diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
commit | 2d37894b1b037cf24231090eda8589bbb44fb6fc (patch) | |
tree | be835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/Transforms/Instrumentation | |
parent | 718c552901d703c502ccbefdfc3c9028d608b947 (diff) | |
download | ydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/Transforms/Instrumentation')
22 files changed, 21670 insertions, 21670 deletions
diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/AddressSanitizer.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/AddressSanitizer.cpp index 7212096f1b..f4e471706d 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/AddressSanitizer.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/AddressSanitizer.cpp @@ -1,140 +1,140 @@ -//===- AddressSanitizer.cpp - memory error detector -----------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file is a part of AddressSanitizer, an address sanity checker. -// Details of the algorithm: -// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm -// -// FIXME: This sanitizer does not yet handle scalable vectors -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/AddressSanitizer.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/BinaryFormat/MachO.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Comdat.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Use.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/MC/MCSectionMachO.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/ScopedPrinter.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" -#include "llvm/Transforms/Utils/ASanStackFrameLayout.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iomanip> -#include <limits> -#include <memory> -#include <sstream> -#include <string> -#include <tuple> - -using namespace llvm; - -#define DEBUG_TYPE "asan" - -static const uint64_t kDefaultShadowScale = 3; -static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; -static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; -static const uint64_t kDynamicShadowSentinel = - std::numeric_limits<uint64_t>::max(); -static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. -static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; -static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; -static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; -static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; -static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; -static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; -static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; +//===- AddressSanitizer.cpp - memory error detector -----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is a part of AddressSanitizer, an address sanity checker. +// Details of the algorithm: +// https://github.com/google/sanitizers/wiki/AddressSanitizerAlgorithm +// +// FIXME: This sanitizer does not yet handle scalable vectors +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/AddressSanitizer.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/BinaryFormat/MachO.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Use.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/MC/MCSectionMachO.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/ScopedPrinter.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" +#include "llvm/Transforms/Utils/ASanStackFrameLayout.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iomanip> +#include <limits> +#include <memory> +#include <sstream> +#include <string> +#include <tuple> + +using namespace llvm; + +#define DEBUG_TYPE "asan" + +static const uint64_t kDefaultShadowScale = 3; +static const uint64_t kDefaultShadowOffset32 = 1ULL << 29; +static const uint64_t kDefaultShadowOffset64 = 1ULL << 44; +static const uint64_t kDynamicShadowSentinel = + std::numeric_limits<uint64_t>::max(); +static const uint64_t kSmallX86_64ShadowOffsetBase = 0x7FFFFFFF; // < 2G. +static const uint64_t kSmallX86_64ShadowOffsetAlignMask = ~0xFFFULL; +static const uint64_t kLinuxKasan_ShadowOffset64 = 0xdffffc0000000000; +static const uint64_t kPPC64_ShadowOffset64 = 1ULL << 44; +static const uint64_t kSystemZ_ShadowOffset64 = 1ULL << 52; +static const uint64_t kMIPS32_ShadowOffset32 = 0x0aaa0000; +static const uint64_t kMIPS64_ShadowOffset64 = 1ULL << 37; +static const uint64_t kAArch64_ShadowOffset64 = 1ULL << 36; static const uint64_t kRISCV64_ShadowOffset64 = 0x20000000; -static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; -static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; -static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; -static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; -static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; -static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; -static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; -static const uint64_t kEmscriptenShadowOffset = 0; - -static const uint64_t kMyriadShadowScale = 5; -static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; -static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; -static const uint64_t kMyriadTagShift = 29; -static const uint64_t kMyriadDDRTag = 4; -static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; - -// The shadow memory space is dynamically allocated. -static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; - -static const size_t kMinStackMallocSize = 1 << 6; // 64B -static const size_t kMaxStackMallocSize = 1 << 16; // 64K -static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; -static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; - +static const uint64_t kFreeBSD_ShadowOffset32 = 1ULL << 30; +static const uint64_t kFreeBSD_ShadowOffset64 = 1ULL << 46; +static const uint64_t kNetBSD_ShadowOffset32 = 1ULL << 30; +static const uint64_t kNetBSD_ShadowOffset64 = 1ULL << 46; +static const uint64_t kNetBSDKasan_ShadowOffset64 = 0xdfff900000000000; +static const uint64_t kPS4CPU_ShadowOffset64 = 1ULL << 40; +static const uint64_t kWindowsShadowOffset32 = 3ULL << 28; +static const uint64_t kEmscriptenShadowOffset = 0; + +static const uint64_t kMyriadShadowScale = 5; +static const uint64_t kMyriadMemoryOffset32 = 0x80000000ULL; +static const uint64_t kMyriadMemorySize32 = 0x20000000ULL; +static const uint64_t kMyriadTagShift = 29; +static const uint64_t kMyriadDDRTag = 4; +static const uint64_t kMyriadCacheBitMask32 = 0x40000000ULL; + +// The shadow memory space is dynamically allocated. +static const uint64_t kWindowsShadowOffset64 = kDynamicShadowSentinel; + +static const size_t kMinStackMallocSize = 1 << 6; // 64B +static const size_t kMaxStackMallocSize = 1 << 16; // 64K +static const uintptr_t kCurrentStackFrameMagic = 0x41B58AB3; +static const uintptr_t kRetiredStackFrameMagic = 0x45E0360E; + const char kAsanModuleCtorName[] = "asan.module_ctor"; const char kAsanModuleDtorName[] = "asan.module_dtor"; -static const uint64_t kAsanCtorAndDtorPriority = 1; -// On Emscripten, the system needs more than one priorities for constructors. -static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; +static const uint64_t kAsanCtorAndDtorPriority = 1; +// On Emscripten, the system needs more than one priorities for constructors. +static const uint64_t kAsanEmscriptenCtorAndDtorPriority = 50; const char kAsanReportErrorTemplate[] = "__asan_report_"; const char kAsanRegisterGlobalsName[] = "__asan_register_globals"; const char kAsanUnregisterGlobalsName[] = "__asan_unregister_globals"; @@ -150,7 +150,7 @@ const char kAsanVersionCheckNamePrefix[] = "__asan_version_mismatch_check_v"; const char kAsanPtrCmp[] = "__sanitizer_ptr_cmp"; const char kAsanPtrSub[] = "__sanitizer_ptr_sub"; const char kAsanHandleNoReturnName[] = "__asan_handle_no_return"; -static const int kMaxAsanStackMallocSizeClass = 10; +static const int kMaxAsanStackMallocSizeClass = 10; const char kAsanStackMallocNameTemplate[] = "__asan_stack_malloc_"; const char kAsanStackFreeNameTemplate[] = "__asan_stack_free_"; const char kAsanGenPrefix[] = "___asan_gen_"; @@ -159,808 +159,808 @@ const char kSanCovGenPrefix[] = "__sancov_gen_"; const char kAsanSetShadowPrefix[] = "__asan_set_shadow_"; const char kAsanPoisonStackMemoryName[] = "__asan_poison_stack_memory"; const char kAsanUnpoisonStackMemoryName[] = "__asan_unpoison_stack_memory"; - -// ASan version script has __asan_* wildcard. Triple underscore prevents a -// linker (gold) warning about attempting to export a local symbol. + +// ASan version script has __asan_* wildcard. Triple underscore prevents a +// linker (gold) warning about attempting to export a local symbol. const char kAsanGlobalsRegisteredFlagName[] = "___asan_globals_registered"; - + const char kAsanOptionDetectUseAfterReturn[] = - "__asan_option_detect_stack_use_after_return"; - + "__asan_option_detect_stack_use_after_return"; + const char kAsanShadowMemoryDynamicAddress[] = - "__asan_shadow_memory_dynamic_address"; - + "__asan_shadow_memory_dynamic_address"; + const char kAsanAllocaPoison[] = "__asan_alloca_poison"; const char kAsanAllocasUnpoison[] = "__asan_allocas_unpoison"; - -// Accesses sizes are powers of two: 1, 2, 4, 8, 16. -static const size_t kNumberOfAccessSizes = 5; - -static const unsigned kAllocaRzSize = 32; - -// Command-line flags. - -static cl::opt<bool> ClEnableKasan( - "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClRecover( - "asan-recover", - cl::desc("Enable recovery mode (continue-after-error)."), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClInsertVersionCheck( - "asan-guard-against-version-mismatch", - cl::desc("Guard against compiler/runtime version mismatch."), - cl::Hidden, cl::init(true)); - -// This flag may need to be replaced with -f[no-]asan-reads. -static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", - cl::desc("instrument read instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentWrites( - "asan-instrument-writes", cl::desc("instrument write instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentAtomics( - "asan-instrument-atomics", - cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> - ClInstrumentByval("asan-instrument-byval", - cl::desc("instrument byval call arguments"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClAlwaysSlowPath( - "asan-always-slow-path", - cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClForceDynamicShadow( - "asan-force-dynamic-shadow", - cl::desc("Load shadow address into a local variable for each function"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClWithIfunc("asan-with-ifunc", - cl::desc("Access dynamic shadow through an ifunc global on " - "platforms that support this"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClWithIfuncSuppressRemat( - "asan-with-ifunc-suppress-remat", - cl::desc("Suppress rematerialization of dynamic shadow address by passing " - "it through inline asm in prologue."), - cl::Hidden, cl::init(true)); - -// This flag limits the number of instructions to be instrumented -// in any given BB. Normally, this should be set to unlimited (INT_MAX), -// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary -// set it to 10000. -static cl::opt<int> ClMaxInsnsToInstrumentPerBB( - "asan-max-ins-per-bb", cl::init(10000), - cl::desc("maximal number of instructions to instrument in any given BB"), - cl::Hidden); - -// This flag may need to be replaced with -f[no]asan-stack. -static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), - cl::Hidden, cl::init(true)); -static cl::opt<uint32_t> ClMaxInlinePoisoningSize( - "asan-max-inline-poisoning-size", - cl::desc( - "Inline shadow poisoning for blocks up to the given size in bytes."), - cl::Hidden, cl::init(64)); - -static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", - cl::desc("Check stack-use-after-return"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", - cl::desc("Create redzones for byval " - "arguments (extra copy " - "required)"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", - cl::desc("Check stack-use-after-scope"), - cl::Hidden, cl::init(false)); - -// This flag may need to be replaced with -f[no]asan-globals. -static cl::opt<bool> ClGlobals("asan-globals", - cl::desc("Handle global objects"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClInitializers("asan-initialization-order", - cl::desc("Handle C++ initializer order"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInvalidPointerPairs( - "asan-detect-invalid-pointer-pair", - cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClInvalidPointerCmp( - "asan-detect-invalid-pointer-cmp", - cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClInvalidPointerSub( - "asan-detect-invalid-pointer-sub", - cl::desc("Instrument - operations with pointer operands"), cl::Hidden, - cl::init(false)); - -static cl::opt<unsigned> ClRealignStack( - "asan-realign-stack", - cl::desc("Realign stack to the value of this flag (power of two)"), - cl::Hidden, cl::init(32)); - -static cl::opt<int> ClInstrumentationWithCallsThreshold( - "asan-instrumentation-with-call-threshold", - cl::desc( - "If the function being instrumented contains more than " - "this number of memory accesses, use callbacks instead of " - "inline checks (-1 means never use callbacks)."), - cl::Hidden, cl::init(7000)); - -static cl::opt<std::string> ClMemoryAccessCallbackPrefix( - "asan-memory-access-callback-prefix", - cl::desc("Prefix for memory access callbacks"), cl::Hidden, - cl::init("__asan_")); - -static cl::opt<bool> - ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", - cl::desc("instrument dynamic allocas"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClSkipPromotableAllocas( - "asan-skip-promotable-allocas", - cl::desc("Do not instrument promotable allocas"), cl::Hidden, - cl::init(true)); - -// These flags allow to change the shadow mapping. -// The shadow mapping looks like -// Shadow = (Mem >> scale) + offset - -static cl::opt<int> ClMappingScale("asan-mapping-scale", - cl::desc("scale of asan shadow mapping"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> - ClMappingOffset("asan-mapping-offset", - cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), - cl::Hidden, cl::init(0)); - -// Optimization flags. Not user visible, used mostly for testing -// and benchmarking the tool. - -static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptSameTemp( - "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptGlobals("asan-opt-globals", - cl::desc("Don't instrument scalar globals"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClOptStack( - "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDynamicAllocaStack( - "asan-stack-dynamic-alloca", - cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, - cl::init(true)); - -static cl::opt<uint32_t> ClForceExperiment( - "asan-force-experiment", - cl::desc("Force optimization experiment (for testing)"), cl::Hidden, - cl::init(0)); - -static cl::opt<bool> - ClUsePrivateAlias("asan-use-private-alias", - cl::desc("Use private aliases for global variables"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClUseOdrIndicator("asan-use-odr-indicator", - cl::desc("Use odr indicators to improve ODR reporting"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClUseGlobalsGC("asan-globals-live-support", - cl::desc("Use linker features to support dead " - "code stripping of globals"), - cl::Hidden, cl::init(true)); - -// This is on by default even though there is a bug in gold: -// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 -static cl::opt<bool> - ClWithComdat("asan-with-comdat", - cl::desc("Place ASan constructors in comdat sections"), - cl::Hidden, cl::init(true)); - -// Debug flags. - -static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, - cl::init(0)); - -static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), - cl::Hidden, cl::init(0)); - -static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, - cl::desc("Debug func")); - -static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), - cl::Hidden, cl::init(-1)); - -static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), - cl::Hidden, cl::init(-1)); - -STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); -STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); -STATISTIC(NumOptimizedAccessesToGlobalVar, - "Number of optimized accesses to global vars"); -STATISTIC(NumOptimizedAccessesToStackVar, - "Number of optimized accesses to stack vars"); - -namespace { - -/// This struct defines the shadow mapping using the rule: -/// shadow = (mem >> Scale) ADD-or-OR Offset. -/// If InGlobal is true, then -/// extern char __asan_shadow[]; -/// shadow = (mem >> Scale) + &__asan_shadow -struct ShadowMapping { - int Scale; - uint64_t Offset; - bool OrShadowOffset; - bool InGlobal; -}; - -} // end anonymous namespace - -static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, - bool IsKasan) { - bool IsAndroid = TargetTriple.isAndroid(); - bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); + +// Accesses sizes are powers of two: 1, 2, 4, 8, 16. +static const size_t kNumberOfAccessSizes = 5; + +static const unsigned kAllocaRzSize = 32; + +// Command-line flags. + +static cl::opt<bool> ClEnableKasan( + "asan-kernel", cl::desc("Enable KernelAddressSanitizer instrumentation"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClRecover( + "asan-recover", + cl::desc("Enable recovery mode (continue-after-error)."), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClInsertVersionCheck( + "asan-guard-against-version-mismatch", + cl::desc("Guard against compiler/runtime version mismatch."), + cl::Hidden, cl::init(true)); + +// This flag may need to be replaced with -f[no-]asan-reads. +static cl::opt<bool> ClInstrumentReads("asan-instrument-reads", + cl::desc("instrument read instructions"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClInstrumentWrites( + "asan-instrument-writes", cl::desc("instrument write instructions"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClInstrumentAtomics( + "asan-instrument-atomics", + cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, + cl::init(true)); + +static cl::opt<bool> + ClInstrumentByval("asan-instrument-byval", + cl::desc("instrument byval call arguments"), cl::Hidden, + cl::init(true)); + +static cl::opt<bool> ClAlwaysSlowPath( + "asan-always-slow-path", + cl::desc("use instrumentation with slow path for all accesses"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> ClForceDynamicShadow( + "asan-force-dynamic-shadow", + cl::desc("Load shadow address into a local variable for each function"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClWithIfunc("asan-with-ifunc", + cl::desc("Access dynamic shadow through an ifunc global on " + "platforms that support this"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClWithIfuncSuppressRemat( + "asan-with-ifunc-suppress-remat", + cl::desc("Suppress rematerialization of dynamic shadow address by passing " + "it through inline asm in prologue."), + cl::Hidden, cl::init(true)); + +// This flag limits the number of instructions to be instrumented +// in any given BB. Normally, this should be set to unlimited (INT_MAX), +// but due to http://llvm.org/bugs/show_bug.cgi?id=12652 we temporary +// set it to 10000. +static cl::opt<int> ClMaxInsnsToInstrumentPerBB( + "asan-max-ins-per-bb", cl::init(10000), + cl::desc("maximal number of instructions to instrument in any given BB"), + cl::Hidden); + +// This flag may need to be replaced with -f[no]asan-stack. +static cl::opt<bool> ClStack("asan-stack", cl::desc("Handle stack memory"), + cl::Hidden, cl::init(true)); +static cl::opt<uint32_t> ClMaxInlinePoisoningSize( + "asan-max-inline-poisoning-size", + cl::desc( + "Inline shadow poisoning for blocks up to the given size in bytes."), + cl::Hidden, cl::init(64)); + +static cl::opt<bool> ClUseAfterReturn("asan-use-after-return", + cl::desc("Check stack-use-after-return"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClRedzoneByvalArgs("asan-redzone-byval-args", + cl::desc("Create redzones for byval " + "arguments (extra copy " + "required)"), cl::Hidden, + cl::init(true)); + +static cl::opt<bool> ClUseAfterScope("asan-use-after-scope", + cl::desc("Check stack-use-after-scope"), + cl::Hidden, cl::init(false)); + +// This flag may need to be replaced with -f[no]asan-globals. +static cl::opt<bool> ClGlobals("asan-globals", + cl::desc("Handle global objects"), cl::Hidden, + cl::init(true)); + +static cl::opt<bool> ClInitializers("asan-initialization-order", + cl::desc("Handle C++ initializer order"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClInvalidPointerPairs( + "asan-detect-invalid-pointer-pair", + cl::desc("Instrument <, <=, >, >=, - with pointer operands"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> ClInvalidPointerCmp( + "asan-detect-invalid-pointer-cmp", + cl::desc("Instrument <, <=, >, >= with pointer operands"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> ClInvalidPointerSub( + "asan-detect-invalid-pointer-sub", + cl::desc("Instrument - operations with pointer operands"), cl::Hidden, + cl::init(false)); + +static cl::opt<unsigned> ClRealignStack( + "asan-realign-stack", + cl::desc("Realign stack to the value of this flag (power of two)"), + cl::Hidden, cl::init(32)); + +static cl::opt<int> ClInstrumentationWithCallsThreshold( + "asan-instrumentation-with-call-threshold", + cl::desc( + "If the function being instrumented contains more than " + "this number of memory accesses, use callbacks instead of " + "inline checks (-1 means never use callbacks)."), + cl::Hidden, cl::init(7000)); + +static cl::opt<std::string> ClMemoryAccessCallbackPrefix( + "asan-memory-access-callback-prefix", + cl::desc("Prefix for memory access callbacks"), cl::Hidden, + cl::init("__asan_")); + +static cl::opt<bool> + ClInstrumentDynamicAllocas("asan-instrument-dynamic-allocas", + cl::desc("instrument dynamic allocas"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClSkipPromotableAllocas( + "asan-skip-promotable-allocas", + cl::desc("Do not instrument promotable allocas"), cl::Hidden, + cl::init(true)); + +// These flags allow to change the shadow mapping. +// The shadow mapping looks like +// Shadow = (Mem >> scale) + offset + +static cl::opt<int> ClMappingScale("asan-mapping-scale", + cl::desc("scale of asan shadow mapping"), + cl::Hidden, cl::init(0)); + +static cl::opt<uint64_t> + ClMappingOffset("asan-mapping-offset", + cl::desc("offset of asan shadow mapping [EXPERIMENTAL]"), + cl::Hidden, cl::init(0)); + +// Optimization flags. Not user visible, used mostly for testing +// and benchmarking the tool. + +static cl::opt<bool> ClOpt("asan-opt", cl::desc("Optimize instrumentation"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClOptSameTemp( + "asan-opt-same-temp", cl::desc("Instrument the same temp just once"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClOptGlobals("asan-opt-globals", + cl::desc("Don't instrument scalar globals"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClOptStack( + "asan-opt-stack", cl::desc("Don't instrument scalar stack variables"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClDynamicAllocaStack( + "asan-stack-dynamic-alloca", + cl::desc("Use dynamic alloca to represent stack variables"), cl::Hidden, + cl::init(true)); + +static cl::opt<uint32_t> ClForceExperiment( + "asan-force-experiment", + cl::desc("Force optimization experiment (for testing)"), cl::Hidden, + cl::init(0)); + +static cl::opt<bool> + ClUsePrivateAlias("asan-use-private-alias", + cl::desc("Use private aliases for global variables"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClUseOdrIndicator("asan-use-odr-indicator", + cl::desc("Use odr indicators to improve ODR reporting"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClUseGlobalsGC("asan-globals-live-support", + cl::desc("Use linker features to support dead " + "code stripping of globals"), + cl::Hidden, cl::init(true)); + +// This is on by default even though there is a bug in gold: +// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 +static cl::opt<bool> + ClWithComdat("asan-with-comdat", + cl::desc("Place ASan constructors in comdat sections"), + cl::Hidden, cl::init(true)); + +// Debug flags. + +static cl::opt<int> ClDebug("asan-debug", cl::desc("debug"), cl::Hidden, + cl::init(0)); + +static cl::opt<int> ClDebugStack("asan-debug-stack", cl::desc("debug stack"), + cl::Hidden, cl::init(0)); + +static cl::opt<std::string> ClDebugFunc("asan-debug-func", cl::Hidden, + cl::desc("Debug func")); + +static cl::opt<int> ClDebugMin("asan-debug-min", cl::desc("Debug min inst"), + cl::Hidden, cl::init(-1)); + +static cl::opt<int> ClDebugMax("asan-debug-max", cl::desc("Debug max inst"), + cl::Hidden, cl::init(-1)); + +STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); +STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); +STATISTIC(NumOptimizedAccessesToGlobalVar, + "Number of optimized accesses to global vars"); +STATISTIC(NumOptimizedAccessesToStackVar, + "Number of optimized accesses to stack vars"); + +namespace { + +/// This struct defines the shadow mapping using the rule: +/// shadow = (mem >> Scale) ADD-or-OR Offset. +/// If InGlobal is true, then +/// extern char __asan_shadow[]; +/// shadow = (mem >> Scale) + &__asan_shadow +struct ShadowMapping { + int Scale; + uint64_t Offset; + bool OrShadowOffset; + bool InGlobal; +}; + +} // end anonymous namespace + +static ShadowMapping getShadowMapping(Triple &TargetTriple, int LongSize, + bool IsKasan) { + bool IsAndroid = TargetTriple.isAndroid(); + bool IsIOS = TargetTriple.isiOS() || TargetTriple.isWatchOS(); bool IsMacOS = TargetTriple.isMacOSX(); - bool IsFreeBSD = TargetTriple.isOSFreeBSD(); - bool IsNetBSD = TargetTriple.isOSNetBSD(); - bool IsPS4CPU = TargetTriple.isPS4CPU(); - bool IsLinux = TargetTriple.isOSLinux(); - bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || - TargetTriple.getArch() == Triple::ppc64le; - bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; - bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; - bool IsMIPS32 = TargetTriple.isMIPS32(); - bool IsMIPS64 = TargetTriple.isMIPS64(); - bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); - bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; + bool IsFreeBSD = TargetTriple.isOSFreeBSD(); + bool IsNetBSD = TargetTriple.isOSNetBSD(); + bool IsPS4CPU = TargetTriple.isPS4CPU(); + bool IsLinux = TargetTriple.isOSLinux(); + bool IsPPC64 = TargetTriple.getArch() == Triple::ppc64 || + TargetTriple.getArch() == Triple::ppc64le; + bool IsSystemZ = TargetTriple.getArch() == Triple::systemz; + bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; + bool IsMIPS32 = TargetTriple.isMIPS32(); + bool IsMIPS64 = TargetTriple.isMIPS64(); + bool IsArmOrThumb = TargetTriple.isARM() || TargetTriple.isThumb(); + bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64; bool IsRISCV64 = TargetTriple.getArch() == Triple::riscv64; - bool IsWindows = TargetTriple.isOSWindows(); - bool IsFuchsia = TargetTriple.isOSFuchsia(); - bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; - bool IsEmscripten = TargetTriple.isOSEmscripten(); - - ShadowMapping Mapping; - - Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; - if (ClMappingScale.getNumOccurrences() > 0) { - Mapping.Scale = ClMappingScale; - } - - if (LongSize == 32) { - if (IsAndroid) - Mapping.Offset = kDynamicShadowSentinel; - else if (IsMIPS32) - Mapping.Offset = kMIPS32_ShadowOffset32; - else if (IsFreeBSD) - Mapping.Offset = kFreeBSD_ShadowOffset32; - else if (IsNetBSD) - Mapping.Offset = kNetBSD_ShadowOffset32; - else if (IsIOS) - Mapping.Offset = kDynamicShadowSentinel; - else if (IsWindows) - Mapping.Offset = kWindowsShadowOffset32; - else if (IsEmscripten) - Mapping.Offset = kEmscriptenShadowOffset; - else if (IsMyriad) { - uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - - (kMyriadMemorySize32 >> Mapping.Scale)); - Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); - } - else - Mapping.Offset = kDefaultShadowOffset32; - } else { // LongSize == 64 - // Fuchsia is always PIE, which means that the beginning of the address - // space is always available. - if (IsFuchsia) - Mapping.Offset = 0; - else if (IsPPC64) - Mapping.Offset = kPPC64_ShadowOffset64; - else if (IsSystemZ) - Mapping.Offset = kSystemZ_ShadowOffset64; - else if (IsFreeBSD && !IsMIPS64) - Mapping.Offset = kFreeBSD_ShadowOffset64; - else if (IsNetBSD) { - if (IsKasan) - Mapping.Offset = kNetBSDKasan_ShadowOffset64; - else - Mapping.Offset = kNetBSD_ShadowOffset64; - } else if (IsPS4CPU) - Mapping.Offset = kPS4CPU_ShadowOffset64; - else if (IsLinux && IsX86_64) { - if (IsKasan) - Mapping.Offset = kLinuxKasan_ShadowOffset64; - else - Mapping.Offset = (kSmallX86_64ShadowOffsetBase & - (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); - } else if (IsWindows && IsX86_64) { - Mapping.Offset = kWindowsShadowOffset64; - } else if (IsMIPS64) - Mapping.Offset = kMIPS64_ShadowOffset64; - else if (IsIOS) - Mapping.Offset = kDynamicShadowSentinel; + bool IsWindows = TargetTriple.isOSWindows(); + bool IsFuchsia = TargetTriple.isOSFuchsia(); + bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; + bool IsEmscripten = TargetTriple.isOSEmscripten(); + + ShadowMapping Mapping; + + Mapping.Scale = IsMyriad ? kMyriadShadowScale : kDefaultShadowScale; + if (ClMappingScale.getNumOccurrences() > 0) { + Mapping.Scale = ClMappingScale; + } + + if (LongSize == 32) { + if (IsAndroid) + Mapping.Offset = kDynamicShadowSentinel; + else if (IsMIPS32) + Mapping.Offset = kMIPS32_ShadowOffset32; + else if (IsFreeBSD) + Mapping.Offset = kFreeBSD_ShadowOffset32; + else if (IsNetBSD) + Mapping.Offset = kNetBSD_ShadowOffset32; + else if (IsIOS) + Mapping.Offset = kDynamicShadowSentinel; + else if (IsWindows) + Mapping.Offset = kWindowsShadowOffset32; + else if (IsEmscripten) + Mapping.Offset = kEmscriptenShadowOffset; + else if (IsMyriad) { + uint64_t ShadowOffset = (kMyriadMemoryOffset32 + kMyriadMemorySize32 - + (kMyriadMemorySize32 >> Mapping.Scale)); + Mapping.Offset = ShadowOffset - (kMyriadMemoryOffset32 >> Mapping.Scale); + } + else + Mapping.Offset = kDefaultShadowOffset32; + } else { // LongSize == 64 + // Fuchsia is always PIE, which means that the beginning of the address + // space is always available. + if (IsFuchsia) + Mapping.Offset = 0; + else if (IsPPC64) + Mapping.Offset = kPPC64_ShadowOffset64; + else if (IsSystemZ) + Mapping.Offset = kSystemZ_ShadowOffset64; + else if (IsFreeBSD && !IsMIPS64) + Mapping.Offset = kFreeBSD_ShadowOffset64; + else if (IsNetBSD) { + if (IsKasan) + Mapping.Offset = kNetBSDKasan_ShadowOffset64; + else + Mapping.Offset = kNetBSD_ShadowOffset64; + } else if (IsPS4CPU) + Mapping.Offset = kPS4CPU_ShadowOffset64; + else if (IsLinux && IsX86_64) { + if (IsKasan) + Mapping.Offset = kLinuxKasan_ShadowOffset64; + else + Mapping.Offset = (kSmallX86_64ShadowOffsetBase & + (kSmallX86_64ShadowOffsetAlignMask << Mapping.Scale)); + } else if (IsWindows && IsX86_64) { + Mapping.Offset = kWindowsShadowOffset64; + } else if (IsMIPS64) + Mapping.Offset = kMIPS64_ShadowOffset64; + else if (IsIOS) + Mapping.Offset = kDynamicShadowSentinel; else if (IsMacOS && IsAArch64) Mapping.Offset = kDynamicShadowSentinel; - else if (IsAArch64) - Mapping.Offset = kAArch64_ShadowOffset64; + else if (IsAArch64) + Mapping.Offset = kAArch64_ShadowOffset64; else if (IsRISCV64) Mapping.Offset = kRISCV64_ShadowOffset64; - else - Mapping.Offset = kDefaultShadowOffset64; - } - - if (ClForceDynamicShadow) { - Mapping.Offset = kDynamicShadowSentinel; - } - - if (ClMappingOffset.getNumOccurrences() > 0) { - Mapping.Offset = ClMappingOffset; - } - - // OR-ing shadow offset if more efficient (at least on x86) if the offset - // is a power of two, but on ppc64 we have to use add since the shadow - // offset is not necessary 1/8-th of the address space. On SystemZ, - // we could OR the constant in a single instruction, but it's more - // efficient to load it once and use indexed addressing. - Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && + else + Mapping.Offset = kDefaultShadowOffset64; + } + + if (ClForceDynamicShadow) { + Mapping.Offset = kDynamicShadowSentinel; + } + + if (ClMappingOffset.getNumOccurrences() > 0) { + Mapping.Offset = ClMappingOffset; + } + + // OR-ing shadow offset if more efficient (at least on x86) if the offset + // is a power of two, but on ppc64 we have to use add since the shadow + // offset is not necessary 1/8-th of the address space. On SystemZ, + // we could OR the constant in a single instruction, but it's more + // efficient to load it once and use indexed addressing. + Mapping.OrShadowOffset = !IsAArch64 && !IsPPC64 && !IsSystemZ && !IsPS4CPU && !IsRISCV64 && - !(Mapping.Offset & (Mapping.Offset - 1)) && - Mapping.Offset != kDynamicShadowSentinel; - bool IsAndroidWithIfuncSupport = - IsAndroid && !TargetTriple.isAndroidVersionLT(21); - Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; - - return Mapping; -} - -static uint64_t getRedzoneSizeForScale(int MappingScale) { - // Redzone used for stack and globals is at least 32 bytes. - // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. - return std::max(32U, 1U << MappingScale); -} - -static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { - if (TargetTriple.isOSEmscripten()) { - return kAsanEmscriptenCtorAndDtorPriority; - } else { - return kAsanCtorAndDtorPriority; - } -} - -namespace { - -/// Module analysis for getting various metadata about the module. -class ASanGlobalsMetadataWrapperPass : public ModulePass { -public: - static char ID; - - ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { - initializeASanGlobalsMetadataWrapperPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnModule(Module &M) override { - GlobalsMD = GlobalsMetadata(M); - return false; - } - - StringRef getPassName() const override { - return "ASanGlobalsMetadataWrapperPass"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesAll(); - } - - GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } - -private: - GlobalsMetadata GlobalsMD; -}; - -char ASanGlobalsMetadataWrapperPass::ID = 0; - -/// AddressSanitizer: instrument the code in module to find memory bugs. -struct AddressSanitizer { - AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, - bool CompileKernel = false, bool Recover = false, - bool UseAfterScope = false) - : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan - : CompileKernel), - Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), - UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { - C = &(M.getContext()); - LongSize = M.getDataLayout().getPointerSizeInBits(); - IntptrTy = Type::getIntNTy(*C, LongSize); - TargetTriple = Triple(M.getTargetTriple()); - - Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); - } - - uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { - uint64_t ArraySize = 1; - if (AI.isArrayAllocation()) { - const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); - assert(CI && "non-constant array size"); - ArraySize = CI->getZExtValue(); - } - Type *Ty = AI.getAllocatedType(); - uint64_t SizeInBytes = - AI.getModule()->getDataLayout().getTypeAllocSize(Ty); - return SizeInBytes * ArraySize; - } - - /// Check if we want (and can) handle this alloca. - bool isInterestingAlloca(const AllocaInst &AI); - - bool ignoreAccess(Value *Ptr); - void getInterestingMemoryOperands( - Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); - - void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, - InterestingMemoryOperand &O, bool UseCalls, - const DataLayout &DL); - void instrumentPointerComparisonOrSubtraction(Instruction *I); - void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, - Value *Addr, uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, uint32_t Exp); - void instrumentUnusualSizeOrAlignment(Instruction *I, - Instruction *InsertBefore, Value *Addr, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp); - Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, - Value *ShadowValue, uint32_t TypeSize); - Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, - bool IsWrite, size_t AccessSizeIndex, - Value *SizeArgument, uint32_t Exp); - void instrumentMemIntrinsic(MemIntrinsic *MI); - Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); - bool suppressInstrumentationSiteForDebug(int &Instrumented); - bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); - bool maybeInsertAsanInitAtFunctionEntry(Function &F); - bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); - void markEscapedLocalAllocas(Function &F); - -private: - friend struct FunctionStackPoisoner; - - void initializeCallbacks(Module &M); - - bool LooksLikeCodeInBug11395(Instruction *I); - bool GlobalIsLinkerInitialized(GlobalVariable *G); - bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, - uint64_t TypeSize) const; - - /// Helper to cleanup per-function state. - struct FunctionStateRAII { - AddressSanitizer *Pass; - - FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { - assert(Pass->ProcessedAllocas.empty() && - "last pass forgot to clear cache"); - assert(!Pass->LocalDynamicShadow); - } - - ~FunctionStateRAII() { - Pass->LocalDynamicShadow = nullptr; - Pass->ProcessedAllocas.clear(); - } - }; - - LLVMContext *C; - Triple TargetTriple; - int LongSize; - bool CompileKernel; - bool Recover; - bool UseAfterScope; - Type *IntptrTy; - ShadowMapping Mapping; - FunctionCallee AsanHandleNoReturnFunc; - FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; - Constant *AsanShadowGlobal; - - // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). - FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; - FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; - - // These arrays is indexed by AccessIsWrite and Experiment. - FunctionCallee AsanErrorCallbackSized[2][2]; - FunctionCallee AsanMemoryAccessCallbackSized[2][2]; - - FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; - Value *LocalDynamicShadow = nullptr; - const GlobalsMetadata &GlobalsMD; - DenseMap<const AllocaInst *, bool> ProcessedAllocas; -}; - -class AddressSanitizerLegacyPass : public FunctionPass { -public: - static char ID; - - explicit AddressSanitizerLegacyPass(bool CompileKernel = false, - bool Recover = false, - bool UseAfterScope = false) - : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), - UseAfterScope(UseAfterScope) { - initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { - return "AddressSanitizerFunctionPass"; - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<ASanGlobalsMetadataWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } - - bool runOnFunction(Function &F) override { - GlobalsMetadata &GlobalsMD = - getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); - const TargetLibraryInfo *TLI = - &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, - UseAfterScope); - return ASan.instrumentFunction(F, TLI); - } - -private: - bool CompileKernel; - bool Recover; - bool UseAfterScope; -}; - -class ModuleAddressSanitizer { -public: - ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, - bool CompileKernel = false, bool Recover = false, - bool UseGlobalsGC = true, bool UseOdrIndicator = false) - : GlobalsMD(*GlobalsMD), - CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan - : CompileKernel), - Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), - UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), - // Enable aliases as they should have no downside with ODR indicators. - UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), - UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), - // Not a typo: ClWithComdat is almost completely pointless without - // ClUseGlobalsGC (because then it only works on modules without - // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; - // and both suffer from gold PR19002 for which UseGlobalsGC constructor - // argument is designed as workaround. Therefore, disable both - // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to - // do globals-gc. - UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { - C = &(M.getContext()); - int LongSize = M.getDataLayout().getPointerSizeInBits(); - IntptrTy = Type::getIntNTy(*C, LongSize); - TargetTriple = Triple(M.getTargetTriple()); - Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); - } - - bool instrumentModule(Module &); - -private: - void initializeCallbacks(Module &M); - - bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); - void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers, - const std::string &UniqueModuleId); - void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - void - InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, - ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers); - - GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, - StringRef OriginalName); - void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, - StringRef InternalSuffix); - Instruction *CreateAsanModuleDtor(Module &M); - - const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; - bool shouldInstrumentGlobal(GlobalVariable *G) const; - bool ShouldUseMachOGlobalsSection() const; - StringRef getGlobalMetadataSection() const; - void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); - void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); - uint64_t getMinRedzoneSizeForGlobal() const { - return getRedzoneSizeForScale(Mapping.Scale); - } - uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; - int GetAsanVersion(const Module &M) const; - - const GlobalsMetadata &GlobalsMD; - bool CompileKernel; - bool Recover; - bool UseGlobalsGC; - bool UsePrivateAlias; - bool UseOdrIndicator; - bool UseCtorComdat; - Type *IntptrTy; - LLVMContext *C; - Triple TargetTriple; - ShadowMapping Mapping; - FunctionCallee AsanPoisonGlobals; - FunctionCallee AsanUnpoisonGlobals; - FunctionCallee AsanRegisterGlobals; - FunctionCallee AsanUnregisterGlobals; - FunctionCallee AsanRegisterImageGlobals; - FunctionCallee AsanUnregisterImageGlobals; - FunctionCallee AsanRegisterElfGlobals; - FunctionCallee AsanUnregisterElfGlobals; - - Function *AsanCtorFunction = nullptr; - Function *AsanDtorFunction = nullptr; -}; - -class ModuleAddressSanitizerLegacyPass : public ModulePass { -public: - static char ID; - - explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, - bool Recover = false, - bool UseGlobalGC = true, - bool UseOdrIndicator = false) - : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), - UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { - initializeModuleAddressSanitizerLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { return "ModuleAddressSanitizer"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<ASanGlobalsMetadataWrapperPass>(); - } - - bool runOnModule(Module &M) override { - GlobalsMetadata &GlobalsMD = - getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); - ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, - UseGlobalGC, UseOdrIndicator); - return ASanModule.instrumentModule(M); - } - -private: - bool CompileKernel; - bool Recover; - bool UseGlobalGC; - bool UseOdrIndicator; -}; - -// Stack poisoning does not play well with exception handling. -// When an exception is thrown, we essentially bypass the code -// that unpoisones the stack. This is why the run-time library has -// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire -// stack in the interceptor. This however does not work inside the -// actual function which catches the exception. Most likely because the -// compiler hoists the load of the shadow value somewhere too high. -// This causes asan to report a non-existing bug on 453.povray. -// It sounds like an LLVM bug. -struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { - Function &F; - AddressSanitizer &ASan; - DIBuilder DIB; - LLVMContext *C; - Type *IntptrTy; - Type *IntptrPtrTy; - ShadowMapping Mapping; - - SmallVector<AllocaInst *, 16> AllocaVec; - SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; - SmallVector<Instruction *, 8> RetVec; - unsigned StackAlignment; - - FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], - AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; - FunctionCallee AsanSetShadowFunc[0x100] = {}; - FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; - FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; - - // Stores a place and arguments of poisoning/unpoisoning call for alloca. - struct AllocaPoisonCall { - IntrinsicInst *InsBefore; - AllocaInst *AI; - uint64_t Size; - bool DoPoison; - }; - SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; - SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; - bool HasUntracedLifetimeIntrinsic = false; - - SmallVector<AllocaInst *, 1> DynamicAllocaVec; - SmallVector<IntrinsicInst *, 1> StackRestoreVec; - AllocaInst *DynamicAllocaLayout = nullptr; - IntrinsicInst *LocalEscapeCall = nullptr; - - bool HasInlineAsm = false; - bool HasReturnsTwiceCall = false; - - FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) - : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), - C(ASan.C), IntptrTy(ASan.IntptrTy), - IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), - StackAlignment(1 << Mapping.Scale) {} - - bool runOnFunction() { - if (!ClStack) return false; - - if (ClRedzoneByvalArgs) - copyArgsPassedByValToAllocas(); - - // Collect alloca, ret, lifetime instructions etc. - for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); - - if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; - - initializeCallbacks(*F.getParent()); - - if (HasUntracedLifetimeIntrinsic) { - // If there are lifetime intrinsics which couldn't be traced back to an - // alloca, we may not know exactly when a variable enters scope, and - // therefore should "fail safe" by not poisoning them. - StaticAllocaPoisonCallVec.clear(); - DynamicAllocaPoisonCallVec.clear(); - } - - processDynamicAllocas(); - processStaticAllocas(); - - if (ClDebugStack) { - LLVM_DEBUG(dbgs() << F); - } - return true; - } - - // Arguments marked with the "byval" attribute are implicitly copied without - // using an alloca instruction. To produce redzones for those arguments, we - // copy them a second time into memory allocated with an alloca instruction. - void copyArgsPassedByValToAllocas(); - - // Finds all Alloca instructions and puts - // poisoned red zones around all of them. - // Then unpoison everything back before the function returns. - void processStaticAllocas(); - void processDynamicAllocas(); - - void createDynamicAllocasInitStorage(); - - // ----------------------- Visitors. + !