diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h | |
parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
download | ydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h')
-rw-r--r-- | contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h | 2630 |
1 files changed, 1315 insertions, 1315 deletions
diff --git a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h index bc939fe9ac..5284bd92f5 100644 --- a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h +++ b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.h @@ -1,1317 +1,1317 @@ -//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file declares the CodeGenDAGPatterns class, which is used to read and -// represent the patterns present in a .td file for instructions. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H -#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H - -#include "CodeGenIntrinsics.h" -#include "CodeGenTarget.h" -#include "SDNodeProperties.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringMap.h" -#include "llvm/ADT/StringSet.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include <algorithm> -#include <array> -#include <functional> -#include <map> -#include <numeric> -#include <set> -#include <vector> - -namespace llvm { - -class Record; -class Init; -class ListInit; -class DagInit; -class SDNodeInfo; -class TreePattern; -class TreePatternNode; -class CodeGenDAGPatterns; - -/// Shared pointer for TreePatternNode. -using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; - -/// This represents a set of MVTs. Since the underlying type for the MVT -/// is uint8_t, there are at most 256 values. To reduce the number of memory -/// allocations and deallocations, represent the set as a sequence of bits. -/// To reduce the allocations even further, make MachineValueTypeSet own -/// the storage and use std::array as the bit container. -struct MachineValueTypeSet { - static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, - uint8_t>::value, - "Change uint8_t here to the SimpleValueType's type"); - static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; - using WordType = uint64_t; - static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); - static unsigned constexpr NumWords = Capacity/WordWidth; - static_assert(NumWords*WordWidth == Capacity, - "Capacity should be a multiple of WordWidth"); - - LLVM_ATTRIBUTE_ALWAYS_INLINE - MachineValueTypeSet() { - clear(); - } - - LLVM_ATTRIBUTE_ALWAYS_INLINE - unsigned size() const { - unsigned Count = 0; - for (WordType W : Words) - Count += countPopulation(W); - return Count; - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - void clear() { - std::memset(Words.data(), 0, NumWords*sizeof(WordType)); - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool empty() const { - for (WordType W : Words) - if (W != 0) - return false; - return true; - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - unsigned count(MVT T) const { - return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; - } - std::pair<MachineValueTypeSet&,bool> insert(MVT T) { - bool V = count(T.SimpleTy); - Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); - return {*this, V}; - } - MachineValueTypeSet &insert(const MachineValueTypeSet &S) { - for (unsigned i = 0; i != NumWords; ++i) - Words[i] |= S.Words[i]; - return *this; - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - void erase(MVT T) { - Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); - } - - struct const_iterator { - // Some implementations of the C++ library require these traits to be - // defined. - using iterator_category = std::forward_iterator_tag; - using value_type = MVT; - using difference_type = ptrdiff_t; - using pointer = const MVT*; - using reference = const MVT&; - - LLVM_ATTRIBUTE_ALWAYS_INLINE - MVT operator*() const { - assert(Pos != Capacity); - return MVT::SimpleValueType(Pos); - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { - Pos = End ? Capacity : find_from_pos(0); - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - const_iterator &operator++() { - assert(Pos != Capacity); - Pos = find_from_pos(Pos+1); - return *this; - } - - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool operator==(const const_iterator &It) const { - return Set == It.Set && Pos == It.Pos; - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool operator!=(const const_iterator &It) const { - return !operator==(It); - } - - private: - unsigned find_from_pos(unsigned P) const { - unsigned SkipWords = P / WordWidth; - unsigned SkipBits = P % WordWidth; - unsigned Count = SkipWords * WordWidth; - - // If P is in the middle of a word, process it manually here, because - // the trailing bits need to be masked off to use findFirstSet. - if (SkipBits != 0) { - WordType W = Set->Words[SkipWords]; - W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); - if (W != 0) - return Count + findFirstSet(W); - Count += WordWidth; - SkipWords++; - } - - for (unsigned i = SkipWords; i != NumWords; ++i) { - WordType W = Set->Words[i]; - if (W != 0) - return Count + findFirstSet(W); - Count += WordWidth; - } - return Capacity; - } - - const MachineValueTypeSet *Set; - unsigned Pos; - }; - - LLVM_ATTRIBUTE_ALWAYS_INLINE - const_iterator begin() const { return const_iterator(this, false); } - LLVM_ATTRIBUTE_ALWAYS_INLINE - const_iterator end() const { return const_iterator(this, true); } - - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool operator==(const MachineValueTypeSet &S) const { - return Words == S.Words; - } - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool operator!=(const MachineValueTypeSet &S) const { - return !operator==(S); - } - -private: - friend struct const_iterator; - std::array<WordType,NumWords> Words; -}; - -struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { - using SetType = MachineValueTypeSet; +//===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file declares the CodeGenDAGPatterns class, which is used to read and +// represent the patterns present in a .td file for instructions. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H +#define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H + +#include "CodeGenIntrinsics.h" +#include "CodeGenTarget.h" +#include "SDNodeProperties.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include <algorithm> +#include <array> +#include <functional> +#include <map> +#include <numeric> +#include <set> +#include <vector> + +namespace llvm { + +class Record; +class Init; +class ListInit; +class DagInit; +class SDNodeInfo; +class TreePattern; +class TreePatternNode; +class CodeGenDAGPatterns; + +/// Shared pointer for TreePatternNode. +using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; + +/// This represents a set of MVTs. Since the underlying type for the MVT +/// is uint8_t, there are at most 256 values. To reduce the number of memory +/// allocations and deallocations, represent the set as a sequence of bits. +/// To reduce the allocations even further, make MachineValueTypeSet own +/// the storage and use std::array as the bit container. +struct MachineValueTypeSet { + static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, + uint8_t>::value, + "Change uint8_t here to the SimpleValueType's type"); + static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; + using WordType = uint64_t; + static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); + static unsigned constexpr NumWords = Capacity/WordWidth; + static_assert(NumWords*WordWidth == Capacity, + "Capacity should be a multiple of WordWidth"); + + LLVM_ATTRIBUTE_ALWAYS_INLINE + MachineValueTypeSet() { + clear(); + } + + LLVM_ATTRIBUTE_ALWAYS_INLINE + unsigned size() const { + unsigned Count = 0; + for (WordType W : Words) + Count += countPopulation(W); + return Count; + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + void clear() { + std::memset(Words.data(), 0, NumWords*sizeof(WordType)); + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool empty() const { + for (WordType W : Words) + if (W != 0) + return false; + return true; + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + unsigned count(MVT T) const { + return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; + } + std::pair<MachineValueTypeSet&,bool> insert(MVT T) { + bool V = count(T.SimpleTy); + Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); + return {*this, V}; + } + MachineValueTypeSet &insert(const MachineValueTypeSet &S) { + for (unsigned i = 0; i != NumWords; ++i) + Words[i] |= S.Words[i]; + return *this; + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + void erase(MVT T) { + Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); + } + + struct const_iterator { + // Some implementations of the C++ library require these traits to be + // defined. + using iterator_category = std::forward_iterator_tag; + using value_type = MVT; + using difference_type = ptrdiff_t; + using pointer = const MVT*; + using reference = const MVT&; + + LLVM_ATTRIBUTE_ALWAYS_INLINE + MVT operator*() const { + assert(Pos != Capacity); + return MVT::SimpleValueType(Pos); + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { + Pos = End ? Capacity : find_from_pos(0); + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + const_iterator &operator++() { + assert(Pos != Capacity); + Pos = find_from_pos(Pos+1); + return *this; + } + + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool operator==(const const_iterator &It) const { + return Set == It.Set && Pos == It.Pos; + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool operator!=(const const_iterator &It) const { + return !operator==(It); + } + + private: + unsigned find_from_pos(unsigned P) const { + unsigned SkipWords = P / WordWidth; + unsigned SkipBits = P % WordWidth; + unsigned Count = SkipWords * WordWidth; + + // If P is in the middle of a word, process it manually here, because + // the trailing bits need to be masked off to use findFirstSet. + if (SkipBits != 0) { + WordType W = Set->Words[SkipWords]; + W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); + if (W != 0) + return Count + findFirstSet(W); + Count += WordWidth; + SkipWords++; + } + + for (unsigned i = SkipWords; i != NumWords; ++i) { + WordType W = Set->Words[i]; + if (W != 0) + return Count + findFirstSet(W); + Count += WordWidth; + } + return Capacity; + } + + const MachineValueTypeSet *Set; + unsigned Pos; + }; + + LLVM_ATTRIBUTE_ALWAYS_INLINE + const_iterator begin() const { return const_iterator(this, false); } + LLVM_ATTRIBUTE_ALWAYS_INLINE + const_iterator end() const { return const_iterator(this, true); } + + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool operator==(const MachineValueTypeSet &S) const { + return Words == S.Words; + } + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool operator!