diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:49 +0300 |
commit | 718c552901d703c502ccbefdfc3c9028d608b947 (patch) | |
tree | 46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp | |
parent | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff) | |
download | ydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp | 3726 |
1 files changed, 1863 insertions, 1863 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp b/contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp index 8e251ca940..78e926254e 100644 --- a/contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Scalar/LowerMatrixIntrinsics.cpp @@ -1,1214 +1,1214 @@ -//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Lower matrix intrinsics to vector operations. -// -// TODO: -// * Improve fusion: -// * Support more cases, e.g. multiply-add, multiply-sub, operands/results -// transposed. -// * Improve cost-modeling, e.g. choose different number of rows/columns -// columns for tiles, consider cost of copies on alias. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" -#include "llvm/ADT/GraphTraits.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/DomTreeUpdater.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/Analysis/VectorUtils.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/Alignment.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Transforms/Scalar.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" +//===- LowerMatrixIntrinsics.cpp - Lower matrix intrinsics -----*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Lower matrix intrinsics to vector operations. +// +// TODO: +// * Improve fusion: +// * Support more cases, e.g. multiply-add, multiply-sub, operands/results +// transposed. +// * Improve cost-modeling, e.g. choose different number of rows/columns +// columns for tiles, consider cost of copies on alias. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Scalar/LowerMatrixIntrinsics.h" +#include "llvm/ADT/GraphTraits.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Analysis/VectorUtils.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Alignment.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Transforms/Scalar.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/LoopUtils.h" #include "llvm/Transforms/Utils/MatrixUtils.h" - -using namespace llvm; -using namespace PatternMatch; - -#define DEBUG_TYPE "lower-matrix-intrinsics" - -static cl::opt<bool> EnableShapePropagation( - "matrix-propagate-shape", cl::init(true), cl::Hidden, - cl::desc("Enable/disable shape propagation from matrix intrinsics to other " - "instructions.")); - -static cl::opt<bool> - FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, - cl::desc("Enable/disable fusing matrix instructions.")); -// TODO: Allow and use non-square tiles. -static cl::opt<unsigned> TileSize( - "fuse-matrix-tile-size", cl::init(4), cl::Hidden, - cl::desc( - "Tile size for matrix instruction fusion using square-shaped tiles.")); + +using namespace llvm; +using namespace PatternMatch; + +#define DEBUG_TYPE "lower-matrix-intrinsics" + +static cl::opt<bool> EnableShapePropagation( + "matrix-propagate-shape", cl::init(true), cl::Hidden, + cl::desc("Enable/disable shape propagation from matrix intrinsics to other " + "instructions.")); + +static cl::opt<bool> + FuseMatrix("fuse-matrix", cl::init(true), cl::Hidden, + cl::desc("Enable/disable fusing matrix instructions.")); +// TODO: Allow and use non-square tiles. +static cl::opt<unsigned> TileSize( + "fuse-matrix-tile-size", cl::init(4), cl::Hidden, + cl::desc( + "Tile size for matrix instruction fusion using square-shaped tiles.")); static cl::opt<bool> TileUseLoops("fuse-matrix-use-loops", cl::init(false), cl::Hidden, cl::desc("Generate loop nest for tiling.")); -static cl::opt<bool> ForceFusion( - "force-fuse-matrix", cl::init(false), cl::Hidden, - cl::desc("Force matrix instruction fusion even if not profitable.")); -static cl::opt<bool> AllowContractEnabled( - "matrix-allow-contract", cl::init(false), cl::Hidden, - cl::desc("Allow the use of FMAs if available and profitable. This may " - "result in different results, due to less rounding error.")); - -enum class MatrixLayoutTy { ColumnMajor, RowMajor }; - -static cl::opt<MatrixLayoutTy> MatrixLayout( - "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), - cl::desc("Sets the default matrix layout"), - cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", - "Use column-major layout"), - clEnumValN(MatrixLayoutTy::RowMajor, "row-major", - "Use row-major layout"))); - -/// Helper function to either return Scope, if it is a subprogram or the -/// attached subprogram for a local scope. -static DISubprogram *getSubprogram(DIScope *Scope) { - if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) - return Subprogram; - return cast<DILocalScope>(Scope)->getSubprogram(); -} - -namespace { - -// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute -// the start address of vector \p VecIdx with type (\p EltType x \p NumElements) -// assuming \p Stride elements between start two consecutive vectors. -// \p Stride must be >= \p NumElements. -// For column-major matrixes, the function computes the address of a column -// vectors and \p NumElements must be set to the number of elements in a column -// (= number of rows of the matrix). For row-major matrixes, the function -// computes the address of a row vector and \p NumElements must be set to the -// number of elements in a column (= number of columns of the matrix). -// -// Consider a 4x4 matrix in column-mjaor layout like below -// -// 0 1 2 3 -// 0 v_0_0 v_0_1 v_0_2 v_0_3 -// 1 v_1_0 v_1_1 v_1_2 v_1_3 -// 2 v_2_0 v_2_1 v_2_2 v_2_3 -// 3 v_3_0 v_3_1 v_3_2 v_3_3 - -// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, -// we need a pointer to the first element of the submatrix as base pointer. -// Then we can use computeVectorAddr to compute the addresses for the columns -// of the sub-matrix. -// -// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) -// -> just returns Base -// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) -// -> returns Base + (1 * 4) -// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) -// -> returns Base + (2 * 4) -// -// The graphic below illustrates the number of elements in a column (marked -// with |) and the number of skipped elements (marked with }). -// -// v_0_0 v_0_1 {v_0_2 {v_0_3 -// Base Col 1 Col 2 -// | | | -// v_1_0 |v_1_1 |v_1_2 |v_1_3 -// v_2_0 |v_2_1 |v_2_2 |v_2_3 -// v_3_0 {v_3_1 {v_3_2 v_3_3 -// -Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, - unsigned NumElements, Type *EltType, - IRBuilder<> &Builder) { - - assert((!isa<ConstantInt>(Stride) || - cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && - "Stride must be >= the number of elements in the result vector."); - unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); - - // Compute the start of the vector with index VecIdx as VecIdx * Stride. - Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); - - // Get pointer to the start of the selected vector. Skip GEP creation, - // if we select vector 0. - if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) - VecStart = BasePtr; - else - VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); - - // Cast elementwise vector start pointer to a pointer to a vector - // (EltType x NumElements)*. - auto *VecType = FixedVectorType::get(EltType, NumElements); - Type *VecPtrType = PointerType::get(VecType, AS); - return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); -} - -/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. -/// -/// Currently, the lowering for each matrix intrinsic is done as follows: -/// 1. Propagate the shape information from intrinsics to connected -/// instructions. -/// 2. Lower instructions with shape information (assuming column-major layout). -/// The lowering works similarly using row-major layout. -/// 2.1. Get column vectors for each argument. If we already lowered the -/// definition of an argument, use the produced column vectors directly. -/// If not, split the operand vector containing an embedded matrix into -/// a set of column vectors, -/// 2.2. Lower the instruction in terms of column major operations, which -/// yields a set of column vectors containing result matrix. Note that we -/// lower all instructions that have shape information. Besides the -/// intrinsics, this includes stores for example. -/// 2.3. Update uses of the lowered instruction. If we have shape information -/// for a user, there is nothing to do, as we will look up the result -/// column matrix when lowering the user. For other uses, we embed the -/// result matrix in a flat vector and update the use. -/// 2.4. Cache the result column matrix for the instruction we lowered -/// 3. After we lowered all instructions in a function, remove the now -/// obsolete instructions. -/// -class LowerMatrixIntrinsics { - Function &Func; - const DataLayout &DL; - const TargetTransformInfo &TTI; +static cl::opt<bool> ForceFusion( + "force-fuse-matrix", cl::init(false), cl::Hidden, + cl::desc("Force matrix instruction fusion even if not profitable.")); +static cl::opt<bool> AllowContractEnabled( + "matrix-allow-contract", cl::init(false), cl::Hidden, + cl::desc("Allow the use of FMAs if available and profitable. This may " + "result in different results, due to less rounding error.")); + +enum class MatrixLayoutTy { ColumnMajor, RowMajor }; + +static cl::opt<MatrixLayoutTy> MatrixLayout( + "matrix-default-layout", cl::init(MatrixLayoutTy::ColumnMajor), + cl::desc("Sets the default matrix layout"), + cl::values(clEnumValN(MatrixLayoutTy::ColumnMajor, "column-major", + "Use column-major layout"), + clEnumValN(MatrixLayoutTy::RowMajor, "row-major", + "Use row-major layout"))); + +/// Helper function to either return Scope, if it is a subprogram or the +/// attached subprogram for a local scope. +static DISubprogram *getSubprogram(DIScope *Scope) { + if (auto *Subprogram = dyn_cast<DISubprogram>(Scope)) + return Subprogram; + return cast<DILocalScope>(Scope)->getSubprogram(); +} + +namespace { + +// Given an element pointer \p BasePtr to the start of a (sub) matrix, compute +// the start address of vector \p VecIdx with type (\p EltType x \p NumElements) +// assuming \p Stride elements between start two consecutive vectors. +// \p Stride must be >= \p NumElements. +// For column-major matrixes, the function computes the address of a column +// vectors and \p NumElements must be set to the number of elements in a column +// (= number of rows of the matrix). For row-major matrixes, the function +// computes the address of a row vector and \p NumElements must be set to the +// number of elements in a column (= number of columns of the matrix). +// +// Consider a 4x4 matrix in column-mjaor layout like below +// +// 0 1 2 3 +// 0 v_0_0 v_0_1 v_0_2 v_0_3 +// 1 v_1_0 v_1_1 v_1_2 v_1_3 +// 2 v_2_0 v_2_1 v_2_2 v_2_3 +// 3 v_3_0 v_3_1 v_3_2 v_3_3 + +// To compute the column addresses for a 2x3 sub-matrix at row 1 and column 1, +// we need a pointer to the first element of the submatrix as base pointer. +// Then we can use computeVectorAddr to compute the addresses for the columns +// of the sub-matrix. +// +// Column 0: computeVectorAddr(Base, 0 (column), 4 (stride), 2 (num rows), ..) +// -> just returns Base +// Column 1: computeVectorAddr(Base, 1 (column), 4 (stride), 2 (num rows), ..) +// -> returns Base + (1 * 4) +// Column 2: computeVectorAddr(Base, 2 (column), 4 (stride), 2 (num rows), ..) +// -> returns Base + (2 * 4) +// +// The graphic below illustrates the number of elements in a column (marked +// with |) and the number of skipped elements (marked with }). +// +// v_0_0 v_0_1 {v_0_2 {v_0_3 +// Base Col 1 Col 2 +// | | | +// v_1_0 |v_1_1 |v_1_2 |v_1_3 +// v_2_0 |v_2_1 |v_2_2 |v_2_3 +// v_3_0 {v_3_1 {v_3_2 v_3_3 +// +Value *computeVectorAddr(Value *BasePtr, Value *VecIdx, Value *Stride, + unsigned NumElements, Type *EltType, + IRBuilder<> &Builder) { + + assert((!isa<ConstantInt>(Stride) || + cast<ConstantInt>(Stride)->getZExtValue() >= NumElements) && + "Stride must be >= the number of elements in the result vector."); + unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); + + // Compute the start of the vector with index VecIdx as VecIdx * Stride. + Value *VecStart = Builder.CreateMul(VecIdx, Stride, "vec.start"); + + // Get pointer to the start of the selected vector. Skip GEP creation, + // if we select vector 0. + if (isa<ConstantInt>(VecStart) && cast<ConstantInt>(VecStart)->isZero()) + VecStart = BasePtr; + else + VecStart = Builder.CreateGEP(EltType, BasePtr, VecStart, "vec.gep"); + + // Cast elementwise vector start pointer to a pointer to a vector + // (EltType x NumElements)*. + auto *VecType = FixedVectorType::get(EltType, NumElements); + Type *VecPtrType = PointerType::get(VecType, AS); + return Builder.CreatePointerCast(VecStart, VecPtrType, "vec.cast"); +} + +/// LowerMatrixIntrinsics contains the methods used to lower matrix intrinsics. +/// +/// Currently, the lowering for each matrix intrinsic is done as follows: +/// 1. Propagate the shape information from intrinsics to connected +/// instructions. +/// 2. Lower instructions with shape information (assuming column-major layout). +/// The lowering works similarly using row-major layout. +/// 2.1. Get column vectors for each argument. If we already lowered the +/// definition of an argument, use the produced column vectors directly. +/// If not, split the operand vector containing an embedded matrix into +/// a set of column vectors, +/// 2.2. Lower the instruction in terms of column major operations, which +/// yields a set of column vectors containing result matrix. Note that we +/// lower all instructions that have shape information. Besides the +/// intrinsics, this includes stores for example. +/// 2.3. Update uses of the lowered instruction. If we have shape information +/// for a user, there is nothing to do, as we will look up the result +/// column matrix when lowering the user. For other uses, we embed the +/// result matrix in a flat vector and update the use. +/// 2.4. Cache the result column matrix for the instruction we lowered +/// 3. After we lowered all instructions in a function, remove the now +/// obsolete instructions. +/// +class LowerMatrixIntrinsics { + Function &Func; + const DataLayout &DL; + const TargetTransformInfo &TTI; AliasAnalysis *AA; DominatorTree *DT; LoopInfo *LI; OptimizationRemarkEmitter *ORE; - - /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. - struct OpInfoTy { - /// Number of stores emitted to generate this matrix. - unsigned NumStores = 0; - /// Number of loads emitted to generate this matrix. - unsigned NumLoads = 0; - /// Number of compute operations emitted to generate this matrix. - unsigned NumComputeOps = 0; - - OpInfoTy &operator+=(const OpInfoTy &RHS) { - NumStores += RHS.NumStores; - NumLoads += RHS.NumLoads; - NumComputeOps += RHS.NumComputeOps; - return *this; - } - }; - - /// Wrapper class representing a matrix as a set of vectors, either in row or - /// column major layout. All vectors must have the same vector type. - class MatrixTy { - SmallVector<Value *, 16> Vectors; - - OpInfoTy OpInfo; - - bool IsColumnMajor = true; - - public: - MatrixTy() - : Vectors(), - IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} - MatrixTy(ArrayRef<Value *> Vectors) - : Vectors(Vectors.begin(), Vectors.end()), - IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} - MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) - : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { - - unsigned D = isColumnMajor() ? NumColumns : NumRows; - for (unsigned J = 0; J < D; ++J) - addVector(UndefValue::get(FixedVectorType::get( - EltTy, isColumnMajor() ? NumRows : NumColumns))); - } - - Value *getVector(unsigned i) const { return Vectors[i]; } - Value *getColumn(unsigned i) const { - assert(isColumnMajor() && "only supported for column-major matrixes"); - return Vectors[i]; - } - Value *getRow(unsigned i) const { - assert(!isColumnMajor() && "only supported for row-major matrixes"); - return Vectors[i]; - } - - void setVector(unsigned i, Value *V) { Vectors[i] = V; } - + + /// Contains estimates of the number of operations (loads, stores, compute) required to lower a matrix operation. + struct OpInfoTy { + /// Number of stores emitted to generate this matrix. + unsigned NumStores = 0; + /// Number of loads emitted to generate this matrix. + unsigned NumLoads = 0; + /// Number of compute operations emitted to generate this matrix. + unsigned NumComputeOps = 0; + + OpInfoTy &operator+=(const OpInfoTy &RHS) { + NumStores += RHS.NumStores; + NumLoads += RHS.NumLoads; + NumComputeOps += RHS.NumComputeOps; + return *this; + } + }; + + /// Wrapper class representing a matrix as a set of vectors, either in row or + /// column major layout. All vectors must have the same vector type. + class MatrixTy { + SmallVector<Value *, 16> Vectors; + + OpInfoTy OpInfo; + + bool IsColumnMajor = true; + + public: + MatrixTy() + : Vectors(), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} + MatrixTy(ArrayRef<Value *> Vectors) + : Vectors(Vectors.begin(), Vectors.end()), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} + MatrixTy(unsigned NumRows, unsigned NumColumns, Type *EltTy) + : IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) { + + unsigned D = isColumnMajor() ? NumColumns : NumRows; + for (unsigned J = 0; J < D; ++J) + addVector(UndefValue::get(FixedVectorType::get( + EltTy, isColumnMajor() ? NumRows : NumColumns))); + } + + Value *getVector(unsigned i) const { return Vectors[i]; } + Value *getColumn(unsigned i) const { + assert(isColumnMajor() && "only supported for column-major matrixes"); + return Vectors[i]; + } + Value *getRow(unsigned i) const { + assert(!isColumnMajor() && "only supported for row-major matrixes"); + return Vectors[i]; + } + + void setVector(unsigned i, Value *V) { Vectors[i] = V; } + Type *getElementType() const { return getVectorTy()->getElementType(); } - - unsigned getNumVectors() const { - if (isColumnMajor()) - return getNumColumns(); - return getNumRows(); - } - - unsigned getNumColumns() const { - if (isColumnMajor()) - return Vectors.size(); - else { - assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); - return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); - } - } - unsigned getNumRows() const { - if (isColumnMajor()) { - assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); - return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); - } else - return Vectors.size(); - } - - void addVector(Value *V) { Vectors.push_back(V); } - VectorType *getColumnTy() { - assert(isColumnMajor() && "only supported for column-major matrixes"); - return getVectorTy(); - } - + + unsigned getNumVectors() const { + if (isColumnMajor()) + return getNumColumns(); + return getNumRows(); + } + + unsigned getNumColumns() const { + if (isColumnMajor()) + return Vectors.size(); + else { + assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); + return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); + } + } + unsigned getNumRows() const { + if (isColumnMajor()) { + assert(Vectors.size() > 0 && "Cannot call getNumRows without columns"); + return cast<FixedVectorType>(Vectors[0]->getType())->getNumElements(); + } else + return Vectors.size(); + } + + void addVector(Value *V) { Vectors.push_back(V); } + VectorType *getColumnTy() { + assert(isColumnMajor() && "only supported for column-major matrixes"); + return getVectorTy(); + } + VectorType *getVectorTy() const { - return cast<VectorType>(Vectors[0]->getType()); - } - - iterator_range<SmallVector<Value *, 8>::iterator> columns() { - assert(isColumnMajor() && - "columns() only supported for column-major matrixes"); - return make_range(Vectors.begin(), Vectors.end()); - } - - iterator_range<SmallVector<Value *, 8>::iterator> vectors() { - return make_range(Vectors.begin(), Vectors.end()); - } - - /// Embed the vectors of the matrix into a flat vector by concatenating - /// them. - Value *embedInVector(IRBuilder<> &Builder) const { - return Vectors.size() == 1 ? Vectors[0] - : concatenateVectors(Builder, Vectors); - } - - MatrixTy &addNumLoads(unsigned N) { - OpInfo.NumLoads += N; - return *this; - } - - void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } - - MatrixTy &addNumStores(unsigned N) { - OpInfo.NumStores += N; - return *this; - } - - MatrixTy &addNumComputeOps(unsigned N) { - OpInfo.NumComputeOps += N; - return *this; - } - - unsigned getNumStores() const { return OpInfo.NumStores; } - unsigned getNumLoads() const { return OpInfo.NumLoads; } - unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } - - const OpInfoTy &getOpInfo() const { return OpInfo; } - - bool isColumnMajor() const { return IsColumnMajor; } - - unsigned getStride() const { - if (isColumnMajor()) - return getNumRows(); - return getNumColumns(); - } - - /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the - /// matrix is column-major, the result vector is extracted from a column - /// vector, otherwise from a row vector. - Value *extractVector(unsigned I, unsigned J, unsigned NumElts, - IRBuilder<> &Builder) const { - Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); - return Builder.CreateShuffleVector( + return cast<VectorType>(Vectors[0]->getType()); + } + + iterator_range<SmallVector<Value *, 8>::iterator> columns() { + assert(isColumnMajor() && + "columns() only supported for column-major matrixes"); + return make_range(Vectors.begin(), Vectors.end()); + } + + iterator_range<SmallVector<Value *, 8>::iterator> vectors() { + return make_range(Vectors.begin(), Vectors.end()); + } + + /// Embed the vectors of the matrix into a flat vector by concatenating + /// them. + Value *embedInVector(IRBuilder<> &Builder) const { + return Vectors.size() == 1 ? Vectors[0] + : concatenateVectors(Builder, Vectors); + } + + MatrixTy &addNumLoads(unsigned N) { + OpInfo.NumLoads += N; + return *this; + } + + void setNumLoads(unsigned N) { OpInfo.NumLoads = N; } + + MatrixTy &addNumStores(unsigned N) { + OpInfo.NumStores += N; + return *this; + } + + MatrixTy &addNumComputeOps(unsigned N) { + OpInfo.NumComputeOps += N; + return *this; + } + + unsigned getNumStores() const { return OpInfo.NumStores; } + unsigned getNumLoads() const { return OpInfo.NumLoads; } + unsigned getNumComputeOps() const { return OpInfo.NumComputeOps; } + + const OpInfoTy &getOpInfo() const { return OpInfo; } + + bool isColumnMajor() const { return IsColumnMajor; } + + unsigned getStride() const { + if (isColumnMajor()) + return getNumRows(); + return getNumColumns(); + } + + /// Extract a vector of \p NumElts starting at index (\p I, \p J). If the + /// matrix is column-major, the result vector is extracted from a column + /// vector, otherwise from a row vector. + Value *extractVector(unsigned I, unsigned J, unsigned NumElts, + IRBuilder<> &Builder) const { + Value *Vec = isColumnMajor() ? getColumn(J) : getRow(I); + return Builder.CreateShuffleVector( Vec, createSequentialMask(isColumnMajor() ? I : J, NumElts, 0), - "block"); - } - }; - - struct ShapeInfo { - unsigned NumRows; - unsigned NumColumns; - - bool IsColumnMajor; - - ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) - : NumRows(NumRows), NumColumns(NumColumns), - IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} - - ShapeInfo(Value *NumRows, Value *NumColumns) - : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), - cast<ConstantInt>(NumColumns)->getZExtValue()) {} - - bool operator==(const ShapeInfo &other) { - return NumRows == other.NumRows && NumColumns == other.NumColumns; - } - bool operator!=(const ShapeInfo &other) { return !(*this == other); } - - /// Returns true if shape-information is defined, meaning both dimensions - /// are != 0. - operator bool() const { - assert(NumRows == 0 || NumColumns != 0); - return NumRows != 0; - } - - unsigned getStride() const { - if (IsColumnMajor) - return NumRows; - return NumColumns; - } - - unsigned getNumVectors() const { - if (IsColumnMajor) - return NumColumns; - return NumRows; - } - }; - - /// Maps instructions to their shape information. The shape information - /// describes the shape to be used while lowering. This matches the shape of - /// the result value of the instruction, with the only exceptions being store - /// instructions and the matrix_column_major_store intrinsics. For those, the - /// shape information indicates that those instructions should be lowered - /// using shape information as well. - DenseMap<Value *, ShapeInfo> ShapeMap; - - /// List of instructions to remove. While lowering, we are not replacing all - /// users of a lowered instruction, if shape information is available and - /// those need to be removed after we finished lowering. - SmallVector<Instruction *, 16> ToRemove; - - /// Map from instructions to their produced column matrix. - MapVector<Value *, MatrixTy> Inst2ColumnMatrix; - -public: - LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, + "block"); + } + }; + + struct ShapeInfo { + unsigned NumRows; + unsigned NumColumns; + + bool IsColumnMajor; + + ShapeInfo(unsigned NumRows = 0, unsigned NumColumns = 0) + : NumRows(NumRows), NumColumns(NumColumns), + IsColumnMajor(MatrixLayout == MatrixLayoutTy::ColumnMajor) {} + + ShapeInfo(Value *NumRows, Value *NumColumns) + : ShapeInfo(cast<ConstantInt>(NumRows)->getZExtValue(), + cast<ConstantInt>(NumColumns)->getZExtValue()) {} + + bool operator==(const ShapeInfo &other) { + return NumRows == other.NumRows && NumColumns == other.NumColumns; + } + bool operator!=(const ShapeInfo &other) { return !(*this == other); } + + /// Returns true if shape-information is defined, meaning both dimensions + /// are != 0. + operator bool() const { + assert(NumRows == 0 || NumColumns != 0); + return NumRows != 0; + } + + unsigned getStride() const { + if (IsColumnMajor) + return NumRows; + return NumColumns; + } + + unsigned getNumVectors() const { + if (IsColumnMajor) + return NumColumns; + return NumRows; + } + }; + + /// Maps instructions to their shape information. The shape information + /// describes the shape to be used while lowering. This matches the shape of + /// the result value of the instruction, with the only exceptions being store + /// instructions and the matrix_column_major_store intrinsics. For those, the + /// shape information indicates that those instructions should be lowered + /// using shape information as well. + DenseMap<Value *, ShapeInfo> ShapeMap; + + /// List of instructions to remove. While lowering, we are not replacing all + /// users of a lowered instruction, if shape information is available and + /// those need to be removed after we finished lowering. + SmallVector<Instruction *, 16> ToRemove; + + /// Map from instructions to their produced column matrix. + MapVector<Value *, MatrixTy> Inst2ColumnMatrix; + +public: + LowerMatrixIntrinsics(Function &F, TargetTransformInfo &TTI, AliasAnalysis *AA, DominatorTree *DT, LoopInfo *LI, OptimizationRemarkEmitter *ORE) - : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), - LI(LI), ORE(ORE) {} - - unsigned getNumOps(Type *VT) { - assert(isa<VectorType>(VT) && "Expected vector type"); - return getNumOps(VT->getScalarType(), - cast<FixedVectorType>(VT)->getNumElements()); - } - - // - /// Return the estimated number of vector ops required for an operation on - /// \p VT * N. - unsigned getNumOps(Type *ST, unsigned N) { - return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / - double(TTI.getRegisterBitWidth(true))); - } - - /// Return the set of vectors that a matrix value is lowered to. - /// - /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise - /// split the flat vector \p MatrixVal containing a matrix with shape \p SI - /// into vectors. - MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, - IRBuilder<> &Builder) { - VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); - assert(VType && "MatrixVal must be a vector type"); - assert(cast<FixedVectorType>(VType)->getNumElements() == - SI.NumRows * SI.NumColumns && - "The vector size must match the number of matrix elements"); - - // Check if we lowered MatrixVal using shape information. In that case, - // return the existing matrix, if it matches the requested shape - // information. If there is a mis-match, embed the result in a flat - // vector and split it later. - auto Found = Inst2ColumnMatrix.find(MatrixVal); - if (Found != Inst2ColumnMatrix.end()) { - MatrixTy &M = Found->second; - // Return the found matrix, if its shape matches the requested shape - // information - if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) - return M; - - MatrixVal = M.embedInVector(Builder); - } - - // Otherwise split MatrixVal. - SmallVector<Value *, 16> SplitVecs; - for (unsigned MaskStart = 0; - MaskStart < cast<FixedVectorType>(VType)->getNumElements(); - MaskStart += SI.getStride()) { - Value *V = Builder.CreateShuffleVector( + : Func(F), DL(F.getParent()->getDataLayout()), TTI(TTI), AA(AA), DT(DT), + LI(LI), ORE(ORE) {} + + unsigned getNumOps(Type *VT) { + assert(isa<VectorType>(VT) && "Expected vector type"); + return getNumOps(VT->getScalarType(), + cast<FixedVectorType>(VT)->getNumElements()); + } + + // + /// Return the estimated number of vector ops required for an operation on + /// \p VT * N. + unsigned getNumOps(Type *ST, unsigned N) { + return std::ceil((ST->getPrimitiveSizeInBits() * N).getFixedSize() / + double(TTI.getRegisterBitWidth(true))); + } + + /// Return the set of vectors that a matrix value is lowered to. + /// + /// If we lowered \p MatrixVal, just return the cache result matrix. Otherwise + /// split the flat vector \p MatrixVal containing a matrix with shape \p SI + /// into vectors. + MatrixTy getMatrix(Value *MatrixVal, const ShapeInfo &SI, + IRBuilder<> &Builder) { + VectorType *VType = dyn_cast<VectorType>(MatrixVal->getType()); + assert(VType && "MatrixVal must be a vector type"); + assert(cast<FixedVectorType>(VType)->getNumElements() == + SI.NumRows * SI.NumColumns && + "The vector size must match the number of matrix elements"); + + // Check if we lowered MatrixVal using shape information. In that case, + // return the existing matrix, if it matches the requested shape + // information. If there is a mis-match, embed the result in a flat + // vector and split it later. + auto Found = Inst2ColumnMatrix.find(MatrixVal); + if (Found != Inst2ColumnMatrix.end()) { + MatrixTy &M = Found->second; + // Return the found matrix, if its shape matches the requested shape + // information + if (SI.NumRows == M.getNumRows() && SI.NumColumns == M.getNumColumns()) + return M; + + MatrixVal = M.embedInVector(Builder); + } + + // Otherwise split MatrixVal. + SmallVector<Value *, 16> SplitVecs; + for (unsigned MaskStart = 0; + MaskStart < cast<FixedVectorType>(VType)->getNumElements(); + MaskStart += SI.getStride()) { + Value *V = Builder.CreateShuffleVector( MatrixVal, createSequentialMask(MaskStart, SI.getStride(), 0), - "split"); - SplitVecs.push_back(V); - } - - return {SplitVecs}; - } - - /// If \p V already has a known shape return false. Otherwise set the shape - /// for instructions that support it. - bool setShapeInfo(Value *V, ShapeInfo Shape) { - assert(Shape && "Shape not set"); - if (isa<UndefValue>(V) || !supportsShapeInfo(V)) - return false; - - auto SIter = ShapeMap.find(V); - if (SIter != ShapeMap.end()) { - LLVM_DEBUG(dbgs() << " not overriding existing shape: " - << SIter->second.NumRows << " " - << SIter->second.NumColumns << " for " << *V << "\n"); - return false; - } - - ShapeMap.insert({V, Shape}); - LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns - << " for " << *V << "\n"); - return