aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:44:49 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:49 +0300
commit718c552901d703c502ccbefdfc3c9028d608b947 (patch)
tree46534a98bbefcd7b1f3faa5b52c138ab27db75b7 /contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp
parente9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (diff)
downloadydb-718c552901d703c502ccbefdfc3c9028d608b947.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp4268
1 files changed, 2134 insertions, 2134 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp b/contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp
index d2b4ba296f..5276b77f8c 100644
--- a/contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp
+++ b/contrib/libs/llvm12/lib/Transforms/Scalar/LICM.cpp
@@ -1,17 +1,17 @@
-//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass performs loop invariant code motion, attempting to remove as much
-// code from the body of a loop as possible. It does this by either hoisting
-// code into the preheader block, or by sinking code to the exit blocks if it is
-// safe. This pass also promotes must-aliased memory locations in the loop to
-// live in registers, thus hoisting and sinking "invariant" loads and stores.
-//
+//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass performs loop invariant code motion, attempting to remove as much
+// code from the body of a loop as possible. It does this by either hoisting
+// code into the preheader block, or by sinking code to the exit blocks if it is
+// safe. This pass also promotes must-aliased memory locations in the loop to
+// live in registers, thus hoisting and sinking "invariant" loads and stores.
+//
// Hoisting operations out of loops is a canonicalization transform. It
// enables and simplifies subsequent optimizations in the middle-end.
// Rematerialization of hoisted instructions to reduce register pressure is the
@@ -19,223 +19,223 @@
// register pressure and also handles other optimizations than LICM that
// increase live-ranges.
//
-// This pass uses alias analysis for two purposes:
-//
-// 1. Moving loop invariant loads and calls out of loops. If we can determine
-// that a load or call inside of a loop never aliases anything stored to,
-// we can hoist it or sink it like any other instruction.
-// 2. Scalar Promotion of Memory - If there is a store instruction inside of
-// the loop, we try to move the store to happen AFTER the loop instead of
-// inside of the loop. This can only happen if a few conditions are true:
-// A. The pointer stored through is loop invariant
-// B. There are no stores or loads in the loop which _may_ alias the
-// pointer. There are no calls in the loop which mod/ref the pointer.
-// If these conditions are true, we can promote the loads and stores in the
-// loop of the pointer to use a temporary alloca'd variable. We then use
-// the SSAUpdater to construct the appropriate SSA form for the value.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LICM.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
+// This pass uses alias analysis for two purposes:
+//
+// 1. Moving loop invariant loads and calls out of loops. If we can determine
+// that a load or call inside of a loop never aliases anything stored to,
+// we can hoist it or sink it like any other instruction.
+// 2. Scalar Promotion of Memory - If there is a store instruction inside of
+// the loop, we try to move the store to happen AFTER the loop instead of
+// inside of the loop. This can only happen if a few conditions are true:
+// A. The pointer stored through is loop invariant
+// B. There are no stores or loads in the loop which _may_ alias the
+// pointer. There are no calls in the loop which mod/ref the pointer.
+// If these conditions are true, we can promote the loads and stores in the
+// loop of the pointer to use a temporary alloca'd variable. We then use
+// the SSAUpdater to construct the appropriate SSA form for the value.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar/LICM.h"
+#include "llvm/ADT/SetOperations.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/AliasSetTracker.h"
+#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/GuardUtils.h"
+#include "llvm/Analysis/CaptureTracking.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/GlobalsModRef.h"
+#include "llvm/Analysis/GuardUtils.h"
#include "llvm/Analysis/LazyBlockFrequencyInfo.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopIterator.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/MustExecute.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/PredIteratorCache.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include <algorithm>
-#include <utility>
-using namespace llvm;
-
-#define DEBUG_TYPE "licm"
-
-STATISTIC(NumCreatedBlocks, "Number of blocks created");
-STATISTIC(NumClonedBranches, "Number of branches cloned");
-STATISTIC(NumSunk, "Number of instructions sunk out of loop");
-STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
-STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
-STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
-STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
-
-/// Memory promotion is enabled by default.
-static cl::opt<bool>
- DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
- cl::desc("Disable memory promotion in LICM pass"));
-
-static cl::opt<bool> ControlFlowHoisting(
- "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
- cl::desc("Enable control flow (and PHI) hoisting in LICM"));
-
+#include "llvm/Analysis/Loads.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopIterator.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Analysis/MemoryBuiltins.h"
+#include "llvm/Analysis/MemorySSA.h"
+#include "llvm/Analysis/MemorySSAUpdater.h"
+#include "llvm/Analysis/MustExecute.h"
+#include "llvm/Analysis/OptimizationRemarkEmitter.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
+#include "llvm/Analysis/TargetLibraryInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/CFG.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/PatternMatch.h"
+#include "llvm/IR/PredIteratorCache.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Scalar/LoopPassManager.h"
+#include "llvm/Transforms/Utils/AssumeBundleBuilder.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Transforms/Utils/LoopUtils.h"
+#include "llvm/Transforms/Utils/SSAUpdater.h"
+#include <algorithm>
+#include <utility>
+using namespace llvm;
+
+#define DEBUG_TYPE "licm"
+
+STATISTIC(NumCreatedBlocks, "Number of blocks created");
+STATISTIC(NumClonedBranches, "Number of branches cloned");
+STATISTIC(NumSunk, "Number of instructions sunk out of loop");
+STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
+STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
+STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
+STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
+
+/// Memory promotion is enabled by default.
+static cl::opt<bool>
+ DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
+ cl::desc("Disable memory promotion in LICM pass"));
+
+static cl::opt<bool> ControlFlowHoisting(
+ "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
+ cl::desc("Enable control flow (and PHI) hoisting in LICM"));
+
static cl::opt<unsigned> HoistSinkColdnessThreshold(
"licm-coldness-threshold", cl::Hidden, cl::init(4),
cl::desc("Relative coldness Threshold of hoisting/sinking destination "
"block for LICM to be considered beneficial"));
-static cl::opt<uint32_t> MaxNumUsesTraversed(
- "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
- cl::desc("Max num uses visited for identifying load "
- "invariance in loop using invariant start (default = 8)"));
-
-// Default value of zero implies we use the regular alias set tracker mechanism
-// instead of the cross product using AA to identify aliasing of the memory
-// location we are interested in.
-static cl::opt<int>
-LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
- cl::desc("How many instruction to cross product using AA"));
-
-// Experimental option to allow imprecision in LICM in pathological cases, in
-// exchange for faster compile. This is to be removed if MemorySSA starts to
-// address the same issue. This flag applies only when LICM uses MemorySSA
-// instead on AliasSetTracker. LICM calls MemorySSAWalker's
-// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
-// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
-// which may not be precise, since optimizeUses is capped. The result is
-// correct, but we may not get as "far up" as possible to get which access is
-// clobbering the one queried.
-cl::opt<unsigned> llvm::SetLicmMssaOptCap(
- "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
- cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
-
-// Experimentally, memory promotion carries less importance than sinking and
-// hoisting. Limit when we do promotion when using MemorySSA, in order to save
-// compile time.
-cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
- "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
- cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
- "effect. When MSSA in LICM is enabled, then this is the maximum "
- "number of accesses allowed to be present in a loop in order to "
- "enable memory promotion."));
-
-static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
-static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop);
-static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE);
-static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
+static cl::opt<uint32_t> MaxNumUsesTraversed(
+ "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
+ cl::desc("Max num uses visited for identifying load "
+ "invariance in loop using invariant start (default = 8)"));
+
+// Default value of zero implies we use the regular alias set tracker mechanism
+// instead of the cross product using AA to identify aliasing of the memory
+// location we are interested in.
+static cl::opt<int>
+LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
+ cl::desc("How many instruction to cross product using AA"));
+
+// Experimental option to allow imprecision in LICM in pathological cases, in
+// exchange for faster compile. This is to be removed if MemorySSA starts to
+// address the same issue. This flag applies only when LICM uses MemorySSA
+// instead on AliasSetTracker. LICM calls MemorySSAWalker's
+// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
+// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
+// which may not be precise, since optimizeUses is capped. The result is
+// correct, but we may not get as "far up" as possible to get which access is
+// clobbering the one queried.
+cl::opt<unsigned> llvm::SetLicmMssaOptCap(
+ "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
+ cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
+ "for faster compile. Caps the MemorySSA clobbering calls."));
+
+// Experimentally, memory promotion carries less importance than sinking and
+// hoisting. Limit when we do promotion when using MemorySSA, in order to save
+// compile time.
+cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
+ "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
+ cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
+ "effect. When MSSA in LICM is enabled, then this is the maximum "
+ "number of accesses allowed to be present in a loop in order to "
+ "enable memory promotion."));
+
+static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
+static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ TargetTransformInfo *TTI, bool &FreeInLoop);
+static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
+ BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
+ OptimizationRemarkEmitter *ORE);
+static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
BlockFrequencyInfo *BFI, const Loop *CurLoop,
ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
OptimizationRemarkEmitter *ORE);
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE,
- const Instruction *CtxI = nullptr);
-static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AAResults *AA);
-static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
+static bool isSafeToExecuteUnconditionally(Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ OptimizationRemarkEmitter *ORE,
+ const Instruction *CtxI = nullptr);
+static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
+ AliasSetTracker *CurAST, Loop *CurLoop,
+ AAResults *AA);
+static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
Loop *CurLoop, Instruction &I,
- SinkAndHoistLICMFlags &Flags);
+ SinkAndHoistLICMFlags &Flags);
static bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
MemoryUse &MU);
-static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
-
-static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
-
-static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
-
-namespace {
-struct LoopInvariantCodeMotion {
- bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
+static Instruction *cloneInstructionInExitBlock(
+ Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
+ const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
+
+static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
+ AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
+
+static void moveInstructionBefore(Instruction &I, Instruction &Dest,
+ ICFLoopSafetyInfo &SafetyInfo,
+ MemorySSAUpdater *MSSAU, ScalarEvolution *SE);
+
+namespace {
+struct LoopInvariantCodeMotion {
+ bool runOnLoop(Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI,
TargetTransformInfo *TTI, ScalarEvolution *SE, MemorySSA *MSSA,
- OptimizationRemarkEmitter *ORE);
-
- LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
-
-private:
- unsigned LicmMssaOptCap;
- unsigned LicmMssaNoAccForPromotionCap;
-
- std::unique_ptr<AliasSetTracker>
- collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
- std::unique_ptr<AliasSetTracker>
- collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
- MemorySSAUpdater *MSSAU);
-};
-
-struct LegacyLICMPass : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
- LegacyLICMPass(
- unsigned LicmMssaOptCap = SetLicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
- : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
- initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L))
- return false;
-
+ OptimizationRemarkEmitter *ORE);
+
+ LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap)
+ : LicmMssaOptCap(LicmMssaOptCap),
+ LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
+
+private:
+ unsigned LicmMssaOptCap;
+ unsigned LicmMssaNoAccForPromotionCap;
+
+ std::unique_ptr<AliasSetTracker>
+ collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AAResults *AA);
+ std::unique_ptr<AliasSetTracker>
+ collectAliasInfoForLoopWithMSSA(Loop *L, AAResults *AA,
+ MemorySSAUpdater *MSSAU);
+};
+
+struct LegacyLICMPass : public LoopPass {
+ static char ID; // Pass identification, replacement for typeid
+ LegacyLICMPass(
+ unsigned LicmMssaOptCap = SetLicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
+ : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
+ initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM) override {
+ if (skipLoop(L))
+ return false;
+
LLVM_DEBUG(dbgs() << "Perform LICM on Loop with header at block "
<< L->getHeader()->getNameOrAsOperand() << "\n");
- auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- MemorySSA *MSSA = EnableMSSALoopDependency
- ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
- : nullptr;
+ auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
+ MemorySSA *MSSA = EnableMSSALoopDependency
+ ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
+ : nullptr;
bool hasProfileData = L->getHeader()->getParent()->hasProfileData();
BlockFrequencyInfo *BFI =
hasProfileData ? &getAnalysis<LazyBlockFrequencyInfoPass>().getBFI()
: nullptr;
- // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
+ // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
// pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
+ // but ORE cannot be preserved (see comment before the pass definition).
+ OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
return LICM.runOnLoop(
L, &getAnalysis<AAResultsWrapperPass>().getAAResults(),
&getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
@@ -245,70 +245,70 @@ struct LegacyLICMPass : public LoopPass {
&getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
*L->getHeader()->getParent()),
SE ? &SE->getSE() : nullptr, MSSA, &ORE);
- }
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- if (EnableMSSALoopDependency) {
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
+ }
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addPreserved<DominatorTreeWrapperPass>();
+ AU.addPreserved<LoopInfoWrapperPass>();
+ AU.addRequired<TargetLibraryInfoWrapperPass>();
+ if (EnableMSSALoopDependency) {
+ AU.addRequired<MemorySSAWrapperPass>();
+ AU.addPreserved<MemorySSAWrapperPass>();
+ }
+ AU.addRequired<TargetTransformInfoWrapperPass>();
+ getLoopAnalysisUsage(AU);
LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU);
AU.addPreserved<LazyBlockFrequencyInfoPass>();
AU.addPreserved<LazyBranchProbabilityInfoPass>();
- }
-
-private:
- LoopInvariantCodeMotion LICM;
-};
-} // namespace
-
-PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
-
- LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
+ }
+
+private:
+ LoopInvariantCodeMotion LICM;
+};
+} // namespace
+
+PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
+ LoopStandardAnalysisResults &AR, LPMUpdater &) {
+ // For the new PM, we also can't use OptimizationRemarkEmitter as an analysis
+ // pass. Function analyses need to be preserved across loop transformations
+ // but ORE cannot be preserved (see comment before the pass definition).
+ OptimizationRemarkEmitter ORE(L.getHeader()->getParent());
+
+ LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, AR.BFI, &AR.TLI, &AR.TTI,
&AR.SE, AR.MSSA, &ORE))
- return PreservedAnalyses::all();
-
- auto PA = getLoopPassPreservedAnalyses();
-
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- if (AR.MSSA)
- PA.preserve<MemorySSAAnalysis>();
-
- return PA;
-}
-
-char LegacyLICMPass::ID = 0;
-INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
- false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
+ return PreservedAnalyses::all();
+
+ auto PA = getLoopPassPreservedAnalyses();
+
+ PA.preserve<DominatorTreeAnalysis>();
+ PA.preserve<LoopAnalysis>();
+ if (AR.MSSA)
+ PA.preserve<MemorySSAAnalysis>();
+
+ return PA;
+}
+
+char LegacyLICMPass::ID = 0;
+INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
+ false, false)
+INITIALIZE_PASS_DEPENDENCY(LoopPass)
+INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LazyBFIPass)
-INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
- false)
-
-Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
-Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap) {
- return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
-}
-
+INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
+ false)
+
+Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
+Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
+ unsigned LicmMssaNoAccForPromotionCap) {
+ return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
+}
+
llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(bool IsSink, Loop *L,
MemorySSA *MSSA)
: SinkAndHoistLICMFlags(SetLicmMssaOptCap, SetLicmMssaNoAccForPromotionCap,
@@ -338,456 +338,456 @@ llvm::SinkAndHoistLICMFlags::SinkAndHoistLICMFlags(
}
}
-/// Hoist expressions out of the specified loop. Note, alias info for inner
-/// loop is not preserved so it is not a good idea to run LICM multiple
-/// times on one loop.
-bool LoopInvariantCodeMotion::runOnLoop(
- Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
+/// Hoist expressions out of the specified loop. Note, alias info for inner
+/// loop is not preserved so it is not a good idea to run LICM multiple
+/// times on one loop.
+bool LoopInvariantCodeMotion::runOnLoop(
+ Loop *L, AAResults *AA, LoopInfo *LI, DominatorTree *DT,
BlockFrequencyInfo *BFI, TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
ScalarEvolution *SE, MemorySSA *MSSA, OptimizationRemarkEmitter *ORE) {
- bool Changed = false;
-
- assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
-
- // If this loop has metadata indicating that LICM is not to be performed then
- // just exit.
- if (hasDisableLICMTransformsHint(L)) {
- return false;
- }
-
- std::unique_ptr<AliasSetTracker> CurAST;
- std::unique_ptr<MemorySSAUpdater> MSSAU;
+ bool Changed = false;
+
+ assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
+
+ // If this loop has metadata indicating that LICM is not to be performed then
+ // just exit.
+ if (hasDisableLICMTransformsHint(L)) {
+ return false;
+ }
+
+ std::unique_ptr<AliasSetTracker> CurAST;
+ std::unique_ptr<MemorySSAUpdater> MSSAU;
std::unique_ptr<SinkAndHoistLICMFlags> Flags;
-
- if (!MSSA) {
- LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
- CurAST = collectAliasInfoForLoop(L, LI, AA);
+
+ if (!MSSA) {
+ LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
+ CurAST = collectAliasInfoForLoop(L, LI, AA);
Flags = std::make_unique<SinkAndHoistLICMFlags>(
LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true);
- } else {
- LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
- MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
+ } else {
+ LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
+ MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
Flags = std::make_unique<SinkAndHoistLICMFlags>(
LicmMssaOptCap, LicmMssaNoAccForPromotionCap, /*IsSink=*/true, L, MSSA);
- }
-
- // Get the preheader block to move instructions into...
- BasicBlock *Preheader = L->getLoopPreheader();
-
- // Compute loop safety information.
