aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
downloadydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp')
-rw-r--r--contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp9430
1 files changed, 4715 insertions, 4715 deletions
diff --git a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp
index 1ca4a68eb1..07a40f3630 100644
--- a/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp
+++ b/contrib/libs/llvm12/utils/TableGen/CodeGenDAGPatterns.cpp
@@ -1,4735 +1,4735 @@
-//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements the CodeGenDAGPatterns class, which is used to read and
-// represent the patterns present in a .td file for instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "CodeGenDAGPatterns.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/ADT/StringMap.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/ErrorHandling.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/TableGen/Error.h"
-#include "llvm/TableGen/Record.h"
-#include <algorithm>
-#include <cstdio>
-#include <iterator>
-#include <set>
-using namespace llvm;
-
-#define DEBUG_TYPE "dag-patterns"
-
-static inline bool isIntegerOrPtr(MVT VT) {
- return VT.isInteger() || VT == MVT::iPTR;
-}
-static inline bool isFloatingPoint(MVT VT) {
- return VT.isFloatingPoint();
-}
-static inline bool isVector(MVT VT) {
- return VT.isVector();
-}
-static inline bool isScalar(MVT VT) {
- return !VT.isVector();
-}
-
-template <typename Predicate>
-static bool berase_if(MachineValueTypeSet &S, Predicate P) {
- bool Erased = false;
- // It is ok to iterate over MachineValueTypeSet and remove elements from it
- // at the same time.
- for (MVT T : S) {
- if (!P(T))
- continue;
- Erased = true;
- S.erase(T);
- }
- return Erased;
-}
-
-// --- TypeSetByHwMode
-
-// This is a parameterized type-set class. For each mode there is a list
-// of types that are currently possible for a given tree node. Type
-// inference will apply to each mode separately.
-
-TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
- for (const ValueTypeByHwMode &VVT : VTList) {
- insert(VVT);
- AddrSpaces.push_back(VVT.PtrAddrSpace);
- }
-}
-
-bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
- for (const auto &I : *this) {
- if (I.second.size() > 1)
- return false;
- if (!AllowEmpty && I.second.empty())
- return false;
- }
- return true;
-}
-
-ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
- assert(isValueTypeByHwMode(true) &&
- "The type set has multiple types for at least one HW mode");
- ValueTypeByHwMode VVT;
- auto ASI = AddrSpaces.begin();
-
- for (const auto &I : *this) {
- MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
- VVT.getOrCreateTypeForMode(I.first, T);
- if (ASI != AddrSpaces.end())
- VVT.PtrAddrSpace = *ASI++;
- }
- return VVT;
-}
-
-bool TypeSetByHwMode::isPossible() const {
- for (const auto &I : *this)
- if (!I.second.empty())
- return true;
- return false;
-}
-
-bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
- bool Changed = false;
- bool ContainsDefault = false;
- MVT DT = MVT::Other;
-
- SmallDenseSet<unsigned, 4> Modes;
- for (const auto &P : VVT) {
- unsigned M = P.first;
- Modes.insert(M);
- // Make sure there exists a set for each specific mode from VVT.
- Changed |= getOrCreate(M).insert(P.second).second;
- // Cache VVT's default mode.
- if (DefaultMode == M) {
- ContainsDefault = true;
- DT = P.second;
- }
- }
-
- // If VVT has a default mode, add the corresponding type to all
- // modes in "this" that do not exist in VVT.
- if (ContainsDefault)
- for (auto &I : *this)
- if (!Modes.count(I.first))
- Changed |= I.second.insert(DT).second;
-
- return Changed;
-}
-
-// Constrain the type set to be the intersection with VTS.
-bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
- bool Changed = false;
- if (hasDefault()) {
- for (const auto &I : VTS) {
- unsigned M = I.first;
- if (M == DefaultMode || hasMode(M))
- continue;
- Map.insert({M, Map.at(DefaultMode)});
- Changed = true;
- }
- }
-
- for (auto &I : *this) {
- unsigned M = I.first;
- SetType &S = I.second;
- if (VTS.hasMode(M) || VTS.hasDefault()) {
- Changed |= intersect(I.second, VTS.get(M));
- } else if (!S.empty()) {
- S.clear();
- Changed = true;
- }
- }
- return Changed;
-}
-
-template <typename Predicate>
-bool TypeSetByHwMode::constrain(Predicate P) {
- bool Changed = false;
- for (auto &I : *this)
- Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
- return Changed;
-}
-
-template <typename Predicate>
-bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
- assert(empty());
- for (const auto &I : VTS) {
- SetType &S = getOrCreate(I.first);
- for (auto J : I.second)
- if (P(J))
- S.insert(J);
- }
- return !empty();
-}
-
-void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
- SmallVector<unsigned, 4> Modes;
- Modes.reserve(Map.size());
-
- for (const auto &I : *this)
- Modes.push_back(I.first);
- if (Modes.empty()) {
- OS << "{}";
- return;
- }
- array_pod_sort(Modes.begin(), Modes.end());
-
- OS << '{';
- for (unsigned M : Modes) {
- OS << ' ' << getModeName(M) << ':';
- writeToStream(get(M), OS);
- }
- OS << " }";
-}
-
-void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
- SmallVector<MVT, 4> Types(S.begin(), S.end());
- array_pod_sort(Types.begin(), Types.end());
-
- OS << '[';
- for (unsigned i = 0, e = Types.size(); i != e; ++i) {
- OS << ValueTypeByHwMode::getMVTName(Types[i]);
- if (i != e-1)
- OS << ' ';
- }
- OS << ']';
-}
-
-bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
- // The isSimple call is much quicker than hasDefault - check this first.
- bool IsSimple = isSimple();
- bool VTSIsSimple = VTS.isSimple();
- if (IsSimple && VTSIsSimple)
- return *begin() == *VTS.begin();
-
- // Speedup: We have a default if the set is simple.
- bool HaveDefault = IsSimple || hasDefault();
- bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
- if (HaveDefault != VTSHaveDefault)
- return false;
-
- SmallDenseSet<unsigned, 4> Modes;
- for (auto &I : *this)
- Modes.insert(I.first);
- for (const auto &I : VTS)
- Modes.insert(I.first);
-
- if (HaveDefault) {
- // Both sets have default mode.
- for (unsigned M : Modes) {
- if (get(M) != VTS.get(M))
- return false;
- }
- } else {
- // Neither set has default mode.
- for (unsigned M : Modes) {
- // If there is no default mode, an empty set is equivalent to not having
- // the corresponding mode.
- bool NoModeThis = !hasMode(M) || get(M).empty();
- bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
- if (NoModeThis != NoModeVTS)
- return false;
- if (!NoModeThis)
- if (get(M) != VTS.get(M))
- return false;
- }
- }
-
- return true;
-}
-
-namespace llvm {
- raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
- T.writeToStream(OS);
- return OS;
- }
-}
-
-LLVM_DUMP_METHOD
-void TypeSetByHwMode::dump() const {
- dbgs() << *this << '\n';
-}
-
-bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
- bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
- auto Int = [&In](MVT T) -> bool { return !In.count(T); };
-
- if (OutP == InP)
- return berase_if(Out, Int);
-
- // Compute the intersection of scalars separately to account for only
- // one set containing iPTR.
- // The intersection of iPTR with a set of integer scalar types that does not
- // include iPTR will result in the most specific scalar type:
- // - iPTR is more specific than any set with two elements or more
- // - iPTR is less specific than any single integer scalar type.
- // For example
- // { iPTR } * { i32 } -> { i32 }
- // { iPTR } * { i32 i64 } -> { iPTR }
- // and
- // { iPTR i32 } * { i32 } -> { i32 }
- // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
- // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
-
- // Compute the difference between the two sets in such a way that the
- // iPTR is in the set that is being subtracted. This is to see if there
- // are any extra scalars in the set without iPTR that are not in the
- // set containing iPTR. Then the iPTR could be considered a "wildcard"
- // matching these scalars. If there is only one such scalar, it would
- // replace the iPTR, if there are more, the iPTR would be retained.
- SetType Diff;
- if (InP) {
- Diff = Out;
- berase_if(Diff, [&In](MVT T) { return In.count(T); });
- // Pre-remove these elements and rely only on InP/OutP to determine
- // whether a change has been made.
- berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
- } else {
- Diff = In;
- berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
- Out.erase(MVT::iPTR);
- }
-
- // The actual intersection.
- bool Changed = berase_if(Out, Int);
- unsigned NumD = Diff.size();
- if (NumD == 0)
- return Changed;
-
- if (NumD == 1) {
- Out.insert(*Diff.begin());
- // This is a change only if Out was the one with iPTR (which is now
- // being replaced).
- Changed |= OutP;
- } else {
- // Multiple elements from Out are now replaced with iPTR.
- Out.insert(MVT::iPTR);
- Changed |= !OutP;
- }
- return Changed;
-}
-
-bool TypeSetByHwMode::validate() const {
-#ifndef NDEBUG
- if (empty())
- return true;
- bool AllEmpty = true;
- for (const auto &I : *this)
- AllEmpty &= I.second.empty();
- return !AllEmpty;
-#endif
- return true;
-}
-
-// --- TypeInfer
-
-bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
- const TypeSetByHwMode &In) {
- ValidateOnExit _1(Out, *this);
- In.validate();
- if (In.empty() || Out == In || TP.hasError())
- return false;
- if (Out.empty()) {
- Out = In;
- return true;
- }
-
- bool Changed = Out.constrain(In);
- if (Changed && Out.empty())
- TP.error("Type contradiction");
-
- return Changed;
-}
-
-bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError())
- return false;
- assert(!Out.empty() && "cannot pick from an empty set");
-
- bool Changed = false;
- for (auto &I : Out) {
- TypeSetByHwMode::SetType &S = I.second;
- if (S.size() <= 1)
- continue;
- MVT T = *S.begin(); // Pick the first element.
- S.clear();
- S.insert(T);
- Changed = true;
- }
- return Changed;
-}
-
-bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError())
- return false;
- if (!Out.empty())
- return Out.constrain(isIntegerOrPtr);
-
- return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
-}
-
-bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError())
- return false;
- if (!Out.empty())
- return Out.constrain(isFloatingPoint);
-
- return Out.assign_if(getLegalTypes(), isFloatingPoint);
-}
-
-bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError())
- return false;
- if (!Out.empty())
- return Out.constrain(isScalar);
-
- return Out.assign_if(getLegalTypes(), isScalar);
-}
-
-bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError())
- return false;
- if (!Out.empty())
- return Out.constrain(isVector);
-
- return Out.assign_if(getLegalTypes(), isVector);
-}
-
-bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
- ValidateOnExit _1(Out, *this);
- if (TP.hasError() || !Out.empty())
- return false;
-
- Out = getLegalTypes();
- return true;
-}
-
-template <typename Iter, typename Pred, typename Less>
-static Iter min_if(Iter B, Iter E, Pred P, Less L) {
- if (B == E)
- return E;
- Iter Min = E;
- for (Iter I = B; I != E; ++I) {
- if (!P(*I))
- continue;
- if (Min == E || L(*I, *Min))
- Min = I;
- }
- return Min;
-}
-
-template <typename Iter, typename Pred, typename Less>
-static Iter max_if(Iter B, Iter E, Pred P, Less L) {
- if (B == E)
- return E;
- Iter Max = E;
- for (Iter I = B; I != E; ++I) {
- if (!P(*I))
- continue;
- if (Max == E || L(*Max, *I))
- Max = I;
- }
- return Max;
-}
-
-/// Make sure that for each type in Small, there exists a larger type in Big.
-bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
- TypeSetByHwMode &Big) {
- ValidateOnExit _1(Small, *this), _2(Big, *this);
- if (TP.hasError())
- return false;
- bool Changed = false;
-
- if (Small.empty())
- Changed |= EnforceAny(Small);
- if (Big.empty())
- Changed |= EnforceAny(Big);
-
- assert(Small.hasDefault() && Big.hasDefault());
-
- std::vector<unsigned> Modes = union_modes(Small, Big);
-
- // 1. Only allow integer or floating point types and make sure that
- // both sides are both integer or both floating point.
- // 2. Make sure that either both sides have vector types, or neither
- // of them does.
- for (unsigned M : Modes) {
- TypeSetByHwMode::SetType &S = Small.get(M);
- TypeSetByHwMode::SetType &B = Big.get(M);
-
- if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
- auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
- Changed |= berase_if(S, NotInt);
- Changed |= berase_if(B, NotInt);
- } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
- auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
- Changed |= berase_if(S, NotFP);
- Changed |= berase_if(B, NotFP);
- } else if (S.empty() || B.empty()) {
- Changed = !S.empty() || !B.empty();
- S.clear();
- B.clear();
- } else {
- TP.error("Incompatible types");
- return Changed;
- }
-
- if (none_of(S, isVector) || none_of(B, isVector)) {
- Changed |= berase_if(S, isVector);
- Changed |= berase_if(B, isVector);
- }
- }
-
- auto LT = [](MVT A, MVT B) -> bool {
- // Always treat non-scalable MVTs as smaller than scalable MVTs for the
- // purposes of ordering.
- auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
+//===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the CodeGenDAGPatterns class, which is used to read and
+// represent the patterns present in a .td file for instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallString.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/StringMap.h"
+#include "llvm/ADT/Twine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/Record.h"
+#include <algorithm>
+#include <cstdio>
+#include <iterator>
+#include <set>
+using namespace llvm;
+
+#define DEBUG_TYPE "dag-patterns"
+
+static inline bool isIntegerOrPtr(MVT VT) {
+ return VT.isInteger() || VT == MVT::iPTR;
+}
+static inline bool isFloatingPoint(MVT VT) {
+ return VT.isFloatingPoint();
+}
+static inline bool isVector(MVT VT) {
+ return VT.isVector();
+}
+static inline bool isScalar(MVT VT) {
+ return !VT.isVector();
+}
+
+template <typename Predicate>
+static bool berase_if(MachineValueTypeSet &S, Predicate P) {
+ bool Erased = false;
+ // It is ok to iterate over MachineValueTypeSet and remove elements from it
+ // at the same time.
+ for (MVT T : S) {
+ if (!P(T))
+ continue;
+ Erased = true;
+ S.erase(T);
+ }
+ return Erased;
+}
+
+// --- TypeSetByHwMode
+
+// This is a parameterized type-set class. For each mode there is a list
+// of types that are currently possible for a given tree node. Type
+// inference will apply to each mode separately.
+
+TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) {
+ for (const ValueTypeByHwMode &VVT : VTList) {
+ insert(VVT);
+ AddrSpaces.push_back(VVT.PtrAddrSpace);
+ }
+}
+
+bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const {
+ for (const auto &I : *this) {
+ if (I.second.size() > 1)
+ return false;
+ if (!AllowEmpty && I.second.empty())
+ return false;
+ }
+ return true;
+}
+
+ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const {
+ assert(isValueTypeByHwMode(true) &&
+ "The type set has multiple types for at least one HW mode");
+ ValueTypeByHwMode VVT;
+ auto ASI = AddrSpaces.begin();
+
+ for (const auto &I : *this) {
+ MVT T = I.second.empty() ? MVT::Other : *I.second.begin();
+ VVT.getOrCreateTypeForMode(I.first, T);
+ if (ASI != AddrSpaces.end())
+ VVT.PtrAddrSpace = *ASI++;
+ }
+ return VVT;
+}
+
+bool TypeSetByHwMode::isPossible() const {
+ for (const auto &I : *this)
+ if (!I.second.empty())
+ return true;
+ return false;
+}
+
+bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) {
+ bool Changed = false;
+ bool ContainsDefault = false;
+ MVT DT = MVT::Other;
+
+ SmallDenseSet<unsigned, 4> Modes;
+ for (const auto &P : VVT) {
+ unsigned M = P.first;
+ Modes.insert(M);
+ // Make sure there exists a set for each specific mode from VVT.
+ Changed |= getOrCreate(M).insert(P.second).second;
+ // Cache VVT's default mode.
+ if (DefaultMode == M) {
+ ContainsDefault = true;
+ DT = P.second;
+ }
+ }
+
+ // If VVT has a default mode, add the corresponding type to all
+ // modes in "this" that do not exist in VVT.
+ if (ContainsDefault)
+ for (auto &I : *this)
+ if (!Modes.count(I.first))
+ Changed |= I.second.insert(DT).second;
+
+ return Changed;
+}
+
+// Constrain the type set to be the intersection with VTS.
+bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) {
+ bool Changed = false;
+ if (hasDefault()) {
+ for (const auto &I : VTS) {
+ unsigned M = I.first;
+ if (M == DefaultMode || hasMode(M))
+ continue;
+ Map.insert({M, Map.at(DefaultMode)});
+ Changed = true;
+ }
+ }
+
+ for (auto &I : *this) {
+ unsigned M = I.first;
+ SetType &S = I.second;
+ if (VTS.hasMode(M) || VTS.hasDefault()) {
+ Changed |= intersect(I.second, VTS.get(M));
+ } else if (!S.empty()) {
+ S.clear();
+ Changed = true;
+ }
+ }
+ return Changed;
+}
+
+template <typename Predicate>
+bool TypeSetByHwMode::constrain(Predicate P) {
+ bool Changed = false;
+ for (auto &I : *this)
+ Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); });
+ return Changed;
+}
+
+template <typename Predicate>
+bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) {
+ assert(empty());
+ for (const auto &I : VTS) {
+ SetType &S = getOrCreate(I.first);
+ for (auto J : I.second)
+ if (P(J))
+ S.insert(J);
+ }
+ return !empty();
+}
+
+void TypeSetByHwMode::writeToStream(raw_ostream &OS) const {
+ SmallVector<unsigned, 4> Modes;
+ Modes.reserve(Map.size());
+
+ for (const auto &I : *this)
+ Modes.push_back(I.first);
+ if (Modes.empty()) {
+ OS << "{}";
+ return;
+ }
+ array_pod_sort(Modes.begin(), Modes.end());
+
+ OS << '{';
+ for (unsigned M : Modes) {
+ OS << ' ' << getModeName(M) << ':';
+ writeToStream(get(M), OS);
+ }
+ OS << " }";
+}
+
+void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) {
+ SmallVector<MVT, 4> Types(S.begin(), S.end());
+ array_pod_sort(Types.begin(), Types.end());
+
+ OS << '[';
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ OS << ValueTypeByHwMode::getMVTName(Types[i]);
+ if (i != e-1)
+ OS << ' ';
+ }
+ OS << ']';
+}
+
+bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const {
+ // The isSimple call is much quicker than hasDefault - check this first.
+ bool IsSimple = isSimple();
+ bool VTSIsSimple = VTS.isSimple();
+ if (IsSimple && VTSIsSimple)
+ return *begin() == *VTS.begin();
+
+ // Speedup: We have a default if the set is simple.
+ bool HaveDefault = IsSimple || hasDefault();
+ bool VTSHaveDefault = VTSIsSimple || VTS.hasDefault();
+ if (HaveDefault != VTSHaveDefault)
+ return false;
+
+ SmallDenseSet<unsigned, 4> Modes;
+ for (auto &I : *this)
+ Modes.insert(I.first);
+ for (const auto &I : VTS)
+ Modes.insert(I.first);
+
+ if (HaveDefault) {
+ // Both sets have default mode.
+ for (unsigned M : Modes) {
+ if (get(M) != VTS.get(M))
+ return false;
+ }
+ } else {
+ // Neither set has default mode.
+ for (unsigned M : Modes) {
+ // If there is no default mode, an empty set is equivalent to not having
+ // the corresponding mode.
+ bool NoModeThis = !hasMode(M) || get(M).empty();
+ bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty();
+ if (NoModeThis != NoModeVTS)
+ return false;
+ if (!NoModeThis)
+ if (get(M) != VTS.get(M))
+ return false;
+ }
+ }
+
+ return true;
+}
+
+namespace llvm {
+ raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) {
+ T.writeToStream(OS);
+ return OS;
+ }
+}
+
+LLVM_DUMP_METHOD
+void TypeSetByHwMode::dump() const {
+ dbgs() << *this << '\n';
+}
+
+bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) {
+ bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR);
+ auto Int = [&In](MVT T) -> bool { return !In.count(T); };
+
+ if (OutP == InP)
+ return berase_if(Out, Int);
+
+ // Compute the intersection of scalars separately to account for only
+ // one set containing iPTR.
+ // The intersection of iPTR with a set of integer scalar types that does not
+ // include iPTR will result in the most specific scalar type:
+ // - iPTR is more specific than any set with two elements or more
+ // - iPTR is less specific than any single integer scalar type.
+ // For example
+ // { iPTR } * { i32 } -> { i32 }
+ // { iPTR } * { i32 i64 } -> { iPTR }
+ // and
+ // { iPTR i32 } * { i32 } -> { i32 }
+ // { iPTR i32 } * { i32 i64 } -> { i32 i64 }
+ // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 }
+
+ // Compute the difference between the two sets in such a way that the
+ // iPTR is in the set that is being subtracted. This is to see if there
+ // are any extra scalars in the set without iPTR that are not in the
+ // set containing iPTR. Then the iPTR could be considered a "wildcard"
+ // matching these scalars. If there is only one such scalar, it would
+ // replace the iPTR, if there are more, the iPTR would be retained.
+ SetType Diff;
+ if (InP) {
+ Diff = Out;
+ berase_if(Diff, [&In](MVT T) { return In.count(T); });
+ // Pre-remove these elements and rely only on InP/OutP to determine
+ // whether a change has been made.
+ berase_if(Out, [&Diff](MVT T) { return Diff.count(T); });
+ } else {
+ Diff = In;
+ berase_if(Diff, [&Out](MVT T) { return Out.count(T); });
+ Out.erase(MVT::iPTR);
+ }
+
+ // The actual intersection.
+ bool Changed = berase_if(Out, Int);
+ unsigned NumD = Diff.size();
+ if (NumD == 0)
+ return Changed;
+
+ if (NumD == 1) {
+ Out.insert(*Diff.begin());
+ // This is a change only if Out was the one with iPTR (which is now
+ // being replaced).
+ Changed |= OutP;
+ } else {
+ // Multiple elements from Out are now replaced with iPTR.
+ Out.insert(MVT::iPTR);
+ Changed |= !OutP;
+ }
+ return Changed;
+}
+
+bool TypeSetByHwMode::validate() const {
+#ifndef NDEBUG
+ if (empty())
+ return true;
+ bool AllEmpty = true;
+ for (const auto &I : *this)
+ AllEmpty &= I.second.empty();
+ return !AllEmpty;
+#endif
+ return true;
+}
+
+// --- TypeInfer
+
+bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out,
+ const TypeSetByHwMode &In) {
+ ValidateOnExit _1(Out, *this);
+ In.validate();
+ if (In.empty() || Out == In || TP.hasError())
+ return false;
+ if (Out.empty()) {
+ Out = In;
+ return true;
+ }
+
+ bool Changed = Out.constrain(In);
+ if (Changed && Out.empty())
+ TP.error("Type contradiction");
+
+ return Changed;
+}
+
+bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError())
+ return false;
+ assert(!Out.empty() && "cannot pick from an empty set");
+
+ bool Changed = false;
+ for (auto &I : Out) {
+ TypeSetByHwMode::SetType &S = I.second;
+ if (S.size() <= 1)
+ continue;
+ MVT T = *S.begin(); // Pick the first element.
+ S.clear();
+ S.insert(T);
+ Changed = true;
+ }
+ return Changed;
+}
+
+bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError())
+ return false;
+ if (!Out.empty())
+ return Out.constrain(isIntegerOrPtr);
+
+ return Out.assign_if(getLegalTypes(), isIntegerOrPtr);
+}
+
+bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError())
+ return false;
+ if (!Out.empty())
+ return Out.constrain(isFloatingPoint);
+
+ return Out.assign_if(getLegalTypes(), isFloatingPoint);
+}
+
+bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError())
+ return false;
+ if (!Out.empty())
+ return Out.constrain(isScalar);
+
+ return Out.assign_if(getLegalTypes(), isScalar);
+}
+
+bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError())
+ return false;
+ if (!Out.empty())
+ return Out.constrain(isVector);
+
+ return Out.assign_if(getLegalTypes(), isVector);
+}
+
+bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) {
+ ValidateOnExit _1(Out, *this);
+ if (TP.hasError() || !Out.empty())
+ return false;
+
+ Out = getLegalTypes();
+ return true;
+}
+
+template <typename Iter, typename Pred, typename Less>
+static Iter min_if(Iter B, Iter E, Pred P, Less L) {
+ if (B == E)
+ return E;
+ Iter Min = E;
+ for (Iter I = B; I != E; ++I) {
+ if (!P(*I))
+ continue;
+ if (Min == E || L(*I, *Min))
+ Min = I;
+ }
+ return Min;
+}
+
+template <typename Iter, typename Pred, typename Less>
+static Iter max_if(Iter B, Iter E, Pred P, Less L) {
+ if (B == E)
+ return E;
+ Iter Max = E;
+ for (Iter I = B; I != E; ++I) {
+ if (!P(*I))
+ continue;
+ if (Max == E || L(*Max, *I))
+ Max = I;
+ }
+ return Max;
+}
+
+/// Make sure that for each type in Small, there exists a larger type in Big.
+bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small,
+ TypeSetByHwMode &Big) {
+ ValidateOnExit _1(Small, *this), _2(Big, *this);
+ if (TP.hasError())
+ return false;
+ bool Changed = false;
+
+ if (Small.empty())
+ Changed |= EnforceAny(Small);
+ if (Big.empty())
+ Changed |= EnforceAny(Big);
+
+ assert(Small.hasDefault() && Big.hasDefault());
+
+ std::vector<unsigned> Modes = union_modes(Small, Big);
+
+ // 1. Only allow integer or floating point types and make sure that
+ // both sides are both integer or both floating point.
+ // 2. Make sure that either both sides have vector types, or neither
+ // of them does.
+ for (unsigned M : Modes) {
+ TypeSetByHwMode::SetType &S = Small.get(M);
+ TypeSetByHwMode::SetType &B = Big.get(M);
+
+ if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) {
+ auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); };
+ Changed |= berase_if(S, NotInt);
+ Changed |= berase_if(B, NotInt);
+ } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) {
+ auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); };
+ Changed |= berase_if(S, NotFP);
+ Changed |= berase_if(B, NotFP);
+ } else if (S.empty() || B.empty()) {
+ Changed = !S.empty() || !B.empty();
+ S.clear();
+ B.clear();
+ } else {
+ TP.error("Incompatible types");
+ return Changed;
+ }
+
+ if (none_of(S, isVector) || none_of(B, isVector)) {
+ Changed |= berase_if(S, isVector);
+ Changed |= berase_if(B, isVector);
+ }
+ }
+
+ auto LT = [](MVT A, MVT B) -> bool {
+ // Always treat non-scalable MVTs as smaller than scalable MVTs for the
+ // purposes of ordering.
+ auto ASize = std::make_tuple(A.isScalableVector(), A.getScalarSizeInBits(),
A.getSizeInBits().getKnownMinSize());
- auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
+ auto BSize = std::make_tuple(B.isScalableVector(), B.getScalarSizeInBits(),
B.getSizeInBits().getKnownMinSize());
- return ASize < BSize;
- };
- auto SameKindLE = [](MVT A, MVT B) -> bool {
- // This function is used when removing elements: when a vector is compared
- // to a non-vector or a scalable vector to any non-scalable MVT, it should
- // return false (to avoid removal).
- if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
- std::make_tuple(B.isVector(), B.isScalableVector()))
- return false;
-
+ return ASize < BSize;
+ };
+ auto SameKindLE = [](MVT A, MVT B) -> bool {
+ // This function is used when removing elements: when a vector is compared
+ // to a non-vector or a scalable vector to any non-scalable MVT, it should
+ // return false (to avoid removal).
+ if (std::make_tuple(A.isVector(), A.isScalableVector()) !=
+ std::make_tuple(B.isVector(), B.isScalableVector()))
+ return false;
+
return std::make_tuple(A.getScalarSizeInBits(),
A.getSizeInBits().getKnownMinSize()) <=
std::make_tuple(B.getScalarSizeInBits(),
B.getSizeInBits().getKnownMinSize());
- };
-
- for (unsigned M : Modes) {
- TypeSetByHwMode::SetType &S = Small.get(M);
- TypeSetByHwMode::SetType &B = Big.get(M);
- // MinS = min scalar in Small, remove all scalars from Big that are
- // smaller-or-equal than MinS.
- auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
- if (MinS != S.end())
- Changed |= berase_if(B, std::bind(SameKindLE,
- std::placeholders::_1, *MinS));
-
- // MaxS = max scalar in Big, remove all scalars from Small that are
- // larger than MaxS.
- auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
- if (MaxS != B.end())
- Changed |= berase_if(S, std::bind(SameKindLE,
- *MaxS, std::placeholders::_1));
-
- // MinV = min vector in Small, remove all vectors from Big that are
- // smaller-or-equal than MinV.
- auto MinV = min_if(S.begin(), S.end(), isVector, LT);
- if (MinV != S.end())
- Changed |= berase_if(B, std::bind(SameKindLE,
- std::placeholders::_1, *MinV));
-
- // MaxV = max vector in Big, remove all vectors from Small that are
- // larger than MaxV.
- auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
- if (MaxV != B.end())
- Changed |= berase_if(S, std::bind(SameKindLE,
- *MaxV, std::placeholders::_1));
- }
-
- return Changed;
-}
-
-/// 1. Ensure that for each type T in Vec, T is a vector type, and that
-/// for each type U in Elem, U is a scalar type.
-/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
-/// type T in Vec, such that U is the element type of T.
-bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
- TypeSetByHwMode &Elem) {
- ValidateOnExit _1(Vec, *this), _2(Elem, *this);
- if (TP.hasError())
- return false;
- bool Changed = false;
-
- if (Vec.empty())
- Changed |= EnforceVector(Vec);
- if (Elem.empty())
- Changed |= EnforceScalar(Elem);
-
- for (unsigned M : union_modes(Vec, Elem)) {
- TypeSetByHwMode::SetType &V = Vec.get(M);
- TypeSetByHwMode::SetType &E = Elem.get(M);
-
- Changed |= berase_if(V, isScalar); // Scalar = !vector
- Changed |= berase_if(E, isVector); // Vector = !scalar
- assert(!V.empty() && !E.empty());
-
- SmallSet<MVT,4> VT, ST;
- // Collect element types from the "vector" set.
- for (MVT T : V)
- VT.insert(T.getVectorElementType());
- // Collect scalar types from the "element" set.
- for (MVT T : E)
- ST.insert(T);
-
- // Remove from V all (vector) types whose element type is not in S.
- Changed |= berase_if(V, [&ST](MVT T) -> bool {
- return !ST.count(T.getVectorElementType());
- });
- // Remove from E all (scalar) types, for which there is no corresponding
- // type in V.
- Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
- }
-
- return Changed;
-}
-
-bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
- const ValueTypeByHwMode &VVT) {
- TypeSetByHwMode Tmp(VVT);
- ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
- return EnforceVectorEltTypeIs(Vec, Tmp);
-}
-
-/// Ensure that for each type T in Sub, T is a vector type, and there
-/// exists a type U in Vec such that U is a vector type with the same
-/// element type as T and at least as many elements as T.
-bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
- TypeSetByHwMode &Sub) {
- ValidateOnExit _1(Vec, *this), _2(Sub, *this);
- if (TP.hasError())
- return false;
-
- /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
- auto IsSubVec = [](MVT B, MVT P) -> bool {
- if (!B.isVector() || !P.isVector())
- return false;
- // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
- // but until there are obvious use-cases for this, keep the
- // types separate.
- if (B.isScalableVector() != P.isScalableVector())
- return false;
- if (B.getVectorElementType() != P.getVectorElementType())
- return false;
- return B.getVectorNumElements() < P.getVectorNumElements();
- };
-
- /// Return true if S has no element (vector type) that T is a sub-vector of,
- /// i.e. has the same element type as T and more elements.
- auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
- for (auto I : S)
- if (IsSubVec(T, I))
- return false;
- return true;
- };
-
- /// Return true if S has no element (vector type) that T is a super-vector
- /// of, i.e. has the same element type as T and fewer elements.
- auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
- for (auto I : S)
- if (IsSubVec(I, T))
- return false;
- return true;
- };
-
- bool Changed = false;
-
- if (Vec.empty())
- Changed |= EnforceVector(Vec);
- if (Sub.empty())
- Changed |= EnforceVector(Sub);
-
- for (unsigned M : union_modes(Vec, Sub)) {
- TypeSetByHwMode::SetType &S = Sub.get(M);
- TypeSetByHwMode::SetType &V = Vec.get(M);
-
- Changed |= berase_if(S, isScalar);
-
- // Erase all types from S that are not sub-vectors of a type in V.
- Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
-
- // Erase all types from V that are not super-vectors of a type in S.
- Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
- }
-
- return Changed;
-}
-
-/// 1. Ensure that V has a scalar type iff W has a scalar type.
-/// 2. Ensure that for each vector type T in V, there exists a vector
-/// type U in W, such that T and U have the same number of elements.
-/// 3. Ensure that for each vector type U in W, there exists a vector
-/// type T in V, such that T and U have the same number of elements
-/// (reverse of 2).
-bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
- ValidateOnExit _1(V, *this), _2(W, *this);
- if (TP.hasError())
- return false;
-
- bool Changed = false;
- if (V.empty())
- Changed |= EnforceAny(V);
- if (W.empty())
- Changed |= EnforceAny(W);
-
- // An actual vector type cannot have 0 elements, so we can treat scalars
- // as zero-length vectors. This way both vectors and scalars can be
- // processed identically.
- auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
- return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
- };
-
- for (unsigned M : union_modes(V, W)) {
- TypeSetByHwMode::SetType &VS = V.get(M);
- TypeSetByHwMode::SetType &WS = W.get(M);
-
- SmallSet<unsigned,2> VN, WN;
- for (MVT T : VS)
- VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
- for (MVT T : WS)
- WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
-
- Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
- Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
- }
- return Changed;
-}
-
-/// 1. Ensure that for each type T in A, there exists a type U in B,
-/// such that T and U have equal size in bits.
-/// 2. Ensure that for each type U in B, there exists a type T in A
-/// such that T and U have equal size in bits (reverse of 1).
-bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
- ValidateOnExit _1(A, *this), _2(B, *this);
- if (TP.hasError())
- return false;
- bool Changed = false;
- if (A.empty())
- Changed |= EnforceAny(A);
- if (B.empty())
- Changed |= EnforceAny(B);
-
+ };
+
+ for (unsigned M : Modes) {
+ TypeSetByHwMode::SetType &S = Small.get(M);
+ TypeSetByHwMode::SetType &B = Big.get(M);
+ // MinS = min scalar in Small, remove all scalars from Big that are
+ // smaller-or-equal than MinS.
+ auto MinS = min_if(S.begin(), S.end(), isScalar, LT);
+ if (MinS != S.end())
+ Changed |= berase_if(B, std::bind(SameKindLE,
+ std::placeholders::_1, *MinS));
+
+ // MaxS = max scalar in Big, remove all scalars from Small that are
+ // larger than MaxS.
+ auto MaxS = max_if(B.begin(), B.end(), isScalar, LT);
+ if (MaxS != B.end())
+ Changed |= berase_if(S, std::bind(SameKindLE,
+ *MaxS, std::placeholders::_1));
+
+ // MinV = min vector in Small, remove all vectors from Big that are
+ // smaller-or-equal than MinV.
+ auto MinV = min_if(S.begin(), S.end(), isVector, LT);
+ if (MinV != S.end())
+ Changed |= berase_if(B, std::bind(SameKindLE,
+ std::placeholders::_1, *MinV));
+
+ // MaxV = max vector in Big, remove all vectors from Small that are
+ // larger than MaxV.
+ auto MaxV = max_if(B.begin(), B.end(), isVector, LT);
+ if (MaxV != B.end())
+ Changed |= berase_if(S, std::bind(SameKindLE,
+ *MaxV, std::placeholders::_1));
+ }
+
+ return Changed;
+}
+
+/// 1. Ensure that for each type T in Vec, T is a vector type, and that
+/// for each type U in Elem, U is a scalar type.