=(const MachineValueTypeSet &S) const { + return !operator==(S); + } + +private: + friend struct const_iterator; + std::array<WordType,NumWords> Words; +}; + +struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { + using SetType = MachineValueTypeSet; SmallVector<unsigned, 16> AddrSpaces; - - TypeSetByHwMode() = default; - TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; - TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default; - TypeSetByHwMode(MVT::SimpleValueType VT) - : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} - TypeSetByHwMode(ValueTypeByHwMode VT) - : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} - TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); - - SetType &getOrCreate(unsigned Mode) { - if (hasMode(Mode)) - return get(Mode); - return Map.insert({Mode,SetType()}).first->second; - } - - bool isValueTypeByHwMode(bool AllowEmpty) const; - ValueTypeByHwMode getValueTypeByHwMode() const; - - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool isMachineValueType() const { - return isDefaultOnly() && Map.begin()->second.size() == 1; - } - - LLVM_ATTRIBUTE_ALWAYS_INLINE - MVT getMachineValueType() const { - assert(isMachineValueType()); - return *Map.begin()->second.begin(); - } - - bool isPossible() const; - - LLVM_ATTRIBUTE_ALWAYS_INLINE - bool isDefaultOnly() const { - return Map.size() == 1 && Map.begin()->first == DefaultMode; - } - - bool isPointer() const { - return getValueTypeByHwMode().isPointer(); - } - - unsigned getPtrAddrSpace() const { - assert(isPointer()); - return getValueTypeByHwMode().PtrAddrSpace; - } - - bool insert(const ValueTypeByHwMode &VVT); - bool constrain(const TypeSetByHwMode &VTS); - template <typename Predicate> bool constrain(Predicate P); - template <typename Predicate> - bool assign_if(const TypeSetByHwMode &VTS, Predicate P); - - void writeToStream(raw_ostream &OS) const; - static void writeToStream(const SetType &S, raw_ostream &OS); - - bool operator==(const TypeSetByHwMode &VTS) const; - bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } - - void dump() const; - bool validate() const; - -private: - unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); - /// Intersect two sets. Return true if anything has changed. - bool intersect(SetType &Out, const SetType &In); -}; - -raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); - -struct TypeInfer { - TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} - - bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { - return VTS.isValueTypeByHwMode(AllowEmpty); - } - ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, - bool AllowEmpty) const { - assert(VTS.isValueTypeByHwMode(AllowEmpty)); - return VTS.getValueTypeByHwMode(); - } - - /// The protocol in the following functions (Merge*, force*, Enforce*, - /// expand*) is to return "true" if a change has been made, "false" - /// otherwise. - - bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); - bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { - return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); - } - bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { - return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); - } - - /// Reduce the set \p Out to have at most one element for each mode. - bool forceArbitrary(TypeSetByHwMode &Out); - - /// The following four functions ensure that upon return the set \p Out - /// will only contain types of the specified kind: integer, floating-point, - /// scalar, or vector. - /// If \p Out is empty, all legal types of the specified kind will be added - /// to it. Otherwise, all types that are not of the specified kind will be - /// removed from \p Out. - bool EnforceInteger(TypeSetByHwMode &Out); - bool EnforceFloatingPoint(TypeSetByHwMode &Out); - bool EnforceScalar(TypeSetByHwMode &Out); - bool EnforceVector(TypeSetByHwMode &Out); - - /// If \p Out is empty, fill it with all legal types. Otherwise, leave it - /// unchanged. - bool EnforceAny(TypeSetByHwMode &Out); - /// Make sure that for each type in \p Small, there exists a larger type - /// in \p Big. - bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); - /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that - /// for each type U in \p Elem, U is a scalar type. - /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a - /// (vector) type T in \p Vec, such that U is the element type of T. - bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); - bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, - const ValueTypeByHwMode &VVT); - /// Ensure that for each type T in \p Sub, T is a vector type, and there - /// exists a type U in \p Vec such that U is a vector type with the same - /// element type as T and at least as many elements as T. - bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, - TypeSetByHwMode &Sub); - /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. - /// 2. Ensure that for each vector type T in \p V, there exists a vector - /// type U in \p W, such that T and U have the same number of elements. - /// 3. Ensure that for each vector type U in \p W, there exists a vector - /// type T in \p V, such that T and U have the same number of elements - /// (reverse of 2). - bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); - /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, - /// such that T and U have equal size in bits. - /// 2. Ensure that for each type U in \p B, there exists a type T in \p A - /// such that T and U have equal size in bits (reverse of 1). - bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); - - /// For each overloaded type (i.e. of form *Any), replace it with the - /// corresponding subset of legal, specific types. - void expandOverloads(TypeSetByHwMode &VTS); - void expandOverloads(TypeSetByHwMode::SetType &Out, - const TypeSetByHwMode::SetType &Legal); - - struct ValidateOnExit { - ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} - #ifndef NDEBUG - ~ValidateOnExit(); - #else - ~ValidateOnExit() {} // Empty destructor with NDEBUG. - #endif - TypeInfer &Infer; - TypeSetByHwMode &VTS; - }; - - struct SuppressValidation { - SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { - Infer.Validate = false; - } - ~SuppressValidation() { - Infer.Validate = SavedValidate; - } - TypeInfer &Infer; - bool SavedValidate; - }; - - TreePattern &TP; - unsigned ForceMode; // Mode to use when set. - bool CodeGen = false; // Set during generation of matcher code. - bool Validate = true; // Indicate whether to validate types. - -private: - const TypeSetByHwMode &getLegalTypes(); - - /// Cached legal types (in default mode). - bool LegalTypesCached = false; - TypeSetByHwMode LegalCache; -}; - -/// Set type used to track multiply used variables in patterns -typedef StringSet<> MultipleUseVarSet; - -/// SDTypeConstraint - This is a discriminated union of constraints, -/// corresponding to the SDTypeConstraint tablegen class in Target.td. -struct SDTypeConstraint { - SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); - - unsigned OperandNo; // The operand # this constraint applies to. - enum { - SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, - SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, - SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs - } ConstraintType; - - union { // The discriminated union. - struct { - unsigned OtherOperandNum; - } SDTCisSameAs_Info; - struct { - unsigned OtherOperandNum; - } SDTCisVTSmallerThanOp_Info; - struct { - unsigned BigOperandNum; - } SDTCisOpSmallerThanOp_Info; - struct { - unsigned OtherOperandNum; - } SDTCisEltOfVec_Info; - struct { - unsigned OtherOperandNum; - } SDTCisSubVecOfVec_Info; - struct { - unsigned OtherOperandNum; - } SDTCisSameNumEltsAs_Info; - struct { - unsigned OtherOperandNum; - } SDTCisSameSizeAs_Info; - } x; - - // The VT for SDTCisVT and SDTCVecEltisVT. - // Must not be in the union because it has a non-trivial destructor. - ValueTypeByHwMode VVT; - - /// ApplyTypeConstraint - Given a node in a pattern, apply this type - /// constraint to the nodes operands. This returns true if it makes a - /// change, false otherwise. If a type contradiction is found, an error - /// is flagged. - bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, - TreePattern &TP) const; -}; - -/// ScopedName - A name of a node associated with a "scope" that indicates -/// the context (e.g. instance of Pattern or PatFrag) in which the name was -/// used. This enables substitution of pattern fragments while keeping track -/// of what name(s) were originally given to various nodes in the tree. -class ScopedName { - unsigned Scope; - std::string Identifier; -public: - ScopedName(unsigned Scope, StringRef Identifier) - : Scope(Scope), Identifier(std::string(Identifier)) { - assert(Scope != 0 && - "Scope == 0 is used to indicate predicates without arguments"); - } - - unsigned getScope() const { return Scope; } - const std::string &getIdentifier() const { return Identifier; } - - bool operator==(const ScopedName &o) const; - bool operator!=(const ScopedName &o) const; -}; - -/// SDNodeInfo - One of these records is created for each SDNode instance in -/// the target .td file. This represents the various dag nodes we will be -/// processing. -class SDNodeInfo { - Record *Def; - StringRef EnumName; - StringRef SDClassName; - unsigned Properties; - unsigned NumResults; - int NumOperands; - std::vector<SDTypeConstraint> TypeConstraints; -public: - // Parse the specified record. - SDNodeInfo(Record *R, const CodeGenHwModes &CGH); - - unsigned getNumResults() const { return NumResults; } - - /// getNumOperands - This is the number of operands required or -1 if - /// variadic. - int getNumOperands() const { return NumOperands; } - Record *getRecord() const { return Def; } - StringRef getEnumName() const { return EnumName; } - StringRef getSDClassName() const { return SDClassName; } - - const std::vector<SDTypeConstraint> &getTypeConstraints() const { - return TypeConstraints; - } - - /// getKnownType - If the type constraints on this node imply a fixed type - /// (e.g. all stores return void, etc), then return it as an - /// MVT::SimpleValueType. Otherwise, return MVT::Other. - MVT::SimpleValueType getKnownType(unsigned ResNo) const; - - /// hasProperty - Return true if this node has the specified property. - /// - bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } - - /// ApplyTypeConstraints - Given a node in a pattern, apply the type - /// constraints for this node to the operands of the node. This returns - /// true if it makes a change, false otherwise. If a type contradiction is - /// found, an error is flagged. - bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; -}; - -/// TreePredicateFn - This is an abstraction that represents the predicates on -/// a PatFrag node. This is a simple one-word wrapper around a pointer to -/// provide nice accessors. -class TreePredicateFn { - /// PatFragRec - This is the TreePattern for the PatFrag that we - /// originally came from. - TreePattern *PatFragRec; -public: - /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. - TreePredicateFn(TreePattern *N); - - - TreePattern *getOrigPatFragRecord() const { return PatFragRec; } - - /// isAlwaysTrue - Return true if this is a noop predicate. - bool isAlwaysTrue() const; - - bool isImmediatePattern() const { return hasImmCode(); } - - /// getImmediatePredicateCode - Return the code that evaluates this pattern if - /// this is an immediate predicate. It is an error to call this on a - /// non-immediate pattern. - std::string getImmediatePredicateCode() const { - std::string Result = getImmCode(); - assert(!Result.empty() && "Isn't an immediate pattern!"); - return Result; - } - - bool operator==(const TreePredicateFn &RHS) const { - return PatFragRec == RHS.PatFragRec; - } - - bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } - - /// Return the name to use in the generated code to reference this, this is - /// "Predicate_foo" if from a pattern fragment "foo". - std::string getFnName() const; - - /// getCodeToRunOnSDNode - Return the code for the function