_INLINE
- bool isDefaultOnly() const {
- return Map.size() == 1 && Map.begin()->first == DefaultMode;
- }
-
- bool isPointer() const {
- return getValueTypeByHwMode().isPointer();
- }
-
- unsigned getPtrAddrSpace() const {
- assert(isPointer());
- return getValueTypeByHwMode().PtrAddrSpace;
- }
-
- bool insert(const ValueTypeByHwMode &VVT);
- bool constrain(const TypeSetByHwMode &VTS);
- template <typename Predicate> bool constrain(Predicate P);
- template <typename Predicate>
- bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
-
- void writeToStream(raw_ostream &OS) const;
- static void writeToStream(const SetType &S, raw_ostream &OS);
-
- bool operator==(const TypeSetByHwMode &VTS) const;
- bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
-
- void dump() const;
- bool validate() const;
-
-private:
- unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
- /// Intersect two sets. Return true if anything has changed.
- bool intersect(SetType &Out, const SetType &In);
-};
-
-raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
-
-struct TypeInfer {
- TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
-
- bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
- return VTS.isValueTypeByHwMode(AllowEmpty);
- }
- ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
- bool AllowEmpty) const {
- assert(VTS.isValueTypeByHwMode(AllowEmpty));
- return VTS.getValueTypeByHwMode();
- }
-
- /// The protocol in the following functions (Merge*, force*, Enforce*,
- /// expand*) is to return "true" if a change has been made, "false"
- /// otherwise.
-
- bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
- bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
- return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
- }
- bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
- return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
- }
-
- /// Reduce the set \p Out to have at most one element for each mode.
- bool forceArbitrary(TypeSetByHwMode &Out);
-
- /// The following four functions ensure that upon return the set \p Out
- /// will only contain types of the specified kind: integer, floating-point,
- /// scalar, or vector.
- /// If \p Out is empty, all legal types of the specified kind will be added
- /// to it. Otherwise, all types that are not of the specified kind will be
- /// removed from \p Out.
- bool EnforceInteger(TypeSetByHwMode &Out);
- bool EnforceFloatingPoint(TypeSetByHwMode &Out);
- bool EnforceScalar(TypeSetByHwMode &Out);
- bool EnforceVector(TypeSetByHwMode &Out);
-
- /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
- /// unchanged.
- bool EnforceAny(TypeSetByHwMode &Out);
- /// Make sure that for each type in \p Small, there exists a larger type
- /// in \p Big.
- bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
- /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
- /// for each type U in \p Elem, U is a scalar type.
- /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
- /// (vector) type T in \p Vec, such that U is the element type of T.
- bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
- bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
- const ValueTypeByHwMode &VVT);
- /// Ensure that for each type T in \p Sub, T is a vector type, and there
- /// exists a type U in \p Vec such that U is a vector type with the same
- /// element type as T and at least as many elements as T.
- bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
- TypeSetByHwMode &Sub);
- /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
- /// 2. Ensure that for each vector type T in \p V, there exists a vector
- /// type U in \p W, such that T and U have the same number of elements.
- /// 3. Ensure that for each vector type U in \p W, there exists a vector
- /// type T in \p V, such that T and U have the same number of elements
- /// (reverse of 2).
- bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
- /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
- /// such that T and U have equal size in bits.
- /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
- /// such that T and U have equal size in bits (reverse of 1).
- bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
-
- /// For each overloaded type (i.e. of form *Any), replace it with the
- /// corresponding subset of legal, specific types.
- void expandOverloads(TypeSetByHwMode &VTS);
- void expandOverloads(TypeSetByHwMode::SetType &Out,
- const TypeSetByHwMode::SetType &Legal);
-
- struct ValidateOnExit {
- ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
- #ifndef NDEBUG
- ~ValidateOnExit();
- #else
- ~ValidateOnExit() {} // Empty destructor with NDEBUG.
- #endif
- TypeInfer &Infer;
- TypeSetByHwMode &VTS;
- };
-
- struct SuppressValidation {
- SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
- Infer.Validate = false;
- }
- ~SuppressValidation() {
- Infer.Validate = SavedValidate;
- }
- TypeInfer &Infer;
- bool SavedValidate;
- };
-
- TreePattern &TP;
- unsigned ForceMode; // Mode to use when set.
- bool CodeGen = false; // Set during generation of matcher code.
- bool Validate = true; // Indicate whether to validate types.
-
-private:
- const TypeSetByHwMode &getLegalTypes();
-
- /// Cached legal types (in default mode).
- bool LegalTypesCached = false;
- TypeSetByHwMode LegalCache;
-};
-
-/// Set type used to track multiply used variables in patterns
-typedef StringSet<> MultipleUseVarSet;
-
-/// SDTypeConstraint - This is a discriminated union of constraints,
-/// corresponding to the SDTypeConstraint tablegen class in Target.td.
-struct SDTypeConstraint {
- SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
-
- unsigned OperandNo; // The operand # this constraint applies to.
- enum {
- SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
- SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
- SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
- } ConstraintType;
-
- union { // The discriminated union.
- struct {
- unsigned OtherOperandNum;
- } SDTCisSameAs_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisVTSmallerThanOp_Info;
- struct {
- unsigned BigOperandNum;
- } SDTCisOpSmallerThanOp_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisEltOfVec_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisSubVecOfVec_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisSameNumEltsAs_Info;
- struct {
- unsigned OtherOperandNum;
- } SDTCisSameSizeAs_Info;
- } x;
-
- // The VT for SDTCisVT and SDTCVecEltisVT.
- // Must not be in the union because it has a non-trivial destructor.
- ValueTypeByHwMode VVT;
-
- /// ApplyTypeConstraint - Given a node in a pattern, apply this type
- /// constraint to the nodes operands. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, an error
- /// is flagged.
- bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
- TreePattern &TP) const;
-};
-
-/// ScopedName - A name of a node associated with a "scope" that indicates
-/// the context (e.g. instance of Pattern or PatFrag) in which the name was
-/// used. This enables substitution of pattern fragments while keeping track
-/// of what name(s) were originally given to various nodes in the tree.
-class ScopedName {
- unsigned Scope;
- std::string Identifier;
-public:
- ScopedName(unsigned Scope, StringRef Identifier)
- : Scope(Scope), Identifier(std::string(Identifier)) {
- assert(Scope != 0 &&
- "Scope == 0 is used to indicate predicates without arguments");
- }
-
- unsigned getScope() const { return Scope; }
- const std::string &getIdentifier() const { return Identifier; }
-
- bool operator==(const ScopedName &o) const;
- bool operator!=(const ScopedName &o) const;
-};
-
-/// SDNodeInfo - One of these records is created for each SDNode instance in
-/// the target .td file. This represents the various dag nodes we will be
-/// processing.
-class SDNodeInfo {
- Record *Def;
- StringRef EnumName;
- StringRef SDClassName;
- unsigned Properties;
- unsigned NumResults;
- int NumOperands;
- std::vector<SDTypeConstraint> TypeConstraints;
-public:
- // Parse the specified record.
- SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
-
- unsigned getNumResults() const { return NumResults; }
-
- /// getNumOperands - This is the number of operands required or -1 if
- /// variadic.
- int getNumOperands() const { return NumOperands; }
- Record *getRecord() const { return Def; }
- StringRef getEnumName() const { return EnumName; }
- StringRef getSDClassName() const { return SDClassName; }
-
- const std::vector<SDTypeConstraint> &getTypeConstraints() const {
- return TypeConstraints;
- }
-
- /// getKnownType - If the type constraints on this node imply a fixed type
- /// (e.g. all stores return void, etc), then return it as an
- /// MVT::SimpleValueType. Otherwise, return MVT::Other.
- MVT::SimpleValueType getKnownType(unsigned ResNo) const;
-
- /// hasProperty - Return true if this node has the specified property.
- ///
- bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
-
- /// ApplyTypeConstraints - Given a node in a pattern, apply the type
- /// constraints for this node to the operands of the node. This returns
- /// true if it makes a change, false otherwise. If a type contradiction is
- /// found, an error is flagged.
- bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
-};
-
-/// TreePredicateFn - This is an abstraction that represents the predicates on
-/// a PatFrag node. This is a simple one-word wrapper around a pointer to
-/// provide nice accessors.
-class TreePredicateFn {
- /// PatFragRec - This is the TreePattern for the PatFrag that we
- /// originally came from.
- TreePattern *PatFragRec;
-public:
- /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
- TreePredicateFn(TreePattern *N);
-
-
- TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
-
- /// isAlwaysTrue - Return true if this is a noop predicate.
- bool isAlwaysTrue() const;
-
- bool isImmediatePattern() const { return hasImmCode(); }
-
- /// getImmediatePredicateCode - Return the code that evaluates this pattern if
- /// this is an immediate predicate. It is an error to call this on a
- /// non-immediate pattern.
- std::string getImmediatePredicateCode() const {
- std::string Result = getImmCode();
- assert(!Result.empty() && "Isn't an immediate pattern!");
- return Result;
- }
-
- bool operator==(const TreePredicateFn &RHS) const {
- return PatFragRec == RHS.PatFragRec;
- }
-
- bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
-
- /// Return the name to use in the generated code to reference this, this is
- /// "Predicate_foo" if from a pattern fragment "foo".