+/// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector)
+/// type T in Vec, such that U is the element type of T.
+bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
+ TypeSetByHwMode &Elem) {
+ ValidateOnExit _1(Vec, *this), _2(Elem, *this);
+ if (TP.hasError())
+ return false;
+ bool Changed = false;
+
+ if (Vec.empty())
+ Changed |= EnforceVector(Vec);
+ if (Elem.empty())
+ Changed |= EnforceScalar(Elem);
+
+ for (unsigned M : union_modes(Vec, Elem)) {
+ TypeSetByHwMode::SetType &V = Vec.get(M);
+ TypeSetByHwMode::SetType &E = Elem.get(M);
+
+ Changed |= berase_if(V, isScalar); // Scalar = !vector
+ Changed |= berase_if(E, isVector); // Vector = !scalar
+ assert(!V.empty() && !E.empty());
+
+ SmallSet<MVT,4> VT, ST;
+ // Collect element types from the "vector" set.
+ for (MVT T : V)
+ VT.insert(T.getVectorElementType());
+ // Collect scalar types from the "element" set.
+ for (MVT T : E)
+ ST.insert(T);
+
+ // Remove from V all (vector) types whose element type is not in S.
+ Changed |= berase_if(V, [&ST](MVT T) -> bool {
+ return !ST.count(T.getVectorElementType());
+ });
+ // Remove from E all (scalar) types, for which there is no corresponding
+ // type in V.
+ Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); });
+ }
+
+ return Changed;
+}
+
+bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec,
+ const ValueTypeByHwMode &VVT) {
+ TypeSetByHwMode Tmp(VVT);
+ ValidateOnExit _1(Vec, *this), _2(Tmp, *this);
+ return EnforceVectorEltTypeIs(Vec, Tmp);
+}
+
+/// Ensure that for each type T in Sub, T is a vector type, and there
+/// exists a type U in Vec such that U is a vector type with the same
+/// element type as T and at least as many elements as T.
+bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec,
+ TypeSetByHwMode &Sub) {
+ ValidateOnExit _1(Vec, *this), _2(Sub, *this);
+ if (TP.hasError())
+ return false;
+
+ /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B.
+ auto IsSubVec = [](MVT B, MVT P) -> bool {
+ if (!B.isVector() || !P.isVector())
+ return false;
+ // Logically a <4 x i32> is a valid subvector of <n x 4 x i32>
+ // but until there are obvious use-cases for this, keep the
+ // types separate.
+ if (B.isScalableVector() != P.isScalableVector())
+ return false;
+ if (B.getVectorElementType() != P.getVectorElementType())
+ return false;
+ return B.getVectorNumElements() < P.getVectorNumElements();
+ };
+
+ /// Return true if S has no element (vector type) that T is a sub-vector of,
+ /// i.e. has the same element type as T and more elements.
+ auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
+ for (auto I : S)
+ if (IsSubVec(T, I))
+ return false;
+ return true;
+ };
+
+ /// Return true if S has no element (vector type) that T is a super-vector
+ /// of, i.e. has the same element type as T and fewer elements.
+ auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool {
+ for (auto I : S)
+ if (IsSubVec(I, T))
+ return false;
+ return true;
+ };
+
+ bool Changed = false;
+
+ if (Vec.empty())
+ Changed |= EnforceVector(Vec);
+ if (Sub.empty())
+ Changed |= EnforceVector(Sub);
+
+ for (unsigned M : union_modes(Vec, Sub)) {
+ TypeSetByHwMode::SetType &S = Sub.get(M);
+ TypeSetByHwMode::SetType &V = Vec.get(M);
+
+ Changed |= berase_if(S, isScalar);
+
+ // Erase all types from S that are not sub-vectors of a type in V.
+ Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1));
+
+ // Erase all types from V that are not super-vectors of a type in S.
+ Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1));
+ }
+
+ return Changed;
+}
+
+/// 1. Ensure that V has a scalar type iff W has a scalar type.
+/// 2. Ensure that for each vector type T in V, there exists a vector
+/// type U in W, such that T and U have the same number of elements.
+/// 3. Ensure that for each vector type U in W, there exists a vector
+/// type T in V, such that T and U have the same number of elements
+/// (reverse of 2).
+bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) {
+ ValidateOnExit _1(V, *this), _2(W, *this);
+ if (TP.hasError())
+ return false;
+
+ bool Changed = false;
+ if (V.empty())
+ Changed |= EnforceAny(V);
+ if (W.empty())
+ Changed |= EnforceAny(W);
+
+ // An actual vector type cannot have 0 elements, so we can treat scalars
+ // as zero-length vectors. This way both vectors and scalars can be
+ // processed identically.
+ auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool {
+ return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0);
+ };
+
+ for (unsigned M : union_modes(V, W)) {
+ TypeSetByHwMode::SetType &VS = V.get(M);
+ TypeSetByHwMode::SetType &WS = W.get(M);
+
+ SmallSet<unsigned,2> VN, WN;
+ for (MVT T : VS)
+ VN.insert(T.isVector() ? T.getVectorNumElements() : 0);
+ for (MVT T : WS)
+ WN.insert(T.isVector() ? T.getVectorNumElements() : 0);
+
+ Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1));
+ Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1));
+ }
+ return Changed;
+}
+
+/// 1. Ensure that for each type T in A, there exists a type U in B,
+/// such that T and U have equal size in bits.
+/// 2. Ensure that for each type U in B, there exists a type T in A
+/// such that T and U have equal size in bits (reverse of 1).
+bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) {
+ ValidateOnExit _1(A, *this), _2(B, *this);
+ if (TP.hasError())
+ return false;
+ bool Changed = false;
+ if (A.empty())
+ Changed |= EnforceAny(A);
+ if (B.empty())
+ Changed |= EnforceAny(B);
+
auto NoSize = [](const SmallSet<TypeSize, 2> &Sizes, MVT T) -> bool {
- return !Sizes.count(T.getSizeInBits());
- };
-
- for (unsigned M : union_modes(A, B)) {
- TypeSetByHwMode::SetType &AS = A.get(M);
- TypeSetByHwMode::SetType &BS = B.get(M);
+ return !Sizes.count(T.getSizeInBits());
+ };
+
+ for (unsigned M : union_modes(A, B)) {
+ TypeSetByHwMode::SetType &AS = A.get(M);
+ TypeSetByHwMode::SetType &BS = B.get(M);
SmallSet<TypeSize, 2> AN, BN;
-
- for (MVT T : AS)
- AN.insert(T.getSizeInBits());
- for (MVT T : BS)
- BN.insert(T.getSizeInBits());
-
- Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
- Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
- }
-
- return Changed;
-}
-
-void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
- ValidateOnExit _1(VTS, *this);
- const TypeSetByHwMode &Legal = getLegalTypes();
- assert(Legal.isDefaultOnly() && "Default-mode only expected");
- const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
-
- for (auto &I : VTS)
- expandOverloads(I.second, LegalTypes);
-}
-
-void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
- const TypeSetByHwMode::SetType &Legal) {
- std::set<MVT> Ovs;
- for (MVT T : Out) {
- if (!T.isOverloaded())
- continue;
-
- Ovs.insert(T);
- // MachineValueTypeSet allows iteration and erasing.
- Out.erase(T);
- }
-
- for (MVT Ov : Ovs) {
- switch (Ov.SimpleTy) {
- case MVT::iPTRAny:
- Out.insert(MVT::iPTR);
- return;
- case MVT::iAny:
- for (MVT T : MVT::integer_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- for (MVT T : MVT::integer_scalable_vector_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- return;
- case MVT::fAny:
- for (MVT T : MVT::fp_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- for (MVT T : MVT::fp_scalable_vector_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- return;
- case MVT::vAny:
- for (MVT T : MVT::vector_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- return;
- case MVT::Any:
- for (MVT T : MVT::all_valuetypes())
- if (Legal.count(T))
- Out.insert(T);
- return;
- default:
- break;
- }
- }
-}
-
-const TypeSetByHwMode &TypeInfer::getLegalTypes() {
- if (!LegalTypesCached) {
- TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
- // Stuff all types from all modes into the default mode.
- const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
- for (const auto &I : LTS)
- LegalTypes.insert(I.second);
- LegalTypesCached = true;
- }
- assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
- return LegalCache;
-}
-
-#ifndef NDEBUG
-TypeInfer::ValidateOnExit::~ValidateOnExit() {
- if (Infer.Validate && !VTS.validate()) {
- dbgs() << "Type set is empty for each HW mode:\n"
- "possible type contradiction in the pattern below "
- "(use -print-records with llvm-tblgen to see all "
- "expanded records).\n";
- Infer.TP.dump();
- llvm_unreachable(nullptr);
- }
-}
-#endif
-
-
-//===----------------------------------------------------------------------===//
-// ScopedName Implementation
-//===----------------------------------------------------------------------===//
-
-bool ScopedName::operator==(const ScopedName &o) const {
- return Scope == o.Scope && Identifier == o.Identifier;
-}
-
-bool ScopedName::operator!=(const ScopedName &o) const {
- return !(*this == o);
-}
-
-
-//===----------------------------------------------------------------------===//
-// TreePredicateFn Implementation
-//===----------------------------------------------------------------------===//
-
-/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
-TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
- assert(
- (!hasPredCode() || !hasImmCode()) &&
- ".td file corrupt: can't have a node predicate *and* an imm predicate");
-}
-
-bool TreePredicateFn::hasPredCode() const {
- return isLoad() || isStore() || isAtomic() ||
- !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
-}
-
-std::string TreePredicateFn::getPredCode() const {
+
+ for (MVT T : AS)
+ AN.insert(T.getSizeInBits());
+ for (MVT T : BS)
+ BN.insert(T.getSizeInBits());
+
+ Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1));
+ Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1));
+ }
+
+ return Changed;
+}
+
+void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) {
+ ValidateOnExit _1(VTS, *this);
+ const TypeSetByHwMode &Legal = getLegalTypes();
+ assert(Legal.isDefaultOnly() && "Default-mode only expected");
+ const TypeSetByHwMode::SetType &LegalTypes = Legal.get(DefaultMode);
+
+ for (auto &I : VTS)
+ expandOverloads(I.second, LegalTypes);
+}
+
+void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out,
+ const TypeSetByHwMode::SetType &Legal) {
+ std::set<MVT> Ovs;
+ for (MVT T : Out) {
+ if (!T.isOverloaded())
+ continue;
+
+ Ovs.insert(T);
+ // MachineValueTypeSet allows iteration and erasing.
+ Out.erase(T);
+ }
+
+ for (MVT Ov : Ovs) {
+ switch (Ov.SimpleTy) {
+ case MVT::iPTRAny:
+ Out.insert(MVT::iPTR);
+ return;
+ case MVT::iAny:
+ for (MVT T : MVT::integer_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ for (MVT T : MVT::integer_fixedlen_vector_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ for (MVT T : MVT::integer_scalable_vector_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ return;
+ case MVT::fAny:
+ for (MVT T : MVT::fp_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ for (MVT T : MVT::fp_fixedlen_vector_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ for (MVT T : MVT::fp_scalable_vector_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ return;
+ case MVT::vAny:
+ for (MVT T : MVT::vector_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ return;
+ case MVT::Any:
+ for (MVT T : MVT::all_valuetypes())
+ if (Legal.count(T))
+ Out.insert(T);
+ return;
+ default:
+ break;
+ }
+ }
+}
+
+const TypeSetByHwMode &TypeInfer::getLegalTypes() {
+ if (!LegalTypesCached) {
+ TypeSetByHwMode::SetType &LegalTypes = LegalCache.getOrCreate(DefaultMode);
+ // Stuff all types from all modes into the default mode.
+ const TypeSetByHwMode &LTS = TP.getDAGPatterns().getLegalTypes();
+ for (const auto &I : LTS)
+ LegalTypes.insert(I.second);
+ LegalTypesCached = true;
+ }
+ assert(LegalCache.isDefaultOnly() && "Default-mode only expected");
+ return LegalCache;
+}
+
+#ifndef NDEBUG
+TypeInfer::ValidateOnExit::~ValidateOnExit() {
+ if (Infer.Validate && !VTS.validate()) {
+ dbgs() << "Type set is empty for each HW mode:\n"
+ "possible type contradiction in the pattern below "
+ "(use -print-records with llvm-tblgen to see all "
+ "expanded records).\n";
+ Infer.TP.dump();
+ llvm_unreachable(nullptr);
+ }
+}
+#endif
+
+
+//===----------------------------------------------------------------------===//
+// ScopedName Implementation
+//===----------------------------------------------------------------------===//
+
+bool ScopedName::operator==(const ScopedName &o) const {
+ return Scope == o.Scope && Identifier == o.Identifier;
+}
+
+bool ScopedName::operator!=(const ScopedName &o) const {
+ return !(*this == o);
+}
+
+
+//===----------------------------------------------------------------------===//
+// TreePredicateFn Implementation
+//===----------------------------------------------------------------------===//
+
+/// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
+TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
+ assert(
+ (!hasPredCode() || !hasImmCode()) &&
+ ".td file corrupt: can't have a node predicate *and* an imm predicate");
+}
+
+bool TreePredicateFn::hasPredCode() const {
+ return isLoad() || isStore() || isAtomic() ||
+ !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty();
+}
+
+std::string TreePredicateFn::getPredCode() const {
std::string Code;
-
- if (!isLoad() && !isStore() && !isAtomic()) {
- Record *MemoryVT = getMemoryVT();
-
- if (MemoryVT)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "MemoryVT requires IsLoad or IsStore");
- }
-
- if (!isLoad() && !isStore()) {
- if (isUnindexed())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsUnindexed requires IsLoad or IsStore");
-
- Record *ScalarMemoryVT = getScalarMemoryVT();
-
- if (ScalarMemoryVT)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "ScalarMemoryVT requires IsLoad or IsStore");
- }
-
- if (isLoad() + isStore() + isAtomic() > 1)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsLoad, IsStore, and IsAtomic are mutually exclusive");
-
- if (isLoad()) {
- if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
- !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
- getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
- getMinAlignment() < 1)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsLoad cannot be used by itself");
- } else {
- if (isNonExtLoad())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonExtLoad requires IsLoad");
- if (isAnyExtLoad())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAnyExtLoad requires IsLoad");
- if (isSignExtLoad())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsSignExtLoad requires IsLoad");
- if (isZeroExtLoad())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsZeroExtLoad requires IsLoad");
- }
-
- if (isStore()) {
- if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
- getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
- getAddressSpaces() == nullptr && getMinAlignment() < 1)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsStore cannot be used by itself");
- } else {
- if (isNonTruncStore())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonTruncStore requires IsStore");
- if (isTruncStore())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsTruncStore requires IsStore");
- }
-
- if (isAtomic()) {
- if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
- getAddressSpaces() == nullptr &&
- !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
- !isAtomicOrderingAcquireRelease() &&
- !isAtomicOrderingSequentiallyConsistent() &&
- !isAtomicOrderingAcquireOrStronger() &&
- !isAtomicOrderingReleaseOrStronger() &&
- !isAtomicOrderingWeakerThanAcquire() &&
- !isAtomicOrderingWeakerThanRelease())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomic cannot be used by itself");
- } else {
- if (isAtomicOrderingMonotonic())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingMonotonic requires IsAtomic");
- if (isAtomicOrderingAcquire())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingAcquire requires IsAtomic");
- if (isAtomicOrderingRelease())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingRelease requires IsAtomic");
- if (isAtomicOrderingAcquireRelease())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingAcquireRelease requires IsAtomic");
- if (isAtomicOrderingSequentiallyConsistent())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
- if (isAtomicOrderingAcquireOrStronger())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
- if (isAtomicOrderingReleaseOrStronger())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
- if (isAtomicOrderingWeakerThanAcquire())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
- }
-
- if (isLoad() || isStore() || isAtomic()) {
- if (ListInit *AddressSpaces = getAddressSpaces()) {
- Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
- " if (";
-
- bool First = true;
- for (Init *Val : AddressSpaces->getValues()) {
- if (First)
- First = false;
- else
- Code += " && ";
-
- IntInit *IntVal = dyn_cast<IntInit>(Val);
- if (!IntVal) {
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "AddressSpaces element must be integer");
- }
-
- Code += "AddrSpace != " + utostr(IntVal->getValue());
- }
-
- Code += ")\nreturn false;\n";
- }
-
- int64_t MinAlign = getMinAlignment();
- if (MinAlign > 0) {
- Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
- Code += utostr(MinAlign);
- Code += "))\nreturn false;\n";
- }
-
- Record *MemoryVT = getMemoryVT();
-
- if (MemoryVT)
- Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
- MemoryVT->getName() + ") return false;\n")
- .str();
- }
-
- if (isAtomic() && isAtomicOrderingMonotonic())
- Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
- "AtomicOrdering::Monotonic) return false;\n";
- if (isAtomic() && isAtomicOrderingAcquire())
- Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
- "AtomicOrdering::Acquire) return false;\n";
- if (isAtomic() && isAtomicOrderingRelease())
- Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
- "AtomicOrdering::Release) return false;\n";
- if (isAtomic() && isAtomicOrderingAcquireRelease())
- Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
- "AtomicOrdering::AcquireRelease) return false;\n";
- if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
- Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
- "AtomicOrdering::SequentiallyConsistent) return false;\n";
-
- if (isAtomic() && isAtomicOrderingAcquireOrStronger())
- Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
- "return false;\n";
- if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
- Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
- "return false;\n";
-
- if (isAtomic() && isAtomicOrderingReleaseOrStronger())
- Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
- "return false;\n";
- if (isAtomic() && isAtomicOrderingWeakerThanRelease())
- Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
- "return false;\n";
-
- if (isLoad() || isStore()) {
- StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
-
- if (isUnindexed())
- Code += ("if (cast<" + SDNodeName +
- ">(N)->getAddressingMode() != ISD::UNINDEXED) "
- "return false;\n")
- .str();
-
- if (isLoad()) {
- if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
- isZeroExtLoad()) > 1)
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
- "IsZeroExtLoad are mutually exclusive");
- if (isNonExtLoad())
- Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
- "ISD::NON_EXTLOAD) return false;\n";
- if (isAnyExtLoad())
- Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
- "return false;\n";
- if (isSignExtLoad())
- Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
- "return false;\n";
- if (isZeroExtLoad())
- Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
- "return false;\n";
- } else {
- if ((isNonTruncStore() + isTruncStore()) > 1)
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonTruncStore, and IsTruncStore are mutually exclusive");
- if (isNonTruncStore())
- Code +=
- " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
- if (isTruncStore())
- Code +=
- " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
- }
-
- Record *ScalarMemoryVT = getScalarMemoryVT();
-
- if (ScalarMemoryVT)
- Code += ("if (cast<" + SDNodeName +
- ">(N)->getMemoryVT().getScalarType() != MVT::" +
- ScalarMemoryVT->getName() + ") return false;\n")
- .str();
- }
-
- std::string PredicateCode =
- std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
-
- Code += PredicateCode;
-
- if (PredicateCode.empty() && !Code.empty())
- Code += "return true;\n";
-
- return Code;
-}
-
-bool TreePredicateFn::hasImmCode() const {
- return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
-}
-
-std::string TreePredicateFn::getImmCode() const {
- return std::string(
- PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
-}
-
-bool TreePredicateFn::immCodeUsesAPInt() const {
- return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
-}
-
-bool TreePredicateFn::immCodeUsesAPFloat() const {
- bool Unset;
- // The return value will be false when IsAPFloat is unset.
- return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
- Unset);
-}
-
-bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
- bool Value) const {
- bool Unset;
- bool Result =
- getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
- if (Unset)
- return false;
- return Result == Value;
-}
-bool TreePredicateFn::usesOperands() const {
- return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
-}
-bool TreePredicateFn::isLoad() const {
- return isPredefinedPredicateEqualTo("IsLoad", true);
-}
-bool TreePredicateFn::isStore() const {
- return isPredefinedPredicateEqualTo("IsStore", true);
-}
-bool TreePredicateFn::isAtomic() const {
- return isPredefinedPredicateEqualTo("IsAtomic", true);
-}
-bool TreePredicateFn::isUnindexed() const {
- return isPredefinedPredicateEqualTo("IsUnindexed", true);
-}
-bool TreePredicateFn::isNonExtLoad() const {
- return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
-}
-bool TreePredicateFn::isAnyExtLoad() const {
- return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
-}
-bool TreePredicateFn::isSignExtLoad() const {
- return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
-}
-bool TreePredicateFn::isZeroExtLoad() const {
- return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
-}
-bool TreePredicateFn::isNonTruncStore() const {
- return isPredefinedPredicateEqualTo("IsTruncStore", false);
-}
-bool TreePredicateFn::isTruncStore() const {
- return isPredefinedPredicateEqualTo("IsTruncStore", true);
-}
-bool TreePredicateFn::isAtomicOrderingMonotonic() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
-}
-bool TreePredicateFn::isAtomicOrderingAcquire() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
-}
-bool TreePredicateFn::isAtomicOrderingRelease() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
-}
-bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
-}
-bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
- true);
-}
-bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
-}
-bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
-}
-bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
-}
-bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
- return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
-}
-Record *TreePredicateFn::getMemoryVT() const {
- Record *R = getOrigPatFragRecord()->getRecord();
- if (R->isValueUnset("MemoryVT"))
- return nullptr;
- return R->getValueAsDef("MemoryVT");
-}
-
-ListInit *TreePredicateFn::getAddressSpaces() const {
- Record *R = getOrigPatFragRecord()->getRecord();
- if (R->isValueUnset("AddressSpaces"))
- return nullptr;
- return R->getValueAsListInit("AddressSpaces");
-}
-
-int64_t TreePredicateFn::getMinAlignment() const {
- Record *R = getOrigPatFragRecord()->getRecord();
- if (R->isValueUnset("MinAlignment"))
- return 0;
- return R->getValueAsInt("MinAlignment");
-}
-
-Record *TreePredicateFn::getScalarMemoryVT() const {
- Record *R = getOrigPatFragRecord()->getRecord();
- if (R->isValueUnset("ScalarMemoryVT"))
- return nullptr;
- return R->getValueAsDef("ScalarMemoryVT");
-}
-bool TreePredicateFn::hasGISelPredicateCode() const {
- return !PatFragRec->getRecord()
- ->getValueAsString("GISelPredicateCode")
- .empty();
-}
-std::string TreePredicateFn::getGISelPredicateCode() const {
- return std::string(
- PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
-}
-
-StringRef TreePredicateFn::getImmType() const {
- if (immCodeUsesAPInt())
- return "const APInt &";
- if (immCodeUsesAPFloat())
- return "const APFloat &";
- return "int64_t";
-}
-
-StringRef TreePredicateFn::getImmTypeIdentifier() const {
- if (immCodeUsesAPInt())
- return "APInt";
- else if (immCodeUsesAPFloat())
- return "APFloat";
- return "I64";
-}
-
-/// isAlwaysTrue - Return true if this is a noop predicate.
-bool TreePredicateFn::isAlwaysTrue() const {
- return !hasPredCode() && !hasImmCode();
-}
-
-/// Return the name to use in the generated code to reference this, this is
-/// "Predicate_foo" if from a pattern fragment "foo".
-std::string TreePredicateFn::getFnName() const {
- return "Predicate_" + PatFragRec->getRecord()->getName().str();
-}
-
-/// getCodeToRunOnSDNode - Return the code for the function body that
-/// evaluates this predicate. The argument is expected to be in "Node",
-/// not N. This handles casting and conversion to a concrete node type as
-/// appropriate.
-std::string TreePredicateFn::getCodeToRunOnSDNode() const {
- // Handle immediate predicates first.
- std::string ImmCode = getImmCode();
- if (!ImmCode.empty()) {
- if (isLoad())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsLoad cannot be used with ImmLeaf or its subclasses");
- if (isStore())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsStore cannot be used with ImmLeaf or its subclasses");
- if (isUnindexed())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsUnindexed cannot be used with ImmLeaf or its subclasses");
- if (isNonExtLoad())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
- if (isAnyExtLoad())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
- if (isSignExtLoad())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
- if (isZeroExtLoad())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
- if (isNonTruncStore())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
- if (isTruncStore())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "IsTruncStore cannot be used with ImmLeaf or its subclasses");
- if (getMemoryVT())
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "MemoryVT cannot be used with ImmLeaf or its subclasses");
- if (getScalarMemoryVT())
- PrintFatalError(
- getOrigPatFragRecord()->getRecord()->getLoc(),
- "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
-
- std::string Result = (" " + getImmType() + " Imm = ").str();
- if (immCodeUsesAPFloat())
- Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
- else if (immCodeUsesAPInt())
- Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
- else
- Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
- return Result + ImmCode;
- }
-
- // Handle arbitrary node predicates.
- assert(hasPredCode() && "Don't have any predicate code!");
-
- // If this is using PatFrags, there are multiple trees to search. They should
- // all have the same class. FIXME: Is there a way to find a common
- // superclass?
- StringRef ClassName;
- for (const auto &Tree : PatFragRec->getTrees()) {
- StringRef TreeClassName;
- if (Tree->isLeaf())
- TreeClassName = "SDNode";
- else {
- Record *Op = Tree->getOperator();
- const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
- TreeClassName = Info.getSDClassName();
- }
-
- if (ClassName.empty())
- ClassName = TreeClassName;
- else if (ClassName != TreeClassName) {
- PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
- "PatFrags trees do not have consistent class");
- }
- }
-
- std::string Result;
- if (ClassName == "SDNode")
- Result = " SDNode *N = Node;\n";
- else
- Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
-
- return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
-}
-
-//===----------------------------------------------------------------------===//
-// PatternToMatch implementation
-//
-
-static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
- if (!P->isLeaf())
- return false;
- DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
- if (!DI)
- return false;
-
- Record *R = DI->getDef();
- return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
-}
-
-/// getPatternSize - Return the 'size' of this pattern. We want to match large
-/// patterns before small ones. This is used to determine the size of a
-/// pattern.
-static unsigned getPatternSize(const TreePatternNode *P,
- const CodeGenDAGPatterns &CGP) {
- unsigned Size = 3; // The node itself.
- // If the root node is a ConstantSDNode, increases its size.
- // e.g. (set R32:$dst, 0).
- if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
- Size += 2;
-
- if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
- Size += AM->getComplexity();
- // We don't want to count any children twice, so return early.
- return Size;
- }
-
- // If this node has some predicate function that must match, it adds to the
- // complexity of this node.
- if (!P->getPredicateCalls().empty())
- ++Size;
-
- // Count children in the count if they are also nodes.
- for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
- const TreePatternNode *Child = P->getChild(i);
- if (!Child->isLeaf() && Child->getNumTypes()) {
- const TypeSetByHwMode &T0 = Child->getExtType(0);
- // At this point, all variable type sets should be simple, i.e. only
- // have a default mode.
- if (T0.getMachineValueType() != MVT::Other) {
- Size += getPatternSize(Child, CGP);
- continue;
- }
- }
- if (Child->isLeaf()) {
- if (isa<IntInit>(Child->getLeafValue()))
- Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
- else if (Child->getComplexPatternInfo(CGP))
- Size += getPatternSize(Child, CGP);
- else if (isImmAllOnesAllZerosMatch(Child))
- Size += 4; // Matches a build_vector(+3) and a predicate (+1).
- else if (!Child->getPredicateCalls().empty())
- ++Size;
- }
- }
-
- return Size;
-}
-
-/// Compute the complexity metric for the input pattern. This roughly
-/// corresponds to the number of nodes that are covered.
-int PatternToMatch::
-getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
- return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
-}
-
-/// getPredicateCheck - Return a single string containing all of this
-/// pattern's predicates concatenated with "&&" operators.
-///
-std::string PatternToMatch::getPredicateCheck() const {
- SmallVector<const Predicate*,4> PredList;
- for (const Predicate &P : Predicates) {
- if (!P.getCondString().empty())
- PredList.push_back(&P);
- }
- llvm::sort(PredList, deref<std::less<>>());
-
- std::string Check;
- for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
- if (i != 0)
- Check += " && ";
- Check += '(' + PredList[i]->getCondString() + ')';
- }
- return Check;
-}
-
-//===----------------------------------------------------------------------===//
-// SDTypeConstraint implementation
-//
-
-SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
- OperandNo = R->getValueAsInt("OperandNum");
-
- if (R->isSubClassOf("SDTCisVT")) {
- ConstraintType = SDTCisVT;
- VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
- for (const auto &P : VVT)
- if (P.second == MVT::isVoid)
- PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
- } else if (R->isSubClassOf("SDTCisPtrTy")) {
- ConstraintType = SDTCisPtrTy;
- } else if (R->isSubClassOf("SDTCisInt")) {
- ConstraintType = SDTCisInt;
- } else if (R->isSubClassOf("SDTCisFP")) {
- ConstraintType = SDTCisFP;
- } else if (R->isSubClassOf("SDTCisVec")) {
- ConstraintType = SDTCisVec;
- } else if (R->isSubClassOf("SDTCisSameAs")) {
- ConstraintType = SDTCisSameAs;
- x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
- ConstraintType = SDTCisVTSmallerThanOp;
- x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
- ConstraintType = SDTCisOpSmallerThanOp;
- x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
- R->getValueAsInt("BigOperandNum");
- } else if (R->isSubClassOf("SDTCisEltOfVec")) {
- ConstraintType = SDTCisEltOfVec;
- x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
- } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
- ConstraintType = SDTCisSubVecOfVec;
- x.SDTCisSubVecOfVec_Info.OtherOperandNum =
- R->getValueAsInt("OtherOpNum");
- } else if (R->isSubClassOf("SDTCVecEltisVT")) {
- ConstraintType = SDTCVecEltisVT;
- VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
- for (const auto &P : VVT) {
- MVT T = P.second;
- if (T.isVector())
- PrintFatalError(R->getLoc(),
- "Cannot use vector type as SDTCVecEltisVT");
- if (!T.isInteger() && !T.isFloatingPoint())
- PrintFatalError(R->getLoc(), "Must use integer or floating point type "
- "as SDTCVecEltisVT");
- }
- } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
- ConstraintType = SDTCisSameNumEltsAs;
- x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
- ConstraintType = SDTCisSameSizeAs;
- x.SDTCisSameSizeAs_Info.OtherOperandNum =
- R->getValueAsInt("OtherOperandNum");
- } else {
- PrintFatalError(R->getLoc(),
- "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
- }
-}
-
-/// getOperandNum - Return the node corresponding to operand #OpNo in tree
-/// N, and the result number in ResNo.
-static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- unsigned &ResNo) {
- unsigned NumResults = NodeInfo.getNumResults();
- if (OpNo < NumResults) {
- ResNo = OpNo;
- return N;
- }
-
- OpNo -= NumResults;
-
- if (OpNo >= N->getNumChildren()) {
- std::string S;
- raw_string_ostream OS(S);
- OS << "Invalid operand number in type constraint "
- << (OpNo+NumResults) << " ";
- N->print(OS);
- PrintFatalError(OS.str());
- }
-
- return N->getChild(OpNo);
-}
-
-/// ApplyTypeConstraint - Given a node in a pattern, apply this type
-/// constraint to the nodes operands. This returns true if it makes a
-/// change, false otherwise. If a type contradiction is found, flag an error.
-bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
- const SDNodeInfo &NodeInfo,
- TreePattern &TP) const {
- if (TP.hasError())
- return false;
-
- unsigned ResNo = 0; // The result number being referenced.
- TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
- TypeInfer &TI = TP.getInfer();
-
- switch (ConstraintType) {
- case SDTCisVT:
- // Operand must be a particular type.
- return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
- case SDTCisPtrTy:
- // Operand must be same as target pointer type.
- return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
- case SDTCisInt:
- // Require it to be one of the legal integer VTs.
- return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
- case SDTCisFP:
- // Require it to be one of the legal fp VTs.
- return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
- case SDTCisVec:
- // Require it to be one of the legal vector VTs.
- return TI.EnforceVector(NodeToApply->getExtType(ResNo));
- case SDTCisSameAs: {
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
- return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
- OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
- }
- case SDTCisVTSmallerThanOp: {
- // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
- // have an integer type that is smaller than the VT.
- if (!NodeToApply->isLeaf() ||
- !isa<DefInit>(NodeToApply->getLeafValue()) ||
- !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
- ->isSubClassOf("ValueType")) {
- TP.error(N->getOperator()->getName() + " expects a VT operand!");
- return false;
- }
- DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
- TypeSetByHwMode TypeListTmp(VVT);
-
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
- OResNo);
-
- return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
- }
- case SDTCisOpSmallerThanOp: {
- unsigned BResNo = 0;
- TreePatternNode *BigOperand =
- getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
- BResNo);
- return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
- BigOperand->getExtType(BResNo));
- }
- case SDTCisEltOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *VecOperand =
- getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
- // Filter vector types out of VecOperand that don't have the right element
- // type.
- return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
- NodeToApply->getExtType(ResNo));
- }
- case SDTCisSubVecOfVec: {
- unsigned VResNo = 0;
- TreePatternNode *BigVecOperand =
- getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
- VResNo);
-
- // Filter vector types out of BigVecOperand that don't have the
- // right subvector type.
- return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
- NodeToApply->getExtType(ResNo));
- }
- case SDTCVecEltisVT: {
- return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
- }
- case SDTCisSameNumEltsAs: {
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
- N, NodeInfo, OResNo);
- return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
- NodeToApply->getExtType(ResNo));
- }
- case SDTCisSameSizeAs: {
- unsigned OResNo = 0;
- TreePatternNode *OtherNode =
- getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
- N, NodeInfo, OResNo);
- return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
- NodeToApply->getExtType(ResNo));
- }
- }
- llvm_unreachable("Invalid ConstraintType!");
-}
-
-// Update the node type to match an instruction operand or result as specified
-// in the ins or outs lists on the instruction definition. Return true if the
-// type was actually changed.
-bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
- Record *Operand,
- TreePattern &TP) {
- // The 'unknown' operand indicates that types should be inferred from the
- // context.
- if (Operand->isSubClassOf("unknown_class"))
- return false;
-
- // The Operand class specifies a type directly.
- if (Operand->isSubClassOf("Operand")) {
- Record *R = Operand->getValueAsDef("Type");
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
- }
-
- // PointerLikeRegClass has a type that is determined at runtime.
- if (Operand->isSubClassOf("PointerLikeRegClass"))
- return UpdateNodeType(ResNo, MVT::iPTR, TP);
-
- // Both RegisterClass and RegisterOperand operands derive their types from a
- // register class def.
- Record *RC = nullptr;
- if (Operand->isSubClassOf("RegisterClass"))
- RC = Operand;
- else if (Operand->isSubClassOf("RegisterOperand"))
- RC = Operand->getValueAsDef("RegClass");
-
- assert(RC && "Unknown operand type");
- CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
- return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
-}
-
-bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- if (!TP.getInfer().isConcrete(Types[i], true))
- return true;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (getChild(i)->ContainsUnresolvedType(TP))
- return true;
- return false;
-}
-
-bool TreePatternNode::hasProperTypeByHwMode() const {
- for (const TypeSetByHwMode &S : Types)
- if (!S.isDefaultOnly())
- return true;
- for (const TreePatternNodePtr &C : Children)
- if (C->hasProperTypeByHwMode())
- return true;
- return false;
-}
-
-bool TreePatternNode::hasPossibleType() const {
- for (const TypeSetByHwMode &S : Types)
- if (!S.isPossible())
- return false;
- for (const TreePatternNodePtr &C : Children)
- if (!C->hasPossibleType())
- return false;
- return true;
-}
-
-bool TreePatternNode::setDefaultMode(unsigned Mode) {
- for (TypeSetByHwMode &S : Types) {
- S.makeSimple(Mode);
- // Check if the selected mode had a type conflict.