body that - /// evaluates this predicate. The argument is expected to be in "Node", - /// not N. This handles casting and conversion to a concrete node type as - /// appropriate. - std::string getCodeToRunOnSDNode() const; - - /// Get the data type of the argument to getImmediatePredicateCode(). - StringRef getImmType() const; - - /// Get a string that describes the type returned by getImmType() but is - /// usable as part of an identifier. - StringRef getImmTypeIdentifier() const; - - // Predicate code uses the PatFrag's captured operands. - bool usesOperands() const; - - // Is the desired predefined predicate for a load? - bool isLoad() const; - // Is the desired predefined predicate for a store? - bool isStore() const; - // Is the desired predefined predicate for an atomic? - bool isAtomic() const; - - /// Is this predicate the predefined unindexed load predicate? - /// Is this predicate the predefined unindexed store predicate? - bool isUnindexed() const; - /// Is this predicate the predefined non-extending load predicate? - bool isNonExtLoad() const; - /// Is this predicate the predefined any-extend load predicate? - bool isAnyExtLoad() const; - /// Is this predicate the predefined sign-extend load predicate? - bool isSignExtLoad() const; - /// Is this predicate the predefined zero-extend load predicate? - bool isZeroExtLoad() const; - /// Is this predicate the predefined non-truncating store predicate? - bool isNonTruncStore() const; - /// Is this predicate the predefined truncating store predicate? - bool isTruncStore() const; - - /// Is this predicate the predefined monotonic atomic predicate? - bool isAtomicOrderingMonotonic() const; - /// Is this predicate the predefined acquire atomic predicate? - bool isAtomicOrderingAcquire() const; - /// Is this predicate the predefined release atomic predicate? - bool isAtomicOrderingRelease() const; - /// Is this predicate the predefined acquire-release atomic predicate? - bool isAtomicOrderingAcquireRelease() const; - /// Is this predicate the predefined sequentially consistent atomic predicate? - bool isAtomicOrderingSequentiallyConsistent() const; - - /// Is this predicate the predefined acquire-or-stronger atomic predicate? - bool isAtomicOrderingAcquireOrStronger() const; - /// Is this predicate the predefined weaker-than-acquire atomic predicate? - bool isAtomicOrderingWeakerThanAcquire() const; - - /// Is this predicate the predefined release-or-stronger atomic predicate? - bool isAtomicOrderingReleaseOrStronger() const; - /// Is this predicate the predefined weaker-than-release atomic predicate? - bool isAtomicOrderingWeakerThanRelease() const; - - /// If non-null, indicates that this predicate is a predefined memory VT - /// predicate for a load/store and returns the ValueType record for the memory VT. - Record *getMemoryVT() const; - /// If non-null, indicates that this predicate is a predefined memory VT - /// predicate (checking only the scalar type) for load/store and returns the - /// ValueType record for the memory VT. - Record *getScalarMemoryVT() const; - - ListInit *getAddressSpaces() const; - int64_t getMinAlignment() const; - - // If true, indicates that GlobalISel-based C++ code was supplied. - bool hasGISelPredicateCode() const; - std::string getGISelPredicateCode() const; - -private: - bool hasPredCode() const; - bool hasImmCode() const; - std::string getPredCode() const; - std::string getImmCode() const; - bool immCodeUsesAPInt() const; - bool immCodeUsesAPFloat() const; - - bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; -}; - -struct TreePredicateCall { - TreePredicateFn Fn; - - // Scope -- unique identifier for retrieving named arguments. 0 is used when - // the predicate does not use named arguments. - unsigned Scope; - - TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) - : Fn(Fn), Scope(Scope) {} - - bool operator==(const TreePredicateCall &o) const { - return Fn == o.Fn && Scope == o.Scope; - } - bool operator!=(const TreePredicateCall &o) const { - return !(*this == o); - } -}; - -class TreePatternNode { - /// The type of each node result. Before and during type inference, each - /// result may be a set of possible types. After (successful) type inference, - /// each is a single concrete type. - std::vector<TypeSetByHwMode> Types; - - /// The index of each result in results of the pattern. - std::vector<unsigned> ResultPerm; - - /// Operator - The Record for the operator if this is an interior node (not - /// a leaf). - Record *Operator; - - /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. - /// - Init *Val; - - /// Name - The name given to this node with the :$foo notation. - /// - std::string Name; - - std::vector<ScopedName> NamesAsPredicateArg; - - /// PredicateCalls - The predicate functions to execute on this node to check - /// for a match. If this list is empty, no predicate is involved. - std::vector<TreePredicateCall> PredicateCalls; - - /// TransformFn - The transformation function to execute on this node before - /// it can be substituted into the resulting instruction on a pattern match. - Record *TransformFn; - - std::vector<TreePatternNodePtr> Children; - -public: - TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, - unsigned NumResults) - : Operator(Op), Val(nullptr), TransformFn(nullptr), - Children(std::move(Ch)) { - Types.resize(NumResults); - ResultPerm.resize(NumResults); - std::iota(ResultPerm.begin(), ResultPerm.end(), 0); - } - TreePatternNode(Init *val, unsigned NumResults) // leaf ctor - : Operator(nullptr), Val(val), TransformFn(nullptr) { - Types.resize(NumResults); - ResultPerm.resize(NumResults); - std::iota(ResultPerm.begin(), ResultPerm.end(), 0); - } - - bool hasName() const { return !Name.empty(); } - const std::string &getName() const { return Name; } - void setName(StringRef N) { Name.assign(N.begin(), N.end()); } - - const std::vector<ScopedName> &getNamesAsPredicateArg() const { - return NamesAsPredicateArg; - } - void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { - NamesAsPredicateArg = Names; - } - void addNameAsPredicateArg(const ScopedName &N) { - NamesAsPredicateArg.push_back(N); - } - - bool isLeaf() const { return Val != nullptr; } - - // Type accessors. - unsigned getNumTypes() const { return Types.size(); } - ValueTypeByHwMode getType(unsigned ResNo) const { - return Types[ResNo].getValueTypeByHwMode(); - } - const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } - const TypeSetByHwMode &getExtType(unsigned ResNo) const { - return Types[ResNo]; - } - TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } - void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } - MVT::SimpleValueType getSimpleType(unsigned ResNo) const { - return Types[ResNo].getMachineValueType().SimpleTy; - } - - bool hasConcreteType(unsigned ResNo) const { - return Types[ResNo].isValueTypeByHwMode(false); - } - bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { - return Types[ResNo].empty(); - } - - unsigned getNumResults() const { return ResultPerm.size(); } - unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } - void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } - - Init *getLeafValue() const { assert(isLeaf()); return Val; } - Record *getOperator() const { assert(!isLeaf()); return Operator; } - - unsigned getNumChildren() const { return Children.size(); } - TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } - const TreePatternNodePtr &getChildShared(unsigned N) const { - return Children[N]; - } - void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } - - /// hasChild - Return true if N is any of our children. - bool hasChild(const TreePatternNode *N) const { - for (unsigned i = 0, e = Children.size(); i != e; ++i) - if (Children[i].get() == N) - return true; - return false; - } - - bool hasProperTypeByHwMode() const; - bool hasPossibleType() const; - bool setDefaultMode(unsigned Mode); - - bool hasAnyPredicate() const { return !PredicateCalls.empty(); } - - const std::vector<TreePredicateCall> &getPredicateCalls() const { - return PredicateCalls; - } - void clearPredicateCalls() { PredicateCalls.clear(); } - void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { - assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); - PredicateCalls = Calls; - } - void addPredicateCall(const TreePredicateCall &Call) { - assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); - assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); - PredicateCalls.push_back(Call); - } - void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { - assert((Scope != 0) == Fn.usesOperands()); - addPredicateCall(TreePredicateCall(Fn, Scope)); - } - - Record *getTransformFn() const { return TransformFn; } - void setTransformFn(Record *Fn) { TransformFn = Fn; } - - /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the - /// CodeGenIntrinsic information for it, otherwise return a null pointer. - const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; - - /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, - /// return the ComplexPattern information, otherwise return null. - const ComplexPattern * - getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; - - /// Returns the number of MachineInstr operands that would be produced by this - /// node if it mapped directly to an output Instruction's - /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it - /// for Operands; otherwise 1. - unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; - - /// NodeHasProperty - Return true if this node has the specified property. - bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; - - /// TreeHasProperty - Return true if any node in this tree has the specified - /// property. - bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; - - /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is - /// marked isCommutative. - bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; - - void print(raw_ostream &OS) const; - void dump() const; - -public: // Higher level manipulation routines. - - /// clone - Return a new copy of this tree. - /// - TreePatternNodePtr clone() const; - - /// RemoveAllTypes - Recursively strip all the types of this tree. - void RemoveAllTypes(); - - /// isIsomorphicTo - Return true if this node is recursively isomorphic to - /// the specified node. For this comparison, all of the state of the node - /// is considered, except for the assigned name. Nodes with differing names - /// that are otherwise identical are considered isomorphic. - bool isIsomorphicTo(const TreePatternNode *N, - const MultipleUseVarSet &DepVars) const; - - /// SubstituteFormalArguments - Replace the formal arguments in this tree - /// with actual values specified by ArgMap. - void - SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); - - /// InlinePatternFragments - If this pattern refers to any pattern - /// fragments, return the set of inlined versions (this can be more than - /// one if a PatFrags record has multiple alternatives). - void InlinePatternFragments(TreePatternNodePtr T, - TreePattern &TP, - std::vector<TreePatternNodePtr> &OutAlternatives); - - /// ApplyTypeConstraints - Apply all of the type constraints relevant to - /// this node and its children in the tree. This returns true if it makes a - /// change, false otherwise. If a type contradiction is found, flag an error. - bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); - - /// UpdateNodeType - Set the node