(Mapping.Offset & (Mapping.Offset - 1)) && + Mapping.Offset != kDynamicShadowSentinel; + bool IsAndroidWithIfuncSupport = + IsAndroid && !TargetTriple.isAndroidVersionLT(21); + Mapping.InGlobal = ClWithIfunc && IsAndroidWithIfuncSupport && IsArmOrThumb; + + return Mapping; +} + +static uint64_t getRedzoneSizeForScale(int MappingScale) { + // Redzone used for stack and globals is at least 32 bytes. + // For scales 6 and 7, the redzone has to be 64 and 128 bytes respectively. + return std::max(32U, 1U << MappingScale); +} + +static uint64_t GetCtorAndDtorPriority(Triple &TargetTriple) { + if (TargetTriple.isOSEmscripten()) { + return kAsanEmscriptenCtorAndDtorPriority; + } else { + return kAsanCtorAndDtorPriority; + } +} + +namespace { + +/// Module analysis for getting various metadata about the module. +class ASanGlobalsMetadataWrapperPass : public ModulePass { +public: + static char ID; + + ASanGlobalsMetadataWrapperPass() : ModulePass(ID) { + initializeASanGlobalsMetadataWrapperPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override { + GlobalsMD = GlobalsMetadata(M); + return false; + } + + StringRef getPassName() const override { + return "ASanGlobalsMetadataWrapperPass"; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesAll(); + } + + GlobalsMetadata &getGlobalsMD() { return GlobalsMD; } + +private: + GlobalsMetadata GlobalsMD; +}; + +char ASanGlobalsMetadataWrapperPass::ID = 0; + +/// AddressSanitizer: instrument the code in module to find memory bugs. +struct AddressSanitizer { + AddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, + bool CompileKernel = false, bool Recover = false, + bool UseAfterScope = false) + : CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan + : CompileKernel), + Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), + UseAfterScope(UseAfterScope || ClUseAfterScope), GlobalsMD(*GlobalsMD) { + C = &(M.getContext()); + LongSize = M.getDataLayout().getPointerSizeInBits(); + IntptrTy = Type::getIntNTy(*C, LongSize); + TargetTriple = Triple(M.getTargetTriple()); + + Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); + } + + uint64_t getAllocaSizeInBytes(const AllocaInst &AI) const { + uint64_t ArraySize = 1; + if (AI.isArrayAllocation()) { + const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); + assert(CI && "non-constant array size"); + ArraySize = CI->getZExtValue(); + } + Type *Ty = AI.getAllocatedType(); + uint64_t SizeInBytes = + AI.getModule()->getDataLayout().getTypeAllocSize(Ty); + return SizeInBytes * ArraySize; + } + + /// Check if we want (and can) handle this alloca. + bool isInterestingAlloca(const AllocaInst &AI); + + bool ignoreAccess(Value *Ptr); + void getInterestingMemoryOperands( + Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); + + void instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, + InterestingMemoryOperand &O, bool UseCalls, + const DataLayout &DL); + void instrumentPointerComparisonOrSubtraction(Instruction *I); + void instrumentAddress(Instruction *OrigIns, Instruction *InsertBefore, + Value *Addr, uint32_t TypeSize, bool IsWrite, + Value *SizeArgument, bool UseCalls, uint32_t Exp); + void instrumentUnusualSizeOrAlignment(Instruction *I, + Instruction *InsertBefore, Value *Addr, + uint32_t TypeSize, bool IsWrite, + Value *SizeArgument, bool UseCalls, + uint32_t Exp); + Value *createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, + Value *ShadowValue, uint32_t TypeSize); + Instruction *generateCrashCode(Instruction *InsertBefore, Value *Addr, + bool IsWrite, size_t AccessSizeIndex, + Value *SizeArgument, uint32_t Exp); + void instrumentMemIntrinsic(MemIntrinsic *MI); + Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); + bool suppressInstrumentationSiteForDebug(int &Instrumented); + bool instrumentFunction(Function &F, const TargetLibraryInfo *TLI); + bool maybeInsertAsanInitAtFunctionEntry(Function &F); + bool maybeInsertDynamicShadowAtFunctionEntry(Function &F); + void markEscapedLocalAllocas(Function &F); + +private: + friend struct FunctionStackPoisoner; + + void initializeCallbacks(Module &M); + + bool LooksLikeCodeInBug11395(Instruction *I); + bool GlobalIsLinkerInitialized(GlobalVariable *G); + bool isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, Value *Addr, + uint64_t TypeSize) const; + + /// Helper to cleanup per-function state. + struct FunctionStateRAII { + AddressSanitizer *Pass; + + FunctionStateRAII(AddressSanitizer *Pass) : Pass(Pass) { + assert(Pass->ProcessedAllocas.empty() && + "last pass forgot to clear cache"); + assert(!Pass->LocalDynamicShadow); + } + + ~FunctionStateRAII() { + Pass->LocalDynamicShadow = nullptr; + Pass->ProcessedAllocas.clear(); + } + }; + + LLVMContext *C; + Triple TargetTriple; + int LongSize; + bool CompileKernel; + bool Recover; + bool UseAfterScope; + Type *IntptrTy; + ShadowMapping Mapping; + FunctionCallee AsanHandleNoReturnFunc; + FunctionCallee AsanPtrCmpFunction, AsanPtrSubFunction; + Constant *AsanShadowGlobal; + + // These arrays is indexed by AccessIsWrite, Experiment and log2(AccessSize). + FunctionCallee AsanErrorCallback[2][2][kNumberOfAccessSizes]; + FunctionCallee AsanMemoryAccessCallback[2][2][kNumberOfAccessSizes]; + + // These arrays is indexed by AccessIsWrite and Experiment. + FunctionCallee AsanErrorCallbackSized[2][2]; + FunctionCallee AsanMemoryAccessCallbackSized[2][2]; + + FunctionCallee AsanMemmove, AsanMemcpy, AsanMemset; + Value *LocalDynamicShadow = nullptr; + const GlobalsMetadata &GlobalsMD; + DenseMap<const AllocaInst *, bool> ProcessedAllocas; +}; + +class AddressSanitizerLegacyPass : public FunctionPass { +public: + static char ID; + + explicit AddressSanitizerLegacyPass(bool CompileKernel = false, + bool Recover = false, + bool UseAfterScope = false) + : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover), + UseAfterScope(UseAfterScope) { + initializeAddressSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { + return "AddressSanitizerFunctionPass"; + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<ASanGlobalsMetadataWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } + + bool runOnFunction(Function &F) override { + GlobalsMetadata &GlobalsMD = + getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); + const TargetLibraryInfo *TLI = + &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + AddressSanitizer ASan(*F.getParent(), &GlobalsMD, CompileKernel, Recover, + UseAfterScope); + return ASan.instrumentFunction(F, TLI); + } + +private: + bool CompileKernel; + bool Recover; + bool UseAfterScope; +}; + +class ModuleAddressSanitizer { +public: + ModuleAddressSanitizer(Module &M, const GlobalsMetadata *GlobalsMD, + bool CompileKernel = false, bool Recover = false, + bool UseGlobalsGC = true, bool UseOdrIndicator = false) + : GlobalsMD(*GlobalsMD), + CompileKernel(ClEnableKasan.getNumOccurrences() > 0 ? ClEnableKasan + : CompileKernel), + Recover(ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover), + UseGlobalsGC(UseGlobalsGC && ClUseGlobalsGC && !this->CompileKernel), + // Enable aliases as they should have no downside with ODR indicators. + UsePrivateAlias(UseOdrIndicator || ClUsePrivateAlias), + UseOdrIndicator(UseOdrIndicator || ClUseOdrIndicator), + // Not a typo: ClWithComdat is almost completely pointless without + // ClUseGlobalsGC (because then it only works on modules without + // globals, which are rare); it is a prerequisite for ClUseGlobalsGC; + // and both suffer from gold PR19002 for which UseGlobalsGC constructor + // argument is designed as workaround. Therefore, disable both + // ClWithComdat and ClUseGlobalsGC unless the frontend says it's ok to + // do globals-gc. + UseCtorComdat(UseGlobalsGC && ClWithComdat && !this->CompileKernel) { + C = &(M.getContext()); + int LongSize = M.getDataLayout().getPointerSizeInBits(); + IntptrTy = Type::getIntNTy(*C, LongSize); + TargetTriple = Triple(M.getTargetTriple()); + Mapping = getShadowMapping(TargetTriple, LongSize, this->CompileKernel); + } + + bool instrumentModule(Module &); + +private: + void initializeCallbacks(Module &M); + + bool InstrumentGlobals(IRBuilder<> &IRB, Module &M, bool *CtorComdat); + void InstrumentGlobalsCOFF(IRBuilder<> &IRB, Module &M, + ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers); + void InstrumentGlobalsELF(IRBuilder<> &IRB, Module &M, + ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers, + const std::string &UniqueModuleId); + void InstrumentGlobalsMachO(IRBuilder<> &IRB, Module &M, + ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers); + void + InstrumentGlobalsWithMetadataArray(IRBuilder<> &IRB, Module &M, + ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers); + + GlobalVariable *CreateMetadataGlobal(Module &M, Constant *Initializer, + StringRef OriginalName); + void SetComdatForGlobalMetadata(GlobalVariable *G, GlobalVariable *Metadata, + StringRef InternalSuffix); + Instruction *CreateAsanModuleDtor(Module &M); + + const GlobalVariable *getExcludedAliasedGlobal(const GlobalAlias &GA) const; + bool shouldInstrumentGlobal(GlobalVariable *G) const; + bool ShouldUseMachOGlobalsSection() const; + StringRef getGlobalMetadataSection() const; + void poisonOneInitializer(Function &GlobalInit, GlobalValue *ModuleName); + void createInitializerPoisonCalls(Module &M, GlobalValue *ModuleName); + uint64_t getMinRedzoneSizeForGlobal() const { + return getRedzoneSizeForScale(Mapping.Scale); + } + uint64_t getRedzoneSizeForGlobal(uint64_t SizeInBytes) const; + int GetAsanVersion(const Module &M) const; + + const GlobalsMetadata &GlobalsMD; + bool CompileKernel; + bool Recover; + bool UseGlobalsGC; + bool UsePrivateAlias; + bool UseOdrIndicator; + bool UseCtorComdat; + Type *IntptrTy; + LLVMContext *C; + Triple TargetTriple; + ShadowMapping Mapping; + FunctionCallee AsanPoisonGlobals; + FunctionCallee AsanUnpoisonGlobals; + FunctionCallee AsanRegisterGlobals; + FunctionCallee AsanUnregisterGlobals; + FunctionCallee AsanRegisterImageGlobals; + FunctionCallee AsanUnregisterImageGlobals; + FunctionCallee AsanRegisterElfGlobals; + FunctionCallee AsanUnregisterElfGlobals; + + Function *AsanCtorFunction = nullptr; + Function *AsanDtorFunction = nullptr; +}; + +class ModuleAddressSanitizerLegacyPass : public ModulePass { +public: + static char ID; + + explicit ModuleAddressSanitizerLegacyPass(bool CompileKernel = false, + bool Recover = false, + bool UseGlobalGC = true, + bool UseOdrIndicator = false) + : ModulePass(ID), CompileKernel(CompileKernel), Recover(Recover), + UseGlobalGC(UseGlobalGC), UseOdrIndicator(UseOdrIndicator) { + initializeModuleAddressSanitizerLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "ModuleAddressSanitizer"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<ASanGlobalsMetadataWrapperPass>(); + } + + bool runOnModule(Module &M) override { + GlobalsMetadata &GlobalsMD = + getAnalysis<ASanGlobalsMetadataWrapperPass>().getGlobalsMD(); + ModuleAddressSanitizer ASanModule(M, &GlobalsMD, CompileKernel, Recover, + UseGlobalGC, UseOdrIndicator); + return ASanModule.instrumentModule(M); + } + +private: + bool CompileKernel; + bool Recover; + bool UseGlobalGC; + bool UseOdrIndicator; +}; + +// Stack poisoning does not play well with exception handling. +// When an exception is thrown, we essentially bypass the code +// that unpoisones the stack. This is why the run-time library has +// to intercept __cxa_throw (as well as longjmp, etc) and unpoison the entire +// stack in the interceptor. This however does not work inside the +// actual function which catches the exception. Most likely because the +// compiler hoists the load of the shadow value somewhere too high. +// This causes asan to report a non-existing bug on 453.povray. +// It sounds like an LLVM bug. +struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { + Function &F; + AddressSanitizer &ASan; + DIBuilder DIB; + LLVMContext *C; + Type *IntptrTy; + Type *IntptrPtrTy; + ShadowMapping Mapping; + + SmallVector<AllocaInst *, 16> AllocaVec; + SmallVector<AllocaInst *, 16> StaticAllocasToMoveUp; + SmallVector<Instruction *, 8> RetVec; + unsigned StackAlignment; + + FunctionCallee AsanStackMallocFunc[kMaxAsanStackMallocSizeClass + 1], + AsanStackFreeFunc[kMaxAsanStackMallocSizeClass + 1]; + FunctionCallee AsanSetShadowFunc[0x100] = {}; + FunctionCallee AsanPoisonStackMemoryFunc, AsanUnpoisonStackMemoryFunc; + FunctionCallee AsanAllocaPoisonFunc, AsanAllocasUnpoisonFunc; + + // Stores a place and arguments of poisoning/unpoisoning call for alloca. + struct AllocaPoisonCall { + IntrinsicInst *InsBefore; + AllocaInst *AI; + uint64_t Size; + bool DoPoison; + }; + SmallVector<AllocaPoisonCall, 8> DynamicAllocaPoisonCallVec; + SmallVector<AllocaPoisonCall, 8> StaticAllocaPoisonCallVec; + bool HasUntracedLifetimeIntrinsic = false; + + SmallVector<AllocaInst *, 1> DynamicAllocaVec; + SmallVector<IntrinsicInst *, 1> StackRestoreVec; + AllocaInst *DynamicAllocaLayout = nullptr; + IntrinsicInst *LocalEscapeCall = nullptr; + + bool HasInlineAsm = false; + bool HasReturnsTwiceCall = false; + + FunctionStackPoisoner(Function &F, AddressSanitizer &ASan) + : F(F), ASan(ASan), DIB(*F.getParent(), /*AllowUnresolved*/ false), + C(ASan.C), IntptrTy(ASan.IntptrTy), + IntptrPtrTy(PointerType::get(IntptrTy, 0)), Mapping(ASan.Mapping), + StackAlignment(1 << Mapping.Scale) {} + + bool runOnFunction() { + if (!ClStack) return false; + + if (ClRedzoneByvalArgs) + copyArgsPassedByValToAllocas(); + + // Collect alloca, ret, lifetime instructions etc. + for (BasicBlock *BB : depth_first(&F.getEntryBlock())) visit(*BB); + + if (AllocaVec.empty() && DynamicAllocaVec.empty()) return false; + + initializeCallbacks(*F.getParent()); + + if (HasUntracedLifetimeIntrinsic) { + // If there are lifetime intrinsics which couldn't be traced back to an + // alloca, we may not know exactly when a variable enters scope, and + // therefore should "fail safe" by not poisoning them. + StaticAllocaPoisonCallVec.clear(); + DynamicAllocaPoisonCallVec.clear(); + } + + processDynamicAllocas(); + processStaticAllocas(); + + if (ClDebugStack) { + LLVM_DEBUG(dbgs() << F); + } + return true; + } + + // Arguments marked with the "byval" attribute are implicitly copied without + // using an alloca instruction. To produce redzones for those arguments, we + // copy them a second time into memory allocated with an alloca instruction. + void copyArgsPassedByValToAllocas(); + + // Finds all Alloca instructions and puts + // poisoned red zones around all of them. + // Then unpoison everything back before the function returns. + void processStaticAllocas(); + void processDynamicAllocas(); + + void createDynamicAllocasInitStorage(); + + // ----------------------- Visitors. /// Collect all Ret instructions, or the musttail call instruction if it /// precedes the return instruction. void visitReturnInst(ReturnInst &RI) { @@ -969,910 +969,910 @@ struct FunctionStackPoisoner : public InstVisitor<FunctionStackPoisoner> { else RetVec.push_back(&RI); } - - /// Collect all Resume instructions. - void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } - - /// Collect all CatchReturnInst instructions. - void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } - - void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, - Value *SavedStack) { - IRBuilder<> IRB(InstBefore); - Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); - // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we - // need to adjust extracted SP to compute the address of the most recent - // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for - // this purpose. - if (!isa<ReturnInst>(InstBefore)) { - Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( - InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, - {IntptrTy}); - - Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); - - DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), - DynamicAreaOffset); - } - - IRB.CreateCall( - AsanAllocasUnpoisonFunc, - {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); - } - - // Unpoison dynamic allocas redzones. - void unpoisonDynamicAllocas() { + + /// Collect all Resume instructions. + void visitResumeInst(ResumeInst &RI) { RetVec.push_back(&RI); } + + /// Collect all CatchReturnInst instructions. + void visitCleanupReturnInst(CleanupReturnInst &CRI) { RetVec.push_back(&CRI); } + + void unpoisonDynamicAllocasBeforeInst(Instruction *InstBefore, + Value *SavedStack) { + IRBuilder<> IRB(InstBefore); + Value *DynamicAreaPtr = IRB.CreatePtrToInt(SavedStack, IntptrTy); + // When we insert _asan_allocas_unpoison before @llvm.stackrestore, we + // need to adjust extracted SP to compute the address of the most recent + // alloca. We have a special @llvm.get.dynamic.area.offset intrinsic for + // this purpose. + if (!isa<ReturnInst>(InstBefore)) { + Function *DynamicAreaOffsetFunc = Intrinsic::getDeclaration( + InstBefore->getModule(), Intrinsic::get_dynamic_area_offset, + {IntptrTy}); + + Value *DynamicAreaOffset = IRB.CreateCall(DynamicAreaOffsetFunc, {}); + + DynamicAreaPtr = IRB.CreateAdd(IRB.CreatePtrToInt(SavedStack, IntptrTy), + DynamicAreaOffset); + } + + IRB.CreateCall( + AsanAllocasUnpoisonFunc, + {IRB.CreateLoad(IntptrTy, DynamicAllocaLayout), DynamicAreaPtr}); + } + + // Unpoison dynamic allocas redzones. + void unpoisonDynamicAllocas() { for (Instruction *Ret : RetVec) - unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); - + unpoisonDynamicAllocasBeforeInst(Ret, DynamicAllocaLayout); + for (Instruction *StackRestoreInst : StackRestoreVec) - unpoisonDynamicAllocasBeforeInst(StackRestoreInst, - StackRestoreInst->getOperand(0)); - } - - // Deploy and poison redzones around dynamic alloca call. To do this, we - // should replace this call with another one with changed parameters and - // replace all its uses with new address, so - // addr = alloca type, old_size, align - // is replaced by - // new_size = (old_size + additional_size) * sizeof(type) - // tmp = alloca i8, new_size, max(align, 32) - // addr = tmp + 32 (first 32 bytes are for the left redzone). - // Additional_size is added to make new memory allocation contain not only - // requested memory, but also left, partial and right redzones. - void handleDynamicAllocaCall(AllocaInst *AI); - - /// Collect Alloca instructions we want (and can) handle. - void visitAllocaInst(AllocaInst &AI) { - if (!ASan.isInterestingAlloca(AI)) { - if (AI.isStaticAlloca()) { - // Skip over allocas that are present *before* the first instrumented - // alloca, we don't want to move those around. - if (AllocaVec.empty()) - return; - - StaticAllocasToMoveUp.push_back(&AI); - } - return; - } - - StackAlignment = std::max(StackAlignment, AI.getAlignment()); - if (!AI.isStaticAlloca()) - DynamicAllocaVec.push_back(&AI); - else - AllocaVec.push_back(&AI); - } - - /// Collect lifetime intrinsic calls to check for use-after-scope - /// errors. - void visitIntrinsicInst(IntrinsicInst &II) { - Intrinsic::ID ID = II.getIntrinsicID(); - if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); - if (ID == Intrinsic::localescape) LocalEscapeCall = &II; - if (!ASan.UseAfterScope) - return; - if (!II.isLifetimeStartOrEnd()) - return; - // Found lifetime intrinsic, add ASan instrumentation if necessary. - auto *Size = cast<ConstantInt>(II.getArgOperand(0)); - // If size argument is undefined, don't do anything. - if (Size->isMinusOne()) return; - // Check that size doesn't saturate uint64_t and can - // be stored in IntptrTy. - const uint64_t SizeValue = Size->getValue().getLimitedValue(); - if (SizeValue == ~0ULL || - !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) - return; - // Find alloca instruction that corresponds to llvm.lifetime argument. + unpoisonDynamicAllocasBeforeInst(StackRestoreInst, + StackRestoreInst->getOperand(0)); + } + + // Deploy and poison redzones around dynamic alloca call. To do this, we + // should replace this call with another one with changed parameters and + // replace all its uses with new address, so + // addr = alloca type, old_size, align + // is replaced by + // new_size = (old_size + additional_size) * sizeof(type) + // tmp = alloca i8, new_size, max(align, 32) + // addr = tmp + 32 (first 32 bytes are for the left redzone). + // Additional_size is added to make new memory allocation contain not only + // requested memory, but also left, partial and right redzones. + void handleDynamicAllocaCall(AllocaInst *AI); + + /// Collect Alloca instructions we want (and can) handle. + void visitAllocaInst(AllocaInst &AI) { + if (!ASan.isInterestingAlloca(AI)) { + if (AI.isStaticAlloca()) { + // Skip over allocas that are present *before* the first instrumented + // alloca, we don't want to move those around. + if (AllocaVec.empty()) + return; + + StaticAllocasToMoveUp.push_back(&AI); + } + return; + } + + StackAlignment = std::max(StackAlignment, AI.getAlignment()); + if (!AI.isStaticAlloca()) + DynamicAllocaVec.push_back(&AI); + else + AllocaVec.push_back(&AI); + } + + /// Collect lifetime intrinsic calls to check for use-after-scope + /// errors. + void visitIntrinsicInst(IntrinsicInst &II) { + Intrinsic::ID ID = II.getIntrinsicID(); + if (ID == Intrinsic::stackrestore) StackRestoreVec.push_back(&II); + if (ID == Intrinsic::localescape) LocalEscapeCall = &II; + if (!ASan.UseAfterScope) + return; + if (!II.isLifetimeStartOrEnd()) + return; + // Found lifetime intrinsic, add ASan instrumentation if necessary. + auto *Size = cast<ConstantInt>(II.getArgOperand(0)); + // If size argument is undefined, don't do anything. + if (Size->isMinusOne()) return; + // Check that size doesn't saturate uint64_t and can + // be stored in IntptrTy. + const uint64_t SizeValue = Size->getValue().getLimitedValue(); + if (SizeValue == ~0ULL || + !ConstantInt::isValueValidForType(IntptrTy, SizeValue)) + return; + // Find alloca instruction that corresponds to llvm.lifetime argument. // Currently we can only handle lifetime markers pointing to the // beginning of the alloca. AllocaInst *AI = findAllocaForValue(II.getArgOperand(1), true); - if (!AI) { - HasUntracedLifetimeIntrinsic = true; - return; - } - // We're interested only in allocas we can handle. - if (!ASan.isInterestingAlloca(*AI)) - return; - bool DoPoison = (ID == Intrinsic::lifetime_end); - AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; - if (AI->isStaticAlloca()) - StaticAllocaPoisonCallVec.push_back(APC); - else if (ClInstrumentDynamicAllocas) - DynamicAllocaPoisonCallVec.push_back(APC); - } - - void visitCallBase(CallBase &CB) { - if (CallInst *CI = dyn_cast<CallInst>(&CB)) { - HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; - HasReturnsTwiceCall |= CI->canReturnTwice(); - } - } - - // ---------------------- Helpers. - void initializeCallbacks(Module &M); - - // Copies bytes from ShadowBytes into shadow memory for indexes where - // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that - // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. - void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, - IRBuilder<> &IRB, Value *ShadowBase); - void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, IRBuilder<> &IRB, - Value *ShadowBase); - void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, size_t Begin, - size_t End, IRBuilder<> &IRB, Value *ShadowBase); - - void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); - - Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, - bool Dynamic); - PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, - Instruction *ThenTerm, Value *ValueIfFalse); -}; - -} // end anonymous namespace - -void LocationMetadata::parse(MDNode *MDN) { - assert(MDN->getNumOperands() == 3); - MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); - Filename = DIFilename->getString(); - LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); - ColumnNo = - mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); -} - -// FIXME: It would be cleaner to instead attach relevant metadata to the globals -// we want to sanitize instead and reading this metadata on each pass over a -// function instead of reading module level metadata at first. -GlobalsMetadata::GlobalsMetadata(Module &M) { - NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); - if (!Globals) - return; - for (auto MDN : Globals->operands()) { - // Metadata node contains the global and the fields of "Entry". - assert(MDN->getNumOperands() == 5); - auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); - // The optimizer may optimize away a global entirely. - if (!V) - continue; - auto *StrippedV = V->stripPointerCasts(); - auto *GV = dyn_cast<GlobalVariable>(StrippedV); - if (!GV) - continue; - // We can already have an entry for GV if it was merged with another - // global. - Entry &E = Entries[GV]; - if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) - E.SourceLoc.parse(Loc); - if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) - E.Name = Name->getString(); - ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); - E.IsDynInit |= IsDynInit->isOne(); - ConstantInt *IsExcluded = - mdconst::extract<ConstantInt>(MDN->getOperand(4)); - E.IsExcluded |= IsExcluded->isOne(); - } -} - -AnalysisKey ASanGlobalsMetadataAnalysis::Key; - -GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, - ModuleAnalysisManager &AM) { - return GlobalsMetadata(M); -} - -AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, - bool UseAfterScope) - : CompileKernel(CompileKernel), Recover(Recover), - UseAfterScope(UseAfterScope) {} - -PreservedAnalyses AddressSanitizerPass::run(Function &F, - AnalysisManager<Function> &AM) { - auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); - Module &M = *F.getParent(); - if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { - const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); - AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); - if (Sanitizer.instrumentFunction(F, TLI)) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); - } - - report_fatal_error( - "The ASanGlobalsMetadataAnalysis is required to run before " - "AddressSanitizer can run"); - return PreservedAnalyses::all(); -} - -ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, - bool Recover, - bool UseGlobalGC, - bool UseOdrIndicator) - : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), - UseOdrIndicator(UseOdrIndicator) {} - -PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, - AnalysisManager<Module> &AM) { - GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); - ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, - UseGlobalGC, UseOdrIndicator); - if (Sanitizer.instrumentModule(M)) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", - "Read metadata to mark which globals should be instrumented " - "when running ASan.", - false, true) - -char AddressSanitizerLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN( - AddressSanitizerLegacyPass, "asan", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, - false) -INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END( - AddressSanitizerLegacyPass, "asan", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, - false) - -FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, - bool Recover, - bool UseAfterScope) { - assert(!CompileKernel || Recover); - return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); -} - -char ModuleAddressSanitizerLegacyPass::ID = 0; - -INITIALIZE_PASS( - ModuleAddressSanitizerLegacyPass, "asan-module", - "AddressSanitizer: detects use-after-free and out-of-bounds bugs." - "ModulePass", - false, false) - -ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( - bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { - assert(!CompileKernel || Recover); - return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, - UseGlobalsGC, UseOdrIndicator); -} - -static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { - size_t Res = countTrailingZeros(TypeSize / 8); - assert(Res < kNumberOfAccessSizes); - return Res; -} - -/// Create a global describing a source location. -static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, - LocationMetadata MD) { - Constant *LocData[] = { - createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), - ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), - ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), - }; - auto LocStruct = ConstantStruct::getAnon(LocData); - auto GV = new GlobalVariable(M, LocStruct->getType(), true, - GlobalValue::PrivateLinkage, LocStruct, - kAsanGenPrefix); - GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - return GV; -} - -/// Check if \p G has been created by a trusted compiler pass. -static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { - // Do not instrument @llvm.global_ctors, @llvm.used, etc. - if (G->getName().startswith("llvm.")) - return true; - - // Do not instrument asan globals. - if (G->getName().startswith(kAsanGenPrefix) || - G->getName().startswith(kSanCovGenPrefix) || - G->getName().startswith(kODRGenPrefix)) - return true; - - // Do not instrument gcov counter arrays. - if (G->getName() == "__llvm_gcov_ctr") - return true; - - return false; -} - -Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { - // Shadow >> scale - Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); - if (Mapping.Offset == 0) return Shadow; - // (Shadow >> scale) | offset - Value *ShadowBase; - if (LocalDynamicShadow) - ShadowBase = LocalDynamicShadow; - else - ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); - if (Mapping.OrShadowOffset) - return IRB.CreateOr(Shadow, ShadowBase); - else - return IRB.CreateAdd(Shadow, ShadowBase); -} - -// Instrument memset/memmove/memcpy -void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { - IRBuilder<> IRB(MI); - if (isa<MemTransferInst>(MI)) { - IRB.CreateCall( - isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } else if (isa<MemSetInst>(MI)) { - IRB.CreateCall( - AsanMemset, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } - MI->eraseFromParent(); -} - -/// Check if we want (and can) handle this alloca. -bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { - auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); - - if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) - return PreviouslySeenAllocaInfo->getSecond(); - - bool IsInteresting = - (AI.getAllocatedType()->isSized() && - // alloca() may be called with 0 size, ignore it. - ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && - // We are only interested in allocas not promotable to registers. - // Promotable allocas are common under -O0. - (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && - // inalloca allocas are not treated as static, and we don't want - // dynamic alloca instrumentation for them as well. - !AI.isUsedWithInAlloca() && - // swifterror allocas are register promoted by ISel - !AI.isSwiftError()); - - ProcessedAllocas[&AI] = IsInteresting; - return IsInteresting; -} - -bool AddressSanitizer::ignoreAccess(Value *Ptr) { - // Do not instrument acesses from different address spaces; we cannot deal - // with them. - Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); - if (PtrTy->getPointerAddressSpace() != 0) - return true; - - // Ignore swifterror addresses. - // swifterror memory addresses are mem2reg promoted by instruction - // selection. As such they cannot have regular uses like an instrumentation - // function and it makes no sense to track them as memory. - if (Ptr->isSwiftError()) - return true; - - // Treat memory accesses to promotable allocas as non-interesting since they - // will not cause memory violations. This greatly speeds up the instrumented - // executable at -O0. - if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) - if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) - return true; - - return false; -} - -void AddressSanitizer::getInterestingMemoryOperands( - Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { - // Skip memory accesses inserted by another instrumentation. - if (I->hasMetadata("nosanitize")) - return; - - // Do not instrument the load fetching the dynamic shadow address. - if (LocalDynamicShadow == I) - return; - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) - return; - Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, - LI->getType(), LI->getAlign()); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) - return; - Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, - SI->getValueOperand()->getType(), SI->getAlign()); - } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { - if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) - return; - Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, - RMW->getValOperand()->getType(), None); - } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { - if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) - return; - Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, - XCHG->getCompareOperand()->getType(), None); - } else if (auto CI = dyn_cast<CallInst>(I)) { - auto *F = CI->getCalledFunction(); - if (F && (F->getName().startswith("llvm.masked.load.") || - F->getName().startswith("llvm.masked.store."))) { - bool IsWrite = F->getName().startswith("llvm.masked.store."); - // Masked store has an initial operand for the value. - unsigned OpOffset = IsWrite ? 1 : 0; - if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) - return; - - auto BasePtr = CI->getOperand(OpOffset); - if (ignoreAccess(BasePtr)) - return; - auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); - MaybeAlign Alignment = Align(1); - // Otherwise no alignment guarantees. We probably got Undef. - if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) - Alignment = Op->getMaybeAlignValue(); - Value *Mask = CI->getOperand(2 + OpOffset); - Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); - } else { - for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { - if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || - ignoreAccess(CI->getArgOperand(ArgNo))) - continue; - Type *Ty = CI->getParamByValType(ArgNo); - Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); - } - } - } -} - -static bool isPointerOperand(Value *V) { - return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); -} - -// This is a rough heuristic; it may cause both false positives and -// false negatives. The proper implementation requires cooperation with -// the frontend. -static bool isInterestingPointerComparison(Instruction *I) { - if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { - if (!Cmp->isRelational()) - return false; - } else { - return false; - } - return isPointerOperand(I->getOperand(0)) && - isPointerOperand(I->getOperand(1)); -} - -// This is a rough heuristic; it may cause both false positives and -// false negatives. The proper implementation requires cooperation with -// the frontend. -static bool isInterestingPointerSubtraction(Instruction *I) { - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { - if (BO->getOpcode() != Instruction::Sub) - return false; - } else { - return false; - } - return isPointerOperand(I->getOperand(0)) && - isPointerOperand(I->getOperand(1)); -} - -bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { - // If a global variable does not have dynamic initialization we don't - // have to instrument it. However, if a global does not have initializer - // at all, we assume it has dynamic initializer (in other TU). - // - // FIXME: Metadata should be attched directly to the global directly instead - // of being added to llvm.asan.globals. - return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; -} - -void AddressSanitizer::instrumentPointerComparisonOrSubtraction( - Instruction *I) { - IRBuilder<> IRB(I); - FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; - Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; - for (Value *&i : Param) { - if (i->getType()->isPointerTy()) - i = IRB.CreatePointerCast(i, IntptrTy); - } - IRB.CreateCall(F, Param); -} - -static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, - Instruction *InsertBefore, Value *Addr, - MaybeAlign Alignment, unsigned Granularity, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp) { - // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check - // if the data is properly aligned. - if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || - TypeSize == 128) && - (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) - return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, - nullptr, UseCalls, Exp); - Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, - IsWrite, nullptr, UseCalls, Exp); -} - -static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, - const DataLayout &DL, Type *IntptrTy, - Value *Mask, Instruction *I, - Value *Addr, MaybeAlign Alignment, - unsigned Granularity, uint32_t TypeSize, - bool IsWrite, Value *SizeArgument, - bool UseCalls, uint32_t Exp) { - auto *VTy = cast<FixedVectorType>( - cast<PointerType>(Addr->getType())->getElementType()); - uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); - unsigned Num = VTy->getNumElements(); - auto Zero = ConstantInt::get(IntptrTy, 0); - for (unsigned Idx = 0; Idx < Num; ++Idx) { - Value *InstrumentedAddress = nullptr; - Instruction *InsertBefore = I; - if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { - // dyn_cast as we might get UndefValue - if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { - if (Masked->isZero()) - // Mask is constant false, so no instrumentation needed. - continue; - // If we have a true or undef value, fall through to doInstrumentAddress - // with InsertBefore == I - } - } else { - IRBuilder<> IRB(I); - Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); - Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); - InsertBefore = ThenTerm; - } - - IRBuilder<> IRB(InsertBefore); - InstrumentedAddress = - IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); - doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, - Granularity, ElemTypeSize, IsWrite, SizeArgument, - UseCalls, Exp); - } -} - -void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, - InterestingMemoryOperand &O, bool UseCalls, - const DataLayout &DL) { - Value *Addr = O.getPtr(); - - // Optimization experiments. - // The experiments can be used to evaluate potential optimizations that remove - // instrumentation (assess false negatives). Instead of completely removing - // some instrumentation, you set Exp to a non-zero value (mask of optimization - // experiments that want to remove instrumentation of this instruction). - // If Exp is non-zero, this pass will emit special calls into runtime - // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls - // make runtime terminate the program in a special way (with a different - // exit status). Then you run the new compiler on a buggy corpus, collect - // the special terminations (ideally, you don't see them at all -- no false - // negatives) and make the decision on the optimization. - uint32_t Exp = ClForceExperiment; - - if (ClOpt && ClOptGlobals) { - // If initialization order checking is disabled, a simple access to a - // dynamically initialized global is always valid. + if (!AI) { + HasUntracedLifetimeIntrinsic = true; + return; + } + // We're interested only in allocas we can handle. + if (!ASan.isInterestingAlloca(*AI)) + return; + bool DoPoison = (ID == Intrinsic::lifetime_end); + AllocaPoisonCall APC = {&II, AI, SizeValue, DoPoison}; + if (AI->isStaticAlloca()) + StaticAllocaPoisonCallVec.push_back(APC); + else if (ClInstrumentDynamicAllocas) + DynamicAllocaPoisonCallVec.push_back(APC); + } + + void visitCallBase(CallBase &CB) { + if (CallInst *CI = dyn_cast<CallInst>(&CB)) { + HasInlineAsm |= CI->isInlineAsm() && &CB != ASan.LocalDynamicShadow; + HasReturnsTwiceCall |= CI->canReturnTwice(); + } + } + + // ---------------------- Helpers. + void initializeCallbacks(Module &M); + + // Copies bytes from ShadowBytes into shadow memory for indexes where + // ShadowMask is not zero. If ShadowMask[i] is zero, we assume that + // ShadowBytes[i] is constantly zero and doesn't need to be overwritten. + void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, + IRBuilder<> &IRB, Value *ShadowBase); + void copyToShadow(ArrayRef<uint8_t> ShadowMask, ArrayRef<uint8_t> ShadowBytes, + size_t Begin, size_t End, IRBuilder<> &IRB, + Value *ShadowBase); + void copyToShadowInline(ArrayRef<uint8_t> ShadowMask, + ArrayRef<uint8_t> ShadowBytes, size_t Begin, + size_t End, IRBuilder<> &IRB, Value *ShadowBase); + + void poisonAlloca(Value *V, uint64_t Size, IRBuilder<> &IRB, bool DoPoison); + + Value *createAllocaForLayout(IRBuilder<> &IRB, const ASanStackFrameLayout &L, + bool Dynamic); + PHINode *createPHI(IRBuilder<> &IRB, Value *Cond, Value *ValueIfTrue, + Instruction *ThenTerm, Value *ValueIfFalse); +}; + +} // end anonymous namespace + +void LocationMetadata::parse(MDNode *MDN) { + assert(MDN->getNumOperands() == 3); + MDString *DIFilename = cast<MDString>(MDN->getOperand(0)); + Filename = DIFilename->getString(); + LineNo = mdconst::extract<ConstantInt>(MDN->getOperand(1))->getLimitedValue(); + ColumnNo = + mdconst::extract<ConstantInt>(MDN->getOperand(2))->getLimitedValue(); +} + +// FIXME: It would be cleaner to instead attach relevant metadata to the globals +// we want to sanitize instead and reading this metadata on each pass over a +// function instead of reading module level metadata at first. +GlobalsMetadata::GlobalsMetadata(Module &M) { + NamedMDNode *Globals = M.getNamedMetadata("llvm.asan.globals"); + if (!Globals) + return; + for (auto MDN : Globals->operands()) { + // Metadata node contains the global and the fields of "Entry". + assert(MDN->getNumOperands() == 5); + auto *V = mdconst::extract_or_null<Constant>(MDN->getOperand(0)); + // The optimizer may optimize away a global entirely. + if (!V) + continue; + auto *StrippedV = V->stripPointerCasts(); + auto *GV = dyn_cast<GlobalVariable>(StrippedV); + if (!GV) + continue; + // We can already have an entry for GV if it was merged with another + // global. + Entry &E = Entries[GV]; + if (auto *Loc = cast_or_null<MDNode>(MDN->getOperand(1))) + E.SourceLoc.parse(Loc); + if (auto *Name = cast_or_null<MDString>(MDN->getOperand(2))) + E.Name = Name->getString(); + ConstantInt *IsDynInit = mdconst::extract<ConstantInt>(MDN->getOperand(3)); + E.IsDynInit |= IsDynInit->isOne(); + ConstantInt *IsExcluded = + mdconst::extract<ConstantInt>(MDN->getOperand(4)); + E.IsExcluded |= IsExcluded->isOne(); + } +} + +AnalysisKey ASanGlobalsMetadataAnalysis::Key; + +GlobalsMetadata ASanGlobalsMetadataAnalysis::run(Module &M, + ModuleAnalysisManager &AM) { + return GlobalsMetadata(M); +} + +AddressSanitizerPass::AddressSanitizerPass(bool CompileKernel, bool Recover, + bool UseAfterScope) + : CompileKernel(CompileKernel), Recover(Recover), + UseAfterScope(UseAfterScope) {} + +PreservedAnalyses AddressSanitizerPass::run(Function &F, + AnalysisManager<Function> &AM) { + auto &MAMProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F); + Module &M = *F.getParent(); + if (auto *R = MAMProxy.getCachedResult<ASanGlobalsMetadataAnalysis>(M)) { + const TargetLibraryInfo *TLI = &AM.getResult<TargetLibraryAnalysis>(F); + AddressSanitizer Sanitizer(M, R, CompileKernel, Recover, UseAfterScope); + if (Sanitizer.instrumentFunction(F, TLI)) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); + } + + report_fatal_error( + "The ASanGlobalsMetadataAnalysis is required to run before " + "AddressSanitizer can run"); + return PreservedAnalyses::all(); +} + +ModuleAddressSanitizerPass::ModuleAddressSanitizerPass(bool CompileKernel, + bool Recover, + bool UseGlobalGC, + bool UseOdrIndicator) + : CompileKernel(CompileKernel), Recover(Recover), UseGlobalGC(UseGlobalGC), + UseOdrIndicator(UseOdrIndicator) {} + +PreservedAnalyses ModuleAddressSanitizerPass::run(Module &M, + AnalysisManager<Module> &AM) { + GlobalsMetadata &GlobalsMD = AM.getResult<ASanGlobalsMetadataAnalysis>(M); + ModuleAddressSanitizer Sanitizer(M, &GlobalsMD, CompileKernel, Recover, + UseGlobalGC, UseOdrIndicator); + if (Sanitizer.instrumentModule(M)) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +INITIALIZE_PASS(ASanGlobalsMetadataWrapperPass, "asan-globals-md", + "Read metadata to mark which globals should be instrumented " + "when running ASan.", + false, true) + +char AddressSanitizerLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN( + AddressSanitizerLegacyPass, "asan", + "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, + false) +INITIALIZE_PASS_DEPENDENCY(ASanGlobalsMetadataWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END( + AddressSanitizerLegacyPass, "asan", + "AddressSanitizer: detects use-after-free and out-of-bounds bugs.", false, + false) + +FunctionPass *llvm::createAddressSanitizerFunctionPass(bool CompileKernel, + bool Recover, + bool UseAfterScope) { + assert(!CompileKernel || Recover); + return new AddressSanitizerLegacyPass(CompileKernel, Recover, UseAfterScope); +} + +char ModuleAddressSanitizerLegacyPass::ID = 0; + +INITIALIZE_PASS( + ModuleAddressSanitizerLegacyPass, "asan-module", + "AddressSanitizer: detects use-after-free and out-of-bounds bugs." + "ModulePass", + false, false) + +ModulePass *llvm::createModuleAddressSanitizerLegacyPassPass( + bool CompileKernel, bool Recover, bool UseGlobalsGC, bool UseOdrIndicator) { + assert(!CompileKernel || Recover); + return new ModuleAddressSanitizerLegacyPass(CompileKernel, Recover, + UseGlobalsGC, UseOdrIndicator); +} + +static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { + size_t Res = countTrailingZeros(TypeSize / 8); + assert(Res < kNumberOfAccessSizes); + return Res; +} + +/// Create a global describing a source location. +static GlobalVariable *createPrivateGlobalForSourceLoc(Module &M, + LocationMetadata MD) { + Constant *LocData[] = { + createPrivateGlobalForString(M, MD.Filename, true, kAsanGenPrefix), + ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.LineNo), + ConstantInt::get(Type::getInt32Ty(M.getContext()), MD.ColumnNo), + }; + auto LocStruct = ConstantStruct::getAnon(LocData); + auto GV = new GlobalVariable(M, LocStruct->getType(), true, + GlobalValue::PrivateLinkage, LocStruct, + kAsanGenPrefix); + GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + return GV; +} + +/// Check if \p G has been created by a trusted compiler pass. +static bool GlobalWasGeneratedByCompiler(GlobalVariable *G) { + // Do not instrument @llvm.global_ctors, @llvm.used, etc. + if (G->getName().startswith("llvm.")) + return true; + + // Do not instrument asan globals. + if (G->getName().startswith(kAsanGenPrefix) || + G->getName().startswith(kSanCovGenPrefix) || + G->getName().startswith(kODRGenPrefix)) + return true; + + // Do not instrument gcov counter arrays. + if (G->getName() == "__llvm_gcov_ctr") + return true; + + return false; +} + +Value *AddressSanitizer::memToShadow(Value *Shadow, IRBuilder<> &IRB) { + // Shadow >> scale + Shadow = IRB.CreateLShr(Shadow, Mapping.Scale); + if (Mapping.Offset == 0) return Shadow; + // (Shadow >> scale) | offset + Value *ShadowBase; + if (LocalDynamicShadow) + ShadowBase = LocalDynamicShadow; + else + ShadowBase = ConstantInt::get(IntptrTy, Mapping.Offset); + if (Mapping.OrShadowOffset) + return IRB.CreateOr(Shadow, ShadowBase); + else + return IRB.CreateAdd(Shadow, ShadowBase); +} + +// Instrument memset/memmove/memcpy +void AddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { + IRBuilder<> IRB(MI); + if (isa<MemTransferInst>(MI)) { + IRB.CreateCall( + isa<MemMoveInst>(MI) ? AsanMemmove : AsanMemcpy, + {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); + } else if (isa<MemSetInst>(MI)) { + IRB.CreateCall( + AsanMemset, + {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), + IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), + IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); + } + MI->eraseFromParent(); +} + +/// Check if we want (and can) handle this alloca. +bool AddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { + auto PreviouslySeenAllocaInfo = ProcessedAllocas.find(&AI); + + if (PreviouslySeenAllocaInfo != ProcessedAllocas.end()) + return PreviouslySeenAllocaInfo->getSecond(); + + bool IsInteresting = + (AI.getAllocatedType()->isSized() && + // alloca() may be called with 0 size, ignore it. + ((!AI.isStaticAlloca()) || getAllocaSizeInBytes(AI) > 0) && + // We are only interested in allocas not promotable to registers. + // Promotable allocas are common under -O0. + (!ClSkipPromotableAllocas || !isAllocaPromotable(&AI)) && + // inalloca allocas are not treated as static, and we don't want + // dynamic alloca instrumentation for them as well. + !AI.isUsedWithInAlloca() && + // swifterror allocas are register promoted by ISel + !AI.isSwiftError()); + + ProcessedAllocas[&AI] = IsInteresting; + return IsInteresting; +} + +bool AddressSanitizer::ignoreAccess(Value *Ptr) { + // Do not instrument acesses from different address spaces; we cannot deal + // with them. + Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); + if (PtrTy->getPointerAddressSpace() != 0) + return true; + + // Ignore swifterror addresses. + // swifterror memory addresses are mem2reg promoted by instruction + // selection. As such they cannot have regular uses like an instrumentation + // function and it makes no sense to track them as memory. + if (Ptr->isSwiftError()) + return true; + + // Treat memory accesses to promotable allocas as non-interesting since they + // will not cause memory violations. This greatly speeds up the instrumented + // executable at -O0. + if (auto AI = dyn_cast_or_null<AllocaInst>(Ptr)) + if (ClSkipPromotableAllocas && !isInterestingAlloca(*AI)) + return true; + + return false; +} + +void AddressSanitizer::getInterestingMemoryOperands( + Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { + // Skip memory accesses inserted by another instrumentation. + if (I->hasMetadata("nosanitize")) + return; + + // Do not instrument the load fetching the dynamic shadow address. + if (LocalDynamicShadow == I) + return; + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) + return; + Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, + LI->getType(), LI->getAlign()); + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) + return; + Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, + SI->getValueOperand()->getType(), SI->getAlign()); + } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { + if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) + return; + Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, + RMW->getValOperand()->getType(), None); + } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { + if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) + return; + Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, + XCHG->getCompareOperand()->getType(), None); + } else if (auto CI = dyn_cast<CallInst>(I)) { + auto *F = CI->getCalledFunction(); + if (F && (F->getName().startswith("llvm.masked.load.") || + F->getName().startswith("llvm.masked.store."))) { + bool IsWrite = F->getName().startswith("llvm.masked.store."); + // Masked store has an initial operand for the value. + unsigned OpOffset = IsWrite ? 