- std::string getFnName() const;
-
- /// getCodeToRunOnSDNode - Return the code for the function body that
- /// evaluates this predicate. The argument is expected to be in "Node",
- /// not N. This handles casting and conversion to a concrete node type as
- /// appropriate.
- std::string getCodeToRunOnSDNode() const;
-
- /// Get the data type of the argument to getImmediatePredicateCode().
- StringRef getImmType() const;
-
- /// Get a string that describes the type returned by getImmType() but is
- /// usable as part of an identifier.
- StringRef getImmTypeIdentifier() const;
-
- // Predicate code uses the PatFrag's captured operands.
- bool usesOperands() const;
-
- // Is the desired predefined predicate for a load?
- bool isLoad() const;
- // Is the desired predefined predicate for a store?
- bool isStore() const;
- // Is the desired predefined predicate for an atomic?
- bool isAtomic() const;
-
- /// Is this predicate the predefined unindexed load predicate?
- /// Is this predicate the predefined unindexed store predicate?
- bool isUnindexed() const;
- /// Is this predicate the predefined non-extending load predicate?
- bool isNonExtLoad() const;
- /// Is this predicate the predefined any-extend load predicate?
- bool isAnyExtLoad() const;
- /// Is this predicate the predefined sign-extend load predicate?
- bool isSignExtLoad() const;
- /// Is this predicate the predefined zero-extend load predicate?
- bool isZeroExtLoad() const;
- /// Is this predicate the predefined non-truncating store predicate?
- bool isNonTruncStore() const;
- /// Is this predicate the predefined truncating store predicate?
- bool isTruncStore() const;
-
- /// Is this predicate the predefined monotonic atomic predicate?
- bool isAtomicOrderingMonotonic() const;
- /// Is this predicate the predefined acquire atomic predicate?
- bool isAtomicOrderingAcquire() const;
- /// Is this predicate the predefined release atomic predicate?
- bool isAtomicOrderingRelease() const;
- /// Is this predicate the predefined acquire-release atomic predicate?
- bool isAtomicOrderingAcquireRelease() const;
- /// Is this predicate the predefined sequentially consistent atomic predicate?
- bool isAtomicOrderingSequentiallyConsistent() const;
-
- /// Is this predicate the predefined acquire-or-stronger atomic predicate?
- bool isAtomicOrderingAcquireOrStronger() const;
- /// Is this predicate the predefined weaker-than-acquire atomic predicate?
- bool isAtomicOrderingWeakerThanAcquire() const;
-
- /// Is this predicate the predefined release-or-stronger atomic predicate?
- bool isAtomicOrderingReleaseOrStronger() const;
- /// Is this predicate the predefined weaker-than-release atomic predicate?
- bool isAtomicOrderingWeakerThanRelease() const;
-
- /// If non-null, indicates that this predicate is a predefined memory VT
- /// predicate for a load/store and returns the ValueType record for the memory VT.
- Record *getMemoryVT() const;
- /// If non-null, indicates that this predicate is a predefined memory VT
- /// predicate (checking only the scalar type) for load/store and returns the
- /// ValueType record for the memory VT.
- Record *getScalarMemoryVT() const;
-
- ListInit *getAddressSpaces() const;
- int64_t getMinAlignment() const;
-
- // If true, indicates that GlobalISel-based C++ code was supplied.
- bool hasGISelPredicateCode() const;
- std::string getGISelPredicateCode() const;
-
-private:
- bool hasPredCode() const;
- bool hasImmCode() const;
- std::string getPredCode() const;
- std::string getImmCode() const;
- bool immCodeUsesAPInt() const;
- bool immCodeUsesAPFloat() const;
-
- bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
-};
-
-struct TreePredicateCall {
- TreePredicateFn Fn;
-
- // Scope -- unique identifier for retrieving named arguments. 0 is used when
- // the predicate does not use named arguments.
- unsigned Scope;
-
- TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
- : Fn(Fn), Scope(Scope) {}
-
- bool operator==(const TreePredicateCall &o) const {
- return Fn == o.Fn && Scope == o.Scope;
- }
- bool operator!=(const TreePredicateCall &o) const {
- return !(*this == o);
- }
-};
-
-class TreePatternNode {
- /// The type of each node result. Before and during type inference, each
- /// result may be a set of possible types. After (successful) type inference,
- /// each is a single concrete type.
- std::vector<TypeSetByHwMode> Types;
-
- /// The index of each result in results of the pattern.
- std::vector<unsigned> ResultPerm;
-
- /// Operator - The Record for the operator if this is an interior node (not
- /// a leaf).
- Record *Operator;
-
- /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
- ///
- Init *Val;
-
- /// Name - The name given to this node with the :$foo notation.
- ///
- std::string Name;
-
- std::vector<ScopedName> NamesAsPredicateArg;
-
- /// PredicateCalls - The predicate functions to execute on this node to check
- /// for a match. If this list is empty, no predicate is involved.
- std::vector<TreePredicateCall> PredicateCalls;
-
- /// TransformFn - The transformation function to execute on this node before
- /// it can be substituted into the resulting instruction on a pattern match.
- Record *TransformFn;
-
- std::vector<TreePatternNodePtr> Children;
-
-public:
- TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
- unsigned NumResults)
- : Operator(Op), Val(nullptr), TransformFn(nullptr),
- Children(std::move(Ch)) {
- Types.resize(NumResults);
- ResultPerm.resize(NumResults);
- std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
- }
- TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
- : Operator(nullptr), Val(val), TransformFn(nullptr) {
- Types.resize(NumResults);
- ResultPerm.resize(NumResults);
- std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
- }
-
- bool hasName() const { return !Name.empty(); }
- const std::string &getName() const { return Name; }
- void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
-
- const std::vector<ScopedName> &getNamesAsPredicateArg() const {
- return NamesAsPredicateArg;
- }
- void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
- NamesAsPredicateArg = Names;
- }
- void addNameAsPredicateArg(const ScopedName &N) {
- NamesAsPredicateArg.push_back(N);
- }
-
- bool isLeaf() const { return Val != nullptr; }
-
- // Type accessors.
- unsigned getNumTypes() const { return Types.size(); }
- ValueTypeByHwMode getType(unsigned ResNo) const {
- return Types[ResNo].getValueTypeByHwMode();
- }
- const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
- const TypeSetByHwMode &getExtType(unsigned ResNo) const {
- return Types[ResNo];
- }
- TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
- void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
- MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
- return Types[ResNo].getMachineValueType().SimpleTy;
- }
-
- bool hasConcreteType(unsigned ResNo) const {
- return Types[ResNo].isValueTypeByHwMode(false);
- }
- bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
- return Types[ResNo].empty();
- }
-
- unsigned getNumResults() const { return ResultPerm.size(); }
- unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
- void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
-
- Init *getLeafValue() const { assert(isLeaf()); return Val; }
- Record *getOperator() const { assert(!isLeaf()); return Operator; }
-
- unsigned getNumChildren() const { return Children.size(); }
- TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
- const TreePatternNodePtr &getChildShared(unsigned N) const {
- return Children[N];
- }
- void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
-
- /// hasChild - Return true if N is any of our children.
- bool hasChild(const TreePatternNode *N) const {
- for (unsigned i = 0, e = Children.size(); i != e; ++i)
- if (Children[i].get() == N)
- return true;
- return false;
- }
-
- bool hasProperTypeByHwMode() const;
- bool hasPossibleType() const;
- bool setDefaultMode(unsigned Mode);
-
- bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
-
- const std::vector<TreePredicateCall> &getPredicateCalls() const {
- return PredicateCalls;
- }
- void clearPredicateCalls() { PredicateCalls.clear(); }
- void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
- assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
- PredicateCalls = Calls;
- }
- void addPredicateCall(const TreePredicateCall &Call) {
- assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
- assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
- PredicateCalls.push_back(Call);
- }
- void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
- assert((Scope != 0) == Fn.usesOperands());
- addPredicateCall(TreePredicateCall(Fn, Scope));
- }
-
- Record *getTransformFn() const { return TransformFn; }
- void setTransformFn(Record *Fn) { TransformFn = Fn; }
-
- /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
- /// CodeGenIntrinsic information for it, otherwise return a null pointer.
- const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
-
- /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
- /// return the ComplexPattern information, otherwise return null.
- const ComplexPattern *
- getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
-
- /// Returns the number of MachineInstr operands that would be produced by this
- /// node if it mapped directly to an output Instruction's
- /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
- /// for Operands; otherwise 1.
- unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
-
- /// NodeHasProperty - Return true if this node has the specified property.
- bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
-
- /// TreeHasProperty - Return true if any node in this tree has the specified
- /// property.
- bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
-
- /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
- /// marked isCommutative.
- bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
-
- void print(raw_ostream &OS) const;
- void dump() const;
-
-public: // Higher level manipulation routines.
-
- /// clone - Return a new copy of this tree.
- ///
- TreePatternNodePtr clone() const;
-
- /// RemoveAllTypes - Recursively strip all the types of this tree.
- void RemoveAllTypes();
-
- /// isIsomorphicTo - Return true if this node is recursively isomorphic to
- /// the specified node. For this comparison, all of the state of the node
- /// is considered, except for the assigned name. Nodes with differing names
- /// that are otherwise identical are considered isomorphic.