type of N to VT if VT contains - /// information. If N already contains a conflicting type, then flag an - /// error. This returns true if any information was updated. - /// - bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, - TreePattern &TP); - bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, - TreePattern &TP); - bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, - TreePattern &TP); - - // Update node type with types inferred from an instruction operand or result - // def from the ins/outs lists. - // Return true if the type changed. - bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); - - /// ContainsUnresolvedType - Return true if this tree contains any - /// unresolved types. - bool ContainsUnresolvedType(TreePattern &TP) const; - - /// canPatternMatch - If it is impossible for this pattern to match on this - /// target, fill in Reason and return false. Otherwise, return true. - bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); -}; - -inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { - TPN.print(OS); - return OS; -} - - -/// TreePattern - Represent a pattern, used for instructions, pattern -/// fragments, etc. -/// -class TreePattern { - /// Trees - The list of pattern trees which corresponds to this pattern. - /// Note that PatFrag's only have a single tree. - /// - std::vector<TreePatternNodePtr> Trees; - - /// NamedNodes - This is all of the nodes that have names in the trees in this - /// pattern. - StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; - - /// TheRecord - The actual TableGen record corresponding to this pattern. - /// - Record *TheRecord; - - /// Args - This is a list of all of the arguments to this pattern (for - /// PatFrag patterns), which are the 'node' markers in this pattern. - std::vector<std::string> Args; - - /// CDP - the top-level object coordinating this madness. - /// - CodeGenDAGPatterns &CDP; - - /// isInputPattern - True if this is an input pattern, something to match. - /// False if this is an output pattern, something to emit. - bool isInputPattern; - - /// hasError - True if the currently processed nodes have unresolvable types - /// or other non-fatal errors - bool HasError; - - /// It's important that the usage of operands in ComplexPatterns is - /// consistent: each named operand can be defined by at most one - /// ComplexPattern. This records the ComplexPattern instance and the operand - /// number for each operand encountered in a ComplexPattern to aid in that - /// check. - StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; - - TypeInfer Infer; - -public: - - /// TreePattern constructor - Parse the specified DagInits into the - /// current record. - TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, - CodeGenDAGPatterns &ise); - TreePattern(Record *TheRec, DagInit *Pat, bool isInput, - CodeGenDAGPatterns &ise); - TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, - CodeGenDAGPatterns &ise); - - /// getTrees - Return the tree patterns which corresponds to this pattern. - /// - const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } - unsigned getNumTrees() const { return Trees.size(); } - const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } - void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } - const TreePatternNodePtr &getOnlyTree() const { - assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); - return Trees[0]; - } - - const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { - if (NamedNodes.empty()) - ComputeNamedNodes(); - return NamedNodes; - } - - /// getRecord - Return the actual TableGen record corresponding to this - /// pattern. - /// - Record *getRecord() const { return TheRecord; } - - unsigned getNumArgs() const { return Args.size(); } - const std::string &getArgName(unsigned i) const { - assert(i < Args.size() && "Argument reference out of range!"); - return Args[i]; - } - std::vector<std::string> &getArgList() { return Args; } - - CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } - - /// InlinePatternFragments - If this pattern refers to any pattern - /// fragments, inline them into place, giving us a pattern without any - /// PatFrags references. This may increase the number of trees in the - /// pattern if a PatFrags has multiple alternatives. - void InlinePatternFragments() { - std::vector<TreePatternNodePtr> Copy = Trees; - Trees.clear(); - for (unsigned i = 0, e = Copy.size(); i != e; ++i) - Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); - } - - /// InferAllTypes - Infer/propagate as many types throughout the expression - /// patterns as possible. Return true if all types are inferred, false - /// otherwise. Bail out if a type contradiction is found. - bool InferAllTypes( - const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); - - /// error - If this is the first error in the current resolution step, - /// print it and set the error flag. Otherwise, continue silently. - void error(const Twine &Msg); - bool hasError() const { - return HasError; - } - void resetError() { - HasError = false; - } - - TypeInfer &getInfer() { return Infer; } - - void print(raw_ostream &OS) const; - void dump() const; - -private: - TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); - void ComputeNamedNodes(); - void ComputeNamedNodes(TreePatternNode *N); -}; - - -inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, - const TypeSetByHwMode &InTy, - TreePattern &TP) { - TypeSetByHwMode VTS(InTy); - TP.getInfer().expandOverloads(VTS); - return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); -} - -inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, - MVT::SimpleValueType InTy, - TreePattern &TP) { - TypeSetByHwMode VTS(InTy); - TP.getInfer().expandOverloads(VTS); - return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); -} - -inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, - ValueTypeByHwMode InTy, - TreePattern &TP) { - TypeSetByHwMode VTS(InTy); - TP.getInfer().expandOverloads(VTS); - return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); -} - - -/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps -/// that has a set ExecuteAlways / DefaultOps field. -struct DAGDefaultOperand { - std::vector<TreePatternNodePtr> DefaultOps; -}; - -class DAGInstruction { - std::vector<Record*> Results; - std::vector<Record*> Operands; - std::vector<Record*> ImpResults; - TreePatternNodePtr SrcPattern; - TreePatternNodePtr ResultPattern; - -public: - DAGInstruction(const std::vector<Record*> &results, - const std::vector<Record*> &operands, - const std::vector<Record*> &impresults, - TreePatternNodePtr srcpattern = nullptr, - TreePatternNodePtr resultpattern = nullptr) - : Results(results), Operands(operands), ImpResults(impresults), - SrcPattern(srcpattern), ResultPattern(resultpattern) {} - - unsigned getNumResults() const { return Results.size(); } - unsigned getNumOperands() const { return Operands.size(); } - unsigned getNumImpResults() const { return ImpResults.size(); } - const std::vector<Record*>& getImpResults() const { return ImpResults; } - - Record *getResult(unsigned RN) const { - assert(RN < Results.size()); - return Results[RN]; - } - - Record *getOperand(unsigned ON) const { - assert(ON < Operands.size()); - return Operands[ON]; - } - - Record *getImpResult(unsigned RN) const { - assert(RN < ImpResults.size()); - return ImpResults[RN]; - } - - TreePatternNodePtr getSrcPattern() const { return SrcPattern; } - TreePatternNodePtr getResultPattern() const { return ResultPattern; } -}; - -/// This class represents a condition that has to be satisfied for a pattern -/// to be tried. It is a generalization of a class "Pattern" from Target.td: -/// in addition to the Target.td's predicates, this class can also represent -/// conditions associated with HW modes. Both types will eventually become -/// strings containing C++ code to be executed, the difference is in how -/// these strings are generated. -class Predicate { -public: - Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { - assert(R->isSubClassOf("Predicate") && - "Predicate objects should only be created for records derived" - "from Predicate class"); - } - Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), - IfCond(C), IsHwMode(true) {} - - /// Return a string which contains the C++ condition code that will serve - /// as a predicate during instruction selection. - std::string getCondString() const { - // The string will excute in a subclass of SelectionDAGISel. - // Cast to std::string explicitly to avoid ambiguity with StringRef. - std::string C = IsHwMode - ? std::string("MF->getSubtarget().checkFeatures(\"" + - Features + "\")") - : std::string(Def->getValueAsString("CondString")); - if (C.empty()) - return ""; - return IfCond ? C : "!("+C+')'; - } - - bool operator==(const Predicate &P) const { - return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; - } - bool operator<(const Predicate &P) const { - if (IsHwMode != P.IsHwMode) - return IsHwMode < P.IsHwMode; - assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); - if (IfCond != P.IfCond) - return IfCond < P.IfCond; - if (Def) - return LessRecord()(Def, P.Def); - return Features < P.Features; - } - Record *Def; ///< Predicate definition from .td file, null for - ///< HW modes. - std::string Features; ///< Feature string for HW mode. - bool IfCond; ///< The boolean value that the condition has to - ///< evaluate to for this predicate to be true. - bool IsHwMode; ///< Does this predicate correspond to a HW mode? -}; - -/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns -/// processed to produce isel. -class PatternToMatch { -public: - PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, - TreePatternNodePtr src, TreePatternNodePtr dst, - std::vector<Record *> dstregs, int complexity, - unsigned uid, unsigned setmode = 0) - : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), - Predicates(std::move(preds)), Dstregs(std::move(dstregs)), - AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} - - Record *SrcRecord; // Originating Record for the pattern. - TreePatternNodePtr SrcPattern; // Source pattern to match. - TreePatternNodePtr DstPattern; // Resulting pattern. - std::vector<Predicate> Predicates; // Top level predicate conditions - // to match. - std::vector<Record*> Dstregs; // Physical register defs being matched. - int AddedComplexity; // Add to matching pattern complexity. - unsigned ID; // Unique ID for the record. - unsigned ForceMode; // Force this mode in type inference when set. - - Record *getSrcRecord() const { return SrcRecord; } - TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } - TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } - TreePatternNode *getDstPattern() const { return DstPattern.get(); } - TreePatternNodePtr getDstPatternShared() const { return DstPattern; } - const std::vector<Record*> &getDstRegs() const { return Dstregs; } - int getAddedComplexity() const { return AddedComplexity; } - const std::vector<Predicate> &getPredicates() const { return Predicates; } - - std::string getPredicateCheck() const; - - /// Compute the complexity metric for the input pattern. This roughly - /// corresponds to the number of nodes that are covered. - int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; -}; - -class CodeGenDAGPatterns { - RecordKeeper &Records; - CodeGenTarget Target; - CodeGenIntrinsicTable