1 : 0; + if (IsWrite ? !ClInstrumentWrites : !ClInstrumentReads) + return; + + auto BasePtr = CI->getOperand(OpOffset); + if (ignoreAccess(BasePtr)) + return; + auto Ty = cast<PointerType>(BasePtr->getType())->getElementType(); + MaybeAlign Alignment = Align(1); + // Otherwise no alignment guarantees. We probably got Undef. + if (auto *Op = dyn_cast<ConstantInt>(CI->getOperand(1 + OpOffset))) + Alignment = Op->getMaybeAlignValue(); + Value *Mask = CI->getOperand(2 + OpOffset); + Interesting.emplace_back(I, OpOffset, IsWrite, Ty, Alignment, Mask); + } else { + for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { + if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || + ignoreAccess(CI->getArgOperand(ArgNo))) + continue; + Type *Ty = CI->getParamByValType(ArgNo); + Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); + } + } + } +} + +static bool isPointerOperand(Value *V) { + return V->getType()->isPointerTy() || isa<PtrToIntInst>(V); +} + +// This is a rough heuristic; it may cause both false positives and +// false negatives. The proper implementation requires cooperation with +// the frontend. +static bool isInterestingPointerComparison(Instruction *I) { + if (ICmpInst *Cmp = dyn_cast<ICmpInst>(I)) { + if (!Cmp->isRelational()) + return false; + } else { + return false; + } + return isPointerOperand(I->getOperand(0)) && + isPointerOperand(I->getOperand(1)); +} + +// This is a rough heuristic; it may cause both false positives and +// false negatives. The proper implementation requires cooperation with +// the frontend. +static bool isInterestingPointerSubtraction(Instruction *I) { + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) { + if (BO->getOpcode() != Instruction::Sub) + return false; + } else { + return false; + } + return isPointerOperand(I->getOperand(0)) && + isPointerOperand(I->getOperand(1)); +} + +bool AddressSanitizer::GlobalIsLinkerInitialized(GlobalVariable *G) { + // If a global variable does not have dynamic initialization we don't + // have to instrument it. However, if a global does not have initializer + // at all, we assume it has dynamic initializer (in other TU). + // + // FIXME: Metadata should be attched directly to the global directly instead + // of being added to llvm.asan.globals. + return G->hasInitializer() && !GlobalsMD.get(G).IsDynInit; +} + +void AddressSanitizer::instrumentPointerComparisonOrSubtraction( + Instruction *I) { + IRBuilder<> IRB(I); + FunctionCallee F = isa<ICmpInst>(I) ? AsanPtrCmpFunction : AsanPtrSubFunction; + Value *Param[2] = {I->getOperand(0), I->getOperand(1)}; + for (Value *&i : Param) { + if (i->getType()->isPointerTy()) + i = IRB.CreatePointerCast(i, IntptrTy); + } + IRB.CreateCall(F, Param); +} + +static void doInstrumentAddress(AddressSanitizer *Pass, Instruction *I, + Instruction *InsertBefore, Value *Addr, + MaybeAlign Alignment, unsigned Granularity, + uint32_t TypeSize, bool IsWrite, + Value *SizeArgument, bool UseCalls, + uint32_t Exp) { + // Instrument a 1-, 2-, 4-, 8-, or 16- byte access with one check + // if the data is properly aligned. + if ((TypeSize == 8 || TypeSize == 16 || TypeSize == 32 || TypeSize == 64 || + TypeSize == 128) && + (!Alignment || *Alignment >= Granularity || *Alignment >= TypeSize / 8)) + return Pass->instrumentAddress(I, InsertBefore, Addr, TypeSize, IsWrite, + nullptr, UseCalls, Exp); + Pass->instrumentUnusualSizeOrAlignment(I, InsertBefore, Addr, TypeSize, + IsWrite, nullptr, UseCalls, Exp); +} + +static void instrumentMaskedLoadOrStore(AddressSanitizer *Pass, + const DataLayout &DL, Type *IntptrTy, + Value *Mask, Instruction *I, + Value *Addr, MaybeAlign Alignment, + unsigned Granularity, uint32_t TypeSize, + bool IsWrite, Value *SizeArgument, + bool UseCalls, uint32_t Exp) { + auto *VTy = cast<FixedVectorType>( + cast<PointerType>(Addr->getType())->getElementType()); + uint64_t ElemTypeSize = DL.getTypeStoreSizeInBits(VTy->getScalarType()); + unsigned Num = VTy->getNumElements(); + auto Zero = ConstantInt::get(IntptrTy, 0); + for (unsigned Idx = 0; Idx < Num; ++Idx) { + Value *InstrumentedAddress = nullptr; + Instruction *InsertBefore = I; + if (auto *Vector = dyn_cast<ConstantVector>(Mask)) { + // dyn_cast as we might get UndefValue + if (auto *Masked = dyn_cast<ConstantInt>(Vector->getOperand(Idx))) { + if (Masked->isZero()) + // Mask is constant false, so no instrumentation needed. + continue; + // If we have a true or undef value, fall through to doInstrumentAddress + // with InsertBefore == I + } + } else { + IRBuilder<> IRB(I); + Value *MaskElem = IRB.CreateExtractElement(Mask, Idx); + Instruction *ThenTerm = SplitBlockAndInsertIfThen(MaskElem, I, false); + InsertBefore = ThenTerm; + } + + IRBuilder<> IRB(InsertBefore); + InstrumentedAddress = + IRB.CreateGEP(VTy, Addr, {Zero, ConstantInt::get(IntptrTy, Idx)}); + doInstrumentAddress(Pass, I, InsertBefore, InstrumentedAddress, Alignment, + Granularity, ElemTypeSize, IsWrite, SizeArgument, + UseCalls, Exp); + } +} + +void AddressSanitizer::instrumentMop(ObjectSizeOffsetVisitor &ObjSizeVis, + InterestingMemoryOperand &O, bool UseCalls, + const DataLayout &DL) { + Value *Addr = O.getPtr(); + + // Optimization experiments. + // The experiments can be used to evaluate potential optimizations that remove + // instrumentation (assess false negatives). Instead of completely removing + // some instrumentation, you set Exp to a non-zero value (mask of optimization + // experiments that want to remove instrumentation of this instruction). + // If Exp is non-zero, this pass will emit special calls into runtime + // (e.g. __asan_report_exp_load1 instead of __asan_report_load1). These calls + // make runtime terminate the program in a special way (with a different + // exit status). Then you run the new compiler on a buggy corpus, collect + // the special terminations (ideally, you don't see them at all -- no false + // negatives) and make the decision on the optimization. + uint32_t Exp = ClForceExperiment; + + if (ClOpt && ClOptGlobals) { + // If initialization order checking is disabled, a simple access to a + // dynamically initialized global is always valid. GlobalVariable *G = dyn_cast<GlobalVariable>(getUnderlyingObject(Addr)); - if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && - isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { - NumOptimizedAccessesToGlobalVar++; - return; - } - } - - if (ClOpt && ClOptStack) { - // A direct inbounds access to a stack variable is always valid. + if (G && (!ClInitializers || GlobalIsLinkerInitialized(G)) && + isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { + NumOptimizedAccessesToGlobalVar++; + return; + } + } + + if (ClOpt && ClOptStack) { + // A direct inbounds access to a stack variable is always valid. if (isa<AllocaInst>(getUnderlyingObject(Addr)) && - isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { - NumOptimizedAccessesToStackVar++; - return; - } - } - - if (O.IsWrite) - NumInstrumentedWrites++; - else - NumInstrumentedReads++; - - unsigned Granularity = 1 << Mapping.Scale; - if (O.MaybeMask) { - instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), - Addr, O.Alignment, Granularity, O.TypeSize, - O.IsWrite, nullptr, UseCalls, Exp); - } else { - doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, - Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, - Exp); - } -} - -Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, - Value *Addr, bool IsWrite, - size_t AccessSizeIndex, - Value *SizeArgument, - uint32_t Exp) { - IRBuilder<> IRB(InsertBefore); - Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); - CallInst *Call = nullptr; - if (SizeArgument) { - if (Exp == 0) - Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], - {Addr, SizeArgument}); - else - Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], - {Addr, SizeArgument, ExpVal}); - } else { - if (Exp == 0) - Call = - IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); - else - Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], - {Addr, ExpVal}); - } - - Call->setCannotMerge(); - return Call; -} - -Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, - Value *ShadowValue, - uint32_t TypeSize) { - size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; - // Addr & (Granularity - 1) - Value *LastAccessedByte = - IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); - // (Addr & (Granularity - 1)) + size - 1 - if (TypeSize / 8 > 1) - LastAccessedByte = IRB.CreateAdd( - LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); - // (uint8_t) ((Addr & (Granularity-1)) + size - 1) - LastAccessedByte = - IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); - // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue - return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); -} - -void AddressSanitizer::instrumentAddress(Instruction *OrigIns, - Instruction *InsertBefore, Value *Addr, - uint32_t TypeSize, bool IsWrite, - Value *SizeArgument, bool UseCalls, - uint32_t Exp) { - bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; - - IRBuilder<> IRB(InsertBefore); - Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); - size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); - - if (UseCalls) { - if (Exp == 0) - IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], - AddrLong); - else - IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], - {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); - return; - } - - if (IsMyriad) { - // Strip the cache bit and do range check. - // AddrLong &= ~kMyriadCacheBitMask32 - AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); - // Tag = AddrLong >> kMyriadTagShift - Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); - // Tag == kMyriadDDRTag - Value *TagCheck = - IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); - - Instruction *TagCheckTerm = - SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, - MDBuilder(*C).createBranchWeights(1, 100000)); - assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); - IRB.SetInsertPoint(TagCheckTerm); - InsertBefore = TagCheckTerm; - } - - Type *ShadowTy = - IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); - Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); - Value *ShadowPtr = memToShadow(AddrLong, IRB); - Value *CmpVal = Constant::getNullValue(ShadowTy); - Value *ShadowValue = - IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); - - Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); - size_t Granularity = 1ULL << Mapping.Scale; - Instruction *CrashTerm = nullptr; - - if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { - // We use branch weights for the slow path check, to indicate that the slow - // path is rarely taken. This seems to be the case for SPEC benchmarks. - Instruction *CheckTerm = SplitBlockAndInsertIfThen( - Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); - assert(cast<BranchInst>(CheckTerm)->isUnconditional()); - BasicBlock *NextBB = CheckTerm->getSuccessor(0); - IRB.SetInsertPoint(CheckTerm); - Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); - if (Recover) { - CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); - } else { - BasicBlock *CrashBlock = - BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); - CrashTerm = new UnreachableInst(*C, CrashBlock); - BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); - ReplaceInstWithInst(CheckTerm, NewTerm); - } - } else { - CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); - } - - Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, - AccessSizeIndex, SizeArgument, Exp); - Crash->setDebugLoc(OrigIns->getDebugLoc()); -} - -// Instrument unusual size or unusual alignment. -// We can not do it with a single check, so we do 1-byte check for the first -// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able -// to report the actual access size. -void AddressSanitizer::instrumentUnusualSizeOrAlignment( - Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, - bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { - IRBuilder<> IRB(InsertBefore); - Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); - Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); - if (UseCalls) { - if (Exp == 0) - IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], - {AddrLong, Size}); - else - IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], - {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); - } else { - Value *LastByte = IRB.CreateIntToPtr( - IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), - Addr->getType()); - instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); - instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); - } -} - -void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, - GlobalValue *ModuleName) { - // Set up the arguments to our poison/unpoison functions. - IRBuilder<> IRB(&GlobalInit.front(), - GlobalInit.front().getFirstInsertionPt()); - - // Add a call to poison all external globals before the given function starts. - Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); - IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); - - // Add calls to unpoison all globals before each return instruction. - for (auto &BB : GlobalInit.getBasicBlockList()) - if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) - CallInst::Create(AsanUnpoisonGlobals, "", RI); -} - -void ModuleAddressSanitizer::createInitializerPoisonCalls( - Module &M, GlobalValue *ModuleName) { - GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); - if (!GV) - return; - - ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); - if (!CA) - return; - - for (Use &OP : CA->operands()) { - if (isa<ConstantAggregateZero>(OP)) continue; - ConstantStruct *CS = cast<ConstantStruct>(OP); - - // Must have a function or null ptr. - if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { - if (F->getName() == kAsanModuleCtorName) continue; - auto *Priority = cast<ConstantInt>(CS->getOperand(0)); - // Don't instrument CTORs that will run before asan.module_ctor. - if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) - continue; - poisonOneInitializer(*F, ModuleName); - } - } -} - -const GlobalVariable * -ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { - // In case this function should be expanded to include rules that do not just - // apply when CompileKernel is true, either guard all existing rules with an - // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules - // should also apply to user space. - assert(CompileKernel && "Only expecting to be called when compiling kernel"); - - const Constant *C = GA.getAliasee(); - - // When compiling the kernel, globals that are aliased by symbols prefixed - // by "__" are special and cannot be padded with a redzone. - if (GA.getName().startswith("__")) - return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); - - return nullptr; -} - -bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { - Type *Ty = G->getValueType(); - LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); - - // FIXME: Metadata should be attched directly to the global directly instead - // of being added to llvm.asan.globals. - if (GlobalsMD.get(G).IsExcluded) return false; - if (!Ty->isSized()) return false; - if (!G->hasInitializer()) return false; - // Only instrument globals of default address spaces - if (G->getAddressSpace()) return false; - if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. - // Two problems with thread-locals: - // - The address of the main thread's copy can't be computed at link-time. - // - Need to poison all copies, not just the main thread's one. - if (G->isThreadLocal()) return false; - // For now, just ignore this Global if the alignment is large. - if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; - - // For non-COFF targets, only instrument globals known to be defined by this - // TU. - // FIXME: We can instrument comdat globals on ELF if we are using the - // GC-friendly metadata scheme. - if (!TargetTriple.isOSBinFormatCOFF()) { - if (!G->hasExactDefinition() || G->hasComdat()) - return false; - } else { - // On COFF, don't instrument non-ODR linkages. - if (G->isInterposable()) - return false; - } - - // If a comdat is present, it must have a selection kind that implies ODR - // semantics: no duplicates, any, or exact match. - if (Comdat *C = G->getComdat()) { - switch (C->getSelectionKind()) { - case Comdat::Any: - case Comdat::ExactMatch: - case Comdat::NoDuplicates: - break; - case Comdat::Largest: - case Comdat::SameSize: - return false; - } - } - - if (G->hasSection()) { - // The kernel uses explicit sections for mostly special global variables - // that we should not instrument. E.g. the kernel may rely on their layout - // without redzones, or remove them at link time ("discard.*"), etc. - if (CompileKernel) - return false; - - StringRef Section = G->getSection(); - - // Globals from llvm.metadata aren't emitted, do not instrument them. - if (Section == "llvm.metadata") return false; - // Do not instrument globals from special LLVM sections. - if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; - - // Do not instrument function pointers to initialization and termination - // routines: dynamic linker will not properly handle redzones. - if (Section.startswith(".preinit_array") || - Section.startswith(".init_array") || - Section.startswith(".fini_array")) { - return false; - } - + isSafeAccess(ObjSizeVis, Addr, O.TypeSize)) { + NumOptimizedAccessesToStackVar++; + return; + } + } + + if (O.IsWrite) + NumInstrumentedWrites++; + else + NumInstrumentedReads++; + + unsigned Granularity = 1 << Mapping.Scale; + if (O.MaybeMask) { + instrumentMaskedLoadOrStore(this, DL, IntptrTy, O.MaybeMask, O.getInsn(), + Addr, O.Alignment, Granularity, O.TypeSize, + O.IsWrite, nullptr, UseCalls, Exp); + } else { + doInstrumentAddress(this, O.getInsn(), O.getInsn(), Addr, O.Alignment, + Granularity, O.TypeSize, O.IsWrite, nullptr, UseCalls, + Exp); + } +} + +Instruction *AddressSanitizer::generateCrashCode(Instruction *InsertBefore, + Value *Addr, bool IsWrite, + size_t AccessSizeIndex, + Value *SizeArgument, + uint32_t Exp) { + IRBuilder<> IRB(InsertBefore); + Value *ExpVal = Exp == 0 ? nullptr : ConstantInt::get(IRB.getInt32Ty(), Exp); + CallInst *Call = nullptr; + if (SizeArgument) { + if (Exp == 0) + Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][0], + {Addr, SizeArgument}); + else + Call = IRB.CreateCall(AsanErrorCallbackSized[IsWrite][1], + {Addr, SizeArgument, ExpVal}); + } else { + if (Exp == 0) + Call = + IRB.CreateCall(AsanErrorCallback[IsWrite][0][AccessSizeIndex], Addr); + else + Call = IRB.CreateCall(AsanErrorCallback[IsWrite][1][AccessSizeIndex], + {Addr, ExpVal}); + } + + Call->setCannotMerge(); + return Call; +} + +Value *AddressSanitizer::createSlowPathCmp(IRBuilder<> &IRB, Value *AddrLong, + Value *ShadowValue, + uint32_t TypeSize) { + size_t Granularity = static_cast<size_t>(1) << Mapping.Scale; + // Addr & (Granularity - 1) + Value *LastAccessedByte = + IRB.CreateAnd(AddrLong, ConstantInt::get(IntptrTy, Granularity - 1)); + // (Addr & (Granularity - 1)) + size - 1 + if (TypeSize / 8 > 1) + LastAccessedByte = IRB.CreateAdd( + LastAccessedByte, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)); + // (uint8_t) ((Addr & (Granularity-1)) + size - 1) + LastAccessedByte = + IRB.CreateIntCast(LastAccessedByte, ShadowValue->getType(), false); + // ((uint8_t) ((Addr & (Granularity-1)) + size - 1)) >= ShadowValue + return IRB.CreateICmpSGE(LastAccessedByte, ShadowValue); +} + +void AddressSanitizer::instrumentAddress(Instruction *OrigIns, + Instruction *InsertBefore, Value *Addr, + uint32_t TypeSize, bool IsWrite, + Value *SizeArgument, bool UseCalls, + uint32_t Exp) { + bool IsMyriad = TargetTriple.getVendor() == llvm::Triple::Myriad; + + IRBuilder<> IRB(InsertBefore); + Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); + size_t AccessSizeIndex = TypeSizeToSizeIndex(TypeSize); + + if (UseCalls) { + if (Exp == 0) + IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][0][AccessSizeIndex], + AddrLong); + else + IRB.CreateCall(AsanMemoryAccessCallback[IsWrite][1][AccessSizeIndex], + {AddrLong, ConstantInt::get(IRB.getInt32Ty(), Exp)}); + return; + } + + if (IsMyriad) { + // Strip the cache bit and do range check. + // AddrLong &= ~kMyriadCacheBitMask32 + AddrLong = IRB.CreateAnd(AddrLong, ~kMyriadCacheBitMask32); + // Tag = AddrLong >> kMyriadTagShift + Value *Tag = IRB.CreateLShr(AddrLong, kMyriadTagShift); + // Tag == kMyriadDDRTag + Value *TagCheck = + IRB.CreateICmpEQ(Tag, ConstantInt::get(IntptrTy, kMyriadDDRTag)); + + Instruction *TagCheckTerm = + SplitBlockAndInsertIfThen(TagCheck, InsertBefore, false, + MDBuilder(*C).createBranchWeights(1, 100000)); + assert(cast<BranchInst>(TagCheckTerm)->isUnconditional()); + IRB.SetInsertPoint(TagCheckTerm); + InsertBefore = TagCheckTerm; + } + + Type *ShadowTy = + IntegerType::get(*C, std::max(8U, TypeSize >> Mapping.Scale)); + Type *ShadowPtrTy = PointerType::get(ShadowTy, 0); + Value *ShadowPtr = memToShadow(AddrLong, IRB); + Value *CmpVal = Constant::getNullValue(ShadowTy); + Value *ShadowValue = + IRB.CreateLoad(ShadowTy, IRB.CreateIntToPtr(ShadowPtr, ShadowPtrTy)); + + Value *Cmp = IRB.CreateICmpNE(ShadowValue, CmpVal); + size_t Granularity = 1ULL << Mapping.Scale; + Instruction *CrashTerm = nullptr; + + if (ClAlwaysSlowPath || (TypeSize < 8 * Granularity)) { + // We use branch weights for the slow path check, to indicate that the slow + // path is rarely taken. This seems to be the case for SPEC benchmarks. + Instruction *CheckTerm = SplitBlockAndInsertIfThen( + Cmp, InsertBefore, false, MDBuilder(*C).createBranchWeights(1, 100000)); + assert(cast<BranchInst>(CheckTerm)->isUnconditional()); + BasicBlock *NextBB = CheckTerm->getSuccessor(0); + IRB.SetInsertPoint(CheckTerm); + Value *Cmp2 = createSlowPathCmp(IRB, AddrLong, ShadowValue, TypeSize); + if (Recover) { + CrashTerm = SplitBlockAndInsertIfThen(Cmp2, CheckTerm, false); + } else { + BasicBlock *CrashBlock = + BasicBlock::Create(*C, "", NextBB->getParent(), NextBB); + CrashTerm = new UnreachableInst(*C, CrashBlock); + BranchInst *NewTerm = BranchInst::Create(CrashBlock, NextBB, Cmp2); + ReplaceInstWithInst(CheckTerm, NewTerm); + } + } else { + CrashTerm = SplitBlockAndInsertIfThen(Cmp, InsertBefore, !Recover); + } + + Instruction *Crash = generateCrashCode(CrashTerm, AddrLong, IsWrite, + AccessSizeIndex, SizeArgument, Exp); + Crash->setDebugLoc(OrigIns->getDebugLoc()); +} + +// Instrument unusual size or unusual alignment. +// We can not do it with a single check, so we do 1-byte check for the first +// and the last bytes. We call __asan_report_*_n(addr, real_size) to be able +// to report the actual access size. +void AddressSanitizer::instrumentUnusualSizeOrAlignment( + Instruction *I, Instruction *InsertBefore, Value *Addr, uint32_t TypeSize, + bool IsWrite, Value *SizeArgument, bool UseCalls, uint32_t Exp) { + IRBuilder<> IRB(InsertBefore); + Value *Size = ConstantInt::get(IntptrTy, TypeSize / 8); + Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); + if (UseCalls) { + if (Exp == 0) + IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][0], + {AddrLong, Size}); + else + IRB.CreateCall(AsanMemoryAccessCallbackSized[IsWrite][1], + {AddrLong, Size, ConstantInt::get(IRB.getInt32Ty(), Exp)}); + } else { + Value *LastByte = IRB.CreateIntToPtr( + IRB.CreateAdd(AddrLong, ConstantInt::get(IntptrTy, TypeSize / 8 - 1)), + Addr->getType()); + instrumentAddress(I, InsertBefore, Addr, 8, IsWrite, Size, false, Exp); + instrumentAddress(I, InsertBefore, LastByte, 8, IsWrite, Size, false, Exp); + } +} + +void ModuleAddressSanitizer::poisonOneInitializer(Function &GlobalInit, + GlobalValue *ModuleName) { + // Set up the arguments to our poison/unpoison functions. + IRBuilder<> IRB(&GlobalInit.front(), + GlobalInit.front().getFirstInsertionPt()); + + // Add a call to poison all external globals before the given function starts. + Value *ModuleNameAddr = ConstantExpr::getPointerCast(ModuleName, IntptrTy); + IRB.CreateCall(AsanPoisonGlobals, ModuleNameAddr); + + // Add calls to unpoison all globals before each return instruction. + for (auto &BB : GlobalInit.getBasicBlockList()) + if (ReturnInst *RI = dyn_cast<ReturnInst>(BB.getTerminator())) + CallInst::Create(AsanUnpoisonGlobals, "", RI); +} + +void ModuleAddressSanitizer::createInitializerPoisonCalls( + Module &M, GlobalValue *ModuleName) { + GlobalVariable *GV = M.getGlobalVariable("llvm.global_ctors"); + if (!GV) + return; + + ConstantArray *CA = dyn_cast<ConstantArray>(GV->getInitializer()); + if (!CA) + return; + + for (Use &OP : CA->operands()) { + if (isa<ConstantAggregateZero>(OP)) continue; + ConstantStruct *CS = cast<ConstantStruct>(OP); + + // Must have a function or null ptr. + if (Function *F = dyn_cast<Function>(CS->getOperand(1))) { + if (F->getName() == kAsanModuleCtorName) continue; + auto *Priority = cast<ConstantInt>(CS->getOperand(0)); + // Don't instrument CTORs that will run before asan.module_ctor. + if (Priority->getLimitedValue() <= GetCtorAndDtorPriority(TargetTriple)) + continue; + poisonOneInitializer(*F, ModuleName); + } + } +} + +const GlobalVariable * +ModuleAddressSanitizer::getExcludedAliasedGlobal(const GlobalAlias &GA) const { + // In case this function should be expanded to include rules that do not just + // apply when CompileKernel is true, either guard all existing rules with an + // 'if (CompileKernel) { ... }' or be absolutely sure that all these rules + // should also apply to user space. + assert(CompileKernel && "Only expecting to be called when compiling kernel"); + + const Constant *C = GA.getAliasee(); + + // When compiling the kernel, globals that are aliased by symbols prefixed + // by "__" are special and cannot be padded with a redzone. + if (GA.getName().startswith("__")) + return dyn_cast<GlobalVariable>(C->stripPointerCastsAndAliases()); + + return nullptr; +} + +bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { + Type *Ty = G->getValueType(); + LLVM_DEBUG(dbgs() << "GLOBAL: " << *G << "\n"); + + // FIXME: Metadata should be attched directly to the global directly instead + // of being added to llvm.asan.globals. + if (GlobalsMD.get(G).IsExcluded) return false; + if (!Ty->isSized()) return false; + if (!G->hasInitializer()) return false; + // Only instrument globals of default address spaces + if (G->getAddressSpace()) return false; + if (GlobalWasGeneratedByCompiler(G)) return false; // Our own globals. + // Two problems with thread-locals: + // - The address of the main thread's copy can't be computed at link-time. + // - Need to poison all copies, not just the main thread's one. + if (G->isThreadLocal()) return false; + // For now, just ignore this Global if the alignment is large. + if (G->getAlignment() > getMinRedzoneSizeForGlobal()) return false; + + // For non-COFF targets, only instrument globals known to be defined by this + // TU. + // FIXME: We can instrument comdat globals on ELF if we are using the + // GC-friendly metadata scheme. + if (!TargetTriple.isOSBinFormatCOFF()) { + if (!G->hasExactDefinition() || G->hasComdat()) + return false; + } else { + // On COFF, don't instrument non-ODR linkages. + if (G->isInterposable()) + return false; + } + + // If a comdat is present, it must have a selection kind that implies ODR + // semantics: no duplicates, any, or exact match. + if (Comdat *C = G->getComdat()) { + switch (C->getSelectionKind()) { + case Comdat::Any: + case Comdat::ExactMatch: + case Comdat::NoDuplicates: + break; + case Comdat::Largest: + case Comdat::SameSize: + return false; + } + } + + if (G->hasSection()) { + // The kernel uses explicit sections for mostly special global variables + // that we should not instrument. E.g. the kernel may rely on their layout + // without redzones, or remove them at link time ("discard.*"), etc. + if (CompileKernel) + return false; + + StringRef Section = G->getSection(); + + // Globals from llvm.metadata aren't emitted, do not instrument them. + if (Section == "llvm.metadata") return false; + // Do not instrument globals from special LLVM sections. + if (Section.find("__llvm") != StringRef::npos || Section.find("__LLVM") != StringRef::npos) return false; + + // Do not instrument function pointers to initialization and termination + // routines: dynamic linker will not properly handle redzones. + if (Section.startswith(".preinit_array") || + Section.startswith(".init_array") || + Section.startswith(".fini_array")) { + return false; + } + // Do not instrument user-defined sections (with names resembling // valid C identifiers) if (TargetTriple.isOSBinFormatELF()) { @@ -1881,258 +1881,258 @@ bool ModuleAddressSanitizer::shouldInstrumentGlobal(GlobalVariable *G) const { return false; } - // On COFF, if the section name contains '$', it is highly likely that the - // user is using section sorting to create an array of globals similar to - // the way initialization callbacks are registered in .init_array and - // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones - // to such globals is counterproductive, because the intent is that they - // will form an array, and out-of-bounds accesses are expected. - // See https://github.com/google/sanitizers/issues/305 - // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx - if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { - LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " - << *G << "\n"); - return false; - } - - if (TargetTriple.isOSBinFormatMachO()) { - StringRef ParsedSegment, ParsedSection; - unsigned TAA = 0, StubSize = 0; - bool TAAParsed; - std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( - Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); - assert(ErrorCode.empty() && "Invalid section specifier."); - - // Ignore the globals from the __OBJC section. The ObjC runtime assumes - // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to - // them. - if (ParsedSegment == "__OBJC" || - (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { - LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); - return false; - } - // See https://github.com/google/sanitizers/issues/32 - // Constant CFString instances are compiled in the following way: - // -- the string buffer is emitted into - // __TEXT,__cstring,cstring_literals - // -- the constant NSConstantString structure referencing that buffer - // is placed into __DATA,__cfstring - // Therefore there's no point in placing redzones into __DATA,__cfstring. - // Moreover, it causes the linker to crash on OS X 10.7 - if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { - LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); - return false; - } - // The linker merges the contents of cstring_literals and removes the - // trailing zeroes. - if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { - LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); - return false; - } - } - } - - if (CompileKernel) { - // Globals that prefixed by "__" are special and cannot be padded with a - // redzone. - if (G->getName().startswith("__")) - return false; - } - - return true; -} - -// On Mach-O platforms, we emit global metadata in a separate section of the -// binary in order to allow the linker to properly dead strip. This is only -// supported on recent versions of ld64. -bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { - if (!TargetTriple.isOSBinFormatMachO()) - return false; - - if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) - return true; - if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) - return true; - if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) - return true; - - return false; -} - -StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { - switch (TargetTriple.getObjectFormat()) { - case Triple::COFF: return ".ASAN$GL"; - case Triple::ELF: return "asan_globals"; - case Triple::MachO: return "__DATA,__asan_globals,regular"; - case Triple::Wasm: + // On COFF, if the section name contains '$', it is highly likely that the + // user is using section sorting to create an array of globals similar to + // the way initialization callbacks are registered in .init_array and + // .CRT$XCU. The ATL also registers things in .ATL$__[azm]. Adding redzones + // to such globals is counterproductive, because the intent is that they + // will form an array, and out-of-bounds accesses are expected. + // See https://github.com/google/sanitizers/issues/305 + // and http://msdn.microsoft.com/en-US/en-en/library/bb918180(v=vs.120).aspx + if (TargetTriple.isOSBinFormatCOFF() && Section.contains('$')) { + LLVM_DEBUG(dbgs() << "Ignoring global in sorted section (contains '$'): " + << *G << "\n"); + return false; + } + + if (TargetTriple.isOSBinFormatMachO()) { + StringRef ParsedSegment, ParsedSection; + unsigned TAA = 0, StubSize = 0; + bool TAAParsed; + std::string ErrorCode = MCSectionMachO::ParseSectionSpecifier( + Section, ParsedSegment, ParsedSection, TAA, TAAParsed, StubSize); + assert(ErrorCode.empty() && "Invalid section specifier."); + + // Ignore the globals from the __OBJC section. The ObjC runtime assumes + // those conform to /usr/lib/objc/runtime.h, so we can't add redzones to + // them. + if (ParsedSegment == "__OBJC" || + (ParsedSegment == "__DATA" && ParsedSection.startswith("__objc_"))) { + LLVM_DEBUG(dbgs() << "Ignoring ObjC runtime global: " << *G << "\n"); + return false; + } + // See https://github.com/google/sanitizers/issues/32 + // Constant CFString instances are compiled in the following way: + // -- the string buffer is emitted into + // __TEXT,__cstring,cstring_literals + // -- the constant NSConstantString structure referencing that buffer + // is placed into __DATA,__cfstring + // Therefore there's no point in placing redzones into __DATA,__cfstring. + // Moreover, it causes the linker to crash on OS X 10.7 + if (ParsedSegment == "__DATA" && ParsedSection == "__cfstring") { + LLVM_DEBUG(dbgs() << "Ignoring CFString: " << *G << "\n"); + return false; + } + // The linker merges the contents of cstring_literals and removes the + // trailing zeroes. + if (ParsedSegment == "__TEXT" && (TAA & MachO::S_CSTRING_LITERALS)) { + LLVM_DEBUG(dbgs() << "Ignoring a cstring literal: " << *G << "\n"); + return false; + } + } + } + + if (CompileKernel) { + // Globals that prefixed by "__" are special and cannot be padded with a + // redzone. + if (G->getName().startswith("__")) + return false; + } + + return true; +} + +// On Mach-O platforms, we emit global metadata in a separate section of the +// binary in order to allow the linker to properly dead strip. This is only +// supported on recent versions of ld64. +bool ModuleAddressSanitizer::ShouldUseMachOGlobalsSection() const { + if (!TargetTriple.isOSBinFormatMachO()) + return false; + + if (TargetTriple.isMacOSX() && !TargetTriple.isMacOSXVersionLT(10, 11)) + return true; + if (TargetTriple.isiOS() /* or tvOS */ && !TargetTriple.isOSVersionLT(9)) + return true; + if (TargetTriple.isWatchOS() && !TargetTriple.isOSVersionLT(2)) + return true; + + return false; +} + +StringRef ModuleAddressSanitizer::getGlobalMetadataSection() const { + switch (TargetTriple.getObjectFormat()) { + case Triple::COFF: return ".ASAN$GL"; + case Triple::ELF: return "asan_globals"; + case Triple::MachO: return "__DATA,__asan_globals,regular"; + case Triple::Wasm: case Triple::GOFF: - case Triple::XCOFF: - report_fatal_error( + case Triple::XCOFF: + report_fatal_error( "ModuleAddressSanitizer not implemented for object file format"); - case Triple::UnknownObjectFormat: - break; - } - llvm_unreachable("unsupported object format"); -} - -void ModuleAddressSanitizer::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - - // Declare our poisoning and unpoisoning functions. - AsanPoisonGlobals = - M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); - AsanUnpoisonGlobals = - M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); - - // Declare functions that register/unregister globals. - AsanRegisterGlobals = M.getOrInsertFunction( - kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); - AsanUnregisterGlobals = M.getOrInsertFunction( - kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); - - // Declare the functions that find globals in a shared object and then invoke - // the (un)register function on them. - AsanRegisterImageGlobals = M.getOrInsertFunction( - kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); - AsanUnregisterImageGlobals = M.getOrInsertFunction( - kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); - - AsanRegisterElfGlobals = - M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), - IntptrTy, IntptrTy, IntptrTy); - AsanUnregisterElfGlobals = - M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), - IntptrTy, IntptrTy, IntptrTy); -} - -// Put the metadata and the instrumented global in the same group. This ensures -// that the metadata is discarded if the instrumented global is discarded. -void ModuleAddressSanitizer::SetComdatForGlobalMetadata( - GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { - Module &M = *G->getParent(); - Comdat *C = G->getComdat(); - if (!C) { - if (!G->hasName()) { - // If G is unnamed, it must be internal. Give it an artificial name - // so we can put it in a comdat. - assert(G->hasLocalLinkage()); - G->setName(Twine(kAsanGenPrefix) + "_anon_global"); - } - - if (!InternalSuffix.empty() && G->hasLocalLinkage()) { - std::string Name = std::string(G->getName()); - Name += InternalSuffix; - C = M.getOrInsertComdat(Name); - } else { - C = M.getOrInsertComdat(G->getName()); - } - - // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private - // linkage to internal linkage so that a symbol table entry is emitted. This - // is necessary in order to create the comdat group. - if (TargetTriple.isOSBinFormatCOFF()) { - C->setSelectionKind(Comdat::NoDuplicates); - if (G->hasPrivateLinkage()) - G->setLinkage(GlobalValue::InternalLinkage); - } - G->setComdat(C); - } - - assert(G->hasComdat()); - Metadata->setComdat(G->getComdat()); -} - -// Create a separate metadata global and put it in the appropriate ASan -// global registration section. -GlobalVariable * -ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, - StringRef OriginalName) { - auto Linkage = TargetTriple.isOSBinFormatMachO() - ? GlobalVariable::InternalLinkage - : GlobalVariable::PrivateLinkage; - GlobalVariable *Metadata = new GlobalVariable( - M, Initializer->getType(), false, Linkage, Initializer, - Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); - Metadata->setSection(getGlobalMetadataSection()); - return Metadata; -} - -Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { - AsanDtorFunction = - Function::Create(FunctionType::get(Type::getVoidTy(*C), false), - GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); - BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); - - return ReturnInst::Create(*C, AsanDtorBB); -} - -void ModuleAddressSanitizer::InstrumentGlobalsCOFF( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - auto &DL = M.getDataLayout(); - - SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - Constant *Initializer = MetadataInitializers[i]; - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, Initializer, G->getName()); - MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); - Metadata->setMetadata(LLVMContext::MD_associated, MD); - MetadataGlobals[i] = Metadata; - - // The MSVC linker always inserts padding when linking incrementally. We - // cope with that by aligning each struct to its size, which must be a power - // of two. - unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); - assert(isPowerOf2_32(SizeOfGlobalStruct) && - "global metadata will not be padded appropriately"); - Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); - - SetComdatForGlobalMetadata(G, Metadata, ""); - } - - // Update llvm.compiler.used, adding the new metadata globals. This