- bool isIsomorphicTo(const TreePatternNode *N,
- const MultipleUseVarSet &DepVars) const;
-
- /// SubstituteFormalArguments - Replace the formal arguments in this tree
- /// with actual values specified by ArgMap.
- void
- SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
-
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, return the set of inlined versions (this can be more than
- /// one if a PatFrags record has multiple alternatives).
- void InlinePatternFragments(TreePatternNodePtr T,
- TreePattern &TP,
- std::vector<TreePatternNodePtr> &OutAlternatives);
-
- /// ApplyTypeConstraints - Apply all of the type constraints relevant to
- /// this node and its children in the tree. This returns true if it makes a
- /// change, false otherwise. If a type contradiction is found, flag an error.
- bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
-
- /// UpdateNodeType - Set the node type of N to VT if VT contains
- /// information. If N already contains a conflicting type, then flag an
- /// error. This returns true if any information was updated.
- ///
- bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
- TreePattern &TP);
- bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
- TreePattern &TP);
- bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
- TreePattern &TP);
-
- // Update node type with types inferred from an instruction operand or result
- // def from the ins/outs lists.
- // Return true if the type changed.
- bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
-
- /// ContainsUnresolvedType - Return true if this tree contains any
- /// unresolved types.
- bool ContainsUnresolvedType(TreePattern &TP) const;
-
- /// canPatternMatch - If it is impossible for this pattern to match on this
- /// target, fill in Reason and return false. Otherwise, return true.
- bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
-};
-
-inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
- TPN.print(OS);
- return OS;
-}
-
-
-/// TreePattern - Represent a pattern, used for instructions, pattern
-/// fragments, etc.
-///
-class TreePattern {
- /// Trees - The list of pattern trees which corresponds to this pattern.
- /// Note that PatFrag's only have a single tree.
- ///
- std::vector<TreePatternNodePtr> Trees;
-
- /// NamedNodes - This is all of the nodes that have names in the trees in this
- /// pattern.
- StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
-
- /// TheRecord - The actual TableGen record corresponding to this pattern.
- ///
- Record *TheRecord;
-
- /// Args - This is a list of all of the arguments to this pattern (for
- /// PatFrag patterns), which are the 'node' markers in this pattern.
- std::vector<std::string> Args;
-
- /// CDP - the top-level object coordinating this madness.
- ///
- CodeGenDAGPatterns &CDP;
-
- /// isInputPattern - True if this is an input pattern, something to match.
- /// False if this is an output pattern, something to emit.
- bool isInputPattern;
-
- /// hasError - True if the currently processed nodes have unresolvable types
- /// or other non-fatal errors
- bool HasError;
-
- /// It's important that the usage of operands in ComplexPatterns is
- /// consistent: each named operand can be defined by at most one
- /// ComplexPattern. This records the ComplexPattern instance and the operand
- /// number for each operand encountered in a ComplexPattern to aid in that
- /// check.
- StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
-
- TypeInfer Infer;
-
-public:
-
- /// TreePattern constructor - Parse the specified DagInits into the
- /// current record.
- TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
- CodeGenDAGPatterns &ise);
- TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
- CodeGenDAGPatterns &ise);
- TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
- CodeGenDAGPatterns &ise);
-
- /// getTrees - Return the tree patterns which corresponds to this pattern.
- ///
- const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
- unsigned getNumTrees() const { return Trees.size(); }
- const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
- void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
- const TreePatternNodePtr &getOnlyTree() const {
- assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
- return Trees[0];
- }
-
- const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
- if (NamedNodes.empty())
- ComputeNamedNodes();
- return NamedNodes;
- }
-
- /// getRecord - Return the actual TableGen record corresponding to this
- /// pattern.
- ///
- Record *getRecord() const { return TheRecord; }
-
- unsigned getNumArgs() const { return Args.size(); }
- const std::string &getArgName(unsigned i) const {
- assert(i < Args.size() && "Argument reference out of range!");
- return Args[i];
- }
- std::vector<std::string> &getArgList() { return Args; }
-
- CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
-
- /// InlinePatternFragments - If this pattern refers to any pattern
- /// fragments, inline them into place, giving us a pattern without any
- /// PatFrags references. This may increase the number of trees in the
- /// pattern if a PatFrags has multiple alternatives.
- void InlinePatternFragments() {
- std::vector<TreePatternNodePtr> Copy = Trees;
- Trees.clear();
- for (unsigned i = 0, e = Copy.size(); i != e; ++i)
- Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
- }
-
- /// InferAllTypes - Infer/propagate as many types throughout the expression
- /// patterns as possible. Return true if all types are inferred, false
- /// otherwise. Bail out if a type contradiction is found.
- bool InferAllTypes(
- const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
-
- /// error - If this is the first error in the current resolution step,
- /// print it and set the error flag. Otherwise, continue silently.
- void error(const Twine &Msg);
- bool hasError() const {
- return HasError;
- }
- void resetError() {
- HasError = false;
- }
-
- TypeInfer &getInfer() { return Infer; }
-
- void print(raw_ostream &OS) const;
- void dump() const;
-
-private:
- TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
- void ComputeNamedNodes();
- void ComputeNamedNodes(TreePatternNode *N);
-};
-
-
-inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
- const TypeSetByHwMode &InTy,
- TreePattern &TP) {
- TypeSetByHwMode VTS(InTy);
- TP.getInfer().expandOverloads(VTS);
- return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
-}
-
-inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
- MVT::SimpleValueType InTy,
- TreePattern &TP) {
- TypeSetByHwMode VTS(InTy);
- TP.getInfer().expandOverloads(VTS);
- return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
-}
-
-inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
- ValueTypeByHwMode InTy,
- TreePattern &TP) {
- TypeSetByHwMode VTS(InTy);
- TP.getInfer().expandOverloads(VTS);
- return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
-}
-
-
-/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
-/// that has a set ExecuteAlways / DefaultOps field.
-struct DAGDefaultOperand {
- std::vector<TreePatternNodePtr> DefaultOps;
-};
-
-class DAGInstruction {
- std::vector<Record*> Results;
- std::vector<Record*> Operands;
- std::vector<Record*> ImpResults;
- TreePatternNodePtr SrcPattern;
- TreePatternNodePtr ResultPattern;
-
-public:
- DAGInstruction(const std::vector<Record*> &results,
- const std::vector<Record*> &operands,
- const std::vector<Record*> &impresults,
- TreePatternNodePtr srcpattern = nullptr,
- TreePatternNodePtr resultpattern = nullptr)
- : Results(results), Operands(operands), ImpResults(impresults),
- SrcPattern(srcpattern), ResultPattern(resultpattern) {}
-
- unsigned getNumResults() const { return Results.size(); }
- unsigned getNumOperands() const { return Operands.size(); }
- unsigned getNumImpResults() const { return ImpResults.size(); }
- const std::vector<Record*>& getImpResults() const { return ImpResults; }
-
- Record *getResult(unsigned RN) const {
- assert(RN < Results.size());
- return Results[RN];
- }
-
- Record *getOperand(unsigned ON) const {
- assert(ON < Operands.size());
- return Operands[ON];
- }
-
- Record *getImpResult(unsigned RN) const {
- assert(RN < ImpResults.size());
- return ImpResults[RN];
- }
-
- TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
- TreePatternNodePtr getResultPattern() const { return ResultPattern; }
-};
-
-/// This class represents a condition that has to be satisfied for a pattern
-/// to be tried. It is a generalization of a class "Pattern" from Target.td:
-/// in addition to the Target.td's predicates, this class can also represent
-/// conditions associated with HW modes. Both types will eventually become
-/// strings containing C++ code to be executed, the difference is in how
-/// these strings are generated.
-class Predicate {
-public:
- Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
- assert(R->isSubClassOf("Predicate") &&
- "Predicate objects should only be created for records derived"
- "from Predicate class");
- }
- Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
- IfCond(C), IsHwMode(true) {}
-
- /// Return a string which contains the C++ condition code that will serve
- /// as a predicate during instruction selection.
- std::string getCondString() const {
- // The string will excute in a subclass of SelectionDAGISel.
- // Cast to std::string explicitly to avoid ambiguity with StringRef.
- std::string C = IsHwMode
- ? std::string("MF->getSubtarget().checkFeatures(\"" +
- Features + "\")")
- : std::string(Def->getValueAsString("CondString"));
- if (C.empty())
- return "";
- return IfCond ? C : "!("+C+')';
- }
-
- bool operator==(const Predicate &P) const {
- return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
- }
- bool operator<(const Predicate &P) const {
- if (IsHwMode != P.IsHwMode)
- return IsHwMode < P.IsHwMode;
- assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
- if (IfCond != P.IfCond)
- return IfCond < P.IfCond;
- if (Def)
- return LessRecord()(Def, P.Def);
- return Features < P.Features;
- }
- Record *Def; ///< Predicate definition from .td file, null for
- ///< HW modes.
- std::string Features; ///< Feature string for HW mode.
- bool IfCond; ///< The boolean value that the condition has to
- ///< evaluate to for this predicate to be true.
- bool IsHwMode; ///< Does this predicate correspond to a HW mode?