- if (S.get(DefaultMode).empty())
- return false;
- }
- for (const TreePatternNodePtr &C : Children)
- if (!C->setDefaultMode(Mode))
- return false;
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// SDNodeInfo implementation
-//
-SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
- EnumName = R->getValueAsString("Opcode");
- SDClassName = R->getValueAsString("SDClass");
- Record *TypeProfile = R->getValueAsDef("TypeProfile");
- NumResults = TypeProfile->getValueAsInt("NumResults");
- NumOperands = TypeProfile->getValueAsInt("NumOperands");
-
- // Parse the properties.
- Properties = parseSDPatternOperatorProperties(R);
-
- // Parse the type constraints.
- std::vector<Record*> ConstraintList =
- TypeProfile->getValueAsListOfDefs("Constraints");
- for (Record *R : ConstraintList)
- TypeConstraints.emplace_back(R, CGH);
-}
-
-/// getKnownType - If the type constraints on this node imply a fixed type
-/// (e.g. all stores return void, etc), then return it as an
-/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
-MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
- unsigned NumResults = getNumResults();
- assert(NumResults <= 1 &&
- "We only work with nodes with zero or one result so far!");
- assert(ResNo == 0 && "Only handles single result nodes so far");
-
- for (const SDTypeConstraint &Constraint : TypeConstraints) {
- // Make sure that this applies to the correct node result.
- if (Constraint.OperandNo >= NumResults) // FIXME: need value #
- continue;
-
- switch (Constraint.ConstraintType) {
- default: break;
- case SDTypeConstraint::SDTCisVT:
- if (Constraint.VVT.isSimple())
- return Constraint.VVT.getSimple().SimpleTy;
- break;
- case SDTypeConstraint::SDTCisPtrTy:
- return MVT::iPTR;
- }
- }
- return MVT::Other;
-}
-
-//===----------------------------------------------------------------------===//
-// TreePatternNode implementation
-//
-
-static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
- if (Operator->getName() == "set" ||
- Operator->getName() == "implicit")
- return 0; // All return nothing.
-
- if (Operator->isSubClassOf("Intrinsic"))
- return CDP.getIntrinsic(Operator).IS.RetVTs.size();
-
- if (Operator->isSubClassOf("SDNode"))
- return CDP.getSDNodeInfo(Operator).getNumResults();
-
- if (Operator->isSubClassOf("PatFrags")) {
- // If we've already parsed this pattern fragment, get it. Otherwise, handle
- // the forward reference case where one pattern fragment references another
- // before it is processed.
- if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
- // The number of results of a fragment with alternative records is the
- // maximum number of results across all alternatives.
- unsigned NumResults = 0;
- for (auto T : PFRec->getTrees())
- NumResults = std::max(NumResults, T->getNumTypes());
- return NumResults;
- }
-
- ListInit *LI = Operator->getValueAsListInit("Fragments");
- assert(LI && "Invalid Fragment");
- unsigned NumResults = 0;
- for (Init *I : LI->getValues()) {
- Record *Op = nullptr;
- if (DagInit *Dag = dyn_cast<DagInit>(I))
- if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
- Op = DI->getDef();
- assert(Op && "Invalid Fragment");
- NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
- }
- return NumResults;
- }
-
- if (Operator->isSubClassOf("Instruction")) {
- CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
-
- unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
-
- // Subtract any defaulted outputs.
- for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
- Record *OperandNode = InstInfo.Operands[i].Rec;
-
- if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
- !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
- --NumDefsToAdd;
- }
-
- // Add on one implicit def if it has a resolvable type.
- if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
- ++NumDefsToAdd;
- return NumDefsToAdd;
- }
-
- if (Operator->isSubClassOf("SDNodeXForm"))
- return 1; // FIXME: Generalize SDNodeXForm
-
- if (Operator->isSubClassOf("ValueType"))
- return 1; // A type-cast of one result.
-
- if (Operator->isSubClassOf("ComplexPattern"))
- return 1;
-
- errs() << *Operator;
- PrintFatalError("Unhandled node in GetNumNodeResults");
-}
-
-void TreePatternNode::print(raw_ostream &OS) const {
- if (isLeaf())
- OS << *getLeafValue();
- else
- OS << '(' << getOperator()->getName();
-
- for (unsigned i = 0, e = Types.size(); i != e; ++i) {
- OS << ':';
- getExtType(i).writeToStream(OS);
- }
-
- if (!isLeaf()) {
- if (getNumChildren() != 0) {
- OS << " ";
- getChild(0)->print(OS);
- for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
- OS << ", ";
- getChild(i)->print(OS);
- }
- }
- OS << ")";
- }
-
- for (const TreePredicateCall &Pred : PredicateCalls) {
- OS << "<<P:";
- if (Pred.Scope)
- OS << Pred.Scope << ":";
- OS << Pred.Fn.getFnName() << ">>";
- }
- if (TransformFn)
- OS << "<<X:" << TransformFn->getName() << ">>";
- if (!getName().empty())
- OS << ":$" << getName();
-
- for (const ScopedName &Name : NamesAsPredicateArg)
- OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
-}
-void TreePatternNode::dump() const {
- print(errs());
-}
-
-/// isIsomorphicTo - Return true if this node is recursively
-/// isomorphic to the specified node. For this comparison, the node's
-/// entire state is considered. The assigned name is ignored, since
-/// nodes with differing names are considered isomorphic. However, if
-/// the assigned name is present in the dependent variable set, then
-/// the assigned name is considered significant and the node is
-/// isomorphic if the names match.
-bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
- const MultipleUseVarSet &DepVars) const {
- if (N == this) return true;
- if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
- getPredicateCalls() != N->getPredicateCalls() ||
- getTransformFn() != N->getTransformFn())
- return false;
-
- if (isLeaf()) {
- if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
- if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
- return ((DI->getDef() == NDI->getDef())
- && (DepVars.find(getName()) == DepVars.end()
- || getName() == N->getName()));
- }
- }
- return getLeafValue() == N->getLeafValue();
- }
-
- if (N->getOperator() != getOperator() ||
- N->getNumChildren() != getNumChildren()) return false;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
- return false;
- return true;
-}
-
-/// clone - Make a copy of this tree and all of its children.
-///
-TreePatternNodePtr TreePatternNode::clone() const {
- TreePatternNodePtr New;
- if (isLeaf()) {
- New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
- } else {
- std::vector<TreePatternNodePtr> CChildren;
- CChildren.reserve(Children.size());
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- CChildren.push_back(getChild(i)->clone());
- New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
- getNumTypes());
- }
- New->setName(getName());
- New->setNamesAsPredicateArg(getNamesAsPredicateArg());
- New->Types = Types;
- New->setPredicateCalls(getPredicateCalls());
- New->setTransformFn(getTransformFn());
- return New;
-}
-
-/// RemoveAllTypes - Recursively strip all the types of this tree.
-void TreePatternNode::RemoveAllTypes() {
- // Reset to unknown type.
- std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
- if (isLeaf()) return;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- getChild(i)->RemoveAllTypes();
-}
-
-
-/// SubstituteFormalArguments - Replace the formal arguments in this tree
-/// with actual values specified by ArgMap.
-void TreePatternNode::SubstituteFormalArguments(
- std::map<std::string, TreePatternNodePtr> &ArgMap) {
- if (isLeaf()) return;
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = getChild(i);
- if (Child->isLeaf()) {
- Init *Val = Child->getLeafValue();
- // Note that, when substituting into an output pattern, Val might be an
- // UnsetInit.
- if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
- cast<DefInit>(Val)->getDef()->getName() == "node")) {
- // We found a use of a formal argument, replace it with its value.
- TreePatternNodePtr NewChild = ArgMap[Child->getName()];
- assert(NewChild && "Couldn't find formal argument!");
- assert((Child->getPredicateCalls().empty() ||
- NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
- "Non-empty child predicate clobbered!");
- setChild(i, std::move(NewChild));
- }
- } else {
- getChild(i)->SubstituteFormalArguments(ArgMap);
- }
- }
-}
-
-
-/// InlinePatternFragments - If this pattern refers to any pattern
-/// fragments, return the set of inlined versions (this can be more than
-/// one if a PatFrags record has multiple alternatives).
-void TreePatternNode::InlinePatternFragments(
- TreePatternNodePtr T, TreePattern &TP,
- std::vector<TreePatternNodePtr> &OutAlternatives) {
-
- if (TP.hasError())
- return;
-
- if (isLeaf()) {
- OutAlternatives.push_back(T); // nothing to do.
- return;
- }
-
- Record *Op = getOperator();
-
- if (!Op->isSubClassOf("PatFrags")) {
- if (getNumChildren() == 0) {
- OutAlternatives.push_back(T);
- return;
- }
-
- // Recursively inline children nodes.
- std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
- ChildAlternatives.resize(getNumChildren());
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
- TreePatternNodePtr Child = getChildShared(i);
- Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
- // If there are no alternatives for any child, there are no
- // alternatives for this expression as whole.
- if (ChildAlternatives[i].empty())
- return;
-
- for (auto NewChild : ChildAlternatives[i])
- assert((Child->getPredicateCalls().empty() ||
- NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
- "Non-empty child predicate clobbered!");
- }
-
- // The end result is an all-pairs construction of the resultant pattern.
- std::vector<unsigned> Idxs;
- Idxs.resize(ChildAlternatives.size());
- bool NotDone;
- do {
- // Create the variant and add it to the output list.
- std::vector<TreePatternNodePtr> NewChildren;
- for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
- NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
- TreePatternNodePtr R = std::make_shared<TreePatternNode>(
- getOperator(), std::move(NewChildren), getNumTypes());
-
- // Copy over properties.
- R->setName(getName());
- R->setNamesAsPredicateArg(getNamesAsPredicateArg());
- R->setPredicateCalls(getPredicateCalls());
- R->setTransformFn(getTransformFn());
- for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
- R->setType(i, getExtType(i));
- for (unsigned i = 0, e = getNumResults(); i != e; ++i)
- R->setResultIndex(i, getResultIndex(i));
-
- // Register alternative.
- OutAlternatives.push_back(R);
-
- // Increment indices to the next permutation by incrementing the
- // indices from last index backward, e.g., generate the sequence
- // [0, 0], [0, 1], [1, 0], [1, 1].
- int IdxsIdx;
- for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
- if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
- Idxs[IdxsIdx] = 0;
- else
- break;
- }
- NotDone = (IdxsIdx >= 0);
- } while (NotDone);
-
- return;
- }
-
- // Otherwise, we found a reference to a fragment. First, look up its
- // TreePattern record.
- TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
-
- // Verify that we are passing the right number of operands.
- if (Frag->getNumArgs() != Children.size()) {
- TP.error("'" + Op->getName() + "' fragment requires " +
- Twine(Frag->getNumArgs()) + " operands!");
- return;
- }
-
- TreePredicateFn PredFn(Frag);
- unsigned Scope = 0;
- if (TreePredicateFn(Frag).usesOperands())
- Scope = TP.getDAGPatterns().allocateScope();
-
- // Compute the map of formal to actual arguments.
- std::map<std::string, TreePatternNodePtr> ArgMap;
- for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
- TreePatternNodePtr Child = getChildShared(i);
- if (Scope != 0) {
- Child = Child->clone();
- Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
- }
- ArgMap[Frag->getArgName(i)] = Child;
- }
-
- // Loop over all fragment alternatives.
- for (auto Alternative : Frag->getTrees()) {
- TreePatternNodePtr FragTree = Alternative->clone();
-
- if (!PredFn.isAlwaysTrue())
- FragTree->addPredicateCall(PredFn, Scope);
-
- // Resolve formal arguments to their actual value.
- if (Frag->getNumArgs())
- FragTree->SubstituteFormalArguments(ArgMap);
-
- // Transfer types. Note that the resolved alternative may have fewer
- // (but not more) results than the PatFrags node.
- FragTree->setName(getName());
- for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
- FragTree->UpdateNodeType(i, getExtType(i), TP);
-
- // Transfer in the old predicates.
- for (const TreePredicateCall &Pred : getPredicateCalls())
- FragTree->addPredicateCall(Pred);
-
- // The fragment we inlined could have recursive inlining that is needed. See
- // if there are any pattern fragments in it and inline them as needed.
- FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
- }
-}
-
-/// getImplicitType - Check to see if the specified record has an implicit
-/// type which should be applied to it. This will infer the type of register
-/// references from the register file information, for example.
-///
-/// When Unnamed is set, return the type of a DAG operand with no name, such as
-/// the F8RC register class argument in:
-///
-/// (COPY_TO_REGCLASS GPR:$src, F8RC)
-///
-/// When Unnamed is false, return the type of a named DAG operand such as the
-/// GPR:$src operand above.
-///
-static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
- bool NotRegisters,
- bool Unnamed,
- TreePattern &TP) {
- CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
-
- // Check to see if this is a register operand.
- if (R->isSubClassOf("RegisterOperand")) {
- assert(ResNo == 0 && "Regoperand ref only has one result!");
- if (NotRegisters)
- return TypeSetByHwMode(); // Unknown.
- Record *RegClass = R->getValueAsDef("RegClass");
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
- }
-
- // Check to see if this is a register or a register class.
- if (R->isSubClassOf("RegisterClass")) {
- assert(ResNo == 0 && "Regclass ref only has one result!");
- // An unnamed register class represents itself as an i32 immediate, for
- // example on a COPY_TO_REGCLASS instruction.
- if (Unnamed)
- return TypeSetByHwMode(MVT::i32);
-
- // In a named operand, the register class provides the possible set of
- // types.
- if (NotRegisters)
- return TypeSetByHwMode(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
- }
-
- if (R->isSubClassOf("PatFrags")) {
- assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
- // Pattern fragment types will be resolved when they are inlined.
- return TypeSetByHwMode(); // Unknown.
- }
-
- if (R->isSubClassOf("Register")) {
- assert(ResNo == 0 && "Registers only produce one result!");
- if (NotRegisters)
- return TypeSetByHwMode(); // Unknown.
- const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
- return TypeSetByHwMode(T.getRegisterVTs(R));
- }
-
- if (R->isSubClassOf("SubRegIndex")) {
- assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
- return TypeSetByHwMode(MVT::i32);
- }
-
- if (R->isSubClassOf("ValueType")) {
- assert(ResNo == 0 && "This node only has one result!");
- // An unnamed VTSDNode represents itself as an MVT::Other immediate.
- //
- // (sext_inreg GPR:$src, i16)
- // ~~~
- if (Unnamed)
- return TypeSetByHwMode(MVT::Other);
- // With a name, the ValueType simply provides the type of the named
- // variable.
- //
- // (sext_inreg i32:$src, i16)
- // ~~~~~~~~
- if (NotRegisters)
- return TypeSetByHwMode(); // Unknown.
- const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
- return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
- }
-
- if (R->isSubClassOf("CondCode")) {
- assert(ResNo == 0 && "This node only has one result!");
- // Using a CondCodeSDNode.
- return TypeSetByHwMode(MVT::Other);
- }
-
- if (R->isSubClassOf("ComplexPattern")) {
- assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
- if (NotRegisters)
- return TypeSetByHwMode(); // Unknown.
- return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
- }
- if (R->isSubClassOf("PointerLikeRegClass")) {
- assert(ResNo == 0 && "Regclass can only have one result!");
- TypeSetByHwMode VTS(MVT::iPTR);
- TP.getInfer().expandOverloads(VTS);
- return VTS;
- }
-
- if (R->getName() == "node" || R->getName() == "srcvalue" ||
- R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
- R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
- // Placeholder.
- return TypeSetByHwMode(); // Unknown.
- }
-
- if (R->isSubClassOf("Operand")) {
- const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
- Record *T = R->getValueAsDef("Type");
- return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
- }
-
- TP.error("Unknown node flavor used in pattern: " + R->getName());
- return TypeSetByHwMode(MVT::Other);
-}
-
-
-/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
-/// CodeGenIntrinsic information for it, otherwise return a null pointer.
-const CodeGenIntrinsic *TreePatternNode::
-getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
- if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
- getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
- getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
- return nullptr;
-
- unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
- return &CDP.getIntrinsicInfo(IID);
-}
-
-/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
-/// return the ComplexPattern information, otherwise return null.
-const ComplexPattern *
-TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
- Record *Rec;
- if (isLeaf()) {
- DefInit *DI = dyn_cast<DefInit>(getLeafValue());
- if (!DI)
- return nullptr;
- Rec = DI->getDef();
- } else
- Rec = getOperator();
-
- if (!Rec->isSubClassOf("ComplexPattern"))
- return nullptr;
- return &CGP.getComplexPattern(Rec);
-}
-
-unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
- // A ComplexPattern specifically declares how many results it fills in.
- if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
- return CP->getNumOperands();
-
- // If MIOperandInfo is specified, that gives the count.
- if (isLeaf()) {
- DefInit *DI = dyn_cast<DefInit>(getLeafValue());
- if (DI && DI->getDef()->isSubClassOf("Operand")) {
- DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
- if (MIOps->getNumArgs())
- return MIOps->getNumArgs();
- }
- }
-
- // Otherwise there is just one result.
- return 1;
-}
-
-/// NodeHasProperty - Return true if this node has the specified property.
-bool TreePatternNode::NodeHasProperty(SDNP Property,
- const CodeGenDAGPatterns &CGP) const {
- if (isLeaf()) {
- if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
- return CP->hasProperty(Property);
-
- return false;
- }
-
- if (Property != SDNPHasChain) {
- // The chain proprety is already present on the different intrinsic node
- // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
- // on the intrinsic. Anything else is specific to the individual intrinsic.
- if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
- return Int->hasProperty(Property);
- }
-
- if (!Operator->isSubClassOf("SDPatternOperator"))
- return false;
-
- return CGP.getSDNodeInfo(Operator).hasProperty(Property);
-}
-
-
-
-
-/// TreeHasProperty - Return true if any node in this tree has the specified
-/// property.
-bool TreePatternNode::TreeHasProperty(SDNP Property,
- const CodeGenDAGPatterns &CGP) const {
- if (NodeHasProperty(Property, CGP))
- return true;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (getChild(i)->TreeHasProperty(Property, CGP))
- return true;
- return false;
-}
-
-/// isCommutativeIntrinsic - Return true if the node corresponds to a
-/// commutative intrinsic.
-bool
-TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
- if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
- return Int->isCommutative;
- return false;
-}
-
-static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
- if (!N->isLeaf())
- return N->getOperator()->isSubClassOf(Class);
-
- DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
- if (DI && DI->getDef()->isSubClassOf(Class))
- return true;
-
- return false;
-}
-
-static void emitTooManyOperandsError(TreePattern &TP,
- StringRef InstName,
- unsigned Expected,
- unsigned Actual) {
- TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
- " operands but expected only " + Twine(Expected) + "!");
-}
-
-static void emitTooFewOperandsError(TreePattern &TP,
- StringRef InstName,
- unsigned Actual) {
- TP.error("Instruction '" + InstName +
- "' expects more than the provided " + Twine(Actual) + " operands!");
-}
-
-/// ApplyTypeConstraints - Apply all of the type constraints relevant to
-/// this node and its children in the tree. This returns true if it makes a
-/// change, false otherwise. If a type contradiction is found, flag an error.
-bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
- if (TP.hasError())
- return false;
-
- CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
- if (isLeaf()) {
- if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
- // If it's a regclass or something else known, include the type.
- bool MadeChange = false;
- for (unsigned i = 0, e = Types.size(); i != e; ++i)
- MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
- NotRegisters,
- !hasName(), TP), TP);
- return MadeChange;
- }
-
- if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
- assert(Types.size() == 1 && "Invalid IntInit");
-
- // Int inits are always integers. :)
- bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
-
- if (!TP.getInfer().isConcrete(Types[0], false))
- return MadeChange;
-
- ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
- for (auto &P : VVT) {
- MVT::SimpleValueType VT = P.second.SimpleTy;
- if (VT == MVT::iPTR || VT == MVT::iPTRAny)
- continue;
+
+ if (!isLoad() && !isStore() && !isAtomic()) {
+ Record *MemoryVT = getMemoryVT();
+
+ if (MemoryVT)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "MemoryVT requires IsLoad or IsStore");
+ }
+
+ if (!isLoad() && !isStore()) {
+ if (isUnindexed())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsUnindexed requires IsLoad or IsStore");
+
+ Record *ScalarMemoryVT = getScalarMemoryVT();
+
+ if (ScalarMemoryVT)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "ScalarMemoryVT requires IsLoad or IsStore");
+ }
+
+ if (isLoad() + isStore() + isAtomic() > 1)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsLoad, IsStore, and IsAtomic are mutually exclusive");
+
+ if (isLoad()) {
+ if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() &&
+ !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr &&
+ getScalarMemoryVT() == nullptr && getAddressSpaces() == nullptr &&
+ getMinAlignment() < 1)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsLoad cannot be used by itself");
+ } else {
+ if (isNonExtLoad())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonExtLoad requires IsLoad");
+ if (isAnyExtLoad())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAnyExtLoad requires IsLoad");
+ if (isSignExtLoad())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsSignExtLoad requires IsLoad");
+ if (isZeroExtLoad())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsZeroExtLoad requires IsLoad");
+ }
+
+ if (isStore()) {
+ if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() &&
+ getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr &&
+ getAddressSpaces() == nullptr && getMinAlignment() < 1)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsStore cannot be used by itself");
+ } else {
+ if (isNonTruncStore())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonTruncStore requires IsStore");
+ if (isTruncStore())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsTruncStore requires IsStore");
+ }
+
+ if (isAtomic()) {
+ if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() &&
+ getAddressSpaces() == nullptr &&
+ !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() &&
+ !isAtomicOrderingAcquireRelease() &&
+ !isAtomicOrderingSequentiallyConsistent() &&
+ !isAtomicOrderingAcquireOrStronger() &&
+ !isAtomicOrderingReleaseOrStronger() &&
+ !isAtomicOrderingWeakerThanAcquire() &&
+ !isAtomicOrderingWeakerThanRelease())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomic cannot be used by itself");
+ } else {
+ if (isAtomicOrderingMonotonic())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingMonotonic requires IsAtomic");
+ if (isAtomicOrderingAcquire())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingAcquire requires IsAtomic");
+ if (isAtomicOrderingRelease())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingRelease requires IsAtomic");
+ if (isAtomicOrderingAcquireRelease())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingAcquireRelease requires IsAtomic");
+ if (isAtomicOrderingSequentiallyConsistent())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingSequentiallyConsistent requires IsAtomic");
+ if (isAtomicOrderingAcquireOrStronger())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingAcquireOrStronger requires IsAtomic");
+ if (isAtomicOrderingReleaseOrStronger())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingReleaseOrStronger requires IsAtomic");
+ if (isAtomicOrderingWeakerThanAcquire())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAtomicOrderingWeakerThanAcquire requires IsAtomic");
+ }
+
+ if (isLoad() || isStore() || isAtomic()) {
+ if (ListInit *AddressSpaces = getAddressSpaces()) {
+ Code += "unsigned AddrSpace = cast<MemSDNode>(N)->getAddressSpace();\n"
+ " if (";
+
+ bool First = true;
+ for (Init *Val : AddressSpaces->getValues()) {
+ if (First)
+ First = false;
+ else
+ Code += " && ";
+
+ IntInit *IntVal = dyn_cast<IntInit>(Val);
+ if (!IntVal) {
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "AddressSpaces element must be integer");
+ }
+
+ Code += "AddrSpace != " + utostr(IntVal->getValue());
+ }
+
+ Code += ")\nreturn false;\n";
+ }
+
+ int64_t MinAlign = getMinAlignment();
+ if (MinAlign > 0) {
+ Code += "if (cast<MemSDNode>(N)->getAlign() < Align(";
+ Code += utostr(MinAlign);
+ Code += "))\nreturn false;\n";
+ }
+
+ Record *MemoryVT = getMemoryVT();
+
+ if (MemoryVT)
+ Code += ("if (cast<MemSDNode>(N)->getMemoryVT() != MVT::" +
+ MemoryVT->getName() + ") return false;\n")
+ .str();
+ }
+
+ if (isAtomic() && isAtomicOrderingMonotonic())
+ Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
+ "AtomicOrdering::Monotonic) return false;\n";
+ if (isAtomic() && isAtomicOrderingAcquire())
+ Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
+ "AtomicOrdering::Acquire) return false;\n";
+ if (isAtomic() && isAtomicOrderingRelease())
+ Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
+ "AtomicOrdering::Release) return false;\n";
+ if (isAtomic() && isAtomicOrderingAcquireRelease())
+ Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
+ "AtomicOrdering::AcquireRelease) return false;\n";
+ if (isAtomic() && isAtomicOrderingSequentiallyConsistent())
+ Code += "if (cast<AtomicSDNode>(N)->getOrdering() != "
+ "AtomicOrdering::SequentiallyConsistent) return false;\n";
+
+ if (isAtomic() && isAtomicOrderingAcquireOrStronger())
+ Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
+ "return false;\n";
+ if (isAtomic() && isAtomicOrderingWeakerThanAcquire())
+ Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
+ "return false;\n";
+
+ if (isAtomic() && isAtomicOrderingReleaseOrStronger())
+ Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
+ "return false;\n";
+ if (isAtomic() && isAtomicOrderingWeakerThanRelease())
+ Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) "
+ "return false;\n";
+
+ if (isLoad() || isStore()) {
+ StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode";
+
+ if (isUnindexed())
+ Code += ("if (cast<" + SDNodeName +
+ ">(N)->getAddressingMode() != ISD::UNINDEXED) "
+ "return false;\n")
+ .str();
+
+ if (isLoad()) {
+ if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() +
+ isZeroExtLoad()) > 1)
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and "
+ "IsZeroExtLoad are mutually exclusive");
+ if (isNonExtLoad())
+ Code += "if (cast<LoadSDNode>(N)->getExtensionType() != "
+ "ISD::NON_EXTLOAD) return false;\n";
+ if (isAnyExtLoad())
+ Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) "
+ "return false;\n";
+ if (isSignExtLoad())
+ Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) "
+ "return false;\n";
+ if (isZeroExtLoad())
+ Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) "
+ "return false;\n";
+ } else {
+ if ((isNonTruncStore() + isTruncStore()) > 1)
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonTruncStore, and IsTruncStore are mutually exclusive");
+ if (isNonTruncStore())
+ Code +=
+ " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
+ if (isTruncStore())
+ Code +=
+ " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n";
+ }
+
+ Record *ScalarMemoryVT = getScalarMemoryVT();
+
+ if (ScalarMemoryVT)
+ Code += ("if (cast<" + SDNodeName +
+ ">(N)->getMemoryVT().getScalarType() != MVT::" +
+ ScalarMemoryVT->getName() + ") return false;\n")
+ .str();
+ }
+
+ std::string PredicateCode =
+ std::string(PatFragRec->getRecord()->getValueAsString("PredicateCode"));
+
+ Code += PredicateCode;
+
+ if (PredicateCode.empty() && !Code.empty())
+ Code += "return true;\n";
+
+ return Code;
+}
+
+bool TreePredicateFn::hasImmCode() const {
+ return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty();
+}
+
+std::string TreePredicateFn::getImmCode() const {
+ return std::string(
+ PatFragRec->getRecord()->getValueAsString("ImmediateCode"));
+}
+
+bool TreePredicateFn::immCodeUsesAPInt() const {
+ return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt");
+}
+
+bool TreePredicateFn::immCodeUsesAPFloat() const {
+ bool Unset;
+ // The return value will be false when IsAPFloat is unset.
+ return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat",
+ Unset);
+}
+
+bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field,
+ bool Value) const {
+ bool Unset;
+ bool Result =
+ getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset);
+ if (Unset)
+ return false;
+ return Result == Value;
+}
+bool TreePredicateFn::usesOperands() const {
+ return isPredefinedPredicateEqualTo("PredicateCodeUsesOperands", true);
+}
+bool TreePredicateFn::isLoad() const {
+ return isPredefinedPredicateEqualTo("IsLoad", true);
+}
+bool TreePredicateFn::isStore() const {
+ return isPredefinedPredicateEqualTo("IsStore", true);
+}
+bool TreePredicateFn::isAtomic() const {
+ return isPredefinedPredicateEqualTo("IsAtomic", true);
+}
+bool TreePredicateFn::isUnindexed() const {
+ return isPredefinedPredicateEqualTo("IsUnindexed", true);
+}
+bool TreePredicateFn::isNonExtLoad() const {
+ return isPredefinedPredicateEqualTo("IsNonExtLoad", true);
+}
+bool TreePredicateFn::isAnyExtLoad() const {
+ return isPredefinedPredicateEqualTo("IsAnyExtLoad", true);
+}
+bool TreePredicateFn::isSignExtLoad() const {
+ return isPredefinedPredicateEqualTo("IsSignExtLoad", true);
+}
+bool TreePredicateFn::isZeroExtLoad() const {
+ return isPredefinedPredicateEqualTo("IsZeroExtLoad", true);
+}
+bool TreePredicateFn::isNonTruncStore() const {
+ return isPredefinedPredicateEqualTo("IsTruncStore", false);
+}
+bool TreePredicateFn::isTruncStore() const {
+ return isPredefinedPredicateEqualTo("IsTruncStore", true);
+}
+bool TreePredicateFn::isAtomicOrderingMonotonic() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true);
+}
+bool TreePredicateFn::isAtomicOrderingAcquire() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true);
+}
+bool TreePredicateFn::isAtomicOrderingRelease() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true);
+}
+bool TreePredicateFn::isAtomicOrderingAcquireRelease() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true);
+}
+bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent",
+ true);
+}
+bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true);
+}
+bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false);
+}
+bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true);
+}
+bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const {
+ return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false);
+}
+Record *TreePredicateFn::getMemoryVT() const {
+ Record *R = getOrigPatFragRecord()->getRecord();
+ if (R->isValueUnset("MemoryVT"))
+ return nullptr;
+ return R->getValueAsDef("MemoryVT");
+}
+
+ListInit *TreePredicateFn::getAddressSpaces() const {
+ Record *R = getOrigPatFragRecord()->getRecord();
+ if (R->isValueUnset("AddressSpaces"))
+ return nullptr;
+ return R->getValueAsListInit("AddressSpaces");
+}
+
+int64_t TreePredicateFn::getMinAlignment() const {
+ Record *R = getOrigPatFragRecord()->getRecord();
+ if (R->isValueUnset("MinAlignment"))
+ return 0;
+ return R->getValueAsInt("MinAlignment");
+}
+
+Record *TreePredicateFn::getScalarMemoryVT() const {
+ Record *R = getOrigPatFragRecord()->getRecord();
+ if (R->isValueUnset("ScalarMemoryVT"))
+ return nullptr;
+ return R->getValueAsDef("ScalarMemoryVT");
+}
+bool TreePredicateFn::hasGISelPredicateCode() const {
+ return !PatFragRec->getRecord()
+ ->getValueAsString("GISelPredicateCode")
+ .empty();
+}
+std::string TreePredicateFn::getGISelPredicateCode() const {
+ return std::string(
+ PatFragRec->getRecord()->getValueAsString("GISelPredicateCode"));
+}
+
+StringRef TreePredicateFn::getImmType() const {
+ if (immCodeUsesAPInt())
+ return "const APInt &";
+ if (immCodeUsesAPFloat())
+ return "const APFloat &";
+ return "int64_t";
+}
+
+StringRef TreePredicateFn::getImmTypeIdentifier() const {
+ if (immCodeUsesAPInt())
+ return "APInt";
+ else if (immCodeUsesAPFloat())
+ return "APFloat";
+ return "I64";
+}
+
+/// isAlwaysTrue - Return true if this is a noop predicate.
+bool TreePredicateFn::isAlwaysTrue() const {
+ return !hasPredCode() && !hasImmCode();
+}
+
+/// Return the name to use in the generated code to reference this, this is
+/// "Predicate_foo" if from a pattern fragment "foo".
+std::string TreePredicateFn::getFnName() const {
+ return "Predicate_" + PatFragRec->getRecord()->getName().str();
+}
+
+/// getCodeToRunOnSDNode - Return the code for the function body that
+/// evaluates this predicate. The argument is expected to be in "Node",
+/// not N. This handles casting and conversion to a concrete node type as
+/// appropriate.
+std::string TreePredicateFn::getCodeToRunOnSDNode() const {
+ // Handle immediate predicates first.
+ std::string ImmCode = getImmCode();
+ if (!ImmCode.empty()) {
+ if (isLoad())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsLoad cannot be used with ImmLeaf or its subclasses");
+ if (isStore())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsStore cannot be used with ImmLeaf or its subclasses");
+ if (isUnindexed())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsUnindexed cannot be used with ImmLeaf or its subclasses");
+ if (isNonExtLoad())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonExtLoad cannot be used with ImmLeaf or its subclasses");
+ if (isAnyExtLoad())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses");
+ if (isSignExtLoad())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsSignExtLoad cannot be used with ImmLeaf or its subclasses");
+ if (isZeroExtLoad())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses");
+ if (isNonTruncStore())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsNonTruncStore cannot be used with ImmLeaf or its subclasses");
+ if (isTruncStore())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "IsTruncStore cannot be used with ImmLeaf or its subclasses");
+ if (getMemoryVT())
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "MemoryVT cannot be used with ImmLeaf or its subclasses");
+ if (getScalarMemoryVT())
+ PrintFatalError(
+ getOrigPatFragRecord()->getRecord()->getLoc(),
+ "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses");
+
+ std::string Result = (" " + getImmType() + " Imm = ").str();
+ if (immCodeUsesAPFloat())
+ Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n";
+ else if (immCodeUsesAPInt())
+ Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n";
+ else
+ Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n";
+ return Result + ImmCode;
+ }
+
+ // Handle arbitrary node predicates.
+ assert(hasPredCode() && "Don't have any predicate code!");
+
+ // If this is using PatFrags, there are multiple trees to search. They should
+ // all have the same class. FIXME: Is there a way to find a common
+ // superclass?
+ StringRef ClassName;
+ for (const auto &Tree : PatFragRec->getTrees()) {
+ StringRef TreeClassName;
+ if (Tree->isLeaf())
+ TreeClassName = "SDNode";
+ else {
+ Record *Op = Tree->getOperator();
+ const SDNodeInfo &Info = PatFragRec->getDAGPatterns().getSDNodeInfo(Op);
+ TreeClassName = Info.getSDClassName();
+ }
+
+ if (ClassName.empty())
+ ClassName = TreeClassName;
+ else if (ClassName != TreeClassName) {
+ PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(),
+ "PatFrags trees do not have consistent class");
+ }
+ }
+
+ std::string Result;
+ if (ClassName == "SDNode")
+ Result = " SDNode *N = Node;\n";
+ else
+ Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n";
+
+ return (Twine(Result) + " (void)N;\n" + getPredCode()).str();
+}
+
+//===----------------------------------------------------------------------===//
+// PatternToMatch implementation
+//
+
+static bool isImmAllOnesAllZerosMatch(const TreePatternNode *P) {
+ if (!P->isLeaf())
+ return false;
+ DefInit *DI = dyn_cast<DefInit>(P->getLeafValue());
+ if (!DI)
+ return false;
+
+ Record *R = DI->getDef();
+ return R->getName() == "immAllOnesV" || R->getName() == "immAllZerosV";
+}
+
+/// getPatternSize - Return the 'size' of this pattern. We want to match large
+/// patterns before small ones. This is used to determine the size of a
+/// pattern.
+static unsigned getPatternSize(const TreePatternNode *P,
+ const CodeGenDAGPatterns &CGP) {
+ unsigned Size = 3; // The node itself.
+ // If the root node is a ConstantSDNode, increases its size.
+ // e.g. (set R32:$dst, 0).
+ if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
+ Size += 2;
+
+ if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) {
+ Size += AM->getComplexity();
+ // We don't want to count any children twice, so return early.
+ return Size;
+ }
+
+ // If this node has some predicate function that must match, it adds to the
+ // complexity of this node.
+ if (!P->getPredicateCalls().empty())
+ ++Size;
+
+ // Count children in the count if they are also nodes.
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
+ const TreePatternNode *Child = P->getChild(i);
+ if (!Child->isLeaf() && Child->getNumTypes()) {
+ const TypeSetByHwMode &T0 = Child->getExtType(0);
+ // At this point, all variable type sets should be simple, i.e. only
+ // have a default mode.