is - // needed so that during LTO these variables stay alive. - if (!MetadataGlobals.empty()) - appendToCompilerUsed(M, MetadataGlobals); -} - -void ModuleAddressSanitizer::InstrumentGlobalsELF( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers, - const std::string &UniqueModuleId) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - - SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); - MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); - Metadata->setMetadata(LLVMContext::MD_associated, MD); - MetadataGlobals[i] = Metadata; - - SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); - } - - // Update llvm.compiler.used, adding the new metadata globals. This is - // needed so that during LTO these variables stay alive. + case Triple::UnknownObjectFormat: + break; + } + llvm_unreachable("unsupported object format"); +} + +void ModuleAddressSanitizer::initializeCallbacks(Module &M) { + IRBuilder<> IRB(*C); + + // Declare our poisoning and unpoisoning functions. + AsanPoisonGlobals = + M.getOrInsertFunction(kAsanPoisonGlobalsName, IRB.getVoidTy(), IntptrTy); + AsanUnpoisonGlobals = + M.getOrInsertFunction(kAsanUnpoisonGlobalsName, IRB.getVoidTy()); + + // Declare functions that register/unregister globals. + AsanRegisterGlobals = M.getOrInsertFunction( + kAsanRegisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); + AsanUnregisterGlobals = M.getOrInsertFunction( + kAsanUnregisterGlobalsName, IRB.getVoidTy(), IntptrTy, IntptrTy); + + // Declare the functions that find globals in a shared object and then invoke + // the (un)register function on them. + AsanRegisterImageGlobals = M.getOrInsertFunction( + kAsanRegisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); + AsanUnregisterImageGlobals = M.getOrInsertFunction( + kAsanUnregisterImageGlobalsName, IRB.getVoidTy(), IntptrTy); + + AsanRegisterElfGlobals = + M.getOrInsertFunction(kAsanRegisterElfGlobalsName, IRB.getVoidTy(), + IntptrTy, IntptrTy, IntptrTy); + AsanUnregisterElfGlobals = + M.getOrInsertFunction(kAsanUnregisterElfGlobalsName, IRB.getVoidTy(), + IntptrTy, IntptrTy, IntptrTy); +} + +// Put the metadata and the instrumented global in the same group. This ensures +// that the metadata is discarded if the instrumented global is discarded. +void ModuleAddressSanitizer::SetComdatForGlobalMetadata( + GlobalVariable *G, GlobalVariable *Metadata, StringRef InternalSuffix) { + Module &M = *G->getParent(); + Comdat *C = G->getComdat(); + if (!C) { + if (!G->hasName()) { + // If G is unnamed, it must be internal. Give it an artificial name + // so we can put it in a comdat. + assert(G->hasLocalLinkage()); + G->setName(Twine(kAsanGenPrefix) + "_anon_global"); + } + + if (!InternalSuffix.empty() && G->hasLocalLinkage()) { + std::string Name = std::string(G->getName()); + Name += InternalSuffix; + C = M.getOrInsertComdat(Name); + } else { + C = M.getOrInsertComdat(G->getName()); + } + + // Make this IMAGE_COMDAT_SELECT_NODUPLICATES on COFF. Also upgrade private + // linkage to internal linkage so that a symbol table entry is emitted. This + // is necessary in order to create the comdat group. + if (TargetTriple.isOSBinFormatCOFF()) { + C->setSelectionKind(Comdat::NoDuplicates); + if (G->hasPrivateLinkage()) + G->setLinkage(GlobalValue::InternalLinkage); + } + G->setComdat(C); + } + + assert(G->hasComdat()); + Metadata->setComdat(G->getComdat()); +} + +// Create a separate metadata global and put it in the appropriate ASan +// global registration section. +GlobalVariable * +ModuleAddressSanitizer::CreateMetadataGlobal(Module &M, Constant *Initializer, + StringRef OriginalName) { + auto Linkage = TargetTriple.isOSBinFormatMachO() + ? GlobalVariable::InternalLinkage + : GlobalVariable::PrivateLinkage; + GlobalVariable *Metadata = new GlobalVariable( + M, Initializer->getType(), false, Linkage, Initializer, + Twine("__asan_global_") + GlobalValue::dropLLVMManglingEscape(OriginalName)); + Metadata->setSection(getGlobalMetadataSection()); + return Metadata; +} + +Instruction *ModuleAddressSanitizer::CreateAsanModuleDtor(Module &M) { + AsanDtorFunction = + Function::Create(FunctionType::get(Type::getVoidTy(*C), false), + GlobalValue::InternalLinkage, kAsanModuleDtorName, &M); + BasicBlock *AsanDtorBB = BasicBlock::Create(*C, "", AsanDtorFunction); + + return ReturnInst::Create(*C, AsanDtorBB); +} + +void ModuleAddressSanitizer::InstrumentGlobalsCOFF( + IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers) { + assert(ExtendedGlobals.size() == MetadataInitializers.size()); + auto &DL = M.getDataLayout(); + + SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); + for (size_t i = 0; i < ExtendedGlobals.size(); i++) { + Constant *Initializer = MetadataInitializers[i]; + GlobalVariable *G = ExtendedGlobals[i]; + GlobalVariable *Metadata = + CreateMetadataGlobal(M, Initializer, G->getName()); + MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); + Metadata->setMetadata(LLVMContext::MD_associated, MD); + MetadataGlobals[i] = Metadata; + + // The MSVC linker always inserts padding when linking incrementally. We + // cope with that by aligning each struct to its size, which must be a power + // of two. + unsigned SizeOfGlobalStruct = DL.getTypeAllocSize(Initializer->getType()); + assert(isPowerOf2_32(SizeOfGlobalStruct) && + "global metadata will not be padded appropriately"); + Metadata->setAlignment(assumeAligned(SizeOfGlobalStruct)); + + SetComdatForGlobalMetadata(G, Metadata, ""); + } + + // Update llvm.compiler.used, adding the new metadata globals. This is + // needed so that during LTO these variables stay alive. if (!MetadataGlobals.empty()) appendToCompilerUsed(M, MetadataGlobals); - - // RegisteredFlag serves two purposes. First, we can pass it to dladdr() - // to look up the loaded image that contains it. Second, we can store in it - // whether registration has already occurred, to prevent duplicate - // registration. - // - // Common linkage ensures that there is only one global per shared library. - GlobalVariable *RegisteredFlag = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::CommonLinkage, - ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); - RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); - +} + +void ModuleAddressSanitizer::InstrumentGlobalsELF( + IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers, + const std::string &UniqueModuleId) { + assert(ExtendedGlobals.size() == MetadataInitializers.size()); + + SmallVector<GlobalValue *, 16> MetadataGlobals(ExtendedGlobals.size()); + for (size_t i = 0; i < ExtendedGlobals.size(); i++) { + GlobalVariable *G = ExtendedGlobals[i]; + GlobalVariable *Metadata = + CreateMetadataGlobal(M, MetadataInitializers[i], G->getName()); + MDNode *MD = MDNode::get(M.getContext(), ValueAsMetadata::get(G)); + Metadata->setMetadata(LLVMContext::MD_associated, MD); + MetadataGlobals[i] = Metadata; + + SetComdatForGlobalMetadata(G, Metadata, UniqueModuleId); + } + + // Update llvm.compiler.used, adding the new metadata globals. This is + // needed so that during LTO these variables stay alive. + if (!MetadataGlobals.empty()) + appendToCompilerUsed(M, MetadataGlobals); + + // RegisteredFlag serves two purposes. First, we can pass it to dladdr() + // to look up the loaded image that contains it. Second, we can store in it + // whether registration has already occurred, to prevent duplicate + // registration. + // + // Common linkage ensures that there is only one global per shared library. + GlobalVariable *RegisteredFlag = new GlobalVariable( + M, IntptrTy, false, GlobalVariable::CommonLinkage, + ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); + RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); + // Create start and stop symbols. GlobalVariable *StartELFMetadata = new GlobalVariable( M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, @@ -2142,1326 +2142,1326 @@ void ModuleAddressSanitizer::InstrumentGlobalsELF( M, IntptrTy, false, GlobalVariable::ExternalWeakLinkage, nullptr, "__stop_" + getGlobalMetadataSection()); StopELFMetadata->setVisibility(GlobalVariable::HiddenVisibility); - - // Create a call to register the globals with the runtime. - IRB.CreateCall(AsanRegisterElfGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), - IRB.CreatePointerCast(StartELFMetadata, IntptrTy), - IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); - IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), - IRB.CreatePointerCast(StartELFMetadata, IntptrTy), - IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); -} - -void ModuleAddressSanitizer::InstrumentGlobalsMachO( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - - // On recent Mach-O platforms, use a structure which binds the liveness of - // the global variable to the metadata struct. Keep the list of "Liveness" GV - // created to be added to llvm.compiler.used - StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); - SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); - - for (size_t i = 0; i < ExtendedGlobals.size(); i++) { - Constant *Initializer = MetadataInitializers[i]; - GlobalVariable *G = ExtendedGlobals[i]; - GlobalVariable *Metadata = - CreateMetadataGlobal(M, Initializer, G->getName()); - - // On recent Mach-O platforms, we emit the global metadata in a way that - // allows the linker to properly strip dead globals. - auto LivenessBinder = - ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), - ConstantExpr::getPointerCast(Metadata, IntptrTy)); - GlobalVariable *Liveness = new GlobalVariable( - M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, - Twine("__asan_binder_") + G->getName()); - Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); - LivenessGlobals[i] = Liveness; - } - - // Update llvm.compiler.used, adding the new liveness globals. This is - // needed so that during LTO these variables stay alive. The alternative - // would be to have the linker handling the LTO symbols, but libLTO - // current API does not expose access to the section for each symbol. - if (!LivenessGlobals.empty()) - appendToCompilerUsed(M, LivenessGlobals); - - // RegisteredFlag serves two purposes. First, we can pass it to dladdr() - // to look up the loaded image that contains it. Second, we can store in it - // whether registration has already occurred, to prevent duplicate - // registration. - // - // common linkage ensures that there is only one global per shared library. - GlobalVariable *RegisteredFlag = new GlobalVariable( - M, IntptrTy, false, GlobalVariable::CommonLinkage, - ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); - RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); - - IRB.CreateCall(AsanRegisterImageGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); - IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, - {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); -} - -void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( - IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, - ArrayRef<Constant *> MetadataInitializers) { - assert(ExtendedGlobals.size() == MetadataInitializers.size()); - unsigned N = ExtendedGlobals.size(); - assert(N > 0); - - // On platforms that don't have a custom metadata section, we emit an array - // of global metadata structures. - ArrayType *ArrayOfGlobalStructTy = - ArrayType::get(MetadataInitializers[0]->getType(), N); - auto AllGlobals = new GlobalVariable( - M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, - ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); - if (Mapping.Scale > 3) - AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); - - IRB.CreateCall(AsanRegisterGlobals, - {IRB.CreatePointerCast(AllGlobals, IntptrTy), - ConstantInt::get(IntptrTy, N)}); - - // We also need to unregister globals at the end, e.g., when a shared library - // gets closed. - IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); - IRB_Dtor.CreateCall(AsanUnregisterGlobals, - {IRB.CreatePointerCast(AllGlobals, IntptrTy), - ConstantInt::get(IntptrTy, N)}); -} - -// This function replaces all global variables with new variables that have -// trailing redzones. It also creates a function that poisons -// redzones and inserts this function into llvm.global_ctors. -// Sets *CtorComdat to true if the global registration code emitted into the -// asan constructor is comdat-compatible. -bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, - bool *CtorComdat) { - *CtorComdat = false; - - // Build set of globals that are aliased by some GA, where - // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. - SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; - if (CompileKernel) { - for (auto &GA : M.aliases()) { - if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) - AliasedGlobalExclusions.insert(GV); - } - } - - SmallVector<GlobalVariable *, 16> GlobalsToChange; - for (auto &G : M.globals()) { - if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) - GlobalsToChange.push_back(&G); - } - - size_t n = GlobalsToChange.size(); - if (n == 0) { - *CtorComdat = true; - return false; - } - - auto &DL = M.getDataLayout(); - - // A global is described by a structure - // size_t beg; - // size_t size; - // size_t size_with_redzone; - // const char *name; - // const char *module_name; - // size_t has_dynamic_init; - // void *source_location; - // size_t odr_indicator; - // We initialize an array of such structures and pass it to a run-time call. - StructType *GlobalStructTy = - StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, - IntptrTy, IntptrTy, IntptrTy); - SmallVector<GlobalVariable *, 16> NewGlobals(n); - SmallVector<Constant *, 16> Initializers(n); - - bool HasDynamicallyInitializedGlobals = false; - - // We shouldn't merge same module names, as this string serves as unique - // module ID in runtime. - GlobalVariable *ModuleName = createPrivateGlobalForString( - M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); - - for (size_t i = 0; i < n; i++) { - GlobalVariable *G = GlobalsToChange[i]; - - // FIXME: Metadata should be attched directly to the global directly instead - // of being added to llvm.asan.globals. - auto MD = GlobalsMD.get(G); - StringRef NameForGlobal = G->getName(); - // Create string holding the global name (use global name from metadata - // if it's available, otherwise just write the name of global variable). - GlobalVariable *Name = createPrivateGlobalForString( - M, MD.Name.empty() ? NameForGlobal : MD.Name, - /*AllowMerging*/ true, kAsanGenPrefix); - - Type *Ty = G->getValueType(); - const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); - const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); - Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); - - StructType *NewTy = StructType::get(Ty, RightRedZoneTy); - Constant *NewInitializer = ConstantStruct::get( - NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); - - // Create a new global variable with enough space for a redzone. - GlobalValue::LinkageTypes Linkage = G->getLinkage(); - if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) - Linkage = GlobalValue::InternalLinkage; - GlobalVariable *NewGlobal = - new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, - "", G, G->getThreadLocalMode()); - NewGlobal->copyAttributesFrom(G); - NewGlobal->setComdat(G->getComdat()); - NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); - // Don't fold globals with redzones. ODR violation detector and redzone - // poisoning implicitly creates a dependence on the global's address, so it - // is no longer valid for it to be marked unnamed_addr. - NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); - - // Move null-terminated C strings to "__asan_cstring" section on Darwin. - if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && - G->isConstant()) { - auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); - if (Seq && Seq->isCString()) - NewGlobal->setSection("__TEXT,__asan_cstring,regular"); - } - + + // Create a call to register the globals with the runtime. + IRB.CreateCall(AsanRegisterElfGlobals, + {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), + IRB.CreatePointerCast(StartELFMetadata, IntptrTy), + IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); + + // We also need to unregister globals at the end, e.g., when a shared library + // gets closed. + IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); + IRB_Dtor.CreateCall(AsanUnregisterElfGlobals, + {IRB.CreatePointerCast(RegisteredFlag, IntptrTy), + IRB.CreatePointerCast(StartELFMetadata, IntptrTy), + IRB.CreatePointerCast(StopELFMetadata, IntptrTy)}); +} + +void ModuleAddressSanitizer::InstrumentGlobalsMachO( + IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers) { + assert(ExtendedGlobals.size() == MetadataInitializers.size()); + + // On recent Mach-O platforms, use a structure which binds the liveness of + // the global variable to the metadata struct. Keep the list of "Liveness" GV + // created to be added to llvm.compiler.used + StructType *LivenessTy = StructType::get(IntptrTy, IntptrTy); + SmallVector<GlobalValue *, 16> LivenessGlobals(ExtendedGlobals.size()); + + for (size_t i = 0; i < ExtendedGlobals.size(); i++) { + Constant *Initializer = MetadataInitializers[i]; + GlobalVariable *G = ExtendedGlobals[i]; + GlobalVariable *Metadata = + CreateMetadataGlobal(M, Initializer, G->getName()); + + // On recent Mach-O platforms, we emit the global metadata in a way that + // allows the linker to properly strip dead globals. + auto LivenessBinder = + ConstantStruct::get(LivenessTy, Initializer->getAggregateElement(0u), + ConstantExpr::getPointerCast(Metadata, IntptrTy)); + GlobalVariable *Liveness = new GlobalVariable( + M, LivenessTy, false, GlobalVariable::InternalLinkage, LivenessBinder, + Twine("__asan_binder_") + G->getName()); + Liveness->setSection("__DATA,__asan_liveness,regular,live_support"); + LivenessGlobals[i] = Liveness; + } + + // Update llvm.compiler.used, adding the new liveness globals. This is + // needed so that during LTO these variables stay alive. The alternative + // would be to have the linker handling the LTO symbols, but libLTO + // current API does not expose access to the section for each symbol. + if (!LivenessGlobals.empty()) + appendToCompilerUsed(M, LivenessGlobals); + + // RegisteredFlag serves two purposes. First, we can pass it to dladdr() + // to look up the loaded image that contains it. Second, we can store in it + // whether registration has already occurred, to prevent duplicate + // registration. + // + // common linkage ensures that there is only one global per shared library. + GlobalVariable *RegisteredFlag = new GlobalVariable( + M, IntptrTy, false, GlobalVariable::CommonLinkage, + ConstantInt::get(IntptrTy, 0), kAsanGlobalsRegisteredFlagName); + RegisteredFlag->setVisibility(GlobalVariable::HiddenVisibility); + + IRB.CreateCall(AsanRegisterImageGlobals, + {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); + + // We also need to unregister globals at the end, e.g., when a shared library + // gets closed. + IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); + IRB_Dtor.CreateCall(AsanUnregisterImageGlobals, + {IRB.CreatePointerCast(RegisteredFlag, IntptrTy)}); +} + +void ModuleAddressSanitizer::InstrumentGlobalsWithMetadataArray( + IRBuilder<> &IRB, Module &M, ArrayRef<GlobalVariable *> ExtendedGlobals, + ArrayRef<Constant *> MetadataInitializers) { + assert(ExtendedGlobals.size() == MetadataInitializers.size()); + unsigned N = ExtendedGlobals.size(); + assert(N > 0); + + // On platforms that don't have a custom metadata section, we emit an array + // of global metadata structures. + ArrayType *ArrayOfGlobalStructTy = + ArrayType::get(MetadataInitializers[0]->getType(), N); + auto AllGlobals = new GlobalVariable( + M, ArrayOfGlobalStructTy, false, GlobalVariable::InternalLinkage, + ConstantArray::get(ArrayOfGlobalStructTy, MetadataInitializers), ""); + if (Mapping.Scale > 3) + AllGlobals->setAlignment(Align(1ULL << Mapping.Scale)); + + IRB.CreateCall(AsanRegisterGlobals, + {IRB.CreatePointerCast(AllGlobals, IntptrTy), + ConstantInt::get(IntptrTy, N)}); + + // We also need to unregister globals at the end, e.g., when a shared library + // gets closed. + IRBuilder<> IRB_Dtor(CreateAsanModuleDtor(M)); + IRB_Dtor.CreateCall(AsanUnregisterGlobals, + {IRB.CreatePointerCast(AllGlobals, IntptrTy), + ConstantInt::get(IntptrTy, N)}); +} + +// This function replaces all global variables with new variables that have +// trailing redzones. It also creates a function that poisons +// redzones and inserts this function into llvm.global_ctors. +// Sets *CtorComdat to true if the global registration code emitted into the +// asan constructor is comdat-compatible. +bool ModuleAddressSanitizer::InstrumentGlobals(IRBuilder<> &IRB, Module &M, + bool *CtorComdat) { + *CtorComdat = false; + + // Build set of globals that are aliased by some GA, where + // getExcludedAliasedGlobal(GA) returns the relevant GlobalVariable. + SmallPtrSet<const GlobalVariable *, 16> AliasedGlobalExclusions; + if (CompileKernel) { + for (auto &GA : M.aliases()) { + if (const GlobalVariable *GV = getExcludedAliasedGlobal(GA)) + AliasedGlobalExclusions.insert(GV); + } + } + + SmallVector<GlobalVariable *, 16> GlobalsToChange; + for (auto &G : M.globals()) { + if (!AliasedGlobalExclusions.count(&G) && shouldInstrumentGlobal(&G)) + GlobalsToChange.push_back(&G); + } + + size_t n = GlobalsToChange.size(); + if (n == 0) { + *CtorComdat = true; + return false; + } + + auto &DL = M.getDataLayout(); + + // A global is described by a structure + // size_t beg; + // size_t size; + // size_t size_with_redzone; + // const char *name; + // const char *module_name; + // size_t has_dynamic_init; + // void *source_location; + // size_t odr_indicator; + // We initialize an array of such structures and pass it to a run-time call. + StructType *GlobalStructTy = + StructType::get(IntptrTy, IntptrTy, IntptrTy, IntptrTy, IntptrTy, + IntptrTy, IntptrTy, IntptrTy); + SmallVector<GlobalVariable *, 16> NewGlobals(n); + SmallVector<Constant *, 16> Initializers(n); + + bool HasDynamicallyInitializedGlobals = false; + + // We shouldn't merge same module names, as this string serves as unique + // module ID in runtime. + GlobalVariable *ModuleName = createPrivateGlobalForString( + M, M.getModuleIdentifier(), /*AllowMerging*/ false, kAsanGenPrefix); + + for (size_t i = 0; i < n; i++) { + GlobalVariable *G = GlobalsToChange[i]; + + // FIXME: Metadata should be attched directly to the global directly instead + // of being added to llvm.asan.globals. + auto MD = GlobalsMD.get(G); + StringRef NameForGlobal = G->getName(); + // Create string holding the global name (use global name from metadata + // if it's available, otherwise just write the name of global variable). + GlobalVariable *Name = createPrivateGlobalForString( + M, MD.Name.empty() ? NameForGlobal : MD.Name, + /*AllowMerging*/ true, kAsanGenPrefix); + + Type *Ty = G->getValueType(); + const uint64_t SizeInBytes = DL.getTypeAllocSize(Ty); + const uint64_t RightRedzoneSize = getRedzoneSizeForGlobal(SizeInBytes); + Type *RightRedZoneTy = ArrayType::get(IRB.getInt8Ty(), RightRedzoneSize); + + StructType *NewTy = StructType::get(Ty, RightRedZoneTy); + Constant *NewInitializer = ConstantStruct::get( + NewTy, G->getInitializer(), Constant::getNullValue(RightRedZoneTy)); + + // Create a new global variable with enough space for a redzone. + GlobalValue::LinkageTypes Linkage = G->getLinkage(); + if (G->isConstant() && Linkage == GlobalValue::PrivateLinkage) + Linkage = GlobalValue::InternalLinkage; + GlobalVariable *NewGlobal = + new GlobalVariable(M, NewTy, G->isConstant(), Linkage, NewInitializer, + "", G, G->getThreadLocalMode()); + NewGlobal->copyAttributesFrom(G); + NewGlobal->setComdat(G->getComdat()); + NewGlobal->setAlignment(MaybeAlign(getMinRedzoneSizeForGlobal())); + // Don't fold globals with redzones. ODR violation detector and redzone + // poisoning implicitly creates a dependence on the global's address, so it + // is no longer valid for it to be marked unnamed_addr. + NewGlobal->setUnnamedAddr(GlobalValue::UnnamedAddr::None); + + // Move null-terminated C strings to "__asan_cstring" section on Darwin. + if (TargetTriple.isOSBinFormatMachO() && !G->hasSection() && + G->isConstant()) { + auto Seq = dyn_cast<ConstantDataSequential>(G->getInitializer()); + if (Seq && Seq->isCString()) + NewGlobal->setSection("__TEXT,__asan_cstring,regular"); + } + // Transfer the debug info and type metadata. The payload starts at offset // zero so we can copy the metadata over as is. NewGlobal->copyMetadata(G, 0); - - Value *Indices2[2]; - Indices2[0] = IRB.getInt32(0); - Indices2[1] = IRB.getInt32(0); - - G->replaceAllUsesWith( - ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); - NewGlobal->takeName(G); - G->eraseFromParent(); - NewGlobals[i] = NewGlobal; - - Constant *SourceLoc; - if (!MD.SourceLoc.empty()) { - auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); - SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); - } else { - SourceLoc = ConstantInt::get(IntptrTy, 0); - } - - Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); - GlobalValue *InstrumentedGlobal = NewGlobal; - - bool CanUsePrivateAliases = - TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || - TargetTriple.isOSBinFormatWasm(); - if (CanUsePrivateAliases && UsePrivateAlias) { - // Create local alias for NewGlobal to avoid crash on ODR between - // instrumented and non-instrumented libraries. - InstrumentedGlobal = - GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); - } - - // ODR should not happen for local linkage. - if (NewGlobal->hasLocalLinkage()) { - ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), - IRB.getInt8PtrTy()); - } else if (UseOdrIndicator) { - // With local aliases, we need to provide another externally visible - // symbol __odr_asan_XXX to detect ODR violation. - auto *ODRIndicatorSym = - new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, - Constant::getNullValue(IRB.getInt8Ty()), - kODRGenPrefix + NameForGlobal, nullptr, - NewGlobal->getThreadLocalMode()); - - // Set meaningful attributes for indicator symbol. - ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); - ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); - ODRIndicatorSym->setAlignment(Align(1)); - ODRIndicator = ODRIndicatorSym; - } - - Constant *Initializer = ConstantStruct::get( - GlobalStructTy, - ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), - ConstantInt::get(IntptrTy, SizeInBytes), - ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), - ConstantExpr::getPointerCast(Name, IntptrTy), - ConstantExpr::getPointerCast(ModuleName, IntptrTy), - ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, - ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); - - if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; - - LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); - - Initializers[i] = Initializer; - } - - // Add instrumented globals to llvm.compiler.used list to avoid LTO from - // ConstantMerge'ing them. - SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; - for (size_t i = 0; i < n; i++) { - GlobalVariable *G = NewGlobals[i]; - if (G->getName().empty()) continue; - GlobalsToAddToUsedList.push_back(G); - } - appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); - - std::string ELFUniqueModuleId = - (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) - : ""; - - if (!ELFUniqueModuleId.empty()) { - InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); - *CtorComdat = true; - } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { - InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); - } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { - InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); - } else { - InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); - } - - // Create calls for poisoning before initializers run and unpoisoning after. - if (HasDynamicallyInitializedGlobals) - createInitializerPoisonCalls(M, ModuleName); - - LLVM_DEBUG(dbgs() << M); - return true; -} - -uint64_t -ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { - constexpr uint64_t kMaxRZ = 1 << 18; - const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); - - // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. - uint64_t RZ = - std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); - - // Round up to multiple of MinRZ. - if (SizeInBytes % MinRZ) - RZ += MinRZ - (SizeInBytes % MinRZ); - assert((RZ + SizeInBytes) % MinRZ == 0); - - return RZ; -} - -int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { - int LongSize = M.getDataLayout().getPointerSizeInBits(); - bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); - int Version = 8; - // 32-bit Android is one version ahead because of the switch to dynamic - // shadow. - Version += (LongSize == 32 && isAndroid); - return Version; -} - -bool ModuleAddressSanitizer::instrumentModule(Module &M) { - initializeCallbacks(M); - - // Create a module constructor. A destructor is created lazily because not all - // platforms, and not all modules need it. - if (CompileKernel) { - // The kernel always builds with its own runtime, and therefore does not - // need the init and version check calls. - AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); - } else { - std::string AsanVersion = std::to_string(GetAsanVersion(M)); - std::string VersionCheckName = - ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; - std::tie(AsanCtorFunction, std::ignore) = - createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, - kAsanInitName, /*InitArgTypes=*/{}, - /*InitArgs=*/{}, VersionCheckName); - } - - bool CtorComdat = true; - if (ClGlobals) { - IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); - InstrumentGlobals(IRB, M, &CtorComdat); - } - - const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); - - // Put the constructor and destructor in comdat if both - // (1) global instrumentation is not TU-specific - // (2) target is ELF. - if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { - AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); - appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); - if (AsanDtorFunction) { - AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); - appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); - } - } else { - appendToGlobalCtors(M, AsanCtorFunction, Priority); - if (AsanDtorFunction) - appendToGlobalDtors(M, AsanDtorFunction, Priority); - } - - return true; -} - -void AddressSanitizer::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - // Create __asan_report* callbacks. - // IsWrite, TypeSize and Exp are encoded in the function name. - for (int Exp = 0; Exp < 2; Exp++) { - for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { - const std::string TypeStr = AccessIsWrite ? "store" : "load"; - const std::string ExpStr = Exp ? "exp_" : ""; - const std::string EndingStr = Recover ? "_noabort" : ""; - - SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; - SmallVector<Type *, 2> Args1{1, IntptrTy}; - if (Exp) { - Type *ExpType = Type::getInt32Ty(*C); - Args2.push_back(ExpType); - Args1.push_back(ExpType); - } - AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( - kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args2, false)); - - AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args2, false)); - - for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; - AccessSizeIndex++) { - const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); - AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = - M.getOrInsertFunction( - kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args1, false)); - - AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = - M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, - FunctionType::get(IRB.getVoidTy(), Args1, false)); - } - } - } - - const std::string MemIntrinCallbackPrefix = - CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; - AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt32Ty(), IntptrTy); - - AsanHandleNoReturnFunc = - M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); - - AsanPtrCmpFunction = - M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); - AsanPtrSubFunction = - M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); - if (Mapping.InGlobal) - AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", - ArrayType::get(IRB.getInt8Ty(), 0)); -} - -bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { - // For each NSObject descendant having a +load method, this method is invoked - // by the ObjC runtime before any of the static constructors is called. - // Therefore we need to instrument such methods with a call to __asan_init - // at the beginning in order to initialize our runtime before any access to - // the shadow memory. - // We cannot just ignore these methods, because they may call other - // instrumented functions. - if (F.getName().find(" load]") != std::string::npos) { - FunctionCallee AsanInitFunction = - declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); - IRBuilder<> IRB(&F.front(), F.front().begin()); - IRB.CreateCall(AsanInitFunction, {}); - return true; - } - return false; -} - -bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { - // Generate code only when dynamic addressing is needed. - if (Mapping.Offset != kDynamicShadowSentinel) - return false; - - IRBuilder<> IRB(&F.front().front()); - if (Mapping.InGlobal) { - if (ClWithIfuncSuppressRemat) { - // An empty inline asm with input reg == output reg. - // An opaque pointer-to-int cast, basically. - InlineAsm *Asm = InlineAsm::get( - FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), - StringRef(""), StringRef("=r,0"), - /*hasSideEffects=*/false); - LocalDynamicShadow = - IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); - } else { - LocalDynamicShadow = - IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); - } - } else { - Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( - kAsanShadowMemoryDynamicAddress, IntptrTy); - LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); - } - return true; -} - -void AddressSanitizer::markEscapedLocalAllocas(Function &F) { - // Find the one possible call to llvm.localescape and pre-mark allocas passed - // to it as uninteresting. This assumes we haven't started processing allocas - // yet. This check is done up front because iterating the use list in - // isInterestingAlloca would be algorithmically slower. - assert(ProcessedAllocas.empty() && "must process localescape before allocas"); - - // Try to get the declaration of llvm.localescape. If it's not in the module, - // we can exit early. - if (!F.getParent()->getFunction("llvm.localescape")) return; - - // Look for a call to llvm.localescape call in the entry block. It can't be in - // any other block. - for (Instruction &I : F.getEntryBlock()) { - IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); - if (II && II->getIntrinsicID() == Intrinsic::localescape) { - // We found a call. Mark all the allocas passed in as uninteresting. - for (Value *Arg : II->arg_operands()) { - AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); - assert(AI && AI->isStaticAlloca() && - "non-static alloca arg to localescape"); - ProcessedAllocas[AI] = false; - } - break; - } - } -} - -bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { - bool ShouldInstrument = - ClDebugMin < 0 || ClDebugMax < 0 || - (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); - Instrumented++; - return !ShouldInstrument; -} - -bool AddressSanitizer::instrumentFunction(Function &F, - const TargetLibraryInfo *TLI) { - if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; - if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; - if (F.getName().startswith("__asan_")) return false; - - bool FunctionModified = false; - - // If needed, insert __asan_init before checking for SanitizeAddress attr. - // This function needs to be called even if the function body is not - // instrumented. - if (maybeInsertAsanInitAtFunctionEntry(F)) - FunctionModified = true; - - // Leave if the function doesn't need instrumentation. - if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; - - LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); - - initializeCallbacks(*F.getParent()); - - FunctionStateRAII CleanupObj(this); - - FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); - - // We can't instrument allocas used with llvm.localescape. Only static allocas - // can be passed to that intrinsic. - markEscapedLocalAllocas(F); - - // We want to instrument every address only once per basic block (unless there - // are calls between uses). - SmallPtrSet<Value *, 16> TempsToInstrument; - SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; - SmallVector<MemIntrinsic *, 16> IntrinToInstrument; - SmallVector<Instruction *, 8> NoReturnCalls; - SmallVector<BasicBlock *, 16> AllBlocks; - SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; - int NumAllocas = 0; - - // Fill the set of memory operations to instrument. - for (auto &BB : F) { - AllBlocks.push_back(&BB); - TempsToInstrument.clear(); - int NumInsnsPerBB = 0; - for (auto &Inst : BB) { - if (LooksLikeCodeInBug11395(&Inst)) return false; - SmallVector<InterestingMemoryOperand, 1> InterestingOperands; - getInterestingMemoryOperands(&Inst, InterestingOperands); - - if (!InterestingOperands.empty()) { - for (auto &Operand : InterestingOperands) { - if (ClOpt && ClOptSameTemp) { - Value *Ptr = Operand.getPtr(); - // If we have a mask, skip instrumentation if we've already - // instrumented the full object. But don't add to TempsToInstrument - // because we might get another load/store with a different mask. - if (Operand.MaybeMask) { - if (TempsToInstrument.count(Ptr)) - continue; // We've seen this (whole) temp in the current BB. - } else { - if (!TempsToInstrument.insert(Ptr).second) - continue; // We've seen this temp in the current BB. - } - } - OperandsToInstrument.push_back(Operand); - NumInsnsPerBB++; - } - } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && - isInterestingPointerComparison(&Inst)) || - ((ClInvalidPointerPairs || ClInvalidPointerSub) && - isInterestingPointerSubtraction(&Inst))) { - PointerComparisonsOrSubtracts.push_back(&Inst); - } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { - // ok, take it. - IntrinToInstrument.push_back(MI); - NumInsnsPerBB++; - } else { - if (isa<AllocaInst>(Inst)) NumAllocas++; - if (auto *CB = dyn_cast<CallBase>(&Inst)) { - // A call inside BB. - TempsToInstrument.clear(); - if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) - NoReturnCalls.push_back(CB); - } - if (CallInst *CI = dyn_cast<CallInst>(&Inst)) - maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); - } - if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; - } - } - - bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && - OperandsToInstrument.size() + IntrinToInstrument.size() > - (unsigned)ClInstrumentationWithCallsThreshold); - const DataLayout &DL = F.getParent()->getDataLayout(); - ObjectSizeOpts ObjSizeOpts; - ObjSizeOpts.RoundToAlign = true; - ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); - - // Instrument. - int NumInstrumented = 0; - for (auto &Operand : OperandsToInstrument) { - if (!suppressInstrumentationSiteForDebug(NumInstrumented)) - instrumentMop(ObjSizeVis, Operand, UseCalls, - F.getParent()->getDataLayout()); - FunctionModified = true; - } - for (auto Inst : IntrinToInstrument) { - if (!suppressInstrumentationSiteForDebug(NumInstrumented)) - instrumentMemIntrinsic(Inst); - FunctionModified = true; - } - - FunctionStackPoisoner FSP(F, *this); - bool ChangedStack = FSP.runOnFunction(); - - // We must unpoison the stack before NoReturn calls (throw, _exit, etc). - // See e.g. https://github.com/google/sanitizers/issues/37 - for (auto CI : NoReturnCalls) { - IRBuilder<> IRB(CI); - IRB.CreateCall(AsanHandleNoReturnFunc, {}); - } - - for (auto Inst : PointerComparisonsOrSubtracts) { - instrumentPointerComparisonOrSubtraction(Inst); - FunctionModified = true; - } - - if (ChangedStack || !NoReturnCalls.empty()) - FunctionModified = true; - - LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " - << F << "\n"); - - return FunctionModified; -} - -// Workaround for bug 11395: we don't want to instrument stack in functions -// with large assembly blobs (32-bit only), otherwise reg alloc may crash. -// FIXME: remove once the bug 11395 is fixed. -bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { - if (LongSize != 32) return false; - CallInst *CI = dyn_cast<CallInst>(I); - if (!CI || !CI->isInlineAsm()) return false; - if (CI->getNumArgOperands() <= 5) return false; - // We have inline assembly with quite a few arguments. - return true; -} - -void FunctionStackPoisoner::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { - std::string Suffix = itostr(i); - AsanStackMallocFunc[i] = M.getOrInsertFunction( - kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); - AsanStackFreeFunc[i] = - M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, - IRB.getVoidTy(), IntptrTy, IntptrTy); - } - if (ASan.UseAfterScope) { - AsanPoisonStackMemoryFunc = M.getOrInsertFunction( - kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); - AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( - kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); - } - - for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { - std::ostringstream Name; - Name << kAsanSetShadowPrefix; - Name << std::setw(2) << std::setfill('0') << std::hex << Val; - AsanSetShadowFunc[Val] = - M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); - } - - AsanAllocaPoisonFunc = M.getOrInsertFunction( - kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); - AsanAllocasUnpoisonFunc = M.getOrInsertFunction( - kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); -} - -void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, - IRBuilder<> &IRB, - Value *ShadowBase) { - if (Begin >= End) - return; - - const size_t LargestStoreSizeInBytes = - std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); - - const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); - - // Poison given range in shadow using larges store size with out leading and - // trailing zeros in ShadowMask. Zeros never change, so they need neither - // poisoning nor up-poisoning. Still we don't mind if some of them get into a - // middle of a store. - for (size_t i = Begin; i < End;) { - if (!ShadowMask[i]) { - assert(!ShadowBytes[i]); - ++i; - continue; - } - - size_t StoreSizeInBytes = LargestStoreSizeInBytes; - // Fit store size into the range. - while (StoreSizeInBytes > End - i) - StoreSizeInBytes /= 2; - - // Minimize store size by trimming trailing zeros. - for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { - while (j <= StoreSizeInBytes / 2) - StoreSizeInBytes /= 2; - } - - uint64_t Val = 0; - for (size_t j = 0; j < StoreSizeInBytes; j++) { - if (IsLittleEndian) - Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); - else - Val = (Val << 8) | ShadowBytes[i + j]; - } - - Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); - Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); - IRB.CreateAlignedStore( - Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), - Align(1)); - - i += StoreSizeInBytes; - } -} - -void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - IRBuilder<> &IRB, Value *ShadowBase) { - copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); -} - -void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, - ArrayRef<uint8_t> ShadowBytes, - size_t Begin, size_t End, - IRBuilder<> &IRB, Value *ShadowBase) { - assert(ShadowMask.size() == ShadowBytes.size()); - size_t Done = Begin; - for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { - if (!ShadowMask[i]) { - assert(!ShadowBytes[i]); - continue; - } - uint8_t Val = ShadowBytes[i]; - if (!AsanSetShadowFunc[Val]) - continue; - - // Skip same values. - for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { - } - - if (j - i >= ClMaxInlinePoisoningSize) { - copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); - IRB.CreateCall(AsanSetShadowFunc[Val], - {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), - ConstantInt::get(IntptrTy, j - i)}); - Done = j; - } - } - - copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); -} - -// Fake stack allocator (asan_fake_stack.h) has 11 size classes -// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass -static int StackMallocSizeClass(uint64_t LocalStackSize) { - assert(LocalStackSize <= kMaxStackMallocSize); - uint64_t MaxSize = kMinStackMallocSize; - for (int i = 0;; i++, MaxSize *= 2) - if (LocalStackSize <= MaxSize) return i; - llvm_unreachable("impossible LocalStackSize"); -} - -void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { - Instruction *CopyInsertPoint = &F.front().front(); - if (CopyInsertPoint == ASan.LocalDynamicShadow) { - // Insert after the dynamic shadow location is determined - CopyInsertPoint = CopyInsertPoint->getNextNode(); - assert(CopyInsertPoint); - } - IRBuilder<> IRB(CopyInsertPoint); - const DataLayout &DL = F.getParent()->getDataLayout(); - for (Argument &Arg : F.args()) { - if (Arg.hasByValAttr()) { - Type *Ty = Arg.getParamByValType(); - const Align Alignment = - DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); - - AllocaInst *AI = IRB.CreateAlloca( - Ty, nullptr, - (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + - ".byval"); - AI->setAlignment(Alignment); - Arg.replaceAllUsesWith(AI); - - uint64_t AllocSize = DL.getTypeAllocSize(Ty); - IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); - } - } -} - -PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, - Value *ValueIfTrue, - Instruction *ThenTerm, - Value *ValueIfFalse) { - PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); - BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); - PHI->addIncoming(ValueIfFalse, CondBlock); - BasicBlock *ThenBlock = ThenTerm->getParent(); - PHI->addIncoming(ValueIfTrue, ThenBlock); - return PHI; -} - -Value *FunctionStackPoisoner::createAllocaForLayout( - IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { - AllocaInst *Alloca; - if (Dynamic) { - Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), - ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), - "MyAlloca"); - } else { - Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), - nullptr, "MyAlloca"); - assert(Alloca->isStaticAlloca()); - } - assert((ClRealignStack & (ClRealignStack - 1)) == 0); - size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); - Alloca->setAlignment(Align(FrameAlignment)); - return IRB.CreatePointerCast(Alloca, IntptrTy); -} - -void FunctionStackPoisoner::createDynamicAllocasInitStorage() { - BasicBlock &FirstBB = *F.begin(); - IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); - DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); - IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); - DynamicAllocaLayout->setAlignment(Align(32)); -} - -void FunctionStackPoisoner::processDynamicAllocas() { - if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { - assert(DynamicAllocaPoisonCallVec.empty()); - return; - } - - // Insert poison calls for lifetime intrinsics for dynamic allocas. - for (const auto &APC : DynamicAllocaPoisonCallVec) { - assert(APC.InsBefore); - assert(APC.AI); - assert(ASan.isInterestingAlloca(*APC.AI)); - assert(!APC.AI->isStaticAlloca()); - - IRBuilder<> IRB(APC.InsBefore); - poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); - // Dynamic allocas will be unpoisoned unconditionally below in - // unpoisonDynamicAllocas. - // Flag that we need unpoison static allocas. - } - - // Handle dynamic allocas. - createDynamicAllocasInitStorage(); - for (auto &AI : DynamicAllocaVec) - handleDynamicAllocaCall(AI); - unpoisonDynamicAllocas(); -} - -/// Collect instructions in the entry block after \p InsBefore which initialize -/// permanent storage for a function argument. These instructions must remain in -/// the entry block so that uninitialized values do not appear in backtraces. An -/// added benefit is that this conserves spill slots. This does not move stores -/// before instrumented / "interesting" allocas. -static void findStoresToUninstrumentedArgAllocas( - AddressSanitizer &ASan, Instruction &InsBefore, - SmallVectorImpl<Instruction *> &InitInsts) { - Instruction *Start = InsBefore.getNextNonDebugInstruction(); - for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { - // Argument initialization looks like: - // 1) store <Argument>, <Alloca> OR - // 2) <CastArgument> = cast <Argument> to ... - // store <CastArgument> to <Alloca> - // Do not consider any other kind of instruction. - // - // Note: This covers all known cases, but may not be exhaustive. An - // alternative to pattern-matching stores is to DFS over all Argument uses: - // this might be more general, but is probably much more complicated. - if (isa<AllocaInst>(It) || isa<CastInst>(It)) - continue; - if (auto *Store = dyn_cast<StoreInst>(It)) { - // The store destination must be an alloca that isn't interesting for - // ASan to instrument. These are moved up before InsBefore, and they're - // not interesting because allocas for arguments can be mem2reg'd. - auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); - if (!Alloca || ASan.isInterestingAlloca(*Alloca)) - continue; - - Value *Val = Store->getValueOperand(); - bool IsDirectArgInit = isa<Argument>(Val); - bool IsArgInitViaCast = - isa<CastInst>(Val) && - isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && - // Check that the cast appears directly before the store. Otherwise - // moving the cast before InsBefore may break the IR. - Val == It->getPrevNonDebugInstruction(); - bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; - if (!IsArgInit) - continue; - - if (IsArgInitViaCast) - InitInsts.push_back(cast<Instruction>(Val)); - InitInsts.push_back(Store); - continue; - } - - // Do not reorder past unknown instructions: argument initialization should - // only involve casts and stores. - return; - } -} - -void FunctionStackPoisoner::processStaticAllocas() { - if (AllocaVec.empty()) { - assert(StaticAllocaPoisonCallVec.empty()); - return; - } - - int StackMallocIdx = -1; - DebugLoc EntryDebugLocation; - if (auto SP = F.getSubprogram()) + + Value *Indices2[2]; + Indices2[0] = IRB.getInt32(0); + Indices2[1] = IRB.getInt32(0); + + G->replaceAllUsesWith( + ConstantExpr::getGetElementPtr(NewTy, NewGlobal, Indices2, true)); + NewGlobal->takeName(G); + G->eraseFromParent(); + NewGlobals[i] = NewGlobal; + + Constant *SourceLoc; + if (!MD.SourceLoc.empty()) { + auto SourceLocGlobal = createPrivateGlobalForSourceLoc(M, MD.SourceLoc); + SourceLoc = ConstantExpr::getPointerCast(SourceLocGlobal, IntptrTy); + } else { + SourceLoc = ConstantInt::get(IntptrTy, 0); + } + + Constant *ODRIndicator = ConstantExpr::getNullValue(IRB.getInt8PtrTy()); + GlobalValue *InstrumentedGlobal = NewGlobal; + + bool CanUsePrivateAliases = + TargetTriple.isOSBinFormatELF() || TargetTriple.isOSBinFormatMachO() || + TargetTriple.isOSBinFormatWasm(); + if (CanUsePrivateAliases && UsePrivateAlias) { + // Create local alias for NewGlobal to avoid crash on ODR between + // instrumented and non-instrumented libraries. + InstrumentedGlobal = + GlobalAlias::create(GlobalValue::PrivateLinkage, "", NewGlobal); + } + + // ODR should not happen for local linkage. + if (NewGlobal->hasLocalLinkage()) { + ODRIndicator = ConstantExpr::getIntToPtr(ConstantInt::get(IntptrTy, -1), + IRB.getInt8PtrTy()); + } else if (UseOdrIndicator) { + // With local aliases, we need to provide another externally visible + // symbol __odr_asan_XXX to detect ODR violation. + auto *ODRIndicatorSym = + new GlobalVariable(M, IRB.getInt8Ty(), false, Linkage, + Constant::getNullValue(IRB.getInt8Ty()), + kODRGenPrefix + NameForGlobal, nullptr, + NewGlobal->getThreadLocalMode()); + + // Set meaningful attributes for indicator symbol. + ODRIndicatorSym->setVisibility(NewGlobal->getVisibility()); + ODRIndicatorSym->setDLLStorageClass(NewGlobal->getDLLStorageClass()); + ODRIndicatorSym->setAlignment(Align(1)); + ODRIndicator = ODRIndicatorSym; + } + + Constant *Initializer = ConstantStruct::get( + GlobalStructTy, + ConstantExpr::getPointerCast(InstrumentedGlobal, IntptrTy), + ConstantInt::get(IntptrTy, SizeInBytes), + ConstantInt::get(IntptrTy, SizeInBytes + RightRedzoneSize), + ConstantExpr::getPointerCast(Name, IntptrTy), + ConstantExpr::getPointerCast(ModuleName, IntptrTy), + ConstantInt::get(IntptrTy, MD.IsDynInit), SourceLoc, + ConstantExpr::getPointerCast(ODRIndicator, IntptrTy)); + + if (ClInitializers && MD.IsDynInit) HasDynamicallyInitializedGlobals = true; + + LLVM_DEBUG(dbgs() << "NEW GLOBAL: " << *NewGlobal << "\n"); + + Initializers[i] = Initializer; + } + + // Add instrumented globals to llvm.compiler.used list to avoid LTO from + // ConstantMerge'ing them. + SmallVector<GlobalValue *, 16> GlobalsToAddToUsedList; + for (size_t i = 0; i < n; i++) { + GlobalVariable *G = NewGlobals[i]; + if (G->getName().empty()) continue; + GlobalsToAddToUsedList.push_back(G); + } + appendToCompilerUsed(M, ArrayRef<GlobalValue *>(GlobalsToAddToUsedList)); + + std::string ELFUniqueModuleId = + (UseGlobalsGC && TargetTriple.isOSBinFormatELF()) ? getUniqueModuleId(&M) + : ""; + + if (!ELFUniqueModuleId.empty()) { + InstrumentGlobalsELF(IRB, M, NewGlobals, Initializers, ELFUniqueModuleId); + *CtorComdat = true; + } else if (UseGlobalsGC && TargetTriple.isOSBinFormatCOFF()) { + InstrumentGlobalsCOFF(IRB, M, NewGlobals, Initializers); + } else if (UseGlobalsGC && ShouldUseMachOGlobalsSection()) { + InstrumentGlobalsMachO(IRB, M, NewGlobals, Initializers); + } else { + InstrumentGlobalsWithMetadataArray(IRB, M, NewGlobals, Initializers); + } + + // Create calls for poisoning before initializers run and unpoisoning after. + if (HasDynamicallyInitializedGlobals) + createInitializerPoisonCalls(M, ModuleName); + + LLVM_DEBUG(dbgs() << M); + return true; +} + +uint64_t +ModuleAddressSanitizer::getRedzoneSizeForGlobal(uint64_t SizeInBytes) const { + constexpr uint64_t kMaxRZ = 1 << 18; + const uint64_t MinRZ = getMinRedzoneSizeForGlobal(); + + // Calculate RZ, where MinRZ <= RZ <= MaxRZ, and RZ ~ 1/4 * SizeInBytes. + uint64_t RZ = + std::max(MinRZ, std::min(kMaxRZ, (SizeInBytes / MinRZ / 4) * MinRZ)); + + // Round up to multiple of MinRZ. + if (SizeInBytes % MinRZ) + RZ += MinRZ - (SizeInBytes % MinRZ); + assert((RZ + SizeInBytes) % MinRZ == 0); + + return RZ; +} + +int ModuleAddressSanitizer::GetAsanVersion(const Module &M) const { + int LongSize = M.getDataLayout().getPointerSizeInBits(); + bool isAndroid = Triple(M.getTargetTriple()).isAndroid(); + int Version = 8; + // 32-bit Android is one version ahead because of the switch to dynamic + // shadow. + Version += (LongSize == 32 && isAndroid); + return Version; +} + +bool ModuleAddressSanitizer::instrumentModule(Module &M) { + initializeCallbacks(M); + + // Create a module constructor. A destructor is created lazily because not all + // platforms, and not all modules need it. + if (CompileKernel) { + // The kernel always builds with its own runtime, and therefore does not + // need the init and version check calls. + AsanCtorFunction = createSanitizerCtor(M, kAsanModuleCtorName); + } else { + std::string AsanVersion = std::to_string(GetAsanVersion(M)); + std::string VersionCheckName = + ClInsertVersionCheck ? (kAsanVersionCheckNamePrefix + AsanVersion) : ""; + std::tie(AsanCtorFunction, std::ignore) = + createSanitizerCtorAndInitFunctions(M, kAsanModuleCtorName, + kAsanInitName, /*InitArgTypes=*/{}, + /*InitArgs=*/{}, VersionCheckName); + } + + bool CtorComdat = true; + if (ClGlobals) { + IRBuilder<> IRB(AsanCtorFunction->getEntryBlock().getTerminator()); + InstrumentGlobals(IRB, M, &CtorComdat); + } + + const uint64_t Priority = GetCtorAndDtorPriority(TargetTriple); + + // Put the constructor and destructor in comdat if both + // (1) global instrumentation is not TU-specific + // (2) target is ELF. + if (UseCtorComdat && TargetTriple.isOSBinFormatELF() && CtorComdat) { + AsanCtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleCtorName)); + appendToGlobalCtors(M, AsanCtorFunction, Priority, AsanCtorFunction); + if (AsanDtorFunction) { + AsanDtorFunction->setComdat(M.getOrInsertComdat(kAsanModuleDtorName)); + appendToGlobalDtors(M, AsanDtorFunction, Priority, AsanDtorFunction); + } + } else { + appendToGlobalCtors(M, AsanCtorFunction, Priority); + if (AsanDtorFunction) + appendToGlobalDtors(M, AsanDtorFunction, Priority); + } + + return true; +} + +void AddressSanitizer::initializeCallbacks(Module &M) { + IRBuilder<> IRB(*C); + // Create __asan_report* callbacks. + // IsWrite, TypeSize and Exp are encoded in the function name. + for (int Exp = 0; Exp < 2; Exp++) { + for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { + const std::string TypeStr = AccessIsWrite ? "store" : "load"; + const std::string ExpStr = Exp ? "exp_" : ""; + const std::string EndingStr = Recover ? "_noabort" : ""; + + SmallVector<Type *, 3> Args2 = {IntptrTy, IntptrTy}; + SmallVector<Type *, 2> Args1{1, IntptrTy}; + if (Exp) { + Type *ExpType = Type::getInt32Ty(*C); + Args2.push_back(ExpType); + Args1.push_back(ExpType); + } + AsanErrorCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( + kAsanReportErrorTemplate + ExpStr + TypeStr + "_n" + EndingStr, + FunctionType::get(IRB.getVoidTy(), Args2, false)); + + AsanMemoryAccessCallbackSized[AccessIsWrite][Exp] = M.getOrInsertFunction( + ClMemoryAccessCallbackPrefix + ExpStr + TypeStr + "N" + EndingStr, + FunctionType::get(IRB.getVoidTy(), Args2, false)); + + for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; + AccessSizeIndex++) { + const std::string Suffix = TypeStr + itostr(1ULL << AccessSizeIndex); + AsanErrorCallback[AccessIsWrite][Exp][AccessSizeIndex] = + M.getOrInsertFunction( + kAsanReportErrorTemplate + ExpStr + Suffix + EndingStr, + FunctionType::get(IRB.getVoidTy(), Args1, false)); + + AsanMemoryAccessCallback[AccessIsWrite][Exp][AccessSizeIndex] = + M.getOrInsertFunction( + ClMemoryAccessCallbackPrefix + ExpStr + Suffix + EndingStr, + FunctionType::get(IRB.getVoidTy(), Args1, false)); + } + } + } + + const std::string MemIntrinCallbackPrefix = + CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; + AsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy); + AsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy); + AsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt32Ty(), IntptrTy); + + AsanHandleNoReturnFunc = + M.getOrInsertFunction(kAsanHandleNoReturnName, IRB.getVoidTy()); + + AsanPtrCmpFunction = + M.getOrInsertFunction(kAsanPtrCmp, IRB.getVoidTy(), IntptrTy, IntptrTy); + AsanPtrSubFunction = + M.getOrInsertFunction(kAsanPtrSub, IRB.getVoidTy(), IntptrTy, IntptrTy); + if (Mapping.InGlobal) + AsanShadowGlobal = M.getOrInsertGlobal("__asan_shadow", + ArrayType::get(IRB.getInt8Ty(), 0)); +} + +bool AddressSanitizer::maybeInsertAsanInitAtFunctionEntry(Function &F) { + // For each NSObject descendant having a +load method, this method is invoked + // by the ObjC runtime before any of the static constructors is called. + // Therefore we need to instrument such methods with a call to __asan_init + // at the beginning in order to initialize our runtime before any access to + // the shadow memory. + // We cannot just ignore these methods, because they may call other + // instrumented functions. + if (F.getName().find(" load]") != std::string::npos) { + FunctionCallee AsanInitFunction = + declareSanitizerInitFunction(*F.getParent(), kAsanInitName, {}); + IRBuilder<> IRB(&F.front(), F.front().begin()); + IRB.CreateCall(AsanInitFunction, {}); + return true; + } + return false; +} + +bool AddressSanitizer::maybeInsertDynamicShadowAtFunctionEntry(Function &F) { + // Generate code only when dynamic addressing is needed. + if (Mapping.Offset != kDynamicShadowSentinel) + return false; + + IRBuilder<> IRB(&F.front().front()); + if (Mapping.InGlobal) { + if (ClWithIfuncSuppressRemat) { + // An empty inline asm with input reg == output reg. + // An opaque pointer-to-int cast, basically. + InlineAsm *Asm = InlineAsm::get( + FunctionType::get(IntptrTy, {AsanShadowGlobal->getType()}, false), + StringRef(""), StringRef("=r,0"), + /*hasSideEffects=*/false); + LocalDynamicShadow = + IRB.CreateCall(Asm, {AsanShadowGlobal}, ".asan.shadow"); + } else { + LocalDynamicShadow = + IRB.CreatePointerCast(AsanShadowGlobal, IntptrTy, ".asan.shadow"); + } + } else { + Value *GlobalDynamicAddress = F.getParent()->getOrInsertGlobal( + kAsanShadowMemoryDynamicAddress, IntptrTy); + LocalDynamicShadow = IRB.CreateLoad(IntptrTy, GlobalDynamicAddress); + } + return true; +} + +void AddressSanitizer::markEscapedLocalAllocas(Function &F) { + // Find the one possible call to llvm.localescape and pre-mark allocas passed + // to it as uninteresting. This assumes we haven't started processing allocas + // yet. This check is done up front because iterating the use list in + // isInterestingAlloca would be algorithmically slower. + assert(ProcessedAllocas.empty() && "must process localescape before allocas"); + + // Try to get the declaration of llvm.localescape. If it's not in the module, + // we can exit early. + if (!F.getParent()->getFunction("llvm.localescape")) return; + + // Look for a call to llvm.localescape call in the entry block. It can't be in + // any other block. + for (Instruction &I : F.getEntryBlock()) { + IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I); + if (II && II->getIntrinsicID() == Intrinsic::localescape) { + // We found a call. Mark all the allocas passed in as uninteresting. + for (Value *Arg : II->arg_operands()) { + AllocaInst *AI = dyn_cast<AllocaInst>(Arg->stripPointerCasts()); + assert(AI && AI->isStaticAlloca() && + "non-static alloca arg to localescape"); + ProcessedAllocas[AI] = false; + } + break; + } + } +} + +bool AddressSanitizer::suppressInstrumentationSiteForDebug(int &Instrumented) { + bool ShouldInstrument = + ClDebugMin < 0 || ClDebugMax < 0 || + (Instrumented >= ClDebugMin && Instrumented <= ClDebugMax); + Instrumented++; + return !ShouldInstrument; +} + +bool AddressSanitizer::instrumentFunction(Function &F, + const TargetLibraryInfo *TLI) { + if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) return false; + if (!ClDebugFunc.empty() && ClDebugFunc == F.getName()) return false; + if (F.getName().startswith("__asan_")) return false; + + bool FunctionModified = false; + + // If needed, insert __asan_init before checking for SanitizeAddress attr. + // This function needs to be called even if the function body is not + // instrumented. + if (maybeInsertAsanInitAtFunctionEntry(F)) + FunctionModified = true; + + // Leave if the function doesn't need instrumentation. + if (!F.hasFnAttribute(Attribute::SanitizeAddress)) return FunctionModified; + + LLVM_DEBUG(dbgs() << "ASAN instrumenting:\n" << F << "\n"); + + initializeCallbacks(*F.getParent()); + + FunctionStateRAII CleanupObj(this); + + FunctionModified |= maybeInsertDynamicShadowAtFunctionEntry(F); + + // We can't instrument allocas used with llvm.localescape. Only static allocas + // can be passed to that intrinsic. + markEscapedLocalAllocas(F); + + // We want to instrument every address only once per basic block (unless there + // are calls between uses). + SmallPtrSet<Value *, 16> TempsToInstrument; + SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; + SmallVector<MemIntrinsic *, 16> IntrinToInstrument; + SmallVector<Instruction *, 8> NoReturnCalls; + SmallVector<BasicBlock *, 16> AllBlocks; + SmallVector<Instruction *, 16> PointerComparisonsOrSubtracts; + int NumAllocas = 0; + + // Fill the set of memory operations to instrument. + for (auto &BB : F) { + AllBlocks.push_back(&BB); + TempsToInstrument.clear(); + int NumInsnsPerBB = 0; + for (auto &Inst : BB) { + if (LooksLikeCodeInBug11395(&Inst)) return false; + SmallVector<InterestingMemoryOperand, 1> InterestingOperands; + getInterestingMemoryOperands(&Inst, InterestingOperands); + + if (!InterestingOperands.empty()) { + for (auto &Operand : InterestingOperands) { + if (ClOpt && ClOptSameTemp) { + Value *Ptr = Operand.getPtr(); + // If we have a mask, skip instrumentation if we've already + // instrumented the full object. But don't add to TempsToInstrument + // because we might get another load/store with a different mask. + if (Operand.MaybeMask) { + if (TempsToInstrument.count(Ptr)) + continue; // We've seen this (whole) temp in the current BB. + } else { + if (!TempsToInstrument.insert(Ptr).second) + continue; // We've seen this temp in the current BB. + } + } + OperandsToInstrument.push_back(Operand); + NumInsnsPerBB++; + } + } else if (((ClInvalidPointerPairs || ClInvalidPointerCmp) && + isInterestingPointerComparison(&Inst)) || + ((ClInvalidPointerPairs || ClInvalidPointerSub) && + isInterestingPointerSubtraction(&Inst))) { + PointerComparisonsOrSubtracts.push_back(&Inst); + } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) { + // ok, take it. + IntrinToInstrument.push_back(MI); + NumInsnsPerBB++; + } else { + if (isa<AllocaInst>(Inst)) NumAllocas++; + if (auto *CB = dyn_cast<CallBase>(&Inst)) { + // A call inside BB. + TempsToInstrument.clear(); + if (CB->doesNotReturn() && !CB->hasMetadata("nosanitize")) + NoReturnCalls.push_back(CB); + } + if (CallInst *CI = dyn_cast<CallInst>(&Inst)) + maybeMarkSanitizerLibraryCallNoBuiltin(CI, TLI); + } + if (NumInsnsPerBB >= ClMaxInsnsToInstrumentPerBB) break; + } + } + + bool UseCalls = (ClInstrumentationWithCallsThreshold >= 0 && + OperandsToInstrument.size() + IntrinToInstrument.size() > + (unsigned)ClInstrumentationWithCallsThreshold); + const DataLayout &DL = F.getParent()->getDataLayout(); + ObjectSizeOpts ObjSizeOpts; + ObjSizeOpts.RoundToAlign = true; + ObjectSizeOffsetVisitor ObjSizeVis(DL, TLI, F.getContext(), ObjSizeOpts); + + // Instrument. + int NumInstrumented = 0; + for (auto &Operand : OperandsToInstrument) { + if (!suppressInstrumentationSiteForDebug(NumInstrumented)) + instrumentMop(ObjSizeVis, Operand, UseCalls, + F.getParent()->getDataLayout()); + FunctionModified = true; + } + for (auto Inst : IntrinToInstrument) { + if (!suppressInstrumentationSiteForDebug(NumInstrumented)) + instrumentMemIntrinsic(Inst); + FunctionModified = true; + } + + FunctionStackPoisoner FSP(F, *this); + bool ChangedStack = FSP.runOnFunction(); + + // We must unpoison the stack before NoReturn calls (throw, _exit, etc). + // See e.g. https://github.com/google/sanitizers/issues/37 + for (auto CI : NoReturnCalls) { + IRBuilder<> IRB(CI); + IRB.CreateCall(AsanHandleNoReturnFunc, {}); + } + + for (auto Inst : PointerComparisonsOrSubtracts) { + instrumentPointerComparisonOrSubtraction(Inst); + FunctionModified = true; + } + + if (ChangedStack || !NoReturnCalls.empty()) + FunctionModified = true; + + LLVM_DEBUG(dbgs() << "ASAN done instrumenting: " << FunctionModified << " " + << F << "\n"); + + return FunctionModified; +} + +// Workaround for bug 11395: we don't want to instrument stack in functions +// with large assembly blobs (32-bit only), otherwise reg alloc may crash. +// FIXME: remove once the bug 11395 is fixed. +bool AddressSanitizer::LooksLikeCodeInBug11395(Instruction *I) { + if (LongSize != 32) return false; + CallInst *CI = dyn_cast<CallInst>(I); + if (!CI || !CI->isInlineAsm()) return false; + if (CI->getNumArgOperands() <= 5) return false; + // We have inline assembly with quite a few arguments. + return true; +} + +void FunctionStackPoisoner::initializeCallbacks(Module &M) { + IRBuilder<> IRB(*C); + for (int i = 0; i <= kMaxAsanStackMallocSizeClass; i++) { + std::string Suffix = itostr(i); + AsanStackMallocFunc[i] = M.getOrInsertFunction( + kAsanStackMallocNameTemplate + Suffix, IntptrTy, IntptrTy); + AsanStackFreeFunc[i] = + M.getOrInsertFunction(kAsanStackFreeNameTemplate + Suffix, + IRB.getVoidTy(), IntptrTy, IntptrTy); + } + if (ASan.UseAfterScope) { + AsanPoisonStackMemoryFunc = M.getOrInsertFunction( + kAsanPoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); + AsanUnpoisonStackMemoryFunc = M.getOrInsertFunction( + kAsanUnpoisonStackMemoryName, IRB.getVoidTy(), IntptrTy, IntptrTy); + } + + for (size_t Val : {0x00, 0xf1, 0xf2, 0xf3, 0xf5, 0xf8}) { + std::ostringstream Name; + Name << kAsanSetShadowPrefix; + Name << std::setw(2) << std::setfill('0') << std::hex << Val; + AsanSetShadowFunc[Val] = + M.getOrInsertFunction(Name.str(), IRB.getVoidTy(), IntptrTy, IntptrTy); + } + + AsanAllocaPoisonFunc = M.getOrInsertFunction( + kAsanAllocaPoison, IRB.getVoidTy(), IntptrTy, IntptrTy); + AsanAllocasUnpoisonFunc = M.getOrInsertFunction( + kAsanAllocasUnpoison, IRB.getVoidTy(), IntptrTy, IntptrTy); +} + +void FunctionStackPoisoner::copyToShadowInline(ArrayRef<uint8_t> ShadowMask, + ArrayRef<uint8_t> ShadowBytes, + size_t Begin, size_t End, + IRBuilder<> &IRB, + Value *ShadowBase) { + if (Begin >= End) + return; + + const size_t LargestStoreSizeInBytes = + std::min<size_t>(sizeof(uint64_t), ASan.LongSize / 8); + + const bool IsLittleEndian = F.getParent()->getDataLayout().isLittleEndian(); + + // Poison given range in shadow using larges store size with out leading and + // trailing zeros in ShadowMask. Zeros never change, so they need neither + // poisoning nor up-poisoning. Still we don't mind if some of them get into a + // middle of a store. + for (size_t i = Begin; i < End;) { + if (!ShadowMask[i]) { + assert(!ShadowBytes[i]); + ++i; + continue; + } + + size_t StoreSizeInBytes = LargestStoreSizeInBytes; + // Fit store size into the range. + while (StoreSizeInBytes > End - i) + StoreSizeInBytes /= 2; + + // Minimize store size by trimming trailing zeros. + for (size_t j = StoreSizeInBytes - 1; j && !ShadowMask[i + j]; --j) { + while (j <= StoreSizeInBytes / 2) + StoreSizeInBytes /= 2; + } + + uint64_t Val = 0; + for (size_t j = 0; j < StoreSizeInBytes; j++) { + if (IsLittleEndian) + Val |= (uint64_t)ShadowBytes[i + j] << (8 * j); + else + Val = (Val << 8) | ShadowBytes[i + j]; + } + + Value *Ptr = IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)); + Value *Poison = IRB.getIntN(StoreSizeInBytes * 8, Val); + IRB.CreateAlignedStore( + Poison, IRB.CreateIntToPtr(Ptr, Poison->getType()->getPointerTo()), + Align(1)); + + i += StoreSizeInBytes; + } +} + +void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, + ArrayRef<uint8_t> ShadowBytes, + IRBuilder<> &IRB, Value *ShadowBase) { + copyToShadow(ShadowMask, ShadowBytes, 0, ShadowMask.size(), IRB, ShadowBase); +} + +void FunctionStackPoisoner::copyToShadow(ArrayRef<uint8_t> ShadowMask, + ArrayRef<uint8_t> ShadowBytes, + size_t Begin, size_t End, + IRBuilder<> &IRB, Value *ShadowBase) { + assert(ShadowMask.size() == ShadowBytes.size()); + size_t Done = Begin; + for (size_t i = Begin, j = Begin + 1; i < End; i = j++) { + if (!ShadowMask[i]) { + assert(!ShadowBytes[i]); + continue; + } + uint8_t Val = ShadowBytes[i]; + if (!AsanSetShadowFunc[Val]) + continue; + + // Skip same values. + for (; j < End && ShadowMask[j] && Val == ShadowBytes[j]; ++j) { + } + + if (j - i >= ClMaxInlinePoisoningSize) { + copyToShadowInline(ShadowMask, ShadowBytes, Done, i, IRB, ShadowBase); + IRB.CreateCall(AsanSetShadowFunc[Val], + {IRB.CreateAdd(ShadowBase, ConstantInt::get(IntptrTy, i)), + ConstantInt::get(IntptrTy, j - i)}); + Done = j; + } + } + + copyToShadowInline(ShadowMask, ShadowBytes, Done, End, IRB, ShadowBase); +} + +// Fake stack allocator (asan_fake_stack.h) has 11 size classes +// for every power of 2 from kMinStackMallocSize to kMaxAsanStackMallocSizeClass +static int StackMallocSizeClass(uint64_t LocalStackSize) { + assert(LocalStackSize <= kMaxStackMallocSize); + uint64_t MaxSize = kMinStackMallocSize; + for (int i = 0;; i++, MaxSize *= 2) + if (LocalStackSize <= MaxSize) return i; + llvm_unreachable("impossible LocalStackSize"); +} + +void FunctionStackPoisoner::copyArgsPassedByValToAllocas() { + Instruction *CopyInsertPoint = &F.front().front(); + if (CopyInsertPoint == ASan.LocalDynamicShadow) { + // Insert after the dynamic shadow location is determined + CopyInsertPoint = CopyInsertPoint->getNextNode(); + assert(CopyInsertPoint); + } + IRBuilder<> IRB(CopyInsertPoint); + const DataLayout &DL = F.getParent()->getDataLayout(); + for (Argument &Arg : F.args()) { + if (Arg.hasByValAttr()) { + Type *Ty = Arg.getParamByValType(); + const Align Alignment = + DL.getValueOrABITypeAlignment(Arg.getParamAlign(), Ty); + + AllocaInst *AI = IRB.CreateAlloca( + Ty, nullptr, + (Arg.hasName() ? Arg.getName() : "Arg" + Twine(Arg.getArgNo())) + + ".byval"); + AI->setAlignment(Alignment); + Arg.replaceAllUsesWith(AI); + + uint64_t AllocSize = DL.getTypeAllocSize(Ty); + IRB.CreateMemCpy(AI, Alignment, &Arg, Alignment, AllocSize); + } + } +} + +PHINode *FunctionStackPoisoner::createPHI(IRBuilder<> &IRB, Value *Cond, + Value *ValueIfTrue, + Instruction *ThenTerm, + Value *ValueIfFalse) { + PHINode *PHI = IRB.CreatePHI(IntptrTy, 2); + BasicBlock *CondBlock = cast<Instruction>(Cond)->getParent(); + PHI->addIncoming(ValueIfFalse, CondBlock); + BasicBlock *ThenBlock = ThenTerm->getParent(); + PHI->addIncoming(ValueIfTrue, ThenBlock); + return PHI; +} + +Value *FunctionStackPoisoner::createAllocaForLayout( + IRBuilder<> &IRB, const ASanStackFrameLayout &L, bool Dynamic) { + AllocaInst *Alloca; + if (Dynamic) { + Alloca = IRB.CreateAlloca(IRB.getInt8Ty(), + ConstantInt::get(IRB.getInt64Ty(), L.FrameSize), + "MyAlloca"); + } else { + Alloca = IRB.CreateAlloca(ArrayType::get(IRB.getInt8Ty(), L.FrameSize), + nullptr, "MyAlloca"); + assert(Alloca->isStaticAlloca()); + } + assert((ClRealignStack & (ClRealignStack - 1)) == 0); + size_t FrameAlignment = std::max(L.FrameAlignment, (size_t)ClRealignStack); + Alloca->setAlignment(Align(FrameAlignment)); + return IRB.CreatePointerCast(Alloca, IntptrTy); +} + +void FunctionStackPoisoner::createDynamicAllocasInitStorage() { + BasicBlock &FirstBB = *F.begin(); + IRBuilder<> IRB(dyn_cast<Instruction>(FirstBB.begin())); + DynamicAllocaLayout = IRB.CreateAlloca(IntptrTy, nullptr); + IRB.CreateStore(Constant::getNullValue(IntptrTy), DynamicAllocaLayout); + DynamicAllocaLayout->setAlignment(Align(32)); +} + +void FunctionStackPoisoner::processDynamicAllocas() { + if (!ClInstrumentDynamicAllocas || DynamicAllocaVec.empty()) { + assert(DynamicAllocaPoisonCallVec.empty()); + return; + } + + // Insert poison calls for lifetime intrinsics for dynamic allocas. + for (const auto &APC : DynamicAllocaPoisonCallVec) { + assert(APC.InsBefore); + assert(APC.AI); + assert(ASan.isInterestingAlloca(*APC.AI)); + assert(!APC.AI->isStaticAlloca()); + + IRBuilder<> IRB(APC.InsBefore); + poisonAlloca(APC.AI, APC.Size, IRB, APC.DoPoison); + // Dynamic allocas will be unpoisoned unconditionally below in + // unpoisonDynamicAllocas. + // Flag that we need unpoison static allocas. + } + + // Handle dynamic allocas. + createDynamicAllocasInitStorage(); + for (auto &AI : DynamicAllocaVec) + handleDynamicAllocaCall(AI); + unpoisonDynamicAllocas(); +} + +/// Collect instructions in the entry block after \p InsBefore which initialize +/// permanent storage for a function argument. These instructions must remain in +/// the entry block so that uninitialized values do not appear in backtraces. An +/// added benefit is that this conserves spill slots. This does not move stores +/// before instrumented / "interesting" allocas. +static void findStoresToUninstrumentedArgAllocas( + AddressSanitizer &ASan, Instruction &InsBefore, + SmallVectorImpl<Instruction *> &InitInsts) { + Instruction *Start = InsBefore.getNextNonDebugInstruction(); + for (Instruction *It = Start; It; It = It->getNextNonDebugInstruction()) { + // Argument initialization looks like: + // 1) store <Argument>, <Alloca> OR + // 2) <CastArgument> = cast <Argument> to ... + // store <CastArgument> to <Alloca> + // Do not consider any other kind of instruction. + // + // Note: This covers all known cases, but may not be exhaustive. An + // alternative to pattern-matching stores is to DFS over all Argument uses: + // this might be more general, but is probably much more complicated. + if (isa<AllocaInst>(It) || isa<CastInst>(It)) + continue; + if (auto *Store = dyn_cast<StoreInst>(It)) { + // The store destination must be an alloca that isn't interesting for + // ASan to instrument. These are moved up before InsBefore, and they're + // not interesting because allocas for arguments can be mem2reg'd. + auto *Alloca = dyn_cast<AllocaInst>(Store->getPointerOperand()); + if (!Alloca || ASan.isInterestingAlloca(*Alloca)) + continue; + + Value *Val = Store->getValueOperand(); + bool IsDirectArgInit = isa<Argument>(Val); + bool IsArgInitViaCast = + isa<CastInst>(Val) && + isa<Argument>(cast<CastInst>(Val)->getOperand(0)) && + // Check that the cast appears directly before the store. Otherwise + // moving the cast before InsBefore may break the IR. + Val == It->getPrevNonDebugInstruction(); + bool IsArgInit = IsDirectArgInit || IsArgInitViaCast; + if (!IsArgInit) + continue; + + if (IsArgInitViaCast) + InitInsts.push_back(cast<Instruction>(Val)); + InitInsts.push_back(Store); + continue; + } + + // Do not reorder past unknown instructions: argument initialization should + // only involve casts and stores. + return; + } +} + +void FunctionStackPoisoner::processStaticAllocas() { + if (AllocaVec.empty()) { + assert(StaticAllocaPoisonCallVec.empty()); + return; + } + + int StackMallocIdx = -1; + DebugLoc EntryDebugLocation; + if (auto SP = F.getSubprogram()) EntryDebugLocation = DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); - - Instruction *InsBefore = AllocaVec[0]; - IRBuilder<> IRB(InsBefore); - - // Make sure non-instrumented allocas stay in the entry block. Otherwise, - // debug info is broken, because only entry-block allocas are treated as - // regular stack slots. - auto InsBeforeB = InsBefore->getParent(); - assert(InsBeforeB == &F.getEntryBlock()); - for (auto *AI : StaticAllocasToMoveUp) - if (AI->getParent() == InsBeforeB) - AI->moveBefore(InsBefore); - - // Move stores of arguments into entry-block allocas as well. This prevents - // extra stack slots from being generated (to house the argument values until - // they can be stored into the allocas). This also prevents uninitialized - // values from being shown in backtraces. - SmallVector<Instruction *, 8> ArgInitInsts; - findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); - for (Instruction *ArgInitInst : ArgInitInsts) - ArgInitInst->moveBefore(InsBefore); - - // If we have a call to llvm.localescape, keep it in the entry block. - if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); - - SmallVector<ASanStackVariableDescription, 16> SVD; - SVD.reserve(AllocaVec.size()); - for (AllocaInst *AI : AllocaVec) { - ASanStackVariableDescription D = {AI->getName().data(), - ASan.getAllocaSizeInBytes(*AI), - 0, - AI->getAlignment(), - AI, - 0, - 0}; - SVD.push_back(D); - } - - // Minimal header size (left redzone) is 4 pointers, - // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. - size_t Granularity = 1ULL << Mapping.Scale; - size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); - const ASanStackFrameLayout &L = - ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); - - // Build AllocaToSVDMap for ASanStackVariableDescription lookup. - DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; - for (auto &Desc : SVD) - AllocaToSVDMap[Desc.AI] = &Desc; - - // Update SVD with information from lifetime intrinsics. - for (const auto &APC : StaticAllocaPoisonCallVec) { - assert(APC.InsBefore); - assert(APC.AI); - assert(ASan.isInterestingAlloca(*APC.AI)); - assert(APC.AI->isStaticAlloca()); - - ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; - Desc.LifetimeSize = Desc.Size; - if (const DILocation *FnLoc = EntryDebugLocation.get()) { - if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { - if (LifetimeLoc->getFile() == FnLoc->getFile()) - if (unsigned Line = LifetimeLoc->getLine()) - Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); - } - } - } - - auto DescriptionString = ComputeASanStackFrameDescription(SVD); - LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); - uint64_t LocalStackSize = L.FrameSize; - bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && - LocalStackSize <= kMaxStackMallocSize; - bool DoDynamicAlloca = ClDynamicAllocaStack; - // Don't do dynamic alloca or stack malloc if: - // 1) There is inline asm: too often it makes assumptions on which registers - // are available. - // 2) There is a returns_twice call (typically setjmp), which is - // optimization-hostile, and doesn't play well with introduced indirect - // register-relative calculation of local variable addresses. - DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; - DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; - - Value *StaticAlloca = - DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); - - Value *FakeStack; - Value *LocalStackBase; - Value *LocalStackBaseAlloca; - uint8_t DIExprFlags = DIExpression::ApplyOffset; - - if (DoStackMalloc) { - LocalStackBaseAlloca = - IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); - // void *FakeStack = __asan_option_detect_stack_use_after_return - // ? __asan_stack_malloc_N(LocalStackSize) - // : nullptr; - // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); - Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( - kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); - Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( - IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), - Constant::getNullValue(IRB.getInt32Ty())); - Instruction *Term = - SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); - IRBuilder<> IRBIf(Term); - StackMallocIdx = StackMallocSizeClass(LocalStackSize); - assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); - Value *FakeStackValue = - IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], - ConstantInt::get(IntptrTy, LocalStackSize)); - IRB.SetInsertPoint(InsBefore); - FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, - ConstantInt::get(IntptrTy, 0)); - - Value *NoFakeStack = - IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); - Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); - IRBIf.SetInsertPoint(Term); - Value *AllocaValue = - DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; - - IRB.SetInsertPoint(InsBefore); - LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); - IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); - DIExprFlags |= DIExpression::DerefBefore; - } else { - // void *FakeStack = nullptr; - // void *LocalStackBase = alloca(LocalStackSize); - FakeStack = ConstantInt::get(IntptrTy, 0); - LocalStackBase = - DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; - LocalStackBaseAlloca = LocalStackBase; - } - - // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the - // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse - // later passes and can result in dropped variable coverage in debug info. - Value *LocalStackBaseAllocaPtr = - isa<PtrToIntInst>(LocalStackBaseAlloca) - ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() - : LocalStackBaseAlloca; - assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && - "Variable descriptions relative to ASan stack base will be dropped"); - - // Replace Alloca instructions with base+offset. - for (const auto &Desc : SVD) { - AllocaInst *AI = Desc.AI; - replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, - Desc.Offset); - Value *NewAllocaPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), - AI->getType()); - AI->replaceAllUsesWith(NewAllocaPtr); - } - - // The left-most redzone has enough space for at least 4 pointers. - // Write the Magic value to redzone[0]. - Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); - IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), - BasePlus0); - // Write the frame description constant to redzone[1]. - Value *BasePlus1 = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, - ConstantInt::get(IntptrTy, ASan.LongSize / 8)), - IntptrPtrTy); - GlobalVariable *StackDescriptionGlobal = - createPrivateGlobalForString(*F.getParent(), DescriptionString, - /*AllowMerging*/ true, kAsanGenPrefix); - Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); - IRB.CreateStore(Description, BasePlus1); - // Write the PC to redzone[2]. - Value *BasePlus2 = IRB.CreateIntToPtr( - IRB.CreateAdd(LocalStackBase, - ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), - IntptrPtrTy); - IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); - - const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); - - // Poison the stack red zones at the entry. - Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); - // As mask we must use most poisoned case: red zones and after scope. - // As bytes we can use either the same or just red zones only. - copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); - - if (!StaticAllocaPoisonCallVec.empty()) { - const auto &ShadowInScope = GetShadowBytes(SVD, L); - - // Poison static allocas near lifetime intrinsics. - for (const auto &APC : StaticAllocaPoisonCallVec) { - const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; - assert(Desc.Offset % L.Granularity == 0); - size_t Begin = Desc.Offset / L.Granularity; - size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; - - IRBuilder<> IRB(APC.InsBefore); - copyToShadow(ShadowAfterScope, - APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, - IRB, ShadowBase); - } - } - - SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); - SmallVector<uint8_t, 64> ShadowAfterReturn; - - // (Un)poison the stack before all ret instructions. + + Instruction *InsBefore = AllocaVec[0]; + IRBuilder<> IRB(InsBefore); + + // Make sure non-instrumented allocas stay in the entry block. Otherwise, + // debug info is broken, because only entry-block allocas are treated as + // regular stack slots. + auto InsBeforeB = InsBefore->getParent(); + assert(InsBeforeB == &F.getEntryBlock()); + for (auto *AI : StaticAllocasToMoveUp) + if (AI->getParent() == InsBeforeB) + AI->moveBefore(InsBefore); + + // Move stores of arguments into entry-block allocas as well. This prevents + // extra stack slots from being generated (to house the argument values until + // they can be stored into the allocas). This also prevents uninitialized + // values from being shown in backtraces. + SmallVector<Instruction *, 8> ArgInitInsts; + findStoresToUninstrumentedArgAllocas(ASan, *InsBefore, ArgInitInsts); + for (Instruction *ArgInitInst : ArgInitInsts) + ArgInitInst->moveBefore(InsBefore); + + // If we have a call to llvm.localescape, keep it in the entry block. + if (LocalEscapeCall) LocalEscapeCall->moveBefore(InsBefore); + + SmallVector<ASanStackVariableDescription, 16> SVD; + SVD.reserve(AllocaVec.size()); + for (AllocaInst *AI : AllocaVec) { + ASanStackVariableDescription D = {AI->getName().data(), + ASan.getAllocaSizeInBytes(*AI), + 0, + AI->getAlignment(), + AI, + 0, + 0}; + SVD.push_back(D); + } + + // Minimal header size (left redzone) is 4 pointers, + // i.e. 32 bytes on 64-bit platforms and 16 bytes in 32-bit platforms. + size_t Granularity = 1ULL << Mapping.Scale; + size_t MinHeaderSize = std::max((size_t)ASan.LongSize / 2, Granularity); + const ASanStackFrameLayout &L = + ComputeASanStackFrameLayout(SVD, Granularity, MinHeaderSize); + + // Build AllocaToSVDMap for ASanStackVariableDescription lookup. + DenseMap<const AllocaInst *, ASanStackVariableDescription *> AllocaToSVDMap; + for (auto &Desc : SVD) + AllocaToSVDMap[Desc.AI] = &Desc; + + // Update SVD with information from lifetime intrinsics. + for (const auto &APC : StaticAllocaPoisonCallVec) { + assert(APC.InsBefore); + assert(APC.AI); + assert(ASan.isInterestingAlloca(*APC.AI)); + assert(APC.AI->isStaticAlloca()); + + ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; + Desc.LifetimeSize = Desc.Size; + if (const DILocation *FnLoc = EntryDebugLocation.get()) { + if (const DILocation *LifetimeLoc = APC.InsBefore->getDebugLoc().get()) { + if (LifetimeLoc->getFile() == FnLoc->getFile()) + if (unsigned Line = LifetimeLoc->getLine()) + Desc.Line = std::min(Desc.Line ? Desc.Line : Line, Line); + } + } + } + + auto DescriptionString = ComputeASanStackFrameDescription(SVD); + LLVM_DEBUG(dbgs() << DescriptionString << " --- " << L.FrameSize << "\n"); + uint64_t LocalStackSize = L.FrameSize; + bool DoStackMalloc = ClUseAfterReturn && !ASan.CompileKernel && + LocalStackSize <= kMaxStackMallocSize; + bool DoDynamicAlloca = ClDynamicAllocaStack; + // Don't do dynamic alloca or stack malloc if: + // 1) There is inline asm: too often it makes assumptions on which registers + // are available. + // 2) There is a returns_twice call (typically setjmp), which is + // optimization-hostile, and doesn't play well with introduced indirect + // register-relative calculation of local variable addresses. + DoDynamicAlloca &= !HasInlineAsm && !HasReturnsTwiceCall; + DoStackMalloc &= !HasInlineAsm && !HasReturnsTwiceCall; + + Value *StaticAlloca = + DoDynamicAlloca ? nullptr : createAllocaForLayout(IRB, L, false); + + Value *FakeStack; + Value *LocalStackBase; + Value *LocalStackBaseAlloca; + uint8_t DIExprFlags = DIExpression::ApplyOffset; + + if (DoStackMalloc) { + LocalStackBaseAlloca = + IRB.CreateAlloca(IntptrTy, nullptr, "asan_local_stack_base"); + // void *FakeStack = __asan_option_detect_stack_use_after_return + // ? __asan_stack_malloc_N(LocalStackSize) + // : nullptr; + // void *LocalStackBase = (FakeStack) ? FakeStack : alloca(LocalStackSize); + Constant *OptionDetectUseAfterReturn = F.getParent()->getOrInsertGlobal( + kAsanOptionDetectUseAfterReturn, IRB.getInt32Ty()); + Value *UseAfterReturnIsEnabled = IRB.CreateICmpNE( + IRB.CreateLoad(IRB.getInt32Ty(), OptionDetectUseAfterReturn), + Constant::getNullValue(IRB.getInt32Ty())); + Instruction *Term = + SplitBlockAndInsertIfThen(UseAfterReturnIsEnabled, InsBefore, false); + IRBuilder<> IRBIf(Term); + StackMallocIdx = StackMallocSizeClass(LocalStackSize); + assert(StackMallocIdx <= kMaxAsanStackMallocSizeClass); + Value *FakeStackValue = + IRBIf.CreateCall(AsanStackMallocFunc[StackMallocIdx], + ConstantInt::get(IntptrTy, LocalStackSize)); + IRB.SetInsertPoint(InsBefore); + FakeStack = createPHI(IRB, UseAfterReturnIsEnabled, FakeStackValue, Term, + ConstantInt::get(IntptrTy, 0)); + + Value *NoFakeStack = + IRB.CreateICmpEQ(FakeStack, Constant::getNullValue(IntptrTy)); + Term = SplitBlockAndInsertIfThen(NoFakeStack, InsBefore, false); + IRBIf.SetInsertPoint(Term); + Value *AllocaValue = + DoDynamicAlloca ? createAllocaForLayout(IRBIf, L, true) : StaticAlloca; + + IRB.SetInsertPoint(InsBefore); + LocalStackBase = createPHI(IRB, NoFakeStack, AllocaValue, Term, FakeStack); + IRB.CreateStore(LocalStackBase, LocalStackBaseAlloca); + DIExprFlags |= DIExpression::DerefBefore; + } else { + // void *FakeStack = nullptr; + // void *LocalStackBase = alloca(LocalStackSize); + FakeStack = ConstantInt::get(IntptrTy, 0); + LocalStackBase = + DoDynamicAlloca ? createAllocaForLayout(IRB, L, true) : StaticAlloca; + LocalStackBaseAlloca = LocalStackBase; + } + + // It shouldn't matter whether we pass an `alloca` or a `ptrtoint` as the + // dbg.declare address opereand, but passing a `ptrtoint` seems to confuse + // later passes and can result in dropped variable coverage in debug info. + Value *LocalStackBaseAllocaPtr = + isa<PtrToIntInst>(LocalStackBaseAlloca) + ? cast<PtrToIntInst>(LocalStackBaseAlloca)->getPointerOperand() + : LocalStackBaseAlloca; + assert(isa<AllocaInst>(LocalStackBaseAllocaPtr) && + "Variable