-};
-
-/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
-/// processed to produce isel.
-class PatternToMatch {
-public:
- PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
- TreePatternNodePtr src, TreePatternNodePtr dst,
- std::vector<Record *> dstregs, int complexity,
- unsigned uid, unsigned setmode = 0)
- : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
- Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
- AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
-
- Record *SrcRecord; // Originating Record for the pattern.
- TreePatternNodePtr SrcPattern; // Source pattern to match.
- TreePatternNodePtr DstPattern; // Resulting pattern.
- std::vector<Predicate> Predicates; // Top level predicate conditions
- // to match.
- std::vector<Record*> Dstregs; // Physical register defs being matched.
- int AddedComplexity; // Add to matching pattern complexity.
- unsigned ID; // Unique ID for the record.
- unsigned ForceMode; // Force this mode in type inference when set.
-
- Record *getSrcRecord() const { return SrcRecord; }
- TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
- TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
- TreePatternNode *getDstPattern() const { return DstPattern.get(); }
- TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
- const std::vector<Record*> &getDstRegs() const { return Dstregs; }
- int getAddedComplexity() const { return AddedComplexity; }
- const std::vector<Predicate> &getPredicates() const { return Predicates; }
-
- std::string getPredicateCheck() const;
-
- /// Compute the complexity metric for the input pattern. This roughly
- /// corresponds to the number of nodes that are covered.
- int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
-};
-
-class CodeGenDAGPatterns {
- RecordKeeper &Records;
- CodeGenTarget Target;
- CodeGenIntrinsicTable Intrinsics;
-
- std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
- std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
- SDNodeXForms;
- std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
- std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
- PatternFragments;
- std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
- std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
-
- // Specific SDNode definitions:
- Record *intrinsic_void_sdnode;
- Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
-
- /// PatternsToMatch - All of the things we are matching on the DAG. The first
- /// value is the pattern to match, the second pattern is the result to
- /// emit.
- std::vector<PatternToMatch> PatternsToMatch;
-
- TypeSetByHwMode LegalVTS;
-
- using PatternRewriterFn = std::function<void (TreePattern *)>;
- PatternRewriterFn PatternRewriter;
-
- unsigned NumScopes = 0;
-
-public:
- CodeGenDAGPatterns(RecordKeeper &R,
- PatternRewriterFn PatternRewriter = nullptr);
-
- CodeGenTarget &getTargetInfo() { return Target; }
- const CodeGenTarget &getTargetInfo() const { return Target; }
- const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
-
+
+ TypeSetByHwMode() = default;
+ TypeSetByHwMode(const TypeSetByHwMode &VTS) = default;
+ TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default;
+ TypeSetByHwMode(MVT::SimpleValueType VT)
+ : TypeSetByHwMode(ValueTypeByHwMode(VT)) {}
+ TypeSetByHwMode(ValueTypeByHwMode VT)
+ : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {}
+ TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList);
+
+ SetType &getOrCreate(unsigned Mode) {
+ if (hasMode(Mode))
+ return get(Mode);
+ return Map.insert({Mode,SetType()}).first->second;
+ }
+
+ bool isValueTypeByHwMode(bool AllowEmpty) const;
+ ValueTypeByHwMode getValueTypeByHwMode() const;
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool isMachineValueType() const {
+ return isDefaultOnly() && Map.begin()->second.size() == 1;
+ }
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ MVT getMachineValueType() const {
+ assert(isMachineValueType());
+ return *Map.begin()->second.begin();
+ }
+
+ bool isPossible() const;
+
+ LLVM_ATTRIBUTE_ALWAYS_INLINE
+ bool isDefaultOnly() const {
+ return Map.size() == 1 && Map.begin()->first == DefaultMode;
+ }
+
+ bool isPointer() const {
+ return getValueTypeByHwMode().isPointer();
+ }
+
+ unsigned getPtrAddrSpace() const {
+ assert(isPointer());
+ return getValueTypeByHwMode().PtrAddrSpace;
+ }
+
+ bool insert(const ValueTypeByHwMode &VVT);
+ bool constrain(const TypeSetByHwMode &VTS);
+ template <typename Predicate> bool constrain(Predicate P);
+ template <typename Predicate>
+ bool assign_if(const TypeSetByHwMode &VTS, Predicate P);
+
+ void writeToStream(raw_ostream &OS) const;
+ static void writeToStream(const SetType &S, raw_ostream &OS);
+
+ bool operator==(const TypeSetByHwMode &VTS) const;
+ bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); }
+
+ void dump() const;
+ bool validate() const;
+
+private:
+ unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max();
+ /// Intersect two sets. Return true if anything has changed.
+ bool intersect(SetType &Out, const SetType &In);
+};
+
+raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T);
+
+struct TypeInfer {
+ TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {}
+
+ bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const {
+ return VTS.isValueTypeByHwMode(AllowEmpty);
+ }
+ ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS,
+ bool AllowEmpty) const {
+ assert(VTS.isValueTypeByHwMode(AllowEmpty));
+ return VTS.getValueTypeByHwMode();
+ }
+
+ /// The protocol in the following functions (Merge*, force*, Enforce*,
+ /// expand*) is to return "true" if a change has been made, "false"
+ /// otherwise.
+
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In);
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) {
+ return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
+ }
+ bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) {
+ return MergeInTypeInfo(Out, TypeSetByHwMode(InVT));
+ }
+
+ /// Reduce the set \p Out to have at most one element for each mode.
+ bool forceArbitrary(TypeSetByHwMode &Out);
+
+ /// The following four functions ensure that upon return the set \p Out
+ /// will only contain types of the specified kind: integer, floating-point,
+ /// scalar, or vector.
+ /// If \p Out is empty, all legal types of the specified kind will be added
+ /// to it. Otherwise, all types that are not of the specified kind will be
+ /// removed from \p Out.
+ bool EnforceInteger(TypeSetByHwMode &Out);
+ bool EnforceFloatingPoint(TypeSetByHwMode &Out);
+ bool EnforceScalar(TypeSetByHwMode &Out);
+ bool EnforceVector(TypeSetByHwMode &Out);
+
+ /// If \p Out is empty, fill it with all legal types. Otherwise, leave it
+ /// unchanged.
+ bool EnforceAny(TypeSetByHwMode &Out);
+ /// Make sure that for each type in \p Small, there exists a larger type
+ /// in \p Big.
+ bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big);
+ /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that
+ /// for each type U in \p Elem, U is a scalar type.
+ /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a
+ /// (vector) type T in \p Vec, such that U is the element type of T.
+ bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem);
+ bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
+ const ValueTypeByHwMode &VVT);
+ /// Ensure that for each type T in \p Sub, T is a vector type, and there
+ /// exists a type U in \p Vec such that U is a vector type with the same
+ /// element type as T and at least as many elements as T.
+ bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
+ TypeSetByHwMode &Sub);
+ /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type.
+ /// 2. Ensure that for each vector type T in \p V, there exists a vector
+ /// type U in \p W, such that T and U have the same number of elements.
+ /// 3. Ensure that for each vector type U in \p W, there exists a vector
+ /// type T in \p V, such that T and U have the same number of elements
+ /// (reverse of 2).
+ bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W);
+ /// 1. Ensure that for each type T in \p A, there exists a type U in \p B,
+ /// such that T and U have equal size in bits.
+ /// 2. Ensure that for each type U in \p B, there exists a type T in \p A
+ /// such that T and U have equal size in bits (reverse of 1).
+ bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B);
+
+ /// For each overloaded type (i.e. of form *Any), replace it with the
+ /// corresponding subset of legal, specific types.
+ void expandOverloads(TypeSetByHwMode &VTS);
+ void expandOverloads(TypeSetByHwMode::SetType &Out,
+ const TypeSetByHwMode::SetType &Legal);
+
+ struct ValidateOnExit {
+ ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {}
+ #ifndef NDEBUG
+ ~ValidateOnExit();
+ #else
+ ~ValidateOnExit() {} // Empty destructor with NDEBUG.
+ #endif
+ TypeInfer &Infer;
+ TypeSetByHwMode &VTS;
+ };
+
+ struct SuppressValidation {
+ SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) {
+ Infer.Validate = false;
+ }
+ ~SuppressValidation() {
+ Infer.Validate = SavedValidate;
+ }
+ TypeInfer &Infer;
+ bool SavedValidate;
+ };
+
+ TreePattern &TP;
+ unsigned ForceMode; // Mode to use when set.
+ bool CodeGen = false; // Set during generation of matcher code.
+ bool Validate = true; // Indicate whether to validate types.
+
+private:
+ const TypeSetByHwMode &getLegalTypes();
+
+ /// Cached legal types (in default mode).
+ bool LegalTypesCached = false;
+ TypeSetByHwMode LegalCache;
+};
+
+/// Set type used to track multiply used variables in patterns
+typedef StringSet<> MultipleUseVarSet;
+
+/// SDTypeConstraint - This is a discriminated union of constraints,
+/// corresponding to the SDTypeConstraint tablegen class in Target.td.
+struct SDTypeConstraint {
+ SDTypeConstraint(Record *R, const CodeGenHwModes &CGH);
+
+ unsigned OperandNo; // The operand # this constraint applies to.