+ if (T0.getMachineValueType() != MVT::Other) {
+ Size += getPatternSize(Child, CGP);
+ continue;
+ }
+ }
+ if (Child->isLeaf()) {
+ if (isa<IntInit>(Child->getLeafValue()))
+ Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
+ else if (Child->getComplexPatternInfo(CGP))
+ Size += getPatternSize(Child, CGP);
+ else if (isImmAllOnesAllZerosMatch(Child))
+ Size += 4; // Matches a build_vector(+3) and a predicate (+1).
+ else if (!Child->getPredicateCalls().empty())
+ ++Size;
+ }
+ }
+
+ return Size;
+}
+
+/// Compute the complexity metric for the input pattern. This roughly
+/// corresponds to the number of nodes that are covered.
+int PatternToMatch::
+getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
+ return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
+}
+
+/// getPredicateCheck - Return a single string containing all of this
+/// pattern's predicates concatenated with "&&" operators.
+///
+std::string PatternToMatch::getPredicateCheck() const {
+ SmallVector<const Predicate*,4> PredList;
+ for (const Predicate &P : Predicates) {
+ if (!P.getCondString().empty())
+ PredList.push_back(&P);
+ }
+ llvm::sort(PredList, deref<std::less<>>());
+
+ std::string Check;
+ for (unsigned i = 0, e = PredList.size(); i != e; ++i) {
+ if (i != 0)
+ Check += " && ";
+ Check += '(' + PredList[i]->getCondString() + ')';
+ }
+ return Check;
+}
+
+//===----------------------------------------------------------------------===//
+// SDTypeConstraint implementation
+//
+
+SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) {
+ OperandNo = R->getValueAsInt("OperandNum");
+
+ if (R->isSubClassOf("SDTCisVT")) {
+ ConstraintType = SDTCisVT;
+ VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
+ for (const auto &P : VVT)
+ if (P.second == MVT::isVoid)
+ PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
+ } else if (R->isSubClassOf("SDTCisPtrTy")) {
+ ConstraintType = SDTCisPtrTy;
+ } else if (R->isSubClassOf("SDTCisInt")) {
+ ConstraintType = SDTCisInt;
+ } else if (R->isSubClassOf("SDTCisFP")) {
+ ConstraintType = SDTCisFP;
+ } else if (R->isSubClassOf("SDTCisVec")) {
+ ConstraintType = SDTCisVec;
+ } else if (R->isSubClassOf("SDTCisSameAs")) {
+ ConstraintType = SDTCisSameAs;
+ x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
+ ConstraintType = SDTCisVTSmallerThanOp;
+ x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
+ ConstraintType = SDTCisOpSmallerThanOp;
+ x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
+ R->getValueAsInt("BigOperandNum");
+ } else if (R->isSubClassOf("SDTCisEltOfVec")) {
+ ConstraintType = SDTCisEltOfVec;
+ x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
+ } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
+ ConstraintType = SDTCisSubVecOfVec;
+ x.SDTCisSubVecOfVec_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOpNum");
+ } else if (R->isSubClassOf("SDTCVecEltisVT")) {
+ ConstraintType = SDTCVecEltisVT;
+ VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH);
+ for (const auto &P : VVT) {
+ MVT T = P.second;
+ if (T.isVector())
+ PrintFatalError(R->getLoc(),
+ "Cannot use vector type as SDTCVecEltisVT");
+ if (!T.isInteger() && !T.isFloatingPoint())
+ PrintFatalError(R->getLoc(), "Must use integer or floating point type "
+ "as SDTCVecEltisVT");
+ }
+ } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
+ ConstraintType = SDTCisSameNumEltsAs;
+ x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
+ ConstraintType = SDTCisSameSizeAs;
+ x.SDTCisSameSizeAs_Info.OtherOperandNum =
+ R->getValueAsInt("OtherOperandNum");
+ } else {
+ PrintFatalError(R->getLoc(),
+ "Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
+ }
+}
+
+/// getOperandNum - Return the node corresponding to operand #OpNo in tree
+/// N, and the result number in ResNo.
+static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ unsigned &ResNo) {
+ unsigned NumResults = NodeInfo.getNumResults();
+ if (OpNo < NumResults) {
+ ResNo = OpNo;
+ return N;
+ }
+
+ OpNo -= NumResults;
+
+ if (OpNo >= N->getNumChildren()) {
+ std::string S;
+ raw_string_ostream OS(S);
+ OS << "Invalid operand number in type constraint "
+ << (OpNo+NumResults) << " ";
+ N->print(OS);
+ PrintFatalError(OS.str());
+ }
+
+ return N->getChild(OpNo);
+}
+
+/// ApplyTypeConstraint - Given a node in a pattern, apply this type
+/// constraint to the nodes operands. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, flag an error.
+bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
+ const SDNodeInfo &NodeInfo,
+ TreePattern &TP) const {
+ if (TP.hasError())
+ return false;
+
+ unsigned ResNo = 0; // The result number being referenced.
+ TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
+ TypeInfer &TI = TP.getInfer();
+
+ switch (ConstraintType) {
+ case SDTCisVT:
+ // Operand must be a particular type.
+ return NodeToApply->UpdateNodeType(ResNo, VVT, TP);
+ case SDTCisPtrTy:
+ // Operand must be same as target pointer type.
+ return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
+ case SDTCisInt:
+ // Require it to be one of the legal integer VTs.
+ return TI.EnforceInteger(NodeToApply->getExtType(ResNo));
+ case SDTCisFP:
+ // Require it to be one of the legal fp VTs.
+ return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo));
+ case SDTCisVec:
+ // Require it to be one of the legal vector VTs.
+ return TI.EnforceVector(NodeToApply->getExtType(ResNo));
+ case SDTCisSameAs: {
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
+ return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
+ OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
+ }
+ case SDTCisVTSmallerThanOp: {
+ // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
+ // have an integer type that is smaller than the VT.
+ if (!NodeToApply->isLeaf() ||
+ !isa<DefInit>(NodeToApply->getLeafValue()) ||
+ !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
+ ->isSubClassOf("ValueType")) {
+ TP.error(N->getOperator()->getName() + " expects a VT operand!");
+ return false;
+ }
+ DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue());
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes());
+ TypeSetByHwMode TypeListTmp(VVT);
+
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
+ OResNo);
+
+ return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo));
+ }
+ case SDTCisOpSmallerThanOp: {
+ unsigned BResNo = 0;
+ TreePatternNode *BigOperand =
+ getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
+ BResNo);
+ return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo),
+ BigOperand->getExtType(BResNo));
+ }
+ case SDTCisEltOfVec: {
+ unsigned VResNo = 0;
+ TreePatternNode *VecOperand =
+ getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
+ VResNo);
+ // Filter vector types out of VecOperand that don't have the right element
+ // type.
+ return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo),
+ NodeToApply->getExtType(ResNo));
+ }
+ case SDTCisSubVecOfVec: {
+ unsigned VResNo = 0;
+ TreePatternNode *BigVecOperand =
+ getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
+ VResNo);
+
+ // Filter vector types out of BigVecOperand that don't have the
+ // right subvector type.
+ return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo),
+ NodeToApply->getExtType(ResNo));
+ }
+ case SDTCVecEltisVT: {
+ return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT);
+ }
+ case SDTCisSameNumEltsAs: {
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
+ N, NodeInfo, OResNo);
+ return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo),
+ NodeToApply->getExtType(ResNo));
+ }
+ case SDTCisSameSizeAs: {
+ unsigned OResNo = 0;
+ TreePatternNode *OtherNode =
+ getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
+ N, NodeInfo, OResNo);
+ return TI.EnforceSameSize(OtherNode->getExtType(OResNo),
+ NodeToApply->getExtType(ResNo));
+ }
+ }
+ llvm_unreachable("Invalid ConstraintType!");
+}
+
+// Update the node type to match an instruction operand or result as specified
+// in the ins or outs lists on the instruction definition. Return true if the
+// type was actually changed.
+bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
+ Record *Operand,
+ TreePattern &TP) {
+ // The 'unknown' operand indicates that types should be inferred from the
+ // context.
+ if (Operand->isSubClassOf("unknown_class"))
+ return false;
+
+ // The Operand class specifies a type directly.
+ if (Operand->isSubClassOf("Operand")) {
+ Record *R = Operand->getValueAsDef("Type");
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP);
+ }
+
+ // PointerLikeRegClass has a type that is determined at runtime.
+ if (Operand->isSubClassOf("PointerLikeRegClass"))
+ return UpdateNodeType(ResNo, MVT::iPTR, TP);
+
+ // Both RegisterClass and RegisterOperand operands derive their types from a
+ // register class def.
+ Record *RC = nullptr;
+ if (Operand->isSubClassOf("RegisterClass"))
+ RC = Operand;
+ else if (Operand->isSubClassOf("RegisterOperand"))
+ RC = Operand->getValueAsDef("RegClass");
+
+ assert(RC && "Unknown operand type");
+ CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
+ return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
+}
+
+bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const {
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ if (!TP.getInfer().isConcrete(Types[i], true))
+ return true;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (getChild(i)->ContainsUnresolvedType(TP))
+ return true;
+ return false;
+}
+
+bool TreePatternNode::hasProperTypeByHwMode() const {
+ for (const TypeSetByHwMode &S : Types)
+ if (!S.isDefaultOnly())
+ return true;
+ for (const TreePatternNodePtr &C : Children)
+ if (C->hasProperTypeByHwMode())
+ return true;
+ return false;
+}
+
+bool TreePatternNode::hasPossibleType() const {
+ for (const TypeSetByHwMode &S : Types)
+ if (!S.isPossible())
+ return false;
+ for (const TreePatternNodePtr &C : Children)
+ if (!C->hasPossibleType())
+ return false;
+ return true;
+}
+
+bool TreePatternNode::setDefaultMode(unsigned Mode) {
+ for (TypeSetByHwMode &S : Types) {
+ S.makeSimple(Mode);
+ // Check if the selected mode had a type conflict.
+ if (S.get(DefaultMode).empty())
+ return false;
+ }
+ for (const TreePatternNodePtr &C : Children)
+ if (!C->setDefaultMode(Mode))
+ return false;
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// SDNodeInfo implementation
+//
+SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) {
+ EnumName = R->getValueAsString("Opcode");
+ SDClassName = R->getValueAsString("SDClass");
+ Record *TypeProfile = R->getValueAsDef("TypeProfile");
+ NumResults = TypeProfile->getValueAsInt("NumResults");
+ NumOperands = TypeProfile->getValueAsInt("NumOperands");
+
+ // Parse the properties.
+ Properties = parseSDPatternOperatorProperties(R);
+
+ // Parse the type constraints.
+ std::vector<Record*> ConstraintList =
+ TypeProfile->getValueAsListOfDefs("Constraints");
+ for (Record *R : ConstraintList)
+ TypeConstraints.emplace_back(R, CGH);
+}
+
+/// getKnownType - If the type constraints on this node imply a fixed type
+/// (e.g. all stores return void, etc), then return it as an
+/// MVT::SimpleValueType. Otherwise, return EEVT::Other.
+MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
+ unsigned NumResults = getNumResults();
+ assert(NumResults <= 1 &&
+ "We only work with nodes with zero or one result so far!");
+ assert(ResNo == 0 && "Only handles single result nodes so far");
+
+ for (const SDTypeConstraint &Constraint : TypeConstraints) {
+ // Make sure that this applies to the correct node result.
+ if (Constraint.OperandNo >= NumResults) // FIXME: need value #
+ continue;
+
+ switch (Constraint.ConstraintType) {
+ default: break;
+ case SDTypeConstraint::SDTCisVT:
+ if (Constraint.VVT.isSimple())
+ return Constraint.VVT.getSimple().SimpleTy;
+ break;
+ case SDTypeConstraint::SDTCisPtrTy:
+ return MVT::iPTR;
+ }
+ }
+ return MVT::Other;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePatternNode implementation
+//
+
+static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
+ if (Operator->getName() == "set" ||
+ Operator->getName() == "implicit")
+ return 0; // All return nothing.
+
+ if (Operator->isSubClassOf("Intrinsic"))
+ return CDP.getIntrinsic(Operator).IS.RetVTs.size();
+
+ if (Operator->isSubClassOf("SDNode"))
+ return CDP.getSDNodeInfo(Operator).getNumResults();
+
+ if (Operator->isSubClassOf("PatFrags")) {
+ // If we've already parsed this pattern fragment, get it. Otherwise, handle
+ // the forward reference case where one pattern fragment references another
+ // before it is processed.
+ if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) {
+ // The number of results of a fragment with alternative records is the
+ // maximum number of results across all alternatives.
+ unsigned NumResults = 0;
+ for (auto T : PFRec->getTrees())
+ NumResults = std::max(NumResults, T->getNumTypes());
+ return NumResults;
+ }
+
+ ListInit *LI = Operator->getValueAsListInit("Fragments");
+ assert(LI && "Invalid Fragment");
+ unsigned NumResults = 0;
+ for (Init *I : LI->getValues()) {
+ Record *Op = nullptr;
+ if (DagInit *Dag = dyn_cast<DagInit>(I))
+ if (DefInit *DI = dyn_cast<DefInit>(Dag->getOperator()))
+ Op = DI->getDef();
+ assert(Op && "Invalid Fragment");
+ NumResults = std::max(NumResults, GetNumNodeResults(Op, CDP));
+ }
+ return NumResults;
+ }
+
+ if (Operator->isSubClassOf("Instruction")) {
+ CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
+
+ unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
+
+ // Subtract any defaulted outputs.
+ for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
+ Record *OperandNode = InstInfo.Operands[i].Rec;
+
+ if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
+ !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
+ --NumDefsToAdd;
+ }
+
+ // Add on one implicit def if it has a resolvable type.
+ if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
+ ++NumDefsToAdd;
+ return NumDefsToAdd;
+ }
+
+ if (Operator->isSubClassOf("SDNodeXForm"))
+ return 1; // FIXME: Generalize SDNodeXForm
+
+ if (Operator->isSubClassOf("ValueType"))
+ return 1; // A type-cast of one result.
+
+ if (Operator->isSubClassOf("ComplexPattern"))
+ return 1;
+
+ errs() << *Operator;
+ PrintFatalError("Unhandled node in GetNumNodeResults");
+}
+
+void TreePatternNode::print(raw_ostream &OS) const {
+ if (isLeaf())
+ OS << *getLeafValue();
+ else
+ OS << '(' << getOperator()->getName();
+
+ for (unsigned i = 0, e = Types.size(); i != e; ++i) {
+ OS << ':';
+ getExtType(i).writeToStream(OS);
+ }
+
+ if (!isLeaf()) {
+ if (getNumChildren() != 0) {
+ OS << " ";
+ getChild(0)->print(OS);
+ for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
+ OS << ", ";
+ getChild(i)->print(OS);
+ }
+ }
+ OS << ")";
+ }
+
+ for (const TreePredicateCall &Pred : PredicateCalls) {
+ OS << "<<P:";
+ if (Pred.Scope)
+ OS << Pred.Scope << ":";
+ OS << Pred.Fn.getFnName() << ">>";
+ }
+ if (TransformFn)
+ OS << "<<X:" << TransformFn->getName() << ">>";
+ if (!getName().empty())
+ OS << ":$" << getName();
+
+ for (const ScopedName &Name : NamesAsPredicateArg)
+ OS << ":$pred:" << Name.getScope() << ":" << Name.getIdentifier();
+}
+void TreePatternNode::dump() const {
+ print(errs());
+}
+
+/// isIsomorphicTo - Return true if this node is recursively
+/// isomorphic to the specified node. For this comparison, the node's
+/// entire state is considered. The assigned name is ignored, since
+/// nodes with differing names are considered isomorphic. However, if
+/// the assigned name is present in the dependent variable set, then
+/// the assigned name is considered significant and the node is
+/// isomorphic if the names match.
+bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
+ const MultipleUseVarSet &DepVars) const {
+ if (N == this) return true;
+ if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
+ getPredicateCalls() != N->getPredicateCalls() ||
+ getTransformFn() != N->getTransformFn())
+ return false;
+
+ if (isLeaf()) {
+ if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
+ if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
+ return ((DI->getDef() == NDI->getDef())
+ && (DepVars.find(getName()) == DepVars.end()
+ || getName() == N->getName()));
+ }
+ }
+ return getLeafValue() == N->getLeafValue();
+ }
+
+ if (N->getOperator() != getOperator() ||
+ N->getNumChildren() != getNumChildren()) return false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
+ return false;
+ return true;
+}
+
+/// clone - Make a copy of this tree and all of its children.
+///
+TreePatternNodePtr TreePatternNode::clone() const {
+ TreePatternNodePtr New;
+ if (isLeaf()) {
+ New = std::make_shared<TreePatternNode>(getLeafValue(), getNumTypes());
+ } else {
+ std::vector<TreePatternNodePtr> CChildren;
+ CChildren.reserve(Children.size());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ CChildren.push_back(getChild(i)->clone());
+ New = std::make_shared<TreePatternNode>(getOperator(), std::move(CChildren),
+ getNumTypes());
+ }
+ New->setName(getName());
+ New->setNamesAsPredicateArg(getNamesAsPredicateArg());
+ New->Types = Types;
+ New->setPredicateCalls(getPredicateCalls());
+ New->setTransformFn(getTransformFn());
+ return New;
+}
+
+/// RemoveAllTypes - Recursively strip all the types of this tree.
+void TreePatternNode::RemoveAllTypes() {
+ // Reset to unknown type.
+ std::fill(Types.begin(), Types.end(), TypeSetByHwMode());
+ if (isLeaf()) return;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ getChild(i)->RemoveAllTypes();
+}
+
+
+/// SubstituteFormalArguments - Replace the formal arguments in this tree
+/// with actual values specified by ArgMap.
+void TreePatternNode::SubstituteFormalArguments(
+ std::map<std::string, TreePatternNodePtr> &ArgMap) {
+ if (isLeaf()) return;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = getChild(i);
+ if (Child->isLeaf()) {
+ Init *Val = Child->getLeafValue();
+ // Note that, when substituting into an output pattern, Val might be an
+ // UnsetInit.
+ if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
+ cast<DefInit>(Val)->getDef()->getName() == "node")) {
+ // We found a use of a formal argument, replace it with its value.
+ TreePatternNodePtr NewChild = ArgMap[Child->getName()];
+ assert(NewChild && "Couldn't find formal argument!");
+ assert((Child->getPredicateCalls().empty() ||
+ NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
+ "Non-empty child predicate clobbered!");
+ setChild(i, std::move(NewChild));
+ }
+ } else {
+ getChild(i)->SubstituteFormalArguments(ArgMap);
+ }
+ }
+}
+
+
+/// InlinePatternFragments - If this pattern refers to any pattern
+/// fragments, return the set of inlined versions (this can be more than
+/// one if a PatFrags record has multiple alternatives).
+void TreePatternNode::InlinePatternFragments(
+ TreePatternNodePtr T, TreePattern &TP,
+ std::vector<TreePatternNodePtr> &OutAlternatives) {
+
+ if (TP.hasError())
+ return;
+
+ if (isLeaf()) {
+ OutAlternatives.push_back(T); // nothing to do.
+ return;
+ }
+
+ Record *Op = getOperator();
+
+ if (!Op->isSubClassOf("PatFrags")) {
+ if (getNumChildren() == 0) {
+ OutAlternatives.push_back(T);
+ return;
+ }
+
+ // Recursively inline children nodes.
+ std::vector<std::vector<TreePatternNodePtr> > ChildAlternatives;
+ ChildAlternatives.resize(getNumChildren());
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
+ TreePatternNodePtr Child = getChildShared(i);
+ Child->InlinePatternFragments(Child, TP, ChildAlternatives[i]);
+ // If there are no alternatives for any child, there are no
+ // alternatives for this expression as whole.
+ if (ChildAlternatives[i].empty())
+ return;
+
+ for (auto NewChild : ChildAlternatives[i])
+ assert((Child->getPredicateCalls().empty() ||
+ NewChild->getPredicateCalls() == Child->getPredicateCalls()) &&
+ "Non-empty child predicate clobbered!");
+ }
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildAlternatives.size());
+ bool NotDone;
+ do {
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNodePtr> NewChildren;
+ for (unsigned i = 0, e = ChildAlternatives.size(); i != e; ++i)
+ NewChildren.push_back(ChildAlternatives[i][Idxs[i]]);
+ TreePatternNodePtr R = std::make_shared<TreePatternNode>(
+ getOperator(), std::move(NewChildren), getNumTypes());
+
+ // Copy over properties.
+ R->setName(getName());
+ R->setNamesAsPredicateArg(getNamesAsPredicateArg());
+ R->setPredicateCalls(getPredicateCalls());
+ R->setTransformFn(getTransformFn());
+ for (unsigned i = 0, e = getNumTypes(); i != e; ++i)
+ R->setType(i, getExtType(i));
+ for (unsigned i = 0, e = getNumResults(); i != e; ++i)
+ R->setResultIndex(i, getResultIndex(i));
+
+ // Register alternative.
+ OutAlternatives.push_back(R);
+
+ // Increment indices to the next permutation by incrementing the
+ // indices from last index backward, e.g., generate the sequence
+ // [0, 0], [0, 1], [1, 0], [1, 1].
+ int IdxsIdx;
+ for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
+ if (++Idxs[IdxsIdx] == ChildAlternatives[IdxsIdx].size())
+ Idxs[IdxsIdx] = 0;
+ else
+ break;
+ }
+ NotDone = (IdxsIdx >= 0);
+ } while (NotDone);
+
+ return;
+ }
+
+ // Otherwise, we found a reference to a fragment. First, look up its
+ // TreePattern record.
+ TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
+
+ // Verify that we are passing the right number of operands.
+ if (Frag->getNumArgs() != Children.size()) {
+ TP.error("'" + Op->getName() + "' fragment requires " +
+ Twine(Frag->getNumArgs()) + " operands!");
+ return;
+ }
+
+ TreePredicateFn PredFn(Frag);
+ unsigned Scope = 0;
+ if (TreePredicateFn(Frag).usesOperands())
+ Scope = TP.getDAGPatterns().allocateScope();
+
+ // Compute the map of formal to actual arguments.
+ std::map<std::string, TreePatternNodePtr> ArgMap;
+ for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) {
+ TreePatternNodePtr Child = getChildShared(i);
+ if (Scope != 0) {
+ Child = Child->clone();
+ Child->addNameAsPredicateArg(ScopedName(Scope, Frag->getArgName(i)));
+ }
+ ArgMap[Frag->getArgName(i)] = Child;
+ }
+
+ // Loop over all fragment alternatives.
+ for (auto Alternative : Frag->getTrees()) {
+ TreePatternNodePtr FragTree = Alternative->clone();
+
+ if (!PredFn.isAlwaysTrue())
+ FragTree->addPredicateCall(PredFn, Scope);
+
+ // Resolve formal arguments to their actual value.
+ if (Frag->getNumArgs())
+ FragTree->SubstituteFormalArguments(ArgMap);
+
+ // Transfer types. Note that the resolved alternative may have fewer
+ // (but not more) results than the PatFrags node.
+ FragTree->setName(getName());
+ for (unsigned i = 0, e = FragTree->getNumTypes(); i != e; ++i)
+ FragTree->UpdateNodeType(i, getExtType(i), TP);
+
+ // Transfer in the old predicates.
+ for (const TreePredicateCall &Pred : getPredicateCalls())
+ FragTree->addPredicateCall(Pred);
+
+ // The fragment we inlined could have recursive inlining that is needed. See
+ // if there are any pattern fragments in it and inline them as needed.
+ FragTree->InlinePatternFragments(FragTree, TP, OutAlternatives);
+ }
+}
+
+/// getImplicitType - Check to see if the specified record has an implicit
+/// type which should be applied to it. This will infer the type of register
+/// references from the register file information, for example.
+///
+/// When Unnamed is set, return the type of a DAG operand with no name, such as
+/// the F8RC register class argument in:
+///
+/// (COPY_TO_REGCLASS GPR:$src, F8RC)
+///
+/// When Unnamed is false, return the type of a named DAG operand such as the
+/// GPR:$src operand above.
+///
+static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo,
+ bool NotRegisters,
+ bool Unnamed,
+ TreePattern &TP) {
+ CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
+
+ // Check to see if this is a register operand.
+ if (R->isSubClassOf("RegisterOperand")) {
+ assert(ResNo == 0 && "Regoperand ref only has one result!");
+ if (NotRegisters)
+ return TypeSetByHwMode(); // Unknown.
+ Record *RegClass = R->getValueAsDef("RegClass");
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes());
+ }
+
+ // Check to see if this is a register or a register class.
+ if (R->isSubClassOf("RegisterClass")) {
+ assert(ResNo == 0 && "Regclass ref only has one result!");
+ // An unnamed register class represents itself as an i32 immediate, for
+ // example on a COPY_TO_REGCLASS instruction.
+ if (Unnamed)
+ return TypeSetByHwMode(MVT::i32);
+
+ // In a named operand, the register class provides the possible set of
+ // types.
+ if (NotRegisters)
+ return TypeSetByHwMode(); // Unknown.
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes());
+ }
+
+ if (R->isSubClassOf("PatFrags")) {
+ assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
+ // Pattern fragment types will be resolved when they are inlined.
+ return TypeSetByHwMode(); // Unknown.
+ }
+
+ if (R->isSubClassOf("Register")) {
+ assert(ResNo == 0 && "Registers only produce one result!");
+ if (NotRegisters)
+ return TypeSetByHwMode(); // Unknown.
+ const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
+ return TypeSetByHwMode(T.getRegisterVTs(R));
+ }
+
+ if (R->isSubClassOf("SubRegIndex")) {
+ assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
+ return TypeSetByHwMode(MVT::i32);
+ }
+
+ if (R->isSubClassOf("ValueType")) {
+ assert(ResNo == 0 && "This node only has one result!");
+ // An unnamed VTSDNode represents itself as an MVT::Other immediate.
+ //
+ // (sext_inreg GPR:$src, i16)
+ // ~~~
+ if (Unnamed)
+ return TypeSetByHwMode(MVT::Other);
+ // With a name, the ValueType simply provides the type of the named
+ // variable.
+ //
+ // (sext_inreg i32:$src, i16)
+ // ~~~~~~~~
+ if (NotRegisters)
+ return TypeSetByHwMode(); // Unknown.
+ const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
+ return TypeSetByHwMode(getValueTypeByHwMode(R, CGH));
+ }
+
+ if (R->isSubClassOf("CondCode")) {
+ assert(ResNo == 0 && "This node only has one result!");
+ // Using a CondCodeSDNode.
+ return TypeSetByHwMode(MVT::Other);
+ }
+
+ if (R->isSubClassOf("ComplexPattern")) {
+ assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
+ if (NotRegisters)
+ return TypeSetByHwMode(); // Unknown.
+ return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType());
+ }
+ if (R->isSubClassOf("PointerLikeRegClass")) {
+ assert(ResNo == 0 && "Regclass can only have one result!");
+ TypeSetByHwMode VTS(MVT::iPTR);
+ TP.getInfer().expandOverloads(VTS);
+ return VTS;
+ }
+
+ if (R->getName() == "node" || R->getName() == "srcvalue" ||
+ R->getName() == "zero_reg" || R->getName() == "immAllOnesV" ||
+ R->getName() == "immAllZerosV" || R->getName() == "undef_tied_input") {
+ // Placeholder.
+ return TypeSetByHwMode(); // Unknown.
+ }
+
+ if (R->isSubClassOf("Operand")) {
+ const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes();
+ Record *T = R->getValueAsDef("Type");
+ return TypeSetByHwMode(getValueTypeByHwMode(T, CGH));
+ }
+
+ TP.error("Unknown node flavor used in pattern: " + R->getName());
+ return TypeSetByHwMode(MVT::Other);
+}
+
+
+/// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
+/// CodeGenIntrinsic information for it, otherwise return a null pointer.
+const CodeGenIntrinsic *TreePatternNode::
+getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
+ if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
+ getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
+ getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
+ return nullptr;
+
+ unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
+ return &CDP.getIntrinsicInfo(IID);
+}
+
+/// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
+/// return the ComplexPattern information, otherwise return null.
+const ComplexPattern *
+TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
+ Record *Rec;
+ if (isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(getLeafValue());
+ if (!DI)
+ return nullptr;
+ Rec = DI->getDef();
+ } else
+ Rec = getOperator();
+
+ if (!Rec->isSubClassOf("ComplexPattern"))
+ return nullptr;
+ return &CGP.getComplexPattern(Rec);
+}
+
+unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
+ // A ComplexPattern specifically declares how many results it fills in.
+ if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
+ return CP->getNumOperands();
+
+ // If MIOperandInfo is specified, that gives the count.
+ if (isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf("Operand")) {
+ DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
+ if (MIOps->getNumArgs())
+ return MIOps->getNumArgs();
+ }
+ }
+
+ // Otherwise there is just one result.
+ return 1;
+}
+
+/// NodeHasProperty - Return true if this node has the specified property.
+bool TreePatternNode::NodeHasProperty(SDNP Property,
+ const CodeGenDAGPatterns &CGP) const {
+ if (isLeaf()) {
+ if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
+ return CP->hasProperty(Property);
+
+ return false;
+ }
+
+ if (Property != SDNPHasChain) {
+ // The chain proprety is already present on the different intrinsic node
+ // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed
+ // on the intrinsic. Anything else is specific to the individual intrinsic.
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP))
+ return Int->hasProperty(Property);
+ }
+
+ if (!Operator->isSubClassOf("SDPatternOperator"))
+ return false;
+
+ return CGP.getSDNodeInfo(Operator).hasProperty(Property);
+}
+
+
+
+
+/// TreeHasProperty - Return true if any node in this tree has the specified
+/// property.
+bool TreePatternNode::TreeHasProperty(SDNP Property,
+ const CodeGenDAGPatterns &CGP) const {
+ if (NodeHasProperty(Property, CGP))
+ return true;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (getChild(i)->TreeHasProperty(Property, CGP))
+ return true;
+ return false;
+}
+
+/// isCommutativeIntrinsic - Return true if the node corresponds to a
+/// commutative intrinsic.
+bool
+TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
+ return Int->isCommutative;
+ return false;
+}
+
+static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
+ if (!N->isLeaf())
+ return N->getOperator()->isSubClassOf(Class);
+
+ DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
+ if (DI && DI->getDef()->isSubClassOf(Class))
+ return true;
+
+ return false;
+}
+
+static void emitTooManyOperandsError(TreePattern &TP,
+ StringRef InstName,
+ unsigned Expected,
+ unsigned Actual) {
+ TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
+ " operands but expected only " + Twine(Expected) + "!");
+}
+
+static void emitTooFewOperandsError(TreePattern &TP,
+ StringRef InstName,
+ unsigned Actual) {
+ TP.error("Instruction '" + InstName +
+ "' expects more than the provided " + Twine(Actual) + " operands!");
+}
+
+/// ApplyTypeConstraints - Apply all of the type constraints relevant to
+/// this node and its children in the tree. This returns true if it makes a
+/// change, false otherwise. If a type contradiction is found, flag an error.
+bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
+ if (TP.hasError())
+ return false;
+
+ CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
+ if (isLeaf()) {
+ if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
+ // If it's a regclass or something else known, include the type.
+ bool MadeChange = false;
+ for (unsigned i = 0, e = Types.size(); i != e; ++i)
+ MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
+ NotRegisters,
+ !hasName(), TP), TP);
+ return MadeChange;
+ }
+
+ if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
+ assert(Types.size() == 1 && "Invalid IntInit");
+
+ // Int inits are always integers. :)
+ bool MadeChange = TP.getInfer().EnforceInteger(Types[0]);
+
+ if (!TP.getInfer().isConcrete(Types[0], false))
+ return MadeChange;
+
+ ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false);
+ for (auto &P : VVT) {
+ MVT::SimpleValueType VT = P.second.SimpleTy;
+ if (VT == MVT::iPTR || VT == MVT::iPTRAny)
+ continue;
unsigned Size = MVT(VT).getFixedSizeInBits();
- // Make sure that the value is representable for this type.
- if (Size >= 32)
- continue;
- // Check that the value doesn't use more bits than we have. It must
- // either be a sign- or zero-extended equivalent of the original.
- int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
- if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
- SignBitAndAbove == 1)
- continue;
-
- TP.error("Integer value '" + Twine(II->getValue()) +
- "' is out of range for type '" + getEnumName(VT) + "'!");
- break;
- }
- return MadeChange;
- }
-
- return false;
- }
-
- if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
- bool MadeChange = false;
-
- // Apply the result type to the node.
- unsigned NumRetVTs = Int->IS.RetVTs.size();
- unsigned NumParamVTs = Int->IS.ParamVTs.size();
-
- for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
- MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
-
- if (getNumChildren() != NumParamVTs + 1) {
- TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
- " operands, not " + Twine(getNumChildren() - 1) + " operands!");
- return false;
- }
-
- // Apply type info to the intrinsic ID.
- MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
-
- for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
- MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
-
- MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
- assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
- MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
- }
- return MadeChange;
- }
-
- if (getOperator()->isSubClassOf("SDNode")) {
- const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
-
- // Check that the number of operands is sane. Negative operands -> varargs.
- if (NI.getNumOperands() >= 0 &&
- getNumChildren() != (unsigned)NI.getNumOperands()) {
- TP.error(getOperator()->getName() + " node requires exactly " +
- Twine(NI.getNumOperands()) + " operands!");
- return false;
- }
-
- bool MadeChange = false;
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- MadeChange |= NI.ApplyTypeConstraints(this, TP);
- return MadeChange;
- }
-
- if (getOperator()->isSubClassOf("Instruction")) {
- const DAGInstruction &Inst = CDP.getInstruction(getOperator());
- CodeGenInstruction &InstInfo =
- CDP.getTargetInfo().getInstruction(getOperator());
-
- bool MadeChange = false;
-
- // Apply the result types to the node, these come from the things in the
- // (outs) list of the instruction.
- unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
- Inst.getNumResults());
- for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
- MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
-
- // If the instruction has implicit defs, we apply the first one as a result.
- // FIXME: This sucks, it should apply all implicit defs.
- if (!InstInfo.ImplicitDefs.empty()) {
- unsigned ResNo = NumResultsToAdd;
-
- // FIXME: Generalize to multiple possible types and multiple possible
- // ImplicitDefs.
- MVT::SimpleValueType VT =
- InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
-
- if (VT != MVT::Other)
- MadeChange |= UpdateNodeType(ResNo, VT, TP);
- }
-
- // If this is an INSERT_SUBREG, constrain the source and destination VTs to
- // be the same.
- if (getOperator()->getName() == "INSERT_SUBREG") {
- assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
- MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
- MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
- } else if (getOperator()->getName() == "REG_SEQUENCE") {
- // We need to do extra, custom typechecking for REG_SEQUENCE since it is
- // variadic.
-
- unsigned NChild = getNumChildren();
- if (NChild < 3) {
- TP.error("REG_SEQUENCE requires at least 3 operands!");
- return false;
- }
-
- if (NChild % 2 == 0) {
- TP.error("REG_SEQUENCE requires an odd number of operands!");
- return false;
- }
-
- if (!isOperandClass(getChild(0), "RegisterClass")) {
- TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
- return false;
- }
-
- for (unsigned I = 1; I < NChild; I += 2) {
- TreePatternNode *SubIdxChild = getChild(I + 1);
- if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
- TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
- Twine(I + 1) + "!");
- return false;
- }
- }
- }
-
- unsigned NumResults = Inst.getNumResults();
- unsigned NumFixedOperands = InstInfo.Operands.size();
-
- // If one or more operands with a default value appear at the end of the
- // formal operand list for an instruction, we allow them to be overridden
- // by optional operands provided in the pattern.
- //
- // But if an operand B without a default appears at any point after an
- // operand A with a default, then we don't allow A to be overridden,
- // because there would be no way to specify whether the next operand in
- // the pattern was intended to override A or skip it.