Intrinsics; - - std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; - std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> - SDNodeXForms; - std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; - std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> - PatternFragments; - std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; - std::map<Record*, DAGInstruction, LessRecordByID> Instructions; - - // Specific SDNode definitions: - Record *intrinsic_void_sdnode; - Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; - - /// PatternsToMatch - All of the things we are matching on the DAG. The first - /// value is the pattern to match, the second pattern is the result to - /// emit. - std::vector<PatternToMatch> PatternsToMatch; - - TypeSetByHwMode LegalVTS; - - using PatternRewriterFn = std::function<void (TreePattern *)>; - PatternRewriterFn PatternRewriter; - - unsigned NumScopes = 0; - -public: - CodeGenDAGPatterns(RecordKeeper &R, - PatternRewriterFn PatternRewriter = nullptr); - - CodeGenTarget &getTargetInfo() { return Target; } - const CodeGenTarget &getTargetInfo() const { return Target; } - const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } - + + TypeSetByHwMode() = default; + TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; + TypeSetByHwMode &operator=(const TypeSetByHwMode &) = default; + TypeSetByHwMode(MVT::SimpleValueType VT) + : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} + TypeSetByHwMode(ValueTypeByHwMode VT) + : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} + TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); + + SetType &getOrCreate(unsigned Mode) { + if (hasMode(Mode)) + return get(Mode); + return Map.insert({Mode,SetType()}).first->second; + } + + bool isValueTypeByHwMode(bool AllowEmpty) const; + ValueTypeByHwMode getValueTypeByHwMode() const; + + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool isMachineValueType() const { + return isDefaultOnly() && Map.begin()->second.size() == 1; + } + + LLVM_ATTRIBUTE_ALWAYS_INLINE + MVT getMachineValueType() const { + assert(isMachineValueType()); + return *Map.begin()->second.begin(); + } + + bool isPossible() const; + + LLVM_ATTRIBUTE_ALWAYS_INLINE + bool isDefaultOnly() const { + return Map.size() == 1 && Map.begin()->first == DefaultMode; + } + + bool isPointer() const { + return getValueTypeByHwMode().isPointer(); + } + + unsigned getPtrAddrSpace() const { + assert(isPointer()); + return getValueTypeByHwMode().PtrAddrSpace; + } + + bool insert(const ValueTypeByHwMode &VVT); + bool constrain(const TypeSetByHwMode &VTS); + template <typename Predicate> bool constrain(Predicate P); + template <typename Predicate> + bool assign_if(const TypeSetByHwMode &VTS, Predicate P); + + void writeToStream(raw_ostream &OS) const; + static void writeToStream(const SetType &S, raw_ostream &OS); + + bool operator==(const TypeSetByHwMode &VTS) const; + bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } + + void dump() const; + bool validate() const; + +private: + unsigned PtrAddrSpace = std::numeric_limits<unsigned>::max(); + /// Intersect two sets. Return true if anything has changed. + bool intersect(SetType &Out, const SetType &In); +}; + +raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); + +struct TypeInfer { + TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} + + bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { + return VTS.isValueTypeByHwMode(AllowEmpty); + } + ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, + bool AllowEmpty) const { + assert(VTS.isValueTypeByHwMode(AllowEmpty)); + return VTS.getValueTypeByHwMode(); + } + + /// The protocol in the following functions (Merge*, force*, Enforce*, + /// expand*) is to return "true" if a change has been made, "false" + /// otherwise. + + bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); + bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { + return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); + } + bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { + return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); + } + + /// Reduce the set \p Out to have at most one element for each mode. + bool forceArbitrary(TypeSetByHwMode &Out); + + /// The following four functions ensure that upon return the set \p Out + /// will only contain types of the specified kind: integer, floating-point, + /// scalar, or vector. + /// If \p Out is empty, all legal types of the specified kind will be added + /// to it. Otherwise, all types that are not of the specified kind will be + /// removed from \p Out. + bool EnforceInteger(TypeSetByHwMode &Out); + bool EnforceFloatingPoint(TypeSetByHwMode &Out); + bool EnforceScalar(TypeSetByHwMode &Out); + bool EnforceVector(TypeSetByHwMode &Out); + + /// If \p Out is empty, fill it with all legal types. Otherwise, leave it + /// unchanged. + bool EnforceAny(TypeSetByHwMode &Out); + /// Make sure that for each type in \p Small, there exists a larger type + /// in \p Big. + bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); + /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that + /// for each type U in \p Elem, U is a scalar type. + /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a + /// (vector) type T in \p Vec, such that U is the element type of T. + bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); + bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, + const ValueTypeByHwMode &VVT); + /// Ensure that for each type T in \p Sub, T is a vector type, and there + /// exists a type U in \p Vec such that U is a vector type with the same + /// element type as T and at least as many elements as T. + bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, + TypeSetByHwMode &Sub); + /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. + /// 2. Ensure that for each vector type T in \p V, there exists a vector + /// type U in \p W, such that T and U have the same number of elements. + /// 3. Ensure that for each vector type U in \p W, there exists a vector + /// type T in \p V, such that T and U have the same number of elements + /// (reverse of 2). + bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); + /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, + /// such that T and U have equal size in bits. + /// 2. Ensure that for each type U in \p B, there exists a type T in \p A + /// such that T and U have equal size in bits (reverse of 1). + bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); + + /// For each overloaded type (i.e. of form *Any), replace it with the + /// corresponding subset of legal, specific types. + void expandOverloads(TypeSetByHwMode &VTS); + void expandOverloads(TypeSetByHwMode::SetType &Out, + const TypeSetByHwMode::SetType &Legal); + + struct ValidateOnExit { + ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} + #ifndef NDEBUG + ~ValidateOnExit(); + #else + ~ValidateOnExit() {} // Empty destructor with NDEBUG. + #endif + TypeInfer &Infer; + TypeSetByHwMode &VTS; + }; + + struct SuppressValidation { + SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { + Infer.Validate = false; + } + ~SuppressValidation() { + Infer.Validate = SavedValidate; + } + TypeInfer &Infer; + bool SavedValidate; + }; + + TreePattern &TP; + unsigned ForceMode; // Mode to use when set. + bool CodeGen = false; // Set during generation of matcher code. + bool Validate = true; // Indicate whether to validate types. + +private: + const TypeSetByHwMode &getLegalTypes(); + + /// Cached legal types (in default mode). + bool LegalTypesCached = false; + TypeSetByHwMode LegalCache; +}; + +/// Set type used to track multiply used variables in patterns +typedef StringSet<> MultipleUseVarSet; + +/// SDTypeConstraint - This is a discriminated union of constraints, +/// corresponding to the SDTypeConstraint tablegen class in Target.td. +struct SDTypeConstraint { + SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); + + unsigned OperandNo; // The operand # this constraint applies to. + enum { + SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, + SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, + SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs + } ConstraintType; + + union { // The discriminated union. + struct { + unsigned OtherOperandNum; + } SDTCisSameAs_Info; + struct { + unsigned OtherOperandNum; + } SDTCisVTSmallerThanOp_Info; + struct { + unsigned BigOperandNum; + } SDTCisOpSmallerThanOp_Info; + struct { + unsigned OtherOperandNum; + } SDTCisEltOfVec_Info; + struct { + unsigned OtherOperandNum; + } SDTCisSubVecOfVec_Info; + struct { + unsigned OtherOperandNum; + } SDTCisSameNumEltsAs_Info; + struct { + unsigned OtherOperandNum; + } SDTCisSameSizeAs_Info; + } x; + + // The VT for SDTCisVT and SDTCVecEltisVT. + // Must not be in the union because it has a non-trivial destructor. + ValueTypeByHwMode VVT; + + /// ApplyTypeConstraint - Given a node in a pattern, apply this type + /// constraint to the nodes operands. This returns true if it makes a + /// change, false otherwise. If a type contradiction is found, an error + /// is flagged. + bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, + TreePattern &TP) const; +}; + +/// ScopedName - A name of a node associated with a "scope" that indicates +/// the context (e.g. instance of Pattern or PatFrag) in which the name was +/// used. This enables substitution of pattern fragments while keeping track +/// of what name(s) were originally given to various nodes in the tree. +class ScopedName { + unsigned Scope; + std::string Identifier; +public: + ScopedName(unsigned Scope, StringRef Identifier) + : Scope(Scope), Identifier(std::string(Identifier)) { + assert(Scope != 0 && + "Scope == 0 is used to indicate predicates without arguments"); + } + + unsigned getScope() const { return Scope; } + const std::string &getIdentifier() const { return Identifier; } + + bool operator==(const ScopedName &o) const; + bool operator!