+ enum {
+ SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs,
+ SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec,
+ SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs
+ } ConstraintType;
+
+ union { // The discriminated union.
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSameAs_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisVTSmallerThanOp_Info;
+ struct {
+ unsigned BigOperandNum;
+ } SDTCisOpSmallerThanOp_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisEltOfVec_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSubVecOfVec_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSameNumEltsAs_Info;
+ struct {
+ unsigned OtherOperandNum;
+ } SDTCisSameSizeAs_Info;
+ } x;
+
+ // The VT for SDTCisVT and SDTCVecEltisVT.
+ // Must not be in the union because it has a non-trivial destructor.
+ ValueTypeByHwMode VVT;
+
+ /// ApplyTypeConstraint - Given a node in a pattern, apply this type
+ /// constraint to the nodes operands. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, an error
+ /// is flagged.
+ bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const;
+};
+
+/// ScopedName - A name of a node associated with a "scope" that indicates
+/// the context (e.g. instance of Pattern or PatFrag) in which the name was
+/// used. This enables substitution of pattern fragments while keeping track
+/// of what name(s) were originally given to various nodes in the tree.
+class ScopedName {
+ unsigned Scope;
+ std::string Identifier;
+public:
+ ScopedName(unsigned Scope, StringRef Identifier)
+ : Scope(Scope), Identifier(std::string(Identifier)) {
+ assert(Scope != 0 &&
+ "Scope == 0 is used to indicate predicates without arguments");
+ }
+
+ unsigned getScope() const { return Scope; }
+ const std::string &getIdentifier() const { return Identifier; }
+
+ bool operator==(const ScopedName &o) const;
+ bool operator!=(const ScopedName &o) const;
+};
+
+/// SDNodeInfo - One of these records is created for each SDNode instance in
+/// the target .td file. This represents the various dag nodes we will be
+/// processing.
+class SDNodeInfo {
+ Record *Def;
+ StringRef EnumName;
+ StringRef SDClassName;
+ unsigned Properties;
+ unsigned NumResults;
+ int NumOperands;
+ std::vector<SDTypeConstraint> TypeConstraints;
+public:
+ // Parse the specified record.
+ SDNodeInfo(Record *R, const CodeGenHwModes &CGH);
+
+ unsigned getNumResults() const { return NumResults; }
+
+ /// getNumOperands - This is the number of operands required or -1 if
+ /// variadic.
+ int getNumOperands() const { return NumOperands; }
+ Record *getRecord() const { return Def; }
+ StringRef getEnumName() const { return EnumName; }
+ StringRef getSDClassName() const { return SDClassName; }
+
+ const std::vector<SDTypeConstraint> &getTypeConstraints() const {
+ return TypeConstraints;
+ }
+
+ /// getKnownType - If the type constraints on this node imply a fixed type
+ /// (e.g. all stores return void, etc), then return it as an
+ /// MVT::SimpleValueType. Otherwise, return MVT::Other.
+ MVT::SimpleValueType getKnownType(unsigned ResNo) const;
+
+ /// hasProperty - Return true if this node has the specified property.
+ ///
+ bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); }
+
+ /// ApplyTypeConstraints - Given a node in a pattern, apply the type
+ /// constraints for this node to the operands of the node. This returns
+ /// true if it makes a change, false otherwise. If a type contradiction is
+ /// found, an error is flagged.
+ bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const;
+};
+
+/// TreePredicateFn - This is an abstraction that represents the predicates on
+/// a PatFrag node. This is a simple one-word wrapper around a pointer to
+/// provide nice accessors.
+class TreePredicateFn {
+ /// PatFragRec - This is the TreePattern for the PatFrag that we
+ /// originally came from.
+ TreePattern *PatFragRec;
+public:
+ /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
+ TreePredicateFn(TreePattern *N);
+
+
+ TreePattern *getOrigPatFragRecord() const { return PatFragRec; }
+
+ /// isAlwaysTrue - Return true if this is a noop predicate.
+ bool isAlwaysTrue() const;
+
+ bool isImmediatePattern() const { return hasImmCode(); }
+
+ /// getImmediatePredicateCode - Return the code that evaluates this pattern if
+ /// this is an immediate predicate. It is an error to call this on a
+ /// non-immediate pattern.
+ std::string getImmediatePredicateCode() const {
+ std::string Result = getImmCode();
+ assert(!Result.empty() && "Isn't an immediate pattern!");
+ return Result;
+ }
+
+ bool operator==(const TreePredicateFn &RHS) const {
+ return PatFragRec == RHS.PatFragRec;
+ }
+
+ bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); }
+
+ /// Return the name to use in the generated code to reference this, this is
+ /// "Predicate_foo" if from a pattern fragment "foo".
+ std::string getFnName() const;
+
+ /// getCodeToRunOnSDNode - Return the code for the function body that
+ /// evaluates this predicate. The argument is expected to be in "Node",
+ /// not N. This handles casting and conversion to a concrete node type as
+ /// appropriate.
+ std::string getCodeToRunOnSDNode() const;
+
+ /// Get the data type of the argument to getImmediatePredicateCode().
+ StringRef getImmType() const;
+
+ /// Get a string that describes the type returned by getImmType() but is
+ /// usable as part of an identifier.
+ StringRef getImmTypeIdentifier() const;
+
+ // Predicate code uses the PatFrag's captured operands.
+ bool usesOperands() const;
+
+ // Is the desired predefined predicate for a load?
+ bool isLoad() const;
+ // Is the desired predefined predicate for a store?
+ bool isStore() const;
+ // Is the desired predefined predicate for an atomic?
+ bool isAtomic() const;
+
+ /// Is this predicate the predefined unindexed load predicate?
+ /// Is this predicate the predefined unindexed store predicate?
+ bool isUnindexed() const;
+ /// Is this predicate the predefined non-extending load predicate?
+ bool isNonExtLoad() const;
+ /// Is this predicate the predefined any-extend load predicate?
+ bool isAnyExtLoad() const;
+ /// Is this predicate the predefined sign-extend load predicate?
+ bool isSignExtLoad() const;
+ /// Is this predicate the predefined zero-extend load predicate?
+ bool isZeroExtLoad() const;
+ /// Is this predicate the predefined non-truncating store predicate?
+ bool isNonTruncStore() const;
+ /// Is this predicate the predefined truncating store predicate?
+ bool isTruncStore() const;
+
+ /// Is this predicate the predefined monotonic atomic predicate?
+ bool isAtomicOrderingMonotonic() const;
+ /// Is this predicate the predefined acquire atomic predicate?
+ bool isAtomicOrderingAcquire() const;
+ /// Is this predicate the predefined release atomic predicate?
+ bool isAtomicOrderingRelease() const;
+ /// Is this predicate the predefined acquire-release atomic predicate?
+ bool isAtomicOrderingAcquireRelease() const;
+ /// Is this predicate the predefined sequentially consistent atomic predicate?
+ bool isAtomicOrderingSequentiallyConsistent() const;
+
+ /// Is this predicate the predefined acquire-or-stronger atomic predicate?
+ bool isAtomicOrderingAcquireOrStronger() const;
+ /// Is this predicate the predefined weaker-than-acquire atomic predicate?
+ bool isAtomicOrderingWeakerThanAcquire() const;
+
+ /// Is this predicate the predefined release-or-stronger atomic predicate?
+ bool isAtomicOrderingReleaseOrStronger() const;
+ /// Is this predicate the predefined weaker-than-release atomic predicate?
+ bool isAtomicOrderingWeakerThanRelease() const;
+
+ /// If non-null, indicates that this predicate is a predefined memory VT
+ /// predicate for a load/store and returns the ValueType record for the memory VT.
+ Record *getMemoryVT() const;
+ /// If non-null, indicates that this predicate is a predefined memory VT
+ /// predicate (checking only the scalar type) for load/store and returns the
+ /// ValueType record for the memory VT.
+ Record *getScalarMemoryVT() const;
+
+ ListInit *getAddressSpaces() const;
+ int64_t getMinAlignment() const;
+
+ // If true, indicates that GlobalISel-based C++ code was supplied.
+ bool hasGISelPredicateCode() const;
+ std::string getGISelPredicateCode() const;
+
+private:
+ bool hasPredCode() const;
+ bool hasImmCode() const;
+ std::string getPredCode() const;
+ std::string getImmCode() const;
+ bool immCodeUsesAPInt() const;
+ bool immCodeUsesAPFloat() const;
+
+ bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const;
+};
+
+struct TreePredicateCall {
+ TreePredicateFn Fn;
+
+ // Scope -- unique identifier for retrieving named arguments. 0 is used when
+ // the predicate does not use named arguments.
+ unsigned Scope;
+
+ TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope)
+ : Fn(Fn), Scope(Scope) {}
+
+ bool operator==(const TreePredicateCall &o) const {
+ return Fn == o.Fn && Scope == o.Scope;
+ }
+ bool operator!=(const TreePredicateCall &o) const {
+ return !(*this == o);
+ }
+};
+
+class TreePatternNode {
+ /// The type of each node result. Before and during type inference, each
+ /// result may be a set of possible types. After (successful) type inference,
+ /// each is a single concrete type.
+ std::vector<TypeSetByHwMode> Types;
+
+ /// The index of each result in results of the pattern.