- unsigned NonOverridableOperands = NumFixedOperands;
- while (NonOverridableOperands > NumResults &&
- CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
- --NonOverridableOperands;
-
- unsigned ChildNo = 0;
- assert(NumResults <= NumFixedOperands);
- for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
- Record *OperandNode = InstInfo.Operands[i].Rec;
-
- // If the operand has a default value, do we use it? We must use the
- // default if we've run out of children of the pattern DAG to consume,
- // or if the operand is followed by a non-defaulted one.
- if (CDP.operandHasDefault(OperandNode) &&
- (i < NonOverridableOperands || ChildNo >= getNumChildren()))
- continue;
-
- // If we have run out of child nodes and there _isn't_ a default
- // value we can use for the next operand, give an error.
- if (ChildNo >= getNumChildren()) {
- emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
- return false;
- }
-
- TreePatternNode *Child = getChild(ChildNo++);
- unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
-
- // If the operand has sub-operands, they may be provided by distinct
- // child patterns, so attempt to match each sub-operand separately.
- if (OperandNode->isSubClassOf("Operand")) {
- DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
- if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
- // But don't do that if the whole operand is being provided by
- // a single ComplexPattern-related Operand.
-
- if (Child->getNumMIResults(CDP) < NumArgs) {
- // Match first sub-operand against the child we already have.
- Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
- MadeChange |=
- Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
-
- // And the remaining sub-operands against subsequent children.
- for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
- if (ChildNo >= getNumChildren()) {
- emitTooFewOperandsError(TP, getOperator()->getName(),
- getNumChildren());
- return false;
- }
- Child = getChild(ChildNo++);
-
- SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
- MadeChange |=
- Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
- }
- continue;
- }
- }
- }
-
- // If we didn't match by pieces above, attempt to match the whole
- // operand now.
- MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
- }
-
- if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
- emitTooManyOperandsError(TP, getOperator()->getName(),
- ChildNo, getNumChildren());
- return false;
- }
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
- return MadeChange;
- }
-
- if (getOperator()->isSubClassOf("ComplexPattern")) {
- bool MadeChange = false;
-
- for (unsigned i = 0; i < getNumChildren(); ++i)
- MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
-
- return MadeChange;
- }
-
- assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
-
- // Node transforms always take one operand.
- if (getNumChildren() != 1) {
- TP.error("Node transform '" + getOperator()->getName() +
- "' requires one operand!");
- return false;
- }
-
- bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
- return MadeChange;
-}
-
-/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
-/// RHS of a commutative operation, not the on LHS.
-static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
- if (!N->isLeaf() && N->getOperator()->getName() == "imm")
- return true;
- if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
- return true;
- return false;
-}
-
-
-/// canPatternMatch - If it is impossible for this pattern to match on this
-/// target, fill in Reason and return false. Otherwise, return true. This is
-/// used as a sanity check for .td files (to prevent people from writing stuff
-/// that can never possibly work), and to prevent the pattern permuter from
-/// generating stuff that is useless.
-bool TreePatternNode::canPatternMatch(std::string &Reason,
- const CodeGenDAGPatterns &CDP) {
- if (isLeaf()) return true;
-
- for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
- if (!getChild(i)->canPatternMatch(Reason, CDP))
- return false;
-
- // If this is an intrinsic, handle cases that would make it not match. For
- // example, if an operand is required to be an immediate.
- if (getOperator()->isSubClassOf("Intrinsic")) {
- // TODO:
- return true;
- }
-
- if (getOperator()->isSubClassOf("ComplexPattern"))
- return true;
-
- // If this node is a commutative operator, check that the LHS isn't an
- // immediate.
- const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
- bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
- if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
- // Scan all of the operands of the node and make sure that only the last one
- // is a constant node, unless the RHS also is.
- if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
- unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
- for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
- if (OnlyOnRHSOfCommutative(getChild(i))) {
- Reason="Immediate value must be on the RHS of commutative operators!";
- return false;
- }
- }
- }
-
- return true;
-}
-
-//===----------------------------------------------------------------------===//
-// TreePattern implementation
-//
-
-TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
- CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
- isInputPattern(isInput), HasError(false),
- Infer(*this) {
- for (Init *I : RawPat->getValues())
- Trees.push_back(ParseTreePattern(I, ""));
-}
-
-TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
- CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
- isInputPattern(isInput), HasError(false),
- Infer(*this) {
- Trees.push_back(ParseTreePattern(Pat, ""));
-}
-
-TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
- CodeGenDAGPatterns &cdp)
- : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
- Infer(*this) {
- Trees.push_back(Pat);
-}
-
-void TreePattern::error(const Twine &Msg) {
- if (HasError)
- return;
- dump();
- PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
- HasError = true;
-}
-
-void TreePattern::ComputeNamedNodes() {
- for (TreePatternNodePtr &Tree : Trees)
- ComputeNamedNodes(Tree.get());
-}
-
-void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
- if (!N->getName().empty())
- NamedNodes[N->getName()].push_back(N);
-
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- ComputeNamedNodes(N->getChild(i));
-}
-
-TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
- StringRef OpName) {
- if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
- Record *R = DI->getDef();
-
- // Direct reference to a leaf DagNode or PatFrag? Turn it into a
- // TreePatternNode of its own. For example:
- /// (foo GPR, imm) -> (foo GPR, (imm))
- if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
- return ParseTreePattern(
- DagInit::get(DI, nullptr,
- std::vector<std::pair<Init*, StringInit*> >()),
- OpName);
-
- // Input argument?
- TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
- if (R->getName() == "node" && !OpName.empty()) {
- if (OpName.empty())
- error("'node' argument requires a name to match with operand list");
- Args.push_back(std::string(OpName));
- }
-
- Res->setName(OpName);
- return Res;
- }
-
- // ?:$name or just $name.
- if (isa<UnsetInit>(TheInit)) {
- if (OpName.empty())
- error("'?' argument requires a name to match with operand list");
- TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
- Args.push_back(std::string(OpName));
- Res->setName(OpName);
- return Res;
- }
-
- if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
- if (!OpName.empty())
- error("Constant int or bit argument should not have a name!");
- if (isa<BitInit>(TheInit))
- TheInit = TheInit->convertInitializerTo(IntRecTy::get());
- return std::make_shared<TreePatternNode>(TheInit, 1);
- }
-
- if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
- // Turn this into an IntInit.
- Init *II = BI->convertInitializerTo(IntRecTy::get());
- if (!II || !isa<IntInit>(II))
- error("Bits value must be constants!");
- return ParseTreePattern(II, OpName);
- }
-
- DagInit *Dag = dyn_cast<DagInit>(TheInit);
- if (!Dag) {
- TheInit->print(errs());
- error("Pattern has unexpected init kind!");
- }
- DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
- if (!OpDef) error("Pattern has unexpected operator type!");
- Record *Operator = OpDef->getDef();
-
- if (Operator->isSubClassOf("ValueType")) {
- // If the operator is a ValueType, then this must be "type cast" of a leaf
- // node.
- if (Dag->getNumArgs() != 1)
- error("Type cast only takes one operand!");
-
- TreePatternNodePtr New =
- ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
-
- // Apply the type cast.
- assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
- const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
- New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
-
- if (!OpName.empty())
- error("ValueType cast should not have a name!");
- return New;
- }
-
- // Verify that this is something that makes sense for an operator.
- if (!Operator->isSubClassOf("PatFrags") &&
- !Operator->isSubClassOf("SDNode") &&
- !Operator->isSubClassOf("Instruction") &&
- !Operator->isSubClassOf("SDNodeXForm") &&
- !Operator->isSubClassOf("Intrinsic") &&
- !Operator->isSubClassOf("ComplexPattern") &&
- Operator->getName() != "set" &&
- Operator->getName() != "implicit")
- error("Unrecognized node '" + Operator->getName() + "'!");
-
- // Check to see if this is something that is illegal in an input pattern.
- if (isInputPattern) {
- if (Operator->isSubClassOf("Instruction") ||
- Operator->isSubClassOf("SDNodeXForm"))
- error("Cannot use '" + Operator->getName() + "' in an input pattern!");
- } else {
- if (Operator->isSubClassOf("Intrinsic"))
- error("Cannot use '" + Operator->getName() + "' in an output pattern!");
-
- if (Operator->isSubClassOf("SDNode") &&
- Operator->getName() != "imm" &&
- Operator->getName() != "timm" &&
- Operator->getName() != "fpimm" &&
- Operator->getName() != "tglobaltlsaddr" &&
- Operator->getName() != "tconstpool" &&
- Operator->getName() != "tjumptable" &&
- Operator->getName() != "tframeindex" &&
- Operator->getName() != "texternalsym" &&
- Operator->getName() != "tblockaddress" &&
- Operator->getName() != "tglobaladdr" &&
- Operator->getName() != "bb" &&
- Operator->getName() != "vt" &&
- Operator->getName() != "mcsym")
- error("Cannot use '" + Operator->getName() + "' in an output pattern!");
- }
-
- std::vector<TreePatternNodePtr> Children;
-
- // Parse all the operands.
- for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
- Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
-
- // Get the actual number of results before Operator is converted to an intrinsic
- // node (which is hard-coded to have either zero or one result).
- unsigned NumResults = GetNumNodeResults(Operator, CDP);
-
- // If the operator is an intrinsic, then this is just syntactic sugar for
- // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
- // convert the intrinsic name to a number.
- if (Operator->isSubClassOf("Intrinsic")) {
- const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
- unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
-
- // If this intrinsic returns void, it must have side-effects and thus a
- // chain.
- if (Int.IS.RetVTs.empty())
- Operator = getDAGPatterns().get_intrinsic_void_sdnode();
- else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
- // Has side-effects, requires chain.
- Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
- else // Otherwise, no chain.
- Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
-
- Children.insert(Children.begin(),
- std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
- }
-
- if (Operator->isSubClassOf("ComplexPattern")) {
- for (unsigned i = 0; i < Children.size(); ++i) {
- TreePatternNodePtr Child = Children[i];
-
- if (Child->getName().empty())
- error("All arguments to a ComplexPattern must be named");
-
- // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
- // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
- // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
- auto OperandId = std::make_pair(Operator, i);
- auto PrevOp = ComplexPatternOperands.find(Child->getName());
- if (PrevOp != ComplexPatternOperands.end()) {
- if (PrevOp->getValue() != OperandId)
- error("All ComplexPattern operands must appear consistently: "
- "in the same order in just one ComplexPattern instance.");
- } else
- ComplexPatternOperands[Child->getName()] = OperandId;
- }
- }
-
- TreePatternNodePtr Result =
- std::make_shared<TreePatternNode>(Operator, std::move(Children),
- NumResults);
- Result->setName(OpName);
-
- if (Dag->getName()) {
- assert(Result->getName().empty());
- Result->setName(Dag->getNameStr());
- }
- return Result;
-}
-
-/// SimplifyTree - See if we can simplify this tree to eliminate something that
-/// will never match in favor of something obvious that will. This is here
-/// strictly as a convenience to target authors because it allows them to write
-/// more type generic things and have useless type casts fold away.
-///
-/// This returns true if any change is made.
-static bool SimplifyTree(TreePatternNodePtr &N) {
- if (N->isLeaf())
- return false;
-
- // If we have a bitconvert with a resolved type and if the source and
- // destination types are the same, then the bitconvert is useless, remove it.
- //
- // We make an exception if the types are completely empty. This can come up
- // when the pattern being simplified is in the Fragments list of a PatFrags,
- // so that the operand is just an untyped "node". In that situation we leave
- // bitconverts unsimplified, and simplify them later once the fragment is
- // expanded into its true context.
- if (N->getOperator()->getName() == "bitconvert" &&
- N->getExtType(0).isValueTypeByHwMode(false) &&
- !N->getExtType(0).empty() &&
- N->getExtType(0) == N->getChild(0)->getExtType(0) &&
- N->getName().empty()) {
- N = N->getChildShared(0);
- SimplifyTree(N);
- return true;
- }
-
- // Walk all children.
- bool MadeChange = false;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNodePtr Child = N->getChildShared(i);
- MadeChange |= SimplifyTree(Child);
- N->setChild(i, std::move(Child));
- }
- return MadeChange;
-}
-
-
-
-/// InferAllTypes - Infer/propagate as many types throughout the expression
-/// patterns as possible. Return true if all types are inferred, false
-/// otherwise. Flags an error if a type contradiction is found.
-bool TreePattern::
-InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
- if (NamedNodes.empty())
- ComputeNamedNodes();
-
- bool MadeChange = true;
- while (MadeChange) {
- MadeChange = false;
- for (TreePatternNodePtr &Tree : Trees) {
- MadeChange |= Tree->ApplyTypeConstraints(*this, false);
- MadeChange |= SimplifyTree(Tree);
- }
-
- // If there are constraints on our named nodes, apply them.
- for (auto &Entry : NamedNodes) {
- SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
-
- // If we have input named node types, propagate their types to the named
- // values here.
- if (InNamedTypes) {
- if (!InNamedTypes->count(Entry.getKey())) {
- error("Node '" + std::string(Entry.getKey()) +
- "' in output pattern but not input pattern");
- return true;
- }
-
- const SmallVectorImpl<TreePatternNode*> &InNodes =
- InNamedTypes->find(Entry.getKey())->second;
-
- // The input types should be fully resolved by now.
- for (TreePatternNode *Node : Nodes) {
- // If this node is a register class, and it is the root of the pattern
- // then we're mapping something onto an input register. We allow
- // changing the type of the input register in this case. This allows
- // us to match things like:
- // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
- if (Node == Trees[0].get() && Node->isLeaf()) {
- DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
- if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
- DI->getDef()->isSubClassOf("RegisterOperand")))
- continue;
- }
-
- assert(Node->getNumTypes() == 1 &&
- InNodes[0]->getNumTypes() == 1 &&
- "FIXME: cannot name multiple result nodes yet");
- MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
- *this);
- }
- }
-
- // If there are multiple nodes with the same name, they must all have the
- // same type.
- if (Entry.second.size() > 1) {
- for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
- TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
- assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
- "FIXME: cannot name multiple result nodes yet");
-
- MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
- MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
- }
- }
- }
- }
-
- bool HasUnresolvedTypes = false;
- for (const TreePatternNodePtr &Tree : Trees)
- HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
- return !HasUnresolvedTypes;
-}
-
-void TreePattern::print(raw_ostream &OS) const {
- OS << getRecord()->getName();
- if (!Args.empty()) {
- OS << "(" << Args[0];
- for (unsigned i = 1, e = Args.size(); i != e; ++i)
- OS << ", " << Args[i];
- OS << ")";
- }
- OS << ": ";
-
- if (Trees.size() > 1)
- OS << "[\n";
- for (const TreePatternNodePtr &Tree : Trees) {
- OS << "\t";
- Tree->print(OS);
- OS << "\n";
- }
-
- if (Trees.size() > 1)
- OS << "]\n";
-}
-
-void TreePattern::dump() const { print(errs()); }
-
-//===----------------------------------------------------------------------===//
-// CodeGenDAGPatterns implementation
-//
-
-CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
- PatternRewriterFn PatternRewriter)
- : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
- PatternRewriter(PatternRewriter) {
-
- Intrinsics = CodeGenIntrinsicTable(Records);
- ParseNodeInfo();
- ParseNodeTransforms();
- ParseComplexPatterns();
- ParsePatternFragments();
- ParseDefaultOperands();
- ParseInstructions();
- ParsePatternFragments(/*OutFrags*/true);
- ParsePatterns();
-
- // Break patterns with parameterized types into a series of patterns,
- // where each one has a fixed type and is predicated on the conditions
- // of the associated HW mode.
- ExpandHwModeBasedTypes();
-
- // Generate variants. For example, commutative patterns can match
- // multiple ways. Add them to PatternsToMatch as well.
- GenerateVariants();
-
- // Infer instruction flags. For example, we can detect loads,
- // stores, and side effects in many cases by examining an
- // instruction's pattern.
- InferInstructionFlags();
-
- // Verify that instruction flags match the patterns.
- VerifyInstructionFlags();
-}
-
+ // Make sure that the value is representable for this type.
+ if (Size >= 32)
+ continue;
+ // Check that the value doesn't use more bits than we have. It must
+ // either be a sign- or zero-extended equivalent of the original.
+ int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
+ if (SignBitAndAbove == -1 || SignBitAndAbove == 0 ||
+ SignBitAndAbove == 1)
+ continue;
+
+ TP.error("Integer value '" + Twine(II->getValue()) +
+ "' is out of range for type '" + getEnumName(VT) + "'!");
+ break;
+ }
+ return MadeChange;
+ }
+
+ return false;
+ }
+
+ if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
+ bool MadeChange = false;
+
+ // Apply the result type to the node.
+ unsigned NumRetVTs = Int->IS.RetVTs.size();
+ unsigned NumParamVTs = Int->IS.ParamVTs.size();
+
+ for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
+ MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
+
+ if (getNumChildren() != NumParamVTs + 1) {
+ TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) +
+ " operands, not " + Twine(getNumChildren() - 1) + " operands!");
+ return false;
+ }
+
+ // Apply type info to the intrinsic ID.
+ MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
+
+ for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
+ MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
+
+ MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
+ assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
+ MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
+ }
+ return MadeChange;
+ }
+
+ if (getOperator()->isSubClassOf("SDNode")) {
+ const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
+
+ // Check that the number of operands is sane. Negative operands -> varargs.
+ if (NI.getNumOperands() >= 0 &&
+ getNumChildren() != (unsigned)NI.getNumOperands()) {
+ TP.error(getOperator()->getName() + " node requires exactly " +
+ Twine(NI.getNumOperands()) + " operands!");
+ return false;
+ }
+
+ bool MadeChange = false;
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ MadeChange |= NI.ApplyTypeConstraints(this, TP);
+ return MadeChange;
+ }
+
+ if (getOperator()->isSubClassOf("Instruction")) {
+ const DAGInstruction &Inst = CDP.getInstruction(getOperator());
+ CodeGenInstruction &InstInfo =
+ CDP.getTargetInfo().getInstruction(getOperator());
+
+ bool MadeChange = false;
+
+ // Apply the result types to the node, these come from the things in the
+ // (outs) list of the instruction.
+ unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
+ Inst.getNumResults());
+ for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
+ MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
+
+ // If the instruction has implicit defs, we apply the first one as a result.
+ // FIXME: This sucks, it should apply all implicit defs.
+ if (!InstInfo.ImplicitDefs.empty()) {
+ unsigned ResNo = NumResultsToAdd;
+
+ // FIXME: Generalize to multiple possible types and multiple possible
+ // ImplicitDefs.
+ MVT::SimpleValueType VT =
+ InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
+
+ if (VT != MVT::Other)
+ MadeChange |= UpdateNodeType(ResNo, VT, TP);
+ }
+
+ // If this is an INSERT_SUBREG, constrain the source and destination VTs to
+ // be the same.
+ if (getOperator()->getName() == "INSERT_SUBREG") {
+ assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
+ MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
+ MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
+ } else if (getOperator()->getName() == "REG_SEQUENCE") {
+ // We need to do extra, custom typechecking for REG_SEQUENCE since it is
+ // variadic.
+
+ unsigned NChild = getNumChildren();
+ if (NChild < 3) {
+ TP.error("REG_SEQUENCE requires at least 3 operands!");
+ return false;
+ }
+
+ if (NChild % 2 == 0) {
+ TP.error("REG_SEQUENCE requires an odd number of operands!");
+ return false;
+ }
+
+ if (!isOperandClass(getChild(0), "RegisterClass")) {
+ TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
+ return false;
+ }
+
+ for (unsigned I = 1; I < NChild; I += 2) {
+ TreePatternNode *SubIdxChild = getChild(I + 1);
+ if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
+ TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
+ Twine(I + 1) + "!");
+ return false;
+ }
+ }
+ }
+
+ unsigned NumResults = Inst.getNumResults();
+ unsigned NumFixedOperands = InstInfo.Operands.size();
+
+ // If one or more operands with a default value appear at the end of the
+ // formal operand list for an instruction, we allow them to be overridden
+ // by optional operands provided in the pattern.
+ //
+ // But if an operand B without a default appears at any point after an
+ // operand A with a default, then we don't allow A to be overridden,
+ // because there would be no way to specify whether the next operand in
+ // the pattern was intended to override A or skip it.
+ unsigned NonOverridableOperands = NumFixedOperands;
+ while (NonOverridableOperands > NumResults &&
+ CDP.operandHasDefault(InstInfo.Operands[NonOverridableOperands-1].Rec))
+ --NonOverridableOperands;
+
+ unsigned ChildNo = 0;
+ assert(NumResults <= NumFixedOperands);
+ for (unsigned i = NumResults, e = NumFixedOperands; i != e; ++i) {
+ Record *OperandNode = InstInfo.Operands[i].Rec;
+
+ // If the operand has a default value, do we use it? We must use the
+ // default if we've run out of children of the pattern DAG to consume,
+ // or if the operand is followed by a non-defaulted one.
+ if (CDP.operandHasDefault(OperandNode) &&
+ (i < NonOverridableOperands || ChildNo >= getNumChildren()))
+ continue;
+
+ // If we have run out of child nodes and there _isn't_ a default
+ // value we can use for the next operand, give an error.
+ if (ChildNo >= getNumChildren()) {
+ emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
+ return false;
+ }
+
+ TreePatternNode *Child = getChild(ChildNo++);
+ unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
+
+ // If the operand has sub-operands, they may be provided by distinct
+ // child patterns, so attempt to match each sub-operand separately.
+ if (OperandNode->isSubClassOf("Operand")) {
+ DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
+ if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
+ // But don't do that if the whole operand is being provided by
+ // a single ComplexPattern-related Operand.
+
+ if (Child->getNumMIResults(CDP) < NumArgs) {
+ // Match first sub-operand against the child we already have.
+ Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
+ MadeChange |=
+ Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
+
+ // And the remaining sub-operands against subsequent children.
+ for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
+ if (ChildNo >= getNumChildren()) {
+ emitTooFewOperandsError(TP, getOperator()->getName(),
+ getNumChildren());
+ return false;
+ }
+ Child = getChild(ChildNo++);
+
+ SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
+ MadeChange |=
+ Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
+ }
+ continue;
+ }
+ }
+ }
+
+ // If we didn't match by pieces above, attempt to match the whole
+ // operand now.
+ MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
+ }
+
+ if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
+ emitTooManyOperandsError(TP, getOperator()->getName(),
+ ChildNo, getNumChildren());
+ return false;
+ }
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+ return MadeChange;
+ }
+
+ if (getOperator()->isSubClassOf("ComplexPattern")) {
+ bool MadeChange = false;
+
+ for (unsigned i = 0; i < getNumChildren(); ++i)
+ MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
+
+ return MadeChange;
+ }
+
+ assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
+
+ // Node transforms always take one operand.
+ if (getNumChildren() != 1) {
+ TP.error("Node transform '" + getOperator()->getName() +
+ "' requires one operand!");
+ return false;
+ }
+
+ bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
+ return MadeChange;
+}
+
+/// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
+/// RHS of a commutative operation, not the on LHS.
+static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
+ if (!N->isLeaf() && N->getOperator()->getName() == "imm")
+ return true;
+ if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
+ return true;
+ return false;
+}
+
+
+/// canPatternMatch - If it is impossible for this pattern to match on this
+/// target, fill in Reason and return false. Otherwise, return true. This is
+/// used as a sanity check for .td files (to prevent people from writing stuff
+/// that can never possibly work), and to prevent the pattern permuter from
+/// generating stuff that is useless.
+bool TreePatternNode::canPatternMatch(std::string &Reason,
+ const CodeGenDAGPatterns &CDP) {
+ if (isLeaf()) return true;
+
+ for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
+ if (!getChild(i)->canPatternMatch(Reason, CDP))
+ return false;
+
+ // If this is an intrinsic, handle cases that would make it not match. For
+ // example, if an operand is required to be an immediate.
+ if (getOperator()->isSubClassOf("Intrinsic")) {
+ // TODO:
+ return true;
+ }
+
+ if (getOperator()->isSubClassOf("ComplexPattern"))
+ return true;
+
+ // If this node is a commutative operator, check that the LHS isn't an
+ // immediate.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
+ bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ // Scan all of the operands of the node and make sure that only the last one
+ // is a constant node, unless the RHS also is.
+ if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
+ unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
+ for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
+ if (OnlyOnRHSOfCommutative(getChild(i))) {
+ Reason="Immediate value must be on the RHS of commutative operators!";
+ return false;
+ }
+ }
+ }
+
+ return true;
+}
+
+//===----------------------------------------------------------------------===//
+// TreePattern implementation
+//
+
+TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
+ isInputPattern(isInput), HasError(false),
+ Infer(*this) {
+ for (Init *I : RawPat->getValues())
+ Trees.push_back(ParseTreePattern(I, ""));
+}
+
+TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
+ CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
+ isInputPattern(isInput), HasError(false),
+ Infer(*this) {
+ Trees.push_back(ParseTreePattern(Pat, ""));
+}
+
+TreePattern::TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput,
+ CodeGenDAGPatterns &cdp)
+ : TheRecord(TheRec), CDP(cdp), isInputPattern(isInput), HasError(false),
+ Infer(*this) {
+ Trees.push_back(Pat);
+}
+
+void TreePattern::error(const Twine &Msg) {
+ if (HasError)
+ return;
+ dump();
+ PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
+ HasError = true;
+}
+
+void TreePattern::ComputeNamedNodes() {
+ for (TreePatternNodePtr &Tree : Trees)
+ ComputeNamedNodes(Tree.get());
+}
+
+void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
+ if (!N->getName().empty())
+ NamedNodes[N->getName()].push_back(N);
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ ComputeNamedNodes(N->getChild(i));
+}
+
+TreePatternNodePtr TreePattern::ParseTreePattern(Init *TheInit,
+ StringRef OpName) {
+ if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
+ Record *R = DI->getDef();
+
+ // Direct reference to a leaf DagNode or PatFrag? Turn it into a
+ // TreePatternNode of its own. For example:
+ /// (foo GPR, imm) -> (foo GPR, (imm))
+ if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrags"))
+ return ParseTreePattern(
+ DagInit::get(DI, nullptr,
+ std::vector<std::pair<Init*, StringInit*> >()),
+ OpName);
+
+ // Input argument?
+ TreePatternNodePtr Res = std::make_shared<TreePatternNode>(DI, 1);
+ if (R->getName() == "node" && !OpName.empty()) {
+ if (OpName.empty())
+ error("'node' argument requires a name to match with operand list");
+ Args.push_back(std::string(OpName));
+ }
+
+ Res->setName(OpName);
+ return Res;
+ }
+
+ // ?:$name or just $name.
+ if (isa<UnsetInit>(TheInit)) {
+ if (OpName.empty())
+ error("'?' argument requires a name to match with operand list");
+ TreePatternNodePtr Res = std::make_shared<TreePatternNode>(TheInit, 1);
+ Args.push_back(std::string(OpName));
+ Res->setName(OpName);
+ return Res;
+ }
+
+ if (isa<IntInit>(TheInit) || isa<BitInit>(TheInit)) {
+ if (!OpName.empty())
+ error("Constant int or bit argument should not have a name!");
+ if (isa<BitInit>(TheInit))
+ TheInit = TheInit->convertInitializerTo(IntRecTy::get());
+ return std::make_shared<TreePatternNode>(TheInit, 1);
+ }
+
+ if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
+ // Turn this into an IntInit.
+ Init *II = BI->convertInitializerTo(IntRecTy::get());
+ if (!II || !isa<IntInit>(II))
+ error("Bits value must be constants!");
+ return ParseTreePattern(II, OpName);
+ }
+
+ DagInit *Dag = dyn_cast<DagInit>(TheInit);
+ if (!Dag) {
+ TheInit->print(errs());
+ error("Pattern has unexpected init kind!");
+ }
+ DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
+ if (!OpDef) error("Pattern has unexpected operator type!");
+ Record *Operator = OpDef->getDef();
+
+ if (Operator->isSubClassOf("ValueType")) {
+ // If the operator is a ValueType, then this must be "type cast" of a leaf
+ // node.
+ if (Dag->getNumArgs() != 1)
+ error("Type cast only takes one operand!");
+
+ TreePatternNodePtr New =
+ ParseTreePattern(Dag->getArg(0), Dag->getArgNameStr(0));
+
+ // Apply the type cast.
+ assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
+ const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes();
+ New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this);
+
+ if (!OpName.empty())
+ error("ValueType cast should not have a name!");
+ return New;
+ }
+
+ // Verify that this is something that makes sense for an operator.
+ if (!Operator->isSubClassOf("PatFrags") &&
+ !Operator->isSubClassOf("SDNode") &&
+ !Operator->isSubClassOf("Instruction") &&
+ !Operator->isSubClassOf("SDNodeXForm") &&
+ !Operator->isSubClassOf("Intrinsic") &&
+ !Operator->isSubClassOf("ComplexPattern") &&
+ Operator->getName() != "set" &&
+ Operator->getName() != "implicit")
+ error("Unrecognized node '" + Operator->getName() + "'!");
+
+ // Check to see if this is something that is illegal in an input pattern.
+ if (isInputPattern) {
+ if (Operator->isSubClassOf("Instruction") ||
+ Operator->isSubClassOf("SDNodeXForm"))
+ error("Cannot use '" + Operator->getName() + "' in an input pattern!");
+ } else {
+ if (Operator->isSubClassOf("Intrinsic"))
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+
+ if (Operator->isSubClassOf("SDNode") &&
+ Operator->getName() != "imm" &&
+ Operator->getName() != "timm" &&
+ Operator->getName() != "fpimm" &&
+ Operator->getName() != "tglobaltlsaddr" &&
+ Operator->getName() != "tconstpool" &&
+ Operator->getName() != "tjumptable" &&
+ Operator->getName() != "tframeindex" &&
+ Operator->getName() != "texternalsym" &&
+ Operator->getName() != "tblockaddress" &&
+ Operator->getName() != "tglobaladdr" &&
+ Operator->getName() != "bb" &&
+ Operator->getName() != "vt" &&
+ Operator->getName() != "mcsym")
+ error("Cannot use '" + Operator->getName() + "' in an output pattern!");
+ }
+
+ std::vector<TreePatternNodePtr> Children;
+
+ // Parse all the operands.
+ for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
+ Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i)));
+
+ // Get the actual number of results before Operator is converted to an intrinsic
+ // node (which is hard-coded to have either zero or one result).
+ unsigned NumResults = GetNumNodeResults(Operator, CDP);
+
+ // If the operator is an intrinsic, then this is just syntactic sugar for
+ // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
+ // convert the intrinsic name to a number.
+ if (Operator->isSubClassOf("Intrinsic")) {
+ const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
+ unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
+
+ // If this intrinsic returns void, it must have side-effects and thus a
+ // chain.
+ if (Int.IS.RetVTs.empty())
+ Operator = getDAGPatterns().get_intrinsic_void_sdnode();
+ else if (Int.ModRef != CodeGenIntrinsic::NoMem || Int.hasSideEffects)
+ // Has side-effects, requires chain.
+ Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
+ else // Otherwise, no chain.
+ Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
+
+ Children.insert(Children.begin(),
+ std::make_shared<TreePatternNode>(IntInit::get(IID), 1));
+ }
+
+ if (Operator->isSubClassOf("ComplexPattern")) {
+ for (unsigned i = 0; i < Children.size(); ++i) {
+ TreePatternNodePtr Child = Children[i];
+
+ if (Child->getName().empty())
+ error("All arguments to a ComplexPattern must be named");
+
+ // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
+ // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
+ // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
+ auto OperandId = std::make_pair(Operator, i);
+ auto PrevOp = ComplexPatternOperands.find(Child->getName());
+ if (PrevOp != ComplexPatternOperands.end()) {
+ if (PrevOp->getValue() != OperandId)
+ error("All ComplexPattern operands must appear consistently: "
+ "in the same order in just one ComplexPattern instance.");
+ } else
+ ComplexPatternOperands[Child->getName()] = OperandId;
+ }
+ }
+
+ TreePatternNodePtr Result =
+ std::make_shared<TreePatternNode>(Operator, std::move(Children),
+ NumResults);
+ Result->setName(OpName);
+
+ if (Dag->getName()) {
+ assert(Result->getName().empty());
+ Result->setName(Dag->getNameStr());
+ }
+ return Result;
+}
+
+/// SimplifyTree - See if we can simplify this tree to eliminate something that
+/// will never match in favor of something obvious that will. This is here
+/// strictly as a convenience to target authors because it allows them to write
+/// more type generic things and have useless type casts fold away.
+///
+/// This returns true if any change is made.
+static bool SimplifyTree(TreePatternNodePtr &N) {
+ if (N->isLeaf())
+ return false;
+
+ // If we have a bitconvert with a resolved type and if the source and
+ // destination types are the same, then the bitconvert is useless, remove it.
+ //
+ // We make an exception if the types are completely empty. This can come up
+ // when the pattern being simplified is in the Fragments list of a PatFrags,
+ // so that the operand is just an untyped "node". In that situation we leave
+ // bitconverts unsimplified, and simplify them later once the fragment is
+ // expanded into its true context.
+ if (N->getOperator()->getName() == "bitconvert" &&
+ N->getExtType(0).isValueTypeByHwMode(false) &&
+ !N->getExtType(0).empty() &&
+ N->getExtType(0) == N->getChild(0)->getExtType(0) &&
+ N->getName().empty()) {
+ N = N->getChildShared(0);
+ SimplifyTree(N);
+ return true;
+ }
+
+ // Walk all children.
+ bool MadeChange = false;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNodePtr Child = N->getChildShared(i);
+ MadeChange |= SimplifyTree(Child);
+ N->setChild(i, std::move(Child));
+ }
+ return MadeChange;
+}
+
+
+
+/// InferAllTypes - Infer/propagate as many types throughout the expression
+/// patterns as possible. Return true if all types are inferred, false
+/// otherwise. Flags an error if a type contradiction is found.
+bool TreePattern::
+InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
+ if (NamedNodes.empty())
+ ComputeNamedNodes();
+
+ bool MadeChange = true;
+ while (MadeChange) {
+ MadeChange = false;
+ for (TreePatternNodePtr &Tree : Trees) {
+ MadeChange |= Tree->ApplyTypeConstraints(*this, false);
+ MadeChange |= SimplifyTree(Tree);
+ }
+
+ // If there are constraints on our named nodes, apply them.
+ for (auto &Entry : NamedNodes) {
+ SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
+
+ // If we have input named node types, propagate their types to the named
+ // values here.
+ if (InNamedTypes) {
+ if (!InNamedTypes->count(Entry.getKey())) {
+ error("Node '" + std::string(Entry.getKey()) +
+ "' in output pattern but not input pattern");
+ return true;
+ }
+
+ const SmallVectorImpl<TreePatternNode*> &InNodes =
+ InNamedTypes->find(Entry.getKey())->second;
+
+ // The input types should be fully resolved by now.
+ for (TreePatternNode *Node : Nodes) {
+ // If this node is a register class, and it is the root of the pattern
+ // then we're mapping something onto an input register. We allow
+ // changing the type of the input register in this case. This allows
+ // us to match things like:
+ // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
+ if (Node == Trees[0].get() && Node->isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
+ if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
+ DI->getDef()->isSubClassOf("RegisterOperand")))
+ continue;
+ }
+
+ assert(Node->getNumTypes() == 1 &&
+ InNodes[0]->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+ MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
+ *this);
+ }
+ }
+
+ // If there are multiple nodes with the same name, they must all have the
+ // same type.