- ICFLoopSafetyInfo SafetyInfo;
- SafetyInfo.computeLoopSafetyInfo(L);
-
- // We want to visit all of the instructions in this loop... that are not parts
- // of our subloops (they have already had their invariants hoisted out of
- // their loop, into this loop, so there is no need to process the BODIES of
- // the subloops).
- //
- // Traverse the body of the loop in depth first order on the dominator tree so
- // that we are guaranteed to see definitions before we see uses. This allows
- // us to sink instructions in one pass, without iteration. After sinking
- // instructions, we perform another pass to hoist them out of the loop.
- if (L->hasDedicatedExits())
+ }
+
+ // Get the preheader block to move instructions into...
+ BasicBlock *Preheader = L->getLoopPreheader();
+
+ // Compute loop safety information.
+ ICFLoopSafetyInfo SafetyInfo;
+ SafetyInfo.computeLoopSafetyInfo(L);
+
+ // We want to visit all of the instructions in this loop... that are not parts
+ // of our subloops (they have already had their invariants hoisted out of
+ // their loop, into this loop, so there is no need to process the BODIES of
+ // the subloops).
+ //
+ // Traverse the body of the loop in depth first order on the dominator tree so
+ // that we are guaranteed to see definitions before we see uses. This allows
+ // us to sink instructions in one pass, without iteration. After sinking
+ // instructions, we perform another pass to hoist them out of the loop.
+ if (L->hasDedicatedExits())
Changed |=
sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, TTI, L,
CurAST.get(), MSSAU.get(), &SafetyInfo, *Flags.get(), ORE);
Flags->setIsSink(false);
- if (Preheader)
+ if (Preheader)
Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, BFI, TLI, L,
CurAST.get(), MSSAU.get(), SE, &SafetyInfo,
*Flags.get(), ORE);
-
- // Now that all loop invariants have been removed from the loop, promote any
- // memory references to scalars that we can.
- // Don't sink stores from loops without dedicated block exits. Exits
- // containing indirect branches are not transformed by loop simplify,
- // make sure we catch that. An additional load may be generated in the
- // preheader for SSA updater, so also avoid sinking when no preheader
- // is available.
- if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
+
+ // Now that all loop invariants have been removed from the loop, promote any
+ // memory references to scalars that we can.
+ // Don't sink stores from loops without dedicated block exits. Exits
+ // containing indirect branches are not transformed by loop simplify,
+ // make sure we catch that. An additional load may be generated in the
+ // preheader for SSA updater, so also avoid sinking when no preheader
+ // is available.
+ if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
!Flags->tooManyMemoryAccesses()) {
- // Figure out the loop exits and their insertion points
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
-
- // We can't insert into a catchswitch.
- bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
- return isa<CatchSwitchInst>(Exit->getTerminator());
- });
-
- if (!HasCatchSwitch) {
- SmallVector<Instruction *, 8> InsertPts;
- SmallVector<MemoryAccess *, 8> MSSAInsertPts;
- InsertPts.reserve(ExitBlocks.size());
- if (MSSAU)
- MSSAInsertPts.reserve(ExitBlocks.size());
- for (BasicBlock *ExitBlock : ExitBlocks) {
- InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
- if (MSSAU)
- MSSAInsertPts.push_back(nullptr);
- }
-
- PredIteratorCache PIC;
-
- bool Promoted = false;
-
- // Build an AST using MSSA.
- if (!CurAST.get())
- CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
-
- // Loop over all of the alias sets in the tracker object.
- for (AliasSet &AS : *CurAST) {
- // We can promote this alias set if it has a store, if it is a "Must"
- // alias set, if the pointer is loop invariant, and if we are not
- // eliminating any volatile loads or stores.
- if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
- !L->isLoopInvariant(AS.begin()->getValue()))
- continue;
-
- assert(
- !AS.empty() &&
- "Must alias set should have at least one pointer element in it!");
-
- SmallSetVector<Value *, 8> PointerMustAliases;
- for (const auto &ASI : AS)
- PointerMustAliases.insert(ASI.getValue());
-
- Promoted |= promoteLoopAccessesToScalars(
- PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
- DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
- }
-
- // Once we have promoted values across the loop body we have to
- // recursively reform LCSSA as any nested loop may now have values defined
- // within the loop used in the outer loop.
- // FIXME: This is really heavy handed. It would be a bit better to use an
- // SSAUpdater strategy during promotion that was LCSSA aware and reformed
- // it as it went.
- if (Promoted)
- formLCSSARecursively(*L, *DT, LI, SE);
-
- Changed |= Promoted;
- }
- }
-
- // Check that neither this loop nor its parent have had LCSSA broken. LICM is
- // specifically moving instructions across the loop boundary and so it is
- // especially in need of sanity checking here.
- assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
+ // Figure out the loop exits and their insertion points
+ SmallVector<BasicBlock *, 8> ExitBlocks;
+ L->getUniqueExitBlocks(ExitBlocks);
+
+ // We can't insert into a catchswitch.
+ bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
+ return isa<CatchSwitchInst>(Exit->getTerminator());
+ });
+
+ if (!HasCatchSwitch) {
+ SmallVector<Instruction *, 8> InsertPts;
+ SmallVector<MemoryAccess *, 8> MSSAInsertPts;
+ InsertPts.reserve(ExitBlocks.size());
+ if (MSSAU)
+ MSSAInsertPts.reserve(ExitBlocks.size());
+ for (BasicBlock *ExitBlock : ExitBlocks) {
+ InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
+ if (MSSAU)
+ MSSAInsertPts.push_back(nullptr);
+ }
+
+ PredIteratorCache PIC;
+
+ bool Promoted = false;
+
+ // Build an AST using MSSA.
+ if (!CurAST.get())
+ CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
+
+ // Loop over all of the alias sets in the tracker object.
+ for (AliasSet &AS : *CurAST) {
+ // We can promote this alias set if it has a store, if it is a "Must"
+ // alias set, if the pointer is loop invariant, and if we are not
+ // eliminating any volatile loads or stores.
+ if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
+ !L->isLoopInvariant(AS.begin()->getValue()))
+ continue;
+
+ assert(
+ !AS.empty() &&
+ "Must alias set should have at least one pointer element in it!");
+
+ SmallSetVector<Value *, 8> PointerMustAliases;
+ for (const auto &ASI : AS)
+ PointerMustAliases.insert(ASI.getValue());
+
+ Promoted |= promoteLoopAccessesToScalars(
+ PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
+ DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
+ }
+
+ // Once we have promoted values across the loop body we have to
+ // recursively reform LCSSA as any nested loop may now have values defined
+ // within the loop used in the outer loop.
+ // FIXME: This is really heavy handed. It would be a bit better to use an
+ // SSAUpdater strategy during promotion that was LCSSA aware and reformed
+ // it as it went.
+ if (Promoted)
+ formLCSSARecursively(*L, *DT, LI, SE);
+
+ Changed |= Promoted;
+ }
+ }
+
+ // Check that neither this loop nor its parent have had LCSSA broken. LICM is
+ // specifically moving instructions across the loop boundary and so it is
+ // especially in need of sanity checking here.
+ assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
assert((L->isOutermost() || L->getParentLoop()->isLCSSAForm(*DT)) &&
- "Parent loop not left in LCSSA form after LICM!");
-
- if (MSSAU.get() && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
-
- if (Changed && SE)
- SE->forgetLoopDispositions(L);
- return Changed;
-}
-
-/// Walk the specified region of the CFG (defined by all blocks dominated by
-/// the specified block, and that are in the current loop) in reverse depth
-/// first order w.r.t the DominatorTree. This allows us to visit uses before
-/// definitions, allowing us to sink a loop body in one pass without iteration.
-///
-bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
+ "Parent loop not left in LCSSA form after LICM!");
+
+ if (MSSAU.get() && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ if (Changed && SE)
+ SE->forgetLoopDispositions(L);
+ return Changed;
+}
+
+/// Walk the specified region of the CFG (defined by all blocks dominated by
+/// the specified block, and that are in the current loop) in reverse depth
+/// first order w.r.t the DominatorTree. This allows us to visit uses before
+/// definitions, allowing us to sink a loop body in one pass without iteration.
+///
+bool llvm::sinkRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
DominatorTree *DT, BlockFrequencyInfo *BFI,
TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
Loop *CurLoop, AliasSetTracker *CurAST,
MemorySSAUpdater *MSSAU, ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
-
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to sinkRegion.");
- assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
- "Either AliasSetTracker or MemorySSA should be initialized.");
-
- // We want to visit children before parents. We will enque all the parents
- // before their children in the worklist and process the worklist in reverse
- // order.
- SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
-
- bool Changed = false;
- for (DomTreeNode *DTN : reverse(Worklist)) {
- BasicBlock *BB = DTN->getBlock();
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
-
- for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
- Instruction &I = *--II;
-
- // If the instruction is dead, we would try to sink it because it isn't
- // used in the loop, instead, just delete it.
- if (isInstructionTriviallyDead(&I, TLI)) {
- LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
- salvageKnowledge(&I);
- salvageDebugInfo(I);
- ++II;
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- Changed = true;
- continue;
- }
-
- // Check to see if we can sink this instruction to the exit blocks
- // of the loop. We can do this if the all users of the instruction are
- // outside of the loop. In this case, it doesn't even matter if the
- // operands of the instruction are loop invariant.
- //
- bool FreeInLoop = false;
- if (!I.mayHaveSideEffects() &&
- isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
- ORE)) {
+ SinkAndHoistLICMFlags &Flags,
+ OptimizationRemarkEmitter *ORE) {
+
+ // Verify inputs.
+ assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
+ CurLoop != nullptr && SafetyInfo != nullptr &&
+ "Unexpected input to sinkRegion.");
+ assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
+ "Either AliasSetTracker or MemorySSA should be initialized.");
+
+ // We want to visit children before parents. We will enque all the parents
+ // before their children in the worklist and process the worklist in reverse
+ // order.
+ SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
+
+ bool Changed = false;
+ for (DomTreeNode *DTN : reverse(Worklist)) {
+ BasicBlock *BB = DTN->getBlock();
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB, CurLoop, LI))
+ continue;
+
+ for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
+ Instruction &I = *--II;
+
+ // If the instruction is dead, we would try to sink it because it isn't
+ // used in the loop, instead, just delete it.
+ if (isInstructionTriviallyDead(&I, TLI)) {
+ LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
+ salvageKnowledge(&I);
+ salvageDebugInfo(I);
+ ++II;
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ Changed = true;
+ continue;
+ }
+
+ // Check to see if we can sink this instruction to the exit blocks
+ // of the loop. We can do this if the all users of the instruction are
+ // outside of the loop. In this case, it doesn't even matter if the
+ // operands of the instruction are loop invariant.
+ //
+ bool FreeInLoop = false;
+ if (!I.mayHaveSideEffects() &&
+ isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
+ ORE)) {
if (sink(I, LI, DT, BFI, CurLoop, SafetyInfo, MSSAU, ORE)) {
- if (!FreeInLoop) {
- ++II;
- salvageDebugInfo(I);
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- }
- Changed = true;
- }
- }
- }
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- return Changed;
-}
-
-namespace {
-// This is a helper class for hoistRegion to make it able to hoist control flow
-// in order to be able to hoist phis. The way this works is that we initially
-// start hoisting to the loop preheader, and when we see a loop invariant branch
-// we make note of this. When we then come to hoist an instruction that's
-// conditional on such a branch we duplicate the branch and the relevant control
-// flow, then hoist the instruction into the block corresponding to its original
-// block in the duplicated control flow.
-class ControlFlowHoister {
-private:
- // Information about the loop we are hoisting from
- LoopInfo *LI;
- DominatorTree *DT;
- Loop *CurLoop;
- MemorySSAUpdater *MSSAU;
-
- // A map of blocks in the loop to the block their instructions will be hoisted
- // to.
- DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
-
- // The branches that we can hoist, mapped to the block that marks a
- // convergence point of their control flow.
- DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
-
-public:
- ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
- MemorySSAUpdater *MSSAU)
- : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
-
- void registerPossiblyHoistableBranch(BranchInst *BI) {
- // We can only hoist conditional branches with loop invariant operands.
- if (!ControlFlowHoisting || !BI->isConditional() ||
- !CurLoop->hasLoopInvariantOperands(BI))
- return;
-
- // The branch destinations need to be in the loop, and we don't gain
- // anything by duplicating conditional branches with duplicate successors,
- // as it's essentially the same as an unconditional branch.
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
- TrueDest == FalseDest)
- return;
-
- // We can hoist BI if one branch destination is the successor of the other,
- // or both have common successor which we check by seeing if the
- // intersection of their successors is non-empty.
- // TODO: This could be expanded to allowing branches where both ends
- // eventually converge to a single block.
- SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
- TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
- FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
- BasicBlock *CommonSucc = nullptr;
- if (TrueDestSucc.count(FalseDest)) {
- CommonSucc = FalseDest;
- } else if (FalseDestSucc.count(TrueDest)) {
- CommonSucc = TrueDest;
- } else {
- set_intersect(TrueDestSucc, FalseDestSucc);
- // If there's one common successor use that.
- if (TrueDestSucc.size() == 1)
- CommonSucc = *TrueDestSucc.begin();
- // If there's more than one pick whichever appears first in the block list
- // (we can't use the value returned by TrueDestSucc.begin() as it's
- // unpredicatable which element gets returned).
- else if (!TrueDestSucc.empty()) {
- Function *F = TrueDest->getParent();
- auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
+ if (!FreeInLoop) {
+ ++II;
+ salvageDebugInfo(I);
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ }
+ Changed = true;
+ }
+ }
+ }
+ }
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ return Changed;
+}
+
+namespace {
+// This is a helper class for hoistRegion to make it able to hoist control flow
+// in order to be able to hoist phis. The way this works is that we initially
+// start hoisting to the loop preheader, and when we see a loop invariant branch
+// we make note of this. When we then come to hoist an instruction that's
+// conditional on such a branch we duplicate the branch and the relevant control
+// flow, then hoist the instruction into the block corresponding to its original
+// block in the duplicated control flow.
+class ControlFlowHoister {
+private:
+ // Information about the loop we are hoisting from
+ LoopInfo *LI;
+ DominatorTree *DT;
+ Loop *CurLoop;
+ MemorySSAUpdater *MSSAU;
+
+ // A map of blocks in the loop to the block their instructions will be hoisted
+ // to.
+ DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
+
+ // The branches that we can hoist, mapped to the block that marks a
+ // convergence point of their control flow.
+ DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
+
+public:
+ ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
+ MemorySSAUpdater *MSSAU)
+ : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
+
+ void registerPossiblyHoistableBranch(BranchInst *BI) {
+ // We can only hoist conditional branches with loop invariant operands.
+ if (!ControlFlowHoisting || !BI->isConditional() ||
+ !CurLoop->hasLoopInvariantOperands(BI))
+ return;
+
+ // The branch destinations need to be in the loop, and we don't gain
+ // anything by duplicating conditional branches with duplicate successors,
+ // as it's essentially the same as an unconditional branch.
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
+ TrueDest == FalseDest)
+ return;
+
+ // We can hoist BI if one branch destination is the successor of the other,
+ // or both have common successor which we check by seeing if the
+ // intersection of their successors is non-empty.
+ // TODO: This could be expanded to allowing branches where both ends
+ // eventually converge to a single block.
+ SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
+ TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
+ FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
+ BasicBlock *CommonSucc = nullptr;
+ if (TrueDestSucc.count(FalseDest)) {
+ CommonSucc = FalseDest;
+ } else if (FalseDestSucc.count(TrueDest)) {
+ CommonSucc = TrueDest;
+ } else {
+ set_intersect(TrueDestSucc, FalseDestSucc);
+ // If there's one common successor use that.
+ if (TrueDestSucc.size() == 1)
+ CommonSucc = *TrueDestSucc.begin();
+ // If there's more than one pick whichever appears first in the block list
+ // (we can't use the value returned by TrueDestSucc.begin() as it's
+ // unpredicatable which element gets returned).
+ else if (!TrueDestSucc.empty()) {
+ Function *F = TrueDest->getParent();
+ auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
auto It = llvm::find_if(*F, IsSucc);
- assert(It != F->end() && "Could not find successor in function");
- CommonSucc = &*It;
- }
- }
- // The common successor has to be dominated by the branch, as otherwise
- // there will be some other path to the successor that will not be
- // controlled by this branch so any phi we hoist would be controlled by the
- // wrong condition. This also takes care of avoiding hoisting of loop back
- // edges.
- // TODO: In some cases this could be relaxed if the successor is dominated
- // by another block that's been hoisted and we can guarantee that the
- // control flow has been replicated exactly.
- if (CommonSucc && DT->dominates(BI, CommonSucc))
- HoistableBranches[BI] = CommonSucc;
- }
-
- bool canHoistPHI(PHINode *PN) {
- // The phi must have loop invariant operands.
- if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
- return false;
- // We can hoist phis if the block they are in is the target of hoistable
- // branches which cover all of the predecessors of the block.
- SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
- BasicBlock *BB = PN->getParent();
- for (BasicBlock *PredBB : predecessors(BB))
- PredecessorBlocks.insert(PredBB);
- // If we have less predecessor blocks than predecessors then the phi will
- // have more than one incoming value for the same block which we can't
- // handle.
- // TODO: This could be handled be erasing some of the duplicate incoming
- // values.