+ std::vector<unsigned> ResultPerm;
+
+ /// Operator - The Record for the operator if this is an interior node (not
+ /// a leaf).
+ Record *Operator;
+
+ /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf.
+ ///
+ Init *Val;
+
+ /// Name - The name given to this node with the :$foo notation.
+ ///
+ std::string Name;
+
+ std::vector<ScopedName> NamesAsPredicateArg;
+
+ /// PredicateCalls - The predicate functions to execute on this node to check
+ /// for a match. If this list is empty, no predicate is involved.
+ std::vector<TreePredicateCall> PredicateCalls;
+
+ /// TransformFn - The transformation function to execute on this node before
+ /// it can be substituted into the resulting instruction on a pattern match.
+ Record *TransformFn;
+
+ std::vector<TreePatternNodePtr> Children;
+
+public:
+ TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch,
+ unsigned NumResults)
+ : Operator(Op), Val(nullptr), TransformFn(nullptr),
+ Children(std::move(Ch)) {
+ Types.resize(NumResults);
+ ResultPerm.resize(NumResults);
+ std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
+ }
+ TreePatternNode(Init *val, unsigned NumResults) // leaf ctor
+ : Operator(nullptr), Val(val), TransformFn(nullptr) {
+ Types.resize(NumResults);
+ ResultPerm.resize(NumResults);
+ std::iota(ResultPerm.begin(), ResultPerm.end(), 0);
+ }
+
+ bool hasName() const { return !Name.empty(); }
+ const std::string &getName() const { return Name; }
+ void setName(StringRef N) { Name.assign(N.begin(), N.end()); }
+
+ const std::vector<ScopedName> &getNamesAsPredicateArg() const {
+ return NamesAsPredicateArg;
+ }
+ void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) {
+ NamesAsPredicateArg = Names;
+ }
+ void addNameAsPredicateArg(const ScopedName &N) {
+ NamesAsPredicateArg.push_back(N);
+ }
+
+ bool isLeaf() const { return Val != nullptr; }
+
+ // Type accessors.
+ unsigned getNumTypes() const { return Types.size(); }
+ ValueTypeByHwMode getType(unsigned ResNo) const {
+ return Types[ResNo].getValueTypeByHwMode();
+ }
+ const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; }
+ const TypeSetByHwMode &getExtType(unsigned ResNo) const {
+ return Types[ResNo];
+ }
+ TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; }
+ void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; }
+ MVT::SimpleValueType getSimpleType(unsigned ResNo) const {
+ return Types[ResNo].getMachineValueType().SimpleTy;
+ }
+
+ bool hasConcreteType(unsigned ResNo) const {
+ return Types[ResNo].isValueTypeByHwMode(false);
+ }
+ bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const {
+ return Types[ResNo].empty();
+ }
+
+ unsigned getNumResults() const { return ResultPerm.size(); }
+ unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; }
+ void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; }
+
+ Init *getLeafValue() const { assert(isLeaf()); return Val; }
+ Record *getOperator() const { assert(!isLeaf()); return Operator; }
+
+ unsigned getNumChildren() const { return Children.size(); }
+ TreePatternNode *getChild(unsigned N) const { return Children[N].get(); }
+ const TreePatternNodePtr &getChildShared(unsigned N) const {
+ return Children[N];
+ }
+ void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; }
+
+ /// hasChild - Return true if N is any of our children.
+ bool hasChild(const TreePatternNode *N) const {
+ for (unsigned i = 0, e = Children.size(); i != e; ++i)
+ if (Children[i].get() == N)
+ return true;
+ return false;
+ }
+
+ bool hasProperTypeByHwMode() const;
+ bool hasPossibleType() const;
+ bool setDefaultMode(unsigned Mode);
+
+ bool hasAnyPredicate() const { return !PredicateCalls.empty(); }
+
+ const std::vector<TreePredicateCall> &getPredicateCalls() const {
+ return PredicateCalls;
+ }
+ void clearPredicateCalls() { PredicateCalls.clear(); }
+ void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) {
+ assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!");
+ PredicateCalls = Calls;
+ }
+ void addPredicateCall(const TreePredicateCall &Call) {
+ assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!");
+ assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively");
+ PredicateCalls.push_back(Call);
+ }
+ void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) {
+ assert((Scope != 0) == Fn.usesOperands());
+ addPredicateCall(TreePredicateCall(Fn, Scope));
+ }
+
+ Record *getTransformFn() const { return TransformFn; }
+ void setTransformFn(Record *Fn) { TransformFn = Fn; }
+
+ /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
+ /// CodeGenIntrinsic information for it, otherwise return a null pointer.
+ const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const;
+
+ /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
+ /// return the ComplexPattern information, otherwise return null.
+ const ComplexPattern *
+ getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const;
+
+ /// Returns the number of MachineInstr operands that would be produced by this
+ /// node if it mapped directly to an output Instruction's
+ /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it
+ /// for Operands; otherwise 1.
+ unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const;
+
+ /// NodeHasProperty - Return true if this node has the specified property.
+ bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
+
+ /// TreeHasProperty - Return true if any node in this tree has the specified
+ /// property.
+ bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const;
+
+ /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is
+ /// marked isCommutative.
+ bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const;
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+public: // Higher level manipulation routines.
+
+ /// clone - Return a new copy of this tree.
+ ///
+ TreePatternNodePtr clone() const;
+
+ /// RemoveAllTypes - Recursively strip all the types of this tree.
+ void RemoveAllTypes();
+
+ /// isIsomorphicTo - Return true if this node is recursively isomorphic to
+ /// the specified node. For this comparison, all of the state of the node
+ /// is considered, except for the assigned name. Nodes with differing names
+ /// that are otherwise identical are considered isomorphic.
+ bool isIsomorphicTo(const TreePatternNode *N,
+ const MultipleUseVarSet &DepVars) const;
+
+ /// SubstituteFormalArguments - Replace the formal arguments in this tree
+ /// with actual values specified by ArgMap.
+ void
+ SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap);
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, return the set of inlined versions (this can be more than
+ /// one if a PatFrags record has multiple alternatives).
+ void InlinePatternFragments(TreePatternNodePtr T,
+ TreePattern &TP,
+ std::vector<TreePatternNodePtr> &OutAlternatives);
+
+ /// ApplyTypeConstraints - Apply all of the type constraints relevant to
+ /// this node and its children in the tree. This returns true if it makes a
+ /// change, false otherwise. If a type contradiction is found, flag an error.
+ bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters);
+
+ /// UpdateNodeType - Set the node type of N to VT if VT contains
+ /// information. If N already contains a conflicting type, then flag an
+ /// error. This returns true if any information was updated.
+ ///
+ bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy,
+ TreePattern &TP);
+ bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy,
+ TreePattern &TP);
+ bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy,
+ TreePattern &TP);
+
+ // Update node type with types inferred from an instruction operand or result
+ // def from the ins/outs lists.
+ // Return true if the type changed.
+ bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP);
+
+ /// ContainsUnresolvedType - Return true if this tree contains any
+ /// unresolved types.
+ bool ContainsUnresolvedType(TreePattern &TP) const;
+
+ /// canPatternMatch - If it is impossible for this pattern to match on this
+ /// target, fill in Reason and return false. Otherwise, return true.
+ bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP);
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) {
+ TPN.print(OS);
+ return OS;
+}
+
+
+/// TreePattern - Represent a pattern, used for instructions, pattern
+/// fragments, etc.
+///
+class TreePattern {
+ /// Trees - The list of pattern trees which corresponds to this pattern.
+ /// Note that PatFrag's only have a single tree.
+ ///
+ std::vector<TreePatternNodePtr> Trees;
+
+ /// NamedNodes - This is all of the nodes that have names in the trees in this
+ /// pattern.
+ StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes;
+
+ /// TheRecord - The actual TableGen record corresponding to this pattern.
+ ///
+ Record *TheRecord;
+
+ /// Args - This is a list of all of the arguments to this pattern (for
+ /// PatFrag patterns), which are the 'node' markers in this pattern.
+ std::vector<std::string> Args;
+
+ /// CDP - the top-level object coordinating this madness.
+ ///
+ CodeGenDAGPatterns &CDP;
+
+ /// isInputPattern - True if this is an input pattern, something to match.
+ /// False if this is an output pattern, something to emit.
+ bool isInputPattern;
+
+ /// hasError - True if the currently processed nodes have unresolvable types
+ /// or other non-fatal errors
+ bool HasError;
+
+ /// It's important that the usage of operands in ComplexPatterns is
+ /// consistent: each named operand can be defined by at most one
+ /// ComplexPattern. This records the ComplexPattern instance and the operand
+ /// number for each operand encountered in a ComplexPattern to aid in that
+ /// check.
+ StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands;
+
+ TypeInfer Infer;
+
+public:
+
+ /// TreePattern constructor - Parse the specified DagInits into the
+ /// current record.
+ TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodeGenDAGPatterns &ise);
+ TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodeGenDAGPatterns &ise);
+ TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
+ CodeGenDAGPatterns &ise);
+
+ /// getTrees - Return the tree patterns which corresponds to this pattern.