=(const ScopedName &o) const; +}; + +/// SDNodeInfo - One of these records is created for each SDNode instance in +/// the target .td file. This represents the various dag nodes we will be +/// processing. +class SDNodeInfo { + Record *Def; + StringRef EnumName; + StringRef SDClassName; + unsigned Properties; + unsigned NumResults; + int NumOperands; + std::vector<SDTypeConstraint> TypeConstraints; +public: + // Parse the specified record. + SDNodeInfo(Record *R, const CodeGenHwModes &CGH); + + unsigned getNumResults() const { return NumResults; } + + /// getNumOperands - This is the number of operands required or -1 if + /// variadic. + int getNumOperands() const { return NumOperands; } + Record *getRecord() const { return Def; } + StringRef getEnumName() const { return EnumName; } + StringRef getSDClassName() const { return SDClassName; } + + const std::vector<SDTypeConstraint> &getTypeConstraints() const { + return TypeConstraints; + } + + /// getKnownType - If the type constraints on this node imply a fixed type + /// (e.g. all stores return void, etc), then return it as an + /// MVT::SimpleValueType. Otherwise, return MVT::Other. + MVT::SimpleValueType getKnownType(unsigned ResNo) const; + + /// hasProperty - Return true if this node has the specified property. + /// + bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } + + /// ApplyTypeConstraints - Given a node in a pattern, apply the type + /// constraints for this node to the operands of the node. This returns + /// true if it makes a change, false otherwise. If a type contradiction is + /// found, an error is flagged. + bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; +}; + +/// TreePredicateFn - This is an abstraction that represents the predicates on +/// a PatFrag node. This is a simple one-word wrapper around a pointer to +/// provide nice accessors. +class TreePredicateFn { + /// PatFragRec - This is the TreePattern for the PatFrag that we + /// originally came from. + TreePattern *PatFragRec; +public: + /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. + TreePredicateFn(TreePattern *N); + + + TreePattern *getOrigPatFragRecord() const { return PatFragRec; } + + /// isAlwaysTrue - Return true if this is a noop predicate. + bool isAlwaysTrue() const; + + bool isImmediatePattern() const { return hasImmCode(); } + + /// getImmediatePredicateCode - Return the code that evaluates this pattern if + /// this is an immediate predicate. It is an error to call this on a + /// non-immediate pattern. + std::string getImmediatePredicateCode() const { + std::string Result = getImmCode(); + assert(!Result.empty() && "Isn't an immediate pattern!"); + return Result; + } + + bool operator==(const TreePredicateFn &RHS) const { + return PatFragRec == RHS.PatFragRec; + } + + bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } + + /// Return the name to use in the generated code to reference this, this is + /// "Predicate_foo" if from a pattern fragment "foo". + std::string getFnName() const; + + /// getCodeToRunOnSDNode - Return the code for the function body that + /// evaluates this predicate. The argument is expected to be in "Node", + /// not N. This handles casting and conversion to a concrete node type as + /// appropriate. + std::string getCodeToRunOnSDNode() const; + + /// Get the data type of the argument to getImmediatePredicateCode(). + StringRef getImmType() const; + + /// Get a string that describes the type returned by getImmType() but is + /// usable as part of an identifier. + StringRef getImmTypeIdentifier() const; + + // Predicate code uses the PatFrag's captured operands. + bool usesOperands() const; + + // Is the desired predefined predicate for a load? + bool isLoad() const; + // Is the desired predefined predicate for a store? + bool isStore() const; + // Is the desired predefined predicate for an atomic? + bool isAtomic() const; + + /// Is this predicate the predefined unindexed load predicate? + /// Is this predicate the predefined unindexed store predicate? + bool isUnindexed() const; + /// Is this predicate the predefined non-extending load predicate? + bool isNonExtLoad() const; + /// Is this predicate the predefined any-extend load predicate? + bool isAnyExtLoad() const; + /// Is this predicate the predefined sign-extend load predicate? + bool isSignExtLoad() const; + /// Is this predicate the predefined zero-extend load predicate? + bool isZeroExtLoad() const; + /// Is this predicate the predefined non-truncating store predicate? + bool isNonTruncStore() const; + /// Is this predicate the predefined truncating store predicate? + bool isTruncStore() const; + + /// Is this predicate the predefined monotonic atomic predicate? + bool isAtomicOrderingMonotonic() const; + /// Is this predicate the predefined acquire atomic predicate? + bool isAtomicOrderingAcquire() const; + /// Is this predicate the predefined release atomic predicate? + bool isAtomicOrderingRelease() const; + /// Is this predicate the predefined acquire-release atomic predicate? + bool isAtomicOrderingAcquireRelease() const; + /// Is this predicate the predefined sequentially consistent atomic predicate? + bool isAtomicOrderingSequentiallyConsistent() const; + + /// Is this predicate the predefined acquire-or-stronger atomic predicate? + bool isAtomicOrderingAcquireOrStronger() const; + /// Is this predicate the predefined weaker-than-acquire atomic predicate? + bool isAtomicOrderingWeakerThanAcquire() const; + + /// Is this predicate the predefined release-or-stronger atomic predicate? + bool isAtomicOrderingReleaseOrStronger() const; + /// Is this predicate the predefined weaker-than-release atomic predicate? + bool isAtomicOrderingWeakerThanRelease() const; + + /// If non-null, indicates that this predicate is a predefined memory VT + /// predicate for a load/store and returns the ValueType record for the memory VT. + Record *getMemoryVT() const; + /// If non-null, indicates that this predicate is a predefined memory VT + /// predicate (checking only the scalar type) for load/store and returns the + /// ValueType record for the memory VT. + Record *getScalarMemoryVT() const; + + ListInit *getAddressSpaces() const; + int64_t getMinAlignment() const; + + // If true, indicates that GlobalISel-based C++ code was supplied. + bool hasGISelPredicateCode() const; + std::string getGISelPredicateCode() const; + +private: + bool hasPredCode() const; + bool hasImmCode() const; + std::string getPredCode() const; + std::string getImmCode() const; + bool immCodeUsesAPInt() const; + bool immCodeUsesAPFloat() const; + + bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; +}; + +struct TreePredicateCall { + TreePredicateFn Fn; + + // Scope -- unique identifier for retrieving named arguments. 0 is used when + // the predicate does not use named arguments. + unsigned Scope; + + TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) + : Fn(Fn), Scope(Scope) {} + + bool operator==(const TreePredicateCall &o) const { + return Fn == o.Fn && Scope == o.Scope; + } + bool operator!=(const TreePredicateCall &o) const { + return !(*this == o); + } +}; + +class TreePatternNode { + /// The type of each node result. Before and during type inference, each + /// result may be a set of possible types. After (successful) type inference, + /// each is a single concrete type. + std::vector<TypeSetByHwMode> Types; + + /// The index of each result in results of the pattern. + std::vector<unsigned> ResultPerm; + + /// Operator - The Record for the operator if this is an interior node (not + /// a leaf). + Record *Operator; + + /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. + /// + Init *Val; + + /// Name - The name given to this node with the :$foo notation. + /// + std::string Name; + + std::vector<ScopedName> NamesAsPredicateArg; + + /// PredicateCalls - The predicate functions to execute on this node to check + /// for a match. If this list is empty, no predicate is involved. + std::vector<TreePredicateCall> PredicateCalls; + + /// TransformFn - The transformation function to execute on this node before + /// it can be substituted into the resulting instruction on a pattern match. + Record *TransformFn; + + std::vector<TreePatternNodePtr> Children; + +public: + TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, + unsigned NumResults) + : Operator(Op), Val(nullptr), TransformFn(nullptr), + Children(std::move(Ch)) { + Types.resize(NumResults); + ResultPerm.resize(NumResults); + std::iota(ResultPerm.begin(), ResultPerm.end(), 0); + } + TreePatternNode(Init *val, unsigned NumResults) // leaf ctor + : Operator(nullptr), Val(val), TransformFn(nullptr) { + Types.resize(NumResults); + ResultPerm.resize(NumResults); + std::iota(ResultPerm.begin(), ResultPerm.end(), 0); + } + + bool hasName() const { return !Name.empty(); } + const std::string &getName() const { return Name; } + void setName(StringRef N) { Name.assign(N.begin(), N.end()); } + + const std::vector<ScopedName> &getNamesAsPredicateArg() const { + return NamesAsPredicateArg; + } + void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { + NamesAsPredicateArg = Names; + } + void addNameAsPredicateArg(const ScopedName &N) { + NamesAsPredicateArg.push_back(N); + } + + bool isLeaf() const { return Val != nullptr; } + + // Type accessors. + unsigned getNumTypes() const { return Types.size(); } + ValueTypeByHwMode getType(unsigned ResNo) const { + return Types[ResNo].getValueTypeByHwMode(); + } + const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } + const TypeSetByHwMode &getExtType(unsigned ResNo) const { + return Types[ResNo]; + } + TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } + void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } + MVT::SimpleValueType getSimpleType(unsigned ResNo) const { + return Types[ResNo].getMachineValueType().SimpleTy; + } + + bool hasConcreteType(unsigned ResNo) const { + return Types[ResNo].isValueTypeByHwMode(false); + } + bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { + return Types[ResNo].empty(); + } + + unsigned getNumResults() const { return ResultPerm.size(); } + unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } + void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } + + Init *getLeafValue() const { assert(isLeaf()); return Val; } + Record *getOperator() const { assert(!isLeaf()); return Operator; } + + unsigned getNumChildren() const { return Children.size(); } + TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } + const TreePatternNodePtr &getChildShared(unsigned N) const { + return Children[N]; + } + void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } + + /// hasChild - Return true if N is any of our children. + bool hasChild(const TreePatternNode *N) const { + for (unsigned i = 0, e = Children.size(); i != e; ++i) + if (Children[i].get() == N) + return true; + return false; + } + + bool hasProperTypeByHwMode() const; + bool hasPossibleType() const; + bool setDefaultMode(unsigned Mode); + + bool hasAnyPredicate() const { return !PredicateCalls.empty(); } + + const std::vector<TreePredicateCall> &getPredicateCalls() const { + return PredicateCalls; + } + void clearPredicateCalls() { PredicateCalls.clear(); } + void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { + assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); + PredicateCalls = Calls; + } + void addPredicateCall(const TreePredicateCall &Call) { + assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); + assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); + PredicateCalls.push_back(Call); + } + void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { + assert((Scope != 0) == Fn.usesOperands()); + addPredicateCall(TreePredicateCall(Fn, Scope)); + } + + Record *getTransformFn() const { return TransformFn; } + void setTransformFn(Record *Fn) { TransformFn = Fn; } + + /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the + /// CodeGenIntrinsic information for it, otherwise return a null pointer. + const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; + + /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, + /// return the ComplexPattern information, otherwise return null. + const ComplexPattern * + getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; + + /// Returns the number of MachineInstr operands that would be produced by this + /// node if it mapped directly to an output Instruction's + /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it + /// for Operands; otherwise 1. + unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; + + /// NodeHasProperty - Return true if this node has the specified property. + bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; + + /// TreeHasProperty - Return true if any node in this tree has the specified + /// property. + bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; + + /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is + /// marked isCommutative. + bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; + + void print(raw_ostream &OS) const; + void