- if (PredecessorBlocks.size() != pred_size(BB))
- return false;
- for (auto &Pair : HoistableBranches) {
- if (Pair.second == BB) {
- // Which blocks are predecessors via this branch depends on if the
- // branch is triangle-like or diamond-like.
- if (Pair.first->getSuccessor(0) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- } else if (Pair.first->getSuccessor(1) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- } else {
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- }
- }
- }
- // PredecessorBlocks will now be empty if for every predecessor of BB we
- // found a hoistable branch source.
- return PredecessorBlocks.empty();
- }
-
- BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
- if (!ControlFlowHoisting)
- return CurLoop->getLoopPreheader();
- // If BB has already been hoisted, return that
- if (HoistDestinationMap.count(BB))
- return HoistDestinationMap[BB];
-
- // Check if this block is conditional based on a pending branch
- auto HasBBAsSuccessor =
- [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
- return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
- Pair.first->getSuccessor(1) == BB);
- };
+ assert(It != F->end() && "Could not find successor in function");
+ CommonSucc = &*It;
+ }
+ }
+ // The common successor has to be dominated by the branch, as otherwise
+ // there will be some other path to the successor that will not be
+ // controlled by this branch so any phi we hoist would be controlled by the
+ // wrong condition. This also takes care of avoiding hoisting of loop back
+ // edges.
+ // TODO: In some cases this could be relaxed if the successor is dominated
+ // by another block that's been hoisted and we can guarantee that the
+ // control flow has been replicated exactly.
+ if (CommonSucc && DT->dominates(BI, CommonSucc))
+ HoistableBranches[BI] = CommonSucc;
+ }
+
+ bool canHoistPHI(PHINode *PN) {
+ // The phi must have loop invariant operands.
+ if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
+ return false;
+ // We can hoist phis if the block they are in is the target of hoistable
+ // branches which cover all of the predecessors of the block.
+ SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
+ BasicBlock *BB = PN->getParent();
+ for (BasicBlock *PredBB : predecessors(BB))
+ PredecessorBlocks.insert(PredBB);
+ // If we have less predecessor blocks than predecessors then the phi will
+ // have more than one incoming value for the same block which we can't
+ // handle.
+ // TODO: This could be handled be erasing some of the duplicate incoming
+ // values.
+ if (PredecessorBlocks.size() != pred_size(BB))
+ return false;
+ for (auto &Pair : HoistableBranches) {
+ if (Pair.second == BB) {
+ // Which blocks are predecessors via this branch depends on if the
+ // branch is triangle-like or diamond-like.
+ if (Pair.first->getSuccessor(0) == BB) {
+ PredecessorBlocks.erase(Pair.first->getParent());
+ PredecessorBlocks.erase(Pair.first->getSuccessor(1));
+ } else if (Pair.first->getSuccessor(1) == BB) {
+ PredecessorBlocks.erase(Pair.first->getParent());
+ PredecessorBlocks.erase(Pair.first->getSuccessor(0));
+ } else {
+ PredecessorBlocks.erase(Pair.first->getSuccessor(0));
+ PredecessorBlocks.erase(Pair.first->getSuccessor(1));
+ }
+ }
+ }
+ // PredecessorBlocks will now be empty if for every predecessor of BB we
+ // found a hoistable branch source.
+ return PredecessorBlocks.empty();
+ }
+
+ BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
+ if (!ControlFlowHoisting)
+ return CurLoop->getLoopPreheader();
+ // If BB has already been hoisted, return that
+ if (HoistDestinationMap.count(BB))
+ return HoistDestinationMap[BB];
+
+ // Check if this block is conditional based on a pending branch
+ auto HasBBAsSuccessor =
+ [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
+ return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
+ Pair.first->getSuccessor(1) == BB);
+ };
auto It = llvm::find_if(HoistableBranches, HasBBAsSuccessor);
-
- // If not involved in a pending branch, hoist to preheader
- BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
- if (It == HoistableBranches.end()) {
+
+ // If not involved in a pending branch, hoist to preheader
+ BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
+ if (It == HoistableBranches.end()) {
LLVM_DEBUG(dbgs() << "LICM using "
<< InitialPreheader->getNameOrAsOperand()
<< " as hoist destination for "
<< BB->getNameOrAsOperand() << "\n");
- HoistDestinationMap[BB] = InitialPreheader;
- return InitialPreheader;
- }
- BranchInst *BI = It->first;
- assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
- HoistableBranches.end() &&
- "BB is expected to be the target of at most one branch");
-
- LLVMContext &C = BB->getContext();
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- BasicBlock *CommonSucc = HoistableBranches[BI];
- BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
-
- // Create hoisted versions of blocks that currently don't have them
- auto CreateHoistedBlock = [&](BasicBlock *Orig) {
- if (HoistDestinationMap.count(Orig))
- return HoistDestinationMap[Orig];
- BasicBlock *New =
- BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
- HoistDestinationMap[Orig] = New;
- DT->addNewBlock(New, HoistTarget);
- if (CurLoop->getParentLoop())
- CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
- ++NumCreatedBlocks;
- LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
- << " as hoist destination for " << Orig->getName()
- << "\n");
- return New;
- };
- BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
- BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
- BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
-
- // Link up these blocks with branches.
- if (!HoistCommonSucc->getTerminator()) {
- // The new common successor we've generated will branch to whatever that
- // hoist target branched to.
- BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
- assert(TargetSucc && "Expected hoist target to have a single successor");
- HoistCommonSucc->moveBefore(TargetSucc);
- BranchInst::Create(TargetSucc, HoistCommonSucc);
- }
- if (!HoistTrueDest->getTerminator()) {
- HoistTrueDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistTrueDest);
- }
- if (!HoistFalseDest->getTerminator()) {
- HoistFalseDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistFalseDest);
- }
-
- // If BI is being cloned to what was originally the preheader then
- // HoistCommonSucc will now be the new preheader.
- if (HoistTarget == InitialPreheader) {
- // Phis in the loop header now need to use the new preheader.
- InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
- if (MSSAU)
- MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
- HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
- // The new preheader dominates the loop header.
- DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
- DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
- DT->changeImmediateDominator(HeaderNode, PreheaderNode);
- // The preheader hoist destination is now the new preheader, with the
- // exception of the hoist destination of this branch.
- for (auto &Pair : HoistDestinationMap)
- if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
- Pair.second = HoistCommonSucc;
- }
-
- // Now finally clone BI.
- ReplaceInstWithInst(
- HoistTarget->getTerminator(),
- BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
- ++NumClonedBranches;
-
- assert(CurLoop->getLoopPreheader() &&
- "Hoisting blocks should not have destroyed preheader");
- return HoistDestinationMap[BB];
- }
-};
-} // namespace
-
+ HoistDestinationMap[BB] = InitialPreheader;
+ return InitialPreheader;
+ }
+ BranchInst *BI = It->first;
+ assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
+ HoistableBranches.end() &&
+ "BB is expected to be the target of at most one branch");
+
+ LLVMContext &C = BB->getContext();
+ BasicBlock *TrueDest = BI->getSuccessor(0);
+ BasicBlock *FalseDest = BI->getSuccessor(1);
+ BasicBlock *CommonSucc = HoistableBranches[BI];
+ BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
+
+ // Create hoisted versions of blocks that currently don't have them
+ auto CreateHoistedBlock = [&](BasicBlock *Orig) {
+ if (HoistDestinationMap.count(Orig))
+ return HoistDestinationMap[Orig];
+ BasicBlock *New =
+ BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
+ HoistDestinationMap[Orig] = New;
+ DT->addNewBlock(New, HoistTarget);
+ if (CurLoop->getParentLoop())
+ CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
+ ++NumCreatedBlocks;
+ LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
+ << " as hoist destination for " << Orig->getName()
+ << "\n");
+ return New;
+ };
+ BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
+ BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
+ BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
+
+ // Link up these blocks with branches.
+ if (!HoistCommonSucc->getTerminator()) {
+ // The new common successor we've generated will branch to whatever that
+ // hoist target branched to.
+ BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
+ assert(TargetSucc && "Expected hoist target to have a single successor");
+ HoistCommonSucc->moveBefore(TargetSucc);
+ BranchInst::Create(TargetSucc, HoistCommonSucc);
+ }
+ if (!HoistTrueDest->getTerminator()) {
+ HoistTrueDest->moveBefore(HoistCommonSucc);
+ BranchInst::Create(HoistCommonSucc, HoistTrueDest);
+ }
+ if (!HoistFalseDest->getTerminator()) {
+ HoistFalseDest->moveBefore(HoistCommonSucc);
+ BranchInst::Create(HoistCommonSucc, HoistFalseDest);
+ }
+
+ // If BI is being cloned to what was originally the preheader then
+ // HoistCommonSucc will now be the new preheader.
+ if (HoistTarget == InitialPreheader) {
+ // Phis in the loop header now need to use the new preheader.
+ InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
+ if (MSSAU)
+ MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
+ HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
+ // The new preheader dominates the loop header.
+ DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
+ DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
+ DT->changeImmediateDominator(HeaderNode, PreheaderNode);
+ // The preheader hoist destination is now the new preheader, with the
+ // exception of the hoist destination of this branch.
+ for (auto &Pair : HoistDestinationMap)
+ if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
+ Pair.second = HoistCommonSucc;
+ }
+
+ // Now finally clone BI.
+ ReplaceInstWithInst(
+ HoistTarget->getTerminator(),
+ BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
+ ++NumClonedBranches;
+
+ assert(CurLoop->getLoopPreheader() &&
+ "Hoisting blocks should not have destroyed preheader");
+ return HoistDestinationMap[BB];
+ }
+};
+} // namespace
+
// Hoisting/sinking instruction out of a loop isn't always beneficial. It's only
// only worthwhile if the destination block is actually colder than current
// block.
@@ -817,205 +817,205 @@ static bool worthSinkOrHoistInst(Instruction &I, BasicBlock *DstBlock,
return true;
}
-/// Walk the specified region of the CFG (defined by all blocks dominated by
-/// the specified block, and that are in the current loop) in depth first
-/// order w.r.t the DominatorTree. This allows us to visit definitions before
-/// uses, allowing us to hoist a loop body in one pass without iteration.
-///
-bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
+/// Walk the specified region of the CFG (defined by all blocks dominated by
+/// the specified block, and that are in the current loop) in depth first
+/// order w.r.t the DominatorTree. This allows us to visit definitions before
+/// uses, allowing us to hoist a loop body in one pass without iteration.
+///
+bool llvm::hoistRegion(DomTreeNode *N, AAResults *AA, LoopInfo *LI,
DominatorTree *DT, BlockFrequencyInfo *BFI,
TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
- ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to hoistRegion.");
- assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
- "Either AliasSetTracker or MemorySSA should be initialized.");
-
- ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
-
- // Keep track of instructions that have been hoisted, as they may need to be
- // re-hoisted if they end up not dominating all of their uses.
- SmallVector<Instruction *, 16> HoistedInstructions;
-
- // For PHI hoisting to work we need to hoist blocks before their successors.
- // We can do this by iterating through the blocks in the loop in reverse
- // post-order.
- LoopBlocksRPO Worklist(CurLoop);
- Worklist.perform(LI);
- bool Changed = false;
- for (BasicBlock *BB : Worklist) {
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
-
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
- Instruction &I = *II++;
- // Try constant folding this instruction. If all the operands are
- // constants, it is technically hoistable, but it would be better to
- // just fold it.
- if (Constant *C = ConstantFoldInstruction(
- &I, I.getModule()->getDataLayout(), TLI)) {
- LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
- << '\n');
- if (CurAST)
- CurAST->copyValue(&I, C);
- // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
- I.replaceAllUsesWith(C);
- if (isInstructionTriviallyDead(&I, TLI))
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- Changed = true;
- continue;
- }
-
- // Try hoisting the instruction out to the preheader. We can only do
- // this if all of the operands of the instruction are loop invariant and
+ AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
+ ScalarEvolution *SE, ICFLoopSafetyInfo *SafetyInfo,
+ SinkAndHoistLICMFlags &Flags,
+ OptimizationRemarkEmitter *ORE) {
+ // Verify inputs.
+ assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
+ CurLoop != nullptr && SafetyInfo != nullptr &&
+ "Unexpected input to hoistRegion.");
+ assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
+ "Either AliasSetTracker or MemorySSA should be initialized.");
+
+ ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
+
+ // Keep track of instructions that have been hoisted, as they may need to be
+ // re-hoisted if they end up not dominating all of their uses.
+ SmallVector<Instruction *, 16> HoistedInstructions;
+
+ // For PHI hoisting to work we need to hoist blocks before their successors.
+ // We can do this by iterating through the blocks in the loop in reverse
+ // post-order.
+ LoopBlocksRPO Worklist(CurLoop);
+ Worklist.perform(LI);
+ bool Changed = false;
+ for (BasicBlock *BB : Worklist) {
+ // Only need to process the contents of this block if it is not part of a
+ // subloop (which would already have been processed).
+ if (inSubLoop(BB, CurLoop, LI))
+ continue;
+
+ for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
+ Instruction &I = *II++;
+ // Try constant folding this instruction. If all the operands are
+ // constants, it is technically hoistable, but it would be better to
+ // just fold it.
+ if (Constant *C = ConstantFoldInstruction(
+ &I, I.getModule()->getDataLayout(), TLI)) {
+ LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
+ << '\n');
+ if (CurAST)
+ CurAST->copyValue(&I, C);
+ // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
+ I.replaceAllUsesWith(C);
+ if (isInstructionTriviallyDead(&I, TLI))
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+ Changed = true;
+ continue;
+ }
+
+ // Try hoisting the instruction out to the preheader. We can only do
+ // this if all of the operands of the instruction are loop invariant and
// if it is safe to hoist the instruction. We also check block frequency
// to make sure instruction only gets hoisted into colder blocks.
- // TODO: It may be safe to hoist if we are hoisting to a conditional block
- // and we have accurately duplicated the control flow from the loop header
- // to that block.
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
- ORE) &&
+ // TODO: It may be safe to hoist if we are hoisting to a conditional block
+ // and we have accurately duplicated the control flow from the loop header
+ // to that block.
+ if (CurLoop->hasLoopInvariantOperands(&I) &&
+ canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
+ ORE) &&
worthSinkOrHoistInst(I, CurLoop->getLoopPreheader(), ORE, BFI) &&
- isSafeToExecuteUnconditionally(
- I, DT, CurLoop, SafetyInfo, ORE,
- CurLoop->getLoopPreheader()->getTerminator())) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
-
- // Attempt to remove floating point division out of the loop by
- // converting it to a reciprocal multiplication.
- if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
- CurLoop->isLoopInvariant(I.getOperand(1))) {
- auto Divisor = I.getOperand(1);
- auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
- auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
- ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
- ReciprocalDivisor->insertBefore(&I);
-
- auto Product =
- BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
- Product->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(Product, I.getParent());
- Product->insertAfter(&I);
- I.replaceAllUsesWith(Product);
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
-
- hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
- SafetyInfo, MSSAU, SE, ORE);
- HoistedInstructions.push_back(ReciprocalDivisor);
- Changed = true;
- continue;
- }
-
- auto IsInvariantStart = [&](Instruction &I) {
- using namespace PatternMatch;
- return I.use_empty() &&
- match(&I, m_Intrinsic<Intrinsic::invariant_start>());
- };
- auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
- return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
- SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
- };
- if ((IsInvariantStart(I) || isGuard(&I)) &&
- CurLoop->hasLoopInvariantOperands(&I) &&
- MustExecuteWithoutWritesBefore(I)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- if (CFH.canHoistPHI(PN)) {
- // Redirect incoming blocks first to ensure that we create hoisted
- // versions of those blocks before we hoist the phi.
- for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
- PN->setIncomingBlock(
- i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
- hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, SE, ORE);
- assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
- Changed = true;
- continue;
- }
- }
-
- // Remember possibly hoistable branches so we can actually hoist them
- // later if needed.
- if (BranchInst *BI = dyn_cast<BranchInst>(&I))
- CFH.registerPossiblyHoistableBranch(BI);
- }
- }
-
- // If we hoisted instructions to a conditional block they may not dominate
- // their uses that weren't hoisted (such as phis where some operands are not
- // loop invariant). If so make them unconditional by moving them to their
- // immediate dominator. We iterate through the instructions in reverse order
- // which ensures that when we rehoist an instruction we rehoist its operands,
- // and also keep track of where in the block we are rehoisting to to make sure
- // that we rehoist instructions before the instructions that use them.
- Instruction *HoistPoint = nullptr;
- if (ControlFlowHoisting) {
- for (Instruction *I : reverse(HoistedInstructions)) {
- if (!llvm::all_of(I->uses(),
- [&](Use &U) { return DT->dominates(I, U); })) {
- BasicBlock *Dominator =
- DT->getNode(I->getParent())->getIDom()->getBlock();
- if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
- if (HoistPoint)
- assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
- "New hoist point expected to dominate old hoist point");
- HoistPoint = Dominator->getTerminator();
- }
- LLVM_DEBUG(dbgs() << "LICM rehoisting to "
+ isSafeToExecuteUnconditionally(
+ I, DT, CurLoop, SafetyInfo, ORE,
+ CurLoop->getLoopPreheader()->getTerminator())) {
+ hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, SE, ORE);
+ HoistedInstructions.push_back(&I);
+ Changed = true;
+ continue;
+ }
+
+ // Attempt to remove floating point division out of the loop by
+ // converting it to a reciprocal multiplication.