descriptions relative to ASan stack base will be dropped"); + + // Replace Alloca instructions with base+offset. + for (const auto &Desc : SVD) { + AllocaInst *AI = Desc.AI; + replaceDbgDeclare(AI, LocalStackBaseAllocaPtr, DIB, DIExprFlags, + Desc.Offset); + Value *NewAllocaPtr = IRB.CreateIntToPtr( + IRB.CreateAdd(LocalStackBase, ConstantInt::get(IntptrTy, Desc.Offset)), + AI->getType()); + AI->replaceAllUsesWith(NewAllocaPtr); + } + + // The left-most redzone has enough space for at least 4 pointers. + // Write the Magic value to redzone[0]. + Value *BasePlus0 = IRB.CreateIntToPtr(LocalStackBase, IntptrPtrTy); + IRB.CreateStore(ConstantInt::get(IntptrTy, kCurrentStackFrameMagic), + BasePlus0); + // Write the frame description constant to redzone[1]. + Value *BasePlus1 = IRB.CreateIntToPtr( + IRB.CreateAdd(LocalStackBase, + ConstantInt::get(IntptrTy, ASan.LongSize / 8)), + IntptrPtrTy); + GlobalVariable *StackDescriptionGlobal = + createPrivateGlobalForString(*F.getParent(), DescriptionString, + /*AllowMerging*/ true, kAsanGenPrefix); + Value *Description = IRB.CreatePointerCast(StackDescriptionGlobal, IntptrTy); + IRB.CreateStore(Description, BasePlus1); + // Write the PC to redzone[2]. + Value *BasePlus2 = IRB.CreateIntToPtr( + IRB.CreateAdd(LocalStackBase, + ConstantInt::get(IntptrTy, 2 * ASan.LongSize / 8)), + IntptrPtrTy); + IRB.CreateStore(IRB.CreatePointerCast(&F, IntptrTy), BasePlus2); + + const auto &ShadowAfterScope = GetShadowBytesAfterScope(SVD, L); + + // Poison the stack red zones at the entry. + Value *ShadowBase = ASan.memToShadow(LocalStackBase, IRB); + // As mask we must use most poisoned case: red zones and after scope. + // As bytes we can use either the same or just red zones only. + copyToShadow(ShadowAfterScope, ShadowAfterScope, IRB, ShadowBase); + + if (!StaticAllocaPoisonCallVec.empty()) { + const auto &ShadowInScope = GetShadowBytes(SVD, L); + + // Poison static allocas near lifetime intrinsics. + for (const auto &APC : StaticAllocaPoisonCallVec) { + const ASanStackVariableDescription &Desc = *AllocaToSVDMap[APC.AI]; + assert(Desc.Offset % L.Granularity == 0); + size_t Begin = Desc.Offset / L.Granularity; + size_t End = Begin + (APC.Size + L.Granularity - 1) / L.Granularity; + + IRBuilder<> IRB(APC.InsBefore); + copyToShadow(ShadowAfterScope, + APC.DoPoison ? ShadowAfterScope : ShadowInScope, Begin, End, + IRB, ShadowBase); + } + } + + SmallVector<uint8_t, 64> ShadowClean(ShadowAfterScope.size(), 0); + SmallVector<uint8_t, 64> ShadowAfterReturn; + + // (Un)poison the stack before all ret instructions. for (Instruction *Ret : RetVec) { - IRBuilder<> IRBRet(Ret); - // Mark the current frame as retired. - IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), - BasePlus0); - if (DoStackMalloc) { - assert(StackMallocIdx >= 0); - // if FakeStack != 0 // LocalStackBase == FakeStack - // // In use-after-return mode, poison the whole stack frame. - // if StackMallocIdx <= 4 - // // For small sizes inline the whole thing: - // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); - // **SavedFlagPtr(FakeStack) = 0 - // else - // __asan_stack_free_N(FakeStack, LocalStackSize) - // else - // <This is not a fake stack; unpoison the redzones> - Value *Cmp = - IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); - Instruction *ThenTerm, *ElseTerm; - SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); - - IRBuilder<> IRBPoison(ThenTerm); - if (StackMallocIdx <= 4) { - int ClassSize = kMinStackMallocSize << StackMallocIdx; - ShadowAfterReturn.resize(ClassSize / L.Granularity, - kAsanStackUseAfterReturnMagic); - copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, - ShadowBase); - Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( - FakeStack, - ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); - Value *SavedFlagPtr = IRBPoison.CreateLoad( - IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); - IRBPoison.CreateStore( - Constant::getNullValue(IRBPoison.getInt8Ty()), - IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); - } else { - // For larger frames call __asan_stack_free_*. - IRBPoison.CreateCall( - AsanStackFreeFunc[StackMallocIdx], - {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); - } - - IRBuilder<> IRBElse(ElseTerm); - copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); - } else { - copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); - } - } - - // We are done. Remove the old unused alloca instructions. - for (auto AI : AllocaVec) AI->eraseFromParent(); -} - -void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, - IRBuilder<> &IRB, bool DoPoison) { - // For now just insert the call to ASan runtime. - Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); - Value *SizeArg = ConstantInt::get(IntptrTy, Size); - IRB.CreateCall( - DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, - {AddrArg, SizeArg}); -} - -// Handling llvm.lifetime intrinsics for a given %alloca: -// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. -// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect -// invalid accesses) and unpoison it for llvm.lifetime.start (the memory -// could be poisoned by previous llvm.lifetime.end instruction, as the -// variable may go in and out of scope several times, e.g. in loops). -// (3) if we poisoned at least one %alloca in a function, -// unpoison the whole stack frame at function exit. -void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { - IRBuilder<> IRB(AI); - - const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); - const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; - - Value *Zero = Constant::getNullValue(IntptrTy); - Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); - Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); - - // Since we need to extend alloca with additional memory to locate - // redzones, and OldSize is number of allocated blocks with - // ElementSize size, get allocated memory size in bytes by - // OldSize * ElementSize. - const unsigned ElementSize = - F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); - Value *OldSize = - IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), - ConstantInt::get(IntptrTy, ElementSize)); - - // PartialSize = OldSize % 32 - Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); - - // Misalign = kAllocaRzSize - PartialSize; - Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); - - // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; - Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); - Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); - - // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize - // Alignment is added to locate left redzone, PartialPadding for possible - // partial redzone and kAllocaRzSize for right redzone respectively. - Value *AdditionalChunkSize = IRB.CreateAdd( - ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); - - Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); - - // Insert new alloca with new NewSize and Alignment params. - AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); - NewAlloca->setAlignment(Align(Alignment)); - - // NewAddress = Address + Alignment - Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), - ConstantInt::get(IntptrTy, Alignment)); - - // Insert __asan_alloca_poison call for new created alloca. - IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); - - // Store the last alloca's address to DynamicAllocaLayout. We'll need this - // for unpoisoning stuff. - IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); - - Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); - - // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. - AI->replaceAllUsesWith(NewAddressPtr); - - // We are done. Erase old alloca from parent. - AI->eraseFromParent(); -} - -// isSafeAccess returns true if Addr is always inbounds with respect to its -// base object. For example, it is a field access or an array access with -// constant inbounds index. -bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, - Value *Addr, uint64_t TypeSize) const { - SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); - if (!ObjSizeVis.bothKnown(SizeOffset)) return false; - uint64_t Size = SizeOffset.first.getZExtValue(); - int64_t Offset = SizeOffset.second.getSExtValue(); - // Three checks are required to ensure safety: - // . Offset >= 0 (since the offset is given from the base ptr) - // . Size >= Offset (unsigned) - // . Size - Offset >= NeededSize (unsigned) - return Offset >= 0 && Size >= uint64_t(Offset) && - Size - uint64_t(Offset) >= TypeSize / 8; -} + IRBuilder<> IRBRet(Ret); + // Mark the current frame as retired. + IRBRet.CreateStore(ConstantInt::get(IntptrTy, kRetiredStackFrameMagic), + BasePlus0); + if (DoStackMalloc) { + assert(StackMallocIdx >= 0); + // if FakeStack != 0 // LocalStackBase == FakeStack + // // In use-after-return mode, poison the whole stack frame. + // if StackMallocIdx <= 4 + // // For small sizes inline the whole thing: + // memset(ShadowBase, kAsanStackAfterReturnMagic, ShadowSize); + // **SavedFlagPtr(FakeStack) = 0 + // else + // __asan_stack_free_N(FakeStack, LocalStackSize) + // else + // <This is not a fake stack; unpoison the redzones> + Value *Cmp = + IRBRet.CreateICmpNE(FakeStack, Constant::getNullValue(IntptrTy)); + Instruction *ThenTerm, *ElseTerm; + SplitBlockAndInsertIfThenElse(Cmp, Ret, &ThenTerm, &ElseTerm); + + IRBuilder<> IRBPoison(ThenTerm); + if (StackMallocIdx <= 4) { + int ClassSize = kMinStackMallocSize << StackMallocIdx; + ShadowAfterReturn.resize(ClassSize / L.Granularity, + kAsanStackUseAfterReturnMagic); + copyToShadow(ShadowAfterReturn, ShadowAfterReturn, IRBPoison, + ShadowBase); + Value *SavedFlagPtrPtr = IRBPoison.CreateAdd( + FakeStack, + ConstantInt::get(IntptrTy, ClassSize - ASan.LongSize / 8)); + Value *SavedFlagPtr = IRBPoison.CreateLoad( + IntptrTy, IRBPoison.CreateIntToPtr(SavedFlagPtrPtr, IntptrPtrTy)); + IRBPoison.CreateStore( + Constant::getNullValue(IRBPoison.getInt8Ty()), + IRBPoison.CreateIntToPtr(SavedFlagPtr, IRBPoison.getInt8PtrTy())); + } else { + // For larger frames call __asan_stack_free_*. + IRBPoison.CreateCall( + AsanStackFreeFunc[StackMallocIdx], + {FakeStack, ConstantInt::get(IntptrTy, LocalStackSize)}); + } + + IRBuilder<> IRBElse(ElseTerm); + copyToShadow(ShadowAfterScope, ShadowClean, IRBElse, ShadowBase); + } else { + copyToShadow(ShadowAfterScope, ShadowClean, IRBRet, ShadowBase); + } + } + + // We are done. Remove the old unused alloca instructions. + for (auto AI : AllocaVec) AI->eraseFromParent(); +} + +void FunctionStackPoisoner::poisonAlloca(Value *V, uint64_t Size, + IRBuilder<> &IRB, bool DoPoison) { + // For now just insert the call to ASan runtime. + Value *AddrArg = IRB.CreatePointerCast(V, IntptrTy); + Value *SizeArg = ConstantInt::get(IntptrTy, Size); + IRB.CreateCall( + DoPoison ? AsanPoisonStackMemoryFunc : AsanUnpoisonStackMemoryFunc, + {AddrArg, SizeArg}); +} + +// Handling llvm.lifetime intrinsics for a given %alloca: +// (1) collect all llvm.lifetime.xxx(%size, %value) describing the alloca. +// (2) if %size is constant, poison memory for llvm.lifetime.end (to detect +// invalid accesses) and unpoison it for llvm.lifetime.start (the memory +// could be poisoned by previous llvm.lifetime.end instruction, as the +// variable may go in and out of scope several times, e.g. in loops). +// (3) if we poisoned at least one %alloca in a function, +// unpoison the whole stack frame at function exit. +void FunctionStackPoisoner::handleDynamicAllocaCall(AllocaInst *AI) { + IRBuilder<> IRB(AI); + + const unsigned Alignment = std::max(kAllocaRzSize, AI->getAlignment()); + const uint64_t AllocaRedzoneMask = kAllocaRzSize - 1; + + Value *Zero = Constant::getNullValue(IntptrTy); + Value *AllocaRzSize = ConstantInt::get(IntptrTy, kAllocaRzSize); + Value *AllocaRzMask = ConstantInt::get(IntptrTy, AllocaRedzoneMask); + + // Since we need to extend alloca with additional memory to locate + // redzones, and OldSize is number of allocated blocks with + // ElementSize size, get allocated memory size in bytes by + // OldSize * ElementSize. + const unsigned ElementSize = + F.getParent()->getDataLayout().getTypeAllocSize(AI->getAllocatedType()); + Value *OldSize = + IRB.CreateMul(IRB.CreateIntCast(AI->getArraySize(), IntptrTy, false), + ConstantInt::get(IntptrTy, ElementSize)); + + // PartialSize = OldSize % 32 + Value *PartialSize = IRB.CreateAnd(OldSize, AllocaRzMask); + + // Misalign = kAllocaRzSize - PartialSize; + Value *Misalign = IRB.CreateSub(AllocaRzSize, PartialSize); + + // PartialPadding = Misalign != kAllocaRzSize ? Misalign : 0; + Value *Cond = IRB.CreateICmpNE(Misalign, AllocaRzSize); + Value *PartialPadding = IRB.CreateSelect(Cond, Misalign, Zero); + + // AdditionalChunkSize = Alignment + PartialPadding + kAllocaRzSize + // Alignment is added to locate left redzone, PartialPadding for possible + // partial redzone and kAllocaRzSize for right redzone respectively. + Value *AdditionalChunkSize = IRB.CreateAdd( + ConstantInt::get(IntptrTy, Alignment + kAllocaRzSize), PartialPadding); + + Value *NewSize = IRB.CreateAdd(OldSize, AdditionalChunkSize); + + // Insert new alloca with new NewSize and Alignment params. + AllocaInst *NewAlloca = IRB.CreateAlloca(IRB.getInt8Ty(), NewSize); + NewAlloca->setAlignment(Align(Alignment)); + + // NewAddress = Address + Alignment + Value *NewAddress = IRB.CreateAdd(IRB.CreatePtrToInt(NewAlloca, IntptrTy), + ConstantInt::get(IntptrTy, Alignment)); + + // Insert __asan_alloca_poison call for new created alloca. + IRB.CreateCall(AsanAllocaPoisonFunc, {NewAddress, OldSize}); + + // Store the last alloca's address to DynamicAllocaLayout. We'll need this + // for unpoisoning stuff. + IRB.CreateStore(IRB.CreatePtrToInt(NewAlloca, IntptrTy), DynamicAllocaLayout); + + Value *NewAddressPtr = IRB.CreateIntToPtr(NewAddress, AI->getType()); + + // Replace all uses of AddessReturnedByAlloca with NewAddressPtr. + AI->replaceAllUsesWith(NewAddressPtr); + + // We are done. Erase old alloca from parent. + AI->eraseFromParent(); +} + +// isSafeAccess returns true if Addr is always inbounds with respect to its +// base object. For example, it is a field access or an array access with +// constant inbounds index. +bool AddressSanitizer::isSafeAccess(ObjectSizeOffsetVisitor &ObjSizeVis, + Value *Addr, uint64_t TypeSize) const { + SizeOffsetType SizeOffset = ObjSizeVis.compute(Addr); + if (!ObjSizeVis.bothKnown(SizeOffset)) return false; + uint64_t Size = SizeOffset.first.getZExtValue(); + int64_t Offset = SizeOffset.second.getSExtValue(); + // Three checks are required to ensure safety: + // . Offset >= 0 (since the offset is given from the base ptr) + // . Size >= Offset (unsigned) + // . Size - Offset >= NeededSize (unsigned) + return Offset >= 0 && Size >= uint64_t(Offset) && + Size - uint64_t(Offset) >= TypeSize / 8; +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/BoundsChecking.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/BoundsChecking.cpp index c2d9964ecc..efb11b68a1 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/BoundsChecking.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/BoundsChecking.cpp @@ -1,254 +1,254 @@ -//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/BoundsChecking.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/TargetFolder.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/raw_ostream.h" -#include <cstdint> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "bounds-checking" - -static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap", - cl::desc("Use one trap block per function")); - -STATISTIC(ChecksAdded, "Bounds checks added"); -STATISTIC(ChecksSkipped, "Bounds checks skipped"); -STATISTIC(ChecksUnable, "Bounds checks unable to add"); - -using BuilderTy = IRBuilder<TargetFolder>; - -/// Gets the conditions under which memory accessing instructions will overflow. -/// -/// \p Ptr is the pointer that will be read/written, and \p InstVal is either -/// the result from the load or the value being stored. It is used to determine -/// the size of memory block that is touched. -/// -/// Returns the condition under which the access will overflow. -static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal, - const DataLayout &DL, TargetLibraryInfo &TLI, - ObjectSizeOffsetEvaluator &ObjSizeEval, - BuilderTy &IRB, ScalarEvolution &SE) { - uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType()); - LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize) - << " bytes\n"); - - SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr); - - if (!ObjSizeEval.bothKnown(SizeOffset)) { - ++ChecksUnable; - return nullptr; - } - - Value *Size = SizeOffset.first; - Value *Offset = SizeOffset.second; - ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size); - - Type *IntTy = DL.getIntPtrType(Ptr->getType()); - Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize); - - auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size)); - auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset)); - auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal)); - - // three checks are required to ensure safety: - // . Offset >= 0 (since the offset is given from the base ptr) - // . Size >= Offset (unsigned) - // . Size - Offset >= NeededSize (unsigned) - // - // optimization: if Size >= 0 (signed), skip 1st check - // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows - Value *ObjSize = IRB.CreateSub(Size, Offset); - Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax()) - ? ConstantInt::getFalse(Ptr->getContext()) - : IRB.CreateICmpULT(Size, Offset); - Value *Cmp3 = SizeRange.sub(OffsetRange) - .getUnsignedMin() - .uge(NeededSizeRange.getUnsignedMax()) - ? ConstantInt::getFalse(Ptr->getContext()) - : IRB.CreateICmpULT(ObjSize, NeededSizeVal); - Value *Or = IRB.CreateOr(Cmp2, Cmp3); - if ((!SizeCI || SizeCI->getValue().slt(0)) && - !SizeRange.getSignedMin().isNonNegative()) { - Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0)); - Or = IRB.CreateOr(Cmp1, Or); - } - - return Or; -} - -/// Adds run-time bounds checks to memory accessing instructions. -/// -/// \p Or is the condition that should guard the trap. -/// -/// \p GetTrapBB is a callable that returns the trap BB to use on failure. -template <typename GetTrapBBT> -static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) { - // check if the comparison is always false - ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or); - if (C) { - ++ChecksSkipped; - // If non-zero, nothing to do. - if (!C->getZExtValue()) - return; - } - ++ChecksAdded; - - BasicBlock::iterator SplitI = IRB.GetInsertPoint(); - BasicBlock *OldBB = SplitI->getParent(); - BasicBlock *Cont = OldBB->splitBasicBlock(SplitI); - OldBB->getTerminator()->eraseFromParent(); - - if (C) { - // If we have a constant zero, unconditionally branch. - // FIXME: We should really handle this differently to bypass the splitting - // the block. - BranchInst::Create(GetTrapBB(IRB), OldBB); - return; - } - - // Create the conditional branch. - BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB); -} - -static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI, - ScalarEvolution &SE) { - const DataLayout &DL = F.getParent()->getDataLayout(); - ObjectSizeOpts EvalOpts; - EvalOpts.RoundToAlign = true; - ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts); - - // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory - // touching instructions - SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo; - for (Instruction &I : instructions(F)) { - Value *Or = nullptr; - BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL)); - if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { - if (!LI->isVolatile()) - Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI, - ObjSizeEval, IRB, SE); - } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { - if (!SI->isVolatile()) - Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(), - DL, TLI, ObjSizeEval, IRB, SE); - } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { - if (!AI->isVolatile()) - Or = - getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(), - DL, TLI, ObjSizeEval, IRB, SE); - } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { - if (!AI->isVolatile()) - Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), - DL, TLI, ObjSizeEval, IRB, SE); - } - if (Or) - TrapInfo.push_back(std::make_pair(&I, Or)); - } - - // Create a trapping basic block on demand using a callback. Depending on - // flags, this will either create a single block for the entire function or - // will create a fresh block every time it is called. - BasicBlock *TrapBB = nullptr; - auto GetTrapBB = [&TrapBB](BuilderTy &IRB) { - if (TrapBB && SingleTrapBB) - return TrapBB; - - Function *Fn = IRB.GetInsertBlock()->getParent(); - // FIXME: This debug location doesn't make a lot of sense in the - // `SingleTrapBB` case. - auto DebugLoc = IRB.getCurrentDebugLocation(); - IRBuilder<>::InsertPointGuard Guard(IRB); - TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn); - IRB.SetInsertPoint(TrapBB); - - auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap); - CallInst *TrapCall = IRB.CreateCall(F, {}); - TrapCall->setDoesNotReturn(); - TrapCall->setDoesNotThrow(); - TrapCall->setDebugLoc(DebugLoc); - IRB.CreateUnreachable(); - - return TrapBB; - }; - - // Add the checks. - for (const auto &Entry : TrapInfo) { - Instruction *Inst = Entry.first; - BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL)); - insertBoundsCheck(Entry.second, IRB, GetTrapBB); - } - - return !TrapInfo.empty(); -} - -PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) { - auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); - auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); - - if (!addBoundsChecking(F, TLI, SE)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} - -namespace { -struct BoundsCheckingLegacyPass : public FunctionPass { - static char ID; - - BoundsCheckingLegacyPass() : FunctionPass(ID) { - initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override { - auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); - return addBoundsChecking(F, TLI, SE); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetLibraryInfoWrapperPass>(); - AU.addRequired<ScalarEvolutionWrapperPass>(); - } -}; -} // namespace - -char BoundsCheckingLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking", - "Run-time bounds checking", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking", - "Run-time bounds checking", false, false) - -FunctionPass *llvm::createBoundsCheckingLegacyPass() { - return new BoundsCheckingLegacyPass(); -} +//===- BoundsChecking.cpp - Instrumentation for run-time bounds checking --===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/BoundsChecking.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ScalarEvolution.h" +#include "llvm/Analysis/TargetFolder.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/raw_ostream.h" +#include <cstdint> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "bounds-checking" + +static cl::opt<bool> SingleTrapBB("bounds-checking-single-trap", + cl::desc("Use one trap block per function")); + +STATISTIC(ChecksAdded, "Bounds checks added"); +STATISTIC(ChecksSkipped, "Bounds checks skipped"); +STATISTIC(ChecksUnable, "Bounds checks unable to add"); + +using BuilderTy = IRBuilder<TargetFolder>; + +/// Gets the conditions under which memory accessing instructions will overflow. +/// +/// \p Ptr is the pointer that will be read/written, and \p InstVal is either +/// the result from the load or the value being stored. It is used to determine +/// the size of memory block that is touched. +/// +/// Returns the condition under which the access will overflow. +static Value *getBoundsCheckCond(Value *Ptr, Value *InstVal, + const DataLayout &DL, TargetLibraryInfo &TLI, + ObjectSizeOffsetEvaluator &ObjSizeEval, + BuilderTy &IRB, ScalarEvolution &SE) { + uint64_t NeededSize = DL.getTypeStoreSize(InstVal->getType()); + LLVM_DEBUG(dbgs() << "Instrument " << *Ptr << " for " << Twine(NeededSize) + << " bytes\n"); + + SizeOffsetEvalType SizeOffset = ObjSizeEval.compute(Ptr); + + if (!ObjSizeEval.bothKnown(SizeOffset)) { + ++ChecksUnable; + return nullptr; + } + + Value *Size = SizeOffset.first; + Value *Offset = SizeOffset.second; + ConstantInt *SizeCI = dyn_cast<ConstantInt>(Size); + + Type *IntTy = DL.getIntPtrType(Ptr->getType()); + Value *NeededSizeVal = ConstantInt::get(IntTy, NeededSize); + + auto SizeRange = SE.getUnsignedRange(SE.getSCEV(Size)); + auto OffsetRange = SE.getUnsignedRange(SE.getSCEV(Offset)); + auto NeededSizeRange = SE.getUnsignedRange(SE.getSCEV(NeededSizeVal)); + + // three checks are required to ensure safety: + // . Offset >= 0 (since the offset is given from the base ptr) + // . Size >= Offset (unsigned) + // . Size - Offset >= NeededSize (unsigned) + // + // optimization: if Size >= 0 (signed), skip 1st check + // FIXME: add NSW/NUW here? -- we dont care if the subtraction overflows + Value *ObjSize = IRB.CreateSub(Size, Offset); + Value *Cmp2 = SizeRange.getUnsignedMin().uge(OffsetRange.getUnsignedMax()) + ? ConstantInt::getFalse(Ptr->getContext()) + : IRB.CreateICmpULT(Size, Offset); + Value *Cmp3 = SizeRange.sub(OffsetRange) + .getUnsignedMin() + .uge(NeededSizeRange.getUnsignedMax()) + ? ConstantInt::getFalse(Ptr->getContext()) + : IRB.CreateICmpULT(ObjSize, NeededSizeVal); + Value *Or = IRB.CreateOr(Cmp2, Cmp3); + if ((!SizeCI || SizeCI->getValue().slt(0)) && + !SizeRange.getSignedMin().isNonNegative()) { + Value *Cmp1 = IRB.CreateICmpSLT(Offset, ConstantInt::get(IntTy, 0)); + Or = IRB.CreateOr(Cmp1, Or); + } + + return Or; +} + +/// Adds run-time bounds checks to memory accessing instructions. +/// +/// \p Or is the condition that should guard the trap. +/// +/// \p GetTrapBB is a callable that returns the trap BB to use on failure. +template <typename GetTrapBBT> +static void insertBoundsCheck(Value *Or, BuilderTy &IRB, GetTrapBBT GetTrapBB) { + // check if the comparison is always false + ConstantInt *C = dyn_cast_or_null<ConstantInt>(Or); + if (C) { + ++ChecksSkipped; + // If non-zero, nothing to do. + if (!C->getZExtValue()) + return; + } + ++ChecksAdded; + + BasicBlock::iterator SplitI = IRB.GetInsertPoint(); + BasicBlock *OldBB = SplitI->getParent(); + BasicBlock *Cont = OldBB->splitBasicBlock(SplitI); + OldBB->getTerminator()->eraseFromParent(); + + if (C) { + // If we have a constant zero, unconditionally branch. + // FIXME: We should really handle this differently to bypass the splitting + // the block. + BranchInst::Create(GetTrapBB(IRB), OldBB); + return; + } + + // Create the conditional branch. + BranchInst::Create(GetTrapBB(IRB), Cont, Or, OldBB); +} + +static bool addBoundsChecking(Function &F, TargetLibraryInfo &TLI, + ScalarEvolution &SE) { + const DataLayout &DL = F.getParent()->getDataLayout(); + ObjectSizeOpts EvalOpts; + EvalOpts.RoundToAlign = true; + ObjectSizeOffsetEvaluator ObjSizeEval(DL, &TLI, F.getContext(), EvalOpts); + + // check HANDLE_MEMORY_INST in include/llvm/Instruction.def for memory + // touching instructions + SmallVector<std::pair<Instruction *, Value *>, 4> TrapInfo; + for (Instruction &I : instructions(F)) { + Value *Or = nullptr; + BuilderTy IRB(I.getParent(), BasicBlock::iterator(&I), TargetFolder(DL)); + if (LoadInst *LI = dyn_cast<LoadInst>(&I)) { + if (!LI->isVolatile()) + Or = getBoundsCheckCond(LI->getPointerOperand(), LI, DL, TLI, + ObjSizeEval, IRB, SE); + } else if (StoreInst *SI = dyn_cast<StoreInst>(&I)) { + if (!SI->isVolatile()) + Or = getBoundsCheckCond(SI->getPointerOperand(), SI->getValueOperand(), + DL, TLI, ObjSizeEval, IRB, SE); + } else if (AtomicCmpXchgInst *AI = dyn_cast<AtomicCmpXchgInst>(&I)) { + if (!AI->isVolatile()) + Or = + getBoundsCheckCond(AI->getPointerOperand(), AI->getCompareOperand(), + DL, TLI, ObjSizeEval, IRB, SE); + } else if (AtomicRMWInst *AI = dyn_cast<AtomicRMWInst>(&I)) { + if (!AI->isVolatile()) + Or = getBoundsCheckCond(AI->getPointerOperand(), AI->getValOperand(), + DL, TLI, ObjSizeEval, IRB, SE); + } + if (Or) + TrapInfo.push_back(std::make_pair(&I, Or)); + } + + // Create a trapping basic block on demand using a callback. Depending on + // flags, this will either create a single block for the entire function or + // will create a fresh block every time it is called. + BasicBlock *TrapBB = nullptr; + auto GetTrapBB = [&TrapBB](BuilderTy &IRB) { + if (TrapBB && SingleTrapBB) + return TrapBB; + + Function *Fn = IRB.GetInsertBlock()->getParent(); + // FIXME: This debug location doesn't make a lot of sense in the + // `SingleTrapBB` case. + auto DebugLoc = IRB.getCurrentDebugLocation(); + IRBuilder<>::InsertPointGuard Guard(IRB); + TrapBB = BasicBlock::Create(Fn->getContext(), "trap", Fn); + IRB.SetInsertPoint(TrapBB); + + auto *F = Intrinsic::getDeclaration(Fn->getParent(), Intrinsic::trap); + CallInst *TrapCall = IRB.CreateCall(F, {}); + TrapCall->setDoesNotReturn(); + TrapCall->setDoesNotThrow(); + TrapCall->setDebugLoc(DebugLoc); + IRB.CreateUnreachable(); + + return TrapBB; + }; + + // Add the checks. + for (const auto &Entry : TrapInfo) { + Instruction *Inst = Entry.first; + BuilderTy IRB(Inst->getParent(), BasicBlock::iterator(Inst), TargetFolder(DL)); + insertBoundsCheck(Entry.second, IRB, GetTrapBB); + } + + return !TrapInfo.empty(); +} + +PreservedAnalyses BoundsCheckingPass::run(Function &F, FunctionAnalysisManager &AM) { + auto &TLI = AM.getResult<TargetLibraryAnalysis>(F); + auto &SE = AM.getResult<ScalarEvolutionAnalysis>(F); + + if (!addBoundsChecking(F, TLI, SE)) + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} + +namespace { +struct BoundsCheckingLegacyPass : public FunctionPass { + static char ID; + + BoundsCheckingLegacyPass() : FunctionPass(ID) { + initializeBoundsCheckingLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + bool runOnFunction(Function &F) override { + auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE(); + return addBoundsChecking(F, TLI, SE); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<TargetLibraryInfoWrapperPass>(); + AU.addRequired<ScalarEvolutionWrapperPass>(); + } +}; +} // namespace + +char BoundsCheckingLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(BoundsCheckingLegacyPass, "bounds-checking", + "Run-time bounds checking", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(BoundsCheckingLegacyPass, "bounds-checking", + "Run-time bounds checking", false, false) + +FunctionPass *llvm::createBoundsCheckingLegacyPass() { + return new BoundsCheckingLegacyPass(); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/CFGMST.h b/contrib/libs/llvm12/lib/Transforms/Instrumentation/CFGMST.h index 9de6edaadf..6580b6d7d7 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/CFGMST.h +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/CFGMST.h @@ -1,303 +1,303 @@ -//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements a Union-find algorithm to compute Minimum Spanning Tree -// for a given CFG. -// -//===----------------------------------------------------------------------===// - -#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H -#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <utility> -#include <vector> - -#define DEBUG_TYPE "cfgmst" - -using namespace llvm; - -namespace llvm { - -/// An union-find based Minimum Spanning Tree for CFG -/// -/// Implements a Union-find algorithm to compute Minimum Spanning Tree -/// for a given CFG. -template <class Edge, class BBInfo> class CFGMST { -public: - Function &F; - - // Store all the edges in CFG. It may contain some stale edges - // when Removed is set. - std::vector<std::unique_ptr<Edge>> AllEdges; - - // This map records the auxiliary information for each BB. - DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos; - - // Whehter the function has an exit block with no successors. - // (For function with an infinite loop, this block may be absent) - bool ExitBlockFound = false; - - // Find the root group of the G and compress the path from G to the root. - BBInfo *findAndCompressGroup(BBInfo *G) { - if (G->Group != G) - G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group)); - return static_cast<BBInfo *>(G->Group); - } - - // Union BB1 and BB2 into the same group and return true. - // Returns false if BB1 and BB2 are already in the same group. - bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) { - BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1)); - BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2)); - - if (BB1G == BB2G) - return false; - - // Make the smaller rank tree a direct child or the root of high rank tree. - if (BB1G->Rank < BB2G->Rank) - BB1G->Group = BB2G; - else { - BB2G->Group = BB1G; - // If the ranks are the same, increment root of one tree by one. - if (BB1G->Rank == BB2G->Rank) - BB1G->Rank++; - } - return true; - } - - // Give BB, return the auxiliary information. - BBInfo &getBBInfo(const BasicBlock *BB) const { - auto It = BBInfos.find(BB); - assert(It->second.get() != nullptr); - return *It->second.get(); - } - - // Give BB, return the auxiliary information if it's available. - BBInfo *findBBInfo(const BasicBlock *BB) const { - auto It = BBInfos.find(BB); - if (It == BBInfos.end()) - return nullptr; - return It->second.get(); - } - - // Traverse the CFG using a stack. Find all the edges and assign the weight. - // Edges with large weight will be put into MST first so they are less likely - // to be instrumented. - void buildEdges() { - LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n"); - - const BasicBlock *Entry = &(F.getEntryBlock()); - uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2); - // If we want to instrument the entry count, lower the weight to 0. +//===-- CFGMST.h - Minimum Spanning Tree for CFG ----------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements a Union-find algorithm to compute Minimum Spanning Tree +// for a given CFG. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H +#define LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <utility> +#include <vector> + +#define DEBUG_TYPE "cfgmst" + +using namespace llvm; + +namespace llvm { + +/// An union-find based Minimum Spanning Tree for CFG +/// +/// Implements a Union-find algorithm to compute Minimum Spanning Tree +/// for a given CFG. +template <class Edge, class BBInfo> class CFGMST { +public: + Function &F; + + // Store all the edges in CFG. It may contain some stale edges + // when Removed is set. + std::vector<std::unique_ptr<Edge>> AllEdges; + + // This map records the auxiliary information for each BB. + DenseMap<const BasicBlock *, std::unique_ptr<BBInfo>> BBInfos; + + // Whehter the function has an exit block with no successors. + // (For function with an infinite loop, this block may be absent) + bool ExitBlockFound = false; + + // Find the root group of the G and compress the path from G to the root. + BBInfo *findAndCompressGroup(BBInfo *G) { + if (G->Group != G) + G->Group = findAndCompressGroup(static_cast<BBInfo *>(G->Group)); + return static_cast<BBInfo *>(G->Group); + } + + // Union BB1 and BB2 into the same group and return true. + // Returns false if BB1 and BB2 are already in the same group. + bool unionGroups(const BasicBlock *BB1, const BasicBlock *BB2) { + BBInfo *BB1G = findAndCompressGroup(&getBBInfo(BB1)); + BBInfo *BB2G = findAndCompressGroup(&getBBInfo(BB2)); + + if (BB1G == BB2G) + return false; + + // Make the smaller rank tree a direct child or the root of high rank tree. + if (BB1G->Rank < BB2G->Rank) + BB1G->Group = BB2G; + else { + BB2G->Group = BB1G; + // If the ranks are the same, increment root of one tree by one. + if (BB1G->Rank == BB2G->Rank) + BB1G->Rank++; + } + return true; + } + + // Give BB, return the auxiliary information. + BBInfo &getBBInfo(const BasicBlock *BB) const { + auto It = BBInfos.find(BB); + assert(It->second.get() != nullptr); + return *It->second.get(); + } + + // Give BB, return the auxiliary information if it's available. + BBInfo *findBBInfo(const BasicBlock *BB) const { + auto It = BBInfos.find(BB); + if (It == BBInfos.end()) + return nullptr; + return It->second.get(); + } + + // Traverse the CFG using a stack. Find all the edges and assign the weight. + // Edges with large weight will be put into MST first so they are less likely + // to be instrumented. + void buildEdges() { + LLVM_DEBUG(dbgs() << "Build Edge on " << F.getName() << "\n"); + + const BasicBlock *Entry = &(F.getEntryBlock()); + uint64_t EntryWeight = (BFI != nullptr ? BFI->getEntryFreq() : 2); + // If we want to instrument the entry count, lower the weight to 0. if (InstrumentFuncEntry) - EntryWeight = 0; - Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr, - *ExitOutgoing = nullptr, *ExitIncoming = nullptr; - uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0; - - // Add a fake edge to the entry. - EntryIncoming = &addEdge(nullptr, Entry, EntryWeight); - LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName() - << " w = " << EntryWeight << "\n"); - - // Special handling for single BB functions. - if (succ_empty(Entry)) { - addEdge(Entry, nullptr, EntryWeight); - return; - } - - static const uint32_t CriticalEdgeMultiplier = 1000; - - for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { - Instruction *TI = BB->getTerminator(); - uint64_t BBWeight = - (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2); - uint64_t Weight = 2; - if (int successors = TI->getNumSuccessors()) { - for (int i = 0; i != successors; ++i) { - BasicBlock *TargetBB = TI->getSuccessor(i); - bool Critical = isCriticalEdge(TI, i); - uint64_t scaleFactor = BBWeight; - if (Critical) { - if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier) - scaleFactor *= CriticalEdgeMultiplier; - else - scaleFactor = UINT64_MAX; - } - if (BPI != nullptr) - Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor); - if (Weight == 0) - Weight++; - auto *E = &addEdge(&*BB, TargetBB, Weight); - E->IsCritical = Critical; - LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to " - << TargetBB->getName() << " w=" << Weight << "\n"); - - // Keep track of entry/exit edges: - if (&*BB == Entry) { - if (Weight > MaxEntryOutWeight) { - MaxEntryOutWeight = Weight; - EntryOutgoing = E; - } - } - - auto *TargetTI = TargetBB->getTerminator(); - if (TargetTI && !TargetTI->getNumSuccessors()) { - if (Weight > MaxExitInWeight) { - MaxExitInWeight = Weight; - ExitIncoming = E; - } - } - } - } else { - ExitBlockFound = true; - Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight); - if (BBWeight > MaxExitOutWeight) { - MaxExitOutWeight = BBWeight; - ExitOutgoing = ExitO; - } - LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit" - << " w = " << BBWeight << "\n"); - } - } - - // Entry/exit edge adjustment heurisitic: - // prefer instrumenting entry edge over exit edge - // if possible. Those exit edges may never have a chance to be - // executed (for instance the program is an event handling loop) - // before the profile is asynchronously dumped. - // - // If EntryIncoming and ExitOutgoing has similar weight, make sure - // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing - // and ExitIncoming has similar weight, make sure ExitIncoming becomes - // the min-edge. - uint64_t EntryInWeight = EntryWeight; - - if (EntryInWeight >= MaxExitOutWeight && - EntryInWeight * 2 < MaxExitOutWeight * 3) { - EntryIncoming->Weight = MaxExitOutWeight; - ExitOutgoing->Weight = EntryInWeight + 1; - } - - if (MaxEntryOutWeight >= MaxExitInWeight && - MaxEntryOutWeight * 2 < MaxExitInWeight * 3) { - EntryOutgoing->Weight = MaxExitInWeight; - ExitIncoming->Weight = MaxEntryOutWeight + 1; - } - } - - // Sort CFG edges based on its weight. - void sortEdgesByWeight() { - llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1, - const std::unique_ptr<Edge> &Edge2) { - return Edge1->Weight > Edge2->Weight; - }); - } - - // Traverse all the edges and compute the Minimum Weight Spanning Tree - // using union-find algorithm. - void computeMinimumSpanningTree() { - // First, put all the critical edge with landing-pad as the Dest to MST. - // This works around the insufficient support of critical edges split - // when destination BB is a landing pad. - for (auto &Ei : AllEdges) { - if (Ei->Removed) - continue; - if (Ei->IsCritical) { - if (Ei->DestBB && Ei->DestBB->isLandingPad()) { - if (unionGroups(Ei->SrcBB, Ei->DestBB)) - Ei->InMST = true; - } - } - } - - for (auto &Ei : AllEdges) { - if (Ei->Removed) - continue; - // If we detect infinite loops, force - // instrumenting the entry edge: - if (!ExitBlockFound && Ei->SrcBB == nullptr) - continue; - if (unionGroups(Ei->SrcBB, Ei->DestBB)) - Ei->InMST = true; - } - } - - // Dump the Debug information about the instrumentation. - void dumpEdges(raw_ostream &OS, const Twine &Message) const { - if (!Message.str().empty()) - OS << Message << "\n"; - OS << " Number of Basic Blocks: " << BBInfos.size() << "\n"; - for (auto &BI : BBInfos) { - const BasicBlock *BB = BI.first; - OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " " - << BI.second->infoString() << "\n"; - } - - OS << " Number of Edges: " << AllEdges.size() - << " (*: Instrument, C: CriticalEdge, -: Removed)\n"; - uint32_t Count = 0; - for (auto &EI : AllEdges) - OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->" - << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n"; - } - - // Add an edge to AllEdges with weight W. - Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) { - uint32_t Index = BBInfos.size(); - auto Iter = BBInfos.end(); - bool Inserted; - std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr)); - if (Inserted) { - // Newly inserted, update the real info. - Iter->second = std::move(std::make_unique<BBInfo>(Index)); - Index++; - } - std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr)); - if (Inserted) - // Newly inserted, update the real info. - Iter->second = std::move(std::make_unique<BBInfo>(Index)); - AllEdges.emplace_back(new Edge(Src, Dest, W)); - return *AllEdges.back(); - } - - BranchProbabilityInfo *BPI; - BlockFrequencyInfo *BFI; - + EntryWeight = 0; + Edge *EntryIncoming = nullptr, *EntryOutgoing = nullptr, + *ExitOutgoing = nullptr, *ExitIncoming = nullptr; + uint64_t MaxEntryOutWeight = 0, MaxExitOutWeight = 0, MaxExitInWeight = 0; + + // Add a fake edge to the entry. + EntryIncoming = &addEdge(nullptr, Entry, EntryWeight); + LLVM_DEBUG(dbgs() << " Edge: from fake node to " << Entry->getName() + << " w = " << EntryWeight << "\n"); + + // Special handling for single BB functions. + if (succ_empty(Entry)) { + addEdge(Entry, nullptr, EntryWeight); + return; + } + + static const uint32_t CriticalEdgeMultiplier = 1000; + + for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { + Instruction *TI = BB->getTerminator(); + uint64_t BBWeight = + (BFI != nullptr ? BFI->getBlockFreq(&*BB).getFrequency() : 2); + uint64_t Weight = 2; + if (int successors = TI->getNumSuccessors()) { + for (int i = 0; i != successors; ++i) { + BasicBlock *TargetBB = TI->getSuccessor(i); + bool Critical = isCriticalEdge(TI, i); + uint64_t scaleFactor = BBWeight; + if (Critical) { + if (scaleFactor < UINT64_MAX / CriticalEdgeMultiplier) + scaleFactor *= CriticalEdgeMultiplier; + else + scaleFactor = UINT64_MAX; + } + if (BPI != nullptr) + Weight = BPI->getEdgeProbability(&*BB, TargetBB).scale(scaleFactor); + if (Weight == 0) + Weight++; + auto *E = &addEdge(&*BB, TargetBB, Weight); + E->IsCritical = Critical; + LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to " + << TargetBB->getName() << " w=" << Weight << "\n"); + + // Keep track of entry/exit edges: + if (&*BB == Entry) { + if (Weight > MaxEntryOutWeight) { + MaxEntryOutWeight = Weight; + EntryOutgoing = E; + } + } + + auto *TargetTI = TargetBB->getTerminator(); + if (TargetTI && !TargetTI->getNumSuccessors()) { + if (Weight > MaxExitInWeight) { + MaxExitInWeight = Weight; + ExitIncoming = E; + } + } + } + } else { + ExitBlockFound = true; + Edge *ExitO = &addEdge(&*BB, nullptr, BBWeight); + if (BBWeight > MaxExitOutWeight) { + MaxExitOutWeight = BBWeight; + ExitOutgoing = ExitO; + } + LLVM_DEBUG(dbgs() << " Edge: from " << BB->getName() << " to fake exit" + << " w = " << BBWeight << "\n"); + } + } + + // Entry/exit edge adjustment heurisitic: + // prefer instrumenting entry edge over exit edge + // if possible. Those exit edges may never have a chance to be + // executed (for instance the program is an event handling loop) + // before the profile is asynchronously dumped. + // + // If EntryIncoming and ExitOutgoing has similar weight, make sure + // ExitOutging is selected as the min-edge. Similarly, if EntryOutgoing + // and ExitIncoming has similar weight, make sure ExitIncoming becomes + // the min-edge. + uint64_t EntryInWeight = EntryWeight; + + if (EntryInWeight >= MaxExitOutWeight && + EntryInWeight * 2 < MaxExitOutWeight * 3) { + EntryIncoming->Weight = MaxExitOutWeight; + ExitOutgoing->Weight = EntryInWeight + 1; + } + + if (MaxEntryOutWeight >= MaxExitInWeight && + MaxEntryOutWeight * 2 < MaxExitInWeight * 3) { + EntryOutgoing->Weight = MaxExitInWeight; + ExitIncoming->Weight = MaxEntryOutWeight + 1; + } + } + + // Sort CFG edges based on its weight. + void sortEdgesByWeight() { + llvm::stable_sort(AllEdges, [](const std::unique_ptr<Edge> &Edge1, + const std::unique_ptr<Edge> &Edge2) { + return Edge1->Weight > Edge2->Weight; + }); + } + + // Traverse all the edges and compute the Minimum Weight Spanning Tree + // using union-find algorithm. + void computeMinimumSpanningTree() { + // First, put all the critical edge with landing-pad as the Dest to MST. + // This works around the insufficient support of critical edges split + // when destination BB is a landing pad. + for (auto &Ei : AllEdges) { + if (Ei->Removed) + continue; + if (Ei->IsCritical) { + if (Ei->DestBB && Ei->DestBB->isLandingPad()) { + if (unionGroups(Ei->SrcBB, Ei->DestBB)) + Ei->InMST = true; + } + } + } + + for (auto &Ei : AllEdges) { + if (Ei->Removed) + continue; + // If we detect infinite loops, force + // instrumenting the entry edge: + if (!ExitBlockFound && Ei->SrcBB == nullptr) + continue; + if (unionGroups(Ei->SrcBB, Ei->DestBB)) + Ei->InMST = true; + } + } + + // Dump the Debug information about the instrumentation. + void dumpEdges(raw_ostream &OS, const Twine &Message) const { + if (!Message.str().empty()) + OS << Message << "\n"; + OS << " Number of Basic Blocks: " << BBInfos.size() << "\n"; + for (auto &BI : BBInfos) { + const BasicBlock *BB = BI.first; + OS << " BB: " << (BB == nullptr ? "FakeNode" : BB->getName()) << " " + << BI.second->infoString() << "\n"; + } + + OS << " Number of Edges: " << AllEdges.size() + << " (*: Instrument, C: CriticalEdge, -: Removed)\n"; + uint32_t Count = 0; + for (auto &EI : AllEdges) + OS << " Edge " << Count++ << ": " << getBBInfo(EI->SrcBB).Index << "-->" + << getBBInfo(EI->DestBB).Index << EI->infoString() << "\n"; + } + + // Add an edge to AllEdges with weight W. + Edge &addEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W) { + uint32_t Index = BBInfos.size(); + auto Iter = BBInfos.end(); + bool Inserted; + std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Src, nullptr)); + if (Inserted) { + // Newly inserted, update the real info. + Iter->second = std::move(std::make_unique<BBInfo>(Index)); + Index++; + } + std::tie(Iter, Inserted) = BBInfos.insert(std::make_pair(Dest, nullptr)); + if (Inserted) + // Newly inserted, update the real info. + Iter->second = std::move(std::make_unique<BBInfo>(Index)); + AllEdges.emplace_back(new Edge(Src, Dest, W)); + return *AllEdges.back(); + } + + BranchProbabilityInfo *BPI; + BlockFrequencyInfo *BFI; + // If function entry will be always instrumented. bool InstrumentFuncEntry; -public: +public: CFGMST(Function &Func, bool InstrumentFuncEntry_, BranchProbabilityInfo *BPI_ = nullptr, - BlockFrequencyInfo *BFI_ = nullptr) + BlockFrequencyInfo *BFI_ = nullptr) : F(Func), BPI(BPI_), BFI(BFI_), InstrumentFuncEntry(InstrumentFuncEntry_) { - buildEdges(); - sortEdgesByWeight(); - computeMinimumSpanningTree(); + buildEdges(); + sortEdgesByWeight(); + computeMinimumSpanningTree(); if (AllEdges.size() > 1 && InstrumentFuncEntry) - std::iter_swap(std::move(AllEdges.begin()), - std::move(AllEdges.begin() + AllEdges.size() - 1)); - } -}; - -} // end namespace llvm - -#undef DEBUG_TYPE // "cfgmst" - -#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H + std::iter_swap(std::move(AllEdges.begin()), + std::move(AllEdges.begin() + AllEdges.size() - 1)); + } +}; + +} // end namespace llvm + +#undef DEBUG_TYPE // "cfgmst" + +#endif // LLVM_LIB_TRANSFORMS_INSTRUMENTATION_CFGMST_H diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/CGProfile.