+ if (Entry.second.size() > 1) {
+ for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
+ TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
+ assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
+ "FIXME: cannot name multiple result nodes yet");
+
+ MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
+ MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
+ }
+ }
+ }
+ }
+
+ bool HasUnresolvedTypes = false;
+ for (const TreePatternNodePtr &Tree : Trees)
+ HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this);
+ return !HasUnresolvedTypes;
+}
+
+void TreePattern::print(raw_ostream &OS) const {
+ OS << getRecord()->getName();
+ if (!Args.empty()) {
+ OS << "(" << Args[0];
+ for (unsigned i = 1, e = Args.size(); i != e; ++i)
+ OS << ", " << Args[i];
+ OS << ")";
+ }
+ OS << ": ";
+
+ if (Trees.size() > 1)
+ OS << "[\n";
+ for (const TreePatternNodePtr &Tree : Trees) {
+ OS << "\t";
+ Tree->print(OS);
+ OS << "\n";
+ }
+
+ if (Trees.size() > 1)
+ OS << "]\n";
+}
+
+void TreePattern::dump() const { print(errs()); }
+
+//===----------------------------------------------------------------------===//
+// CodeGenDAGPatterns implementation
+//
+
+CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R,
+ PatternRewriterFn PatternRewriter)
+ : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()),
+ PatternRewriter(PatternRewriter) {
+
+ Intrinsics = CodeGenIntrinsicTable(Records);
+ ParseNodeInfo();
+ ParseNodeTransforms();
+ ParseComplexPatterns();
+ ParsePatternFragments();
+ ParseDefaultOperands();
+ ParseInstructions();
+ ParsePatternFragments(/*OutFrags*/true);
+ ParsePatterns();
+
+ // Break patterns with parameterized types into a series of patterns,
+ // where each one has a fixed type and is predicated on the conditions
+ // of the associated HW mode.
+ ExpandHwModeBasedTypes();
+
+ // Generate variants. For example, commutative patterns can match
+ // multiple ways. Add them to PatternsToMatch as well.
+ GenerateVariants();
+
+ // Infer instruction flags. For example, we can detect loads,
+ // stores, and side effects in many cases by examining an
+ // instruction's pattern.
+ InferInstructionFlags();
+
+ // Verify that instruction flags match the patterns.
+ VerifyInstructionFlags();
+}
+
Record *CodeGenDAGPatterns::getSDNodeNamed(StringRef Name) const {
- Record *N = Records.getDef(Name);
- if (!N || !N->isSubClassOf("SDNode"))
- PrintFatalError("Error getting SDNode '" + Name + "'!");
-
- return N;
-}
-
-// Parse all of the SDNode definitions for the target, populating SDNodes.
-void CodeGenDAGPatterns::ParseNodeInfo() {
- std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
- const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
-
- while (!Nodes.empty()) {
- Record *R = Nodes.back();
- SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
- Nodes.pop_back();
- }
-
- // Get the builtin intrinsic nodes.
- intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
- intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
- intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
-}
-
-/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
-/// map, and emit them to the file as functions.
-void CodeGenDAGPatterns::ParseNodeTransforms() {
- std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
- while (!Xforms.empty()) {
- Record *XFormNode = Xforms.back();
- Record *SDNode = XFormNode->getValueAsDef("Opcode");
- StringRef Code = XFormNode->getValueAsString("XFormFunction");
- SDNodeXForms.insert(
- std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
-
- Xforms.pop_back();
- }
-}
-
-void CodeGenDAGPatterns::ParseComplexPatterns() {
- std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
- while (!AMs.empty()) {
- ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
- AMs.pop_back();
- }
-}
-
-
-/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
-/// file, building up the PatternFragments map. After we've collected them all,
-/// inline fragments together as necessary, so that there are no references left
-/// inside a pattern fragment to a pattern fragment.
-///
-void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
- std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
-
- // First step, parse all of the fragments.
- for (Record *Frag : Fragments) {
- if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
- continue;
-
- ListInit *LI = Frag->getValueAsListInit("Fragments");
- TreePattern *P =
- (PatternFragments[Frag] = std::make_unique<TreePattern>(
- Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
- *this)).get();
-
- // Validate the argument list, converting it to set, to discard duplicates.
- std::vector<std::string> &Args = P->getArgList();
- // Copy the args so we can take StringRefs to them.
- auto ArgsCopy = Args;
- SmallDenseSet<StringRef, 4> OperandsSet;
- OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
-
- if (OperandsSet.count(""))
- P->error("Cannot have unnamed 'node' values in pattern fragment!");
-
- // Parse the operands list.
- DagInit *OpsList = Frag->getValueAsDag("Operands");
- DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
- // Special cases: ops == outs == ins. Different names are used to
- // improve readability.
- if (!OpsOp ||
- (OpsOp->getDef()->getName() != "ops" &&
- OpsOp->getDef()->getName() != "outs" &&
- OpsOp->getDef()->getName() != "ins"))
- P->error("Operands list should start with '(ops ... '!");
-
- // Copy over the arguments.
- Args.clear();
- for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
- if (!isa<DefInit>(OpsList->getArg(j)) ||
- cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
- P->error("Operands list should all be 'node' values.");
- if (!OpsList->getArgName(j))
- P->error("Operands list should have names for each operand!");
- StringRef ArgNameStr = OpsList->getArgNameStr(j);
- if (!OperandsSet.count(ArgNameStr))
- P->error("'" + ArgNameStr +
- "' does not occur in pattern or was multiply specified!");
- OperandsSet.erase(ArgNameStr);
- Args.push_back(std::string(ArgNameStr));
- }
-
- if (!OperandsSet.empty())
- P->error("Operands list does not contain an entry for operand '" +
- *OperandsSet.begin() + "'!");
-
- // If there is a node transformation corresponding to this, keep track of
- // it.
- Record *Transform = Frag->getValueAsDef("OperandTransform");
- if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
- for (auto T : P->getTrees())
- T->setTransformFn(Transform);
- }
-
- // Now that we've parsed all of the tree fragments, do a closure on them so
- // that there are not references to PatFrags left inside of them.
- for (Record *Frag : Fragments) {
- if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
- continue;
-
- TreePattern &ThePat = *PatternFragments[Frag];
- ThePat.InlinePatternFragments();
-
- // Infer as many types as possible. Don't worry about it if we don't infer
- // all of them, some may depend on the inputs of the pattern. Also, don't
- // validate type sets; validation may cause spurious failures e.g. if a
- // fragment needs floating-point types but the current target does not have
- // any (this is only an error if that fragment is ever used!).
- {
- TypeInfer::SuppressValidation SV(ThePat.getInfer());
- ThePat.InferAllTypes();
- ThePat.resetError();
- }
-
- // If debugging, print out the pattern fragment result.
- LLVM_DEBUG(ThePat.dump());
- }
-}
-
-void CodeGenDAGPatterns::ParseDefaultOperands() {
- std::vector<Record*> DefaultOps;
- DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
-
- // Find some SDNode.
- assert(!SDNodes.empty() && "No SDNodes parsed?");
- Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
-
- for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
- DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
-
- // Clone the DefaultInfo dag node, changing the operator from 'ops' to
- // SomeSDnode so that we can parse this.
- std::vector<std::pair<Init*, StringInit*> > Ops;
- for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
- Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
- DefaultInfo->getArgName(op)));
- DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
-
- // Create a TreePattern to parse this.
- TreePattern P(DefaultOps[i], DI, false, *this);
- assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
-
- // Copy the operands over into a DAGDefaultOperand.
- DAGDefaultOperand DefaultOpInfo;
-
- const TreePatternNodePtr &T = P.getTree(0);
- for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
- TreePatternNodePtr TPN = T->getChildShared(op);
- while (TPN->ApplyTypeConstraints(P, false))
- /* Resolve all types */;
-
- if (TPN->ContainsUnresolvedType(P)) {
- PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
- DefaultOps[i]->getName() +
- "' doesn't have a concrete type!");
- }
- DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
- }
-
- // Insert it into the DefaultOperands map so we can find it later.
- DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
- }
-}
-
-/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
-/// instruction input. Return true if this is a real use.
-static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
- std::map<std::string, TreePatternNodePtr> &InstInputs) {
- // No name -> not interesting.
- if (Pat->getName().empty()) {
- if (Pat->isLeaf()) {
- DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
- if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
- DI->getDef()->isSubClassOf("RegisterOperand")))
- I.error("Input " + DI->getDef()->getName() + " must be named!");
- }
- return false;
- }
-
- Record *Rec;
- if (Pat->isLeaf()) {
- DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
- if (!DI)
- I.error("Input $" + Pat->getName() + " must be an identifier!");
- Rec = DI->getDef();
- } else {
- Rec = Pat->getOperator();
- }
-
- // SRCVALUE nodes are ignored.
- if (Rec->getName() == "srcvalue")
- return false;
-
- TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
- if (!Slot) {
- Slot = Pat;
- return true;
- }
- Record *SlotRec;
- if (Slot->isLeaf()) {
- SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
- } else {
- assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
- SlotRec = Slot->getOperator();
- }
-
- // Ensure that the inputs agree if we've already seen this input.
- if (Rec != SlotRec)
- I.error("All $" + Pat->getName() + " inputs must agree with each other");
- // Ensure that the types can agree as well.
- Slot->UpdateNodeType(0, Pat->getExtType(0), I);
- Pat->UpdateNodeType(0, Slot->getExtType(0), I);
- if (Slot->getExtTypes() != Pat->getExtTypes())
- I.error("All $" + Pat->getName() + " inputs must agree with each other");
- return true;
-}
-
-/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
-/// part of "I", the instruction), computing the set of inputs and outputs of
-/// the pattern. Report errors if we see anything naughty.
-void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
- TreePattern &I, TreePatternNodePtr Pat,
- std::map<std::string, TreePatternNodePtr> &InstInputs,
- MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
- &InstResults,
- std::vector<Record *> &InstImpResults) {
-
- // The instruction pattern still has unresolved fragments. For *named*
- // nodes we must resolve those here. This may not result in multiple
- // alternatives.
- if (!Pat->getName().empty()) {
- TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
- SrcPattern.InlinePatternFragments();
- SrcPattern.InferAllTypes();
- Pat = SrcPattern.getOnlyTree();
- }
-
- if (Pat->isLeaf()) {
- bool isUse = HandleUse(I, Pat, InstInputs);
- if (!isUse && Pat->getTransformFn())
- I.error("Cannot specify a transform function for a non-input value!");
- return;
- }
-
- if (Pat->getOperator()->getName() == "implicit") {
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- TreePatternNode *Dest = Pat->getChild(i);
- if (!Dest->isLeaf())
- I.error("implicitly defined value should be a register!");
-
- DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
- if (!Val || !Val->getDef()->isSubClassOf("Register"))
- I.error("implicitly defined value should be a register!");
- InstImpResults.push_back(Val->getDef());
- }
- return;
- }
-
- if (Pat->getOperator()->getName() != "set") {
- // If this is not a set, verify that the children nodes are not void typed,
- // and recurse.
- for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
- if (Pat->getChild(i)->getNumTypes() == 0)
- I.error("Cannot have void nodes inside of patterns!");
- FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
- InstResults, InstImpResults);
- }
-
- // If this is a non-leaf node with no children, treat it basically as if
- // it were a leaf. This handles nodes like (imm).
- bool isUse = HandleUse(I, Pat, InstInputs);
-
- if (!isUse && Pat->getTransformFn())
- I.error("Cannot specify a transform function for a non-input value!");
- return;
- }
-
- // Otherwise, this is a set, validate and collect instruction results.
- if (Pat->getNumChildren() == 0)
- I.error("set requires operands!");
-
- if (Pat->getTransformFn())
- I.error("Cannot specify a transform function on a set node!");
-
- // Check the set destinations.
- unsigned NumDests = Pat->getNumChildren()-1;
- for (unsigned i = 0; i != NumDests; ++i) {
- TreePatternNodePtr Dest = Pat->getChildShared(i);
- // For set destinations we also must resolve fragments here.
- TreePattern DestPattern(I.getRecord(), Dest, false, *this);
- DestPattern.InlinePatternFragments();
- DestPattern.InferAllTypes();
- Dest = DestPattern.getOnlyTree();
-
- if (!Dest->isLeaf())
- I.error("set destination should be a register!");
-
- DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
- if (!Val) {
- I.error("set destination should be a register!");
- continue;
- }
-
- if (Val->getDef()->isSubClassOf("RegisterClass") ||
- Val->getDef()->isSubClassOf("ValueType") ||
- Val->getDef()->isSubClassOf("RegisterOperand") ||
- Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
- if (Dest->getName().empty())
- I.error("set destination must have a name!");
- if (InstResults.count(Dest->getName()))
- I.error("cannot set '" + Dest->getName() + "' multiple times");
- InstResults[Dest->getName()] = Dest;
- } else if (Val->getDef()->isSubClassOf("Register")) {
- InstImpResults.push_back(Val->getDef());
- } else {
- I.error("set destination should be a register!");
- }
- }
-
- // Verify and collect info from the computation.
- FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
- InstResults, InstImpResults);
-}
-
-//===----------------------------------------------------------------------===//
-// Instruction Analysis
-//===----------------------------------------------------------------------===//
-
-class InstAnalyzer {
- const CodeGenDAGPatterns &CDP;
-public:
- bool hasSideEffects;
- bool mayStore;
- bool mayLoad;
- bool isBitcast;
- bool isVariadic;
- bool hasChain;
-
- InstAnalyzer(const CodeGenDAGPatterns &cdp)
- : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
- isBitcast(false), isVariadic(false), hasChain(false) {}
-
- void Analyze(const PatternToMatch &Pat) {
- const TreePatternNode *N = Pat.getSrcPattern();
- AnalyzeNode(N);
- // These properties are detected only on the root node.
- isBitcast = IsNodeBitcast(N);
- }
-
-private:
- bool IsNodeBitcast(const TreePatternNode *N) const {
- if (hasSideEffects || mayLoad || mayStore || isVariadic)
- return false;
-
- if (N->isLeaf())
- return false;
- if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
- return false;
-
- const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
- if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
- return false;
- return OpInfo.getEnumName() == "ISD::BITCAST";
- }
-
-public:
- void AnalyzeNode(const TreePatternNode *N) {
- if (N->isLeaf()) {
- if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
- Record *LeafRec = DI->getDef();
- // Handle ComplexPattern leaves.
- if (LeafRec->isSubClassOf("ComplexPattern")) {
- const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
- if (CP.hasProperty(SDNPMayStore)) mayStore = true;
- if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
- if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
- }
- }
- return;
- }
-
- // Analyze children.
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- AnalyzeNode(N->getChild(i));
-
- // Notice properties of the node.
- if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
- if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
- if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
- if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
- if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
-
- if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
- // If this is an intrinsic, analyze it.
- if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
- mayLoad = true;// These may load memory.
-
- if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
- mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
-
- if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
- IntInfo->hasSideEffects)
- // ReadWriteMem intrinsics can have other strange effects.
- hasSideEffects = true;
- }
- }
-
-};
-
-static bool InferFromPattern(CodeGenInstruction &InstInfo,
- const InstAnalyzer &PatInfo,
- Record *PatDef) {
- bool Error = false;
-
- // Remember where InstInfo got its flags.
- if (InstInfo.hasUndefFlags())
- InstInfo.InferredFrom = PatDef;
-
- // Check explicitly set flags for consistency.
- if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
- !InstInfo.hasSideEffects_Unset) {
- // Allow explicitly setting hasSideEffects = 1 on instructions, even when
- // the pattern has no side effects. That could be useful for div/rem
- // instructions that may trap.
- if (!InstInfo.hasSideEffects) {
- Error = true;
- PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
- Twine(InstInfo.hasSideEffects));
- }
- }
-
- if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
- Error = true;
- PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
- Twine(InstInfo.mayStore));
- }
-
- if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
- // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
- // Some targets translate immediates to loads.
- if (!InstInfo.mayLoad) {
- Error = true;
- PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
- Twine(InstInfo.mayLoad));
- }
- }
-
- // Transfer inferred flags.
- InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
- InstInfo.mayStore |= PatInfo.mayStore;
- InstInfo.mayLoad |= PatInfo.mayLoad;
-
- // These flags are silently added without any verification.
- // FIXME: To match historical behavior of TableGen, for now add those flags
- // only when we're inferring from the primary instruction pattern.
- if (PatDef->isSubClassOf("Instruction")) {
- InstInfo.isBitcast |= PatInfo.isBitcast;
- InstInfo.hasChain |= PatInfo.hasChain;
- InstInfo.hasChain_Inferred = true;
- }
-
- // Don't infer isVariadic. This flag means something different on SDNodes and
- // instructions. For example, a CALL SDNode is variadic because it has the
- // call arguments as operands, but a CALL instruction is not variadic - it
- // has argument registers as implicit, not explicit uses.
-
- return Error;
-}
-
-/// hasNullFragReference - Return true if the DAG has any reference to the
-/// null_frag operator.
-static bool hasNullFragReference(DagInit *DI) {
- DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
- if (!OpDef) return false;
- Record *Operator = OpDef->getDef();
-
- // If this is the null fragment, return true.
- if (Operator->getName() == "null_frag") return true;
- // If any of the arguments reference the null fragment, return true.
- for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
+ Record *N = Records.getDef(Name);
+ if (!N || !N->isSubClassOf("SDNode"))
+ PrintFatalError("Error getting SDNode '" + Name + "'!");
+
+ return N;
+}
+
+// Parse all of the SDNode definitions for the target, populating SDNodes.
+void CodeGenDAGPatterns::ParseNodeInfo() {
+ std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
+ const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
+
+ while (!Nodes.empty()) {
+ Record *R = Nodes.back();
+ SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH)));
+ Nodes.pop_back();
+ }
+
+ // Get the builtin intrinsic nodes.
+ intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
+ intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
+ intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
+}
+
+/// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
+/// map, and emit them to the file as functions.
+void CodeGenDAGPatterns::ParseNodeTransforms() {
+ std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
+ while (!Xforms.empty()) {
+ Record *XFormNode = Xforms.back();
+ Record *SDNode = XFormNode->getValueAsDef("Opcode");
+ StringRef Code = XFormNode->getValueAsString("XFormFunction");
+ SDNodeXForms.insert(
+ std::make_pair(XFormNode, NodeXForm(SDNode, std::string(Code))));
+
+ Xforms.pop_back();
+ }
+}
+
+void CodeGenDAGPatterns::ParseComplexPatterns() {
+ std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
+ while (!AMs.empty()) {
+ ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
+ AMs.pop_back();
+ }
+}
+
+
+/// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
+/// file, building up the PatternFragments map. After we've collected them all,
+/// inline fragments together as necessary, so that there are no references left
+/// inside a pattern fragment to a pattern fragment.
+///
+void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
+ std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrags");
+
+ // First step, parse all of the fragments.
+ for (Record *Frag : Fragments) {
+ if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
+ continue;
+
+ ListInit *LI = Frag->getValueAsListInit("Fragments");
+ TreePattern *P =
+ (PatternFragments[Frag] = std::make_unique<TreePattern>(
+ Frag, LI, !Frag->isSubClassOf("OutPatFrag"),
+ *this)).get();
+
+ // Validate the argument list, converting it to set, to discard duplicates.
+ std::vector<std::string> &Args = P->getArgList();
+ // Copy the args so we can take StringRefs to them.
+ auto ArgsCopy = Args;
+ SmallDenseSet<StringRef, 4> OperandsSet;
+ OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end());
+
+ if (OperandsSet.count(""))
+ P->error("Cannot have unnamed 'node' values in pattern fragment!");
+
+ // Parse the operands list.
+ DagInit *OpsList = Frag->getValueAsDag("Operands");
+ DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
+ // Special cases: ops == outs == ins. Different names are used to
+ // improve readability.
+ if (!OpsOp ||
+ (OpsOp->getDef()->getName() != "ops" &&
+ OpsOp->getDef()->getName() != "outs" &&
+ OpsOp->getDef()->getName() != "ins"))
+ P->error("Operands list should start with '(ops ... '!");
+
+ // Copy over the arguments.
+ Args.clear();
+ for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
+ if (!isa<DefInit>(OpsList->getArg(j)) ||
+ cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
+ P->error("Operands list should all be 'node' values.");
+ if (!OpsList->getArgName(j))
+ P->error("Operands list should have names for each operand!");
+ StringRef ArgNameStr = OpsList->getArgNameStr(j);
+ if (!OperandsSet.count(ArgNameStr))
+ P->error("'" + ArgNameStr +
+ "' does not occur in pattern or was multiply specified!");
+ OperandsSet.erase(ArgNameStr);
+ Args.push_back(std::string(ArgNameStr));
+ }
+
+ if (!OperandsSet.empty())
+ P->error("Operands list does not contain an entry for operand '" +
+ *OperandsSet.begin() + "'!");
+
+ // If there is a node transformation corresponding to this, keep track of
+ // it.
+ Record *Transform = Frag->getValueAsDef("OperandTransform");
+ if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
+ for (auto T : P->getTrees())
+ T->setTransformFn(Transform);
+ }
+
+ // Now that we've parsed all of the tree fragments, do a closure on them so
+ // that there are not references to PatFrags left inside of them.
+ for (Record *Frag : Fragments) {
+ if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
+ continue;
+
+ TreePattern &ThePat = *PatternFragments[Frag];
+ ThePat.InlinePatternFragments();
+
+ // Infer as many types as possible. Don't worry about it if we don't infer
+ // all of them, some may depend on the inputs of the pattern. Also, don't
+ // validate type sets; validation may cause spurious failures e.g. if a
+ // fragment needs floating-point types but the current target does not have
+ // any (this is only an error if that fragment is ever used!).
+ {
+ TypeInfer::SuppressValidation SV(ThePat.getInfer());
+ ThePat.InferAllTypes();
+ ThePat.resetError();
+ }
+
+ // If debugging, print out the pattern fragment result.
+ LLVM_DEBUG(ThePat.dump());
+ }
+}
+
+void CodeGenDAGPatterns::ParseDefaultOperands() {
+ std::vector<Record*> DefaultOps;
+ DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
+
+ // Find some SDNode.
+ assert(!SDNodes.empty() && "No SDNodes parsed?");
+ Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
+
+ for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
+ DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
+
+ // Clone the DefaultInfo dag node, changing the operator from 'ops' to
+ // SomeSDnode so that we can parse this.
+ std::vector<std::pair<Init*, StringInit*> > Ops;
+ for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
+ Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
+ DefaultInfo->getArgName(op)));
+ DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops);
+
+ // Create a TreePattern to parse this.
+ TreePattern P(DefaultOps[i], DI, false, *this);
+ assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
+
+ // Copy the operands over into a DAGDefaultOperand.
+ DAGDefaultOperand DefaultOpInfo;
+
+ const TreePatternNodePtr &T = P.getTree(0);
+ for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
+ TreePatternNodePtr TPN = T->getChildShared(op);
+ while (TPN->ApplyTypeConstraints(P, false))
+ /* Resolve all types */;
+
+ if (TPN->ContainsUnresolvedType(P)) {
+ PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
+ DefaultOps[i]->getName() +
+ "' doesn't have a concrete type!");
+ }
+ DefaultOpInfo.DefaultOps.push_back(std::move(TPN));
+ }
+
+ // Insert it into the DefaultOperands map so we can find it later.
+ DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
+ }
+}
+
+/// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
+/// instruction input. Return true if this is a real use.
+static bool HandleUse(TreePattern &I, TreePatternNodePtr Pat,
+ std::map<std::string, TreePatternNodePtr> &InstInputs) {
+ // No name -> not interesting.
+ if (Pat->getName().empty()) {
+ if (Pat->isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
+ if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
+ DI->getDef()->isSubClassOf("RegisterOperand")))
+ I.error("Input " + DI->getDef()->getName() + " must be named!");
+ }
+ return false;
+ }
+
+ Record *Rec;
+ if (Pat->isLeaf()) {
+ DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
+ if (!DI)
+ I.error("Input $" + Pat->getName() + " must be an identifier!");
+ Rec = DI->getDef();
+ } else {
+ Rec = Pat->getOperator();
+ }
+
+ // SRCVALUE nodes are ignored.
+ if (Rec->getName() == "srcvalue")
+ return false;
+
+ TreePatternNodePtr &Slot = InstInputs[Pat->getName()];
+ if (!Slot) {
+ Slot = Pat;
+ return true;
+ }
+ Record *SlotRec;
+ if (Slot->isLeaf()) {
+ SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
+ } else {
+ assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
+ SlotRec = Slot->getOperator();
+ }
+
+ // Ensure that the inputs agree if we've already seen this input.
+ if (Rec != SlotRec)
+ I.error("All $" + Pat->getName() + " inputs must agree with each other");
+ // Ensure that the types can agree as well.
+ Slot->UpdateNodeType(0, Pat->getExtType(0), I);
+ Pat->UpdateNodeType(0, Slot->getExtType(0), I);
+ if (Slot->getExtTypes() != Pat->getExtTypes())
+ I.error("All $" + Pat->getName() + " inputs must agree with each other");
+ return true;
+}
+
+/// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
+/// part of "I", the instruction), computing the set of inputs and outputs of
+/// the pattern. Report errors if we see anything naughty.
+void CodeGenDAGPatterns::FindPatternInputsAndOutputs(
+ TreePattern &I, TreePatternNodePtr Pat,
+ std::map<std::string, TreePatternNodePtr> &InstInputs,
+ MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
+ &InstResults,
+ std::vector<Record *> &InstImpResults) {
+
+ // The instruction pattern still has unresolved fragments. For *named*
+ // nodes we must resolve those here. This may not result in multiple
+ // alternatives.
+ if (!Pat->getName().empty()) {
+ TreePattern SrcPattern(I.getRecord(), Pat, true, *this);
+ SrcPattern.InlinePatternFragments();
+ SrcPattern.InferAllTypes();
+ Pat = SrcPattern.getOnlyTree();
+ }
+
+ if (Pat->isLeaf()) {
+ bool isUse = HandleUse(I, Pat, InstInputs);
+ if (!isUse && Pat->getTransformFn())
+ I.error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ if (Pat->getOperator()->getName() == "implicit") {
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Dest = Pat->getChild(i);
+ if (!Dest->isLeaf())
+ I.error("implicitly defined value should be a register!");
+
+ DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
+ if (!Val || !Val->getDef()->isSubClassOf("Register"))
+ I.error("implicitly defined value should be a register!");
+ InstImpResults.push_back(Val->getDef());
+ }
+ return;
+ }
+
+ if (Pat->getOperator()->getName() != "set") {
+ // If this is not a set, verify that the children nodes are not void typed,
+ // and recurse.
+ for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
+ if (Pat->getChild(i)->getNumTypes() == 0)
+ I.error("Cannot have void nodes inside of patterns!");
+ FindPatternInputsAndOutputs(I, Pat->getChildShared(i), InstInputs,
+ InstResults, InstImpResults);
+ }
+
+ // If this is a non-leaf node with no children, treat it basically as if
+ // it were a leaf. This handles nodes like (imm).
+ bool isUse = HandleUse(I, Pat, InstInputs);
+
+ if (!isUse && Pat->getTransformFn())
+ I.error("Cannot specify a transform function for a non-input value!");
+ return;
+ }
+
+ // Otherwise, this is a set, validate and collect instruction results.
+ if (Pat->getNumChildren() == 0)
+ I.error("set requires operands!");
+
+ if (Pat->getTransformFn())
+ I.error("Cannot specify a transform function on a set node!");
+
+ // Check the set destinations.
+ unsigned NumDests = Pat->getNumChildren()-1;
+ for (unsigned i = 0; i != NumDests; ++i) {
+ TreePatternNodePtr Dest = Pat->getChildShared(i);
+ // For set destinations we also must resolve fragments here.
+ TreePattern DestPattern(I.getRecord(), Dest, false, *this);
+ DestPattern.InlinePatternFragments();
+ DestPattern.InferAllTypes();
+ Dest = DestPattern.getOnlyTree();
+
+ if (!Dest->isLeaf())
+ I.error("set destination should be a register!");
+
+ DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
+ if (!Val) {
+ I.error("set destination should be a register!");
+ continue;
+ }
+
+ if (Val->getDef()->isSubClassOf("RegisterClass") ||
+ Val->getDef()->isSubClassOf("ValueType") ||
+ Val->getDef()->isSubClassOf("RegisterOperand") ||
+ Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
+ if (Dest->getName().empty())
+ I.error("set destination must have a name!");
+ if (InstResults.count(Dest->getName()))
+ I.error("cannot set '" + Dest->getName() + "' multiple times");
+ InstResults[Dest->getName()] = Dest;
+ } else if (Val->getDef()->isSubClassOf("Register")) {
+ InstImpResults.push_back(Val->getDef());
+ } else {
+ I.error("set destination should be a register!");
+ }
+ }
+
+ // Verify and collect info from the computation.
+ FindPatternInputsAndOutputs(I, Pat->getChildShared(NumDests), InstInputs,
+ InstResults, InstImpResults);
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction Analysis
+//===----------------------------------------------------------------------===//
+
+class InstAnalyzer {
+ const CodeGenDAGPatterns &CDP;
+public:
+ bool hasSideEffects;
+ bool mayStore;
+ bool mayLoad;
+ bool isBitcast;
+ bool isVariadic;
+ bool hasChain;
+
+ InstAnalyzer(const CodeGenDAGPatterns &cdp)
+ : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
+ isBitcast(false), isVariadic(false), hasChain(false) {}
+
+ void Analyze(const PatternToMatch &Pat) {
+ const TreePatternNode *N = Pat.getSrcPattern();
+ AnalyzeNode(N);
+ // These properties are detected only on the root node.
+ isBitcast = IsNodeBitcast(N);
+ }
+
+private:
+ bool IsNodeBitcast(const TreePatternNode *N) const {
+ if (hasSideEffects || mayLoad || mayStore || isVariadic)
+ return false;
+
+ if (N->isLeaf())
+ return false;
+ if (N->getNumChildren() != 1 || !N->getChild(0)->isLeaf())
+ return false;
+
+ const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator());
+ if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
+ return false;
+ return OpInfo.getEnumName() == "ISD::BITCAST";
+ }
+
+public:
+ void AnalyzeNode(const TreePatternNode *N) {
+ if (N->isLeaf()) {
+ if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
+ Record *LeafRec = DI->getDef();
+ // Handle ComplexPattern leaves.
+ if (LeafRec->isSubClassOf("ComplexPattern")) {
+ const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
+ if (CP.hasProperty(SDNPMayStore)) mayStore = true;
+ if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
+ if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
+ }
+ }
+ return;
+ }
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ AnalyzeNode(N->getChild(i));
+
+ // Notice properties of the node.
+ if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
+ if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
+ if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
+ if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
+ if (N->NodeHasProperty(SDNPHasChain, CDP)) hasChain = true;
+
+ if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
+ // If this is an intrinsic, analyze it.
+ if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
+ mayLoad = true;// These may load memory.
+
+ if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
+ mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
+
+ if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem ||
+ IntInfo->hasSideEffects)
+ // ReadWriteMem intrinsics can have other strange effects.
+ hasSideEffects = true;
+ }
+ }
+
+};
+
+static bool InferFromPattern(CodeGenInstruction &InstInfo,
+ const InstAnalyzer &PatInfo,
+ Record *PatDef) {
+ bool Error = false;
+
+ // Remember where InstInfo got its flags.
+ if (InstInfo.hasUndefFlags())
+ InstInfo.InferredFrom = PatDef;
+
+ // Check explicitly set flags for consistency.
+ if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
+ !InstInfo.hasSideEffects_Unset) {
+ // Allow explicitly setting hasSideEffects = 1 on instructions, even when
+ // the pattern has no side effects. That could be useful for div/rem
+ // instructions that may trap.
+ if (!InstInfo.hasSideEffects) {
+ Error = true;
+ PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
+ Twine(InstInfo.hasSideEffects));
+ }
+ }
+
+ if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
+ Error = true;
+ PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
+ Twine(InstInfo.mayStore));
+ }
+
+ if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
+ // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
+ // Some targets translate immediates to loads.
+ if (!InstInfo.mayLoad) {
+ Error = true;
+ PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
+ Twine(InstInfo.mayLoad));
+ }
+ }
+
+ // Transfer inferred flags.
+ InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
+ InstInfo.mayStore |= PatInfo.mayStore;
+ InstInfo.mayLoad |= PatInfo.mayLoad;
+
+ // These flags are silently added without any verification.
+ // FIXME: To match historical behavior of TableGen, for now add those flags
+ // only when we're inferring from the primary instruction pattern.
+ if (PatDef->isSubClassOf("Instruction")) {
+ InstInfo.isBitcast |= PatInfo.isBitcast;
+ InstInfo.hasChain |= PatInfo.hasChain;
+ InstInfo.hasChain_Inferred = true;
+ }
+
+ // Don't infer isVariadic. This flag means something different on SDNodes and
+ // instructions. For example, a CALL SDNode is variadic because it has the
+ // call arguments as operands, but a CALL instruction is not variadic - it
+ // has argument registers as implicit, not explicit uses.
+
+ return Error;
+}
+
+/// hasNullFragReference - Return true if the DAG has any reference to the
+/// null_frag operator.
+static bool hasNullFragReference(DagInit *DI) {
+ DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
+ if (!OpDef) return false;
+ Record *Operator = OpDef->getDef();
+
+ // If this is the null fragment, return true.
+ if (Operator->getName() == "null_frag") return true;
+ // If any of the arguments reference the null fragment, return true.
+ for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
if (auto Arg = dyn_cast<DefInit>(DI->getArg(i)))
if (Arg->getDef()->getName() == "null_frag")
return true;
- DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
- if (Arg && hasNullFragReference(Arg))
- return true;
- }
-
- return false;
-}
-
-/// hasNullFragReference - Return true if any DAG in the list references
-/// the null_frag operator.
-static bool hasNullFragReference(ListInit *LI) {
- for (Init *I : LI->getValues()) {
- DagInit *DI = dyn_cast<DagInit>(I);
- assert(DI && "non-dag in an instruction Pattern list?!");
- if (hasNullFragReference(DI))
- return true;
- }
- return false;
-}
-
-/// Get all the instructions in a tree.
-static void
-getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
- if (Tree->isLeaf())
- return;
- if (Tree->getOperator()->isSubClassOf("Instruction"))
- Instrs.push_back(Tree->getOperator());
- for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
- getInstructionsInTree(Tree->getChild(i), Instrs);
-}
-
-/// Check the class of a pattern leaf node against the instruction operand it
-/// represents.
-static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
- Record *Leaf) {
- if (OI.Rec == Leaf)
- return true;
-
- // Allow direct value types to be used in instruction set patterns.
- // The type will be checked later.
- if (Leaf->isSubClassOf("ValueType"))
- return true;
-
- // Patterns can also be ComplexPattern instances.
- if (Leaf->isSubClassOf("ComplexPattern"))
- return true;
-
- return false;
-}
-
-void CodeGenDAGPatterns::parseInstructionPattern(
- CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
-
- assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
-
- // Parse the instruction.
- TreePattern I(CGI.TheDef, Pat, true, *this);
-
- // InstInputs - Keep track of all of the inputs of the instruction, along
- // with the record they are declared as.
- std::map<std::string, TreePatternNodePtr> InstInputs;
-
- // InstResults - Keep track of all the virtual registers that are 'set'
- // in the instruction, including what reg class they are.
- MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
- InstResults;
-
- std::vector<Record*> InstImpResults;
-
- // Verify that the top-level forms in the instruction are of void type, and
- // fill in the InstResults map.
- SmallString<32> TypesString;
- for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
- TypesString.clear();
- TreePatternNodePtr Pat = I.getTree(j);
- if (Pat->getNumTypes() != 0) {
- raw_svector_ostream OS(TypesString);
- for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
- if (k > 0)
- OS << ", ";
- Pat->getExtType(k).writeToStream(OS);
- }
- I.error("Top-level forms in instruction pattern should have"
- " void types, has types " +
- OS.str());
- }
-
- // Find inputs and outputs, and verify the structure of the uses/defs.
- FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
- InstImpResults);
- }
-
- // Now that we have inputs and outputs of the pattern, inspect the operands
- // list for the instruction. This determines the order that operands are
- // added to the machine instruction the node corresponds to.
- unsigned NumResults = InstResults.size();
-
- // Parse the operands list from the (ops) list, validating it.
- assert(I.getArgList().empty() && "Args list should still be empty here!");
-
- // Check that all of the results occur first in the list.