+ if (I.getOpcode() == Instruction::FDiv && I.hasAllowReciprocal() &&
+ CurLoop->isLoopInvariant(I.getOperand(1))) {
+ auto Divisor = I.getOperand(1);
+ auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
+ auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
+ ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
+ SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
+ ReciprocalDivisor->insertBefore(&I);
+
+ auto Product =
+ BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
+ Product->setFastMathFlags(I.getFastMathFlags());
+ SafetyInfo->insertInstructionTo(Product, I.getParent());
+ Product->insertAfter(&I);
+ I.replaceAllUsesWith(Product);
+ eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
+
+ hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
+ SafetyInfo, MSSAU, SE, ORE);
+ HoistedInstructions.push_back(ReciprocalDivisor);
+ Changed = true;
+ continue;
+ }
+
+ auto IsInvariantStart = [&](Instruction &I) {
+ using namespace PatternMatch;
+ return I.use_empty() &&
+ match(&I, m_Intrinsic<Intrinsic::invariant_start>());
+ };
+ auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
+ return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
+ SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
+ };
+ if ((IsInvariantStart(I) || isGuard(&I)) &&
+ CurLoop->hasLoopInvariantOperands(&I) &&
+ MustExecuteWithoutWritesBefore(I)) {
+ hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, SE, ORE);
+ HoistedInstructions.push_back(&I);
+ Changed = true;
+ continue;
+ }
+
+ if (PHINode *PN = dyn_cast<PHINode>(&I)) {
+ if (CFH.canHoistPHI(PN)) {
+ // Redirect incoming blocks first to ensure that we create hoisted
+ // versions of those blocks before we hoist the phi.
+ for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
+ PN->setIncomingBlock(
+ i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
+ hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
+ MSSAU, SE, ORE);
+ assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
+ Changed = true;
+ continue;
+ }
+ }
+
+ // Remember possibly hoistable branches so we can actually hoist them
+ // later if needed.
+ if (BranchInst *BI = dyn_cast<BranchInst>(&I))
+ CFH.registerPossiblyHoistableBranch(BI);
+ }
+ }
+
+ // If we hoisted instructions to a conditional block they may not dominate
+ // their uses that weren't hoisted (such as phis where some operands are not
+ // loop invariant). If so make them unconditional by moving them to their
+ // immediate dominator. We iterate through the instructions in reverse order
+ // which ensures that when we rehoist an instruction we rehoist its operands,
+ // and also keep track of where in the block we are rehoisting to to make sure
+ // that we rehoist instructions before the instructions that use them.
+ Instruction *HoistPoint = nullptr;
+ if (ControlFlowHoisting) {
+ for (Instruction *I : reverse(HoistedInstructions)) {
+ if (!llvm::all_of(I->uses(),
+ [&](Use &U) { return DT->dominates(I, U); })) {
+ BasicBlock *Dominator =
+ DT->getNode(I->getParent())->getIDom()->getBlock();
+ if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
+ if (HoistPoint)
+ assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
+ "New hoist point expected to dominate old hoist point");
+ HoistPoint = Dominator->getTerminator();
+ }
+ LLVM_DEBUG(dbgs() << "LICM rehoisting to "
<< HoistPoint->getParent()->getNameOrAsOperand()
- << ": " << *I << "\n");
- moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
- HoistPoint = I;
- Changed = true;
- }
- }
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
-
- // Now that we've finished hoisting make sure that LI and DT are still
- // valid.
-#ifdef EXPENSIVE_CHECKS
- if (Changed) {
- assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
- "Dominator tree verification failed");
- LI->verify(*DT);
- }
-#endif
-
- return Changed;
-}
-
-// Return true if LI is invariant within scope of the loop. LI is invariant if
-// CurLoop is dominated by an invariant.start representing the same memory
-// location and size as the memory location LI loads from, and also the
-// invariant.start has no uses.
-static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
- Loop *CurLoop) {
- Value *Addr = LI->getOperand(0);
- const DataLayout &DL = LI->getModule()->getDataLayout();
+ << ": " << *I << "\n");
+ moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU, SE);
+ HoistPoint = I;
+ Changed = true;
+ }
+ }
+ }
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+
+ // Now that we've finished hoisting make sure that LI and DT are still
+ // valid.
+#ifdef EXPENSIVE_CHECKS
+ if (Changed) {
+ assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
+ "Dominator tree verification failed");
+ LI->verify(*DT);
+ }
+#endif
+
+ return Changed;
+}
+
+// Return true if LI is invariant within scope of the loop. LI is invariant if
+// CurLoop is dominated by an invariant.start representing the same memory
+// location and size as the memory location LI loads from, and also the
+// invariant.start has no uses.
+static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
+ Loop *CurLoop) {
+ Value *Addr = LI->getOperand(0);
+ const DataLayout &DL = LI->getModule()->getDataLayout();
const TypeSize LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
-
+
// It is not currently possible for clang to generate an invariant.start
// intrinsic with scalable vector types because we don't support thread local
// sizeless types and we don't permit sizeless types in structs or classes.
@@ -1028,166 +1028,166 @@ static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
if (LocSizeInBits.isScalable())
return false;
- // if the type is i8 addrspace(x)*, we know this is the type of
- // llvm.invariant.start operand
- auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
- LI->getPointerAddressSpace());
- unsigned BitcastsVisited = 0;
- // Look through bitcasts until we reach the i8* type (this is invariant.start
- // operand type).
- while (Addr->getType() != PtrInt8Ty) {
- auto *BC = dyn_cast<BitCastInst>(Addr);
- // Avoid traversing high number of bitcast uses.
- if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
- return false;
- Addr = BC->getOperand(0);
- }
-
- unsigned UsesVisited = 0;
- // Traverse all uses of the load operand value, to see if invariant.start is
- // one of the uses, and whether it dominates the load instruction.
- for (auto *U : Addr->users()) {
- // Avoid traversing for Load operand with high number of users.
- if (++UsesVisited > MaxNumUsesTraversed)
- return false;
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- // If there are escaping uses of invariant.start instruction, the load maybe
- // non-invariant.
- if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
- !II->use_empty())
- continue;
+ // if the type is i8 addrspace(x)*, we know this is the type of
+ // llvm.invariant.start operand
+ auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
+ LI->getPointerAddressSpace());
+ unsigned BitcastsVisited = 0;
+ // Look through bitcasts until we reach the i8* type (this is invariant.start
+ // operand type).
+ while (Addr->getType() != PtrInt8Ty) {
+ auto *BC = dyn_cast<BitCastInst>(Addr);
+ // Avoid traversing high number of bitcast uses.
+ if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
+ return false;
+ Addr = BC->getOperand(0);
+ }
+
+ unsigned UsesVisited = 0;
+ // Traverse all uses of the load operand value, to see if invariant.start is
+ // one of the uses, and whether it dominates the load instruction.
+ for (auto *U : Addr->users()) {
+ // Avoid traversing for Load operand with high number of users.
+ if (++UsesVisited > MaxNumUsesTraversed)
+ return false;
+ IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
+ // If there are escaping uses of invariant.start instruction, the load maybe
+ // non-invariant.
+ if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
+ !II->use_empty())
+ continue;
ConstantInt *InvariantSize = cast<ConstantInt>(II->getArgOperand(0));
// The intrinsic supports having a -1 argument for variable sized objects
// so we should check for that here.
if (InvariantSize->isNegative())
continue;
uint64_t InvariantSizeInBits = InvariantSize->getSExtValue() * 8;
- // Confirm the invariant.start location size contains the load operand size
- // in bits. Also, the invariant.start should dominate the load, and we
- // should not hoist the load out of a loop that contains this dominating
- // invariant.start.
+ // Confirm the invariant.start location size contains the load operand size
+ // in bits. Also, the invariant.start should dominate the load, and we
+ // should not hoist the load out of a loop that contains this dominating
+ // invariant.start.
if (LocSizeInBits.getFixedSize() <= InvariantSizeInBits &&
- DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
- return true;
- }
-
- return false;
-}
-
-namespace {
-/// Return true if-and-only-if we know how to (mechanically) both hoist and
-/// sink a given instruction out of a loop. Does not address legality
-/// concerns such as aliasing or speculation safety.
-bool isHoistableAndSinkableInst(Instruction &I) {
- // Only these instructions are hoistable/sinkable.
- return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
- isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
- isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
- isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
- isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
- isa<InsertValueInst>(I) || isa<FreezeInst>(I));
-}
-/// Return true if all of the alias sets within this AST are known not to
-/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
-bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
- const Loop *L) {
- if (CurAST) {
- for (AliasSet &AS : *CurAST) {
- if (!AS.isForwardingAliasSet() && AS.isMod()) {
- return false;
- }
- }
- return true;
- } else { /*MSSAU*/
- for (auto *BB : L->getBlocks())
- if (MSSAU->getMemorySSA()->getBlockDefs(BB))
- return false;
- return true;
- }
-}
-
-/// Return true if I is the only Instruction with a MemoryAccess in L.
-bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
- const MemorySSAUpdater *MSSAU) {
- for (auto *BB : L->getBlocks())
- if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
- int NotAPhi = 0;
- for (const auto &Acc : *Accs) {
- if (isa<MemoryPhi>(&Acc))
- continue;
- const auto *MUD = cast<MemoryUseOrDef>(&Acc);
- if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
- return false;
- }
- }
- return true;
-}
-}
-
-bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
- Loop *CurLoop, AliasSetTracker *CurAST,
- MemorySSAUpdater *MSSAU,
- bool TargetExecutesOncePerLoop,
- SinkAndHoistLICMFlags *Flags,
- OptimizationRemarkEmitter *ORE) {
+ DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
+ return true;
+ }
+
+ return false;
+}
+
+namespace {
+/// Return true if-and-only-if we know how to (mechanically) both hoist and
+/// sink a given instruction out of a loop. Does not address legality
+/// concerns such as aliasing or speculation safety.
+bool isHoistableAndSinkableInst(Instruction &I) {
+ // Only these instructions are hoistable/sinkable.
+ return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
+ isa<FenceInst>(I) || isa<CastInst>(I) || isa<UnaryOperator>(I) ||
+ isa<BinaryOperator>(I) || isa<SelectInst>(I) ||
+ isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
+ isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
+ isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
+ isa<InsertValueInst>(I) || isa<FreezeInst>(I));
+}
+/// Return true if all of the alias sets within this AST are known not to
+/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
+bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
+ const Loop *L) {
+ if (CurAST) {
+ for (AliasSet &AS : *CurAST) {
+ if (!AS.isForwardingAliasSet() && AS.isMod()) {
+ return false;
+ }
+ }
+ return true;
+ } else { /*MSSAU*/
+ for (auto *BB : L->getBlocks())
+ if (MSSAU->getMemorySSA()->getBlockDefs(BB))
+ return false;
+ return true;
+ }
+}
+
+/// Return true if I is the only Instruction with a MemoryAccess in L.
+bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
+ const MemorySSAUpdater *MSSAU) {
+ for (auto *BB : L->getBlocks())
+ if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
+ int NotAPhi = 0;
+ for (const auto &Acc : *Accs) {
+ if (isa<MemoryPhi>(&Acc))
+ continue;
+ const auto *MUD = cast<MemoryUseOrDef>(&Acc);
+ if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
+ return false;
+ }
+ }
+ return true;
+}
+}
+
+bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
+ Loop *CurLoop, AliasSetTracker *CurAST,
+ MemorySSAUpdater *MSSAU,
+ bool TargetExecutesOncePerLoop,
+ SinkAndHoistLICMFlags *Flags,
+ OptimizationRemarkEmitter *ORE) {
assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
"Either AliasSetTracker or MemorySSA should be initialized.");
- // If we don't understand the instruction, bail early.
- if (!isHoistableAndSinkableInst(I))
- return false;
-
- MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
- if (MSSA)
- assert(Flags != nullptr && "Flags cannot be null.");
-
- // Loads have extra constraints we have to verify before we can hoist them.
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (!LI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic loads!
-
- // Loads from constant memory are always safe to move, even if they end up
- // in the same alias set as something that ends up being modified.
- if (AA->pointsToConstantMemory(LI->getOperand(0)))
- return true;
- if (LI->hasMetadata(LLVMContext::MD_invariant_load))
- return true;
-
- if (LI->isAtomic() && !TargetExecutesOncePerLoop)
- return false; // Don't risk duplicating unordered loads
-
- // This checks for an invariant.start dominating the load.
- if (isLoadInvariantInLoop(LI, DT, CurLoop))
- return true;
-
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
- CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
+ // If we don't understand the instruction, bail early.
+ if (!isHoistableAndSinkableInst(I))
+ return false;
+
+ MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
+ if (MSSA)
+ assert(Flags != nullptr && "Flags cannot be null.");
+
+ // Loads have extra constraints we have to verify before we can hoist them.
+ if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
+ if (!LI->isUnordered())
+ return false; // Don't sink/hoist volatile or ordered atomic loads!
+
+ // Loads from constant memory are always safe to move, even if they end up
+ // in the same alias set as something that ends up being modified.
+ if (AA->pointsToConstantMemory(LI->getOperand(0)))
+ return true;
+ if (LI->hasMetadata(LLVMContext::MD_invariant_load))
+ return true;
+
+ if (LI->isAtomic() && !TargetExecutesOncePerLoop)
+ return false; // Don't risk duplicating unordered loads
+
+ // This checks for an invariant.start dominating the load.
+ if (isLoadInvariantInLoop(LI, DT, CurLoop))
+ return true;
+
+ bool Invalidated;
+ if (CurAST)
+ Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
+ CurLoop, AA);
+ else
+ Invalidated = pointerInvalidatedByLoopWithMSSA(
MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, I, *Flags);
- // Check loop-invariant address because this may also be a sinkable load
- // whose address is not necessarily loop-invariant.
- if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
- << "failed to move load with loop-invariant address "
- "because the loop may invalidate its value";
- });
-
- return !Invalidated;
- } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // Don't sink or hoist dbg info; it's legal, but not useful.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
-
- // Don't sink calls which can throw.
- if (CI->mayThrow())
- return false;
-
+ // Check loop-invariant address because this may also be a sinkable load
+ // whose address is not necessarily loop-invariant.
+ if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
+ << "failed to move load with loop-invariant address "
+ "because the loop may invalidate its value";
+ });
+
+ return !Invalidated;
+ } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
+ // Don't sink or hoist dbg info; it's legal, but not useful.
+ if (isa<DbgInfoIntrinsic>(I))
+ return false;
+
+ // Don't sink calls which can throw.
+ if (CI->mayThrow())
+ return false;
+
// Convergent attribute has been used on operations that involve
// inter-thread communication which results are implicitly affected by the
// enclosing control flows. It is not safe to hoist or sink such operations
@@ -1195,526 +1195,526 @@ bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
if (CI->isConvergent())
return false;
- using namespace PatternMatch;
- if (match(CI, m_Intrinsic<Intrinsic::assume>()))
- // Assumes don't actually alias anything or throw
- return true;
-
- if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
- // Widenable conditions don't actually alias anything or throw
- return true;
-
- // Handle simple cases by querying alias analysis.
- FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
- if (Behavior == FMRB_DoesNotAccessMemory)
- return true;
- if (AAResults::onlyReadsMemory(Behavior)) {
- // A readonly argmemonly function only reads from memory pointed to by
- // it's arguments with arbitrary offsets. If we can prove there are no
- // writes to this memory in the loop, we can hoist or sink.
- if (AAResults::onlyAccessesArgPointees(Behavior)) {
- // TODO: expand to writeable arguments
- for (Value *Op : CI->arg_operands())
- if (Op->getType()->isPointerTy()) {
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(
+ using namespace PatternMatch;
+ if (match(CI, m_Intrinsic<Intrinsic::assume>()))
+ // Assumes don't actually alias anything or throw
+ return true;
+
+ if (match(CI, m_Intrinsic<Intrinsic::experimental_widenable_condition>()))
+ // Widenable conditions don't actually alias anything or throw
+ return true;
+
+ // Handle simple cases by querying alias analysis.
+ FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
+ if (Behavior == FMRB_DoesNotAccessMemory)
+ return true;
+ if (AAResults::onlyReadsMemory(Behavior)) {
+ // A readonly argmemonly function only reads from memory pointed to by
+ // it's arguments with arbitrary offsets. If we can prove there are no
+ // writes to this memory in the loop, we can hoist or sink.
+ if (AAResults::onlyAccessesArgPointees(Behavior)) {
+ // TODO: expand to writeable arguments
+ for (Value *Op : CI->arg_operands())
+ if (Op->getType()->isPointerTy()) {
+ bool Invalidated;
+ if (CurAST)
+ Invalidated = pointerInvalidatedByLoop(
MemoryLocation::getBeforeOrAfter(Op), CurAST, CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
+ else
+ Invalidated = pointerInvalidatedByLoopWithMSSA(
MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop, I,
- *Flags);
- if (Invalidated)
- return false;
- }
- return true;
- }
-
- // If this call only reads from memory and there are no writes to memory
- // in the loop, we can hoist or sink the call as appropriate.
- if (isReadOnly(CurAST, MSSAU, CurLoop))
- return true;
- }
-
- // FIXME: This should use mod/ref information to see if we can hoist or
- // sink the call.
-
- return false;
- } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
- // Fences alias (most) everything to provide ordering. For the moment,
- // just give up if there are any other memory operations in the loop.