true; - } - - bool isUniformShape(Value *V) { - Instruction *I = dyn_cast<Instruction>(V); - if (!I) - return true; - - switch (I->getOpcode()) { - case Instruction::FAdd: - case Instruction::FSub: - case Instruction::FMul: // Scalar multiply. + "split"); + SplitVecs.push_back(V); + } + + return {SplitVecs}; + } + + /// If \p V already has a known shape return false. Otherwise set the shape + /// for instructions that support it. + bool setShapeInfo(Value *V, ShapeInfo Shape) { + assert(Shape && "Shape not set"); + if (isa<UndefValue>(V) || !supportsShapeInfo(V)) + return false; + + auto SIter = ShapeMap.find(V); + if (SIter != ShapeMap.end()) { + LLVM_DEBUG(dbgs() << " not overriding existing shape: " + << SIter->second.NumRows << " " + << SIter->second.NumColumns << " for " << *V << "\n"); + return false; + } + + ShapeMap.insert({V, Shape}); + LLVM_DEBUG(dbgs() << " " << Shape.NumRows << " x " << Shape.NumColumns + << " for " << *V << "\n"); + return true; + } + + bool isUniformShape(Value *V) { + Instruction *I = dyn_cast<Instruction>(V); + if (!I) + return true; + + switch (I->getOpcode()) { + case Instruction::FAdd: + case Instruction::FSub: + case Instruction::FMul: // Scalar multiply. case Instruction::FNeg: - case Instruction::Add: - case Instruction::Mul: - case Instruction::Sub: - return true; - default: - return false; - } - } - - /// Returns true if shape information can be used for \p V. The supported - /// instructions must match the instructions that can be lowered by this pass. - bool supportsShapeInfo(Value *V) { - Instruction *Inst = dyn_cast<Instruction>(V); - if (!Inst) - return false; - - IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); - if (II) - switch (II->getIntrinsicID()) { - case Intrinsic::matrix_multiply: - case Intrinsic::matrix_transpose: - case Intrinsic::matrix_column_major_load: - case Intrinsic::matrix_column_major_store: - return true; - default: - return false; - } - return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V); - } - - /// Propagate the shape information of instructions to their users. - /// The work list contains instructions for which we can compute the shape, - /// either based on the information provided by matrix intrinsics or known - /// shapes of operands. - SmallVector<Instruction *, 32> - propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { - SmallVector<Instruction *, 32> NewWorkList; - // Pop an element for which we guaranteed to have at least one of the - // operand shapes. Add the shape for this and then add users to the work - // list. - LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); - while (!WorkList.empty()) { + case Instruction::Add: + case Instruction::Mul: + case Instruction::Sub: + return true; + default: + return false; + } + } + + /// Returns true if shape information can be used for \p V. The supported + /// instructions must match the instructions that can be lowered by this pass. + bool supportsShapeInfo(Value *V) { + Instruction *Inst = dyn_cast<Instruction>(V); + if (!Inst) + return false; + + IntrinsicInst *II = dyn_cast<IntrinsicInst>(Inst); + if (II) + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + case Intrinsic::matrix_transpose: + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: + return true; + default: + return false; + } + return isUniformShape(V) || isa<StoreInst>(V) || isa<LoadInst>(V); + } + + /// Propagate the shape information of instructions to their users. + /// The work list contains instructions for which we can compute the shape, + /// either based on the information provided by matrix intrinsics or known + /// shapes of operands. + SmallVector<Instruction *, 32> + propagateShapeForward(SmallVectorImpl<Instruction *> &WorkList) { + SmallVector<Instruction *, 32> NewWorkList; + // Pop an element for which we guaranteed to have at least one of the + // operand shapes. Add the shape for this and then add users to the work + // list. + LLVM_DEBUG(dbgs() << "Forward-propagate shapes:\n"); + while (!WorkList.empty()) { Instruction *Inst = WorkList.pop_back_val(); - - // New entry, set the value and insert operands - bool Propagate = false; - - Value *MatrixA; - Value *MatrixB; - Value *M; - Value *N; - Value *K; - if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>( - m_Value(MatrixA), m_Value(MatrixB), m_Value(M), - m_Value(N), m_Value(K)))) { - Propagate = setShapeInfo(Inst, {M, K}); - } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>( - m_Value(MatrixA), m_Value(M), m_Value(N)))) { - // Flip dimensions. - Propagate = setShapeInfo(Inst, {N, M}); - } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( - m_Value(MatrixA), m_Value(), m_Value(), - m_Value(), m_Value(M), m_Value(N)))) { - Propagate = setShapeInfo(Inst, {N, M}); - } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( - m_Value(), m_Value(), m_Value(), m_Value(M), - m_Value(N)))) { - Propagate = setShapeInfo(Inst, {M, N}); - } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { - auto OpShape = ShapeMap.find(MatrixA); - if (OpShape != ShapeMap.end()) - setShapeInfo(Inst, OpShape->second); - continue; - } else if (isUniformShape(Inst)) { - // Find the first operand that has a known shape and use that. - for (auto &Op : Inst->operands()) { - auto OpShape = ShapeMap.find(Op.get()); - if (OpShape != ShapeMap.end()) { - Propagate |= setShapeInfo(Inst, OpShape->second); - break; - } - } - } - - if (Propagate) { - NewWorkList.push_back(Inst); - for (auto *User : Inst->users()) - if (ShapeMap.count(User) == 0) - WorkList.push_back(cast<Instruction>(User)); - } - } - - return NewWorkList; - } - - /// Propagate the shape to operands of instructions with shape information. - /// \p Worklist contains the instruction for which we already know the shape. - SmallVector<Instruction *, 32> - propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { - SmallVector<Instruction *, 32> NewWorkList; - - auto pushInstruction = [](Value *V, - SmallVectorImpl<Instruction *> &WorkList) { - Instruction *I = dyn_cast<Instruction>(V); - if (I) - WorkList.push_back(I); - }; - // Pop an element with known shape. Traverse the operands, if their shape - // derives from the result shape and is unknown, add it and add them to the - // worklist. - LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); - while (!WorkList.empty()) { + + // New entry, set the value and insert operands + bool Propagate = false; + + Value *MatrixA; + Value *MatrixB; + Value *M; + Value *N; + Value *K; + if (match(Inst, m_Intrinsic<Intrinsic::matrix_multiply>( + m_Value(MatrixA), m_Value(MatrixB), m_Value(M), + m_Value(N), m_Value(K)))) { + Propagate = setShapeInfo(Inst, {M, K}); + } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_transpose>( + m_Value(MatrixA), m_Value(M), m_Value(N)))) { + // Flip dimensions. + Propagate = setShapeInfo(Inst, {N, M}); + } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_store>( + m_Value(MatrixA), m_Value(), m_Value(), + m_Value(), m_Value(M), m_Value(N)))) { + Propagate = setShapeInfo(Inst, {N, M}); + } else if (match(Inst, m_Intrinsic<Intrinsic::matrix_column_major_load>( + m_Value(), m_Value(), m_Value(), m_Value(M), + m_Value(N)))) { + Propagate = setShapeInfo(Inst, {M, N}); + } else if (match(Inst, m_Store(m_Value(MatrixA), m_Value()))) { + auto OpShape = ShapeMap.find(MatrixA); + if (OpShape != ShapeMap.end()) + setShapeInfo(Inst, OpShape->second); + continue; + } else if (isUniformShape(Inst)) { + // Find the first operand that has a known shape and use that. + for (auto &Op : Inst->operands()) { + auto OpShape = ShapeMap.find(Op.get()); + if (OpShape != ShapeMap.end()) { + Propagate |= setShapeInfo(Inst, OpShape->second); + break; + } + } + } + + if (Propagate) { + NewWorkList.push_back(Inst); + for (auto *User : Inst->users()) + if (ShapeMap.count(User) == 0) + WorkList.push_back(cast<Instruction>(User)); + } + } + + return NewWorkList; + } + + /// Propagate the shape to operands of instructions with shape information. + /// \p Worklist contains the instruction for which we already know the shape. + SmallVector<Instruction *, 32> + propagateShapeBackward(SmallVectorImpl<Instruction *> &WorkList) { + SmallVector<Instruction *, 32> NewWorkList; + + auto pushInstruction = [](Value *V, + SmallVectorImpl<Instruction *> &WorkList) { + Instruction *I = dyn_cast<Instruction>(V); + if (I) + WorkList.push_back(I); + }; + // Pop an element with known shape. Traverse the operands, if their shape + // derives from the result shape and is unknown, add it and add them to the + // worklist. + LLVM_DEBUG(dbgs() << "Backward-propagate shapes:\n"); + while (!WorkList.empty()) { Value *V = WorkList.pop_back_val(); - - size_t BeforeProcessingV = WorkList.size(); - if (!isa<Instruction>(V)) - continue; - - Value *MatrixA; - Value *MatrixB; - Value *M; - Value *N; - Value *K; - if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>( - m_Value(MatrixA), m_Value(MatrixB), m_Value(M), - m_Value(N), m_Value(K)))) { - if (setShapeInfo(MatrixA, {M, N})) - pushInstruction(MatrixA, WorkList); - - if (setShapeInfo(MatrixB, {N, K})) - pushInstruction(MatrixB, WorkList); - - } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>( - m_Value(MatrixA), m_Value(M), m_Value(N)))) { - // Flip dimensions. - if (setShapeInfo(MatrixA, {M, N})) - pushInstruction(MatrixA, WorkList); - } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( - m_Value(MatrixA), m_Value(), m_Value(), m_Value(), - m_Value(M), m_Value(N)))) { - if (setShapeInfo(MatrixA, {M, N})) { - pushInstruction(MatrixA, WorkList); - } - } else if (isa<LoadInst>(V) || - match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { - // Nothing to do, no matrix input. - } else if (isa<StoreInst>(V)) { - // Nothing to do. We forward-propagated to this so we would just - // backward propagate to an instruction with an already known shape. - } else if (isUniformShape(V)) { - // Propagate to all operands. - ShapeInfo Shape = ShapeMap[V]; - for (Use &U : cast<Instruction>(V)->operands()) { - if (setShapeInfo(U.get(), Shape)) - pushInstruction(U.get(), WorkList); - } - } - // After we discovered new shape info for new instructions in the - // worklist, we use their users as seeds for the next round of forward - // propagation. - for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) - for (User *U : WorkList[I]->users()) - if (isa<Instruction>(U) && V != U) - NewWorkList.push_back(cast<Instruction>(U)); - } - return NewWorkList; - } - - bool Visit() { - if (EnableShapePropagation) { - SmallVector<Instruction *, 32> WorkList; - - // Initially only the shape of matrix intrinsics is known. - // Initialize the work list with ops carrying shape information. - for (BasicBlock &BB : Func) - for (Instruction &Inst : BB) { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); - if (!II) - continue; - - switch (II->getIntrinsicID()) { - case Intrinsic::matrix_multiply: - case Intrinsic::matrix_transpose: - case Intrinsic::matrix_column_major_load: - case Intrinsic::matrix_column_major_store: - WorkList.push_back(&Inst); - break; - default: - break; - } - } - // Propagate shapes until nothing changes any longer. - while (!WorkList.empty()) { - WorkList = propagateShapeForward(WorkList); - WorkList = propagateShapeBackward(WorkList); - } - } - - bool Changed = false; - SmallVector<CallInst *, 16> MaybeFusableInsts; - SmallVector<Instruction *, 16> MatrixInsts; - - // First, collect all instructions with shape information and candidates for - // fusion (currently only matrix multiplies). - ReversePostOrderTraversal<Function *> RPOT(&Func); - for (auto *BB : RPOT) - for (Instruction &I : *BB) { - if (ShapeMap.find(&I) == ShapeMap.end()) - continue; - if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) - MaybeFusableInsts.push_back(cast<CallInst>(&I)); - MatrixInsts.push_back(&I); - } - - // Second, try to fuse candidates. - SmallPtrSet<Instruction *, 16> FusedInsts; - for (CallInst *CI : MaybeFusableInsts) - LowerMatrixMultiplyFused(CI, FusedInsts); - Changed = !FusedInsts.empty(); - - // Third, lower remaining instructions with shape information. - for (Instruction *Inst : MatrixInsts) { - if (FusedInsts.count(Inst)) - continue; - - IRBuilder<> Builder(Inst); - - if (CallInst *CInst = dyn_cast<CallInst>(Inst)) - Changed |= VisitCallInst(CInst); - - Value *Op1; - Value *Op2; - if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) - Changed |= VisitBinaryOperator(BinOp); + + size_t BeforeProcessingV = WorkList.size(); + if (!isa<Instruction>(V)) + continue; + + Value *MatrixA; + Value *MatrixB; + Value *M; + Value *N; + Value *K; + if (match(V, m_Intrinsic<Intrinsic::matrix_multiply>( + m_Value(MatrixA), m_Value(MatrixB), m_Value(M), + m_Value(N), m_Value(K)))) { + if (setShapeInfo(MatrixA, {M, N})) + pushInstruction(MatrixA, WorkList); + + if (setShapeInfo(MatrixB, {N, K})) + pushInstruction(MatrixB, WorkList); + + } else if (match(V, m_Intrinsic<Intrinsic::matrix_transpose>( + m_Value(MatrixA), m_Value(M), m_Value(N)))) { + // Flip dimensions. + if (setShapeInfo(MatrixA, {M, N})) + pushInstruction(MatrixA, WorkList); + } else if (match(V, m_Intrinsic<Intrinsic::matrix_column_major_store>( + m_Value(MatrixA), m_Value(), m_Value(), m_Value(), + m_Value(M), m_Value(N)))) { + if (setShapeInfo(MatrixA, {M, N})) { + pushInstruction(MatrixA, WorkList); + } + } else if (isa<LoadInst>(V) || + match(V, m_Intrinsic<Intrinsic::matrix_column_major_load>())) { + // Nothing to do, no matrix input. + } else if (isa<StoreInst>(V)) { + // Nothing to do. We forward-propagated to this so we would just + // backward propagate to an instruction with an already known shape. + } else if (isUniformShape(V)) { + // Propagate to all operands. + ShapeInfo Shape = ShapeMap[V]; + for (Use &U : cast<Instruction>(V)->operands()) { + if (setShapeInfo(U.get(), Shape)) + pushInstruction(U.get(), WorkList); + } + } + // After we discovered new shape info for new instructions in the + // worklist, we use their users as seeds for the next round of forward + // propagation. + for (size_t I = BeforeProcessingV; I != WorkList.size(); I++) + for (User *U : WorkList[I]->users()) + if (isa<Instruction>(U) && V != U) + NewWorkList.push_back(cast<Instruction>(U)); + } + return NewWorkList; + } + + bool Visit() { + if (EnableShapePropagation) { + SmallVector<Instruction *, 32> WorkList; + + // Initially only the shape of matrix intrinsics is known. + // Initialize the work list with ops carrying shape information. + for (BasicBlock &BB : Func) + for (Instruction &Inst : BB) { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&Inst); + if (!II) + continue; + + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + case Intrinsic::matrix_transpose: + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: + WorkList.push_back(&Inst); + break; + default: + break; + } + } + // Propagate shapes until nothing changes any longer. + while (!WorkList.empty()) { + WorkList = propagateShapeForward(WorkList); + WorkList = propagateShapeBackward(WorkList); + } + } + + bool Changed = false; + SmallVector<CallInst *, 16> MaybeFusableInsts; + SmallVector<Instruction *, 16> MatrixInsts; + + // First, collect all instructions with shape information and candidates for + // fusion (currently only matrix multiplies). + ReversePostOrderTraversal<Function *> RPOT(&Func); + for (auto *BB : RPOT) + for (Instruction &I : *BB) { + if (ShapeMap.find(&I) == ShapeMap.end()) + continue; + if (match(&I, m_Intrinsic<Intrinsic::matrix_multiply>())) + MaybeFusableInsts.push_back(cast<CallInst>(&I)); + MatrixInsts.push_back(&I); + } + + // Second, try to fuse candidates. + SmallPtrSet<Instruction *, 16> FusedInsts; + for (CallInst *CI : MaybeFusableInsts) + LowerMatrixMultiplyFused(CI, FusedInsts); + Changed = !FusedInsts.empty(); + + // Third, lower remaining instructions with shape information. + for (Instruction *Inst : MatrixInsts) { + if (FusedInsts.count(Inst)) + continue; + + IRBuilder<> Builder(Inst); + + if (CallInst *CInst = dyn_cast<CallInst>(Inst)) + Changed |= VisitCallInst(CInst); + + Value *Op1; + Value *Op2; + if (auto *BinOp = dyn_cast<BinaryOperator>(Inst)) + Changed |= VisitBinaryOperator(BinOp); if (auto *UnOp = dyn_cast<UnaryOperator>(Inst)) Changed |= VisitUnaryOperator(UnOp); - if (match(Inst, m_Load(m_Value(Op1)))) - Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); - else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) - Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); - } - + if (match(Inst, m_Load(m_Value(Op1)))) + Changed |= VisitLoad(cast<LoadInst>(Inst), Op1, Builder); + else if (match(Inst, m_Store(m_Value(Op1), m_Value(Op2)))) + Changed |= VisitStore(cast<StoreInst>(Inst), Op1, Op2, Builder); + } + if (ORE) { RemarkGenerator RemarkGen(Inst2ColumnMatrix, *ORE, Func); RemarkGen.emitRemarks(); } - - for (Instruction *Inst : reverse(ToRemove)) - Inst->eraseFromParent(); - - return Changed; - } - - /// Turns \p BasePtr into an elementwise pointer to \p EltType. - Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { - unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); - Type *EltPtrType = PointerType::get(EltType, AS); - return Builder.CreatePointerCast(BasePtr, EltPtrType); - } - - /// Replace intrinsic calls - bool VisitCallInst(CallInst *Inst) { - if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) - return false; - - switch (Inst->getCalledFunction()->getIntrinsicID()) { - case Intrinsic::matrix_multiply: - LowerMultiply(Inst); - break; - case Intrinsic::matrix_transpose: - LowerTranspose(Inst); - break; - case Intrinsic::matrix_column_major_load: - LowerColumnMajorLoad(Inst); - break; - case Intrinsic::matrix_column_major_store: - LowerColumnMajorStore(Inst); - break; - default: - return false; - } - return true; - } - - /// Compute the alignment for a column/row \p Idx with \p Stride between them. - /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a - /// ConstantInt, reduce the initial alignment based on the byte offset. For - /// non-ConstantInt strides, return the common alignment of the initial - /// alignment and the element size in bytes. - Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, - MaybeAlign A) const { - Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); - if (Idx == 0) - return InitialAlign; - - TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); - if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { - uint64_t StrideInBytes = - ConstStride->getZExtValue() * ElementSizeInBits / 8; - return commonAlignment(InitialAlign, Idx * StrideInBytes); - } - return commonAlignment(InitialAlign, ElementSizeInBits / 8); - } - - /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between - /// vectors. - MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, - bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { - auto VType = cast<VectorType>(Ty); - Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); - MatrixTy Result; - for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { - Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride, - Shape.getStride(), VType->getElementType(), - Builder); - Value *Vector = Builder.CreateAlignedLoad( - GEP, getAlignForIndex(I, Stride, VType->getElementType(), MAlign), - IsVolatile, "col.load"); - - Result.addVector(Vector); - } - return Result.addNumLoads(getNumOps(Result.getVectorTy()) * - Result.getNumVectors()); - } - - /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, - /// starting at \p MatrixPtr[I][J]. - MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, - ShapeInfo MatrixShape, Value *I, Value *J, - ShapeInfo ResultShape, Type *EltTy, - IRBuilder<> &Builder) { - - Value *Offset = Builder.CreateAdd( - Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); - - unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); - Value *EltPtr = - Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); - Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); - auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * - ResultShape.NumColumns); - Type *TilePtrTy = PointerType::get(TileTy, AS); - Value *TilePtr = - Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); - - return loadMatrix(TileTy, TilePtr, Align, - Builder.getInt64(MatrixShape.getStride()), IsVolatile, - ResultShape, Builder); - } - - /// Lower a load instruction with shape information. - void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, - bool IsVolatile, ShapeInfo Shape) { - IRBuilder<> Builder(Inst); - finalizeLowering(Inst, - loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, - Shape, Builder), - Builder); - } - - /// Lowers llvm.matrix.column.major.load. - /// - /// The intrinsic loads a matrix from memory using a stride between columns. - void LowerColumnMajorLoad(CallInst *Inst) { - assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && - "Intrinsic only supports column-major layout!"); - Value *Ptr = Inst->getArgOperand(0); - Value *Stride = Inst->getArgOperand(1); - LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, - cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), - {Inst->getArgOperand(3), Inst->getArgOperand(4)}); - } - - /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p - /// MatrixPtr[I][J]. - void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, - MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, - Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { - Value *Offset = Builder.CreateAdd( - Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); - - unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); - Value *EltPtr = - Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); - Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); - auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * - StoreVal.getNumColumns()); - Type *TilePtrTy = PointerType::get(TileTy, AS); - Value *TilePtr = - Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); - - storeMatrix(TileTy, StoreVal, TilePtr, MAlign, - Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); - } - - /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between - /// vectors. - MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, - MaybeAlign MAlign, Value *Stride, bool IsVolatile, - IRBuilder<> &Builder) { - auto VType = cast<VectorType>(Ty); - Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); - for (auto Vec : enumerate(StoreVal.vectors())) { - Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()), - Stride, StoreVal.getStride(), - VType->getElementType(), Builder); - Builder.CreateAlignedStore(Vec.value(), GEP, - getAlignForIndex(Vec.index(), Stride, - VType->getElementType(), - MAlign), - IsVolatile); - } - return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * - StoreVal.getNumVectors()); - } - - /// Lower a store instruction with shape information. - void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, - Value *Stride, bool IsVolatile, ShapeInfo Shape) { - IRBuilder<> Builder(Inst); - auto StoreVal = getMatrix(Matrix, Shape, Builder); - finalizeLowering(Inst, - storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, - IsVolatile, Builder), - Builder); - } - - /// Lowers llvm.matrix.column.major.store. - /// - /// The intrinsic store a matrix back memory using a stride between columns. - void LowerColumnMajorStore(CallInst *Inst) { - assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && - "Intrinsic only supports column-major layout!"); - Value *Matrix = Inst->getArgOperand(0); - Value *Ptr = Inst->getArgOperand(1); - Value *Stride = Inst->getArgOperand(2); - LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, - cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), - {Inst->getArgOperand(4), Inst->getArgOperand(5)}); - } - - // Set elements I..I+NumElts-1 to Block - Value *insertVector(Value *Col, unsigned I, Value *Block, - IRBuilder<> &Builder) { - - // First, bring Block to the same size as Col - unsigned BlockNumElts = - cast<FixedVectorType>(Block->getType())->getNumElements(); - unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); - assert(NumElts >= BlockNumElts && "Too few elements for current block"); - - Block = Builder.CreateShuffleVector( + + for (Instruction *Inst : reverse(ToRemove)) + Inst->eraseFromParent(); + + return Changed; + } + + /// Turns \p BasePtr into an elementwise pointer to \p EltType. + Value *createElementPtr(Value *BasePtr, Type *EltType, IRBuilder<> &Builder) { + unsigned AS = cast<PointerType>(BasePtr->getType())->getAddressSpace(); + Type *EltPtrType = PointerType::get(EltType, AS); + return Builder.CreatePointerCast(BasePtr, EltPtrType); + } + + /// Replace intrinsic calls + bool VisitCallInst(CallInst *Inst) { + if (!Inst->getCalledFunction() || !Inst->getCalledFunction()->isIntrinsic()) + return false; + + switch (Inst->getCalledFunction()->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + LowerMultiply(Inst); + break; + case Intrinsic::matrix_transpose: + LowerTranspose(Inst); + break; + case Intrinsic::matrix_column_major_load: + LowerColumnMajorLoad(Inst); + break; + case Intrinsic::matrix_column_major_store: + LowerColumnMajorStore(Inst); + break; + default: + return false; + } + return true; + } + + /// Compute the alignment for a column/row \p Idx with \p Stride between them. + /// The address at \p Idx == 0 has alignment \p A. If \p Stride is a + /// ConstantInt, reduce the initial alignment based on the byte offset. For + /// non-ConstantInt strides, return the common alignment of the initial + /// alignment and the element size in bytes. + Align getAlignForIndex(unsigned Idx, Value *Stride, Type *ElementTy, + MaybeAlign A) const { + Align InitialAlign = DL.getValueOrABITypeAlignment(A, ElementTy); + if (Idx == 0) + return InitialAlign; + + TypeSize ElementSizeInBits = DL.getTypeSizeInBits(ElementTy); + if (auto *ConstStride = dyn_cast<ConstantInt>(Stride)) { + uint64_t StrideInBytes = + ConstStride->getZExtValue() * ElementSizeInBits / 8; + return commonAlignment(InitialAlign, Idx * StrideInBytes); + } + return commonAlignment(InitialAlign, ElementSizeInBits / 8); + } + + /// Load a matrix with \p Shape starting at \p Ptr and using \p Stride between + /// vectors. + MatrixTy loadMatrix(Type *Ty, Value *Ptr, MaybeAlign MAlign, Value *Stride, + bool IsVolatile, ShapeInfo Shape, IRBuilder<> &Builder) { + auto VType = cast<VectorType>(Ty); + Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); + MatrixTy Result; + for (unsigned I = 0, E = Shape.getNumVectors(); I < E; ++I) { + Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(I), Stride, + Shape.getStride(), VType->getElementType(), + Builder); + Value *Vector = Builder.CreateAlignedLoad( + GEP, getAlignForIndex(I, Stride, VType->getElementType(), MAlign), + IsVolatile, "col.load"); + + Result.addVector(Vector); + } + return Result.addNumLoads(getNumOps(Result.getVectorTy()) * + Result.getNumVectors()); + } + + /// Loads a sub-matrix with shape \p ResultShape from a \p R x \p C matrix, + /// starting at \p MatrixPtr[I][J]. + MatrixTy loadMatrix(Value *MatrixPtr, MaybeAlign Align, bool IsVolatile, + ShapeInfo MatrixShape, Value *I, Value *J, + ShapeInfo ResultShape, Type *EltTy, + IRBuilder<> &Builder) { + + Value *Offset = Builder.CreateAdd( + Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); + + unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); + Value *EltPtr = + Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); + Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); + auto *TileTy = FixedVectorType::get(EltTy, ResultShape.NumRows * + ResultShape.NumColumns); + Type *TilePtrTy = PointerType::get(TileTy, AS); + Value *TilePtr = + Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); + + return loadMatrix(TileTy, TilePtr, Align, + Builder.getInt64(MatrixShape.getStride()), IsVolatile, + ResultShape, Builder); + } + + /// Lower a load instruction with shape information. + void LowerLoad(Instruction *Inst, Value *Ptr, MaybeAlign Align, Value *Stride, + bool IsVolatile, ShapeInfo Shape) { + IRBuilder<> Builder(Inst); + finalizeLowering(Inst, + loadMatrix(Inst->getType(), Ptr, Align, Stride, IsVolatile, + Shape, Builder), + Builder); + } + + /// Lowers llvm.matrix.column.major.load. + /// + /// The intrinsic loads a matrix from memory using a stride between columns. + void LowerColumnMajorLoad(CallInst *Inst) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Intrinsic only supports column-major layout!"); + Value *Ptr = Inst->getArgOperand(0); + Value *Stride = Inst->getArgOperand(1); + LowerLoad(Inst, Ptr, Inst->getParamAlign(0), Stride, + cast<ConstantInt>(Inst->getArgOperand(2))->isOne(), + {Inst->getArgOperand(3), Inst->getArgOperand(4)}); + } + + /// Stores a sub-matrix \p StoreVal into the \p R x \p C matrix starting at \p + /// MatrixPtr[I][J]. + void storeMatrix(const MatrixTy &StoreVal, Value *MatrixPtr, + MaybeAlign MAlign, bool IsVolatile, ShapeInfo MatrixShape, + Value *I, Value *J, Type *EltTy, IRBuilder<> &Builder) { + Value *Offset = Builder.CreateAdd( + Builder.CreateMul(J, Builder.getInt64(MatrixShape.getStride())), I); + + unsigned AS = cast<PointerType>(MatrixPtr->getType())->getAddressSpace(); + Value *EltPtr = + Builder.CreatePointerCast(MatrixPtr, PointerType::get(EltTy, AS)); + Value *TileStart = Builder.CreateGEP(EltTy, EltPtr, Offset); + auto *TileTy = FixedVectorType::get(EltTy, StoreVal.getNumRows() * + StoreVal.getNumColumns()); + Type *TilePtrTy = PointerType::get(TileTy, AS); + Value *TilePtr = + Builder.CreatePointerCast(TileStart, TilePtrTy, "col.cast"); + + storeMatrix(TileTy, StoreVal, TilePtr, MAlign, + Builder.getInt64(MatrixShape.getStride()), IsVolatile, Builder); + } + + /// Store matrix \p StoreVal starting at \p Ptr and using \p Stride between + /// vectors. + MatrixTy storeMatrix(Type *Ty, MatrixTy StoreVal, Value *Ptr, + MaybeAlign MAlign, Value *Stride, bool IsVolatile, + IRBuilder<> &Builder) { + auto VType = cast<VectorType>(Ty); + Value *EltPtr = createElementPtr(Ptr, VType->getElementType(), Builder); + for (auto Vec : enumerate(StoreVal.vectors())) { + Value *GEP = computeVectorAddr(EltPtr, Builder.getInt64(Vec.index()), + Stride, StoreVal.getStride(), + VType->getElementType(), Builder); + Builder.CreateAlignedStore(Vec.value(), GEP, + getAlignForIndex(Vec.index(), Stride, + VType->getElementType(), + MAlign), + IsVolatile); + } + return MatrixTy().addNumStores(getNumOps(StoreVal.getVectorTy()) * + StoreVal.getNumVectors()); + } + + /// Lower a store instruction with shape information. + void LowerStore(Instruction *Inst, Value *Matrix, Value *Ptr, MaybeAlign A, + Value *Stride, bool IsVolatile, ShapeInfo Shape) { + IRBuilder<> Builder(Inst); + auto StoreVal = getMatrix(Matrix, Shape, Builder); + finalizeLowering(Inst, + storeMatrix(Matrix->getType(), StoreVal, Ptr, A, Stride, + IsVolatile, Builder), + Builder); + } + + /// Lowers llvm.matrix.column.major.store. + /// + /// The intrinsic store a matrix back memory using a stride between columns. + void LowerColumnMajorStore(CallInst *Inst) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Intrinsic only supports column-major layout!"); + Value *Matrix = Inst->getArgOperand(0); + Value *Ptr = Inst->getArgOperand(1); + Value *Stride = Inst->getArgOperand(2); + LowerStore(Inst, Matrix, Ptr, Inst->getParamAlign(1), Stride, + cast<ConstantInt>(Inst->getArgOperand(3))->isOne(), + {Inst->getArgOperand(4), Inst->getArgOperand(5)}); + } + + // Set elements I..I+NumElts-1 to Block + Value *insertVector(Value *Col, unsigned I, Value *Block, + IRBuilder<> &Builder) { + + // First, bring Block to the same size as Col + unsigned BlockNumElts = + cast<FixedVectorType>(Block->getType())->getNumElements(); + unsigned NumElts = cast<FixedVectorType>(Col->getType())->getNumElements(); + assert(NumElts >= BlockNumElts && "Too few elements