dump() const; + +public: // Higher level manipulation routines. + + /// clone - Return a new copy of this tree. + /// + TreePatternNodePtr clone() const; + + /// RemoveAllTypes - Recursively strip all the types of this tree. + void RemoveAllTypes(); + + /// isIsomorphicTo - Return true if this node is recursively isomorphic to + /// the specified node. For this comparison, all of the state of the node + /// is considered, except for the assigned name. Nodes with differing names + /// that are otherwise identical are considered isomorphic. + bool isIsomorphicTo(const TreePatternNode *N, + const MultipleUseVarSet &DepVars) const; + + /// SubstituteFormalArguments - Replace the formal arguments in this tree + /// with actual values specified by ArgMap. + void + SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); + + /// InlinePatternFragments - If this pattern refers to any pattern + /// fragments, return the set of inlined versions (this can be more than + /// one if a PatFrags record has multiple alternatives). + void InlinePatternFragments(TreePatternNodePtr T, + TreePattern &TP, + std::vector<TreePatternNodePtr> &OutAlternatives); + + /// ApplyTypeConstraints - Apply all of the type constraints relevant to + /// this node and its children in the tree. This returns true if it makes a + /// change, false otherwise. If a type contradiction is found, flag an error. + bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); + + /// UpdateNodeType - Set the node type of N to VT if VT contains + /// information. If N already contains a conflicting type, then flag an + /// error. This returns true if any information was updated. + /// + bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, + TreePattern &TP); + bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, + TreePattern &TP); + bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, + TreePattern &TP); + + // Update node type with types inferred from an instruction operand or result + // def from the ins/outs lists. + // Return true if the type changed. + bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); + + /// ContainsUnresolvedType - Return true if this tree contains any + /// unresolved types. + bool ContainsUnresolvedType(TreePattern &TP) const; + + /// canPatternMatch - If it is impossible for this pattern to match on this + /// target, fill in Reason and return false. Otherwise, return true. + bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); +}; + +inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { + TPN.print(OS); + return OS; +} + + +/// TreePattern - Represent a pattern, used for instructions, pattern +/// fragments, etc. +/// +class TreePattern { + /// Trees - The list of pattern trees which corresponds to this pattern. + /// Note that PatFrag's only have a single tree. + /// + std::vector<TreePatternNodePtr> Trees; + + /// NamedNodes - This is all of the nodes that have names in the trees in this + /// pattern. + StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; + + /// TheRecord - The actual TableGen record corresponding to this pattern. + /// + Record *TheRecord; + + /// Args - This is a list of all of the arguments to this pattern (for + /// PatFrag patterns), which are the 'node' markers in this pattern. + std::vector<std::string> Args; + + /// CDP - the top-level object coordinating this madness. + /// + CodeGenDAGPatterns &CDP; + + /// isInputPattern - True if this is an input pattern, something to match. + /// False if this is an output pattern, something to emit. + bool isInputPattern; + + /// hasError - True if the currently processed nodes have unresolvable types + /// or other non-fatal errors + bool HasError; + + /// It's important that the usage of operands in ComplexPatterns is + /// consistent: each named operand can be defined by at most one + /// ComplexPattern. This records the ComplexPattern instance and the operand + /// number for each operand encountered in a ComplexPattern to aid in that + /// check. + StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; + + TypeInfer Infer; + +public: + + /// TreePattern constructor - Parse the specified DagInits into the + /// current record. + TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, + CodeGenDAGPatterns &ise); + TreePattern(Record *TheRec, DagInit *Pat, bool isInput, + CodeGenDAGPatterns &ise); + TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, + CodeGenDAGPatterns &ise); + + /// getTrees - Return the tree patterns which corresponds to this pattern. + /// + const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } + unsigned getNumTrees() const { return Trees.size(); } + const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } + void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } + const TreePatternNodePtr &getOnlyTree() const { + assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); + return Trees[0]; + } + + const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { + if (NamedNodes.empty()) + ComputeNamedNodes(); + return NamedNodes; + } + + /// getRecord - Return the actual TableGen record corresponding to this + /// pattern. + /// + Record *getRecord() const { return TheRecord; } + + unsigned getNumArgs() const { return Args.size(); } + const std::string &getArgName(unsigned i) const { + assert(i < Args.size() && "Argument reference out of range!"); + return Args[i]; + } + std::vector<std::string> &getArgList() { return Args; } + + CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } + + /// InlinePatternFragments - If this pattern refers to any pattern + /// fragments, inline them into place, giving us a pattern without any + /// PatFrags references. This may increase the number of trees in the + /// pattern if a PatFrags has multiple alternatives. + void InlinePatternFragments() { + std::vector<TreePatternNodePtr> Copy = Trees; + Trees.clear(); + for (unsigned i = 0, e = Copy.size(); i != e; ++i) + Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); + } + + /// InferAllTypes - Infer/propagate as many types throughout the expression + /// patterns as possible. Return true if all types are inferred, false + /// otherwise. Bail out if a type contradiction is found. + bool InferAllTypes( + const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); + + /// error - If this is the first error in the current resolution step, + /// print it and set the error flag. Otherwise, continue silently. + void error(const Twine &Msg); + bool hasError() const { + return HasError; + } + void resetError() { + HasError = false; + } + + TypeInfer &getInfer() { return Infer; } + + void print(raw_ostream &OS) const; + void dump() const; + +private: + TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); + void ComputeNamedNodes(); + void ComputeNamedNodes(TreePatternNode *N); +}; + + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, + const TypeSetByHwMode &InTy, + TreePattern &TP) { + TypeSetByHwMode VTS(InTy); + TP.getInfer().expandOverloads(VTS); + return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, + MVT::SimpleValueType InTy, + TreePattern &TP) { + TypeSetByHwMode VTS(InTy); + TP.getInfer().expandOverloads(VTS); + return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + +inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, + ValueTypeByHwMode InTy, + TreePattern &TP) { + TypeSetByHwMode VTS(InTy); + TP.getInfer().expandOverloads(VTS); + return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); +} + + +/// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps +/// that has a set ExecuteAlways / DefaultOps field. +struct DAGDefaultOperand { + std::vector<TreePatternNodePtr> DefaultOps; +}; + +class DAGInstruction { + std::vector<Record*> Results; + std::vector<Record*> Operands; + std::vector<Record*> ImpResults; + TreePatternNodePtr SrcPattern; + TreePatternNodePtr ResultPattern; + +public: + DAGInstruction(const std::vector<Record*> &results, + const std::vector<Record*> &operands, + const std::vector<Record*> &impresults, + TreePatternNodePtr srcpattern = nullptr, + TreePatternNodePtr resultpattern = nullptr) + : Results(results), Operands(operands), ImpResults(impresults), + SrcPattern(srcpattern), ResultPattern(resultpattern) {} + + unsigned getNumResults() const { return Results.size(); } + unsigned getNumOperands() const { return Operands.size(); } + unsigned getNumImpResults() const { return ImpResults.size(); } + const std::vector<Record*>& getImpResults() const { return ImpResults; } + + Record *getResult(unsigned RN) const { + assert(RN < Results.size()); + return Results[RN]; + } + + Record *getOperand(unsigned ON) const { + assert(ON < Operands.size()); + return Operands[ON]; + } + + Record *getImpResult(unsigned RN) const { + assert(RN < ImpResults.size()); + return ImpResults[RN]; + } + + TreePatternNodePtr getSrcPattern() const { return SrcPattern; } + TreePatternNodePtr getResultPattern() const { return ResultPattern; } +}; + +/// This class represents a condition that has to be satisfied for a pattern +/// to be tried. It is a generalization of a class "Pattern" from Target.td: +/// in addition to the Target.td's predicates, this class can also represent +/// conditions associated with HW modes. Both types will eventually become +/// strings containing C++ code to be executed, the difference is in how +/// these strings are generated. +class Predicate { +public: + Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { + assert(R->isSubClassOf("Predicate") && + "Predicate objects should only be created for records derived" + "from Predicate class"); + } + Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), + IfCond(C), IsHwMode(true) {} + + /// Return a string which contains the C++ condition code that will serve + /// as a predicate during instruction selection. + std::string getCondString() const { + // The string will excute in a subclass of SelectionDAGISel. + // Cast to std::string explicitly to avoid ambiguity with StringRef. + std::string C = IsHwMode + ? std::string("MF->getSubtarget().checkFeatures(\"" + + Features + "\")") + : std::string(Def->getValueAsString("CondString")); + if (C.empty()) + return ""; + return IfCond ? C : "!