- if (CurAST) {
- auto Begin = CurAST->begin();
- assert(Begin != CurAST->end() && "must contain FI");
- if (std::next(Begin) != CurAST->end())
- // constant memory for instance, TODO: handle better
- return false;
- auto *UniqueI = Begin->getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- (void)FI; // suppress unused variable warning
- assert(UniqueI == FI && "AS must contain FI");
- return true;
- } else // MSSAU
- return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
- } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic store!
-
- // We can only hoist a store that we can prove writes a value which is not
- // read or overwritten within the loop. For those cases, we fallback to
- // load store promotion instead. TODO: We can extend this to cases where
- // there is exactly one write to the location and that write dominates an
- // arbitrary number of reads in the loop.
- if (CurAST) {
- auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
-
- if (AS.isRef() || !AS.isMustAlias())
- // Quick exit test, handled by the full path below as well.
- return false;
- auto *UniqueI = AS.getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- assert(UniqueI == SI && "AS must contain SI");
- return true;
- } else { // MSSAU
- if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
- return true;
+ *Flags);
+ if (Invalidated)
+ return false;
+ }
+ return true;
+ }
+
+ // If this call only reads from memory and there are no writes to memory
+ // in the loop, we can hoist or sink the call as appropriate.
+ if (isReadOnly(CurAST, MSSAU, CurLoop))
+ return true;
+ }
+
+ // FIXME: This should use mod/ref information to see if we can hoist or
+ // sink the call.
+
+ return false;
+ } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
+ // Fences alias (most) everything to provide ordering. For the moment,
+ // just give up if there are any other memory operations in the loop.
+ if (CurAST) {
+ auto Begin = CurAST->begin();
+ assert(Begin != CurAST->end() && "must contain FI");
+ if (std::next(Begin) != CurAST->end())
+ // constant memory for instance, TODO: handle better
+ return false;
+ auto *UniqueI = Begin->getUniqueInstruction();
+ if (!UniqueI)
+ // other memory op, give up
+ return false;
+ (void)FI; // suppress unused variable warning
+ assert(UniqueI == FI && "AS must contain FI");
+ return true;
+ } else // MSSAU
+ return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
+ } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
+ if (!SI->isUnordered())
+ return false; // Don't sink/hoist volatile or ordered atomic store!
+
+ // We can only hoist a store that we can prove writes a value which is not
+ // read or overwritten within the loop. For those cases, we fallback to
+ // load store promotion instead. TODO: We can extend this to cases where
+ // there is exactly one write to the location and that write dominates an
+ // arbitrary number of reads in the loop.
+ if (CurAST) {
+ auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
+
+ if (AS.isRef() || !AS.isMustAlias())
+ // Quick exit test, handled by the full path below as well.
+ return false;
+ auto *UniqueI = AS.getUniqueInstruction();
+ if (!UniqueI)
+ // other memory op, give up
+ return false;
+ assert(UniqueI == SI && "AS must contain SI");
+ return true;
+ } else { // MSSAU
+ if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
+ return true;
// If there are more accesses than the Promotion cap or no "quota" to
// check clobber, then give up as we're not walking a list that long.
if (Flags->tooManyMemoryAccesses() || Flags->tooManyClobberingCalls())
- return false;
- // If there are interfering Uses (i.e. their defining access is in the
- // loop), or ordered loads (stored as Defs!), don't move this store.
- // Could do better here, but this is conservatively correct.
- // TODO: Cache set of Uses on the first walk in runOnLoop, update when
- // moving accesses. Can also extend to dominating uses.
- auto *SIMD = MSSA->getMemoryAccess(SI);
- for (auto *BB : CurLoop->getBlocks())
- if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
- for (const auto &MA : *Accesses)
- if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
- auto *MD = MU->getDefiningAccess();
- if (!MSSA->isLiveOnEntryDef(MD) &&
- CurLoop->contains(MD->getBlock()))
- return false;
- // Disable hoisting past potentially interfering loads. Optimized
- // Uses may point to an access outside the loop, as getClobbering
- // checks the previous iteration when walking the backedge.
- // FIXME: More precise: no Uses that alias SI.
+ return false;
+ // If there are interfering Uses (i.e. their defining access is in the
+ // loop), or ordered loads (stored as Defs!), don't move this store.
+ // Could do better here, but this is conservatively correct.
+ // TODO: Cache set of Uses on the first walk in runOnLoop, update when
+ // moving accesses. Can also extend to dominating uses.
+ auto *SIMD = MSSA->getMemoryAccess(SI);
+ for (auto *BB : CurLoop->getBlocks())
+ if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
+ for (const auto &MA : *Accesses)
+ if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
+ auto *MD = MU->getDefiningAccess();
+ if (!MSSA->isLiveOnEntryDef(MD) &&
+ CurLoop->contains(MD->getBlock()))
+ return false;
+ // Disable hoisting past potentially interfering loads. Optimized
+ // Uses may point to an access outside the loop, as getClobbering
+ // checks the previous iteration when walking the backedge.
+ // FIXME: More precise: no Uses that alias SI.
if (!Flags->getIsSink() && !MSSA->dominates(SIMD, MU))
- return false;
- } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
- if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
- (void)LI; // Silence warning.
- assert(!LI->isUnordered() && "Expected unordered load");
- return false;
- }
- // Any call, while it may not be clobbering SI, it may be a use.
- if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
- // Check if the call may read from the memory locattion written
- // to by SI. Check CI's attributes and arguments; the number of
- // such checks performed is limited above by NoOfMemAccTooLarge.
- ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
- if (isModOrRefSet(MRI))
- return false;
- }
- }
- }
- auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
+ return false;
+ } else if (const auto *MD = dyn_cast<MemoryDef>(&MA)) {
+ if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
+ (void)LI; // Silence warning.
+ assert(!LI->isUnordered() && "Expected unordered load");
+ return false;
+ }
+ // Any call, while it may not be clobbering SI, it may be a use.
+ if (auto *CI = dyn_cast<CallInst>(MD->getMemoryInst())) {
+ // Check if the call may read from the memory locattion written
+ // to by SI. Check CI's attributes and arguments; the number of
+ // such checks performed is limited above by NoOfMemAccTooLarge.
+ ModRefInfo MRI = AA->getModRefInfo(CI, MemoryLocation::get(SI));
+ if (isModOrRefSet(MRI))
+ return false;
+ }
+ }
+ }
+ auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
Flags->incrementClobberingCalls();
- // If there are no clobbering Defs in the loop, store is safe to hoist.
- return MSSA->isLiveOnEntryDef(Source) ||
- !CurLoop->contains(Source->getBlock());
- }
- }
-
- assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
-
- // We've established mechanical ability and aliasing, it's up to the caller
- // to check fault safety
- return true;
-}
-
-/// Returns true if a PHINode is a trivially replaceable with an
-/// Instruction.
-/// This is true when all incoming values are that instruction.
-/// This pattern occurs most often with LCSSA PHI nodes.
-///
-static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
- for (const Value *IncValue : PN.incoming_values())
- if (IncValue != &I)
- return false;
-
- return true;
-}
-
-/// Return true if the instruction is free in the loop.
-static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const TargetTransformInfo *TTI) {
-
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
- TargetTransformInfo::TCC_Free)
- return false;
- // For a GEP, we cannot simply use getUserCost because currently it
- // optimistically assume that a GEP will fold into addressing mode
- // regardless of its users.
- const BasicBlock *BB = GEP->getParent();
- for (const User *U : GEP->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (CurLoop->contains(UI) &&
- (BB != UI->getParent() ||
- (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
- return false;
- }
- return true;
- } else
- return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
- TargetTransformInfo::TCC_Free;
-}
-
-/// Return true if the only users of this instruction are outside of
-/// the loop. If this is true, we can sink the instruction to the exit
-/// blocks of the loop.
-///
-/// We also return true if the instruction could be folded away in lowering.
-/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
-static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- bool IsFree = isFreeInLoop(I, CurLoop, TTI);
- for (const User *U : I.users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- const BasicBlock *BB = PN->getParent();
- // We cannot sink uses in catchswitches.
- if (isa<CatchSwitchInst>(BB->getTerminator()))
- return false;
-
- // We need to sink a callsite to a unique funclet. Avoid sinking if the
- // phi use is too muddled.
- if (isa<CallInst>(I))
- if (!BlockColors.empty() &&
- BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
- return false;
- }
-
- if (CurLoop->contains(UI)) {
- if (IsFree) {
- FreeInLoop = true;
- continue;
- }
- return false;
- }
- }
- return true;
-}
-
-static Instruction *cloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
- Instruction *New;
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
-
- // Sinking call-sites need to be handled differently from other
- // instructions. The cloned call-site needs a funclet bundle operand
- // appropriate for its location in the CFG.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
- BundleIdx != BundleEnd; ++BundleIdx) {
- OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
- if (Bundle.getTagID() == LLVMContext::OB_funclet)
- continue;
-
- OpBundles.emplace_back(Bundle);
- }
-
- if (!BlockColors.empty()) {
- const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
- assert(CV.size() == 1 && "non-unique color for exit block!");
- BasicBlock *BBColor = CV.front();
- Instruction *EHPad = BBColor->getFirstNonPHI();
- if (EHPad->isEHPad())
- OpBundles.emplace_back("funclet", EHPad);
- }
-
- New = CallInst::Create(CI, OpBundles);
- } else {
- New = I.clone();
- }
-
- ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
- if (!I.getName().empty())
- New->setName(I.getName() + ".le");
-
- if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
- // Create a new MemoryAccess and let MemorySSA set its defining access.
- MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
- New, nullptr, New->getParent(), MemorySSA::Beginning);
- if (NewMemAcc) {
- if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
- MSSAU->insertDef(MemDef, /*RenameUses=*/true);
- else {
- auto *MemUse = cast<MemoryUse>(NewMemAcc);
- MSSAU->insertUse(MemUse, /*RenameUses=*/true);
- }
- }
- }
-
- // Build LCSSA PHI nodes for any in-loop operands. Note that this is
- // particularly cheap because we can rip off the PHI node that we're
- // replacing for the number and blocks of the predecessors.
- // OPT: If this shows up in a profile, we can instead finish sinking all
- // invariant instructions, and then walk their operands to re-establish
- // LCSSA. That will eliminate creating PHI nodes just to nuke them when
- // sinking bottom-up.
- for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
- ++OI)
- if (Instruction *OInst = dyn_cast<Instruction>(*OI))
- if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
- if (!OLoop->contains(&PN)) {
- PHINode *OpPN =
- PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
- OInst->getName() + ".lcssa", &ExitBlock.front());
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
- *OI = OpPN;
- }
- return New;
-}
-
-static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
- if (AST)
- AST->deleteValue(&I);
- if (MSSAU)
- MSSAU->removeMemoryAccess(&I);
- SafetyInfo.removeInstruction(&I);
- I.eraseFromParent();
-}
-
-static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU,
- ScalarEvolution *SE) {
- SafetyInfo.removeInstruction(&I);
- SafetyInfo.insertInstructionTo(&I, Dest.getParent());
- I.moveBefore(&Dest);
- if (MSSAU)
- if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
- MSSAU->getMemorySSA()->getMemoryAccess(&I)))
- MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
- MemorySSA::BeforeTerminator);
- if (SE)
- SE->forgetValue(&I);
-}
-
-static Instruction *sinkThroughTriviallyReplaceablePHI(
- PHINode *TPN, Instruction *I, LoopInfo *LI,
- SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
- const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
- MemorySSAUpdater *MSSAU) {
- assert(isTriviallyReplaceablePHI(*TPN, *I) &&
- "Expect only trivially replaceable PHI");
- BasicBlock *ExitBlock = TPN->getParent();
- Instruction *New;
- auto It = SunkCopies.find(ExitBlock);
- if (It != SunkCopies.end())
- New = It->second;
- else
- New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
- *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
- return New;
-}
-
-static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
- BasicBlock *BB = PN->getParent();
- if (!BB->canSplitPredecessors())
- return false;
- // It's not impossible to split EHPad blocks, but if BlockColors already exist
- // it require updating BlockColors for all offspring blocks accordingly. By
- // skipping such corner case, we can make updating BlockColors after splitting
- // predecessor fairly simple.
- if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
- return false;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *BBPred = *PI;
- if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
- isa<CallBrInst>(BBPred->getTerminator()))
- return false;
- }
- return true;
-}
-
-static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
- LoopInfo *LI, const Loop *CurLoop,
- LoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU) {
-#ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-#endif
- BasicBlock *ExitBB = PN->getParent();
- assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
-
- // Split predecessors of the loop exit to make instructions in the loop are
- // exposed to exit blocks through trivially replaceable PHIs while keeping the
- // loop in the canonical form where each predecessor of each exit block should
- // be contained within the loop. For example, this will convert the loop below
- // from
- //
- // LB1:
- // %v1 =
- // br %LE, %LB2
- // LB2:
- // %v2 =
- // br %LE, %LB1
- // LE:
- // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
- //
- // to
- //
- // LB1:
- // %v1 =
- // br %LE.split, %LB2
- // LB2:
- // %v2 =
- // br %LE.split2, %LB1
- // LE.split:
- // %p1 = phi [%v1, %LB1] <-- trivially replaceable
- // br %LE
- // LE.split2:
- // %p2 = phi [%v2, %LB2] <-- trivially replaceable
- // br %LE
- // LE:
- // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
- //
- const auto &BlockColors = SafetyInfo->getBlockColors();
- SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
- while (!PredBBs.empty()) {
- BasicBlock *PredBB = *PredBBs.begin();
- assert(CurLoop->contains(PredBB) &&
- "Expect all predecessors are in the loop");
- if (PN->getBasicBlockIndex(PredBB) >= 0) {
- BasicBlock *NewPred = SplitBlockPredecessors(
- ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
- // Since we do not allow splitting EH-block with BlockColors in
- // canSplitPredecessors(), we can simply assign predecessor's color to
- // the new block.
- if (!BlockColors.empty())
- // Grab a reference to the ColorVector to be inserted before getting the
- // reference to the vector we are copying because inserting the new
- // element in BlockColors might cause the map to be reallocated.
- SafetyInfo->copyColors(NewPred, PredBB);
- }
- PredBBs.remove(PredBB);
- }
-}
-
-/// When an instruction is found to only be used outside of the loop, this
-/// function moves it to the exit blocks and patches up SSA form as needed.
-/// This method is guaranteed to remove the original instruction from its
-/// position, and may either delete it or move it to outside of the loop.
-///
-static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
+ // If there are no clobbering Defs in the loop, store is safe to hoist.
+ return MSSA->isLiveOnEntryDef(Source) ||
+ !CurLoop->contains(Source->getBlock());
+ }
+ }
+
+ assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
+
+ // We've established mechanical ability and aliasing, it's up to the caller
+ // to check fault safety
+ return true;
+}
+
+/// Returns true if a PHINode is a trivially replaceable with an
+/// Instruction.
+/// This is true when all incoming values are that instruction.
+/// This pattern occurs most often with LCSSA PHI nodes.
+///
+static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
+ for (const Value *IncValue : PN.incoming_values())
+ if (IncValue != &I)
+ return false;
+
+ return true;
+}
+
+/// Return true if the instruction is free in the loop.
+static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const TargetTransformInfo *TTI) {
+
+ if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ if (TTI->getUserCost(GEP, TargetTransformInfo::TCK_SizeAndLatency) !=
+ TargetTransformInfo::TCC_Free)
+ return false;
+ // For a GEP, we cannot simply use getUserCost because currently it
+ // optimistically assume that a GEP will fold into addressing mode
+ // regardless of its users.
+ const BasicBlock *BB = GEP->getParent();
+ for (const User *U : GEP->users()) {
+ const Instruction *UI = cast<Instruction>(U);
+ if (CurLoop->contains(UI) &&
+ (BB != UI->getParent() ||
+ (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
+ return false;
+ }
+ return true;
+ } else
+ return TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency) ==
+ TargetTransformInfo::TCC_Free;
+}
+
+/// Return true if the only users of this instruction are outside of
+/// the loop. If this is true, we can sink the instruction to the exit
+/// blocks of the loop.
+///
+/// We also return true if the instruction could be folded away in lowering.
+/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
+static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ TargetTransformInfo *TTI, bool &FreeInLoop) {
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+ bool IsFree = isFreeInLoop(I, CurLoop, TTI);
+ for (const User *U : I.users()) {
+ const Instruction *UI = cast<Instruction>(U);
+ if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
+ const BasicBlock *BB = PN->getParent();
+ // We cannot sink uses in catchswitches.
+ if (isa<CatchSwitchInst>(BB->getTerminator()))
+ return false;
+
+ // We need to sink a callsite to a unique funclet. Avoid sinking if the
+ // phi use is too muddled.
+ if (isa<CallInst>(I))
+ if (!BlockColors.empty() &&
+ BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
+ return false;
+ }
+
+ if (CurLoop->contains(UI)) {
+ if (IsFree) {
+ FreeInLoop = true;
+ continue;
+ }
+ return false;
+ }
+ }
+ return true;
+}
+
+static Instruction *cloneInstructionInExitBlock(
+ Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
+ const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
+ Instruction *New;
+ if (auto *CI = dyn_cast<CallInst>(&I)) {
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+
+ // Sinking call-sites need to be handled differently from other
+ // instructions. The cloned call-site needs a funclet bundle operand
+ // appropriate for its location in the CFG.