- std::vector<Record*> Results;
- std::vector<unsigned> ResultIndices;
- SmallVector<TreePatternNodePtr, 2> ResNodes;
- for (unsigned i = 0; i != NumResults; ++i) {
- if (i == CGI.Operands.size()) {
- const std::string &OpName =
+ DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
+ if (Arg && hasNullFragReference(Arg))
+ return true;
+ }
+
+ return false;
+}
+
+/// hasNullFragReference - Return true if any DAG in the list references
+/// the null_frag operator.
+static bool hasNullFragReference(ListInit *LI) {
+ for (Init *I : LI->getValues()) {
+ DagInit *DI = dyn_cast<DagInit>(I);
+ assert(DI && "non-dag in an instruction Pattern list?!");
+ if (hasNullFragReference(DI))
+ return true;
+ }
+ return false;
+}
+
+/// Get all the instructions in a tree.
+static void
+getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
+ if (Tree->isLeaf())
+ return;
+ if (Tree->getOperator()->isSubClassOf("Instruction"))
+ Instrs.push_back(Tree->getOperator());
+ for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
+ getInstructionsInTree(Tree->getChild(i), Instrs);
+}
+
+/// Check the class of a pattern leaf node against the instruction operand it
+/// represents.
+static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
+ Record *Leaf) {
+ if (OI.Rec == Leaf)
+ return true;
+
+ // Allow direct value types to be used in instruction set patterns.
+ // The type will be checked later.
+ if (Leaf->isSubClassOf("ValueType"))
+ return true;
+
+ // Patterns can also be ComplexPattern instances.
+ if (Leaf->isSubClassOf("ComplexPattern"))
+ return true;
+
+ return false;
+}
+
+void CodeGenDAGPatterns::parseInstructionPattern(
+ CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
+
+ assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
+
+ // Parse the instruction.
+ TreePattern I(CGI.TheDef, Pat, true, *this);
+
+ // InstInputs - Keep track of all of the inputs of the instruction, along
+ // with the record they are declared as.
+ std::map<std::string, TreePatternNodePtr> InstInputs;
+
+ // InstResults - Keep track of all the virtual registers that are 'set'
+ // in the instruction, including what reg class they are.
+ MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
+ InstResults;
+
+ std::vector<Record*> InstImpResults;
+
+ // Verify that the top-level forms in the instruction are of void type, and
+ // fill in the InstResults map.
+ SmallString<32> TypesString;
+ for (unsigned j = 0, e = I.getNumTrees(); j != e; ++j) {
+ TypesString.clear();
+ TreePatternNodePtr Pat = I.getTree(j);
+ if (Pat->getNumTypes() != 0) {
+ raw_svector_ostream OS(TypesString);
+ for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
+ if (k > 0)
+ OS << ", ";
+ Pat->getExtType(k).writeToStream(OS);
+ }
+ I.error("Top-level forms in instruction pattern should have"
+ " void types, has types " +
+ OS.str());
+ }
+
+ // Find inputs and outputs, and verify the structure of the uses/defs.
+ FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
+ InstImpResults);
+ }
+
+ // Now that we have inputs and outputs of the pattern, inspect the operands
+ // list for the instruction. This determines the order that operands are
+ // added to the machine instruction the node corresponds to.
+ unsigned NumResults = InstResults.size();
+
+ // Parse the operands list from the (ops) list, validating it.
+ assert(I.getArgList().empty() && "Args list should still be empty here!");
+
+ // Check that all of the results occur first in the list.
+ std::vector<Record*> Results;
+ std::vector<unsigned> ResultIndices;
+ SmallVector<TreePatternNodePtr, 2> ResNodes;
+ for (unsigned i = 0; i != NumResults; ++i) {
+ if (i == CGI.Operands.size()) {
+ const std::string &OpName =
llvm::find_if(
InstResults,
[](const std::pair<std::string, TreePatternNodePtr> &P) {
return P.second;
})
- ->first;
-
- I.error("'" + OpName + "' set but does not appear in operand list!");
- }
-
- const std::string &OpName = CGI.Operands[i].Name;
-
- // Check that it exists in InstResults.
- auto InstResultIter = InstResults.find(OpName);
- if (InstResultIter == InstResults.end() || !InstResultIter->second)
- I.error("Operand $" + OpName + " does not exist in operand list!");
-
- TreePatternNodePtr RNode = InstResultIter->second;
- Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
- ResNodes.push_back(std::move(RNode));
- if (!R)
- I.error("Operand $" + OpName + " should be a set destination: all "
- "outputs must occur before inputs in operand list!");
-
- if (!checkOperandClass(CGI.Operands[i], R))
- I.error("Operand $" + OpName + " class mismatch!");
-
- // Remember the return type.
- Results.push_back(CGI.Operands[i].Rec);
-
- // Remember the result index.
- ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
-
- // Okay, this one checks out.
- InstResultIter->second = nullptr;
- }
-
- // Loop over the inputs next.
- std::vector<TreePatternNodePtr> ResultNodeOperands;
- std::vector<Record*> Operands;
- for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
- CGIOperandList::OperandInfo &Op = CGI.Operands[i];
- const std::string &OpName = Op.Name;
- if (OpName.empty())
- I.error("Operand #" + Twine(i) + " in operands list has no name!");
-
- if (!InstInputs.count(OpName)) {
- // If this is an operand with a DefaultOps set filled in, we can ignore
- // this. When we codegen it, we will do so as always executed.
- if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
- // Does it have a non-empty DefaultOps field? If so, ignore this
- // operand.
- if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
- continue;
- }
- I.error("Operand $" + OpName +
- " does not appear in the instruction pattern");
- }
- TreePatternNodePtr InVal = InstInputs[OpName];
- InstInputs.erase(OpName); // It occurred, remove from map.
-
- if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
- Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
- if (!checkOperandClass(Op, InRec))
- I.error("Operand $" + OpName + "'s register class disagrees"
- " between the operand and pattern");
- }
- Operands.push_back(Op.Rec);
-
- // Construct the result for the dest-pattern operand list.
- TreePatternNodePtr OpNode = InVal->clone();
-
- // No predicate is useful on the result.
- OpNode->clearPredicateCalls();
-
- // Promote the xform function to be an explicit node if set.
- if (Record *Xform = OpNode->getTransformFn()) {
- OpNode->setTransformFn(nullptr);
- std::vector<TreePatternNodePtr> Children;
- Children.push_back(OpNode);
- OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
- OpNode->getNumTypes());
- }
-
- ResultNodeOperands.push_back(std::move(OpNode));
- }
-
- if (!InstInputs.empty())
- I.error("Input operand $" + InstInputs.begin()->first +
- " occurs in pattern but not in operands list!");
-
- TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
- I.getRecord(), std::move(ResultNodeOperands),
- GetNumNodeResults(I.getRecord(), *this));
- // Copy fully inferred output node types to instruction result pattern.
- for (unsigned i = 0; i != NumResults; ++i) {
- assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
- ResultPattern->setType(i, ResNodes[i]->getExtType(0));
- ResultPattern->setResultIndex(i, ResultIndices[i]);
- }
-
- // FIXME: Assume only the first tree is the pattern. The others are clobber
- // nodes.
- TreePatternNodePtr Pattern = I.getTree(0);
- TreePatternNodePtr SrcPattern;
- if (Pattern->getOperator()->getName() == "set") {
- SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
- } else{
- // Not a set (store or something?)
- SrcPattern = Pattern;
- }
-
- // Create and insert the instruction.
- // FIXME: InstImpResults should not be part of DAGInstruction.
- Record *R = I.getRecord();
- DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
- std::forward_as_tuple(Results, Operands, InstImpResults,
- SrcPattern, ResultPattern));
-
- LLVM_DEBUG(I.dump());
-}
-
-/// ParseInstructions - Parse all of the instructions, inlining and resolving
-/// any fragments involved. This populates the Instructions list with fully
-/// resolved instructions.
-void CodeGenDAGPatterns::ParseInstructions() {
- std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
-
- for (Record *Instr : Instrs) {
- ListInit *LI = nullptr;
-
- if (isa<ListInit>(Instr->getValueInit("Pattern")))
- LI = Instr->getValueAsListInit("Pattern");
-
- // If there is no pattern, only collect minimal information about the
- // instruction for its operand list. We have to assume that there is one
- // result, as we have no detailed info. A pattern which references the
- // null_frag operator is as-if no pattern were specified. Normally this
- // is from a multiclass expansion w/ a SDPatternOperator passed in as
- // null_frag.
- if (!LI || LI->empty() || hasNullFragReference(LI)) {
- std::vector<Record*> Results;
- std::vector<Record*> Operands;
-
- CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
-
- if (InstInfo.Operands.size() != 0) {
- for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
- Results.push_back(InstInfo.Operands[j].Rec);
-
- // The rest are inputs.
- for (unsigned j = InstInfo.Operands.NumDefs,
- e = InstInfo.Operands.size(); j < e; ++j)
- Operands.push_back(InstInfo.Operands[j].Rec);
- }
-
- // Create and insert the instruction.
- std::vector<Record*> ImpResults;
- Instructions.insert(std::make_pair(Instr,
- DAGInstruction(Results, Operands, ImpResults)));
- continue; // no pattern.
- }
-
- CodeGenInstruction &CGI = Target.getInstruction(Instr);
- parseInstructionPattern(CGI, LI, Instructions);
- }
-
- // If we can, convert the instructions to be patterns that are matched!
- for (auto &Entry : Instructions) {
- Record *Instr = Entry.first;
- DAGInstruction &TheInst = Entry.second;
- TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
- TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
-
- if (SrcPattern && ResultPattern) {
- TreePattern Pattern(Instr, SrcPattern, true, *this);
- TreePattern Result(Instr, ResultPattern, false, *this);
- ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
- }
- }
-}
-
-typedef std::pair<TreePatternNode *, unsigned> NameRecord;
-
-static void FindNames(TreePatternNode *P,
- std::map<std::string, NameRecord> &Names,
- TreePattern *PatternTop) {
- if (!P->getName().empty()) {
- NameRecord &Rec = Names[P->getName()];
- // If this is the first instance of the name, remember the node.
- if (Rec.second++ == 0)
- Rec.first = P;
- else if (Rec.first->getExtTypes() != P->getExtTypes())
- PatternTop->error("repetition of value: $" + P->getName() +
- " where different uses have different types!");
- }
-
- if (!P->isLeaf()) {
- for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
- FindNames(P->getChild(i), Names, PatternTop);
- }
-}
-
-std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
- std::vector<Predicate> Preds;
- for (Init *I : L->getValues()) {
- if (DefInit *Pred = dyn_cast<DefInit>(I))
- Preds.push_back(Pred->getDef());
- else
- llvm_unreachable("Non-def on the list");
- }
-
- // Sort so that different orders get canonicalized to the same string.
- llvm::sort(Preds);
- return Preds;
-}
-
-void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
- PatternToMatch &&PTM) {
- // Do some sanity checking on the pattern we're about to match.
- std::string Reason;
- if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
- PrintWarning(Pattern->getRecord()->getLoc(),
- Twine("Pattern can never match: ") + Reason);
- return;
- }
-
- // If the source pattern's root is a complex pattern, that complex pattern
- // must specify the nodes it can potentially match.
- if (const ComplexPattern *CP =
- PTM.getSrcPattern()->getComplexPatternInfo(*this))
- if (CP->getRootNodes().empty())
- Pattern->error("ComplexPattern at root must specify list of opcodes it"
- " could match");
-
-
- // Find all of the named values in the input and output, ensure they have the
- // same type.
- std::map<std::string, NameRecord> SrcNames, DstNames;
- FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
- FindNames(PTM.getDstPattern(), DstNames, Pattern);
-
- // Scan all of the named values in the destination pattern, rejecting them if
- // they don't exist in the input pattern.
- for (const auto &Entry : DstNames) {
- if (SrcNames[Entry.first].first == nullptr)
- Pattern->error("Pattern has input without matching name in output: $" +
- Entry.first);
- }
-
- // Scan all of the named values in the source pattern, rejecting them if the
- // name isn't used in the dest, and isn't used to tie two values together.
- for (const auto &Entry : SrcNames)
- if (DstNames[Entry.first].first == nullptr &&
- SrcNames[Entry.first].second == 1)
- Pattern->error("Pattern has dead named input: $" + Entry.first);
-
- PatternsToMatch.push_back(PTM);
-}
-
-void CodeGenDAGPatterns::InferInstructionFlags() {
- ArrayRef<const CodeGenInstruction*> Instructions =
- Target.getInstructionsByEnumValue();
-
- unsigned Errors = 0;
-
- // Try to infer flags from all patterns in PatternToMatch. These include
- // both the primary instruction patterns (which always come first) and
- // patterns defined outside the instruction.
- for (const PatternToMatch &PTM : ptms()) {
- // We can only infer from single-instruction patterns, otherwise we won't
- // know which instruction should get the flags.
- SmallVector<Record*, 8> PatInstrs;
- getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
- if (PatInstrs.size() != 1)
- continue;
-
- // Get the single instruction.
- CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
-
- // Only infer properties from the first pattern. We'll verify the others.
- if (InstInfo.InferredFrom)
- continue;
-
- InstAnalyzer PatInfo(*this);
- PatInfo.Analyze(PTM);
- Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
- }
-
- if (Errors)
- PrintFatalError("pattern conflicts");
-
- // If requested by the target, guess any undefined properties.
- if (Target.guessInstructionProperties()) {
- for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
- CodeGenInstruction *InstInfo =
- const_cast<CodeGenInstruction *>(Instructions[i]);
- if (InstInfo->InferredFrom)
- continue;
- // The mayLoad and mayStore flags default to false.
- // Conservatively assume hasSideEffects if it wasn't explicit.
- if (InstInfo->hasSideEffects_Unset)
- InstInfo->hasSideEffects = true;
- }
- return;
- }
-
- // Complain about any flags that are still undefined.
- for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
- CodeGenInstruction *InstInfo =
- const_cast<CodeGenInstruction *>(Instructions[i]);
- if (InstInfo->InferredFrom)
- continue;
- if (InstInfo->hasSideEffects_Unset)
- PrintError(InstInfo->TheDef->getLoc(),
- "Can't infer hasSideEffects from patterns");
- if (InstInfo->mayStore_Unset)
- PrintError(InstInfo->TheDef->getLoc(),
- "Can't infer mayStore from patterns");
- if (InstInfo->mayLoad_Unset)
- PrintError(InstInfo->TheDef->getLoc(),
- "Can't infer mayLoad from patterns");
- }
-}
-
-
-/// Verify instruction flags against pattern node properties.
-void CodeGenDAGPatterns::VerifyInstructionFlags() {
- unsigned Errors = 0;
- for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
- const PatternToMatch &PTM = *I;
- SmallVector<Record*, 8> Instrs;
- getInstructionsInTree(PTM.getDstPattern(), Instrs);
- if (Instrs.empty())
- continue;
-
- // Count the number of instructions with each flag set.
- unsigned NumSideEffects = 0;
- unsigned NumStores = 0;
- unsigned NumLoads = 0;
- for (const Record *Instr : Instrs) {
- const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
- NumSideEffects += InstInfo.hasSideEffects;
- NumStores += InstInfo.mayStore;
- NumLoads += InstInfo.mayLoad;
- }
-
- // Analyze the source pattern.
- InstAnalyzer PatInfo(*this);
- PatInfo.Analyze(PTM);
-
- // Collect error messages.
- SmallVector<std::string, 4> Msgs;
-
- // Check for missing flags in the output.
- // Permit extra flags for now at least.
- if (PatInfo.hasSideEffects && !NumSideEffects)
- Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
-
- // Don't verify store flags on instructions with side effects. At least for
- // intrinsics, side effects implies mayStore.
- if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
- Msgs.push_back("pattern may store, but mayStore isn't set");
-
- // Similarly, mayStore implies mayLoad on intrinsics.
- if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
- Msgs.push_back("pattern may load, but mayLoad isn't set");
-
- // Print error messages.
- if (Msgs.empty())
- continue;
- ++Errors;
-
- for (const std::string &Msg : Msgs)
- PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
- (Instrs.size() == 1 ?
- "instruction" : "output instructions"));
- // Provide the location of the relevant instruction definitions.
- for (const Record *Instr : Instrs) {
- if (Instr != PTM.getSrcRecord())
- PrintError(Instr->getLoc(), "defined here");
- const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
- if (InstInfo.InferredFrom &&
- InstInfo.InferredFrom != InstInfo.TheDef &&
- InstInfo.InferredFrom != PTM.getSrcRecord())
- PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
- }
- }
- if (Errors)
- PrintFatalError("Errors in DAG patterns");
-}
-
-/// Given a pattern result with an unresolved type, see if we can find one
-/// instruction with an unresolved result type. Force this result type to an
-/// arbitrary element if it's possible types to converge results.
-static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
- if (N->isLeaf())
- return false;
-
- // Analyze children.
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- if (ForceArbitraryInstResultType(N->getChild(i), TP))
- return true;
-
- if (!N->getOperator()->isSubClassOf("Instruction"))
- return false;
-
- // If this type is already concrete or completely unknown we can't do
- // anything.
- TypeInfer &TI = TP.getInfer();
- for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
- if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
- continue;
-
- // Otherwise, force its type to an arbitrary choice.
- if (TI.forceArbitrary(N->getExtType(i)))
- return true;
- }
-
- return false;
-}
-
-// Promote xform function to be an explicit node wherever set.
-static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
- if (Record *Xform = N->getTransformFn()) {
- N->setTransformFn(nullptr);
- std::vector<TreePatternNodePtr> Children;
- Children.push_back(PromoteXForms(N));
- return std::make_shared<TreePatternNode>(Xform, std::move(Children),
- N->getNumTypes());
- }
-
- if (!N->isLeaf())
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNodePtr Child = N->getChildShared(i);
- N->setChild(i, PromoteXForms(Child));
- }
- return N;
-}
-
-void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
- TreePattern &Pattern, TreePattern &Result,
- const std::vector<Record *> &InstImpResults) {
-
- // Inline pattern fragments and expand multiple alternatives.
- Pattern.InlinePatternFragments();
- Result.InlinePatternFragments();
-
- if (Result.getNumTrees() != 1)
- Result.error("Cannot use multi-alternative fragments in result pattern!");
-
- // Infer types.
- bool IterateInference;
- bool InferredAllPatternTypes, InferredAllResultTypes;
- do {
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllPatternTypes =
- Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
-
- // Infer as many types as possible. If we cannot infer all of them, we
- // can never do anything with this pattern: report it to the user.
- InferredAllResultTypes =
- Result.InferAllTypes(&Pattern.getNamedNodesMap());
-
- IterateInference = false;
-
- // Apply the type of the result to the source pattern. This helps us
- // resolve cases where the input type is known to be a pointer type (which
- // is considered resolved), but the result knows it needs to be 32- or
- // 64-bits. Infer the other way for good measure.
- for (auto T : Pattern.getTrees())
- for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
- T->getNumTypes());
- i != e; ++i) {
- IterateInference |= T->UpdateNodeType(
- i, Result.getOnlyTree()->getExtType(i), Result);
- IterateInference |= Result.getOnlyTree()->UpdateNodeType(
- i, T->getExtType(i), Result);
- }
-
- // If our iteration has converged and the input pattern's types are fully
- // resolved but the result pattern is not fully resolved, we may have a
- // situation where we have two instructions in the result pattern and
- // the instructions require a common register class, but don't care about
- // what actual MVT is used. This is actually a bug in our modelling:
- // output patterns should have register classes, not MVTs.
- //
- // In any case, to handle this, we just go through and disambiguate some
- // arbitrary types to the result pattern's nodes.
- if (!IterateInference && InferredAllPatternTypes &&
- !InferredAllResultTypes)
- IterateInference =
- ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
- } while (IterateInference);
-
- // Verify that we inferred enough types that we can do something with the
- // pattern and result. If these fire the user has to add type casts.
- if (!InferredAllPatternTypes)
- Pattern.error("Could not infer all types in pattern!");
- if (!InferredAllResultTypes) {
- Pattern.dump();
- Result.error("Could not infer all types in pattern result!");
- }
-
- // Promote xform function to be an explicit node wherever set.
- TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
-
- TreePattern Temp(Result.getRecord(), DstShared, false, *this);
- Temp.InferAllTypes();
-
- ListInit *Preds = TheDef->getValueAsListInit("Predicates");
- int Complexity = TheDef->getValueAsInt("AddedComplexity");
-
- if (PatternRewriter)
- PatternRewriter(&Pattern);
-
- // A pattern may end up with an "impossible" type, i.e. a situation
- // where all types have been eliminated for some node in this pattern.
- // This could occur for intrinsics that only make sense for a specific
- // value type, and use a specific register class. If, for some mode,
- // that register class does not accept that type, the type inference
- // will lead to a contradiction, which is not an error however, but
- // a sign that this pattern will simply never match.
- if (Temp.getOnlyTree()->hasPossibleType())
- for (auto T : Pattern.getTrees())
- if (T->hasPossibleType())
- AddPatternToMatch(&Pattern,
- PatternToMatch(TheDef, makePredList(Preds),
- T, Temp.getOnlyTree(),
- InstImpResults, Complexity,
- TheDef->getID()));
-}
-
-void CodeGenDAGPatterns::ParsePatterns() {
- std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
-
- for (Record *CurPattern : Patterns) {
- DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
-
- // If the pattern references the null_frag, there's nothing to do.
- if (hasNullFragReference(Tree))
- continue;
-
- TreePattern Pattern(CurPattern, Tree, true, *this);
-
- ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
- if (LI->empty()) continue; // no pattern.
-
- // Parse the instruction.
- TreePattern Result(CurPattern, LI, false, *this);
-
- if (Result.getNumTrees() != 1)
- Result.error("Cannot handle instructions producing instructions "
- "with temporaries yet!");
-
- // Validate that the input pattern is correct.
- std::map<std::string, TreePatternNodePtr> InstInputs;
- MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
- InstResults;
- std::vector<Record*> InstImpResults;
- for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
- FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
- InstResults, InstImpResults);
-
- ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
- }
-}
-
-static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
- for (const TypeSetByHwMode &VTS : N->getExtTypes())
- for (const auto &I : VTS)
- Modes.insert(I.first);
-
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- collectModes(Modes, N->getChild(i));
-}
-
-void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
- const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
- std::map<unsigned,std::vector<Predicate>> ModeChecks;
- std::vector<PatternToMatch> Copy = PatternsToMatch;
- PatternsToMatch.clear();
-
- auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
- TreePatternNodePtr NewSrc = P.SrcPattern->clone();
- TreePatternNodePtr NewDst = P.DstPattern->clone();
- if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
- return;
- }
-
- std::vector<Predicate> Preds = P.Predicates;
- const std::vector<Predicate> &MC = ModeChecks[Mode];
+ ->first;
+
+ I.error("'" + OpName + "' set but does not appear in operand list!");
+ }
+
+ const std::string &OpName = CGI.Operands[i].Name;
+
+ // Check that it exists in InstResults.
+ auto InstResultIter = InstResults.find(OpName);
+ if (InstResultIter == InstResults.end() || !InstResultIter->second)
+ I.error("Operand $" + OpName + " does not exist in operand list!");
+
+ TreePatternNodePtr RNode = InstResultIter->second;
+ Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
+ ResNodes.push_back(std::move(RNode));
+ if (!R)
+ I.error("Operand $" + OpName + " should be a set destination: all "
+ "outputs must occur before inputs in operand list!");
+
+ if (!checkOperandClass(CGI.Operands[i], R))
+ I.error("Operand $" + OpName + " class mismatch!");
+
+ // Remember the return type.
+ Results.push_back(CGI.Operands[i].Rec);
+
+ // Remember the result index.
+ ResultIndices.push_back(std::distance(InstResults.begin(), InstResultIter));
+
+ // Okay, this one checks out.
+ InstResultIter->second = nullptr;
+ }
+
+ // Loop over the inputs next.
+ std::vector<TreePatternNodePtr> ResultNodeOperands;
+ std::vector<Record*> Operands;
+ for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
+ CGIOperandList::OperandInfo &Op = CGI.Operands[i];
+ const std::string &OpName = Op.Name;
+ if (OpName.empty())
+ I.error("Operand #" + Twine(i) + " in operands list has no name!");
+
+ if (!InstInputs.count(OpName)) {
+ // If this is an operand with a DefaultOps set filled in, we can ignore
+ // this. When we codegen it, we will do so as always executed.
+ if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
+ // Does it have a non-empty DefaultOps field? If so, ignore this
+ // operand.
+ if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
+ continue;
+ }
+ I.error("Operand $" + OpName +
+ " does not appear in the instruction pattern");
+ }
+ TreePatternNodePtr InVal = InstInputs[OpName];
+ InstInputs.erase(OpName); // It occurred, remove from map.
+
+ if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
+ Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
+ if (!checkOperandClass(Op, InRec))
+ I.error("Operand $" + OpName + "'s register class disagrees"
+ " between the operand and pattern");
+ }
+ Operands.push_back(Op.Rec);
+
+ // Construct the result for the dest-pattern operand list.
+ TreePatternNodePtr OpNode = InVal->clone();
+
+ // No predicate is useful on the result.
+ OpNode->clearPredicateCalls();
+
+ // Promote the xform function to be an explicit node if set.
+ if (Record *Xform = OpNode->getTransformFn()) {
+ OpNode->setTransformFn(nullptr);
+ std::vector<TreePatternNodePtr> Children;
+ Children.push_back(OpNode);
+ OpNode = std::make_shared<TreePatternNode>(Xform, std::move(Children),
+ OpNode->getNumTypes());
+ }
+
+ ResultNodeOperands.push_back(std::move(OpNode));
+ }
+
+ if (!InstInputs.empty())
+ I.error("Input operand $" + InstInputs.begin()->first +
+ " occurs in pattern but not in operands list!");
+
+ TreePatternNodePtr ResultPattern = std::make_shared<TreePatternNode>(
+ I.getRecord(), std::move(ResultNodeOperands),
+ GetNumNodeResults(I.getRecord(), *this));
+ // Copy fully inferred output node types to instruction result pattern.
+ for (unsigned i = 0; i != NumResults; ++i) {
+ assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
+ ResultPattern->setType(i, ResNodes[i]->getExtType(0));
+ ResultPattern->setResultIndex(i, ResultIndices[i]);
+ }
+
+ // FIXME: Assume only the first tree is the pattern. The others are clobber
+ // nodes.
+ TreePatternNodePtr Pattern = I.getTree(0);
+ TreePatternNodePtr SrcPattern;
+ if (Pattern->getOperator()->getName() == "set") {
+ SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
+ } else{
+ // Not a set (store or something?)
+ SrcPattern = Pattern;
+ }
+
+ // Create and insert the instruction.
+ // FIXME: InstImpResults should not be part of DAGInstruction.
+ Record *R = I.getRecord();
+ DAGInsts.emplace(std::piecewise_construct, std::forward_as_tuple(R),
+ std::forward_as_tuple(Results, Operands, InstImpResults,
+ SrcPattern, ResultPattern));
+
+ LLVM_DEBUG(I.dump());
+}
+
+/// ParseInstructions - Parse all of the instructions, inlining and resolving
+/// any fragments involved. This populates the Instructions list with fully
+/// resolved instructions.
+void CodeGenDAGPatterns::ParseInstructions() {
+ std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
+
+ for (Record *Instr : Instrs) {
+ ListInit *LI = nullptr;
+
+ if (isa<ListInit>(Instr->getValueInit("Pattern")))
+ LI = Instr->getValueAsListInit("Pattern");
+
+ // If there is no pattern, only collect minimal information about the
+ // instruction for its operand list. We have to assume that there is one
+ // result, as we have no detailed info. A pattern which references the
+ // null_frag operator is as-if no pattern were specified. Normally this
+ // is from a multiclass expansion w/ a SDPatternOperator passed in as
+ // null_frag.
+ if (!LI || LI->empty() || hasNullFragReference(LI)) {
+ std::vector<Record*> Results;
+ std::vector<Record*> Operands;
+
+ CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
+
+ if (InstInfo.Operands.size() != 0) {
+ for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
+ Results.push_back(InstInfo.Operands[j].Rec);
+
+ // The rest are inputs.
+ for (unsigned j = InstInfo.Operands.NumDefs,
+ e = InstInfo.Operands.size(); j < e; ++j)
+ Operands.push_back(InstInfo.Operands[j].Rec);
+ }
+
+ // Create and insert the instruction.
+ std::vector<Record*> ImpResults;
+ Instructions.insert(std::make_pair(Instr,
+ DAGInstruction(Results, Operands, ImpResults)));
+ continue; // no pattern.
+ }
+
+ CodeGenInstruction &CGI = Target.getInstruction(Instr);
+ parseInstructionPattern(CGI, LI, Instructions);
+ }
+
+ // If we can, convert the instructions to be patterns that are matched!
+ for (auto &Entry : Instructions) {
+ Record *Instr = Entry.first;
+ DAGInstruction &TheInst = Entry.second;
+ TreePatternNodePtr SrcPattern = TheInst.getSrcPattern();
+ TreePatternNodePtr ResultPattern = TheInst.getResultPattern();
+
+ if (SrcPattern && ResultPattern) {
+ TreePattern Pattern(Instr, SrcPattern, true, *this);
+ TreePattern Result(Instr, ResultPattern, false, *this);
+ ParseOnePattern(Instr, Pattern, Result, TheInst.getImpResults());
+ }
+ }
+}
+
+typedef std::pair<TreePatternNode *, unsigned> NameRecord;
+
+static void FindNames(TreePatternNode *P,
+ std::map<std::string, NameRecord> &Names,
+ TreePattern *PatternTop) {
+ if (!P->getName().empty()) {
+ NameRecord &Rec = Names[P->getName()];
+ // If this is the first instance of the name, remember the node.
+ if (Rec.second++ == 0)
+ Rec.first = P;
+ else if (Rec.first->getExtTypes() != P->getExtTypes())
+ PatternTop->error("repetition of value: $" + P->getName() +
+ " where different uses have different types!");
+ }
+
+ if (!P->isLeaf()) {
+ for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
+ FindNames(P->getChild(i), Names, PatternTop);
+ }
+}
+
+std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) {
+ std::vector<Predicate> Preds;
+ for (Init *I : L->getValues()) {
+ if (DefInit *Pred = dyn_cast<DefInit>(I))
+ Preds.push_back(Pred->getDef());
+ else
+ llvm_unreachable("Non-def on the list");
+ }
+
+ // Sort so that different orders get canonicalized to the same string.
+ llvm::sort(Preds);
+ return Preds;
+}
+
+void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
+ PatternToMatch &&PTM) {
+ // Do some sanity checking on the pattern we're about to match.
+ std::string Reason;
+ if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
+ PrintWarning(Pattern->getRecord()->getLoc(),
+ Twine("Pattern can never match: ") + Reason);
+ return;
+ }
+
+ // If the source pattern's root is a complex pattern, that complex pattern
+ // must specify the nodes it can potentially match.
+ if (const ComplexPattern *CP =
+ PTM.getSrcPattern()->getComplexPatternInfo(*this))
+ if (CP->getRootNodes().empty())
+ Pattern->error("ComplexPattern at root must specify list of opcodes it"
+ " could match");
+
+
+ // Find all of the named values in the input and output, ensure they have the
+ // same type.
+ std::map<std::string, NameRecord> SrcNames, DstNames;
+ FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
+ FindNames(PTM.getDstPattern(), DstNames, Pattern);
+
+ // Scan all of the named values in the destination pattern, rejecting them if
+ // they don't exist in the input pattern.
+ for (const auto &Entry : DstNames) {
+ if (SrcNames[Entry.first].first == nullptr)
+ Pattern->error("Pattern has input without matching name in output: $" +
+ Entry.first);
+ }
+
+ // Scan all of the named values in the source pattern, rejecting them if the
+ // name isn't used in the dest, and isn't used to tie two values together.
+ for (const auto &Entry : SrcNames)
+ if (DstNames[Entry.first].first == nullptr &&
+ SrcNames[Entry.first].second == 1)
+ Pattern->error("Pattern has dead named input: $" + Entry.first);
+
+ PatternsToMatch.push_back(PTM);
+}
+
+void CodeGenDAGPatterns::InferInstructionFlags() {
+ ArrayRef<const CodeGenInstruction*> Instructions =
+ Target.getInstructionsByEnumValue();
+
+ unsigned Errors = 0;
+
+ // Try to infer flags from all patterns in PatternToMatch. These include
+ // both the primary instruction patterns (which always come first) and
+ // patterns defined outside the instruction.
+ for (const PatternToMatch &PTM : ptms()) {
+ // We can only infer from single-instruction patterns, otherwise we won't
+ // know which instruction should get the flags.
+ SmallVector<Record*, 8> PatInstrs;
+ getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
+ if (PatInstrs.size() != 1)
+ continue;
+
+ // Get the single instruction.
+ CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
+
+ // Only infer properties from the first pattern. We'll verify the others.
+ if (InstInfo.InferredFrom)
+ continue;
+
+ InstAnalyzer PatInfo(*this);
+ PatInfo.Analyze(PTM);
+ Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
+ }
+
+ if (Errors)
+ PrintFatalError("pattern conflicts");
+
+ // If requested by the target, guess any undefined properties.
+ if (Target.guessInstructionProperties()) {
+ for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
+ CodeGenInstruction *InstInfo =
+ const_cast<CodeGenInstruction *>(Instructions[i]);
+ if (InstInfo->InferredFrom)
+ continue;
+ // The mayLoad and mayStore flags default to false.
+ // Conservatively assume hasSideEffects if it wasn't explicit.
+ if (InstInfo->hasSideEffects_Unset)
+ InstInfo->hasSideEffects = true;
+ }
+ return;
+ }
+
+ // Complain about any flags that are still undefined.
+ for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
+ CodeGenInstruction *InstInfo =
+ const_cast<CodeGenInstruction *>(Instructions[i]);
+ if (InstInfo->InferredFrom)
+ continue;
+ if (InstInfo->hasSideEffects_Unset)
+ PrintError(InstInfo->TheDef->getLoc(),
+ "Can't infer hasSideEffects from patterns");
+ if (InstInfo->mayStore_Unset)
+ PrintError(InstInfo->TheDef->getLoc(),
+ "Can't infer mayStore from patterns");
+ if (InstInfo->mayLoad_Unset)
+ PrintError(InstInfo->TheDef->getLoc(),
+ "Can't infer mayLoad from patterns");
+ }
+}
+
+
+/// Verify instruction flags against pattern node properties.
+void CodeGenDAGPatterns::VerifyInstructionFlags() {
+ unsigned Errors = 0;
+ for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
+ const PatternToMatch &PTM = *I;
+ SmallVector<Record*, 8> Instrs;
+ getInstructionsInTree(PTM.getDstPattern(), Instrs);
+ if (Instrs.empty())
+ continue;
+
+ // Count the number of instructions with each flag set.
+ unsigned NumSideEffects = 0;
+ unsigned NumStores = 0;
+ unsigned NumLoads = 0;
+ for (const Record *Instr : Instrs) {
+ const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
+ NumSideEffects += InstInfo.hasSideEffects;
+ NumStores += InstInfo.mayStore;
+ NumLoads += InstInfo.mayLoad;
+ }
+
+ // Analyze the source pattern.
+ InstAnalyzer PatInfo(*this);
+ PatInfo.Analyze(PTM);
+
+ // Collect error messages.
+ SmallVector<std::string, 4> Msgs;
+
+ // Check for missing flags in the output.
+ // Permit extra flags for now at least.
+ if (PatInfo.hasSideEffects && !NumSideEffects)
+ Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
+
+ // Don't verify store flags on instructions with side effects. At least for
+ // intrinsics, side effects implies mayStore.
+ if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
+ Msgs.push_back("pattern may store, but mayStore isn't set");
+
+ // Similarly, mayStore implies mayLoad on intrinsics.
+ if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
+ Msgs.push_back("pattern may load, but mayLoad isn't set");
+
+ // Print error messages.