for current block"); + + Block = Builder.CreateShuffleVector( Block, createSequentialMask(0, BlockNumElts, NumElts - BlockNumElts)); - - // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, - // 8, 4, 5, 6 - SmallVector<int, 16> Mask; - unsigned i; - for (i = 0; i < I; i++) - Mask.push_back(i); - - unsigned VecNumElts = - cast<FixedVectorType>(Col->getType())->getNumElements(); - for (; i < I + BlockNumElts; i++) - Mask.push_back(i - I + VecNumElts); - - for (; i < VecNumElts; i++) - Mask.push_back(i); - - return Builder.CreateShuffleVector(Col, Block, Mask); - } - - Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, - IRBuilder<> &Builder, bool AllowContraction, - unsigned &NumComputeOps) { - NumComputeOps += getNumOps(A->getType()); - if (!Sum) - return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); - - if (UseFPOp) { - if (AllowContraction) { - // Use fmuladd for floating point operations and let the backend decide - // if that's profitable. - Function *FMulAdd = Intrinsic::getDeclaration( - Func.getParent(), Intrinsic::fmuladd, A->getType()); - return Builder.CreateCall(FMulAdd, {A, B, Sum}); - } - NumComputeOps += getNumOps(A->getType()); - Value *Mul = Builder.CreateFMul(A, B); - return Builder.CreateFAdd(Sum, Mul); - } - - NumComputeOps += getNumOps(A->getType()); - Value *Mul = Builder.CreateMul(A, B); - return Builder.CreateAdd(Sum, Mul); - } - - /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For - /// users with shape information, there's nothing to do: the will use the - /// cached value when they are lowered. For other users, \p Matrix is - /// flattened and the uses are updated to use it. Also marks \p Inst for - /// deletion. - void finalizeLowering(Instruction *Inst, MatrixTy Matrix, - IRBuilder<> &Builder) { - Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); - - ToRemove.push_back(Inst); - Value *Flattened = nullptr; - for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) { - Use &U = *I++; - if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { - if (!Flattened) - Flattened = Matrix.embedInVector(Builder); - U.set(Flattened); - } - } - } - - /// Compute \p Result += \p A * \p B for input matrices with left-associating - /// addition. - void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, - const MatrixTy &B, bool AllowContraction, - IRBuilder<> &Builder, bool isTiled) { - const unsigned VF = std::max<unsigned>( - TTI.getRegisterBitWidth(true) / - Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), - 1U); - unsigned R = Result.getNumRows(); - unsigned C = Result.getNumColumns(); - unsigned M = A.getNumColumns(); - - bool IsFP = Result.getElementType()->isFloatingPointTy(); - assert(A.isColumnMajor() == B.isColumnMajor() && - Result.isColumnMajor() == A.isColumnMajor() && - "operands must agree on matrix layout"); - unsigned NumComputeOps = 0; - if (A.isColumnMajor()) { - // Multiply columns from the first operand with scalars from the second - // operand. Then move along the K axes and accumulate the columns. With - // this the adds can be vectorized without reassociation. - for (unsigned J = 0; J < C; ++J) { - unsigned BlockSize = VF; - // If Result is zero, we don't need to accumulate in the K==0 iteration. - bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); - - for (unsigned I = 0; I < R; I += BlockSize) { - // Gradually lower the vectorization factor to cover the remainder. - while (I + BlockSize > R) - BlockSize /= 2; - - Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder) - : nullptr; - for (unsigned K = 0; K < M; ++K) { - Value *L = A.extractVector(I, K, BlockSize, Builder); - Value *RH = Builder.CreateExtractElement(B.getColumn(J), K); - Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); - Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, - Result.getElementType()->isFloatingPointTy(), - Builder, AllowContraction, NumComputeOps); - } - Result.setVector(J, - insertVector(Result.getVector(J), I, Sum, Builder)); - } - } - } else { - // Multiply rows from the second operand with scalars from the first - // operand. Then move along the K axes and accumulate the rows. With this - // the adds can be vectorized without reassociation. - for (unsigned I = 0; I < R; ++I) { - unsigned BlockSize = VF; - bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); - for (unsigned J = 0; J < C; J += BlockSize) { - // Gradually lower the vectorization factor to cover the remainder. - while (J + BlockSize > C) - BlockSize /= 2; - - Value *Sum = nullptr; - for (unsigned K = 0; K < M; ++K) { - Value *R = B.extractVector(K, J, BlockSize, Builder); - Value *LH = Builder.CreateExtractElement(A.getVector(I), K); - Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); - Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, - IsFP, Builder, AllowContraction, NumComputeOps); - } - Result.setVector(I, - insertVector(Result.getVector(I), J, Sum, Builder)); - } - } - } - Result.addNumComputeOps(NumComputeOps); - } - - /// Ensure that the memory in \p Load does not alias \p Store by potentially - /// copying it to a new location. This new or otherwise the original location - /// is returned. - Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, - CallInst *MatMul) { - MemoryLocation StoreLoc = MemoryLocation::get(Store); - MemoryLocation LoadLoc = MemoryLocation::get(Load); - + + // If Col is 7 long and I is 2 and BlockNumElts is 2 the mask is: 0, 1, 7, + // 8, 4, 5, 6 + SmallVector<int, 16> Mask; + unsigned i; + for (i = 0; i < I; i++) + Mask.push_back(i); + + unsigned VecNumElts = + cast<FixedVectorType>(Col->getType())->getNumElements(); + for (; i < I + BlockNumElts; i++) + Mask.push_back(i - I + VecNumElts); + + for (; i < VecNumElts; i++) + Mask.push_back(i); + + return Builder.CreateShuffleVector(Col, Block, Mask); + } + + Value *createMulAdd(Value *Sum, Value *A, Value *B, bool UseFPOp, + IRBuilder<> &Builder, bool AllowContraction, + unsigned &NumComputeOps) { + NumComputeOps += getNumOps(A->getType()); + if (!Sum) + return UseFPOp ? Builder.CreateFMul(A, B) : Builder.CreateMul(A, B); + + if (UseFPOp) { + if (AllowContraction) { + // Use fmuladd for floating point operations and let the backend decide + // if that's profitable. + Function *FMulAdd = Intrinsic::getDeclaration( + Func.getParent(), Intrinsic::fmuladd, A->getType()); + return Builder.CreateCall(FMulAdd, {A, B, Sum}); + } + NumComputeOps += getNumOps(A->getType()); + Value *Mul = Builder.CreateFMul(A, B); + return Builder.CreateFAdd(Sum, Mul); + } + + NumComputeOps += getNumOps(A->getType()); + Value *Mul = Builder.CreateMul(A, B); + return Builder.CreateAdd(Sum, Mul); + } + + /// Cache \p Matrix as result of \p Inst and update the uses of \p Inst. For + /// users with shape information, there's nothing to do: the will use the + /// cached value when they are lowered. For other users, \p Matrix is + /// flattened and the uses are updated to use it. Also marks \p Inst for + /// deletion. + void finalizeLowering(Instruction *Inst, MatrixTy Matrix, + IRBuilder<> &Builder) { + Inst2ColumnMatrix.insert(std::make_pair(Inst, Matrix)); + + ToRemove.push_back(Inst); + Value *Flattened = nullptr; + for (auto I = Inst->use_begin(), E = Inst->use_end(); I != E;) { + Use &U = *I++; + if (ShapeMap.find(U.getUser()) == ShapeMap.end()) { + if (!Flattened) + Flattened = Matrix.embedInVector(Builder); + U.set(Flattened); + } + } + } + + /// Compute \p Result += \p A * \p B for input matrices with left-associating + /// addition. + void emitMatrixMultiply(MatrixTy &Result, const MatrixTy &A, + const MatrixTy &B, bool AllowContraction, + IRBuilder<> &Builder, bool isTiled) { + const unsigned VF = std::max<unsigned>( + TTI.getRegisterBitWidth(true) / + Result.getElementType()->getPrimitiveSizeInBits().getFixedSize(), + 1U); + unsigned R = Result.getNumRows(); + unsigned C = Result.getNumColumns(); + unsigned M = A.getNumColumns(); + + bool IsFP = Result.getElementType()->isFloatingPointTy(); + assert(A.isColumnMajor() == B.isColumnMajor() && + Result.isColumnMajor() == A.isColumnMajor() && + "operands must agree on matrix layout"); + unsigned NumComputeOps = 0; + if (A.isColumnMajor()) { + // Multiply columns from the first operand with scalars from the second + // operand. Then move along the K axes and accumulate the columns. With + // this the adds can be vectorized without reassociation. + for (unsigned J = 0; J < C; ++J) { + unsigned BlockSize = VF; + // If Result is zero, we don't need to accumulate in the K==0 iteration. + bool isSumZero = isa<ConstantAggregateZero>(Result.getColumn(J)); + + for (unsigned I = 0; I < R; I += BlockSize) { + // Gradually lower the vectorization factor to cover the remainder. + while (I + BlockSize > R) + BlockSize /= 2; + + Value *Sum = isTiled ? Result.extractVector(I, J, BlockSize, Builder) + : nullptr; + for (unsigned K = 0; K < M; ++K) { + Value *L = A.extractVector(I, K, BlockSize, Builder); + Value *RH = Builder.CreateExtractElement(B.getColumn(J), K); + Value *Splat = Builder.CreateVectorSplat(BlockSize, RH, "splat"); + Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, L, Splat, + Result.getElementType()->isFloatingPointTy(), + Builder, AllowContraction, NumComputeOps); + } + Result.setVector(J, + insertVector(Result.getVector(J), I, Sum, Builder)); + } + } + } else { + // Multiply rows from the second operand with scalars from the first + // operand. Then move along the K axes and accumulate the rows. With this + // the adds can be vectorized without reassociation. + for (unsigned I = 0; I < R; ++I) { + unsigned BlockSize = VF; + bool isSumZero = isa<ConstantAggregateZero>(Result.getRow(I)); + for (unsigned J = 0; J < C; J += BlockSize) { + // Gradually lower the vectorization factor to cover the remainder. + while (J + BlockSize > C) + BlockSize /= 2; + + Value *Sum = nullptr; + for (unsigned K = 0; K < M; ++K) { + Value *R = B.extractVector(K, J, BlockSize, Builder); + Value *LH = Builder.CreateExtractElement(A.getVector(I), K); + Value *Splat = Builder.CreateVectorSplat(BlockSize, LH, "splat"); + Sum = createMulAdd(isSumZero && K == 0 ? nullptr : Sum, Splat, R, + IsFP, Builder, AllowContraction, NumComputeOps); + } + Result.setVector(I, + insertVector(Result.getVector(I), J, Sum, Builder)); + } + } + } + Result.addNumComputeOps(NumComputeOps); + } + + /// Ensure that the memory in \p Load does not alias \p Store by potentially + /// copying it to a new location. This new or otherwise the original location + /// is returned. + Value *getNonAliasingPointer(LoadInst *Load, StoreInst *Store, + CallInst *MatMul) { + MemoryLocation StoreLoc = MemoryLocation::get(Store); + MemoryLocation LoadLoc = MemoryLocation::get(Load); + AliasResult LdAliased = AA->alias(LoadLoc, StoreLoc); - - // If we can statically determine noalias we're good. - if (!LdAliased) - return Load->getPointerOperand(); - - // Create code to check if the memory locations of the Load and Store - // overlap and if they do, copy Load's operand to a new buffer. - - // First, create new blocks for 2n part of the check and the copy. - BasicBlock *Check0 = MatMul->getParent(); - // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a - // DT. Manually collect dominator tree updates, to avoid unnecessary work, - // as we adjust Check0 and Check1's branches. - SmallVector<DominatorTree::UpdateType, 4> DTUpdates; - for (BasicBlock *Succ : successors(Check0)) + + // If we can statically determine noalias we're good. + if (!LdAliased) + return Load->getPointerOperand(); + + // Create code to check if the memory locations of the Load and Store + // overlap and if they do, copy Load's operand to a new buffer. + + // First, create new blocks for 2n part of the check and the copy. + BasicBlock *Check0 = MatMul->getParent(); + // FIXME: Use lazy DTU and update SplitBlock to accept a DTU instead of a + // DT. Manually collect dominator tree updates, to avoid unnecessary work, + // as we adjust Check0 and Check1's branches. + SmallVector<DominatorTree::UpdateType, 4> DTUpdates; + for (BasicBlock *Succ : successors(Check0)) DTUpdates.push_back({DT->Delete, Check0, Succ}); - + BasicBlock *Check1 = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "alias_cont"); - BasicBlock *Copy = + BasicBlock *Copy = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "copy"); BasicBlock *Fusion = SplitBlock(MatMul->getParent(), MatMul, (DomTreeUpdater *)nullptr, LI, nullptr, "no_alias"); - - // Check if the loaded memory location begins before the end of the store - // location. If the condition holds, they might overlap, otherwise they are - // guaranteed to not overlap. - IRBuilder<> Builder(MatMul); - Check0->getTerminator()->eraseFromParent(); - Builder.SetInsertPoint(Check0); - Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); - Value *StoreBegin = Builder.CreatePtrToInt( - const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); - Value *StoreEnd = Builder.CreateAdd( - StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), - "store.end", true, true); - Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), - IntPtrTy, "load.begin"); - Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, - Fusion); - - // Check if the store begins before the end of the load location. If the - // condition holds, they alias, otherwise they are guaranteed to not - // overlap. - Check1->getTerminator()->eraseFromParent(); - Builder.SetInsertPoint(Check1, Check1->begin()); - Value *LoadEnd = Builder.CreateAdd( - LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), - "load.end", true, true); - Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, - Fusion); - - // Copy load operand to new alloca. - Builder.SetInsertPoint(Copy, Copy->begin()); - AllocaInst *NewLd = - Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace()); - Builder.CreateMemCpy(NewLd, NewLd->getAlign(), - Load->getPointerOperand(), Load->getAlign(), - LoadLoc.Size.getValue()); - Builder.SetInsertPoint(Fusion, Fusion->begin()); - PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); - PHI->addIncoming(Load->getPointerOperand(), Check0); - PHI->addIncoming(Load->getPointerOperand(), Check1); - PHI->addIncoming(NewLd, Copy); - - // Adjust DT. + + // Check if the loaded memory location begins before the end of the store + // location. If the condition holds, they might overlap, otherwise they are + // guaranteed to not overlap. + IRBuilder<> Builder(MatMul); + Check0->getTerminator()->eraseFromParent(); + Builder.SetInsertPoint(Check0); + Type *IntPtrTy = Builder.getIntPtrTy(Load->getModule()->getDataLayout()); + Value *StoreBegin = Builder.CreatePtrToInt( + const_cast<Value *>(StoreLoc.Ptr), IntPtrTy, "store.begin"); + Value *StoreEnd = Builder.CreateAdd( + StoreBegin, ConstantInt::get(IntPtrTy, StoreLoc.Size.getValue()), + "store.end", true, true); + Value *LoadBegin = Builder.CreatePtrToInt(const_cast<Value *>(LoadLoc.Ptr), + IntPtrTy, "load.begin"); + Builder.CreateCondBr(Builder.CreateICmpULT(LoadBegin, StoreEnd), Check1, + Fusion); + + // Check if the store begins before the end of the load location. If the + // condition holds, they alias, otherwise they are guaranteed to not + // overlap. + Check1->getTerminator()->eraseFromParent(); + Builder.SetInsertPoint(Check1, Check1->begin()); + Value *LoadEnd = Builder.CreateAdd( + LoadBegin, ConstantInt::get(IntPtrTy, LoadLoc.Size.getValue()), + "load.end", true, true); + Builder.CreateCondBr(Builder.CreateICmpULT(StoreBegin, LoadEnd), Copy, + Fusion); + + // Copy load operand to new alloca. + Builder.SetInsertPoint(Copy, Copy->begin()); + AllocaInst *NewLd = + Builder.CreateAlloca(Load->getType(), Load->getPointerAddressSpace()); + Builder.CreateMemCpy(NewLd, NewLd->getAlign(), + Load->getPointerOperand(), Load->getAlign(), + LoadLoc.Size.getValue()); + Builder.SetInsertPoint(Fusion, Fusion->begin()); + PHINode *PHI = Builder.CreatePHI(Load->getPointerOperandType(), 