+ SmallVector<OperandBundleDef, 1> OpBundles;
+ for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
+ BundleIdx != BundleEnd; ++BundleIdx) {
+ OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
+ if (Bundle.getTagID() == LLVMContext::OB_funclet)
+ continue;
+
+ OpBundles.emplace_back(Bundle);
+ }
+
+ if (!BlockColors.empty()) {
+ const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
+ assert(CV.size() == 1 && "non-unique color for exit block!");
+ BasicBlock *BBColor = CV.front();
+ Instruction *EHPad = BBColor->getFirstNonPHI();
+ if (EHPad->isEHPad())
+ OpBundles.emplace_back("funclet", EHPad);
+ }
+
+ New = CallInst::Create(CI, OpBundles);
+ } else {
+ New = I.clone();
+ }
+
+ ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
+ if (!I.getName().empty())
+ New->setName(I.getName() + ".le");
+
+ if (MSSAU && MSSAU->getMemorySSA()->getMemoryAccess(&I)) {
+ // Create a new MemoryAccess and let MemorySSA set its defining access.
+ MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
+ New, nullptr, New->getParent(), MemorySSA::Beginning);
+ if (NewMemAcc) {
+ if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
+ MSSAU->insertDef(MemDef, /*RenameUses=*/true);
+ else {
+ auto *MemUse = cast<MemoryUse>(NewMemAcc);
+ MSSAU->insertUse(MemUse, /*RenameUses=*/true);
+ }
+ }
+ }
+
+ // Build LCSSA PHI nodes for any in-loop operands. Note that this is
+ // particularly cheap because we can rip off the PHI node that we're
+ // replacing for the number and blocks of the predecessors.
+ // OPT: If this shows up in a profile, we can instead finish sinking all
+ // invariant instructions, and then walk their operands to re-establish
+ // LCSSA. That will eliminate creating PHI nodes just to nuke them when
+ // sinking bottom-up.
+ for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
+ ++OI)
+ if (Instruction *OInst = dyn_cast<Instruction>(*OI))
+ if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
+ if (!OLoop->contains(&PN)) {
+ PHINode *OpPN =
+ PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
+ OInst->getName() + ".lcssa", &ExitBlock.front());
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
+ OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
+ *OI = OpPN;
+ }
+ return New;
+}
+
+static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
+ AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
+ if (AST)
+ AST->deleteValue(&I);
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(&I);
+ SafetyInfo.removeInstruction(&I);
+ I.eraseFromParent();
+}
+
+static void moveInstructionBefore(Instruction &I, Instruction &Dest,
+ ICFLoopSafetyInfo &SafetyInfo,
+ MemorySSAUpdater *MSSAU,
+ ScalarEvolution *SE) {
+ SafetyInfo.removeInstruction(&I);
+ SafetyInfo.insertInstructionTo(&I, Dest.getParent());
+ I.moveBefore(&Dest);
+ if (MSSAU)
+ if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
+ MSSAU->getMemorySSA()->getMemoryAccess(&I)))
+ MSSAU->moveToPlace(OldMemAcc, Dest.getParent(),
+ MemorySSA::BeforeTerminator);
+ if (SE)
+ SE->forgetValue(&I);
+}
+
+static Instruction *sinkThroughTriviallyReplaceablePHI(
+ PHINode *TPN, Instruction *I, LoopInfo *LI,
+ SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
+ const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
+ MemorySSAUpdater *MSSAU) {
+ assert(isTriviallyReplaceablePHI(*TPN, *I) &&
+ "Expect only trivially replaceable PHI");
+ BasicBlock *ExitBlock = TPN->getParent();
+ Instruction *New;
+ auto It = SunkCopies.find(ExitBlock);
+ if (It != SunkCopies.end())
+ New = It->second;
+ else
+ New = SunkCopies[ExitBlock] = cloneInstructionInExitBlock(
+ *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
+ return New;
+}
+
+static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
+ BasicBlock *BB = PN->getParent();
+ if (!BB->canSplitPredecessors())
+ return false;
+ // It's not impossible to split EHPad blocks, but if BlockColors already exist
+ // it require updating BlockColors for all offspring blocks accordingly. By
+ // skipping such corner case, we can make updating BlockColors after splitting
+ // predecessor fairly simple.
+ if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
+ return false;
+ for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
+ BasicBlock *BBPred = *PI;
+ if (isa<IndirectBrInst>(BBPred->getTerminator()) ||
+ isa<CallBrInst>(BBPred->getTerminator()))
+ return false;
+ }
+ return true;
+}
+
+static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
+ LoopInfo *LI, const Loop *CurLoop,
+ LoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU) {
+#ifndef NDEBUG
+ SmallVector<BasicBlock *, 32> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+#endif
+ BasicBlock *ExitBB = PN->getParent();
+ assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
+
+ // Split predecessors of the loop exit to make instructions in the loop are
+ // exposed to exit blocks through trivially replaceable PHIs while keeping the
+ // loop in the canonical form where each predecessor of each exit block should
+ // be contained within the loop. For example, this will convert the loop below
+ // from
+ //
+ // LB1:
+ // %v1 =
+ // br %LE, %LB2
+ // LB2:
+ // %v2 =
+ // br %LE, %LB1
+ // LE:
+ // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
+ //
+ // to
+ //
+ // LB1:
+ // %v1 =
+ // br %LE.split, %LB2
+ // LB2:
+ // %v2 =
+ // br %LE.split2, %LB1
+ // LE.split:
+ // %p1 = phi [%v1, %LB1] <-- trivially replaceable
+ // br %LE
+ // LE.split2:
+ // %p2 = phi [%v2, %LB2] <-- trivially replaceable
+ // br %LE
+ // LE:
+ // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
+ //
+ const auto &BlockColors = SafetyInfo->getBlockColors();
+ SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
+ while (!PredBBs.empty()) {
+ BasicBlock *PredBB = *PredBBs.begin();
+ assert(CurLoop->contains(PredBB) &&
+ "Expect all predecessors are in the loop");
+ if (PN->getBasicBlockIndex(PredBB) >= 0) {
+ BasicBlock *NewPred = SplitBlockPredecessors(
+ ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
+ // Since we do not allow splitting EH-block with BlockColors in
+ // canSplitPredecessors(), we can simply assign predecessor's color to
+ // the new block.
+ if (!BlockColors.empty())
+ // Grab a reference to the ColorVector to be inserted before getting the
+ // reference to the vector we are copying because inserting the new
+ // element in BlockColors might cause the map to be reallocated.
+ SafetyInfo->copyColors(NewPred, PredBB);
+ }
+ PredBBs.remove(PredBB);
+ }
+}
+
+/// When an instruction is found to only be used outside of the loop, this
+/// function moves it to the exit blocks and patches up SSA form as needed.
+/// This method is guaranteed to remove the original instruction from its
+/// position, and may either delete it or move it to outside of the loop.
+///
+static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
BlockFrequencyInfo *BFI, const Loop *CurLoop,
ICFLoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU,
OptimizationRemarkEmitter *ORE) {
- LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
- << "sinking " << ore::NV("Inst", &I);
- });
- bool Changed = false;
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumSunk;
-
- // Iterate over users to be ready for actual sinking. Replace users via
- // unreachable blocks with undef and make all user PHIs trivially replaceable.
- SmallPtrSet<Instruction *, 8> VisitedUsers;
- for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
- auto *User = cast<Instruction>(*UI);
- Use &U = UI.getUse();
- ++UI;
-
- if (VisitedUsers.count(User) || CurLoop->contains(User))
- continue;
-
- if (!DT->isReachableFromEntry(User->getParent())) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
-
- // The user must be a PHI node.
- PHINode *PN = cast<PHINode>(User);
-
- // Surprisingly, instructions can be used outside of loops without any
- // exits. This can only happen in PHI nodes if the incoming block is
- // unreachable.
- BasicBlock *BB = PN->getIncomingBlock(U);
- if (!DT->isReachableFromEntry(BB)) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
-
- VisitedUsers.insert(PN);
- if (isTriviallyReplaceablePHI(*PN, I))
- continue;
-
- if (!canSplitPredecessors(PN, SafetyInfo))
- return Changed;
-
- // Split predecessors of the PHI so that we can make users trivially
- // replaceable.
- splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
-
- // Should rebuild the iterators, as they may be invalidated by
- // splitPredecessorsOfLoopExit().
- UI = I.user_begin();
- UE = I.user_end();
- }
-
- if (VisitedUsers.empty())
- return Changed;
-
-#ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-#endif
-
- // Clones of this instruction. Don't create more than one per exit block!
- SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
-
- // If this instruction is only used outside of the loop, then all users are
- // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
- // the instruction.
+ LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
+ << "sinking " << ore::NV("Inst", &I);
+ });
+ bool Changed = false;
+ if (isa<LoadInst>(I))
+ ++NumMovedLoads;
+ else if (isa<CallInst>(I))
+ ++NumMovedCalls;
+ ++NumSunk;
+
+ // Iterate over users to be ready for actual sinking. Replace users via
+ // unreachable blocks with undef and make all user PHIs trivially replaceable.
+ SmallPtrSet<Instruction *, 8> VisitedUsers;
+ for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
+ auto *User = cast<Instruction>(*UI);
+ Use &U = UI.getUse();
+ ++UI;
+
+ if (VisitedUsers.count(User) || CurLoop->contains(User))
+ continue;
+
+ if (!DT->isReachableFromEntry(User->getParent())) {
+ U = UndefValue::get(I.getType());
+ Changed = true;
+ continue;
+ }
+
+ // The user must be a PHI node.
+ PHINode *PN = cast<PHINode>(User);
+
+ // Surprisingly, instructions can be used outside of loops without any
+ // exits. This can only happen in PHI nodes if the incoming block is
+ // unreachable.
+ BasicBlock *BB = PN->getIncomingBlock(U);
+ if (!DT->isReachableFromEntry(BB)) {
+ U = UndefValue::get(I.getType());
+ Changed = true;
+ continue;
+ }
+
+ VisitedUsers.insert(PN);
+ if (isTriviallyReplaceablePHI(*PN, I))
+ continue;
+
+ if (!canSplitPredecessors(PN, SafetyInfo))
+ return Changed;
+
+ // Split predecessors of the PHI so that we can make users trivially
+ // replaceable.
+ splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
+
+ // Should rebuild the iterators, as they may be invalidated by
+ // splitPredecessorsOfLoopExit().
+ UI = I.user_begin();
+ UE = I.user_end();
+ }
+
+ if (VisitedUsers.empty())
+ return Changed;
+
+#ifndef NDEBUG
+ SmallVector<BasicBlock *, 32> ExitBlocks;
+ CurLoop->getUniqueExitBlocks(ExitBlocks);
+ SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
+ ExitBlocks.end());
+#endif
+
+ // Clones of this instruction. Don't create more than one per exit block!
+ SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
+
+ // If this instruction is only used outside of the loop, then all users are
+ // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
+ // the instruction.
// First check if I is worth sinking for all uses. Sink only when it is worth
// across all uses.
- SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
+ SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
SmallVector<PHINode *, 8> ExitPNs;
- for (auto *UI : Users) {
- auto *User = cast<Instruction>(UI);
-
- if (CurLoop->contains(User))
- continue;
-
- PHINode *PN = cast<PHINode>(User);
- assert(ExitBlockSet.count(PN->getParent()) &&
- "The LCSSA PHI is not in an exit block!");
+ for (auto *UI : Users) {
+ auto *User = cast<Instruction>(UI);
+
+ if (CurLoop->contains(User))
+ continue;
+
+ PHINode *PN = cast<PHINode>(User);
+ assert(ExitBlockSet.count(PN->getParent()) &&
+ "The LCSSA PHI is not in an exit block!");
if (!worthSinkOrHoistInst(I, PN->getParent(), ORE, BFI)) {
return Changed;
}
@@ -1724,622 +1724,622 @@ static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
for (auto *PN : ExitPNs) {
- // The PHI must be trivially replaceable.
- Instruction *New = sinkThroughTriviallyReplaceablePHI(
- PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
- PN->replaceAllUsesWith(New);
- eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
- Changed = true;
- }
- return Changed;
-}
-
-/// When an instruction is found to only use loop invariant operands that
-/// is safe to hoist, this instruction is called to do the dirty work.
-///
-static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
- OptimizationRemarkEmitter *ORE) {
+ // The PHI must be trivially replaceable.
+ Instruction *New = sinkThroughTriviallyReplaceablePHI(
+ PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
+ PN->replaceAllUsesWith(New);
+ eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
+ Changed = true;
+ }
+ return Changed;
+}
+
+/// When an instruction is found to only use loop invariant operands that
+/// is safe to hoist, this instruction is called to do the dirty work.
+///
+static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
+ BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
+ MemorySSAUpdater *MSSAU, ScalarEvolution *SE,
+ OptimizationRemarkEmitter *ORE) {
LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getNameOrAsOperand() << ": "
<< I << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
- << ore::NV("Inst", &I);
- });
-
- // Metadata can be dependent on conditions we are hoisting above.
- // Conservatively strip all metadata on the instruction unless we were
- // guaranteed to execute I if we entered the loop, in which case the metadata
- // is valid in the loop preheader.
- if (I.hasMetadataOtherThanDebugLoc() &&
- // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
- // time in isGuaranteedToExecute if we don't actually have anything to
- // drop. It is a compile time optimization, not required for correctness.
- !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
- I.dropUnknownNonDebugMetadata();
-
- if (isa<PHINode>(I))
- // Move the new node to the end of the phi list in the destination block.
- moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
- else
- // Move the new node to the destination block, before its terminator.
- moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
-
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
+ << ore::NV("Inst", &I);
+ });
+
+ // Metadata can be dependent on conditions we are hoisting above.
+ // Conservatively strip all metadata on the instruction unless we were
+ // guaranteed to execute I if we entered the loop, in which case the metadata
+ // is valid in the loop preheader.
+ if (I.hasMetadataOtherThanDebugLoc() &&
+ // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
+ // time in isGuaranteedToExecute if we don't actually have anything to
+ // drop. It is a compile time optimization, not required for correctness.
+ !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
+ I.dropUnknownNonDebugMetadata();
+
+ if (isa<PHINode>(I))
+ // Move the new node to the end of the phi list in the destination block.
+ moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU, SE);
+ else
+ // Move the new node to the destination block, before its terminator.
+ moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU, SE);
+
I.updateLocationAfterHoist();
-
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumHoisted;
-}
-
-/// Only sink or hoist an instruction if it is not a trapping instruction,
-/// or if the instruction is known not to trap when moved to the preheader.
-/// or if it is a trapping instruction and is guaranteed to execute.
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE,
- const Instruction *CtxI) {
- if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
- return true;
-
- bool GuaranteedToExecute =
- SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
-
- if (!GuaranteedToExecute) {
- auto *LI = dyn_cast<LoadInst>(&Inst);
- if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
- << "failed to hoist load with loop-invariant address "
- "because load is conditionally executed";
- });
- }
-
- return GuaranteedToExecute;
-}
-
-namespace {
-class LoopPromoter : public LoadAndStorePromoter {
- Value *SomePtr; // Designated pointer to store to.
- const SmallSetVector<Value *, 8> &PointerMustAliases;
- SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
- SmallVectorImpl<Instruction *> &LoopInsertPts;
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
- PredIteratorCache &PredCache;
+
+ if (isa<LoadInst>(I))
+ ++NumMovedLoads;
+ else if (isa<CallInst>(I))
+ ++NumMovedCalls;
+ ++NumHoisted;
+}
+
+/// Only sink or hoist an instruction if it is not a trapping instruction,
+/// or if the instruction is known not to trap when moved to the preheader.
+/// or if it is a trapping instruction and is guaranteed to execute.
+static bool isSafeToExecuteUnconditionally(Instruction &Inst,
+ const DominatorTree *DT,
+ const Loop *CurLoop,
+ const LoopSafetyInfo *SafetyInfo,
+ OptimizationRemarkEmitter *ORE,
+ const Instruction *CtxI) {
+ if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
+ return true;
+
+ bool GuaranteedToExecute =
+ SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
+
+ if (!GuaranteedToExecute) {
+ auto *LI = dyn_cast<LoadInst>(&Inst);
+ if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
+ ORE->emit([&]() {
+ return OptimizationRemarkMissed(
+ DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
+ << "failed to hoist load with loop-invariant address "
+ "because load is conditionally executed";
+ });
+ }
+
+ return GuaranteedToExecute;
+}
+
+namespace {
+class LoopPromoter : public LoadAndStorePromoter {
+ Value *SomePtr; // Designated pointer to store to.
+ const SmallSetVector<Value *, 8> &PointerMustAliases;
+ SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
+ SmallVectorImpl<Instruction *> &LoopInsertPts;
+ SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
+ PredIteratorCache &PredCache;
AliasSetTracker *AST;
- MemorySSAUpdater *MSSAU;
- LoopInfo &LI;
- DebugLoc DL;
- int Alignment;
- bool UnorderedAtomic;
- AAMDNodes AATags;
- ICFLoopSafetyInfo &SafetyInfo;
-
- Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (Loop *L = LI.getLoopFor(I->getParent()))
- if (!L->contains(BB)) {
- // We need to create an LCSSA PHI node for the incoming value and
- // store that.
- PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
- I->getName() + ".lcssa", &BB->front());
- for (BasicBlock *Pred : PredCache.get(BB))
- PN->addIncoming(I, Pred);
- return PN;
- }
- return V;
- }
-
-public:
- LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
- const SmallSetVector<Value *, 8> &PMA,
- SmallVectorImpl<BasicBlock *> &LEB,
- SmallVectorImpl<Instruction *> &LIP,
- SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
+ MemorySSAUpdater *MSSAU;
+ LoopInfo &LI;
+ DebugLoc DL;
+ int Alignment;
+ bool UnorderedAtomic;
+ AAMDNodes AATags;
+ ICFLoopSafetyInfo &SafetyInfo;
+
+ Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
+ if (Instruction *I = dyn_cast<Instruction>(V))
+ if (Loop *L = LI.getLoopFor(I->getParent()))
+ if (!L->contains(BB)) {
+ // We need to create an LCSSA PHI node for the incoming value and
+ // store that.
+ PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
+ I->getName() + ".lcssa", &BB->front());
+ for (BasicBlock *Pred : PredCache.get(BB))
+ PN->addIncoming(I, Pred);
+ return PN;
+ }
+ return V;
+ }
+
+public:
+ LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
+ const SmallSetVector<Value *, 8> &PMA,
+ SmallVectorImpl<BasicBlock *> &LEB,
+ SmallVectorImpl<Instruction *> &LIP,
+ SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
AliasSetTracker *ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
- DebugLoc dl, int alignment, bool UnorderedAtomic,
- const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
- : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
- LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
- PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
- Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
- SafetyInfo(SafetyInfo) {}
-
- bool isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction *> &) const override {
- Value *Ptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- Ptr = LI->getOperand(0);
- else
- Ptr = cast<StoreInst>(I)->getPointerOperand();
- return PointerMustAliases.count(Ptr);
- }
-
- void doExtraRewritesBeforeFinalDeletion() override {
- // Insert stores after in the loop exit blocks. Each exit block gets a
- // store of the live-out values that feed them. Since we've already told
- // the SSA updater about the defs in the loop and the preheader
- // definition, it is all set and we can start using it.
- for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = LoopExitBlocks[i];
- Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
- LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
- Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
- Instruction *InsertPos = LoopInsertPts[i];
- StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
- if (UnorderedAtomic)
- NewSI->setOrdering(AtomicOrdering::Unordered);
- NewSI->setAlignment(Align(Alignment));
- NewSI->setDebugLoc(DL);
- if (AATags)
- NewSI->setAAMetadata(AATags);
-
- if (MSSAU) {
- MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
- MemoryAccess *NewMemAcc;
- if (!MSSAInsertPoint) {
- NewMemAcc = MSSAU->createMemoryAccessInBB(
- NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
- } else {
- NewMemAcc =
- MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
- }
- MSSAInsertPts[i] = NewMemAcc;
- MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
- // FIXME: true for safety, false may still be correct.
- }
- }
- }
-
- void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
- // Update alias analysis.
+ DebugLoc dl, int alignment, bool UnorderedAtomic,
+ const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
+ : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
+ LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
+ PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
+ Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
+ SafetyInfo(SafetyInfo) {}
+
+ bool isInstInList(Instruction *I,
+ const SmallVectorImpl<Instruction *> &) const override {
+ Value *Ptr;
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ Ptr = LI->getOperand(0);
+ else
+ Ptr = cast<StoreInst>(I)->getPointerOperand();
+ return PointerMustAliases.count(Ptr);
+ }
+
+ void doExtraRewritesBeforeFinalDeletion() override {
+ // Insert stores after in the loop exit blocks. Each exit block gets a
+ // store of the live-out values that feed them. Since we've already told
+ // the SSA updater about the defs in the loop and the preheader
+ // definition, it is all set and we can start using it.
+ for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
+ BasicBlock *ExitBlock = LoopExitBlocks[i];
+ Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
+ LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
+ Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
+ Instruction *InsertPos = LoopInsertPts[i];
+ StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
+ if (UnorderedAtomic)
+ NewSI->setOrdering(AtomicOrdering::Unordered);
+ NewSI->setAlignment(Align(Alignment));
+ NewSI->setDebugLoc(DL);
+ if (AATags)
+ NewSI->setAAMetadata(AATags);
+
+ if (MSSAU) {
+ MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
+ MemoryAccess *NewMemAcc;
+ if (!MSSAInsertPoint) {
+ NewMemAcc = MSSAU->createMemoryAccessInBB(
+ NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
+ } else {
+ NewMemAcc =
+ MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
+ }
+ MSSAInsertPts[i] = NewMemAcc;
+ MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
+ // FIXME: true for safety, false may still be correct.
+ }
+ }
+ }
+
+ void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
+ // Update alias analysis.
if (AST)
AST->copyValue(LI, V);
- }
- void instructionDeleted(Instruction *I) const override {
- SafetyInfo.removeInstruction(I);
+ }
+ void instructionDeleted(Instruction *I) const override {
+ SafetyInfo.removeInstruction(I);
if (AST)
AST->deleteValue(I);
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- }
-};
-
-
-/// Return true iff we can prove that a caller of this function can not inspect
-/// the contents of the provided object in a well defined program.
-bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
- if (isa<AllocaInst>(Object))
- // Since the alloca goes out of scope, we know the caller can't retain a
- // reference to it and be well defined. Thus, we don't need to check for
- // capture.
- return true;
-
- // For all other objects we need to know that the caller can't possibly
- // have gotten a reference to the object. There are two components of
- // that:
- // 1) Object can't be escaped by this function. This is what
- // PointerMayBeCaptured checks.
- // 2) Object can't have been captured at definition site. For this, we
- // need to know the return value is noalias. At the moment, we use a
- // weaker condition and handle only AllocLikeFunctions (which are
- // known to be noalias). TODO
- return isAllocLikeFn(Object, TLI) &&
- !PointerMayBeCaptured(Object, true, true);
-}
-
-} // namespace
-
-/// Try to promote memory values to scalars by sinking stores out of the
-/// loop and moving loads to before the loop. We do this by looping over
-/// the stores in the loop, looking for stores to Must pointers which are
-/// loop invariant.
-///
-bool llvm::promoteLoopAccessesToScalars(
- const SmallSetVector<Value *, 8> &PointerMustAliases,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- SmallVectorImpl<Instruction *> &InsertPts,
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
- LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
- Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
- ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
- // Verify inputs.
- assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
+ if (MSSAU)
+ MSSAU->removeMemoryAccess(I);
+ }
+};
+
+
+/// Return true iff we can prove that a caller of this function can not inspect
+/// the contents of the provided object in a well defined program.
+bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
+ if (isa<AllocaInst>(Object))
+ // Since the alloca goes out of scope, we know the caller can't retain a
+ // reference to it and be well defined. Thus, we don't need to check for
+ // capture.
+ return true;
+
+ // For all other objects we need to know that the caller can't possibly
+ // have gotten a reference to the object. There are two components of
+ // that:
+ // 1) Object can't be escaped by this function. This is what
+ // PointerMayBeCaptured checks.
+ // 2) Object can't have been captured at definition site. For this, we
+ // need to know the return value is noalias. At the moment, we use a
+ // weaker condition and handle only AllocLikeFunctions (which are
+ // known to be noalias). TODO
+ return isAllocLikeFn(Object, TLI) &&
+ !PointerMayBeCaptured(Object, true, true);
+}
+
+} // namespace
+
+/// Try to promote memory values to scalars by sinking stores out of the
+/// loop and moving loads to before the loop. We do this by looping over
+/// the stores in the loop, looking for stores to Must pointers which are
+/// loop invariant.
+///
+bool llvm::promoteLoopAccessesToScalars(
+ const SmallSetVector<Value *, 8> &PointerMustAliases,
+ SmallVectorImpl<BasicBlock *> &ExitBlocks,
+ SmallVectorImpl<Instruction *> &InsertPts,
+ SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
+ LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
+ Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
+ ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
+ // Verify inputs.
+ assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
SafetyInfo != nullptr &&
- "Unexpected Input to promoteLoopAccessesToScalars");
-
- Value *SomePtr = *PointerMustAliases.begin();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
-
- // It is not safe to promote a load/store from the loop if the load/store is
- // conditional. For example, turning:
- //
- // for () { if (c) *P += 1; }
- //
- // into:
- //
- // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
- //
- // is not safe, because *P may only be valid to access if 'c' is true.
- //
- // The safety property divides into two parts:
- // p1) The memory may not be dereferenceable on entry to the loop. In this
- // case, we can't insert the required load in the preheader.
- // p2) The memory model does not allow us to insert a store along any dynamic
- // path which did not originally have one.
- //
- // If at least one store is guaranteed to execute, both properties are
- // satisfied, and promotion is legal.
- //
- // This, however, is not a necessary condition. Even if no store/load is
- // guaranteed to execute, we can still establish these properties.
- // We can establish (p1) by proving that hoisting the load into the preheader
- // is safe (i.e. proving dereferenceability on all paths through the loop). We
- // can use any access within the alias set to prove dereferenceability,
- // since they're all must alias.
- //
- // There are two ways establish (p2):
- // a) Prove the location is thread-local. In this case the memory model
- // requirement does not apply, and stores are safe to insert.
- // b) Prove a store dominates every exit block. In this case, if an exit
- // blocks is reached, the original dynamic path would have taken us through
- // the store, so inserting a store into the exit block is safe. Note that this
- // is different from the store being guaranteed to execute. For instance,
- // if an exception is thrown on the first iteration of the loop, the original
- // store is never executed, but the exit blocks are not executed either.
-
- bool DereferenceableInPH = false;
- bool SafeToInsertStore = false;
-
- SmallVector<Instruction *, 64> LoopUses;
-
- // We start with an alignment of one and try to find instructions that allow
- // us to prove better alignment.
- Align Alignment;
- // Keep track of which types of access we see
- bool SawUnorderedAtomic = false;
- bool SawNotAtomic = false;
- AAMDNodes AATags;
-
- const DataLayout &MDL = Preheader->getModule()->getDataLayout();
-
- bool IsKnownThreadLocalObject = false;
- if (SafetyInfo->anyBlockMayThrow()) {
- // If a loop can throw, we have to insert a store along each unwind edge.
- // That said, we can't actually make the unwind edge explicit. Therefore,
- // we have to prove that the store is dead along the unwind edge. We do
- // this by proving that the caller can't have a reference to the object
- // after return and thus can't possibly load from the object.
+ "Unexpected Input to promoteLoopAccessesToScalars");
+
+ Value *SomePtr = *PointerMustAliases.begin();
+ BasicBlock *Preheader = CurLoop->getLoopPreheader();
+
+ // It is not safe to promote a load/store from the loop if the load/store is
+ // conditional. For example, turning:
+ //
+ // for () { if (c) *P += 1; }
+ //
+ // into:
+ //
+ // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
+ //
+ // is not safe, because *P may only be valid to access if 'c' is true.
+ //
+ // The safety property divides into two parts:
+ // p1) The memory may not be dereferenceable on entry to the loop. In this
+ // case, we can't insert the required load in the preheader.
+ // p2) The memory model does not allow us to insert a store along any dynamic
+ // path which did not originally have one.
+ //
+ // If at least one store is guaranteed to execute, both properties are
+ // satisfied, and promotion is legal.
+ //
+ // This, however, is not a necessary condition. Even if no store/load is
+ // guaranteed to execute, we can still establish these properties.
+ // We can establish (p1) by proving that hoisting the load into the preheader
+ // is safe (i.e. proving dereferenceability on all paths through the loop). We
+ // can use any access within the alias set to prove dereferenceability,
+ // since they're all must alias.
+ //
+ // There are two ways establish (p2):
+ // a) Prove the location is thread-local. In this case the memory model
+ // requirement does not apply, and stores are safe to insert.
+ // b) Prove a store dominates every exit block. In this case, if an exit
+ // blocks is reached, the original dynamic path would have taken us through
+ // the store, so inserting a store into the exit block is safe. Note that this
+ // is different from the store being guaranteed to execute. For instance,
+ // if an exception is thrown on the first iteration of the loop, the original
+ // store is never executed, but the exit blocks are not executed either.
+
+ bool DereferenceableInPH = false;
+ bool SafeToInsertStore = false;
+
+ SmallVector<Instruction *, 64> LoopUses;
+
+ // We start with an alignment of one and try to find instructions that allow
+ // us to prove better alignment.
+ Align Alignment;
+ // Keep track of which types of access we see
+ bool SawUnorderedAtomic = false;
+ bool SawNotAtomic = false;
+ AAMDNodes AATags;
+
+ const DataLayout &MDL = Preheader->getModule()->getDataLayout();
+
+ bool IsKnownThreadLocalObject = false;
+ if (SafetyInfo->anyBlockMayThrow()) {
+ // If a loop can throw, we have to insert a store along each unwind edge.
+ // That said, we can't actually make the unwind edge explicit. Therefore,
+ // we have to prove that the store is dead along the unwind edge. We do
+ // this by proving that the caller can't have a reference to the object
+ // after return and thus can't possibly load from the object.
Value *Object = getUnderlyingObject(SomePtr);
- if (!isKnownNonEscaping(Object, TLI))
- return false;
- // Subtlety: Alloca's aren't visible to callers, but *are* potentially
- // visible to other threads if captured and used during their lifetimes.
- IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
- }
-
- // Check that all of the pointers in the alias set have the same type. We
- // cannot (yet) promote a memory location that is loaded and stored in
- // different sizes. While we are at it, collect alignment and AA info.
- for (Value *ASIV : PointerMustAliases) {
- // Check that all of the pointers in the alias set have the same type. We
- // cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
- if (SomePtr->getType() != ASIV->getType())
- return false;
-
- for (User *U : ASIV->users()) {
- // Ignore instructions that are outside the loop.
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !CurLoop->contains(UI))
- continue;
-
- // If there is an non-load/store instruction in the loop, we can't promote
- // it.
- if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
- if (!Load->isUnordered())
- return false;
-
- SawUnorderedAtomic |= Load->isAtomic();
- SawNotAtomic |= !Load->isAtomic();
-
- Align InstAlignment = Load->getAlign();
-
- // Note that proving a load safe to speculate requires proving
- // sufficient alignment at the target location. Proving it guaranteed
- // to execute does as well. Thus we can increase our guaranteed
- // alignment as well.
- if (!DereferenceableInPH || (InstAlignment > Alignment))
- if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
- ORE, Preheader->getTerminator())) {
- DereferenceableInPH = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
- // Stores *of* the pointer are not interesting, only stores *to* the
- // pointer.
- if (UI->getOperand(1) != ASIV)
- continue;
- if (!Store->isUnordered())
- return false;
-
- SawUnorderedAtomic |= Store->isAtomic();
- SawNotAtomic |= !Store->isAtomic();
-
- // If the store is guaranteed to execute, both properties are satisfied.
- // We may want to check if a store is guaranteed to execute even if we
- // already know that promotion is safe, since it may have higher
- // alignment than any other guaranteed stores, in which case we can
- // raise the alignment on the promoted store.
- Align InstAlignment = Store->getAlign();
-
- if (!DereferenceableInPH || !SafeToInsertStore ||
- (InstAlignment > Alignment)) {
- if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
- DereferenceableInPH = true;
- SafeToInsertStore = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- }
-
- // If a store dominates all exit blocks, it is safe to sink.
- // As explained above, if an exit block was executed, a dominating
- // store must have been executed at least once, so we are not
- // introducing stores on paths that did not have them.
- // Note that this only looks at explicit exit blocks. If we ever
- // start sinking stores into unwind edges (see above), this will break.
- if (!SafeToInsertStore)
- SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
- return DT->dominates(Store->getParent(), Exit);
- });
-
- // If the store is not guaranteed to execute, we may still get
- // deref info through it.
- if (!DereferenceableInPH) {
- DereferenceableInPH = isDereferenceableAndAlignedPointer(
- Store->getPointerOperand(), Store->getValueOperand()->getType(),
- Store->getAlign(), MDL, Preheader->getTerminator(), DT);
- }
- } else
- return false; // Not a load or store.
-
- // Merge the AA tags.
- if (LoopUses.empty()) {
- // On the first load/store, just take its AA tags.
- UI->getAAMetadata(AATags);
- } else if (AATags) {
- UI->getAAMetadata(AATags, /* Merge = */ true);
- }
-
- LoopUses.push_back(UI);
- }
- }
-
- // If we found both an unordered atomic instruction and a non-atomic memory
- // access, bail. We can't blindly promote non-atomic to atomic since we
- // might not be able to lower the result. We can't downgrade since that
- // would violate memory model. Also, align 0 is an error for atomics.
- if (SawUnorderedAtomic && SawNotAtomic)
- return false;
-
- // If we're inserting an atomic load in the preheader, we must be able to
- // lower it. We're only guaranteed to be able to lower naturally aligned
- // atomics.
- auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
- if (SawUnorderedAtomic &&
- Alignment < MDL.getTypeStoreSize(SomePtrElemType))
- return false;
-
- // If we couldn't prove we can hoist the load, bail.
- if (!DereferenceableInPH)
- return false;
-
- // We know we can hoist the load, but don't have a guaranteed store.
- // Check whether the location is thread-local. If it is, then we can insert
- // stores along paths which originally didn't have them without violating the
- // memory model.
- if (!SafeToInsertStore) {
- if (IsKnownThreadLocalObject)
- SafeToInsertStore = true;
- else {
+ if (!isKnownNonEscaping(Object, TLI))
+ return false;
+ // Subtlety: Alloca's aren't visible to callers, but *are* potentially
+ // visible to other threads if captured and used during their lifetimes.
+ IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
+ }
+
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes. While we are at it, collect alignment and AA info.