("+C+')'; + } + + bool operator==(const Predicate &P) const { + return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; + } + bool operator<(const Predicate &P) const { + if (IsHwMode != P.IsHwMode) + return IsHwMode < P.IsHwMode; + assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); + if (IfCond != P.IfCond) + return IfCond < P.IfCond; + if (Def) + return LessRecord()(Def, P.Def); + return Features < P.Features; + } + Record *Def; ///< Predicate definition from .td file, null for + ///< HW modes. + std::string Features; ///< Feature string for HW mode. + bool IfCond; ///< The boolean value that the condition has to + ///< evaluate to for this predicate to be true. + bool IsHwMode; ///< Does this predicate correspond to a HW mode? +}; + +/// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns +/// processed to produce isel. +class PatternToMatch { +public: + PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, + TreePatternNodePtr src, TreePatternNodePtr dst, + std::vector<Record *> dstregs, int complexity, + unsigned uid, unsigned setmode = 0) + : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), + Predicates(std::move(preds)), Dstregs(std::move(dstregs)), + AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} + + Record *SrcRecord; // Originating Record for the pattern. + TreePatternNodePtr SrcPattern; // Source pattern to match. + TreePatternNodePtr DstPattern; // Resulting pattern. + std::vector<Predicate> Predicates; // Top level predicate conditions + // to match. + std::vector<Record*> Dstregs; // Physical register defs being matched. + int AddedComplexity; // Add to matching pattern complexity. + unsigned ID; // Unique ID for the record. + unsigned ForceMode; // Force this mode in type inference when set. + + Record *getSrcRecord() const { return SrcRecord; } + TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } + TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } + TreePatternNode *getDstPattern() const { return DstPattern.get(); } + TreePatternNodePtr getDstPatternShared() const { return DstPattern; } + const std::vector<Record*> &getDstRegs() const { return Dstregs; } + int getAddedComplexity() const { return AddedComplexity; } + const std::vector<Predicate> &getPredicates() const { return Predicates; } + + std::string getPredicateCheck() const; + + /// Compute the complexity metric for the input pattern. This roughly + /// corresponds to the number of nodes that are covered. + int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; +}; + +class CodeGenDAGPatterns { + RecordKeeper &Records; + CodeGenTarget Target; + CodeGenIntrinsicTable Intrinsics; + + std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; + std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> + SDNodeXForms; + std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; + std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> + PatternFragments; + std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; + std::map<Record*, DAGInstruction, LessRecordByID> Instructions; + + // Specific SDNode definitions: + Record *intrinsic_void_sdnode; + Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; + + /// PatternsToMatch - All of the things we are matching on the DAG. The first + /// value is the pattern to match, the second pattern is the result to + /// emit. + std::vector<PatternToMatch> PatternsToMatch; + + TypeSetByHwMode LegalVTS; + + using PatternRewriterFn = std::function<void (TreePattern *)>; + PatternRewriterFn PatternRewriter; + + unsigned NumScopes = 0; + +public: + CodeGenDAGPatterns(RecordKeeper &R, + PatternRewriterFn PatternRewriter = nullptr); + + CodeGenTarget &getTargetInfo() { return Target; } + const CodeGenTarget &getTargetInfo() const { return Target; } + const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } + Record *getSDNodeNamed(StringRef Name) const; - - const SDNodeInfo &getSDNodeInfo(Record *R) const { - auto F = SDNodes.find(R); - assert(F != SDNodes.end() && "Unknown node!"); - return F->second; - } - - // Node transformation lookups. - typedef std::pair<Record*, std::string> NodeXForm; - const NodeXForm &getSDNodeTransform(Record *R) const { - auto F = SDNodeXForms.find(R); - assert(F != SDNodeXForms.end() && "Invalid transform!"); - return F->second; - } - - const ComplexPattern &getComplexPattern(Record *R) const { - auto F = ComplexPatterns.find(R); - assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); - return F->second; - } - - const CodeGenIntrinsic &getIntrinsic(Record *R) const { - for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) - if (Intrinsics[i].TheDef == R) return Intrinsics[i]; - llvm_unreachable("Unknown intrinsic!"); - } - - const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { - if (IID-1 < Intrinsics.size()) - return Intrinsics[IID-1]; - llvm_unreachable("Bad intrinsic ID!"); - } - - unsigned getIntrinsicID(Record *R) const { - for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) - if (Intrinsics[i].TheDef == R) return i; - llvm_unreachable("Unknown intrinsic!"); - } - - const DAGDefaultOperand &getDefaultOperand(Record *R) const { - auto F = DefaultOperands.find(R); - assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); - return F->second; - } - - // Pattern Fragment information. - TreePattern *getPatternFragment(Record *R) const { - auto F = PatternFragments.find(R); - assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); - return F->second.get(); - } - TreePattern *getPatternFragmentIfRead(Record *R) const { - auto F = PatternFragments.find(R); - if (F == PatternFragments.end()) - return nullptr; - return F->second.get(); - } - - typedef std::map<Record *, std::unique_ptr<TreePattern>, - LessRecordByID>::const_iterator pf_iterator; - pf_iterator pf_begin() const { return PatternFragments.begin(); } - pf_iterator pf_end() const { return PatternFragments.end(); } - iterator_range<pf_iterator> ptfs() const { return PatternFragments; } - - // Patterns to match information. - typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; - ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } - ptm_iterator ptm_end() const { return PatternsToMatch.end(); } - iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } - - /// Parse the Pattern for an instruction, and insert the result in DAGInsts. - typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; - void parseInstructionPattern( - CodeGenInstruction &CGI, ListInit *Pattern, - DAGInstMap &DAGInsts); - - const DAGInstruction &getInstruction(Record *R) const { - auto F = Instructions.find(R); - assert(F != Instructions.end() && "Unknown instruction!"); - return F->second; - } - - Record *get_intrinsic_void_sdnode() const { - return intrinsic_void_sdnode; - } - Record *get_intrinsic_w_chain_sdnode() const { - return intrinsic_w_chain_sdnode; - } - Record *get_intrinsic_wo_chain_sdnode() const { - return intrinsic_wo_chain_sdnode; - } - - unsigned allocateScope() { return ++NumScopes; } - - bool operandHasDefault(Record *Op) const { - return Op->isSubClassOf("OperandWithDefaultOps") && - !getDefaultOperand(Op).DefaultOps.empty(); - } - -private: - void ParseNodeInfo(); - void ParseNodeTransforms(); - void ParseComplexPatterns(); - void ParsePatternFragments(bool OutFrags = false); - void ParseDefaultOperands(); - void ParseInstructions(); - void ParsePatterns(); - void ExpandHwModeBasedTypes(); - void InferInstructionFlags(); - void GenerateVariants(); - void VerifyInstructionFlags(); - - std::vector<Predicate> makePredList(ListInit *L); - - void ParseOnePattern(Record *TheDef, - TreePattern &Pattern, TreePattern &Result, - const std::vector<Record *> &InstImpResults); - void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); - void FindPatternInputsAndOutputs( - TreePattern &I, TreePatternNodePtr Pat, - std::map<std::string, TreePatternNodePtr> &InstInputs, - MapVector<std::string, TreePatternNodePtr, - std::map<std::string, unsigned>> &InstResults, - std::vector<Record *> &InstImpResults); -}; - - -inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, - TreePattern &TP) const { - bool MadeChange = false; - for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) - MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); - return MadeChange; - } - -} // end namespace llvm - -#endif + + const SDNodeInfo &getSDNodeInfo(Record *R) const { + auto F = SDNodes.find(R); + assert(F != SDNodes.end() && "Unknown node!"); + return F->second; + } + + // Node transformation lookups. + typedef std::pair<Record*, std::string> NodeXForm; + const NodeXForm &getSDNodeTransform(Record *R) const { + auto F = SDNodeXForms.find(R); + assert(F != SDNodeXForms.end() && "Invalid transform!"); + return F->second; + } + + const ComplexPattern &getComplexPattern(Record *R) const { + auto F = ComplexPatterns.find(R); + assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); + return F->second; + } + + const CodeGenIntrinsic &getIntrinsic(Record *R) const { + for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) + if (Intrinsics[i].TheDef == R) return Intrinsics[i]; + llvm_unreachable("Unknown intrinsic!"); + } + + const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { + if (IID-1 < Intrinsics.size()) + return Intrinsics[IID-1]; + llvm_unreachable("Bad intrinsic ID!"); + } + + unsigned getIntrinsicID(Record *R) const { + for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) + if (Intrinsics[i].TheDef == R) return i; + llvm_unreachable("Unknown intrinsic!"); + } + + const DAGDefaultOperand &getDefaultOperand(Record *R) const { + auto F = DefaultOperands.find(R); + assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); + return F->second; + } + + // Pattern Fragment information. + TreePattern *getPatternFragment(Record *R) const { + auto F = PatternFragments.find(R); + assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); + return F->second.get(); + } + TreePattern *getPatternFragmentIfRead(Record *R) const { + auto F = PatternFragments.find(R); + if (F == PatternFragments.end()) + return nullptr; + return F->second.get(); + } + + typedef std::map<Record *, std::unique_ptr<TreePattern>, + LessRecordByID>::const_iterator pf_iterator; + pf_iterator pf_begin() const { return PatternFragments.begin(); } + pf_iterator pf_end() const { return PatternFragments.end(); } + iterator_range<pf_iterator> ptfs() const { return PatternFragments; } + + // Patterns to match information. + typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; + ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } + ptm_iterator ptm_end() const { return PatternsToMatch.end(); } + iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } + + /// Parse the Pattern for an instruction, and insert the result in DAGInsts. + typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; + void parseInstructionPattern( + CodeGenInstruction &CGI, ListInit *Pattern, + DAGInstMap &DAGInsts); + + const DAGInstruction &getInstruction(Record *R) const { + auto F = Instructions.find(R); + assert(F != Instructions.end() && "Unknown instruction!"); + return F->second; + } + + Record *get_intrinsic_void_sdnode() const { + return intrinsic_void_sdnode; + } + Record *get_intrinsic_w_chain_sdnode() const { + return intrinsic_w_chain_sdnode; + } + Record *get_intrinsic_wo_chain_sdnode() const { + return intrinsic_wo_chain_sdnode; + } + + unsigned allocateScope() { return ++NumScopes; } + + bool operandHasDefault(Record *Op) const { + return Op->isSubClassOf("OperandWithDefaultOps") && + !getDefaultOperand(Op).DefaultOps.empty(); + } + +private: + void ParseNodeInfo(); + void ParseNodeTransforms(); + void ParseComplexPatterns(); + void ParsePatternFragments(bool OutFrags = false); + void ParseDefaultOperands(); + void ParseInstructions(); + void ParsePatterns(); + void ExpandHwModeBasedTypes(); + void InferInstructionFlags(); + void GenerateVariants(); + void VerifyInstructionFlags(); + + std::vector<Predicate> makePredList(ListInit *L); + + void ParseOnePattern(Record *TheDef, + TreePattern &Pattern, TreePattern &Result, + const std::vector<Record *> &InstImpResults); + void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); + void FindPatternInputsAndOutputs( + TreePattern &I, TreePatternNodePtr Pat, + std::map<std::string, TreePatternNodePtr> &InstInputs, + MapVector<std::string, TreePatternNodePtr, + std::map<std::string, unsigned>> &InstResults, + std::vector<Record *> &InstImpResults); +}; + + +inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, + TreePattern &TP) const { + bool MadeChange = false; + for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) + MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); + return MadeChange; + } + +} // end namespace llvm + +#endif |