3); + PHI->addIncoming(Load->getPointerOperand(), Check0); + PHI->addIncoming(Load->getPointerOperand(), Check1); + PHI->addIncoming(NewLd, Copy); + + // Adjust DT. DTUpdates.push_back({DT->Insert, Check0, Check1}); DTUpdates.push_back({DT->Insert, Check0, Fusion}); DTUpdates.push_back({DT->Insert, Check1, Copy}); DTUpdates.push_back({DT->Insert, Check1, Fusion}); DT->applyUpdates(DTUpdates); - return PHI; - } - - bool isFusionProfitable(CallInst *MatMul) { - if (ForceFusion) - return true; - - ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); - ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); - - const unsigned R = LShape.NumRows; - const unsigned C = RShape.NumColumns; - const unsigned M = LShape.NumColumns; - auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); - - const unsigned VF = - std::max<unsigned>(TTI.getRegisterBitWidth(true) / - EltType->getPrimitiveSizeInBits().getFixedSize(), - 1U); - - // Cost model for tiling - // - // For tiling to be beneficial, we need reuse either along the R or - // the C axis. We vectorize along the R axis so that means at least - // 3 elements. - // TODO: Also consider cost of copying if operands alias. - if (R <= VF && C == 1) - return false; - // Then we need enough elements to exceed the number of vector - // registers we have. Note that this is an oversimplification since - // fusing also takes some extra loads which may exceed the number of - // reloads necessary. - unsigned Op0Regs = (R + VF - 1) / VF * M; - unsigned Op1Regs = (M + VF - 1) / VF * C; - return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true); - } - - MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { - MatrixTy Res; - auto *ColumType = FixedVectorType::get(EltType, R); - for (unsigned I = 0; I < C; ++I) - Res.addVector(ConstantAggregateZero::get(ColumType)); - return Res; - } - + return PHI; + } + + bool isFusionProfitable(CallInst *MatMul) { + if (ForceFusion) + return true; + + ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); + ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); + + const unsigned R = LShape.NumRows; + const unsigned C = RShape.NumColumns; + const unsigned M = LShape.NumColumns; + auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); + + const unsigned VF = + std::max<unsigned>(TTI.getRegisterBitWidth(true) / + EltType->getPrimitiveSizeInBits().getFixedSize(), + 1U); + + // Cost model for tiling + // + // For tiling to be beneficial, we need reuse either along the R or + // the C axis. We vectorize along the R axis so that means at least + // 3 elements. + // TODO: Also consider cost of copying if operands alias. + if (R <= VF && C == 1) + return false; + // Then we need enough elements to exceed the number of vector + // registers we have. Note that this is an oversimplification since + // fusing also takes some extra loads which may exceed the number of + // reloads necessary. + unsigned Op0Regs = (R + VF - 1) / VF * M; + unsigned Op1Regs = (M + VF - 1) / VF * C; + return Op0Regs + Op1Regs > TTI.getNumberOfRegisters(true); + } + + MatrixTy getZeroMatrix(Type *EltType, unsigned R, unsigned C) { + MatrixTy Res; + auto *ColumType = FixedVectorType::get(EltType, R); + for (unsigned I = 0; I < C; ++I) + Res.addVector(ConstantAggregateZero::get(ColumType)); + return Res; + } + void createTiledLoops(CallInst *MatMul, Value *LPtr, ShapeInfo LShape, Value *RPtr, ShapeInfo RShape, StoreInst *Store, bool AllowContract) { @@ -1266,28 +1266,28 @@ public: "llvm.loop.unroll.count", InnerLoopUnrollCount); } - void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, - StoreInst *Store, - SmallPtrSetImpl<Instruction *> &FusedInsts) { - assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && - "Tiling only supported for column-major matrixes at the moment!"); - if (!isFusionProfitable(MatMul)) - return; - - ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); - ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); - - const unsigned R = LShape.NumRows; - const unsigned C = RShape.NumColumns; - const unsigned M = LShape.NumColumns; - auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); - - Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); - Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); - Value *CPtr = Store->getPointerOperand(); - - bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && - MatMul->hasAllowContract()); + void emitSIMDTiling(CallInst *MatMul, LoadInst *LoadOp0, LoadInst *LoadOp1, + StoreInst *Store, + SmallPtrSetImpl<Instruction *> &FusedInsts) { + assert(MatrixLayout == MatrixLayoutTy::ColumnMajor && + "Tiling only supported for column-major matrixes at the moment!"); + if (!isFusionProfitable(MatMul)) + return; + + ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); + ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); + + const unsigned R = LShape.NumRows; + const unsigned C = RShape.NumColumns; + const unsigned M = LShape.NumColumns; + auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); + + Value *APtr = getNonAliasingPointer(LoadOp0, Store, MatMul); + Value *BPtr = getNonAliasingPointer(LoadOp1, Store, MatMul); + Value *CPtr = Store->getPointerOperand(); + + bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && + MatMul->hasAllowContract()); if (TileUseLoops && (R % TileSize == 0 && C % TileSize == 0)) createTiledLoops(MatMul, APtr, LShape, BPtr, RShape, Store, AllowContract); @@ -1298,7 +1298,7 @@ public: const unsigned TileR = std::min(R - I, unsigned(TileSize)); const unsigned TileC = std::min(C - J, unsigned(TileSize)); MatrixTy Res = getZeroMatrix(EltType, TileR, TileC); - + for (unsigned K = 0; K < M; K += TileSize) { const unsigned TileM = std::min(M - K, unsigned(TileSize)); MatrixTy A = @@ -1314,192 +1314,192 @@ public: storeMatrix(Res, CPtr, Store->getAlign(), Store->isVolatile(), {R, M}, Builder.getInt64(I), Builder.getInt64(J), EltType, Builder); - } - } - - // Mark eliminated instructions as fused and remove them. - FusedInsts.insert(Store); - FusedInsts.insert(MatMul); - Store->eraseFromParent(); - MatMul->eraseFromParent(); - if (LoadOp0->hasNUses(0)) { - FusedInsts.insert(LoadOp0); - LoadOp0->eraseFromParent(); + } } - if (LoadOp1->hasNUses(0)) { - FusedInsts.insert(LoadOp1); - LoadOp1->eraseFromParent(); - } - } - - /// Try to lower matrix multiply chains by fusing operations. - /// - /// Currently we only lower {ld, ld} -> matmul -> st chains. - // - /// No need to return a MatrixTy object for the result of the operation, since - /// the single store user will be lowered as part of this. Instructions that - /// are completely eliminated by fusion are added to \p FusedInsts. - void LowerMatrixMultiplyFused(CallInst *MatMul, - SmallPtrSetImpl<Instruction *> &FusedInsts) { - if (!FuseMatrix || !MatMul->hasOneUse() || + + // Mark eliminated instructions as fused and remove them. + FusedInsts.insert(Store); + FusedInsts.insert(MatMul); + Store->eraseFromParent(); + MatMul->eraseFromParent(); + if (LoadOp0->hasNUses(0)) { + FusedInsts.insert(LoadOp0); + LoadOp0->eraseFromParent(); + } + if (LoadOp1->hasNUses(0)) { + FusedInsts.insert(LoadOp1); + LoadOp1->eraseFromParent(); + } + } + + /// Try to lower matrix multiply chains by fusing operations. + /// + /// Currently we only lower {ld, ld} -> matmul -> st chains. + // + /// No need to return a MatrixTy object for the result of the operation, since + /// the single store user will be lowered as part of this. Instructions that + /// are completely eliminated by fusion are added to \p FusedInsts. + void LowerMatrixMultiplyFused(CallInst *MatMul, + SmallPtrSetImpl<Instruction *> &FusedInsts) { + if (!FuseMatrix || !MatMul->hasOneUse() || MatrixLayout != MatrixLayoutTy::ColumnMajor || !DT) - return; - + return; + assert(AA && LI && "Analyses should be available"); - auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0)); - auto *LoadOp1 = dyn_cast<LoadInst>(MatMul->getOperand(1)); - auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); - if (LoadOp0 && LoadOp1 && Store) { - // The store address must dominate the MatMul instruction, otherwise - // we create invalid IR. - // FIXME: See if we can hoist the store address computation. - auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1)); + auto *LoadOp0 = dyn_cast<LoadInst>(MatMul->getOperand(0)); + auto *LoadOp1 = dyn_cast<LoadInst>(MatMul->getOperand(1)); + auto *Store = dyn_cast<StoreInst>(*MatMul->user_begin()); + if (LoadOp0 && LoadOp1 && Store) { + // The store address must dominate the MatMul instruction, otherwise + // we create invalid IR. + // FIXME: See if we can hoist the store address computation. + auto *AddrI = dyn_cast<Instruction>(Store->getOperand(1)); if (AddrI && (!DT->dominates(AddrI, MatMul))) - return; - - emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); - return; - } - } - - /// Lowers llvm.matrix.multiply. - void LowerMultiply(CallInst *MatMul) { - IRBuilder<> Builder(MatMul); - auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); - ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); - ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); - - const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); - const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); + return; + + emitSIMDTiling(MatMul, LoadOp0, LoadOp1, Store, FusedInsts); + return; + } + } + + /// Lowers llvm.matrix.multiply. + void LowerMultiply(CallInst *MatMul) { + IRBuilder<> Builder(MatMul); + auto *EltType = cast<VectorType>(MatMul->getType())->getElementType(); + ShapeInfo LShape(MatMul->getArgOperand(2), MatMul->getArgOperand(3)); + ShapeInfo RShape(MatMul->getArgOperand(3), MatMul->getArgOperand(4)); + + const MatrixTy &Lhs = getMatrix(MatMul->getArgOperand(0), LShape, Builder); + const MatrixTy &Rhs = getMatrix(MatMul->getArgOperand(1), RShape, Builder); assert(Lhs.getElementType() == Rhs.getElementType() && "Matrix multiply argument element types do not match."); - - const unsigned R = LShape.NumRows; - const unsigned C = RShape.NumColumns; - assert(LShape.NumColumns == RShape.NumRows); - - // Initialize the output - MatrixTy Result(R, C, EltType); + + const unsigned R = LShape.NumRows; + const unsigned C = RShape.NumColumns; + assert(LShape.NumColumns == RShape.NumRows); + + // Initialize the output + MatrixTy Result(R, C, EltType); assert(Lhs.getElementType() == Result.getElementType() && "Matrix multiply result element type does not match arguments."); - - bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && - MatMul->hasAllowContract()); - emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false); - finalizeLowering(MatMul, Result, Builder); - } - - /// Lowers llvm.matrix.transpose. - void LowerTranspose(CallInst *Inst) { - MatrixTy Result; - IRBuilder<> Builder(Inst); - Value *InputVal = Inst->getArgOperand(0); - VectorType *VectorTy = cast<VectorType>(InputVal->getType()); - ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); - MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); - - const unsigned NewNumVecs = - InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; - const unsigned NewNumElts = - InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; - - for (unsigned I = 0; I < NewNumVecs; ++I) { - // Build a single result vector. First initialize it. - Value *ResultVector = UndefValue::get( - FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); - // Go through the old elements and insert it into the resulting vector. - for (auto J : enumerate(InputMatrix.vectors())) { - Value *Elt = Builder.CreateExtractElement(J.value(), I); - // Row and column indices are transposed. - ResultVector = - Builder.CreateInsertElement(ResultVector, Elt, J.index()); - } - Result.addVector(ResultVector); - } - - // TODO: Improve estimate of operations needed for transposes. Currently we - // just count the insertelement/extractelement instructions, but do not - // account for later simplifications/combines. - finalizeLowering( - Inst, - Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns), - Builder); - } - - /// Lower load instructions, if shape information is available. - bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { - auto I = ShapeMap.find(Inst); - if (I == ShapeMap.end()) - return false; - - LowerLoad(Inst, Ptr, Inst->getAlign(), - Builder.getInt64(I->second.getStride()), Inst->isVolatile(), - I->second); - return true; - } - - bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, - IRBuilder<> &Builder) { - auto I = ShapeMap.find(StoredVal); - if (I == ShapeMap.end()) - return false; - - LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), - Builder.getInt64(I->second.getStride()), Inst->isVolatile(), - I->second); - return true; - } - - /// Lower binary operators, if shape information is available. - bool VisitBinaryOperator(BinaryOperator *Inst) { - auto I = ShapeMap.find(Inst); - if (I == ShapeMap.end()) - return false; - - Value *Lhs = Inst->getOperand(0); - Value *Rhs = Inst->getOperand(1); - - IRBuilder<> Builder(Inst); - ShapeInfo &Shape = I->second; - - MatrixTy Result; - MatrixTy A = getMatrix(Lhs, Shape, Builder); - MatrixTy B = getMatrix(Rhs, Shape, Builder); - assert(A.isColumnMajor() == B.isColumnMajor() && - Result.isColumnMajor() == A.isColumnMajor() && - "operands must agree on matrix layout"); - - // Helper to perform binary op on vectors. - auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { - switch (Inst->getOpcode()) { - case Instruction::Add: - return Builder.CreateAdd(LHS, RHS); - case Instruction::Mul: - return Builder.CreateMul(LHS, RHS); - case Instruction::Sub: - return Builder.CreateSub(LHS, RHS); - case Instruction::FAdd: - return Builder.CreateFAdd(LHS, RHS); - case Instruction::FMul: - return Builder.CreateFMul(LHS, RHS); - case Instruction::FSub: - return Builder.CreateFSub(LHS, RHS); - default: - llvm_unreachable("Unsupported binary operator for matrix"); - } - }; - - for (unsigned I = 0; I < Shape.getNumVectors(); ++I) - Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); - - finalizeLowering(Inst, - Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * - Result.getNumVectors()), - Builder); - return true; - } - + + bool AllowContract = AllowContractEnabled || (isa<FPMathOperator>(MatMul) && + MatMul->hasAllowContract()); + emitMatrixMultiply(Result, Lhs, Rhs, AllowContract, Builder, false); + finalizeLowering(MatMul, Result, Builder); + } + + /// Lowers llvm.matrix.transpose. + void LowerTranspose(CallInst *Inst) { + MatrixTy Result; + IRBuilder<> Builder(Inst); + Value *InputVal = Inst->getArgOperand(0); + VectorType *VectorTy = cast<VectorType>(InputVal->getType()); + ShapeInfo ArgShape(Inst->getArgOperand(1), Inst->getArgOperand(2)); + MatrixTy InputMatrix = getMatrix(InputVal, ArgShape, Builder); + + const unsigned NewNumVecs = + InputMatrix.isColumnMajor() ? ArgShape.NumRows : ArgShape.NumColumns; + const unsigned NewNumElts = + InputMatrix.isColumnMajor() ? ArgShape.NumColumns : ArgShape.NumRows; + + for (unsigned I = 0; I < NewNumVecs; ++I) { + // Build a single result vector. First initialize it. + Value *ResultVector = UndefValue::get( + FixedVectorType::get(VectorTy->getElementType(), NewNumElts)); + // Go through the old elements and insert it into the resulting vector. + for (auto J : enumerate(InputMatrix.vectors())) { + Value *Elt = Builder.CreateExtractElement(J.value(), I); + // Row and column indices are transposed. + ResultVector = + Builder.CreateInsertElement(ResultVector, Elt, J.index()); + } + Result.addVector(ResultVector); + } + + // TODO: Improve estimate of operations needed for transposes. Currently we + // just count the insertelement/extractelement instructions, but do not + // account for later simplifications/combines. + finalizeLowering( + Inst, + Result.addNumComputeOps(2 * ArgShape.NumRows * ArgShape.NumColumns), + Builder); + } + + /// Lower load instructions, if shape information is available. + bool