+ for (Value *ASIV : PointerMustAliases) {
+ // Check that all of the pointers in the alias set have the same type. We
+ // cannot (yet) promote a memory location that is loaded and stored in
+ // different sizes.
+ if (SomePtr->getType() != ASIV->getType())
+ return false;
+
+ for (User *U : ASIV->users()) {
+ // Ignore instructions that are outside the loop.
+ Instruction *UI = dyn_cast<Instruction>(U);
+ if (!UI || !CurLoop->contains(UI))
+ continue;
+
+ // If there is an non-load/store instruction in the loop, we can't promote
+ // it.
+ if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
+ if (!Load->isUnordered())
+ return false;
+
+ SawUnorderedAtomic |= Load->isAtomic();
+ SawNotAtomic |= !Load->isAtomic();
+
+ Align InstAlignment = Load->getAlign();
+
+ // Note that proving a load safe to speculate requires proving
+ // sufficient alignment at the target location. Proving it guaranteed
+ // to execute does as well. Thus we can increase our guaranteed
+ // alignment as well.
+ if (!DereferenceableInPH || (InstAlignment > Alignment))
+ if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
+ ORE, Preheader->getTerminator())) {
+ DereferenceableInPH = true;
+ Alignment = std::max(Alignment, InstAlignment);
+ }
+ } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
+ // Stores *of* the pointer are not interesting, only stores *to* the
+ // pointer.
+ if (UI->getOperand(1) != ASIV)
+ continue;
+ if (!Store->isUnordered())
+ return false;
+
+ SawUnorderedAtomic |= Store->isAtomic();
+ SawNotAtomic |= !Store->isAtomic();
+
+ // If the store is guaranteed to execute, both properties are satisfied.
+ // We may want to check if a store is guaranteed to execute even if we
+ // already know that promotion is safe, since it may have higher
+ // alignment than any other guaranteed stores, in which case we can
+ // raise the alignment on the promoted store.
+ Align InstAlignment = Store->getAlign();
+
+ if (!DereferenceableInPH || !SafeToInsertStore ||
+ (InstAlignment > Alignment)) {
+ if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
+ DereferenceableInPH = true;
+ SafeToInsertStore = true;
+ Alignment = std::max(Alignment, InstAlignment);
+ }
+ }
+
+ // If a store dominates all exit blocks, it is safe to sink.
+ // As explained above, if an exit block was executed, a dominating
+ // store must have been executed at least once, so we are not
+ // introducing stores on paths that did not have them.
+ // Note that this only looks at explicit exit blocks. If we ever
+ // start sinking stores into unwind edges (see above), this will break.
+ if (!SafeToInsertStore)
+ SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
+ return DT->dominates(Store->getParent(), Exit);
+ });
+
+ // If the store is not guaranteed to execute, we may still get
+ // deref info through it.
+ if (!DereferenceableInPH) {
+ DereferenceableInPH = isDereferenceableAndAlignedPointer(
+ Store->getPointerOperand(), Store->getValueOperand()->getType(),
+ Store->getAlign(), MDL, Preheader->getTerminator(), DT);
+ }
+ } else
+ return false; // Not a load or store.
+
+ // Merge the AA tags.
+ if (LoopUses.empty()) {
+ // On the first load/store, just take its AA tags.
+ UI->getAAMetadata(AATags);
+ } else if (AATags) {
+ UI->getAAMetadata(AATags, /* Merge = */ true);
+ }
+
+ LoopUses.push_back(UI);
+ }
+ }
+
+ // If we found both an unordered atomic instruction and a non-atomic memory
+ // access, bail. We can't blindly promote non-atomic to atomic since we
+ // might not be able to lower the result. We can't downgrade since that
+ // would violate memory model. Also, align 0 is an error for atomics.
+ if (SawUnorderedAtomic && SawNotAtomic)
+ return false;
+
+ // If we're inserting an atomic load in the preheader, we must be able to
+ // lower it. We're only guaranteed to be able to lower naturally aligned
+ // atomics.
+ auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
+ if (SawUnorderedAtomic &&
+ Alignment < MDL.getTypeStoreSize(SomePtrElemType))
+ return false;
+
+ // If we couldn't prove we can hoist the load, bail.
+ if (!DereferenceableInPH)
+ return false;
+
+ // We know we can hoist the load, but don't have a guaranteed store.
+ // Check whether the location is thread-local. If it is, then we can insert
+ // stores along paths which originally didn't have them without violating the
+ // memory model.
+ if (!SafeToInsertStore) {
+ if (IsKnownThreadLocalObject)
+ SafeToInsertStore = true;
+ else {
Value *Object = getUnderlyingObject(SomePtr);
- SafeToInsertStore =
- (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
- !PointerMayBeCaptured(Object, true, true);
- }
- }
-
- // If we've still failed to prove we can sink the store, give up.
- if (!SafeToInsertStore)
- return false;
-
- // Otherwise, this is safe to promote, lets do it!
- LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
- << '\n');
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
- LoopUses[0])
- << "Moving accesses to memory location out of the loop";
- });
- ++NumPromoted;
-
- // Look at all the loop uses, and try to merge their locations.
- std::vector<const DILocation *> LoopUsesLocs;
- for (auto U : LoopUses)
- LoopUsesLocs.push_back(U->getDebugLoc().get());
- auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
-
- // We use the SSAUpdater interface to insert phi nodes as required.
- SmallVector<PHINode *, 16> NewPHIs;
- SSAUpdater SSA(&NewPHIs);
- LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
+ SafeToInsertStore =
+ (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
+ !PointerMayBeCaptured(Object, true, true);
+ }
+ }
+
+ // If we've still failed to prove we can sink the store, give up.
+ if (!SafeToInsertStore)
+ return false;
+
+ // Otherwise, this is safe to promote, lets do it!
+ LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
+ << '\n');
+ ORE->emit([&]() {
+ return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
+ LoopUses[0])
+ << "Moving accesses to memory location out of the loop";
+ });
+ ++NumPromoted;
+
+ // Look at all the loop uses, and try to merge their locations.
+ std::vector<const DILocation *> LoopUsesLocs;
+ for (auto U : LoopUses)
+ LoopUsesLocs.push_back(U->getDebugLoc().get());
+ auto DL = DebugLoc(DILocation::getMergedLocations(LoopUsesLocs));
+
+ // We use the SSAUpdater interface to insert phi nodes as required.
+ SmallVector<PHINode *, 16> NewPHIs;
+ SSAUpdater SSA(&NewPHIs);
+ LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
InsertPts, MSSAInsertPts, PIC, CurAST, MSSAU, *LI, DL,
- Alignment.value(), SawUnorderedAtomic, AATags,
- *SafetyInfo);
-
- // Set up the preheader to have a definition of the value. It is the live-out
- // value from the preheader that uses in the loop will use.
- LoadInst *PreheaderLoad = new LoadInst(
- SomePtr->getType()->getPointerElementType(), SomePtr,
- SomePtr->getName() + ".promoted", Preheader->getTerminator());
- if (SawUnorderedAtomic)
- PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
- PreheaderLoad->setAlignment(Alignment);
- PreheaderLoad->setDebugLoc(DebugLoc());
- if (AATags)
- PreheaderLoad->setAAMetadata(AATags);
- SSA.AddAvailableValue(Preheader, PreheaderLoad);
-
- if (MSSAU) {
- MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
- PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
- MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
- MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
- }
-
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // Rewrite all the loads in the loop and remember all the definitions from
- // stores in the loop.
- Promoter.run(LoopUses);
-
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // If the SSAUpdater didn't use the load in the preheader, just zap it now.
- if (PreheaderLoad->use_empty())
- eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
-
- return true;
-}
-
-/// Returns an owning pointer to an alias set which incorporates aliasing info
-/// from L and all subloops of L.
-std::unique_ptr<AliasSetTracker>
-LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
- AAResults *AA) {
- auto CurAST = std::make_unique<AliasSetTracker>(*AA);
-
- // Add everything from all the sub loops.
- for (Loop *InnerL : L->getSubLoops())
- for (BasicBlock *BB : InnerL->blocks())
- CurAST->add(*BB);
-
- // And merge in this loop (without anything from inner loops).
- for (BasicBlock *BB : L->blocks())
- if (LI->getLoopFor(BB) == L)
- CurAST->add(*BB);
-
- return CurAST;
-}
-
-std::unique_ptr<AliasSetTracker>
-LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
- Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
- auto *MSSA = MSSAU->getMemorySSA();
- auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
- CurAST->addAllInstructionsInLoopUsingMSSA();
- return CurAST;
-}
-
-static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AAResults *AA) {
- // First check to see if any of the basic blocks in CurLoop invalidate *V.
- bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
-
- if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
- return isInvalidatedAccordingToAST;
-
- // Check with a diagnostic analysis if we can refine the information above.
- // This is to identify the limitations of using the AST.
- // The alias set mechanism used by LICM has a major weakness in that it
- // combines all things which may alias into a single set *before* asking
- // modref questions. As a result, a single readonly call within a loop will
- // collapse all loads and stores into a single alias set and report
- // invalidation if the loop contains any store. For example, readonly calls
- // with deopt states have this form and create a general alias set with all
- // loads and stores. In order to get any LICM in loops containing possible
- // deopt states we need a more precise invalidation of checking the mod ref
- // info of each instruction within the loop and LI. This has a complexity of
- // O(N^2), so currently, it is used only as a diagnostic tool since the
- // default value of LICMN2Threshold is zero.
-
- // Don't look at nested loops.
- if (CurLoop->begin() != CurLoop->end())
- return true;
-
- int N = 0;
- for (BasicBlock *BB : CurLoop->getBlocks())
- for (Instruction &I : *BB) {
- if (N >= LICMN2Theshold) {
- LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
- << *(MemLoc.Ptr) << "\n");
- return true;
- }
- N++;
- auto Res = AA->getModRefInfo(&I, MemLoc);
- if (isModSet(Res)) {
- LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
- << *(MemLoc.Ptr) << "\n");
- return true;
- }
- }
- LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
- return false;
-}
-
+ Alignment.value(), SawUnorderedAtomic, AATags,
+ *SafetyInfo);
+
+ // Set up the preheader to have a definition of the value. It is the live-out
+ // value from the preheader that uses in the loop will use.
+ LoadInst *PreheaderLoad = new LoadInst(
+ SomePtr->getType()->getPointerElementType(), SomePtr,
+ SomePtr->getName() + ".promoted", Preheader->getTerminator());
+ if (SawUnorderedAtomic)
+ PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
+ PreheaderLoad->setAlignment(Alignment);
+ PreheaderLoad->setDebugLoc(DebugLoc());
+ if (AATags)
+ PreheaderLoad->setAAMetadata(AATags);
+ SSA.AddAvailableValue(Preheader, PreheaderLoad);
+
+ if (MSSAU) {
+ MemoryAccess *PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
+ PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
+ MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
+ MSSAU->insertUse(NewMemUse, /*RenameUses=*/true);
+ }
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ // Rewrite all the loads in the loop and remember all the definitions from
+ // stores in the loop.
+ Promoter.run(LoopUses);
+
+ if (MSSAU && VerifyMemorySSA)
+ MSSAU->getMemorySSA()->verifyMemorySSA();
+ // If the SSAUpdater didn't use the load in the preheader, just zap it now.
+ if (PreheaderLoad->use_empty())
+ eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
+
+ return true;
+}
+
+/// Returns an owning pointer to an alias set which incorporates aliasing info
+/// from L and all subloops of L.
+std::unique_ptr<AliasSetTracker>
+LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
+ AAResults *AA) {
+ auto CurAST = std::make_unique<AliasSetTracker>(*AA);
+
+ // Add everything from all the sub loops.
+ for (Loop *InnerL : L->getSubLoops())
+ for (BasicBlock *BB : InnerL->blocks())
+ CurAST->add(*BB);
+
+ // And merge in this loop (without anything from inner loops).
+ for (BasicBlock *BB : L->blocks())
+ if (LI->getLoopFor(BB) == L)
+ CurAST->add(*BB);
+
+ return CurAST;
+}
+
+std::unique_ptr<AliasSetTracker>
+LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
+ Loop *L, AAResults *AA, MemorySSAUpdater *MSSAU) {
+ auto *MSSA = MSSAU->getMemorySSA();
+ auto CurAST = std::make_unique<AliasSetTracker>(*AA, MSSA, L);
+ CurAST->addAllInstructionsInLoopUsingMSSA();
+ return CurAST;
+}
+
+static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
+ AliasSetTracker *CurAST, Loop *CurLoop,
+ AAResults *AA) {
+ // First check to see if any of the basic blocks in CurLoop invalidate *V.
+ bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
+
+ if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
+ return isInvalidatedAccordingToAST;
+
+ // Check with a diagnostic analysis if we can refine the information above.
+ // This is to identify the limitations of using the AST.
+ // The alias set mechanism used by LICM has a major weakness in that it
+ // combines all things which may alias into a single set *before* asking
+ // modref questions. As a result, a single readonly call within a loop will
+ // collapse all loads and stores into a single alias set and report
+ // invalidation if the loop contains any store. For example, readonly calls
+ // with deopt states have this form and create a general alias set with all
+ // loads and stores. In order to get any LICM in loops containing possible
+ // deopt states we need a more precise invalidation of checking the mod ref
+ // info of each instruction within the loop and LI. This has a complexity of
+ // O(N^2), so currently, it is used only as a diagnostic tool since the
+ // default value of LICMN2Threshold is zero.
+
+ // Don't look at nested loops.
+ if (CurLoop->begin() != CurLoop->end())
+ return true;
+
+ int N = 0;
+ for (BasicBlock *BB : CurLoop->getBlocks())
+ for (Instruction &I : *BB) {
+ if (N >= LICMN2Theshold) {
+ LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
+ << *(MemLoc.Ptr) << "\n");
+ return true;
+ }
+ N++;
+ auto Res = AA->getModRefInfo(&I, MemLoc);
+ if (isModSet(Res)) {
+ LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
+ << *(MemLoc.Ptr) << "\n");
+ return true;
+ }
+ }
+ LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
+ return false;
+}
+
bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
Loop *CurLoop, Instruction &I,
SinkAndHoistLICMFlags &Flags) {
- // For hoisting, use the walker to determine safety
+ // For hoisting, use the walker to determine safety
if (!Flags.getIsSink()) {
- MemoryAccess *Source;
- // See declaration of SetLicmMssaOptCap for usage details.
+ MemoryAccess *Source;
+ // See declaration of SetLicmMssaOptCap for usage details.
if (Flags.tooManyClobberingCalls())
- Source = MU->getDefiningAccess();
- else {
- Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
+ Source = MU->getDefiningAccess();
+ else {
+ Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
Flags.incrementClobberingCalls();
- }
- return !MSSA->isLiveOnEntryDef(Source) &&
- CurLoop->contains(Source->getBlock());
- }
-
- // For sinking, we'd need to check all Defs below this use. The getClobbering
- // call will look on the backedge of the loop, but will check aliasing with
- // the instructions on the previous iteration.
- // For example:
- // for (i ... )
- // load a[i] ( Use (LoE)
- // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
- // i++;
- // The load sees no clobbering inside the loop, as the backedge alias check
- // does phi translation, and will check aliasing against store a[i-1].
- // However sinking the load outside the loop, below the store is incorrect.
-
- // For now, only sink if there are no Defs in the loop, and the existing ones
- // precede the use and are in the same block.
- // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
- // needs PostDominatorTreeAnalysis.
- // FIXME: More precise: no Defs that alias this Use.
+ }
+ return !MSSA->isLiveOnEntryDef(Source) &&
+ CurLoop->contains(Source->getBlock());
+ }
+
+ // For sinking, we'd need to check all Defs below this use. The getClobbering
+ // call will look on the backedge of the loop, but will check aliasing with
+ // the instructions on the previous iteration.
+ // For example:
+ // for (i ... )
+ // load a[i] ( Use (LoE)
+ // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
+ // i++;
+ // The load sees no clobbering inside the loop, as the backedge alias check
+ // does phi translation, and will check aliasing against store a[i-1].
+ // However sinking the load outside the loop, below the store is incorrect.
+
+ // For now, only sink if there are no Defs in the loop, and the existing ones
+ // precede the use and are in the same block.
+ // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
+ // needs PostDominatorTreeAnalysis.
+ // FIXME: More precise: no Defs that alias this Use.
if (Flags.tooManyMemoryAccesses())
- return true;
- for (auto *BB : CurLoop->getBlocks())
+ return true;
+ for (auto *BB : CurLoop->getBlocks())
if (pointerInvalidatedByBlockWithMSSA(*BB, *MSSA, *MU))
return true;
// When sinking, the source block may not be part of the loop so check it.
if (!CurLoop->contains(&I))
return pointerInvalidatedByBlockWithMSSA(*I.getParent(), *MSSA, *MU);
- return false;
-}
-
+ return false;
+}
+
bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
MemoryUse &MU) {
if (const auto *Accesses = MSSA.getBlockDefs(&BB))
@@ -2350,10 +2350,10 @@ bool pointerInvalidatedByBlockWithMSSA(BasicBlock &BB, MemorySSA &MSSA,
return false;
}
-/// Little predicate that returns true if the specified basic block is in
-/// a subloop of the current one, not the current one itself.
-///
-static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
- assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
- return LI->getLoopFor(BB) != CurLoop;
-}
+/// Little predicate that returns true if the specified basic block is in
+/// a subloop of the current one, not the current one itself.
+///
+static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
+ assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
+ return LI->getLoopFor(BB) != CurLoop;
+}