+ ///
+ const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; }
+ unsigned getNumTrees() const { return Trees.size(); }
+ const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; }
+ void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; }
+ const TreePatternNodePtr &getOnlyTree() const {
+ assert(Trees.size() == 1 && "Doesn't have exactly one pattern!");
+ return Trees[0];
+ }
+
+ const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() {
+ if (NamedNodes.empty())
+ ComputeNamedNodes();
+ return NamedNodes;
+ }
+
+ /// getRecord - Return the actual TableGen record corresponding to this
+ /// pattern.
+ ///
+ Record *getRecord() const { return TheRecord; }
+
+ unsigned getNumArgs() const { return Args.size(); }
+ const std::string &getArgName(unsigned i) const {
+ assert(i < Args.size() && "Argument reference out of range!");
+ return Args[i];
+ }
+ std::vector<std::string> &getArgList() { return Args; }
+
+ CodeGenDAGPatterns &getDAGPatterns() const { return CDP; }
+
+ /// InlinePatternFragments - If this pattern refers to any pattern
+ /// fragments, inline them into place, giving us a pattern without any
+ /// PatFrags references. This may increase the number of trees in the
+ /// pattern if a PatFrags has multiple alternatives.
+ void InlinePatternFragments() {
+ std::vector<TreePatternNodePtr> Copy = Trees;
+ Trees.clear();
+ for (unsigned i = 0, e = Copy.size(); i != e; ++i)
+ Copy[i]->InlinePatternFragments(Copy[i], *this, Trees);
+ }
+
+ /// InferAllTypes - Infer/propagate as many types throughout the expression
+ /// patterns as possible. Return true if all types are inferred, false
+ /// otherwise. Bail out if a type contradiction is found.
+ bool InferAllTypes(
+ const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr);
+
+ /// error - If this is the first error in the current resolution step,
+ /// print it and set the error flag. Otherwise, continue silently.
+ void error(const Twine &Msg);
+ bool hasError() const {
+ return HasError;
+ }
+ void resetError() {
+ HasError = false;
+ }
+
+ TypeInfer &getInfer() { return Infer; }
+
+ void print(raw_ostream &OS) const;
+ void dump() const;
+
+private:
+ TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName);
+ void ComputeNamedNodes();
+ void ComputeNamedNodes(TreePatternNode *N);
+};
+
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ const TypeSetByHwMode &InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ MVT::SimpleValueType InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+inline bool TreePatternNode::UpdateNodeType(unsigned ResNo,
+ ValueTypeByHwMode InTy,
+ TreePattern &TP) {
+ TypeSetByHwMode VTS(InTy);
+ TP.getInfer().expandOverloads(VTS);
+ return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS);
+}
+
+
+/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps
+/// that has a set ExecuteAlways / DefaultOps field.
+struct DAGDefaultOperand {
+ std::vector<TreePatternNodePtr> DefaultOps;
+};
+
+class DAGInstruction {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+ std::vector<Record*> ImpResults;
+ TreePatternNodePtr SrcPattern;
+ TreePatternNodePtr ResultPattern;
+
+public:
+ DAGInstruction(const std::vector<Record*> &results,
+ const std::vector<Record*> &operands,
+ const std::vector<Record*> &impresults,
+ TreePatternNodePtr srcpattern = nullptr,
+ TreePatternNodePtr resultpattern = nullptr)
+ : Results(results), Operands(operands), ImpResults(impresults),
+ SrcPattern(srcpattern), ResultPattern(resultpattern) {}
+
+ unsigned getNumResults() const { return Results.size(); }
+ unsigned getNumOperands() const { return Operands.size(); }
+ unsigned getNumImpResults() const { return ImpResults.size(); }
+ const std::vector<Record*>& getImpResults() const { return ImpResults; }
+
+ Record *getResult(unsigned RN) const {
+ assert(RN < Results.size());
+ return Results[RN];
+ }
+
+ Record *getOperand(unsigned ON) const {
+ assert(ON < Operands.size());
+ return Operands[ON];
+ }
+
+ Record *getImpResult(unsigned RN) const {
+ assert(RN < ImpResults.size());
+ return ImpResults[RN];
+ }
+
+ TreePatternNodePtr getSrcPattern() const { return SrcPattern; }
+ TreePatternNodePtr getResultPattern() const { return ResultPattern; }
+};
+
+/// This class represents a condition that has to be satisfied for a pattern
+/// to be tried. It is a generalization of a class "Pattern" from Target.td:
+/// in addition to the Target.td's predicates, this class can also represent
+/// conditions associated with HW modes. Both types will eventually become
+/// strings containing C++ code to be executed, the difference is in how
+/// these strings are generated.
+class Predicate {
+public:
+ Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) {
+ assert(R->isSubClassOf("Predicate") &&
+ "Predicate objects should only be created for records derived"
+ "from Predicate class");
+ }
+ Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()),
+ IfCond(C), IsHwMode(true) {}
+
+ /// Return a string which contains the C++ condition code that will serve
+ /// as a predicate during instruction selection.
+ std::string getCondString() const {
+ // The string will excute in a subclass of SelectionDAGISel.
+ // Cast to std::string explicitly to avoid ambiguity with StringRef.
+ std::string C = IsHwMode
+ ? std::string("MF->getSubtarget().checkFeatures(\"" +
+ Features + "\")")
+ : std::string(Def->getValueAsString("CondString"));
+ if (C.empty())
+ return "";
+ return IfCond ? C : "!("+C+')';
+ }
+
+ bool operator==(const Predicate &P) const {
+ return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def;
+ }
+ bool operator<(const Predicate &P) const {
+ if (IsHwMode != P.IsHwMode)
+ return IsHwMode < P.IsHwMode;
+ assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode");
+ if (IfCond != P.IfCond)
+ return IfCond < P.IfCond;
+ if (Def)
+ return LessRecord()(Def, P.Def);
+ return Features < P.Features;
+ }
+ Record *Def; ///< Predicate definition from .td file, null for
+ ///< HW modes.
+ std::string Features; ///< Feature string for HW mode.
+ bool IfCond; ///< The boolean value that the condition has to
+ ///< evaluate to for this predicate to be true.
+ bool IsHwMode; ///< Does this predicate correspond to a HW mode?
+};
+
+/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns
+/// processed to produce isel.
+class PatternToMatch {
+public:
+ PatternToMatch(Record *srcrecord, std::vector<Predicate> preds,
+ TreePatternNodePtr src, TreePatternNodePtr dst,
+ std::vector<Record *> dstregs, int complexity,
+ unsigned uid, unsigned setmode = 0)
+ : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst),
+ Predicates(std::move(preds)), Dstregs(std::move(dstregs)),
+ AddedComplexity(complexity), ID(uid), ForceMode(setmode) {}
+
+ Record *SrcRecord; // Originating Record for the pattern.
+ TreePatternNodePtr SrcPattern; // Source pattern to match.
+ TreePatternNodePtr DstPattern; // Resulting pattern.
+ std::vector<Predicate> Predicates; // Top level predicate conditions
+ // to match.
+ std::vector<Record*> Dstregs; // Physical register defs being matched.
+ int AddedComplexity; // Add to matching pattern complexity.
+ unsigned ID; // Unique ID for the record.
+ unsigned ForceMode; // Force this mode in type inference when set.
+
+ Record *getSrcRecord() const { return SrcRecord; }
+ TreePatternNode *getSrcPattern() const { return SrcPattern.get(); }
+ TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; }
+ TreePatternNode *getDstPattern() const { return DstPattern.get(); }
+ TreePatternNodePtr getDstPatternShared() const { return DstPattern; }
+ const std::vector<Record*> &getDstRegs() const { return Dstregs; }
+ int getAddedComplexity() const { return AddedComplexity; }
+ const std::vector<Predicate> &getPredicates() const { return Predicates; }
+
+ std::string getPredicateCheck() const;
+
+ /// Compute the complexity metric for the input pattern. This roughly
+ /// corresponds to the number of nodes that are covered.
+ int getPatternComplexity(const CodeGenDAGPatterns &CGP) const;
+};
+
+class CodeGenDAGPatterns {
+ RecordKeeper &Records;
+ CodeGenTarget Target;
+ CodeGenIntrinsicTable Intrinsics;
+
+ std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes;
+ std::map<Record*, std::pair<Record*, std::string>, LessRecordByID>
+ SDNodeXForms;
+ std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns;
+ std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID>
+ PatternFragments;
+ std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands;
+ std::map<Record*, DAGInstruction, LessRecordByID> Instructions;
+
+ // Specific SDNode definitions:
+ Record *intrinsic_void_sdnode;
+ Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode;
+
+ /// PatternsToMatch - All of the things we are matching on the DAG. The first
+ /// value is the pattern to match, the second pattern is the result to
+ /// emit.
+ std::vector<PatternToMatch> PatternsToMatch;
+
+ TypeSetByHwMode LegalVTS;
+
+ using PatternRewriterFn = std::function<void (TreePattern *)>;
+ PatternRewriterFn PatternRewriter;
+
+ unsigned NumScopes = 0;
+
+public:
+ CodeGenDAGPatterns(RecordKeeper &R,
+ PatternRewriterFn PatternRewriter = nullptr);
+
+ CodeGenTarget &getTargetInfo() { return Target; }
+ const CodeGenTarget &getTargetInfo() const { return Target; }
+ const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; }
+
Record *getSDNodeNamed(StringRef Name) const;
-
- const SDNodeInfo &getSDNodeInfo(Record *R) const {
- auto F = SDNodes.find(R);
- assert(F != SDNodes.end() && "Unknown node!");
- return F->second;
- }
-
- // Node transformation lookups.