VisitLoad(LoadInst *Inst, Value *Ptr, IRBuilder<> &Builder) { + auto I = ShapeMap.find(Inst); + if (I == ShapeMap.end()) + return false; + + LowerLoad(Inst, Ptr, Inst->getAlign(), + Builder.getInt64(I->second.getStride()), Inst->isVolatile(), + I->second); + return true; + } + + bool VisitStore(StoreInst *Inst, Value *StoredVal, Value *Ptr, + IRBuilder<> &Builder) { + auto I = ShapeMap.find(StoredVal); + if (I == ShapeMap.end()) + return false; + + LowerStore(Inst, StoredVal, Ptr, Inst->getAlign(), + Builder.getInt64(I->second.getStride()), Inst->isVolatile(), + I->second); + return true; + } + + /// Lower binary operators, if shape information is available. + bool VisitBinaryOperator(BinaryOperator *Inst) { + auto I = ShapeMap.find(Inst); + if (I == ShapeMap.end()) + return false; + + Value *Lhs = Inst->getOperand(0); + Value *Rhs = Inst->getOperand(1); + + IRBuilder<> Builder(Inst); + ShapeInfo &Shape = I->second; + + MatrixTy Result; + MatrixTy A = getMatrix(Lhs, Shape, Builder); + MatrixTy B = getMatrix(Rhs, Shape, Builder); + assert(A.isColumnMajor() == B.isColumnMajor() && + Result.isColumnMajor() == A.isColumnMajor() && + "operands must agree on matrix layout"); + + // Helper to perform binary op on vectors. + auto BuildVectorOp = [&Builder, Inst](Value *LHS, Value *RHS) { + switch (Inst->getOpcode()) { + case Instruction::Add: + return Builder.CreateAdd(LHS, RHS); + case Instruction::Mul: + return Builder.CreateMul(LHS, RHS); + case Instruction::Sub: + return Builder.CreateSub(LHS, RHS); + case Instruction::FAdd: + return Builder.CreateFAdd(LHS, RHS); + case Instruction::FMul: + return Builder.CreateFMul(LHS, RHS); + case Instruction::FSub: + return Builder.CreateFSub(LHS, RHS); + default: + llvm_unreachable("Unsupported binary operator for matrix"); + } + }; + + for (unsigned I = 0; I < Shape.getNumVectors(); ++I) + Result.addVector(BuildVectorOp(A.getVector(I), B.getVector(I))); + + finalizeLowering(Inst, + Result.addNumComputeOps(getNumOps(Result.getVectorTy()) * + Result.getNumVectors()), + Builder); + return true; + } + /// Lower unary operators, if shape information is available. bool VisitUnaryOperator(UnaryOperator *Inst) { auto I = ShapeMap.find(Inst); @@ -1534,449 +1534,449 @@ public: return true; } - /// Helper to linearize a matrix expression tree into a string. Currently - /// matrix expressions are linarized by starting at an expression leaf and - /// linearizing bottom up. - struct ExprLinearizer { - unsigned LengthToBreak = 100; - std::string Str; - raw_string_ostream Stream; - unsigned LineLength = 0; - const DataLayout &DL; - - /// Mapping from instructions to matrixes. It is used to identify - /// matrix instructions. - const MapVector<Value *, MatrixTy> &Inst2Matrix; - - /// Mapping from values to the leaves of all expressions that the value is - /// part of. - const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; - - /// Set of matrix expressions in the scope of a given DISubprogram. - const SmallSetVector<Value *, 32> &ExprsInSubprogram; - - /// Leaf node of the expression to linearize. - Value *Leaf; - - /// Used to keep track of sub-expressions that get reused while linearizing - /// the expression. Re-used sub-expressions are marked as (reused). - SmallPtrSet<Value *, 8> ReusedExprs; - - ExprLinearizer(const DataLayout &DL, - const MapVector<Value *, MatrixTy> &Inst2Matrix, - const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, - const SmallSetVector<Value *, 32> &ExprsInSubprogram, - Value *Leaf) - : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), - ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} - - void indent(unsigned N) { - LineLength += N; - for (unsigned i = 0; i < N; i++) - Stream << " "; - } - - void lineBreak() { - Stream << "\n"; - LineLength = 0; - } - - void maybeIndent(unsigned Indent) { - if (LineLength >= LengthToBreak) - lineBreak(); - - if (LineLength == 0) - indent(Indent); - } - - void write(StringRef S) { - LineLength += S.size(); - Stream << S; - } - - Value *getUnderlyingObjectThroughLoads(Value *V) { - if (Value *Ptr = getPointerOperand(V)) - return getUnderlyingObjectThroughLoads(Ptr); - else if (V->getType()->isPointerTy()) + /// Helper to linearize a matrix expression tree into a string. Currently + /// matrix expressions are linarized by starting at an expression leaf and + /// linearizing bottom up. + struct ExprLinearizer { + unsigned LengthToBreak = 100; + std::string Str; + raw_string_ostream Stream; + unsigned LineLength = 0; + const DataLayout &DL; + + /// Mapping from instructions to matrixes. It is used to identify + /// matrix instructions. + const MapVector<Value *, MatrixTy> &Inst2Matrix; + + /// Mapping from values to the leaves of all expressions that the value is + /// part of. + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared; + + /// Set of matrix expressions in the scope of a given DISubprogram. + const SmallSetVector<Value *, 32> &ExprsInSubprogram; + + /// Leaf node of the expression to linearize. + Value *Leaf; + + /// Used to keep track of sub-expressions that get reused while linearizing + /// the expression. Re-used sub-expressions are marked as (reused). + SmallPtrSet<Value *, 8> ReusedExprs; + + ExprLinearizer(const DataLayout &DL, + const MapVector<Value *, MatrixTy> &Inst2Matrix, + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + Value *Leaf) + : Str(), Stream(Str), DL(DL), Inst2Matrix(Inst2Matrix), Shared(Shared), + ExprsInSubprogram(ExprsInSubprogram), Leaf(Leaf) {} + + void indent(unsigned N) { + LineLength += N; + for (unsigned i = 0; i < N; i++) + Stream << " "; + } + + void lineBreak() { + Stream << "\n"; + LineLength = 0; + } + + void maybeIndent(unsigned Indent) { + if (LineLength >= LengthToBreak) + lineBreak(); + + if (LineLength == 0) + indent(Indent); + } + + void write(StringRef S) { + LineLength += S.size(); + Stream << S; + } + + Value *getUnderlyingObjectThroughLoads(Value *V) { + if (Value *Ptr = getPointerOperand(V)) + return getUnderlyingObjectThroughLoads(Ptr); + else if (V->getType()->isPointerTy()) return getUnderlyingObject(V); - return V; - } - - /// Returns true if \p V is a matrix value in the given subprogram. - bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } - - /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to - /// \p SS. - void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { - auto M = Inst2Matrix.find(V); - if (M == Inst2Matrix.end()) - SS << "unknown"; - else { - SS << M->second.getNumRows(); - SS << "x"; - SS << M->second.getNumColumns(); - } - } - - /// Write the called function name. Handles calls to llvm.matrix.* - /// specially: we write the name, followed by the dimensions of the input - /// matrixes, followed by the scalar type name. - void writeFnName(CallInst *CI) { - if (!CI->getCalledFunction()) - write("<no called fn>"); - else { - StringRef Name = CI->getCalledFunction()->getName(); - if (!Name.startswith("llvm.matrix")) { - write(Name); - return; - } - IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); - write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {})) - .drop_front(StringRef("llvm.matrix.").size())); - write("."); + return V; + } + + /// Returns true if \p V is a matrix value in the given subprogram. + bool isMatrix(Value *V) const { return ExprsInSubprogram.count(V); } + + /// If \p V is a matrix value, print its shape as as NumRows x NumColumns to + /// \p SS. + void prettyPrintMatrixType(Value *V, raw_string_ostream &SS) { + auto M = Inst2Matrix.find(V); + if (M == Inst2Matrix.end()) + SS << "unknown"; + else { + SS << M->second.getNumRows(); + SS << "x"; + SS << M->second.getNumColumns(); + } + } + + /// Write the called function name. Handles calls to llvm.matrix.* + /// specially: we write the name, followed by the dimensions of the input + /// matrixes, followed by the scalar type name. + void writeFnName(CallInst *CI) { + if (!CI->getCalledFunction()) + write("<no called fn>"); + else { + StringRef Name = CI->getCalledFunction()->getName(); + if (!Name.startswith("llvm.matrix")) { + write(Name); + return; + } + IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); + write(StringRef(Intrinsic::getName(II->getIntrinsicID(), {})) + .drop_front(StringRef("llvm.matrix.").size())); + write("."); std::string Tmp; - raw_string_ostream SS(Tmp); - - switch (II->getIntrinsicID()) { - case Intrinsic::matrix_multiply: - prettyPrintMatrixType(II->getOperand(0), SS); - SS << "."; - prettyPrintMatrixType(II->getOperand(1), SS); - SS << "." << *II->getType()->getScalarType(); - break; - case Intrinsic::matrix_transpose: - prettyPrintMatrixType(II->getOperand(0), SS); - SS << "." << *II->getType()->getScalarType(); - break; - case Intrinsic::matrix_column_major_load: - prettyPrintMatrixType(II, SS); - SS << "." << *II->getType()->getScalarType(); - break; - case Intrinsic::matrix_column_major_store: - prettyPrintMatrixType(II->getOperand(0), SS); - SS << "." << *II->getOperand(0)->getType()->getScalarType(); - break; - default: - llvm_unreachable("Unhandled case"); - } - SS.flush(); - write(Tmp); - } - } - - unsigned getNumShapeArgs(CallInst *CI) const { - if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { - switch (II->getIntrinsicID()) { - case Intrinsic::matrix_multiply: - return 3; - case Intrinsic::matrix_transpose: - return 2; - case Intrinsic::matrix_column_major_load: - case Intrinsic::matrix_column_major_store: - return 3; - default: - return 0; - } - } - return 0; - } - - /// Special printing for values: for pointers, we print if they refer to an - /// (function) external address or a stack address, for other values we - /// either print the constant or "scalar"/"matrix" for other values. - void write(Value *V) { - V = getUnderlyingObjectThroughLoads(V); - if (V->getType()->isPointerTy()) { - if (isa<AllocaInst>(V)) { - Stream << "stack addr"; - LineLength += StringRef("stack addr").size(); - } else { - Stream << "addr"; - LineLength += StringRef("addr").size(); - } - if (!V->getName().empty()) { - Stream << " %" << V->getName() << ""; - LineLength += V->getName().size() + 2; - } - return; - } - - std::string Tmp; - raw_string_ostream TmpStream(Tmp); - - if (auto *CI = dyn_cast<ConstantInt>(V)) - TmpStream << CI->getValue(); - else if (isa<Constant>(V)) - TmpStream << "constant"; - else { - if (isMatrix(V)) - TmpStream << "matrix"; - else - TmpStream << "scalar"; - } - TmpStream.flush(); - Tmp = std::string(StringRef(Tmp).trim()); - LineLength += Tmp.size(); - Stream << Tmp; - } - - /// Linearize expression \p Expr starting at an indentation of \p Indent. - /// Expressions that are re-used multiple times are prefixed with (reused) - /// at the re-used root instruction. - void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, - bool ParentShared) { - auto *I = cast<Instruction>(Expr); - maybeIndent(Indent); - SmallVector<Value *, 8> Ops; - - // Is Expr shared with other expression leaves? - bool ExprShared = false; - - // Deal with shared subtrees. Mark them as shared, if required. - if (!ParentShared) { - auto SI = Shared.find(Expr); - assert(SI != Shared.end() && SI->second.count(Leaf)); - - for (Value *S : SI->second) { - if (S == Leaf) - continue; - DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); - write("shared with remark at line " + std::to_string(DL.getLine()) + - " column " + std::to_string(DL.getCol()) + " ("); - } - ExprShared = SI->second.size() > 1; - } - - bool Reused = !ReusedExprs.insert(Expr).second; - if (Reused && !ParentReused) - write("(reused) "); - - if (auto *CI = dyn_cast<CallInst>(I)) { - writeFnName(CI); - - Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); - } else if (isa<BitCastInst>(Expr)) { - // Special case bitcasts, which are used to materialize matrixes from - // non-matrix ops. - write("matrix"); - return; - } else { - Ops.append(I->value_op_begin(), I->value_op_end()); - write(std::string(I->getOpcodeName())); - } - - write(std::string("(")); - - unsigned NumOpsToBreak = 1; - if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) - NumOpsToBreak = 2; - - for (Value *Op : Ops) { - if (Ops.size() > NumOpsToBreak) - lineBreak(); - - maybeIndent(Indent + 1); - if (isMatrix(Op)) - linearizeExpr(Op, Indent + 1, Reused, ExprShared); - else - write(Op); - if (Op != Ops.back()) - write(", "); - } - - write(")"); - } - - const std::string &getResult() { - Stream.flush(); - return Str; - } - }; - - /// Generate remarks for matrix operations in a function. To generate remarks - /// for matrix expressions, the following approach is used: - /// 1. Use the inlined-at debug information to group matrix operations to the - /// DISubprograms they are contained in. - /// 2. Collect leaves of matrix expressions (done in - /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression - // mapping. Leaves are lowered matrix instructions without other matrix - // users (like stores) in the current subprogram. - /// 3. For each leaf, create a remark containing a linearizied version of the - /// matrix expression. The expression is linearized by a recursive - /// bottom-up traversal of the matrix operands, starting at a leaf. Note - /// that multiple leaves can share sub-expressions. Shared subexpressions - /// are explicitly marked as shared(). - struct RemarkGenerator { - const MapVector<Value *, MatrixTy> &Inst2Matrix; - OptimizationRemarkEmitter &ORE; - Function &Func; - const DataLayout &DL; - - RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, - OptimizationRemarkEmitter &ORE, Function &Func) - : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), - DL(Func.getParent()->getDataLayout()) {} - - /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are - /// instructions in Inst2Matrix returning void or without any users in - /// \p ExprsInSubprogram. Currently that should only include stores. - SmallVector<Value *, 4> - getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { - SmallVector<Value *, 4> Leaves; - for (auto *Expr : ExprsInSubprogram) - if (Expr->getType()->isVoidTy() || - !