+ if (Msgs.empty())
+ continue;
+ ++Errors;
+
+ for (const std::string &Msg : Msgs)
+ PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
+ (Instrs.size() == 1 ?
+ "instruction" : "output instructions"));
+ // Provide the location of the relevant instruction definitions.
+ for (const Record *Instr : Instrs) {
+ if (Instr != PTM.getSrcRecord())
+ PrintError(Instr->getLoc(), "defined here");
+ const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
+ if (InstInfo.InferredFrom &&
+ InstInfo.InferredFrom != InstInfo.TheDef &&
+ InstInfo.InferredFrom != PTM.getSrcRecord())
+ PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
+ }
+ }
+ if (Errors)
+ PrintFatalError("Errors in DAG patterns");
+}
+
+/// Given a pattern result with an unresolved type, see if we can find one
+/// instruction with an unresolved result type. Force this result type to an
+/// arbitrary element if it's possible types to converge results.
+static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
+ if (N->isLeaf())
+ return false;
+
+ // Analyze children.
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ if (ForceArbitraryInstResultType(N->getChild(i), TP))
+ return true;
+
+ if (!N->getOperator()->isSubClassOf("Instruction"))
+ return false;
+
+ // If this type is already concrete or completely unknown we can't do
+ // anything.
+ TypeInfer &TI = TP.getInfer();
+ for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
+ if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false))
+ continue;
+
+ // Otherwise, force its type to an arbitrary choice.
+ if (TI.forceArbitrary(N->getExtType(i)))
+ return true;
+ }
+
+ return false;
+}
+
+// Promote xform function to be an explicit node wherever set.
+static TreePatternNodePtr PromoteXForms(TreePatternNodePtr N) {
+ if (Record *Xform = N->getTransformFn()) {
+ N->setTransformFn(nullptr);
+ std::vector<TreePatternNodePtr> Children;
+ Children.push_back(PromoteXForms(N));
+ return std::make_shared<TreePatternNode>(Xform, std::move(Children),
+ N->getNumTypes());
+ }
+
+ if (!N->isLeaf())
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNodePtr Child = N->getChildShared(i);
+ N->setChild(i, PromoteXForms(Child));
+ }
+ return N;
+}
+
+void CodeGenDAGPatterns::ParseOnePattern(Record *TheDef,
+ TreePattern &Pattern, TreePattern &Result,
+ const std::vector<Record *> &InstImpResults) {
+
+ // Inline pattern fragments and expand multiple alternatives.
+ Pattern.InlinePatternFragments();
+ Result.InlinePatternFragments();
+
+ if (Result.getNumTrees() != 1)
+ Result.error("Cannot use multi-alternative fragments in result pattern!");
+
+ // Infer types.
+ bool IterateInference;
+ bool InferredAllPatternTypes, InferredAllResultTypes;
+ do {
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllPatternTypes =
+ Pattern.InferAllTypes(&Pattern.getNamedNodesMap());
+
+ // Infer as many types as possible. If we cannot infer all of them, we
+ // can never do anything with this pattern: report it to the user.
+ InferredAllResultTypes =
+ Result.InferAllTypes(&Pattern.getNamedNodesMap());
+
+ IterateInference = false;
+
+ // Apply the type of the result to the source pattern. This helps us
+ // resolve cases where the input type is known to be a pointer type (which
+ // is considered resolved), but the result knows it needs to be 32- or
+ // 64-bits. Infer the other way for good measure.
+ for (auto T : Pattern.getTrees())
+ for (unsigned i = 0, e = std::min(Result.getOnlyTree()->getNumTypes(),
+ T->getNumTypes());
+ i != e; ++i) {
+ IterateInference |= T->UpdateNodeType(
+ i, Result.getOnlyTree()->getExtType(i), Result);
+ IterateInference |= Result.getOnlyTree()->UpdateNodeType(
+ i, T->getExtType(i), Result);
+ }
+
+ // If our iteration has converged and the input pattern's types are fully
+ // resolved but the result pattern is not fully resolved, we may have a
+ // situation where we have two instructions in the result pattern and
+ // the instructions require a common register class, but don't care about
+ // what actual MVT is used. This is actually a bug in our modelling:
+ // output patterns should have register classes, not MVTs.
+ //
+ // In any case, to handle this, we just go through and disambiguate some
+ // arbitrary types to the result pattern's nodes.
+ if (!IterateInference && InferredAllPatternTypes &&
+ !InferredAllResultTypes)
+ IterateInference =
+ ForceArbitraryInstResultType(Result.getTree(0).get(), Result);
+ } while (IterateInference);
+
+ // Verify that we inferred enough types that we can do something with the
+ // pattern and result. If these fire the user has to add type casts.
+ if (!InferredAllPatternTypes)
+ Pattern.error("Could not infer all types in pattern!");
+ if (!InferredAllResultTypes) {
+ Pattern.dump();
+ Result.error("Could not infer all types in pattern result!");
+ }
+
+ // Promote xform function to be an explicit node wherever set.
+ TreePatternNodePtr DstShared = PromoteXForms(Result.getOnlyTree());
+
+ TreePattern Temp(Result.getRecord(), DstShared, false, *this);
+ Temp.InferAllTypes();
+
+ ListInit *Preds = TheDef->getValueAsListInit("Predicates");
+ int Complexity = TheDef->getValueAsInt("AddedComplexity");
+
+ if (PatternRewriter)
+ PatternRewriter(&Pattern);
+
+ // A pattern may end up with an "impossible" type, i.e. a situation
+ // where all types have been eliminated for some node in this pattern.
+ // This could occur for intrinsics that only make sense for a specific
+ // value type, and use a specific register class. If, for some mode,
+ // that register class does not accept that type, the type inference
+ // will lead to a contradiction, which is not an error however, but
+ // a sign that this pattern will simply never match.
+ if (Temp.getOnlyTree()->hasPossibleType())
+ for (auto T : Pattern.getTrees())
+ if (T->hasPossibleType())
+ AddPatternToMatch(&Pattern,
+ PatternToMatch(TheDef, makePredList(Preds),
+ T, Temp.getOnlyTree(),
+ InstImpResults, Complexity,
+ TheDef->getID()));
+}
+
+void CodeGenDAGPatterns::ParsePatterns() {
+ std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
+
+ for (Record *CurPattern : Patterns) {
+ DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
+
+ // If the pattern references the null_frag, there's nothing to do.
+ if (hasNullFragReference(Tree))
+ continue;
+
+ TreePattern Pattern(CurPattern, Tree, true, *this);
+
+ ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
+ if (LI->empty()) continue; // no pattern.
+
+ // Parse the instruction.
+ TreePattern Result(CurPattern, LI, false, *this);
+
+ if (Result.getNumTrees() != 1)
+ Result.error("Cannot handle instructions producing instructions "
+ "with temporaries yet!");
+
+ // Validate that the input pattern is correct.
+ std::map<std::string, TreePatternNodePtr> InstInputs;
+ MapVector<std::string, TreePatternNodePtr, std::map<std::string, unsigned>>
+ InstResults;
+ std::vector<Record*> InstImpResults;
+ for (unsigned j = 0, ee = Pattern.getNumTrees(); j != ee; ++j)
+ FindPatternInputsAndOutputs(Pattern, Pattern.getTree(j), InstInputs,
+ InstResults, InstImpResults);
+
+ ParseOnePattern(CurPattern, Pattern, Result, InstImpResults);
+ }
+}
+
+static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) {
+ for (const TypeSetByHwMode &VTS : N->getExtTypes())
+ for (const auto &I : VTS)
+ Modes.insert(I.first);
+
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ collectModes(Modes, N->getChild(i));
+}
+
+void CodeGenDAGPatterns::ExpandHwModeBasedTypes() {
+ const CodeGenHwModes &CGH = getTargetInfo().getHwModes();
+ std::map<unsigned,std::vector<Predicate>> ModeChecks;
+ std::vector<PatternToMatch> Copy = PatternsToMatch;
+ PatternsToMatch.clear();
+
+ auto AppendPattern = [this, &ModeChecks](PatternToMatch &P, unsigned Mode) {
+ TreePatternNodePtr NewSrc = P.SrcPattern->clone();
+ TreePatternNodePtr NewDst = P.DstPattern->clone();
+ if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) {
+ return;
+ }
+
+ std::vector<Predicate> Preds = P.Predicates;
+ const std::vector<Predicate> &MC = ModeChecks[Mode];
llvm::append_range(Preds, MC);
- PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
- std::move(NewDst), P.getDstRegs(),
- P.getAddedComplexity(), Record::getNewUID(),
- Mode);
- };
-
- for (PatternToMatch &P : Copy) {
- TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
- if (P.SrcPattern->hasProperTypeByHwMode())
- SrcP = P.SrcPattern;
- if (P.DstPattern->hasProperTypeByHwMode())
- DstP = P.DstPattern;
- if (!SrcP && !DstP) {
- PatternsToMatch.push_back(P);
- continue;
- }
-
- std::set<unsigned> Modes;
- if (SrcP)
- collectModes(Modes, SrcP.get());
- if (DstP)
- collectModes(Modes, DstP.get());
-
- // The predicate for the default mode needs to be constructed for each
- // pattern separately.
- // Since not all modes must be present in each pattern, if a mode m is
- // absent, then there is no point in constructing a check for m. If such
- // a check was created, it would be equivalent to checking the default
- // mode, except not all modes' predicates would be a part of the checking
- // code. The subsequently generated check for the default mode would then
- // have the exact same patterns, but a different predicate code. To avoid
- // duplicated patterns with different predicate checks, construct the
- // default check as a negation of all predicates that are actually present
- // in the source/destination patterns.
- std::vector<Predicate> DefaultPred;
-
- for (unsigned M : Modes) {
- if (M == DefaultMode)
- continue;
- if (ModeChecks.find(M) != ModeChecks.end())
- continue;
-
- // Fill the map entry for this mode.
- const HwMode &HM = CGH.getMode(M);
- ModeChecks[M].emplace_back(Predicate(HM.Features, true));
-
- // Add negations of the HM's predicates to the default predicate.
- DefaultPred.emplace_back(Predicate(HM.Features, false));
- }
-
- for (unsigned M : Modes) {
- if (M == DefaultMode)
- continue;
- AppendPattern(P, M);
- }
-
- bool HasDefault = Modes.count(DefaultMode);
- if (HasDefault)
- AppendPattern(P, DefaultMode);
- }
-}
-
-/// Dependent variable map for CodeGenDAGPattern variant generation
-typedef StringMap<int> DepVarMap;
-
-static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
- if (N->isLeaf()) {
- if (N->hasName() && isa<DefInit>(N->getLeafValue()))
- DepMap[N->getName()]++;
- } else {
- for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
- FindDepVarsOf(N->getChild(i), DepMap);
- }
-}
-
-/// Find dependent variables within child patterns
-static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
- DepVarMap depcounts;
- FindDepVarsOf(N, depcounts);
- for (const auto &Pair : depcounts) {
- if (Pair.getValue() > 1)
- DepVars.insert(Pair.getKey());
- }
-}
-
-#ifndef NDEBUG
-/// Dump the dependent variable set:
-static void DumpDepVars(MultipleUseVarSet &DepVars) {
- if (DepVars.empty()) {
- LLVM_DEBUG(errs() << "<empty set>");
- } else {
- LLVM_DEBUG(errs() << "[ ");
- for (const auto &DepVar : DepVars) {
- LLVM_DEBUG(errs() << DepVar.getKey() << " ");
- }
- LLVM_DEBUG(errs() << "]");
- }
-}
-#endif
-
-
-/// CombineChildVariants - Given a bunch of permutations of each child of the
-/// 'operator' node, put them together in all possible ways.
-static void CombineChildVariants(
- TreePatternNodePtr Orig,
- const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
- std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- // Make sure that each operand has at least one variant to choose from.
- for (const auto &Variants : ChildVariants)
- if (Variants.empty())
- return;
-
- // The end result is an all-pairs construction of the resultant pattern.
- std::vector<unsigned> Idxs;
- Idxs.resize(ChildVariants.size());
- bool NotDone;
- do {
-#ifndef NDEBUG
- LLVM_DEBUG(if (!Idxs.empty()) {
- errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
- for (unsigned Idx : Idxs) {
- errs() << Idx << " ";
- }
- errs() << "]\n";
- });
-#endif
- // Create the variant and add it to the output list.
- std::vector<TreePatternNodePtr> NewChildren;
- for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
- NewChildren.push_back(ChildVariants[i][Idxs[i]]);
- TreePatternNodePtr R = std::make_shared<TreePatternNode>(
- Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
-
- // Copy over properties.
- R->setName(Orig->getName());
- R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
- R->setPredicateCalls(Orig->getPredicateCalls());
- R->setTransformFn(Orig->getTransformFn());
- for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
- R->setType(i, Orig->getExtType(i));
-
- // If this pattern cannot match, do not include it as a variant.
- std::string ErrString;
- // Scan to see if this pattern has already been emitted. We can get
- // duplication due to things like commuting:
- // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
- // which are the same pattern. Ignore the dups.
- if (R->canPatternMatch(ErrString, CDP) &&
- none_of(OutVariants, [&](TreePatternNodePtr Variant) {
- return R->isIsomorphicTo(Variant.get(), DepVars);
- }))
- OutVariants.push_back(R);
-
- // Increment indices to the next permutation by incrementing the
- // indices from last index backward, e.g., generate the sequence
- // [0, 0], [0, 1], [1, 0], [1, 1].
- int IdxsIdx;
- for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
- if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
- Idxs[IdxsIdx] = 0;
- else
- break;
- }
- NotDone = (IdxsIdx >= 0);
- } while (NotDone);
-}
-
-/// CombineChildVariants - A helper function for binary operators.
-///
-static void CombineChildVariants(TreePatternNodePtr Orig,
- const std::vector<TreePatternNodePtr> &LHS,
- const std::vector<TreePatternNodePtr> &RHS,
- std::vector<TreePatternNodePtr> &OutVariants,
- CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
- ChildVariants.push_back(LHS);
- ChildVariants.push_back(RHS);
- CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
-}
-
-static void
-GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
- std::vector<TreePatternNodePtr> &Children) {
- assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
- Record *Operator = N->getOperator();
-
- // Only permit raw nodes.
- if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
- N->getTransformFn()) {
- Children.push_back(N);
- return;
- }
-
- if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
- Children.push_back(N->getChildShared(0));
- else
- GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
-
- if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
- Children.push_back(N->getChildShared(1));
- else
- GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
-}
-
-/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
-/// the (potentially recursive) pattern by using algebraic laws.
-///
-static void GenerateVariantsOf(TreePatternNodePtr N,
- std::vector<TreePatternNodePtr> &OutVariants,
- CodeGenDAGPatterns &CDP,
- const MultipleUseVarSet &DepVars) {
- // We cannot permute leaves or ComplexPattern uses.
- if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
- OutVariants.push_back(N);
- return;
- }
-
- // Look up interesting info about the node.
- const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
-
- // If this node is associative, re-associate.
- if (NodeInfo.hasProperty(SDNPAssociative)) {
- // Re-associate by pulling together all of the linked operators
- std::vector<TreePatternNodePtr> MaximalChildren;
- GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
-
- // Only handle child sizes of 3. Otherwise we'll end up trying too many
- // permutations.
- if (MaximalChildren.size() == 3) {
- // Find the variants of all of our maximal children.
- std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
- GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
- GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
- GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
-
- // There are only two ways we can permute the tree:
- // (A op B) op C and A op (B op C)
- // Within these forms, we can also permute A/B/C.
-
- // Generate legal pair permutations of A/B/C.
- std::vector<TreePatternNodePtr> ABVariants;
- std::vector<TreePatternNodePtr> BAVariants;
- std::vector<TreePatternNodePtr> ACVariants;
- std::vector<TreePatternNodePtr> CAVariants;
- std::vector<TreePatternNodePtr> BCVariants;
- std::vector<TreePatternNodePtr> CBVariants;
- CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
-
- // Combine those into the result: (x op x) op x
- CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
-
- // Combine those into the result: x op (x op x)
- CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
- CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
- return;
- }
- }
-
- // Compute permutations of all children.
- std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
- ChildVariants.resize(N->getNumChildren());
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
- GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
-
- // Build all permutations based on how the children were formed.
- CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
-
- // If this node is commutative, consider the commuted order.
- bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
- if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
- assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
- "Commutative but doesn't have 2 children!");
- // Don't count children which are actually register references.
- unsigned NC = 0;
- for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
- TreePatternNode *Child = N->getChild(i);
- if (Child->isLeaf())
- if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
- Record *RR = DI->getDef();
- if (RR->isSubClassOf("Register"))
- continue;
- }
- NC++;
- }
- // Consider the commuted order.
- if (isCommIntrinsic) {
- // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
- // operands are the commutative operands, and there might be more operands
- // after those.
- assert(NC >= 3 &&
- "Commutative intrinsic should have at least 3 children!");
- std::vector<std::vector<TreePatternNodePtr>> Variants;
- Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
- Variants.push_back(std::move(ChildVariants[2]));
- Variants.push_back(std::move(ChildVariants[1]));
- for (unsigned i = 3; i != NC; ++i)
- Variants.push_back(std::move(ChildVariants[i]));
- CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
- } else if (NC == N->getNumChildren()) {
- std::vector<std::vector<TreePatternNodePtr>> Variants;
- Variants.push_back(std::move(ChildVariants[1]));
- Variants.push_back(std::move(ChildVariants[0]));
- for (unsigned i = 2; i != NC; ++i)
- Variants.push_back(std::move(ChildVariants[i]));
- CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
- }
- }
-}
-
-
-// GenerateVariants - Generate variants. For example, commutative patterns can
-// match multiple ways. Add them to PatternsToMatch as well.
-void CodeGenDAGPatterns::GenerateVariants() {
- LLVM_DEBUG(errs() << "Generating instruction variants.\n");
-
- // Loop over all of the patterns we've collected, checking to see if we can
- // generate variants of the instruction, through the exploitation of
- // identities. This permits the target to provide aggressive matching without
- // the .td file having to contain tons of variants of instructions.
- //
- // Note that this loop adds new patterns to the PatternsToMatch list, but we
- // intentionally do not reconsider these. Any variants of added patterns have
- // already been added.
- //
- const unsigned NumOriginalPatterns = PatternsToMatch.size();
- BitVector MatchedPatterns(NumOriginalPatterns);
- std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
- BitVector(NumOriginalPatterns));
-
- typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
- DepsAndVariants;
- std::map<unsigned, DepsAndVariants> PatternsWithVariants;
-
- // Collect patterns with more than one variant.
- for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
- MultipleUseVarSet DepVars;
- std::vector<TreePatternNodePtr> Variants;
- FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
- LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
- LLVM_DEBUG(DumpDepVars(DepVars));
- LLVM_DEBUG(errs() << "\n");
- GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
- *this, DepVars);
-
- assert(!Variants.empty() && "Must create at least original variant!");
- if (Variants.size() == 1) // No additional variants for this pattern.
- continue;
-
- LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
- PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
-
- PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
-
- // Cache matching predicates.
- if (MatchedPatterns[i])
- continue;
-
- const std::vector<Predicate> &Predicates =
- PatternsToMatch[i].getPredicates();
-
- BitVector &Matches = MatchedPredicates[i];
- MatchedPatterns.set(i);
- Matches.set(i);
-
- // Don't test patterns that have already been cached - it won't match.
- for (unsigned p = 0; p != NumOriginalPatterns; ++p)
- if (!MatchedPatterns[p])
- Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
-
- // Copy this to all the matching patterns.
- for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
- if (p != (int)i) {
- MatchedPatterns.set(p);
- MatchedPredicates[p] = Matches;
- }
- }
-
- for (auto it : PatternsWithVariants) {
- unsigned i = it.first;
- const MultipleUseVarSet &DepVars = it.second.first;
- const std::vector<TreePatternNodePtr> &Variants = it.second.second;
-
- for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
- TreePatternNodePtr Variant = Variants[v];
- BitVector &Matches = MatchedPredicates[i];
-
- LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
- errs() << "\n");
-
- // Scan to see if an instruction or explicit pattern already matches this.
- bool AlreadyExists = false;
- for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
- // Skip if the top level predicates do not match.
- if (!Matches[p])
- continue;
- // Check to see if this variant already exists.
- if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
- DepVars)) {
- LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
- AlreadyExists = true;
- break;
- }
- }
- // If we already have it, ignore the variant.
- if (AlreadyExists) continue;
-
- // Otherwise, add it to the list of patterns we have.
- PatternsToMatch.push_back(PatternToMatch(
- PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
- Variant, PatternsToMatch[i].getDstPatternShared(),
- PatternsToMatch[i].getDstRegs(),
- PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
- MatchedPredicates.push_back(Matches);
-
- // Add a new match the same as this pattern.
- for (auto &P : MatchedPredicates)
- P.push_back(P[i]);
- }
-
- LLVM_DEBUG(errs() << "\n");
- }
-}
+ PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, std::move(NewSrc),
+ std::move(NewDst), P.getDstRegs(),
+ P.getAddedComplexity(), Record::getNewUID(),
+ Mode);
+ };
+
+ for (PatternToMatch &P : Copy) {
+ TreePatternNodePtr SrcP = nullptr, DstP = nullptr;
+ if (P.SrcPattern->hasProperTypeByHwMode())
+ SrcP = P.SrcPattern;
+ if (P.DstPattern->hasProperTypeByHwMode())
+ DstP = P.DstPattern;
+ if (!SrcP && !DstP) {
+ PatternsToMatch.push_back(P);
+ continue;
+ }
+
+ std::set<unsigned> Modes;
+ if (SrcP)
+ collectModes(Modes, SrcP.get());
+ if (DstP)
+ collectModes(Modes, DstP.get());
+
+ // The predicate for the default mode needs to be constructed for each
+ // pattern separately.
+ // Since not all modes must be present in each pattern, if a mode m is
+ // absent, then there is no point in constructing a check for m. If such
+ // a check was created, it would be equivalent to checking the default
+ // mode, except not all modes' predicates would be a part of the checking
+ // code. The subsequently generated check for the default mode would then
+ // have the exact same patterns, but a different predicate code. To avoid
+ // duplicated patterns with different predicate checks, construct the
+ // default check as a negation of all predicates that are actually present
+ // in the source/destination patterns.
+ std::vector<Predicate> DefaultPred;
+
+ for (unsigned M : Modes) {
+ if (M == DefaultMode)
+ continue;
+ if (ModeChecks.find(M) != ModeChecks.end())
+ continue;
+
+ // Fill the map entry for this mode.
+ const HwMode &HM = CGH.getMode(M);
+ ModeChecks[M].emplace_back(Predicate(HM.Features, true));
+
+ // Add negations of the HM's predicates to the default predicate.
+ DefaultPred.emplace_back(Predicate(HM.Features, false));
+ }
+
+ for (unsigned M : Modes) {
+ if (M == DefaultMode)
+ continue;
+ AppendPattern(P, M);
+ }
+
+ bool HasDefault = Modes.count(DefaultMode);
+ if (HasDefault)
+ AppendPattern(P, DefaultMode);
+ }
+}
+
+/// Dependent variable map for CodeGenDAGPattern variant generation
+typedef StringMap<int> DepVarMap;
+
+static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
+ if (N->isLeaf()) {
+ if (N->hasName() && isa<DefInit>(N->getLeafValue()))
+ DepMap[N->getName()]++;
+ } else {
+ for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
+ FindDepVarsOf(N->getChild(i), DepMap);
+ }
+}
+
+/// Find dependent variables within child patterns
+static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
+ DepVarMap depcounts;
+ FindDepVarsOf(N, depcounts);
+ for (const auto &Pair : depcounts) {
+ if (Pair.getValue() > 1)
+ DepVars.insert(Pair.getKey());
+ }
+}
+
+#ifndef NDEBUG
+/// Dump the dependent variable set:
+static void DumpDepVars(MultipleUseVarSet &DepVars) {
+ if (DepVars.empty()) {
+ LLVM_DEBUG(errs() << "<empty set>");
+ } else {
+ LLVM_DEBUG(errs() << "[ ");
+ for (const auto &DepVar : DepVars) {
+ LLVM_DEBUG(errs() << DepVar.getKey() << " ");
+ }
+ LLVM_DEBUG(errs() << "]");
+ }
+}
+#endif
+
+
+/// CombineChildVariants - Given a bunch of permutations of each child of the
+/// 'operator' node, put them together in all possible ways.
+static void CombineChildVariants(
+ TreePatternNodePtr Orig,
+ const std::vector<std::vector<TreePatternNodePtr>> &ChildVariants,
+ std::vector<TreePatternNodePtr> &OutVariants, CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // Make sure that each operand has at least one variant to choose from.
+ for (const auto &Variants : ChildVariants)
+ if (Variants.empty())
+ return;
+
+ // The end result is an all-pairs construction of the resultant pattern.
+ std::vector<unsigned> Idxs;
+ Idxs.resize(ChildVariants.size());
+ bool NotDone;
+ do {
+#ifndef NDEBUG
+ LLVM_DEBUG(if (!Idxs.empty()) {
+ errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
+ for (unsigned Idx : Idxs) {
+ errs() << Idx << " ";
+ }
+ errs() << "]\n";
+ });
+#endif
+ // Create the variant and add it to the output list.
+ std::vector<TreePatternNodePtr> NewChildren;
+ for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
+ NewChildren.push_back(ChildVariants[i][Idxs[i]]);
+ TreePatternNodePtr R = std::make_shared<TreePatternNode>(
+ Orig->getOperator(), std::move(NewChildren), Orig->getNumTypes());
+
+ // Copy over properties.
+ R->setName(Orig->getName());
+ R->setNamesAsPredicateArg(Orig->getNamesAsPredicateArg());
+ R->setPredicateCalls(Orig->getPredicateCalls());
+ R->setTransformFn(Orig->getTransformFn());
+ for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
+ R->setType(i, Orig->getExtType(i));
+
+ // If this pattern cannot match, do not include it as a variant.
+ std::string ErrString;
+ // Scan to see if this pattern has already been emitted. We can get
+ // duplication due to things like commuting:
+ // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
+ // which are the same pattern. Ignore the dups.
+ if (R->canPatternMatch(ErrString, CDP) &&
+ none_of(OutVariants, [&](TreePatternNodePtr Variant) {
+ return R->isIsomorphicTo(Variant.get(), DepVars);
+ }))
+ OutVariants.push_back(R);
+
+ // Increment indices to the next permutation by incrementing the
+ // indices from last index backward, e.g., generate the sequence
+ // [0, 0], [0, 1], [1, 0], [1, 1].
+ int IdxsIdx;
+ for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
+ if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
+ Idxs[IdxsIdx] = 0;
+ else
+ break;
+ }
+ NotDone = (IdxsIdx >= 0);
+ } while (NotDone);
+}
+
+/// CombineChildVariants - A helper function for binary operators.
+///
+static void CombineChildVariants(TreePatternNodePtr Orig,
+ const std::vector<TreePatternNodePtr> &LHS,
+ const std::vector<TreePatternNodePtr> &RHS,
+ std::vector<TreePatternNodePtr> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
+ ChildVariants.push_back(LHS);
+ ChildVariants.push_back(RHS);
+ CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
+}
+
+static void
+GatherChildrenOfAssociativeOpcode(TreePatternNodePtr N,
+ std::vector<TreePatternNodePtr> &Children) {
+ assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
+ Record *Operator = N->getOperator();
+
+ // Only permit raw nodes.
+ if (!N->getName().empty() || !N->getPredicateCalls().empty() ||
+ N->getTransformFn()) {
+ Children.push_back(N);
+ return;
+ }
+
+ if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
+ Children.push_back(N->getChildShared(0));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChildShared(0), Children);
+
+ if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
+ Children.push_back(N->getChildShared(1));
+ else
+ GatherChildrenOfAssociativeOpcode(N->getChildShared(1), Children);
+}
+
+/// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
+/// the (potentially recursive) pattern by using algebraic laws.
+///
+static void GenerateVariantsOf(TreePatternNodePtr N,
+ std::vector<TreePatternNodePtr> &OutVariants,
+ CodeGenDAGPatterns &CDP,
+ const MultipleUseVarSet &DepVars) {
+ // We cannot permute leaves or ComplexPattern uses.
+ if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
+ OutVariants.push_back(N);
+ return;
+ }
+
+ // Look up interesting info about the node.
+ const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
+
+ // If this node is associative, re-associate.
+ if (NodeInfo.hasProperty(SDNPAssociative)) {
+ // Re-associate by pulling together all of the linked operators
+ std::vector<TreePatternNodePtr> MaximalChildren;
+ GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
+
+ // Only handle child sizes of 3. Otherwise we'll end up trying too many
+ // permutations.
+ if (MaximalChildren.size() == 3) {
+ // Find the variants of all of our maximal children.
+ std::vector<TreePatternNodePtr> AVariants, BVariants, CVariants;
+ GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
+ GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
+
+ // There are only two ways we can permute the tree:
+ // (A op B) op C and A op (B op C)
+ // Within these forms, we can also permute A/B/C.
+
+ // Generate legal pair permutations of A/B/C.
+ std::vector<TreePatternNodePtr> ABVariants;
+ std::vector<TreePatternNodePtr> BAVariants;
+ std::vector<TreePatternNodePtr> ACVariants;
+ std::vector<TreePatternNodePtr> CAVariants;
+ std::vector<TreePatternNodePtr> BCVariants;
+ std::vector<TreePatternNodePtr> CBVariants;
+ CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
+
+ // Combine those into the result: (x op x) op x
+ CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
+
+ // Combine those into the result: x op (x op x)
+ CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
+ CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
+ return;
+ }
+ }
+
+ // Compute permutations of all children.
+ std::vector<std::vector<TreePatternNodePtr>> ChildVariants;
+ ChildVariants.resize(N->getNumChildren());
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
+ GenerateVariantsOf(N->getChildShared(i), ChildVariants[i], CDP, DepVars);
+
+ // Build all permutations based on how the children were formed.
+ CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
+
+ // If this node is commutative, consider the commuted order.
+ bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
+ if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
+ assert((N->getNumChildren()>=2 || isCommIntrinsic) &&
+ "Commutative but doesn't have 2 children!");
+ // Don't count children which are actually register references.
+ unsigned NC = 0;
+ for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
+ TreePatternNode *Child = N->getChild(i);
+ if (Child->isLeaf())
+ if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
+ Record *RR = DI->getDef();
+ if (RR->isSubClassOf("Register"))
+ continue;
+ }
+ NC++;
+ }
+ // Consider the commuted order.
+ if (isCommIntrinsic) {
+ // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
+ // operands are the commutative operands, and there might be more operands
+ // after those.
+ assert(NC >= 3 &&
+ "Commutative intrinsic should have at least 3 children!");
+ std::vector<std::vector<TreePatternNodePtr>> Variants;
+ Variants.push_back(std::move(ChildVariants[0])); // Intrinsic id.
+ Variants.push_back(std::move(ChildVariants[2]));
+ Variants.push_back(std::move(ChildVariants[1]));
+ for (unsigned i = 3; i != NC; ++i)
+ Variants.push_back(std::move(ChildVariants[i]));
+ CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
+ } else if (NC == N->getNumChildren()) {
+ std::vector<std::vector<TreePatternNodePtr>> Variants;
+ Variants.push_back(std::move(ChildVariants[1]));
+ Variants.push_back(std::move(ChildVariants[0]));
+ for (unsigned i = 2; i != NC; ++i)
+ Variants.push_back(std::move(ChildVariants[i]));
+ CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
+ }
+ }
+}
+
+
+// GenerateVariants - Generate variants. For example, commutative patterns can
+// match multiple ways. Add them to PatternsToMatch as well.
+void CodeGenDAGPatterns::GenerateVariants() {
+ LLVM_DEBUG(errs() << "Generating instruction variants.\n");
+
+ // Loop over all of the patterns we've collected, checking to see if we can
+ // generate variants of the instruction, through the exploitation of
+ // identities. This permits the target to provide aggressive matching without
+ // the .td file having to contain tons of variants of instructions.
+ //
+ // Note that this loop adds new patterns to the PatternsToMatch list, but we
+ // intentionally do not reconsider these. Any variants of added patterns have
+ // already been added.
+ //
+ const unsigned NumOriginalPatterns = PatternsToMatch.size();
+ BitVector MatchedPatterns(NumOriginalPatterns);
+ std::vector<BitVector> MatchedPredicates(NumOriginalPatterns,
+ BitVector(NumOriginalPatterns));
+
+ typedef std::pair<MultipleUseVarSet, std::vector<TreePatternNodePtr>>
+ DepsAndVariants;
+ std::map<unsigned, DepsAndVariants> PatternsWithVariants;
+
+ // Collect patterns with more than one variant.
+ for (unsigned i = 0; i != NumOriginalPatterns; ++i) {
+ MultipleUseVarSet DepVars;
+ std::vector<TreePatternNodePtr> Variants;
+ FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
+ LLVM_DEBUG(errs() << "Dependent/multiply used variables: ");
+ LLVM_DEBUG(DumpDepVars(DepVars));
+ LLVM_DEBUG(errs() << "\n");
+ GenerateVariantsOf(PatternsToMatch[i].getSrcPatternShared(), Variants,
+ *this, DepVars);
+
+ assert(!Variants.empty() && "Must create at least original variant!");
+ if (Variants.size() == 1) // No additional variants for this pattern.
+ continue;
+
+ LLVM_DEBUG(errs() << "FOUND VARIANTS OF: ";
+ PatternsToMatch[i].getSrcPattern()->dump(); errs() << "\n");
+
+ PatternsWithVariants[i] = std::make_pair(DepVars, Variants);
+
+ // Cache matching predicates.
+ if (MatchedPatterns[i])
+ continue;
+
+ const std::vector<Predicate> &Predicates =
+ PatternsToMatch[i].getPredicates();
+
+ BitVector &Matches = MatchedPredicates[i];
+ MatchedPatterns.set(i);
+ Matches.set(i);
+
+ // Don't test patterns that have already been cached - it won't match.
+ for (unsigned p = 0; p != NumOriginalPatterns; ++p)
+ if (!MatchedPatterns[p])
+ Matches[p] = (Predicates == PatternsToMatch[p].getPredicates());
+
+ // Copy this to all the matching patterns.
+ for (int p = Matches.find_first(); p != -1; p = Matches.find_next(p))
+ if (p != (int)i) {
+ MatchedPatterns.set(p);
+ MatchedPredicates[p] = Matches;
+ }
+ }
+
+ for (auto it : PatternsWithVariants) {
+ unsigned i = it.first;
+ const MultipleUseVarSet &DepVars = it.second.first;
+ const std::vector<TreePatternNodePtr> &Variants = it.second.second;
+
+ for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
+ TreePatternNodePtr Variant = Variants[v];
+ BitVector &Matches = MatchedPredicates[i];
+
+ LLVM_DEBUG(errs() << " VAR#" << v << ": "; Variant->dump();
+ errs() << "\n");
+
+ // Scan to see if an instruction or explicit pattern already matches this.
+ bool AlreadyExists = false;
+ for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
+ // Skip if the top level predicates do not match.
+ if (!Matches[p])
+ continue;
+ // Check to see if this variant already exists.
+ if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
+ DepVars)) {
+ LLVM_DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
+ AlreadyExists = true;
+ break;
+ }
+ }
+ // If we already have it, ignore the variant.
+ if (AlreadyExists) continue;
+
+ // Otherwise, add it to the list of patterns we have.
+ PatternsToMatch.push_back(PatternToMatch(
+ PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
+ Variant, PatternsToMatch[i].getDstPatternShared(),
+ PatternsToMatch[i].getDstRegs(),
+ PatternsToMatch[i].getAddedComplexity(), Record::getNewUID()));
+ MatchedPredicates.push_back(Matches);
+
+ // Add a new match the same as this pattern.
+ for (auto &P : MatchedPredicates)
+ P.push_back(P[i]);
+ }
+
+ LLVM_DEBUG(errs() << "\n");
+ }
+}