- typedef std::pair<Record*, std::string> NodeXForm;
- const NodeXForm &getSDNodeTransform(Record *R) const {
- auto F = SDNodeXForms.find(R);
- assert(F != SDNodeXForms.end() && "Invalid transform!");
- return F->second;
- }
-
- const ComplexPattern &getComplexPattern(Record *R) const {
- auto F = ComplexPatterns.find(R);
- assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
- return F->second;
- }
-
- const CodeGenIntrinsic &getIntrinsic(Record *R) const {
- for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
- if (Intrinsics[i].TheDef == R) return Intrinsics[i];
- llvm_unreachable("Unknown intrinsic!");
- }
-
- const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
- if (IID-1 < Intrinsics.size())
- return Intrinsics[IID-1];
- llvm_unreachable("Bad intrinsic ID!");
- }
-
- unsigned getIntrinsicID(Record *R) const {
- for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
- if (Intrinsics[i].TheDef == R) return i;
- llvm_unreachable("Unknown intrinsic!");
- }
-
- const DAGDefaultOperand &getDefaultOperand(Record *R) const {
- auto F = DefaultOperands.find(R);
- assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
- return F->second;
- }
-
- // Pattern Fragment information.
- TreePattern *getPatternFragment(Record *R) const {
- auto F = PatternFragments.find(R);
- assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
- return F->second.get();
- }
- TreePattern *getPatternFragmentIfRead(Record *R) const {
- auto F = PatternFragments.find(R);
- if (F == PatternFragments.end())
- return nullptr;
- return F->second.get();
- }
-
- typedef std::map<Record *, std::unique_ptr<TreePattern>,
- LessRecordByID>::const_iterator pf_iterator;
- pf_iterator pf_begin() const { return PatternFragments.begin(); }
- pf_iterator pf_end() const { return PatternFragments.end(); }
- iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
-
- // Patterns to match information.
- typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
- ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
- ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
- iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
-
- /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
- typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
- void parseInstructionPattern(
- CodeGenInstruction &CGI, ListInit *Pattern,
- DAGInstMap &DAGInsts);
-
- const DAGInstruction &getInstruction(Record *R) const {
- auto F = Instructions.find(R);
- assert(F != Instructions.end() && "Unknown instruction!");
- return F->second;
- }
-
- Record *get_intrinsic_void_sdnode() const {
- return intrinsic_void_sdnode;
- }
- Record *get_intrinsic_w_chain_sdnode() const {
- return intrinsic_w_chain_sdnode;
- }
- Record *get_intrinsic_wo_chain_sdnode() const {
- return intrinsic_wo_chain_sdnode;
- }
-
- unsigned allocateScope() { return ++NumScopes; }
-
- bool operandHasDefault(Record *Op) const {
- return Op->isSubClassOf("OperandWithDefaultOps") &&
- !getDefaultOperand(Op).DefaultOps.empty();
- }
-
-private:
- void ParseNodeInfo();
- void ParseNodeTransforms();
- void ParseComplexPatterns();
- void ParsePatternFragments(bool OutFrags = false);
- void ParseDefaultOperands();
- void ParseInstructions();
- void ParsePatterns();
- void ExpandHwModeBasedTypes();
- void InferInstructionFlags();
- void GenerateVariants();
- void VerifyInstructionFlags();
-
- std::vector<Predicate> makePredList(ListInit *L);
-
- void ParseOnePattern(Record *TheDef,
- TreePattern &Pattern, TreePattern &Result,
- const std::vector<Record *> &InstImpResults);
- void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
- void FindPatternInputsAndOutputs(
- TreePattern &I, TreePatternNodePtr Pat,
- std::map<std::string, TreePatternNodePtr> &InstInputs,
- MapVector<std::string, TreePatternNodePtr,
- std::map<std::string, unsigned>> &InstResults,
- std::vector<Record *> &InstImpResults);
-};
-
-
-inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
- TreePattern &TP) const {
- bool MadeChange = false;
- for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
- MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
- return MadeChange;
- }
-
-} // end namespace llvm
-
-#endif
+
+ const SDNodeInfo &getSDNodeInfo(Record *R) const {
+ auto F = SDNodes.find(R);
+ assert(F != SDNodes.end() && "Unknown node!");
+ return F->second;
+ }
+
+ // Node transformation lookups.
+ typedef std::pair<Record*, std::string> NodeXForm;
+ const NodeXForm &getSDNodeTransform(Record *R) const {
+ auto F = SDNodeXForms.find(R);
+ assert(F != SDNodeXForms.end() && "Invalid transform!");
+ return F->second;
+ }
+
+ const ComplexPattern &getComplexPattern(Record *R) const {
+ auto F = ComplexPatterns.find(R);
+ assert(F != ComplexPatterns.end() && "Unknown addressing mode!");
+ return F->second;
+ }
+
+ const CodeGenIntrinsic &getIntrinsic(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return Intrinsics[i];
+ llvm_unreachable("Unknown intrinsic!");
+ }
+
+ const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const {
+ if (IID-1 < Intrinsics.size())
+ return Intrinsics[IID-1];
+ llvm_unreachable("Bad intrinsic ID!");
+ }
+
+ unsigned getIntrinsicID(Record *R) const {
+ for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i)
+ if (Intrinsics[i].TheDef == R) return i;
+ llvm_unreachable("Unknown intrinsic!");
+ }
+
+ const DAGDefaultOperand &getDefaultOperand(Record *R) const {
+ auto F = DefaultOperands.find(R);
+ assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!");
+ return F->second;
+ }
+
+ // Pattern Fragment information.
+ TreePattern *getPatternFragment(Record *R) const {
+ auto F = PatternFragments.find(R);
+ assert(F != PatternFragments.end() && "Invalid pattern fragment request!");
+ return F->second.get();
+ }
+ TreePattern *getPatternFragmentIfRead(Record *R) const {
+ auto F = PatternFragments.find(R);
+ if (F == PatternFragments.end())
+ return nullptr;
+ return F->second.get();
+ }
+
+ typedef std::map<Record *, std::unique_ptr<TreePattern>,
+ LessRecordByID>::const_iterator pf_iterator;
+ pf_iterator pf_begin() const { return PatternFragments.begin(); }
+ pf_iterator pf_end() const { return PatternFragments.end(); }
+ iterator_range<pf_iterator> ptfs() const { return PatternFragments; }
+
+ // Patterns to match information.
+ typedef std::vector<PatternToMatch>::const_iterator ptm_iterator;
+ ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); }
+ ptm_iterator ptm_end() const { return PatternsToMatch.end(); }
+ iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; }
+
+ /// Parse the Pattern for an instruction, and insert the result in DAGInsts.
+ typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap;
+ void parseInstructionPattern(
+ CodeGenInstruction &CGI, ListInit *Pattern,
+ DAGInstMap &DAGInsts);
+
+ const DAGInstruction &getInstruction(Record *R) const {
+ auto F = Instructions.find(R);
+ assert(F != Instructions.end() && "Unknown instruction!");
+ return F->second;
+ }
+
+ Record *get_intrinsic_void_sdnode() const {
+ return intrinsic_void_sdnode;
+ }
+ Record *get_intrinsic_w_chain_sdnode() const {
+ return intrinsic_w_chain_sdnode;
+ }
+ Record *get_intrinsic_wo_chain_sdnode() const {
+ return intrinsic_wo_chain_sdnode;
+ }
+
+ unsigned allocateScope() { return ++NumScopes; }
+
+ bool operandHasDefault(Record *Op) const {
+ return Op->isSubClassOf("OperandWithDefaultOps") &&
+ !getDefaultOperand(Op).DefaultOps.empty();
+ }
+
+private:
+ void ParseNodeInfo();
+ void ParseNodeTransforms();
+ void ParseComplexPatterns();
+ void ParsePatternFragments(bool OutFrags = false);
+ void ParseDefaultOperands();
+ void ParseInstructions();
+ void ParsePatterns();
+ void ExpandHwModeBasedTypes();
+ void InferInstructionFlags();
+ void GenerateVariants();
+ void VerifyInstructionFlags();
+
+ std::vector<Predicate> makePredList(ListInit *L);
+
+ void ParseOnePattern(Record *TheDef,
+ TreePattern &Pattern, TreePattern &Result,
+ const std::vector<Record *> &InstImpResults);
+ void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM);
+ void FindPatternInputsAndOutputs(
+ TreePattern &I, TreePatternNodePtr Pat,
+ std::map<std::string, TreePatternNodePtr> &InstInputs,
+ MapVector<std::string, TreePatternNodePtr,
+ std::map<std::string, unsigned>> &InstResults,
+ std::vector<Record *> &InstImpResults);
+};
+
+
+inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N,
+ TreePattern &TP) const {
+ bool MadeChange = false;
+ for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i)
+ MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP);
+ return MadeChange;
+ }
+
+} // end namespace llvm
+
+#endif