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { - return ExprsInSubprogram.count(U); - })) - Leaves.push_back(Expr); - return Leaves; - } - - /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf - /// to all visited expressions in \p Shared. Limit the matrix operations to - /// the ones in \p ExprsInSubprogram. - void collectSharedInfo(Value *Leaf, Value *V, - const SmallSetVector<Value *, 32> &ExprsInSubprogram, - DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { - - if (!ExprsInSubprogram.count(V)) - return; - - auto I = Shared.insert({V, {}}); - I.first->second.insert(Leaf); - - for (Value *Op : cast<Instruction>(V)->operand_values()) - collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); - } - - /// Calculate the number of exclusive and shared op counts for expression - /// starting at \p V. Expressions used multiple times are counted once. - /// Limit the matrix operations to the ones in \p ExprsInSubprogram. - std::pair<OpInfoTy, OpInfoTy> - sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, - const SmallSetVector<Value *, 32> &ExprsInSubprogram, - DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { - if (!ExprsInSubprogram.count(Root)) - return {}; - - // Already counted this expression. Stop. - if (!ReusedExprs.insert(Root).second) - return {}; - - OpInfoTy SharedCount; - OpInfoTy Count; - - auto I = Shared.find(Root); - auto CM = Inst2Matrix.find(Root); - if (I->second.size() == 1) - Count = CM->second.getOpInfo(); - else - SharedCount = CM->second.getOpInfo(); - - for (Value *Op : cast<Instruction>(Root)->operand_values()) { - auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); - Count += C.first; - SharedCount += C.second; - } - return {Count, SharedCount}; - } - - void emitRemarks() { - if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) - return; - - // Map matrix operations to their containting subprograms, by traversing - // the inlinedAt chain. If the function does not have a DISubprogram, we - // only map them to the containing function. - MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; - for (auto &KV : Inst2Matrix) { - if (Func.getSubprogram()) { - auto *I = cast<Instruction>(KV.first); - DILocation *Context = I->getDebugLoc(); - while (Context) { - auto I = - Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); - I.first->second.push_back(KV.first); - Context = DebugLoc(Context).getInlinedAt(); - } - } else { - auto I = Subprog2Exprs.insert({nullptr, {}}); - I.first->second.push_back(KV.first); - } - } - for (auto &KV : Subprog2Exprs) { - SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), - KV.second.end()); - auto Leaves = getExpressionLeaves(ExprsInSubprogram); - - DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; - for (Value *Leaf : Leaves) - collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); - - // Generate remarks for each leaf. - for (auto *L : Leaves) { - - DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); - DILocation *Context = cast<Instruction>(L)->getDebugLoc(); - while (Context) { - if (getSubprogram(Context->getScope()) == KV.first) { - Loc = Context; - break; - } - Context = DebugLoc(Context).getInlinedAt(); - } - - SmallPtrSet<Value *, 8> ReusedExprs; - OpInfoTy Counts, SharedCounts; - std::tie(Counts, SharedCounts) = - sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); - - OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, - cast<Instruction>(L)->getParent()); - - Rem << "Lowered with "; - Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " - << ore::NV("NumLoads", Counts.NumLoads) << " loads, " - << ore::NV("NumComputeOps", Counts.NumComputeOps) - << " compute ops"; - - if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || - SharedCounts.NumComputeOps > 0) { - Rem << ",\nadditionally " - << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " - << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " - << ore::NV("NumFPOps", SharedCounts.NumComputeOps) - << " compute ops" - << " are shared with other expressions"; - } - - Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); - ORE.emit(Rem); - } - } - } - - std::string - linearize(Value *L, - const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, - const SmallSetVector<Value *, 32> &ExprsInSubprogram, - const DataLayout &DL) { - ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); - Lin.linearizeExpr(L, 0, false, false); - return Lin.getResult(); - } - }; -}; -} // namespace - -PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, - FunctionAnalysisManager &AM) { - auto &TTI = AM.getResult<TargetIRAnalysis>(F); + raw_string_ostream SS(Tmp); + + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "."; + prettyPrintMatrixType(II->getOperand(1), SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_transpose: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_column_major_load: + prettyPrintMatrixType(II, SS); + SS << "." << *II->getType()->getScalarType(); + break; + case Intrinsic::matrix_column_major_store: + prettyPrintMatrixType(II->getOperand(0), SS); + SS << "." << *II->getOperand(0)->getType()->getScalarType(); + break; + default: + llvm_unreachable("Unhandled case"); + } + SS.flush(); + write(Tmp); + } + } + + unsigned getNumShapeArgs(CallInst *CI) const { + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) { + switch (II->getIntrinsicID()) { + case Intrinsic::matrix_multiply: + return 3; + case Intrinsic::matrix_transpose: + return 2; + case Intrinsic::matrix_column_major_load: + case Intrinsic::matrix_column_major_store: + return 3; + default: + return 0; + } + } + return 0; + } + + /// Special printing for values: for pointers, we print if they refer to an + /// (function) external address or a stack address, for other values we + /// either print the constant or "scalar"/"matrix" for other values. + void write(Value *V) { + V = getUnderlyingObjectThroughLoads(V); + if (V->getType()->isPointerTy()) { + if (isa<AllocaInst>(V)) { + Stream << "stack addr"; + LineLength += StringRef("stack addr").size(); + } else { + Stream << "addr"; + LineLength += StringRef("addr").size(); + } + if (!V->getName().empty()) { + Stream << " %" << V->getName() << ""; + LineLength += V->getName().size() + 2; + } + return; + } + + std::string Tmp; + raw_string_ostream TmpStream(Tmp); + + if (auto *CI = dyn_cast<ConstantInt>(V)) + TmpStream << CI->getValue(); + else if (isa<Constant>(V)) + TmpStream << "constant"; + else { + if (isMatrix(V)) + TmpStream << "matrix"; + else + TmpStream << "scalar"; + } + TmpStream.flush(); + Tmp = std::string(StringRef(Tmp).trim()); + LineLength += Tmp.size(); + Stream << Tmp; + } + + /// Linearize expression \p Expr starting at an indentation of \p Indent. + /// Expressions that are re-used multiple times are prefixed with (reused) + /// at the re-used root instruction. + void linearizeExpr(Value *Expr, unsigned Indent, bool ParentReused, + bool ParentShared) { + auto *I = cast<Instruction>(Expr); + maybeIndent(Indent); + SmallVector<Value *, 8> Ops; + + // Is Expr shared with other expression leaves? + bool ExprShared = false; + + // Deal with shared subtrees. Mark them as shared, if required. + if (!ParentShared) { + auto SI = Shared.find(Expr); + assert(SI != Shared.end() && SI->second.count(Leaf)); + + for (Value *S : SI->second) { + if (S == Leaf) + continue; + DebugLoc DL = cast<Instruction>(S)->getDebugLoc(); + write("shared with remark at line " + std::to_string(DL.getLine()) + + " column " + std::to_string(DL.getCol()) + " ("); + } + ExprShared = SI->second.size() > 1; + } + + bool Reused = !ReusedExprs.insert(Expr).second; + if (Reused && !ParentReused) + write("(reused) "); + + if (auto *CI = dyn_cast<CallInst>(I)) { + writeFnName(CI); + + Ops.append(CI->arg_begin(), CI->arg_end() - getNumShapeArgs(CI)); + } else if (isa<BitCastInst>(Expr)) { + // Special case bitcasts, which are used to materialize matrixes from + // non-matrix ops. + write("matrix"); + return; + } else { + Ops.append(I->value_op_begin(), I->value_op_end()); + write(std::string(I->getOpcodeName())); + } + + write(std::string("(")); + + unsigned NumOpsToBreak = 1; + if (match(Expr, m_Intrinsic<Intrinsic::matrix_column_major_load>())) + NumOpsToBreak = 2; + + for (Value *Op : Ops) { + if (Ops.size() > NumOpsToBreak) + lineBreak(); + + maybeIndent(Indent + 1); + if (isMatrix(Op)) + linearizeExpr(Op, Indent + 1, Reused, ExprShared); + else + write(Op); + if (Op != Ops.back()) + write(", "); + } + + write(")"); + } + + const std::string &getResult() { + Stream.flush(); + return Str; + } + }; + + /// Generate remarks for matrix operations in a function. To generate remarks + /// for matrix expressions, the following approach is used: + /// 1. Use the inlined-at debug information to group matrix operations to the + /// DISubprograms they are contained in. + /// 2. Collect leaves of matrix expressions (done in + /// RemarkGenerator::getExpressionLeaves) for each subprogram - expression + // mapping. Leaves are lowered matrix instructions without other matrix + // users (like stores) in the current subprogram. + /// 3. For each leaf, create a remark containing a linearizied version of the + /// matrix expression. The expression is linearized by a recursive + /// bottom-up traversal of the matrix operands, starting at a leaf. Note + /// that multiple leaves can share sub-expressions. Shared subexpressions + /// are explicitly marked as shared(). + struct RemarkGenerator { + const MapVector<Value *, MatrixTy> &Inst2Matrix; + OptimizationRemarkEmitter &ORE; + Function &Func; + const DataLayout &DL; + + RemarkGenerator(const MapVector<Value *, MatrixTy> &Inst2Matrix, + OptimizationRemarkEmitter &ORE, Function &Func) + : Inst2Matrix(Inst2Matrix), ORE(ORE), Func(Func), + DL(Func.getParent()->getDataLayout()) {} + + /// Return all leaves of the expressions in \p ExprsInSubprogram. Those are + /// instructions in Inst2Matrix returning void or without any users in + /// \p ExprsInSubprogram. Currently that should only include stores. + SmallVector<Value *, 4> + getExpressionLeaves(const SmallSetVector<Value *, 32> &ExprsInSubprogram) { + SmallVector<Value *, 4> Leaves; + for (auto *Expr : ExprsInSubprogram) + if (Expr->getType()->isVoidTy() || + !any_of(Expr->users(), [&ExprsInSubprogram](User *U) { + return ExprsInSubprogram.count(U); + })) + Leaves.push_back(Expr); + return Leaves; + } + + /// Recursively traverse expression \p V starting at \p Leaf and add \p Leaf + /// to all visited expressions in \p Shared. Limit the matrix operations to + /// the ones in \p ExprsInSubprogram. + void collectSharedInfo(Value *Leaf, Value *V, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) { + + if (!ExprsInSubprogram.count(V)) + return; + + auto I = Shared.insert({V, {}}); + I.first->second.insert(Leaf); + + for (Value *Op : cast<Instruction>(V)->operand_values()) + collectSharedInfo(Leaf, Op, ExprsInSubprogram, Shared); + } + + /// Calculate the number of exclusive and shared op counts for expression + /// starting at \p V. Expressions used multiple times are counted once. + /// Limit the matrix operations to the ones in \p ExprsInSubprogram. + std::pair<OpInfoTy, OpInfoTy> + sumOpInfos(Value *Root, SmallPtrSetImpl<Value *> &ReusedExprs, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared) const { + if (!ExprsInSubprogram.count(Root)) + return {}; + + // Already counted this expression. Stop. + if (!ReusedExprs.insert(Root).second) + return {}; + + OpInfoTy SharedCount; + OpInfoTy Count; + + auto I = Shared.find(Root); + auto CM = Inst2Matrix.find(Root); + if (I->second.size() == 1) + Count = CM->second.getOpInfo(); + else + SharedCount = CM->second.getOpInfo(); + + for (Value *Op : cast<Instruction>(Root)->operand_values()) { + auto C = sumOpInfos(Op, ReusedExprs, ExprsInSubprogram, Shared); + Count += C.first; + SharedCount += C.second; + } + return {Count, SharedCount}; + } + + void emitRemarks() { + if (!ORE.allowExtraAnalysis(DEBUG_TYPE)) + return; + + // Map matrix operations to their containting subprograms, by traversing + // the inlinedAt chain. If the function does not have a DISubprogram, we + // only map them to the containing function. + MapVector<DISubprogram *, SmallVector<Value *, 8>> Subprog2Exprs; + for (auto &KV : Inst2Matrix) { + if (Func.getSubprogram()) { + auto *I = cast<Instruction>(KV.first); + DILocation *Context = I->getDebugLoc(); + while (Context) { + auto I = + Subprog2Exprs.insert({getSubprogram(Context->getScope()), {}}); + I.first->second.push_back(KV.first); + Context = DebugLoc(Context).getInlinedAt(); + } + } else { + auto I = Subprog2Exprs.insert({nullptr, {}}); + I.first->second.push_back(KV.first); + } + } + for (auto &KV : Subprog2Exprs) { + SmallSetVector<Value *, 32> ExprsInSubprogram(KV.second.begin(), + KV.second.end()); + auto Leaves = getExpressionLeaves(ExprsInSubprogram); + + DenseMap<Value *, SmallPtrSet<Value *, 2>> Shared; + for (Value *Leaf : Leaves) + collectSharedInfo(Leaf, Leaf, ExprsInSubprogram, Shared); + + // Generate remarks for each leaf. + for (auto *L : Leaves) { + + DebugLoc Loc = cast<Instruction>(L)->getDebugLoc(); + DILocation *Context = cast<Instruction>(L)->getDebugLoc(); + while (Context) { + if (getSubprogram(Context->getScope()) == KV.first) { + Loc = Context; + break; + } + Context = DebugLoc(Context).getInlinedAt(); + } + + SmallPtrSet<Value *, 8> ReusedExprs; + OpInfoTy Counts, SharedCounts; + std::tie(Counts, SharedCounts) = + sumOpInfos(L, ReusedExprs, ExprsInSubprogram, Shared); + + OptimizationRemark Rem(DEBUG_TYPE, "matrix-lowered", Loc, + cast<Instruction>(L)->getParent()); + + Rem << "Lowered with "; + Rem << ore::NV("NumStores", Counts.NumStores) << " stores, " + << ore::NV("NumLoads", Counts.NumLoads) << " loads, " + << ore::NV("NumComputeOps", Counts.NumComputeOps) + << " compute ops"; + + if (SharedCounts.NumStores > 0 || SharedCounts.NumLoads > 0 || + SharedCounts.NumComputeOps > 0) { + Rem << ",\nadditionally " + << ore::NV("NumStores", SharedCounts.NumStores) << " stores, " + << ore::NV("NumLoads", SharedCounts.NumLoads) << " loads, " + << ore::NV("NumFPOps", SharedCounts.NumComputeOps) + << " compute ops" + << " are shared with other expressions"; + } + + Rem << ("\n" + linearize(L, Shared, ExprsInSubprogram, DL)); + ORE.emit(Rem); + } + } + } + + std::string + linearize(Value *L, + const DenseMap<Value *, SmallPtrSet<Value *, 2>> &Shared, + const SmallSetVector<Value *, 32> &ExprsInSubprogram, + const DataLayout &DL) { + ExprLinearizer Lin(DL, Inst2Matrix, Shared, ExprsInSubprogram, L); + Lin.linearizeExpr(L, 0, false, false); + return Lin.getResult(); + } + }; +}; +} // namespace + +PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, + FunctionAnalysisManager &AM) { + auto &TTI = AM.getResult<TargetIRAnalysis>(F); OptimizationRemarkEmitter *ORE = nullptr; AAResults *AA = nullptr; DominatorTree *DT = nullptr; LoopInfo *LI = nullptr; - + if (!Minimal) { ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F); AA = &AM.getResult<AAManager>(F); @@ -1984,66 +1984,66 @@ PreservedAnalyses LowerMatrixIntrinsicsPass::run(Function &F, LI = &AM.getResult<LoopAnalysis>(F); } - LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); - if (LMT.Visit()) { - PreservedAnalyses PA; + LowerMatrixIntrinsics LMT(F, TTI, AA, DT, LI, ORE); + if (LMT.Visit()) { + PreservedAnalyses PA; if (!Minimal) { PA.preserve<LoopAnalysis>(); PA.preserve<DominatorTreeAnalysis>(); } - return PA; - } - return PreservedAnalyses::all(); -} - -namespace { - -class LowerMatrixIntrinsicsLegacyPass : public FunctionPass { -public: - static char ID; - - LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) { - initializeLowerMatrixIntrinsicsLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); - auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); - auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); + return PA; + } + return PreservedAnalyses::all(); +} + +namespace { + +class LowerMatrixIntrinsicsLegacyPass : public FunctionPass { +public: + static char ID; + + LowerMatrixIntrinsicsLegacyPass() : FunctionPass(ID) { + initializeLowerMatrixIntrinsicsLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults(); + auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); LowerMatrixIntrinsics LMT(F, TTI, &AA, &DT, &LI, &ORE); - bool C = LMT.Visit(); - return C; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetTransformInfoWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - AU.addRequired<AAResultsWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addRequired<LoopInfoWrapperPass>(); - AU.addPreserved<LoopInfoWrapperPass>(); - } -}; -} // namespace - -static const char pass_name[] = "Lower the matrix intrinsics"; -char LowerMatrixIntrinsicsLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, - false, false) -INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, - false, false) - -Pass *llvm::createLowerMatrixIntrinsicsPass() { - return new LowerMatrixIntrinsicsLegacyPass(); -} + bool C = LMT.Visit(); + return C; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<TargetTransformInfoWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addRequired<AAResultsWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<LoopInfoWrapperPass>(); + AU.addPreserved<LoopInfoWrapperPass>(); + } +}; +} // namespace + +static const char pass_name[] = "Lower the matrix intrinsics"; +char LowerMatrixIntrinsicsLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, + false, false) +INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) +INITIALIZE_PASS_END(LowerMatrixIntrinsicsLegacyPass, DEBUG_TYPE, pass_name, + false, false) + +Pass *llvm::createLowerMatrixIntrinsicsPass() { + return new LowerMatrixIntrinsicsLegacyPass(); +} namespace { |