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/CGProfile.cpp index 7f658fa68f..9acd82c005 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/CGProfile.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/CGProfile.cpp @@ -1,153 +1,153 @@ -//===-- CGProfile.cpp -----------------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/CGProfile.h" - -#include "llvm/ADT/MapVector.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/LazyBlockFrequencyInfo.h" -#include "llvm/Analysis/TargetTransformInfo.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/PassManager.h" -#include "llvm/InitializePasses.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/Transforms/Instrumentation.h" - -#include <array> - -using namespace llvm; - -static bool -addModuleFlags(Module &M, - MapVector<std::pair<Function *, Function *>, uint64_t> &Counts) { - if (Counts.empty()) - return false; - - LLVMContext &Context = M.getContext(); - MDBuilder MDB(Context); - std::vector<Metadata *> Nodes; - - for (auto E : Counts) { - Metadata *Vals[] = {ValueAsMetadata::get(E.first.first), - ValueAsMetadata::get(E.first.second), - MDB.createConstant(ConstantInt::get( - Type::getInt64Ty(Context), E.second))}; - Nodes.push_back(MDNode::get(Context, Vals)); - } - - M.addModuleFlag(Module::Append, "CG Profile", MDNode::get(Context, Nodes)); - return true; -} - -static bool runCGProfilePass( - Module &M, function_ref<BlockFrequencyInfo &(Function &)> GetBFI, - function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LazyBFI) { - MapVector<std::pair<Function *, Function *>, uint64_t> Counts; - InstrProfSymtab Symtab; - auto UpdateCounts = [&](TargetTransformInfo &TTI, Function *F, - Function *CalledF, uint64_t NewCount) { +//===-- CGProfile.cpp -----------------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/CGProfile.h" + +#include "llvm/ADT/MapVector.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/LazyBlockFrequencyInfo.h" +#include "llvm/Analysis/TargetTransformInfo.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/PassManager.h" +#include "llvm/InitializePasses.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/Transforms/Instrumentation.h" + +#include <array> + +using namespace llvm; + +static bool +addModuleFlags(Module &M, + MapVector<std::pair<Function *, Function *>, uint64_t> &Counts) { + if (Counts.empty()) + return false; + + LLVMContext &Context = M.getContext(); + MDBuilder MDB(Context); + std::vector<Metadata *> Nodes; + + for (auto E : Counts) { + Metadata *Vals[] = {ValueAsMetadata::get(E.first.first), + ValueAsMetadata::get(E.first.second), + MDB.createConstant(ConstantInt::get( + Type::getInt64Ty(Context), E.second))}; + Nodes.push_back(MDNode::get(Context, Vals)); + } + + M.addModuleFlag(Module::Append, "CG Profile", MDNode::get(Context, Nodes)); + return true; +} + +static bool runCGProfilePass( + Module &M, function_ref<BlockFrequencyInfo &(Function &)> GetBFI, + function_ref<TargetTransformInfo &(Function &)> GetTTI, bool LazyBFI) { + MapVector<std::pair<Function *, Function *>, uint64_t> Counts; + InstrProfSymtab Symtab; + auto UpdateCounts = [&](TargetTransformInfo &TTI, Function *F, + Function *CalledF, uint64_t NewCount) { if (!CalledF || !TTI.isLoweredToCall(CalledF) || CalledF->hasDLLImportStorageClass()) - return; - uint64_t &Count = Counts[std::make_pair(F, CalledF)]; - Count = SaturatingAdd(Count, NewCount); - }; - // Ignore error here. Indirect calls are ignored if this fails. - (void)(bool) Symtab.create(M); - for (auto &F : M) { - // Avoid extra cost of running passes for BFI when the function doesn't have - // entry count. Since LazyBlockFrequencyInfoPass only exists in LPM, check - // if using LazyBlockFrequencyInfoPass. - // TODO: Remove LazyBFI when LazyBlockFrequencyInfoPass is available in NPM. - if (F.isDeclaration() || (LazyBFI && !F.getEntryCount())) - continue; - auto &BFI = GetBFI(F); - if (BFI.getEntryFreq() == 0) - continue; - TargetTransformInfo &TTI = GetTTI(F); - for (auto &BB : F) { - Optional<uint64_t> BBCount = BFI.getBlockProfileCount(&BB); - if (!BBCount) - continue; - for (auto &I : BB) { - CallBase *CB = dyn_cast<CallBase>(&I); - if (!CB) - continue; - if (CB->isIndirectCall()) { - InstrProfValueData ValueData[8]; - uint32_t ActualNumValueData; - uint64_t TotalC; - if (!getValueProfDataFromInst(*CB, IPVK_IndirectCallTarget, 8, - ValueData, ActualNumValueData, TotalC)) - continue; - for (const auto &VD : - ArrayRef<InstrProfValueData>(ValueData, ActualNumValueData)) { - UpdateCounts(TTI, &F, Symtab.getFunction(VD.Value), VD.Count); - } - continue; - } - UpdateCounts(TTI, &F, CB->getCalledFunction(), *BBCount); - } - } - } - - return addModuleFlags(M, Counts); -} - -namespace { -struct CGProfileLegacyPass final : public ModulePass { - static char ID; - CGProfileLegacyPass() : ModulePass(ID) { - initializeCGProfileLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<LazyBlockFrequencyInfoPass>(); - AU.addRequired<TargetTransformInfoWrapperPass>(); - } - - bool runOnModule(Module &M) override { - auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { - return this->getAnalysis<LazyBlockFrequencyInfoPass>(F).getBFI(); - }; - auto GetTTI = [this](Function &F) -> TargetTransformInfo & { - return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); - }; - - return runCGProfilePass(M, GetBFI, GetTTI, true); - } -}; - -} // namespace - -char CGProfileLegacyPass::ID = 0; - -INITIALIZE_PASS(CGProfileLegacyPass, "cg-profile", "Call Graph Profile", false, - false) - -ModulePass *llvm::createCGProfileLegacyPass() { - return new CGProfileLegacyPass(); -} - -PreservedAnalyses CGProfilePass::run(Module &M, ModuleAnalysisManager &MAM) { - FunctionAnalysisManager &FAM = - MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { - return FAM.getResult<BlockFrequencyAnalysis>(F); - }; - auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { - return FAM.getResult<TargetIRAnalysis>(F); - }; - - runCGProfilePass(M, GetBFI, GetTTI, false); - - return PreservedAnalyses::all(); -} + return; + uint64_t &Count = Counts[std::make_pair(F, CalledF)]; + Count = SaturatingAdd(Count, NewCount); + }; + // Ignore error here. Indirect calls are ignored if this fails. + (void)(bool) Symtab.create(M); + for (auto &F : M) { + // Avoid extra cost of running passes for BFI when the function doesn't have + // entry count. Since LazyBlockFrequencyInfoPass only exists in LPM, check + // if using LazyBlockFrequencyInfoPass. + // TODO: Remove LazyBFI when LazyBlockFrequencyInfoPass is available in NPM. + if (F.isDeclaration() || (LazyBFI && !F.getEntryCount())) + continue; + auto &BFI = GetBFI(F); + if (BFI.getEntryFreq() == 0) + continue; + TargetTransformInfo &TTI = GetTTI(F); + for (auto &BB : F) { + Optional<uint64_t> BBCount = BFI.getBlockProfileCount(&BB); + if (!BBCount) + continue; + for (auto &I : BB) { + CallBase *CB = dyn_cast<CallBase>(&I); + if (!CB) + continue; + if (CB->isIndirectCall()) { + InstrProfValueData ValueData[8]; + uint32_t ActualNumValueData; + uint64_t TotalC; + if (!getValueProfDataFromInst(*CB, IPVK_IndirectCallTarget, 8, + ValueData, ActualNumValueData, TotalC)) + continue; + for (const auto &VD : + ArrayRef<InstrProfValueData>(ValueData, ActualNumValueData)) { + UpdateCounts(TTI, &F, Symtab.getFunction(VD.Value), VD.Count); + } + continue; + } + UpdateCounts(TTI, &F, CB->getCalledFunction(), *BBCount); + } + } + } + + return addModuleFlags(M, Counts); +} + +namespace { +struct CGProfileLegacyPass final : public ModulePass { + static char ID; + CGProfileLegacyPass() : ModulePass(ID) { + initializeCGProfileLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<LazyBlockFrequencyInfoPass>(); + AU.addRequired<TargetTransformInfoWrapperPass>(); + } + + bool runOnModule(Module &M) override { + auto GetBFI = [this](Function &F) -> BlockFrequencyInfo & { + return this->getAnalysis<LazyBlockFrequencyInfoPass>(F).getBFI(); + }; + auto GetTTI = [this](Function &F) -> TargetTransformInfo & { + return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F); + }; + + return runCGProfilePass(M, GetBFI, GetTTI, true); + } +}; + +} // namespace + +char CGProfileLegacyPass::ID = 0; + +INITIALIZE_PASS(CGProfileLegacyPass, "cg-profile", "Call Graph Profile", false, + false) + +ModulePass *llvm::createCGProfileLegacyPass() { + return new CGProfileLegacyPass(); +} + +PreservedAnalyses CGProfilePass::run(Module &M, ModuleAnalysisManager &MAM) { + FunctionAnalysisManager &FAM = + MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto GetBFI = [&FAM](Function &F) -> BlockFrequencyInfo & { + return FAM.getResult<BlockFrequencyAnalysis>(F); + }; + auto GetTTI = [&FAM](Function &F) -> TargetTransformInfo & { + return FAM.getResult<TargetIRAnalysis>(F); + }; + + runCGProfilePass(M, GetBFI, GetTTI, false); + + return PreservedAnalyses::all(); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ControlHeightReduction.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ControlHeightReduction.cpp index 6fdeb88658..927c34180d 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ControlHeightReduction.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ControlHeightReduction.cpp @@ -1,2103 +1,2103 @@ -//===-- ControlHeightReduction.cpp - Control Height Reduction -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass merges conditional blocks of code and reduces the number of -// conditional branches in the hot paths based on profiles. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/ControlHeightReduction.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringSet.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/Analysis/RegionInfo.h" -#include "llvm/Analysis/RegionIterator.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/InitializePasses.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/MemoryBuffer.h" -#include "llvm/Transforms/Utils.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Cloning.h" -#include "llvm/Transforms/Utils/ValueMapper.h" - -#include <set> -#include <sstream> - -using namespace llvm; - -#define DEBUG_TYPE "chr" - -#define CHR_DEBUG(X) LLVM_DEBUG(X) - -static cl::opt<bool> ForceCHR("force-chr", cl::init(false), cl::Hidden, - cl::desc("Apply CHR for all functions")); - -static cl::opt<double> CHRBiasThreshold( - "chr-bias-threshold", cl::init(0.99), cl::Hidden, - cl::desc("CHR considers a branch bias greater than this ratio as biased")); - -static cl::opt<unsigned> CHRMergeThreshold( - "chr-merge-threshold", cl::init(2), cl::Hidden, - cl::desc("CHR merges a group of N branches/selects where N >= this value")); - -static cl::opt<std::string> CHRModuleList( - "chr-module-list", cl::init(""), cl::Hidden, - cl::desc("Specify file to retrieve the list of modules to apply CHR to")); - -static cl::opt<std::string> CHRFunctionList( - "chr-function-list", cl::init(""), cl::Hidden, - cl::desc("Specify file to retrieve the list of functions to apply CHR to")); - -static StringSet<> CHRModules; -static StringSet<> CHRFunctions; - -static void parseCHRFilterFiles() { - if (!CHRModuleList.empty()) { - auto FileOrErr = MemoryBuffer::getFile(CHRModuleList); - if (!FileOrErr) { - errs() << "Error: Couldn't read the chr-module-list file " << CHRModuleList << "\n"; - std::exit(1); - } - StringRef Buf = FileOrErr->get()->getBuffer(); - SmallVector<StringRef, 0> Lines; - Buf.split(Lines, '\n'); - for (StringRef Line : Lines) { - Line = Line.trim(); - if (!Line.empty()) - CHRModules.insert(Line); - } - } - if (!CHRFunctionList.empty()) { - auto FileOrErr = MemoryBuffer::getFile(CHRFunctionList); - if (!FileOrErr) { - errs() << "Error: Couldn't read the chr-function-list file " << CHRFunctionList << "\n"; - std::exit(1); - } - StringRef Buf = FileOrErr->get()->getBuffer(); - SmallVector<StringRef, 0> Lines; - Buf.split(Lines, '\n'); - for (StringRef Line : Lines) { - Line = Line.trim(); - if (!Line.empty()) - CHRFunctions.insert(Line); - } - } -} - -namespace { -class ControlHeightReductionLegacyPass : public FunctionPass { -public: - static char ID; - - ControlHeightReductionLegacyPass() : FunctionPass(ID) { - initializeControlHeightReductionLegacyPassPass( - *PassRegistry::getPassRegistry()); - parseCHRFilterFiles(); - } - - bool runOnFunction(Function &F) override; - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - AU.addRequired<RegionInfoPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - } -}; -} // end anonymous namespace - -char ControlHeightReductionLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(ControlHeightReductionLegacyPass, - "chr", - "Reduce control height in the hot paths", - false, false) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) -INITIALIZE_PASS_END(ControlHeightReductionLegacyPass, - "chr", - "Reduce control height in the hot paths", - false, false) - -FunctionPass *llvm::createControlHeightReductionLegacyPass() { - return new ControlHeightReductionLegacyPass(); -} - -namespace { - -struct CHRStats { - CHRStats() : NumBranches(0), NumBranchesDelta(0), - WeightedNumBranchesDelta(0) {} - void print(raw_ostream &OS) const { - OS << "CHRStats: NumBranches " << NumBranches - << " NumBranchesDelta " << NumBranchesDelta - << " WeightedNumBranchesDelta " << WeightedNumBranchesDelta; - } - uint64_t NumBranches; // The original number of conditional branches / - // selects - uint64_t NumBranchesDelta; // The decrease of the number of conditional - // branches / selects in the hot paths due to CHR. - uint64_t WeightedNumBranchesDelta; // NumBranchesDelta weighted by the profile - // count at the scope entry. -}; - -// RegInfo - some properties of a Region. -struct RegInfo { - RegInfo() : R(nullptr), HasBranch(false) {} - RegInfo(Region *RegionIn) : R(RegionIn), HasBranch(false) {} - Region *R; - bool HasBranch; - SmallVector<SelectInst *, 8> Selects; -}; - -typedef DenseMap<Region *, DenseSet<Instruction *>> HoistStopMapTy; - -// CHRScope - a sequence of regions to CHR together. It corresponds to a -// sequence of conditional blocks. It can have subscopes which correspond to -// nested conditional blocks. Nested CHRScopes form a tree. -class CHRScope { - public: - CHRScope(RegInfo RI) : BranchInsertPoint(nullptr) { - assert(RI.R && "Null RegionIn"); - RegInfos.push_back(RI); - } - - Region *getParentRegion() { - assert(RegInfos.size() > 0 && "Empty CHRScope"); - Region *Parent = RegInfos[0].R->getParent(); - assert(Parent && "Unexpected to call this on the top-level region"); - return Parent; - } - - BasicBlock *getEntryBlock() { - assert(RegInfos.size() > 0 && "Empty CHRScope"); - return RegInfos.front().R->getEntry(); - } - - BasicBlock *getExitBlock() { - assert(RegInfos.size() > 0 && "Empty CHRScope"); - return RegInfos.back().R->getExit(); - } - - bool appendable(CHRScope *Next) { - // The next scope is appendable only if this scope is directly connected to - // it (which implies it post-dominates this scope) and this scope dominates - // it (no edge to the next scope outside this scope). - BasicBlock *NextEntry = Next->getEntryBlock(); - if (getExitBlock() != NextEntry) - // Not directly connected. - return false; - Region *LastRegion = RegInfos.back().R; - for (BasicBlock *Pred : predecessors(NextEntry)) - if (!LastRegion->contains(Pred)) - // There's an edge going into the entry of the next scope from outside - // of this scope. - return false; - return true; - } - - void append(CHRScope *Next) { - assert(RegInfos.size() > 0 && "Empty CHRScope"); - assert(Next->RegInfos.size() > 0 && "Empty CHRScope"); - assert(getParentRegion() == Next->getParentRegion() && - "Must be siblings"); - assert(getExitBlock() == Next->getEntryBlock() && - "Must be adjacent"); - RegInfos.append(Next->RegInfos.begin(), Next->RegInfos.end()); - Subs.append(Next->Subs.begin(), Next->Subs.end()); - } - - void addSub(CHRScope *SubIn) { -#ifndef NDEBUG - bool IsChild = false; - for (RegInfo &RI : RegInfos) - if (RI.R == SubIn->getParentRegion()) { - IsChild = true; - break; - } - assert(IsChild && "Must be a child"); -#endif - Subs.push_back(SubIn); - } - - // Split this scope at the boundary region into two, which will belong to the - // tail and returns the tail. - CHRScope *split(Region *Boundary) { - assert(Boundary && "Boundary null"); - assert(RegInfos.begin()->R != Boundary && - "Can't be split at beginning"); - auto BoundaryIt = llvm::find_if( - RegInfos, [&Boundary](const RegInfo &RI) { return Boundary == RI.R; }); - if (BoundaryIt == RegInfos.end()) - return nullptr; - ArrayRef<RegInfo> TailRegInfos(BoundaryIt, RegInfos.end()); - DenseSet<Region *> TailRegionSet; - for (const RegInfo &RI : TailRegInfos) - TailRegionSet.insert(RI.R); - - auto TailIt = - std::stable_partition(Subs.begin(), Subs.end(), [&](CHRScope *Sub) { - assert(Sub && "null Sub"); - Region *Parent = Sub->getParentRegion(); - if (TailRegionSet.count(Parent)) - return false; - +//===-- ControlHeightReduction.cpp - Control Height Reduction -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass merges conditional blocks of code and reduces the number of +// conditional branches in the hot paths based on profiles. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/ControlHeightReduction.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringSet.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/Analysis/RegionInfo.h" +#include "llvm/Analysis/RegionIterator.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/MemoryBuffer.h" +#include "llvm/Transforms/Utils.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Cloning.h" +#include "llvm/Transforms/Utils/ValueMapper.h" + +#include <set> +#include <sstream> + +using namespace llvm; + +#define DEBUG_TYPE "chr" + +#define CHR_DEBUG(X) LLVM_DEBUG(X) + +static cl::opt<bool> ForceCHR("force-chr", cl::init(false), cl::Hidden, + cl::desc("Apply CHR for all functions")); + +static cl::opt<double> CHRBiasThreshold( + "chr-bias-threshold", cl::init(0.99), cl::Hidden, + cl::desc("CHR considers a branch bias greater than this ratio as biased")); + +static cl::opt<unsigned> CHRMergeThreshold( + "chr-merge-threshold", cl::init(2), cl::Hidden, + cl::desc("CHR merges a group of N branches/selects where N >= this value")); + +static cl::opt<std::string> CHRModuleList( + "chr-module-list", cl::init(""), cl::Hidden, + cl::desc("Specify file to retrieve the list of modules to apply CHR to")); + +static cl::opt<std::string> CHRFunctionList( + "chr-function-list", cl::init(""), cl::Hidden, + cl::desc("Specify file to retrieve the list of functions to apply CHR to")); + +static StringSet<> CHRModules; +static StringSet<> CHRFunctions; + +static void parseCHRFilterFiles() { + if (!CHRModuleList.empty()) { + auto FileOrErr = MemoryBuffer::getFile(CHRModuleList); + if (!FileOrErr) { + errs() << "Error: Couldn't read the chr-module-list file " << CHRModuleList << "\n"; + std::exit(1); + } + StringRef Buf = FileOrErr->get()->getBuffer(); + SmallVector<StringRef, 0> Lines; + Buf.split(Lines, '\n'); + for (StringRef Line : Lines) { + Line = Line.trim(); + if (!Line.empty()) + CHRModules.insert(Line); + } + } + if (!CHRFunctionList.empty()) { + auto FileOrErr = MemoryBuffer::getFile(CHRFunctionList); + if (!FileOrErr) { + errs() << "Error: Couldn't read the chr-function-list file " << CHRFunctionList << "\n"; + std::exit(1); + } + StringRef Buf = FileOrErr->get()->getBuffer(); + SmallVector<StringRef, 0> Lines; + Buf.split(Lines, '\n'); + for (StringRef Line : Lines) { + Line = Line.trim(); + if (!Line.empty()) + CHRFunctions.insert(Line); + } + } +} + +namespace { +class ControlHeightReductionLegacyPass : public FunctionPass { +public: + static char ID; + + ControlHeightReductionLegacyPass() : FunctionPass(ID) { + initializeControlHeightReductionLegacyPassPass( + *PassRegistry::getPassRegistry()); + parseCHRFilterFiles(); + } + + bool runOnFunction(Function &F) override; + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + AU.addRequired<RegionInfoPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + } +}; +} // end anonymous namespace + +char ControlHeightReductionLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(ControlHeightReductionLegacyPass, + "chr", + "Reduce control height in the hot paths", + false, false) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(RegionInfoPass) +INITIALIZE_PASS_END(ControlHeightReductionLegacyPass, + "chr", + "Reduce control height in the hot paths", + false, false) + +FunctionPass *llvm::createControlHeightReductionLegacyPass() { + return new ControlHeightReductionLegacyPass(); +} + +namespace { + +struct CHRStats { + CHRStats() : NumBranches(0), NumBranchesDelta(0), + WeightedNumBranchesDelta(0) {} + void print(raw_ostream &OS) const { + OS << "CHRStats: NumBranches " << NumBranches + << " NumBranchesDelta " << NumBranchesDelta + << " WeightedNumBranchesDelta " << WeightedNumBranchesDelta; + } + uint64_t NumBranches; // The original number of conditional branches / + // selects + uint64_t NumBranchesDelta; // The decrease of the number of conditional + // branches / selects in the hot paths due to CHR. + uint64_t WeightedNumBranchesDelta; // NumBranchesDelta weighted by the profile + // count at the scope entry. +}; + +// RegInfo - some properties of a Region. +struct RegInfo { + RegInfo() : R(nullptr), HasBranch(false) {} + RegInfo(Region *RegionIn) : R(RegionIn), HasBranch(false) {} + Region *R; + bool HasBranch; + SmallVector<SelectInst *, 8> Selects; +}; + +typedef DenseMap<Region *, DenseSet<Instruction *>> HoistStopMapTy; + +// CHRScope - a sequence of regions to CHR together. It corresponds to a +// sequence of conditional blocks. It can have subscopes which correspond to +// nested conditional blocks. Nested CHRScopes form a tree. +class CHRScope { + public: + CHRScope(RegInfo RI) : BranchInsertPoint(nullptr) { + assert(RI.R && "Null RegionIn"); + RegInfos.push_back(RI); + } + + Region *getParentRegion() { + assert(RegInfos.size() > 0 && "Empty CHRScope"); + Region *Parent = RegInfos[0].R->getParent(); + assert(Parent && "Unexpected to call this on the top-level region"); + return Parent; + } + + BasicBlock *getEntryBlock() { + assert(RegInfos.size() > 0 && "Empty CHRScope"); + return RegInfos.front().R->getEntry(); + } + + BasicBlock *getExitBlock() { + assert(RegInfos.size() > 0 && "Empty CHRScope"); + return RegInfos.back().R->getExit(); + } + + bool appendable(CHRScope *Next) { + // The next scope is appendable only if this scope is directly connected to + // it (which implies it post-dominates this scope) and this scope dominates + // it (no edge to the next scope outside this scope). + BasicBlock *NextEntry = Next->getEntryBlock(); + if (getExitBlock() != NextEntry) + // Not directly connected. + return false; + Region *LastRegion = RegInfos.back().R; + for (BasicBlock *Pred : predecessors(NextEntry)) + if (!LastRegion->contains(Pred)) + // There's an edge going into the entry of the next scope from outside + // of this scope. + return false; + return true; + } + + void append(CHRScope *Next) { + assert(RegInfos.size() > 0 && "Empty CHRScope"); + assert(Next->RegInfos.size() > 0 && "Empty CHRScope"); + assert(getParentRegion() == Next->getParentRegion() && + "Must be siblings"); + assert(getExitBlock() == Next->getEntryBlock() && + "Must be adjacent"); + RegInfos.append(Next->RegInfos.begin(), Next->RegInfos.end()); + Subs.append(Next->Subs.begin(), Next->Subs.end()); + } + + void addSub(CHRScope *SubIn) { +#ifndef NDEBUG + bool IsChild = false; + for (RegInfo &RI : RegInfos) + if (RI.R == SubIn->getParentRegion()) { + IsChild = true; + break; + } + assert(IsChild && "Must be a child"); +#endif + Subs.push_back(SubIn); + } + + // Split this scope at the boundary region into two, which will belong to the + // tail and returns the tail. + CHRScope *split(Region *Boundary) { + assert(Boundary && "Boundary null"); + assert(RegInfos.begin()->R != Boundary && + "Can't be split at beginning"); + auto BoundaryIt = llvm::find_if( + RegInfos, [&Boundary](const RegInfo &RI) { return Boundary == RI.R; }); + if (BoundaryIt == RegInfos.end()) + return nullptr; + ArrayRef<RegInfo> TailRegInfos(BoundaryIt, RegInfos.end()); + DenseSet<Region *> TailRegionSet; + for (const RegInfo &RI : TailRegInfos) + TailRegionSet.insert(RI.R); + + auto TailIt = + std::stable_partition(Subs.begin(), Subs.end(), [&](CHRScope *Sub) { + assert(Sub && "null Sub"); + Region *Parent = Sub->getParentRegion(); + if (TailRegionSet.count(Parent)) + return false; + assert(llvm::any_of( RegInfos, [&Parent](const RegInfo &RI) { return Parent == RI.R; }) && - "Must be in head"); - return true; - }); - ArrayRef<CHRScope *> TailSubs(TailIt, Subs.end()); - - assert(HoistStopMap.empty() && "MapHoistStops must be empty"); - auto *Scope = new CHRScope(TailRegInfos, TailSubs); - RegInfos.erase(BoundaryIt, RegInfos.end()); - Subs.erase(TailIt, Subs.end()); - return Scope; - } - - bool contains(Instruction *I) const { - BasicBlock *Parent = I->getParent(); - for (const RegInfo &RI : RegInfos) - if (RI.R->contains(Parent)) - return true; - return false; - } - - void print(raw_ostream &OS) const; - - SmallVector<RegInfo, 8> RegInfos; // Regions that belong to this scope - SmallVector<CHRScope *, 8> Subs; // Subscopes. - - // The instruction at which to insert the CHR conditional branch (and hoist - // the dependent condition values). - Instruction *BranchInsertPoint; - - // True-biased and false-biased regions (conditional blocks), - // respectively. Used only for the outermost scope and includes regions in - // subscopes. The rest are unbiased. - DenseSet<Region *> TrueBiasedRegions; - DenseSet<Region *> FalseBiasedRegions; - // Among the biased regions, the regions that get CHRed. - SmallVector<RegInfo, 8> CHRRegions; - - // True-biased and false-biased selects, respectively. Used only for the - // outermost scope and includes ones in subscopes. - DenseSet<SelectInst *> TrueBiasedSelects; - DenseSet<SelectInst *> FalseBiasedSelects; - - // Map from one of the above regions to the instructions to stop - // hoisting instructions at through use-def chains. - HoistStopMapTy HoistStopMap; - - private: - CHRScope(ArrayRef<RegInfo> RegInfosIn, ArrayRef<CHRScope *> SubsIn) - : RegInfos(RegInfosIn.begin(), RegInfosIn.end()), - Subs(SubsIn.begin(), SubsIn.end()), BranchInsertPoint(nullptr) {} -}; - -class CHR { - public: - CHR(Function &Fin, BlockFrequencyInfo &BFIin, DominatorTree &DTin, - ProfileSummaryInfo &PSIin, RegionInfo &RIin, - OptimizationRemarkEmitter &OREin) - : F(Fin), BFI(BFIin), DT(DTin), PSI(PSIin), RI(RIin), ORE(OREin) {} - - ~CHR() { - for (CHRScope *Scope : Scopes) { - delete Scope; - } - } - - bool run(); - - private: - // See the comments in CHR::run() for the high level flow of the algorithm and - // what the following functions do. - - void findScopes(SmallVectorImpl<CHRScope *> &Output) { - Region *R = RI.getTopLevelRegion(); - if (CHRScope *Scope = findScopes(R, nullptr, nullptr, Output)) { - Output.push_back(Scope); - } - } - CHRScope *findScopes(Region *R, Region *NextRegion, Region *ParentRegion, - SmallVectorImpl<CHRScope *> &Scopes); - CHRScope *findScope(Region *R); - void checkScopeHoistable(CHRScope *Scope); - - void splitScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output); - SmallVector<CHRScope *, 8> splitScope(CHRScope *Scope, - CHRScope *Outer, - DenseSet<Value *> *OuterConditionValues, - Instruction *OuterInsertPoint, - SmallVectorImpl<CHRScope *> &Output, - DenseSet<Instruction *> &Unhoistables); - - void classifyBiasedScopes(SmallVectorImpl<CHRScope *> &Scopes); - void classifyBiasedScopes(CHRScope *Scope, CHRScope *OutermostScope); - - void filterScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output); - - void setCHRRegions(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output); - void setCHRRegions(CHRScope *Scope, CHRScope *OutermostScope); - - void sortScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output); - - void transformScopes(SmallVectorImpl<CHRScope *> &CHRScopes); - void transformScopes(CHRScope *Scope, DenseSet<PHINode *> &TrivialPHIs); - void cloneScopeBlocks(CHRScope *Scope, - BasicBlock *PreEntryBlock, - BasicBlock *ExitBlock, - Region *LastRegion, - ValueToValueMapTy &VMap); - BranchInst *createMergedBranch(BasicBlock *PreEntryBlock, - BasicBlock *EntryBlock, - BasicBlock *NewEntryBlock, - ValueToValueMapTy &VMap); - void fixupBranchesAndSelects(CHRScope *Scope, - BasicBlock *PreEntryBlock, - BranchInst *MergedBR, - uint64_t ProfileCount); - void fixupBranch(Region *R, - CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition, BranchProbability &CHRBranchBias); - void fixupSelect(SelectInst* SI, - CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition, BranchProbability &CHRBranchBias); - void addToMergedCondition(bool IsTrueBiased, Value *Cond, - Instruction *BranchOrSelect, - CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition); - - Function &F; - BlockFrequencyInfo &BFI; - DominatorTree &DT; - ProfileSummaryInfo &PSI; - RegionInfo &RI; - OptimizationRemarkEmitter &ORE; - CHRStats Stats; - - // All the true-biased regions in the function - DenseSet<Region *> TrueBiasedRegionsGlobal; - // All the false-biased regions in the function - DenseSet<Region *> FalseBiasedRegionsGlobal; - // All the true-biased selects in the function - DenseSet<SelectInst *> TrueBiasedSelectsGlobal; - // All the false-biased selects in the function - DenseSet<SelectInst *> FalseBiasedSelectsGlobal; - // A map from biased regions to their branch bias - DenseMap<Region *, BranchProbability> BranchBiasMap; - // A map from biased selects to their branch bias - DenseMap<SelectInst *, BranchProbability> SelectBiasMap; - // All the scopes. - DenseSet<CHRScope *> Scopes; -}; - -} // end anonymous namespace - -static inline -raw_ostream LLVM_ATTRIBUTE_UNUSED &operator<<(raw_ostream &OS, - const CHRStats &Stats) { - Stats.print(OS); - return OS; -} - -static inline -raw_ostream &operator<<(raw_ostream &OS, const CHRScope &Scope) { - Scope.print(OS); - return OS; -} - -static bool shouldApply(Function &F, ProfileSummaryInfo& PSI) { - if (ForceCHR) - return true; - - if (!CHRModuleList.empty() || !CHRFunctionList.empty()) { - if (CHRModules.count(F.getParent()->getName())) - return true; - return CHRFunctions.count(F.getName()); - } - - assert(PSI.hasProfileSummary() && "Empty PSI?"); - return PSI.isFunctionEntryHot(&F); -} - -static void LLVM_ATTRIBUTE_UNUSED dumpIR(Function &F, const char *Label, - CHRStats *Stats) { - StringRef FuncName = F.getName(); - StringRef ModuleName = F.getParent()->getName(); - (void)(FuncName); // Unused in release build. - (void)(ModuleName); // Unused in release build. - CHR_DEBUG(dbgs() << "CHR IR dump " << Label << " " << ModuleName << " " - << FuncName); - if (Stats) - CHR_DEBUG(dbgs() << " " << *Stats); - CHR_DEBUG(dbgs() << "\n"); - CHR_DEBUG(F.dump()); -} - -void CHRScope::print(raw_ostream &OS) const { - assert(RegInfos.size() > 0 && "Empty CHRScope"); - OS << "CHRScope["; - OS << RegInfos.size() << ", Regions["; - for (const RegInfo &RI : RegInfos) { - OS << RI.R->getNameStr(); - if (RI.HasBranch) - OS << " B"; - if (RI.Selects.size() > 0) - OS << " S" << RI.Selects.size(); - OS << ", "; - } - if (RegInfos[0].R->getParent()) { - OS << "], Parent " << RegInfos[0].R->getParent()->getNameStr(); - } else { - // top level region - OS << "]"; - } - OS << ", Subs["; - for (CHRScope *Sub : Subs) { - OS << *Sub << ", "; - } - OS << "]]"; -} - -// Return true if the given instruction type can be hoisted by CHR. -static bool isHoistableInstructionType(Instruction *I) { - return isa<BinaryOperator>(I) || isa<CastInst>(I) || isa<SelectInst>(I) || - isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || - isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || - isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || - isa<InsertValueInst>(I); -} - -// Return true if the given instruction can be hoisted by CHR. -static bool isHoistable(Instruction *I, DominatorTree &DT) { - if (!isHoistableInstructionType(I)) - return false; - return isSafeToSpeculativelyExecute(I, nullptr, &DT); -} - -// Recursively traverse the use-def chains of the given value and return a set -// of the unhoistable base values defined within the scope (excluding the -// first-region entry block) or the (hoistable or unhoistable) base values that -// are defined outside (including the first-region entry block) of the -// scope. The returned set doesn't include constants. -static const std::set<Value *> & -getBaseValues(Value *V, DominatorTree &DT, - DenseMap<Value *, std::set<Value *>> &Visited) { - auto It = Visited.find(V); - if (It != Visited.end()) { - return It->second; - } - std::set<Value *> Result; - if (auto *I = dyn_cast<Instruction>(V)) { - // We don't stop at a block that's not in the Scope because we would miss - // some instructions that are based on the same base values if we stop - // there. - if (!isHoistable(I, DT)) { - Result.insert(I); - return Visited.insert(std::make_pair(V, std::move(Result))).first->second; - } - // I is hoistable above the Scope. - for (Value *Op : I->operands()) { - const std::set<Value *> &OpResult = getBaseValues(Op, DT, Visited); - Result.insert(OpResult.begin(), OpResult.end()); - } - return Visited.insert(std::make_pair(V, std::move(Result))).first->second; - } - if (isa<Argument>(V)) { - Result.insert(V); - } - // We don't include others like constants because those won't lead to any - // chance of folding of conditions (eg two bit checks merged into one check) - // after CHR. - return Visited.insert(std::make_pair(V, std::move(Result))).first->second; -} - -// Return true if V is already hoisted or can be hoisted (along with its -// operands) above the insert point. When it returns true and HoistStops is -// non-null, the instructions to stop hoisting at through the use-def chains are -// inserted into HoistStops. -static bool -checkHoistValue(Value *V, Instruction *InsertPoint, DominatorTree &DT, - DenseSet<Instruction *> &Unhoistables, - DenseSet<Instruction *> *HoistStops, - DenseMap<Instruction *, bool> &Visited) { - assert(InsertPoint && "Null InsertPoint"); - if (auto *I = dyn_cast<Instruction>(V)) { - auto It = Visited.find(I); - if (It != Visited.end()) { - return It->second; - } - assert(DT.getNode(I->getParent()) && "DT must contain I's parent block"); - assert(DT.getNode(InsertPoint->getParent()) && "DT must contain Destination"); - if (Unhoistables.count(I)) { - // Don't hoist if they are not to be hoisted. - Visited[I] = false; - return false; - } - if (DT.dominates(I, InsertPoint)) { - // We are already above the insert point. Stop here. - if (HoistStops) - HoistStops->insert(I); - Visited[I] = true; - return true; - } - // We aren't not above the insert point, check if we can hoist it above the - // insert point. - if (isHoistable(I, DT)) { - // Check operands first. - DenseSet<Instruction *> OpsHoistStops; - bool AllOpsHoisted = true; - for (Value *Op : I->operands()) { - if (!checkHoistValue(Op, InsertPoint, DT, Unhoistables, &OpsHoistStops, - Visited)) { - AllOpsHoisted = false; - break; - } - } - if (AllOpsHoisted) { - CHR_DEBUG(dbgs() << "checkHoistValue " << *I << "\n"); - if (HoistStops) - HoistStops->insert(OpsHoistStops.begin(), OpsHoistStops.end()); - Visited[I] = true; - return true; - } - } - Visited[I] = false; - return false; - } - // Non-instructions are considered hoistable. - return true; -} - -// Returns true and sets the true probability and false probability of an -// MD_prof metadata if it's well-formed. -static bool checkMDProf(MDNode *MD, BranchProbability &TrueProb, - BranchProbability &FalseProb) { - if (!MD) return false; - MDString *MDName = cast<MDString>(MD->getOperand(0)); - if (MDName->getString() != "branch_weights" || - MD->getNumOperands() != 3) - return false; - ConstantInt *TrueWeight = mdconst::extract<ConstantInt>(MD->getOperand(1)); - ConstantInt *FalseWeight = mdconst::extract<ConstantInt>(MD->getOperand(2)); - if (!TrueWeight || !FalseWeight) - return false; - uint64_t TrueWt = TrueWeight->getValue().getZExtValue(); - uint64_t FalseWt = FalseWeight->getValue().getZExtValue(); - uint64_t SumWt = TrueWt + FalseWt; - - assert(SumWt >= TrueWt && SumWt >= FalseWt && - "Overflow calculating branch probabilities."); - - // Guard against 0-to-0 branch weights to avoid a division-by-zero crash. - if (SumWt == 0) - return false; - - TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt); - FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt); - return true; -} - -static BranchProbability getCHRBiasThreshold() { - return BranchProbability::getBranchProbability( - static_cast<uint64_t>(CHRBiasThreshold * 1000000), 1000000); -} - -// A helper for CheckBiasedBranch and CheckBiasedSelect. If TrueProb >= -// CHRBiasThreshold, put Key into TrueSet and return true. If FalseProb >= -// CHRBiasThreshold, put Key into FalseSet and return true. Otherwise, return -// false. -template <typename K, typename S, typename M> -static bool checkBias(K *Key, BranchProbability TrueProb, - BranchProbability FalseProb, S &TrueSet, S &FalseSet, - M &BiasMap) { - BranchProbability Threshold = getCHRBiasThreshold(); - if (TrueProb >= Threshold) { - TrueSet.insert(Key); - BiasMap[Key] = TrueProb; - return true; - } else if (FalseProb >= Threshold) { - FalseSet.insert(Key); - BiasMap[Key] = FalseProb; - return true; - } - return false; -} - -// Returns true and insert a region into the right biased set and the map if the -// branch of the region is biased. -static bool checkBiasedBranch(BranchInst *BI, Region *R, - DenseSet<Region *> &TrueBiasedRegionsGlobal, - DenseSet<Region *> &FalseBiasedRegionsGlobal, - DenseMap<Region *, BranchProbability> &BranchBiasMap) { - if (!BI->isConditional()) - return false; - BranchProbability ThenProb, ElseProb; - if (!checkMDProf(BI->getMetadata(LLVMContext::MD_prof), - ThenProb, ElseProb)) - return false; - BasicBlock *IfThen = BI->getSuccessor(0); - BasicBlock *IfElse = BI->getSuccessor(1); - assert((IfThen == R->getExit() || IfElse == R->getExit()) && - IfThen != IfElse && - "Invariant from findScopes"); - if (IfThen == R->getExit()) { - // Swap them so that IfThen/ThenProb means going into the conditional code - // and IfElse/ElseProb means skipping it. - std::swap(IfThen, IfElse); - std::swap(ThenProb, ElseProb); - } - CHR_DEBUG(dbgs() << "BI " << *BI << " "); - CHR_DEBUG(dbgs() << "ThenProb " << ThenProb << " "); - CHR_DEBUG(dbgs() << "ElseProb " << ElseProb << "\n"); - return checkBias(R, ThenProb, ElseProb, - TrueBiasedRegionsGlobal, FalseBiasedRegionsGlobal, - BranchBiasMap); -} - -// Returns true and insert a select into the right biased set and the map if the -// select is biased. -static bool checkBiasedSelect( - SelectInst *SI, Region *R, - DenseSet<SelectInst *> &TrueBiasedSelectsGlobal, - DenseSet<SelectInst *> &FalseBiasedSelectsGlobal, - DenseMap<SelectInst *, BranchProbability> &SelectBiasMap) { - BranchProbability TrueProb, FalseProb; - if (!checkMDProf(SI->getMetadata(LLVMContext::MD_prof), - TrueProb, FalseProb)) - return false; - CHR_DEBUG(dbgs() << "SI " << *SI << " "); - CHR_DEBUG(dbgs() << "TrueProb " << TrueProb << " "); - CHR_DEBUG(dbgs() << "FalseProb " << FalseProb << "\n"); - return checkBias(SI, TrueProb, FalseProb, - TrueBiasedSelectsGlobal, FalseBiasedSelectsGlobal, - SelectBiasMap); -} - -// Returns the instruction at which to hoist the dependent condition values and -// insert the CHR branch for a region. This is the terminator branch in the -// entry block or the first select in the entry block, if any. -static Instruction* getBranchInsertPoint(RegInfo &RI) { - Region *R = RI.R; - BasicBlock *EntryBB = R->getEntry(); - // The hoist point is by default the terminator of the entry block, which is - // the same as the branch instruction if RI.HasBranch is true. - Instruction *HoistPoint = EntryBB->getTerminator(); - for (SelectInst *SI : RI.Selects) { - if (SI->getParent() == EntryBB) { - // Pick the first select in Selects in the entry block. Note Selects is - // sorted in the instruction order within a block (asserted below). - HoistPoint = SI; - break; - } - } - assert(HoistPoint && "Null HoistPoint"); -#ifndef NDEBUG - // Check that HoistPoint is the first one in Selects in the entry block, - // if any. - DenseSet<Instruction *> EntryBlockSelectSet; - for (SelectInst *SI : RI.Selects) { - if (SI->getParent() == EntryBB) { - EntryBlockSelectSet.insert(SI); - } - } - for (Instruction &I : *EntryBB) { + "Must be in head"); + return true; + }); + ArrayRef<CHRScope *> TailSubs(TailIt, Subs.end()); + + assert(HoistStopMap.empty() && "MapHoistStops must be empty"); + auto *Scope = new CHRScope(TailRegInfos, TailSubs); + RegInfos.erase(BoundaryIt, RegInfos.end()); + Subs.erase(TailIt, Subs.end()); + return Scope; + } + + bool contains(Instruction *I) const { + BasicBlock *Parent = I->getParent(); + for (const RegInfo &RI : RegInfos) + if (RI.R->contains(Parent)) + return true; + return false; + } + + void print(raw_ostream &OS) const; + + SmallVector<RegInfo, 8> RegInfos; // Regions that belong to this scope + SmallVector<CHRScope *, 8> Subs; // Subscopes. + + // The instruction at which to insert the CHR conditional branch (and hoist + // the dependent condition values). + Instruction *BranchInsertPoint; + + // True-biased and false-biased regions (conditional blocks), + // respectively. Used only for the outermost scope and includes regions in + // subscopes. The rest are unbiased. + DenseSet<Region *> TrueBiasedRegions; + DenseSet<Region *> FalseBiasedRegions; + // Among the biased regions, the regions that get CHRed. + SmallVector<RegInfo, 8> CHRRegions; + + // True-biased and false-biased selects, respectively. Used only for the + // outermost scope and includes ones in subscopes. + DenseSet<SelectInst *> TrueBiasedSelects; + DenseSet<SelectInst *> FalseBiasedSelects; + + // Map from one of the above regions to the instructions to stop + // hoisting instructions at through use-def chains. + HoistStopMapTy HoistStopMap; + + private: + CHRScope(ArrayRef<RegInfo> RegInfosIn, ArrayRef<CHRScope *> SubsIn) + : RegInfos(RegInfosIn.begin(), RegInfosIn.end()), + Subs(SubsIn.begin(), SubsIn.end()), BranchInsertPoint(nullptr) {} +}; + +class CHR { + public: + CHR(Function &Fin, BlockFrequencyInfo &BFIin, DominatorTree &DTin, + ProfileSummaryInfo &PSIin, RegionInfo &RIin, + OptimizationRemarkEmitter &OREin) + : F(Fin), BFI(BFIin), DT(DTin), PSI(PSIin), RI(RIin), ORE(OREin) {} + + ~CHR() { + for (CHRScope *Scope : Scopes) { + delete Scope; + } + } + + bool run(); + + private: + // See the comments in CHR::run() for the high level flow of the algorithm and + // what the following functions do. + + void findScopes(SmallVectorImpl<CHRScope *> &Output) { + Region *R = RI.getTopLevelRegion(); + if (CHRScope *Scope = findScopes(R, nullptr, nullptr, Output)) { + Output.push_back(Scope); + } + } + CHRScope *findScopes(Region *R, Region *NextRegion, Region *ParentRegion, + SmallVectorImpl<CHRScope *> &Scopes); + CHRScope *findScope(Region *R); + void checkScopeHoistable(CHRScope *Scope); + + void splitScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output); + SmallVector<CHRScope *, 8> splitScope(CHRScope *Scope, + CHRScope *Outer, + DenseSet<Value *> *OuterConditionValues, + Instruction *OuterInsertPoint, + SmallVectorImpl<CHRScope *> &Output, + DenseSet<Instruction *> &Unhoistables); + + void classifyBiasedScopes(SmallVectorImpl<CHRScope *> &Scopes); + void classifyBiasedScopes(CHRScope *Scope, CHRScope *OutermostScope); + + void filterScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output); + + void setCHRRegions(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output); + void setCHRRegions(CHRScope *Scope, CHRScope *OutermostScope); + + void sortScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output); + + void transformScopes(SmallVectorImpl<CHRScope *> &CHRScopes); + void transformScopes(CHRScope *Scope, DenseSet<PHINode *> &TrivialPHIs); + void cloneScopeBlocks(CHRScope *Scope, + BasicBlock *PreEntryBlock, + BasicBlock *ExitBlock, + Region *LastRegion, + ValueToValueMapTy &VMap); + BranchInst *createMergedBranch(BasicBlock *PreEntryBlock, + BasicBlock *EntryBlock, + BasicBlock *NewEntryBlock, + ValueToValueMapTy &VMap); + void fixupBranchesAndSelects(CHRScope *Scope, + BasicBlock *PreEntryBlock, + BranchInst *MergedBR, + uint64_t ProfileCount); + void fixupBranch(Region *R, + CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition, BranchProbability &CHRBranchBias); + void fixupSelect(SelectInst* SI, + CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition, BranchProbability &CHRBranchBias); + void addToMergedCondition(bool IsTrueBiased, Value *Cond, + Instruction *BranchOrSelect, + CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition); + + Function &F; + BlockFrequencyInfo &BFI; + DominatorTree &DT; + ProfileSummaryInfo &PSI; + RegionInfo &RI; + OptimizationRemarkEmitter &ORE; + CHRStats Stats; + + // All the true-biased regions in the function + DenseSet<Region *> TrueBiasedRegionsGlobal; + // All the false-biased regions in the function + DenseSet<Region *> FalseBiasedRegionsGlobal; + // All the true-biased selects in the function + DenseSet<SelectInst *> TrueBiasedSelectsGlobal; + // All the false-biased selects in the function + DenseSet<SelectInst *> FalseBiasedSelectsGlobal; + // A map from biased regions to their branch bias + DenseMap<Region *, BranchProbability> BranchBiasMap; + // A map from biased selects to their branch bias + DenseMap<SelectInst *, BranchProbability> SelectBiasMap; + // All the scopes. + DenseSet<CHRScope *> Scopes; +}; + +} // end anonymous namespace + +static inline +raw_ostream LLVM_ATTRIBUTE_UNUSED &operator<<(raw_ostream &OS, + const CHRStats &Stats) { + Stats.print(OS); + return OS; +} + +static inline +raw_ostream &operator<<(raw_ostream &OS, const CHRScope &Scope) { + Scope.print(OS); + return OS; +} + +static bool shouldApply(Function &F, ProfileSummaryInfo& PSI) { + if (ForceCHR) + return true; + + if (!CHRModuleList.empty() || !CHRFunctionList.empty()) { + if (CHRModules.count(F.getParent()->getName())) + return true; + return CHRFunctions.count(F.getName()); + } + + assert(PSI.hasProfileSummary() && "Empty PSI?"); + return PSI.isFunctionEntryHot(&F); +} + +static void LLVM_ATTRIBUTE_UNUSED dumpIR(Function &F, const char *Label, + CHRStats *Stats) { + StringRef FuncName = F.getName(); + StringRef ModuleName = F.getParent()->getName(); + (void)(FuncName); // Unused in release build. + (void)(ModuleName); // Unused in release build. + CHR_DEBUG(dbgs() << "CHR IR dump " << Label << " " << ModuleName << " " + << FuncName); + if (Stats) + CHR_DEBUG(dbgs() << " " << *Stats); + CHR_DEBUG(dbgs() << "\n"); + CHR_DEBUG(F.dump()); +} + +void CHRScope::print(raw_ostream &OS) const { + assert(RegInfos.size() > 0 && "Empty CHRScope"); + OS << "CHRScope["; + OS << RegInfos.size() << ", Regions["; + for (const RegInfo &RI : RegInfos) { + OS << RI.R->getNameStr(); + if (RI.HasBranch) + OS << " B"; + if (RI.Selects.size() > 0) + OS << " S" << RI.Selects.size(); + OS << ", "; + } + if (RegInfos[0].R->getParent()) { + OS << "], Parent " << RegInfos[0].R->getParent()->getNameStr(); + } else { + // top level region + OS << "]"; + } + OS << ", Subs["; + for (CHRScope *Sub : Subs) { + OS << *Sub << ", "; + } + OS << "]]"; +} + +// Return true if the given instruction type can be hoisted by CHR. +static bool isHoistableInstructionType(Instruction *I) { + return isa<BinaryOperator>(I) || isa<CastInst>(I) || isa<SelectInst>(I) || + isa<GetElementPtrInst>(I) || isa<CmpInst>(I) || + isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) || + isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) || + isa<InsertValueInst>(I); +} + +// Return true if the given instruction can be hoisted by CHR. +static bool isHoistable(Instruction *I, DominatorTree &DT) { + if (!isHoistableInstructionType(I)) + return false; + return isSafeToSpeculativelyExecute(I, nullptr, &DT); +} + +// Recursively traverse the use-def chains of the given value and return a set +// of the unhoistable base values defined within the scope (excluding the +// first-region entry block) or the (hoistable or unhoistable) base values that +// are defined outside (including the first-region entry block) of the +// scope. The returned set doesn't include constants. +static const std::set<Value *> & +getBaseValues(Value *V, DominatorTree &DT, + DenseMap<Value *, std::set<Value *>> &Visited) { + auto It = Visited.find(V); + if (It != Visited.end()) { + return It->second; + } + std::set<Value *> Result; + if (auto *I = dyn_cast<Instruction>(V)) { + // We don't stop at a block that's not in the Scope because we would miss + // some instructions that are based on the same base values if we stop + // there. + if (!isHoistable(I, DT)) { + Result.insert(I); + return Visited.insert(std::make_pair(V, std::move(Result))).first->second; + } + // I is hoistable above the Scope. + for (Value *Op : I->operands()) { + const std::set<Value *> &OpResult = getBaseValues(Op, DT, Visited); + Result.insert(OpResult.begin(), OpResult.end()); + } + return Visited.insert(std::make_pair(V, std::move(Result))).first->second; + } + if (isa<Argument>(V)) { + Result.insert(V); + } + // We don't include others like constants because those won't lead to any + // chance of folding of conditions (eg two bit checks merged into one check) + // after CHR. + return Visited.insert(std::make_pair(V, std::move(Result))).first->second; +} + +// Return true if V is already hoisted or can be hoisted (along with its +// operands) above the insert point. When it returns true and HoistStops is +// non-null, the instructions to stop hoisting at through the use-def chains are +// inserted into HoistStops. +static bool +checkHoistValue(Value *V, Instruction *InsertPoint, DominatorTree &DT, + DenseSet<Instruction *> &Unhoistables, + DenseSet<Instruction *> *HoistStops, + DenseMap<Instruction *, bool> &Visited) { + assert(InsertPoint && "Null InsertPoint"); + if (auto *I = dyn_cast<Instruction>(V)) { + auto It = Visited.find(I); + if (It != Visited.end()) { + return It->second; + } + assert(DT.getNode(I->getParent()) && "DT must contain I's parent block"); + assert(DT.getNode(InsertPoint->getParent()) && "DT must contain Destination"); + if (Unhoistables.count(I)) { + // Don't hoist if they are not to be hoisted. + Visited[I] = false; + return false; + } + if (DT.dominates(I, InsertPoint)) { + // We are already above the insert point. Stop here. + if (HoistStops) + HoistStops->insert(I); + Visited[I] = true; + return true; + } + // We aren't not above the insert point, check if we can hoist it above the + // insert point. + if (isHoistable(I, DT)) { + // Check operands first. + DenseSet<Instruction *> OpsHoistStops; + bool AllOpsHoisted = true; + for (Value *Op : I->operands()) { + if (!checkHoistValue(Op, InsertPoint, DT, Unhoistables, &OpsHoistStops, + Visited)) { + AllOpsHoisted = false; + break; + } + } + if (AllOpsHoisted) { + CHR_DEBUG(dbgs() << "checkHoistValue " << *I << "\n"); + if (HoistStops) + HoistStops->insert(OpsHoistStops.begin(), OpsHoistStops.end()); + Visited[I] = true; + return true; + } + } + Visited[I] = false; + return false; + } + // Non-instructions are considered hoistable. + return true; +} + +// Returns true and sets the true probability and false probability of an +// MD_prof metadata if it's well-formed. +static bool checkMDProf(MDNode *MD, BranchProbability &TrueProb, + BranchProbability &FalseProb) { + if (!MD) return false; + MDString *MDName = cast<MDString>(MD->getOperand(0)); + if (MDName->getString() != "branch_weights" || + MD->getNumOperands() != 3) + return false; + ConstantInt *TrueWeight = mdconst::extract<ConstantInt>(MD->getOperand(1)); + ConstantInt *FalseWeight = mdconst::extract<ConstantInt>(MD->getOperand(2)); + if (!TrueWeight || !FalseWeight) + return false; + uint64_t TrueWt = TrueWeight->getValue().getZExtValue(); + uint64_t FalseWt = FalseWeight->getValue().getZExtValue(); + uint64_t SumWt = TrueWt + FalseWt; + + assert(SumWt >= TrueWt && SumWt >= FalseWt && + "Overflow calculating branch probabilities."); + + // Guard against 0-to-0 branch weights to avoid a division-by-zero crash. + if (SumWt == 0) + return false; + + TrueProb = BranchProbability::getBranchProbability(TrueWt, SumWt); + FalseProb = BranchProbability::getBranchProbability(FalseWt, SumWt); + return true; +} + +static BranchProbability getCHRBiasThreshold() { + return BranchProbability::getBranchProbability( + static_cast<uint64_t>(CHRBiasThreshold * 1000000), 1000000); +} + +// A helper for CheckBiasedBranch and CheckBiasedSelect. If TrueProb >= +// CHRBiasThreshold, put Key into TrueSet and return true. If FalseProb >= +// CHRBiasThreshold, put Key into FalseSet and return true. Otherwise, return +// false. +template <typename K, typename S, typename M> +static bool checkBias(K *Key, BranchProbability TrueProb, + BranchProbability FalseProb, S &TrueSet, S &FalseSet, + M &BiasMap) { + BranchProbability Threshold = getCHRBiasThreshold(); + if (TrueProb >= Threshold) { + TrueSet.insert(Key); + BiasMap[Key] = TrueProb; + return true; + } else if (FalseProb >= Threshold) { + FalseSet.insert(Key); + BiasMap[Key] = FalseProb; + return true; + } + return false; +} + +// Returns true and insert a region into the right biased set and the map if the +// branch of the region is biased. +static bool checkBiasedBranch(BranchInst *BI, Region *R, + DenseSet<Region *> &TrueBiasedRegionsGlobal, + DenseSet<Region *> &FalseBiasedRegionsGlobal, + DenseMap<Region *, BranchProbability> &BranchBiasMap) { + if (!BI->isConditional()) + return false; + BranchProbability ThenProb, ElseProb; + if (!checkMDProf(BI->getMetadata(LLVMContext::MD_prof), + ThenProb, ElseProb)) + return false; + BasicBlock *IfThen = BI->getSuccessor(0); + BasicBlock *IfElse = BI->getSuccessor(1); + assert((IfThen == R->getExit() || IfElse == R->getExit()) && + IfThen != IfElse && + "Invariant from findScopes"); + if (IfThen == R->getExit()) { + // Swap them so that IfThen/ThenProb means going into the conditional code + // and IfElse/ElseProb means skipping it. + std::swap(IfThen, IfElse); + std::swap(ThenProb, ElseProb); + } + CHR_DEBUG(dbgs() << "BI " << *BI << " "); + CHR_DEBUG(dbgs() << "ThenProb " << ThenProb << " "); + CHR_DEBUG(dbgs() << "ElseProb " << ElseProb << "\n"); + return checkBias(R, ThenProb, ElseProb, + TrueBiasedRegionsGlobal, FalseBiasedRegionsGlobal, + BranchBiasMap); +} + +// Returns true and insert a select into the right biased set and the map if the +// select is biased. +static bool checkBiasedSelect( + SelectInst *SI, Region *R, + DenseSet<SelectInst *> &TrueBiasedSelectsGlobal, + DenseSet<SelectInst *> &FalseBiasedSelectsGlobal, + DenseMap<SelectInst *, BranchProbability> &SelectBiasMap) { + BranchProbability TrueProb, FalseProb; + if (!checkMDProf(SI->getMetadata(LLVMContext::MD_prof), + TrueProb, FalseProb)) + return false; + CHR_DEBUG(dbgs() << "SI " << *SI << " "); + CHR_DEBUG(dbgs() << "TrueProb " << TrueProb << " "); + CHR_DEBUG(dbgs() << "FalseProb " << FalseProb << "\n"); + return checkBias(SI, TrueProb, FalseProb, + TrueBiasedSelectsGlobal, FalseBiasedSelectsGlobal, + SelectBiasMap); +} + +// Returns the instruction at which to hoist the dependent condition values and +// insert the CHR branch for a region. This is the terminator branch in the +// entry block or the first select in the entry block, if any. +static Instruction* getBranchInsertPoint(RegInfo &RI) { + Region *R = RI.R; + BasicBlock *EntryBB = R->getEntry(); + // The hoist point is by default the terminator of the entry block, which is + // the same as the branch instruction if RI.HasBranch is true. + Instruction *HoistPoint = EntryBB->getTerminator(); + for (SelectInst *SI : RI.Selects) { + if (SI->getParent() == EntryBB) { + // Pick the first select in Selects in the entry block. Note Selects is + // sorted in the instruction order within a block (asserted below). + HoistPoint = SI; + break; + } + } + assert(HoistPoint && "Null HoistPoint"); +#ifndef NDEBUG + // Check that HoistPoint is the first one in Selects in the entry block, + // if any. + DenseSet<Instruction *> EntryBlockSelectSet; + for (SelectInst *SI : RI.Selects) { + if (SI->getParent() == EntryBB) { + EntryBlockSelectSet.insert(SI); + } + } + for (Instruction &I : *EntryBB) { if (EntryBlockSelectSet.contains(&I)) { - assert(&I == HoistPoint && - "HoistPoint must be the first one in Selects"); - break; - } - } -#endif - return HoistPoint; -} - -// Find a CHR scope in the given region. -CHRScope * CHR::findScope(Region *R) { - CHRScope *Result = nullptr; - BasicBlock *Entry = R->getEntry(); - BasicBlock *Exit = R->getExit(); // null if top level. - assert(Entry && "Entry must not be null"); - assert((Exit == nullptr) == (R->isTopLevelRegion()) && - "Only top level region has a null exit"); - if (Entry) - CHR_DEBUG(dbgs() << "Entry " << Entry->getName() << "\n"); - else - CHR_DEBUG(dbgs() << "Entry null\n"); - if (Exit) - CHR_DEBUG(dbgs() << "Exit " << Exit->getName() << "\n"); - else - CHR_DEBUG(dbgs() << "Exit null\n"); - // Exclude cases where Entry is part of a subregion (hence it doesn't belong - // to this region). - bool EntryInSubregion = RI.getRegionFor(Entry) != R; - if (EntryInSubregion) - return nullptr; - // Exclude loops - for (BasicBlock *Pred : predecessors(Entry)) - if (R->contains(Pred)) - return nullptr; - if (Exit) { - // Try to find an if-then block (check if R is an if-then). - // if (cond) { - // ... - // } - auto *BI = dyn_cast<BranchInst>(Entry->getTerminator()); - if (BI) - CHR_DEBUG(dbgs() << "BI.isConditional " << BI->isConditional() << "\n"); - else - CHR_DEBUG(dbgs() << "BI null\n"); - if (BI && BI->isConditional()) { - BasicBlock *S0 = BI->getSuccessor(0); - BasicBlock *S1 = BI->getSuccessor(1); - CHR_DEBUG(dbgs() << "S0 " << S0->getName() << "\n"); - CHR_DEBUG(dbgs() << "S1 " << S1->getName() << "\n"); - if (S0 != S1 && (S0 == Exit || S1 == Exit)) { - RegInfo RI(R); - RI.HasBranch = checkBiasedBranch( - BI, R, TrueBiasedRegionsGlobal, FalseBiasedRegionsGlobal, - BranchBiasMap); - Result = new CHRScope(RI); - Scopes.insert(Result); - CHR_DEBUG(dbgs() << "Found a region with a branch\n"); - ++Stats.NumBranches; - if (!RI.HasBranch) { - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "BranchNotBiased", BI) - << "Branch not biased"; - }); - } - } - } - } - { - // Try to look for selects in the direct child blocks (as opposed to in - // subregions) of R. - // ... - // if (..) { // Some subregion - // ... - // } - // if (..) { // Some subregion - // ... - // } - // ... - // a = cond ? b : c; - // ... - SmallVector<SelectInst *, 8> Selects; - for (RegionNode *E : R->elements()) { - if (E->isSubRegion()) - continue; - // This returns the basic block of E if E is a direct child of R (not a - // subregion.) - BasicBlock *BB = E->getEntry(); - // Need to push in the order to make it easier to find the first Select - // later. - for (Instruction &I : *BB) { - if (auto *SI = dyn_cast<SelectInst>(&I)) { - Selects.push_back(SI); - ++Stats.NumBranches; - } - } - } - if (Selects.size() > 0) { - auto AddSelects = [&](RegInfo &RI) { - for (auto *SI : Selects) - if (checkBiasedSelect(SI, RI.R, - TrueBiasedSelectsGlobal, - FalseBiasedSelectsGlobal, - SelectBiasMap)) - RI.Selects.push_back(SI); - else - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "SelectNotBiased", SI) - << "Select not biased"; - }); - }; - if (!Result) { - CHR_DEBUG(dbgs() << "Found a select-only region\n"); - RegInfo RI(R); - AddSelects(RI); - Result = new CHRScope(RI); - Scopes.insert(Result); - } else { - CHR_DEBUG(dbgs() << "Found select(s) in a region with a branch\n"); - AddSelects(Result->RegInfos[0]); - } - } - } - - if (Result) { - checkScopeHoistable(Result); - } - return Result; -} - -// Check that any of the branch and the selects in the region could be -// hoisted above the the CHR branch insert point (the most dominating of -// them, either the branch (at the end of the first block) or the first -// select in the first block). If the branch can't be hoisted, drop the -// selects in the first blocks. -// -// For example, for the following scope/region with selects, we want to insert -// the merged branch right before the first select in the first/entry block by -// hoisting c1, c2, c3, and c4. -// -// // Branch insert point here. -// a = c1 ? b : c; // Select 1 -// d = c2 ? e : f; // Select 2 -// if (c3) { // Branch -// ... -// c4 = foo() // A call. -// g = c4 ? h : i; // Select 3 -// } -// -// But suppose we can't hoist c4 because it's dependent on the preceding -// call. Then, we drop Select 3. Furthermore, if we can't hoist c2, we also drop -// Select 2. If we can't hoist c3, we drop Selects 1 & 2. -void CHR::checkScopeHoistable(CHRScope *Scope) { - RegInfo &RI = Scope->RegInfos[0]; - Region *R = RI.R; - BasicBlock *EntryBB = R->getEntry(); - auto *Branch = RI.HasBranch ? - cast<BranchInst>(EntryBB->getTerminator()) : nullptr; - SmallVector<SelectInst *, 8> &Selects = RI.Selects; - if (RI.HasBranch || !Selects.empty()) { - Instruction *InsertPoint = getBranchInsertPoint(RI); - CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); - // Avoid a data dependence from a select or a branch to a(nother) - // select. Note no instruction can't data-depend on a branch (a branch - // instruction doesn't produce a value). - DenseSet<Instruction *> Unhoistables; - // Initialize Unhoistables with the selects. - for (SelectInst *SI : Selects) { - Unhoistables.insert(SI); - } - // Remove Selects that can't be hoisted. - for (auto it = Selects.begin(); it != Selects.end(); ) { - SelectInst *SI = *it; - if (SI == InsertPoint) { - ++it; - continue; - } - DenseMap<Instruction *, bool> Visited; - bool IsHoistable = checkHoistValue(SI->getCondition(), InsertPoint, - DT, Unhoistables, nullptr, Visited); - if (!IsHoistable) { - CHR_DEBUG(dbgs() << "Dropping select " << *SI << "\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "DropUnhoistableSelect", SI) - << "Dropped unhoistable select"; - }); - it = Selects.erase(it); - // Since we are dropping the select here, we also drop it from - // Unhoistables. - Unhoistables.erase(SI); - } else - ++it; - } - // Update InsertPoint after potentially removing selects. - InsertPoint = getBranchInsertPoint(RI); - CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); - if (RI.HasBranch && InsertPoint != Branch) { - DenseMap<Instruction *, bool> Visited; - bool IsHoistable = checkHoistValue(Branch->getCondition(), InsertPoint, - DT, Unhoistables, nullptr, Visited); - if (!IsHoistable) { - // If the branch isn't hoistable, drop the selects in the entry - // block, preferring the branch, which makes the branch the hoist - // point. - assert(InsertPoint != Branch && "Branch must not be the hoist point"); - CHR_DEBUG(dbgs() << "Dropping selects in entry block \n"); - CHR_DEBUG( - for (SelectInst *SI : Selects) { - dbgs() << "SI " << *SI << "\n"; - }); - for (SelectInst *SI : Selects) { - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "DropSelectUnhoistableBranch", SI) - << "Dropped select due to unhoistable branch"; - }); - } + assert(&I == HoistPoint && + "HoistPoint must be the first one in Selects"); + break; + } + } +#endif + return HoistPoint; +} + +// Find a CHR scope in the given region. +CHRScope * CHR::findScope(Region *R) { + CHRScope *Result = nullptr; + BasicBlock *Entry = R->getEntry(); + BasicBlock *Exit = R->getExit(); // null if top level. + assert(Entry && "Entry must not be null"); + assert((Exit == nullptr) == (R->isTopLevelRegion()) && + "Only top level region has a null exit"); + if (Entry) + CHR_DEBUG(dbgs() << "Entry " << Entry->getName() << "\n"); + else + CHR_DEBUG(dbgs() << "Entry null\n"); + if (Exit) + CHR_DEBUG(dbgs() << "Exit " << Exit->getName() << "\n"); + else + CHR_DEBUG(dbgs() << "Exit null\n"); + // Exclude cases where Entry is part of a subregion (hence it doesn't belong + // to this region). + bool EntryInSubregion = RI.getRegionFor(Entry) != R; + if (EntryInSubregion) + return nullptr; + // Exclude loops + for (BasicBlock *Pred : predecessors(Entry)) + if (R->contains(Pred)) + return nullptr; + if (Exit) { + // Try to find an if-then block (check if R is an if-then). + // if (cond) { + // ... + // } + auto *BI = dyn_cast<BranchInst>(Entry->getTerminator()); + if (BI) + CHR_DEBUG(dbgs() << "BI.isConditional " << BI->isConditional() << "\n"); + else + CHR_DEBUG(dbgs() << "BI null\n"); + if (BI && BI->isConditional()) { + BasicBlock *S0 = BI->getSuccessor(0); + BasicBlock *S1 = BI->getSuccessor(1); + CHR_DEBUG(dbgs() << "S0 " << S0->getName() << "\n"); + CHR_DEBUG(dbgs() << "S1 " << S1->getName() << "\n"); + if (S0 != S1 && (S0 == Exit || S1 == Exit)) { + RegInfo RI(R); + RI.HasBranch = checkBiasedBranch( + BI, R, TrueBiasedRegionsGlobal, FalseBiasedRegionsGlobal, + BranchBiasMap); + Result = new CHRScope(RI); + Scopes.insert(Result); + CHR_DEBUG(dbgs() << "Found a region with a branch\n"); + ++Stats.NumBranches; + if (!RI.HasBranch) { + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "BranchNotBiased", BI) + << "Branch not biased"; + }); + } + } + } + } + { + // Try to look for selects in the direct child blocks (as opposed to in + // subregions) of R. + // ... + // if (..) { // Some subregion + // ... + // } + // if (..) { // Some subregion + // ... + // } + // ... + // a = cond ? b : c; + // ... + SmallVector<SelectInst *, 8> Selects; + for (RegionNode *E : R->elements()) { + if (E->isSubRegion()) + continue; + // This returns the basic block of E if E is a direct child of R (not a + // subregion.) + BasicBlock *BB = E->getEntry(); + // Need to push in the order to make it easier to find the first Select + // later. + for (Instruction &I : *BB) { + if (auto *SI = dyn_cast<SelectInst>(&I)) { + Selects.push_back(SI); + ++Stats.NumBranches; + } + } + } + if (Selects.size() > 0) { + auto AddSelects = [&](RegInfo &RI) { + for (auto *SI : Selects) + if (checkBiasedSelect(SI, RI.R, + TrueBiasedSelectsGlobal, + FalseBiasedSelectsGlobal, + SelectBiasMap)) + RI.Selects.push_back(SI); + else + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "SelectNotBiased", SI) + << "Select not biased"; + }); + }; + if (!Result) { + CHR_DEBUG(dbgs() << "Found a select-only region\n"); + RegInfo RI(R); + AddSelects(RI); + Result = new CHRScope(RI); + Scopes.insert(Result); + } else { + CHR_DEBUG(dbgs() << "Found select(s) in a region with a branch\n"); + AddSelects(Result->RegInfos[0]); + } + } + } + + if (Result) { + checkScopeHoistable(Result); + } + return Result; +} + +// Check that any of the branch and the selects in the region could be +// hoisted above the the CHR branch insert point (the most dominating of +// them, either the branch (at the end of the first block) or the first +// select in the first block). If the branch can't be hoisted, drop the +// selects in the first blocks. +// +// For example, for the following scope/region with selects, we want to insert +// the merged branch right before the first select in the first/entry block by +// hoisting c1, c2, c3, and c4. +// +// // Branch insert point here. +// a = c1 ? b : c; // Select 1 +// d = c2 ? e : f; // Select 2 +// if (c3) { // Branch +// ... +// c4 = foo() // A call. +// g = c4 ? h : i; // Select 3 +// } +// +// But suppose we can't hoist c4 because it's dependent on the preceding +// call. Then, we drop Select 3. Furthermore, if we can't hoist c2, we also drop +// Select 2. If we can't hoist c3, we drop Selects 1 & 2. +void CHR::checkScopeHoistable(CHRScope *Scope) { + RegInfo &RI = Scope->RegInfos[0]; + Region *R = RI.R; + BasicBlock *EntryBB = R->getEntry(); + auto *Branch = RI.HasBranch ? + cast<BranchInst>(EntryBB->getTerminator()) : nullptr; + SmallVector<SelectInst *, 8> &Selects = RI.Selects; + if (RI.HasBranch || !Selects.empty()) { + Instruction *InsertPoint = getBranchInsertPoint(RI); + CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); + // Avoid a data dependence from a select or a branch to a(nother) + // select. Note no instruction can't data-depend on a branch (a branch + // instruction doesn't produce a value). + DenseSet<Instruction *> Unhoistables; + // Initialize Unhoistables with the selects. + for (SelectInst *SI : Selects) { + Unhoistables.insert(SI); + } + // Remove Selects that can't be hoisted. + for (auto it = Selects.begin(); it != Selects.end(); ) { + SelectInst *SI = *it; + if (SI == InsertPoint) { + ++it; + continue; + } + DenseMap<Instruction *, bool> Visited; + bool IsHoistable = checkHoistValue(SI->getCondition(), InsertPoint, + DT, Unhoistables, nullptr, Visited); + if (!IsHoistable) { + CHR_DEBUG(dbgs() << "Dropping select " << *SI << "\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, + "DropUnhoistableSelect", SI) + << "Dropped unhoistable select"; + }); + it = Selects.erase(it); + // Since we are dropping the select here, we also drop it from + // Unhoistables. + Unhoistables.erase(SI); + } else + ++it; + } + // Update InsertPoint after potentially removing selects. + InsertPoint = getBranchInsertPoint(RI); + CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); + if (RI.HasBranch && InsertPoint != Branch) { + DenseMap<Instruction *, bool> Visited; + bool IsHoistable = checkHoistValue(Branch->getCondition(), InsertPoint, + DT, Unhoistables, nullptr, Visited); + if (!IsHoistable) { + // If the branch isn't hoistable, drop the selects in the entry + // block, preferring the branch, which makes the branch the hoist + // point. + assert(InsertPoint != Branch && "Branch must not be the hoist point"); + CHR_DEBUG(dbgs() << "Dropping selects in entry block \n"); + CHR_DEBUG( + for (SelectInst *SI : Selects) { + dbgs() << "SI " << *SI << "\n"; + }); + for (SelectInst *SI : Selects) { + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, + "DropSelectUnhoistableBranch", SI) + << "Dropped select due to unhoistable branch"; + }); + } llvm::erase_if(Selects, [EntryBB](SelectInst *SI) { return SI->getParent() == EntryBB; }); - Unhoistables.clear(); - InsertPoint = Branch; - } - } - CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); -#ifndef NDEBUG - if (RI.HasBranch) { - assert(!DT.dominates(Branch, InsertPoint) && - "Branch can't be already above the hoist point"); - DenseMap<Instruction *, bool> Visited; - assert(checkHoistValue(Branch->getCondition(), InsertPoint, - DT, Unhoistables, nullptr, Visited) && - "checkHoistValue for branch"); - } - for (auto *SI : Selects) { - assert(!DT.dominates(SI, InsertPoint) && - "SI can't be already above the hoist point"); - DenseMap<Instruction *, bool> Visited; - assert(checkHoistValue(SI->getCondition(), InsertPoint, DT, - Unhoistables, nullptr, Visited) && - "checkHoistValue for selects"); - } - CHR_DEBUG(dbgs() << "Result\n"); - if (RI.HasBranch) { - CHR_DEBUG(dbgs() << "BI " << *Branch << "\n"); - } - for (auto *SI : Selects) { - CHR_DEBUG(dbgs() << "SI " << *SI << "\n"); - } -#endif - } -} - -// Traverse the region tree, find all nested scopes and merge them if possible. -CHRScope * CHR::findScopes(Region *R, Region *NextRegion, Region *ParentRegion, - SmallVectorImpl<CHRScope *> &Scopes) { - CHR_DEBUG(dbgs() << "findScopes " << R->getNameStr() << "\n"); - CHRScope *Result = findScope(R); - // Visit subscopes. - CHRScope *ConsecutiveSubscope = nullptr; - SmallVector<CHRScope *, 8> Subscopes; - for (auto It = R->begin(); It != R->end(); ++It) { - const std::unique_ptr<Region> &SubR = *It; - auto NextIt = std::next(It); - Region *NextSubR = NextIt != R->end() ? NextIt->get() : nullptr; - CHR_DEBUG(dbgs() << "Looking at subregion " << SubR.get()->getNameStr() - << "\n"); - CHRScope *SubCHRScope = findScopes(SubR.get(), NextSubR, R, Scopes); - if (SubCHRScope) { - CHR_DEBUG(dbgs() << "Subregion Scope " << *SubCHRScope << "\n"); - } else { - CHR_DEBUG(dbgs() << "Subregion Scope null\n"); - } - if (SubCHRScope) { - if (!ConsecutiveSubscope) - ConsecutiveSubscope = SubCHRScope; - else if (!ConsecutiveSubscope->appendable(SubCHRScope)) { - Subscopes.push_back(ConsecutiveSubscope); - ConsecutiveSubscope = SubCHRScope; - } else - ConsecutiveSubscope->append(SubCHRScope); - } else { - if (ConsecutiveSubscope) { - Subscopes.push_back(ConsecutiveSubscope); - } - ConsecutiveSubscope = nullptr; - } - } - if (ConsecutiveSubscope) { - Subscopes.push_back(ConsecutiveSubscope); - } - for (CHRScope *Sub : Subscopes) { - if (Result) { - // Combine it with the parent. - Result->addSub(Sub); - } else { - // Push Subscopes as they won't be combined with the parent. - Scopes.push_back(Sub); - } - } - return Result; -} - -static DenseSet<Value *> getCHRConditionValuesForRegion(RegInfo &RI) { - DenseSet<Value *> ConditionValues; - if (RI.HasBranch) { - auto *BI = cast<BranchInst>(RI.R->getEntry()->getTerminator()); - ConditionValues.insert(BI->getCondition()); - } - for (SelectInst *SI : RI.Selects) { - ConditionValues.insert(SI->getCondition()); - } - return ConditionValues; -} - - -// Determine whether to split a scope depending on the sets of the branch -// condition values of the previous region and the current region. We split -// (return true) it if 1) the condition values of the inner/lower scope can't be -// hoisted up to the outer/upper scope, or 2) the two sets of the condition -// values have an empty intersection (because the combined branch conditions -// won't probably lead to a simpler combined condition). -static bool shouldSplit(Instruction *InsertPoint, - DenseSet<Value *> &PrevConditionValues, - DenseSet<Value *> &ConditionValues, - DominatorTree &DT, - DenseSet<Instruction *> &Unhoistables) { - assert(InsertPoint && "Null InsertPoint"); - CHR_DEBUG( - dbgs() << "shouldSplit " << *InsertPoint << " PrevConditionValues "; - for (Value *V : PrevConditionValues) { - dbgs() << *V << ", "; - } - dbgs() << " ConditionValues "; - for (Value *V : ConditionValues) { - dbgs() << *V << ", "; - } - dbgs() << "\n"); - // If any of Bases isn't hoistable to the hoist point, split. - for (Value *V : ConditionValues) { - DenseMap<Instruction *, bool> Visited; - if (!checkHoistValue(V, InsertPoint, DT, Unhoistables, nullptr, Visited)) { - CHR_DEBUG(dbgs() << "Split. checkHoistValue false " << *V << "\n"); - return true; // Not hoistable, split. - } - } - // If PrevConditionValues or ConditionValues is empty, don't split to avoid - // unnecessary splits at scopes with no branch/selects. If - // PrevConditionValues and ConditionValues don't intersect at all, split. - if (!PrevConditionValues.empty() && !ConditionValues.empty()) { - // Use std::set as DenseSet doesn't work with set_intersection. - std::set<Value *> PrevBases, Bases; - DenseMap<Value *, std::set<Value *>> Visited; - for (Value *V : PrevConditionValues) { - const std::set<Value *> &BaseValues = getBaseValues(V, DT, Visited); - PrevBases.insert(BaseValues.begin(), BaseValues.end()); - } - for (Value *V : ConditionValues) { - const std::set<Value *> &BaseValues = getBaseValues(V, DT, Visited); - Bases.insert(BaseValues.begin(), BaseValues.end()); - } - CHR_DEBUG( - dbgs() << "PrevBases "; - for (Value *V : PrevBases) { - dbgs() << *V << ", "; - } - dbgs() << " Bases "; - for (Value *V : Bases) { - dbgs() << *V << ", "; - } - dbgs() << "\n"); - std::vector<Value *> Intersection; - std::set_intersection(PrevBases.begin(), PrevBases.end(), Bases.begin(), - Bases.end(), std::back_inserter(Intersection)); - if (Intersection.empty()) { - // Empty intersection, split. - CHR_DEBUG(dbgs() << "Split. Intersection empty\n"); - return true; - } - } - CHR_DEBUG(dbgs() << "No split\n"); - return false; // Don't split. -} - -static void getSelectsInScope(CHRScope *Scope, - DenseSet<Instruction *> &Output) { - for (RegInfo &RI : Scope->RegInfos) - for (SelectInst *SI : RI.Selects) - Output.insert(SI); - for (CHRScope *Sub : Scope->Subs) - getSelectsInScope(Sub, Output); -} - -void CHR::splitScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output) { - for (CHRScope *Scope : Input) { - assert(!Scope->BranchInsertPoint && - "BranchInsertPoint must not be set"); - DenseSet<Instruction *> Unhoistables; - getSelectsInScope(Scope, Unhoistables); - splitScope(Scope, nullptr, nullptr, nullptr, Output, Unhoistables); - } -#ifndef NDEBUG - for (CHRScope *Scope : Output) { - assert(Scope->BranchInsertPoint && "BranchInsertPoint must be set"); - } -#endif -} - -SmallVector<CHRScope *, 8> CHR::splitScope( - CHRScope *Scope, - CHRScope *Outer, - DenseSet<Value *> *OuterConditionValues, - Instruction *OuterInsertPoint, - SmallVectorImpl<CHRScope *> &Output, - DenseSet<Instruction *> &Unhoistables) { - if (Outer) { - assert(OuterConditionValues && "Null OuterConditionValues"); - assert(OuterInsertPoint && "Null OuterInsertPoint"); - } - bool PrevSplitFromOuter = true; - DenseSet<Value *> PrevConditionValues; - Instruction *PrevInsertPoint = nullptr; - SmallVector<CHRScope *, 8> Splits; - SmallVector<bool, 8> SplitsSplitFromOuter; - SmallVector<DenseSet<Value *>, 8> SplitsConditionValues; - SmallVector<Instruction *, 8> SplitsInsertPoints; - SmallVector<RegInfo, 8> RegInfos(Scope->RegInfos); // Copy - for (RegInfo &RI : RegInfos) { - Instruction *InsertPoint = getBranchInsertPoint(RI); - DenseSet<Value *> ConditionValues = getCHRConditionValuesForRegion(RI); - CHR_DEBUG( - dbgs() << "ConditionValues "; - for (Value *V : ConditionValues) { - dbgs() << *V << ", "; - } - dbgs() << "\n"); - if (RI.R == RegInfos[0].R) { - // First iteration. Check to see if we should split from the outer. - if (Outer) { - CHR_DEBUG(dbgs() << "Outer " << *Outer << "\n"); - CHR_DEBUG(dbgs() << "Should split from outer at " - << RI.R->getNameStr() << "\n"); - if (shouldSplit(OuterInsertPoint, *OuterConditionValues, - ConditionValues, DT, Unhoistables)) { - PrevConditionValues = ConditionValues; - PrevInsertPoint = InsertPoint; - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "SplitScopeFromOuter", - RI.R->getEntry()->getTerminator()) - << "Split scope from outer due to unhoistable branch/select " - << "and/or lack of common condition values"; - }); - } else { - // Not splitting from the outer. Use the outer bases and insert - // point. Union the bases. - PrevSplitFromOuter = false; - PrevConditionValues = *OuterConditionValues; - PrevConditionValues.insert(ConditionValues.begin(), - ConditionValues.end()); - PrevInsertPoint = OuterInsertPoint; - } - } else { - CHR_DEBUG(dbgs() << "Outer null\n"); - PrevConditionValues = ConditionValues; - PrevInsertPoint = InsertPoint; - } - } else { - CHR_DEBUG(dbgs() << "Should split from prev at " - << RI.R->getNameStr() << "\n"); - if (shouldSplit(PrevInsertPoint, PrevConditionValues, ConditionValues, - DT, Unhoistables)) { - CHRScope *Tail = Scope->split(RI.R); - Scopes.insert(Tail); - Splits.push_back(Scope); - SplitsSplitFromOuter.push_back(PrevSplitFromOuter); - SplitsConditionValues.push_back(PrevConditionValues); - SplitsInsertPoints.push_back(PrevInsertPoint); - Scope = Tail; - PrevConditionValues = ConditionValues; - PrevInsertPoint = InsertPoint; - PrevSplitFromOuter = true; - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, - "SplitScopeFromPrev", - RI.R->getEntry()->getTerminator()) - << "Split scope from previous due to unhoistable branch/select " - << "and/or lack of common condition values"; - }); - } else { - // Not splitting. Union the bases. Keep the hoist point. - PrevConditionValues.insert(ConditionValues.begin(), ConditionValues.end()); - } - } - } - Splits.push_back(Scope); - SplitsSplitFromOuter.push_back(PrevSplitFromOuter); - SplitsConditionValues.push_back(PrevConditionValues); - assert(PrevInsertPoint && "Null PrevInsertPoint"); - SplitsInsertPoints.push_back(PrevInsertPoint); - assert(Splits.size() == SplitsConditionValues.size() && - Splits.size() == SplitsSplitFromOuter.size() && - Splits.size() == SplitsInsertPoints.size() && "Mismatching sizes"); - for (size_t I = 0; I < Splits.size(); ++I) { - CHRScope *Split = Splits[I]; - DenseSet<Value *> &SplitConditionValues = SplitsConditionValues[I]; - Instruction *SplitInsertPoint = SplitsInsertPoints[I]; - SmallVector<CHRScope *, 8> NewSubs; - DenseSet<Instruction *> SplitUnhoistables; - getSelectsInScope(Split, SplitUnhoistables); - for (CHRScope *Sub : Split->Subs) { - SmallVector<CHRScope *, 8> SubSplits = splitScope( - Sub, Split, &SplitConditionValues, SplitInsertPoint, Output, - SplitUnhoistables); + Unhoistables.clear(); + InsertPoint = Branch; + } + } + CHR_DEBUG(dbgs() << "InsertPoint " << *InsertPoint << "\n"); +#ifndef NDEBUG + if (RI.HasBranch) { + assert(!DT.dominates(Branch, InsertPoint) && + "Branch can't be already above the hoist point"); + DenseMap<Instruction *, bool> Visited; + assert(checkHoistValue(Branch->getCondition(), InsertPoint, + DT, Unhoistables, nullptr, Visited) && + "checkHoistValue for branch"); + } + for (auto *SI : Selects) { + assert(!DT.dominates(SI, InsertPoint) && + "SI can't be already above the hoist point"); + DenseMap<Instruction *, bool> Visited; + assert(checkHoistValue(SI->getCondition(), InsertPoint, DT, + Unhoistables, nullptr, Visited) && + "checkHoistValue for selects"); + } + CHR_DEBUG(dbgs() << "Result\n"); + if (RI.HasBranch) { + CHR_DEBUG(dbgs() << "BI " << *Branch << "\n"); + } + for (auto *SI : Selects) { + CHR_DEBUG(dbgs() << "SI " << *SI << "\n"); + } +#endif + } +} + +// Traverse the region tree, find all nested scopes and merge them if possible. +CHRScope * CHR::findScopes(Region *R, Region *NextRegion, Region *ParentRegion, + SmallVectorImpl<CHRScope *> &Scopes) { + CHR_DEBUG(dbgs() << "findScopes " << R->getNameStr() << "\n"); + CHRScope *Result = findScope(R); + // Visit subscopes. + CHRScope *ConsecutiveSubscope = nullptr; + SmallVector<CHRScope *, 8> Subscopes; + for (auto It = R->begin(); It != R->end(); ++It) { + const std::unique_ptr<Region> &SubR = *It; + auto NextIt = std::next(It); + Region *NextSubR = NextIt != R->end() ? NextIt->get() : nullptr; + CHR_DEBUG(dbgs() << "Looking at subregion " << SubR.get()->getNameStr() + << "\n"); + CHRScope *SubCHRScope = findScopes(SubR.get(), NextSubR, R, Scopes); + if (SubCHRScope) { + CHR_DEBUG(dbgs() << "Subregion Scope " << *SubCHRScope << "\n"); + } else { + CHR_DEBUG(dbgs() << "Subregion Scope null\n"); + } + if (SubCHRScope) { + if (!ConsecutiveSubscope) + ConsecutiveSubscope = SubCHRScope; + else if (!ConsecutiveSubscope->appendable(SubCHRScope)) { + Subscopes.push_back(ConsecutiveSubscope); + ConsecutiveSubscope = SubCHRScope; + } else + ConsecutiveSubscope->append(SubCHRScope); + } else { + if (ConsecutiveSubscope) { + Subscopes.push_back(ConsecutiveSubscope); + } + ConsecutiveSubscope = nullptr; + } + } + if (ConsecutiveSubscope) { + Subscopes.push_back(ConsecutiveSubscope); + } + for (CHRScope *Sub : Subscopes) { + if (Result) { + // Combine it with the parent. + Result->addSub(Sub); + } else { + // Push Subscopes as they won't be combined with the parent. + Scopes.push_back(Sub); + } + } + return Result; +} + +static DenseSet<Value *> getCHRConditionValuesForRegion(RegInfo &RI) { + DenseSet<Value *> ConditionValues; + if (RI.HasBranch) { + auto *BI = cast<BranchInst>(RI.R->getEntry()->getTerminator()); + ConditionValues.insert(BI->getCondition()); + } + for (SelectInst *SI : RI.Selects) { + ConditionValues.insert(SI->getCondition()); + } + return ConditionValues; +} + + +// Determine whether to split a scope depending on the sets of the branch +// condition values of the previous region and the current region. We split +// (return true) it if 1) the condition values of the inner/lower scope can't be +// hoisted up to the outer/upper scope, or 2) the two sets of the condition +// values have an empty intersection (because the combined branch conditions +// won't probably lead to a simpler combined condition). +static bool shouldSplit(Instruction *InsertPoint, + DenseSet<Value *> &PrevConditionValues, + DenseSet<Value *> &ConditionValues, + DominatorTree &DT, + DenseSet<Instruction *> &Unhoistables) { + assert(InsertPoint && "Null InsertPoint"); + CHR_DEBUG( + dbgs() << "shouldSplit " << *InsertPoint << " PrevConditionValues "; + for (Value *V : PrevConditionValues) { + dbgs() << *V << ", "; + } + dbgs() << " ConditionValues "; + for (Value *V : ConditionValues) { + dbgs() << *V << ", "; + } + dbgs() << "\n"); + // If any of Bases isn't hoistable to the hoist point, split. + for (Value *V : ConditionValues) { + DenseMap<Instruction *, bool> Visited; + if (!checkHoistValue(V, InsertPoint, DT, Unhoistables, nullptr, Visited)) { + CHR_DEBUG(dbgs() << "Split. checkHoistValue false " << *V << "\n"); + return true; // Not hoistable, split. + } + } + // If PrevConditionValues or ConditionValues is empty, don't split to avoid + // unnecessary splits at scopes with no branch/selects. If + // PrevConditionValues and ConditionValues don't intersect at all, split. + if (!PrevConditionValues.empty() && !ConditionValues.empty()) { + // Use std::set as DenseSet doesn't work with set_intersection. + std::set<Value *> PrevBases, Bases; + DenseMap<Value *, std::set<Value *>> Visited; + for (Value *V : PrevConditionValues) { + const std::set<Value *> &BaseValues = getBaseValues(V, DT, Visited); + PrevBases.insert(BaseValues.begin(), BaseValues.end()); + } + for (Value *V : ConditionValues) { + const std::set<Value *> &BaseValues = getBaseValues(V, DT, Visited); + Bases.insert(BaseValues.begin(), BaseValues.end()); + } + CHR_DEBUG( + dbgs() << "PrevBases "; + for (Value *V : PrevBases) { + dbgs() << *V << ", "; + } + dbgs() << " Bases "; + for (Value *V : Bases) { + dbgs() << *V << ", "; + } + dbgs() << "\n"); + std::vector<Value *> Intersection; + std::set_intersection(PrevBases.begin(), PrevBases.end(), Bases.begin(), + Bases.end(), std::back_inserter(Intersection)); + if (Intersection.empty()) { + // Empty intersection, split. + CHR_DEBUG(dbgs() << "Split. Intersection empty\n"); + return true; + } + } + CHR_DEBUG(dbgs() << "No split\n"); + return false; // Don't split. +} + +static void getSelectsInScope(CHRScope *Scope, + DenseSet<Instruction *> &Output) { + for (RegInfo &RI : Scope->RegInfos) + for (SelectInst *SI : RI.Selects) + Output.insert(SI); + for (CHRScope *Sub : Scope->Subs) + getSelectsInScope(Sub, Output); +} + +void CHR::splitScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output) { + for (CHRScope *Scope : Input) { + assert(!Scope->BranchInsertPoint && + "BranchInsertPoint must not be set"); + DenseSet<Instruction *> Unhoistables; + getSelectsInScope(Scope, Unhoistables); + splitScope(Scope, nullptr, nullptr, nullptr, Output, Unhoistables); + } +#ifndef NDEBUG + for (CHRScope *Scope : Output) { + assert(Scope->BranchInsertPoint && "BranchInsertPoint must be set"); + } +#endif +} + +SmallVector<CHRScope *, 8> CHR::splitScope( + CHRScope *Scope, + CHRScope *Outer, + DenseSet<Value *> *OuterConditionValues, + Instruction *OuterInsertPoint, + SmallVectorImpl<CHRScope *> &Output, + DenseSet<Instruction *> &Unhoistables) { + if (Outer) { + assert(OuterConditionValues && "Null OuterConditionValues"); + assert(OuterInsertPoint && "Null OuterInsertPoint"); + } + bool PrevSplitFromOuter = true; + DenseSet<Value *> PrevConditionValues; + Instruction *PrevInsertPoint = nullptr; + SmallVector<CHRScope *, 8> Splits; + SmallVector<bool, 8> SplitsSplitFromOuter; + SmallVector<DenseSet<Value *>, 8> SplitsConditionValues; + SmallVector<Instruction *, 8> SplitsInsertPoints; + SmallVector<RegInfo, 8> RegInfos(Scope->RegInfos); // Copy + for (RegInfo &RI : RegInfos) { + Instruction *InsertPoint = getBranchInsertPoint(RI); + DenseSet<Value *> ConditionValues = getCHRConditionValuesForRegion(RI); + CHR_DEBUG( + dbgs() << "ConditionValues "; + for (Value *V : ConditionValues) { + dbgs() << *V << ", "; + } + dbgs() << "\n"); + if (RI.R == RegInfos[0].R) { + // First iteration. Check to see if we should split from the outer. + if (Outer) { + CHR_DEBUG(dbgs() << "Outer " << *Outer << "\n"); + CHR_DEBUG(dbgs() << "Should split from outer at " + << RI.R->getNameStr() << "\n"); + if (shouldSplit(OuterInsertPoint, *OuterConditionValues, + ConditionValues, DT, Unhoistables)) { + PrevConditionValues = ConditionValues; + PrevInsertPoint = InsertPoint; + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, + "SplitScopeFromOuter", + RI.R->getEntry()->getTerminator()) + << "Split scope from outer due to unhoistable branch/select " + << "and/or lack of common condition values"; + }); + } else { + // Not splitting from the outer. Use the outer bases and insert + // point. Union the bases. + PrevSplitFromOuter = false; + PrevConditionValues = *OuterConditionValues; + PrevConditionValues.insert(ConditionValues.begin(), + ConditionValues.end()); + PrevInsertPoint = OuterInsertPoint; + } + } else { + CHR_DEBUG(dbgs() << "Outer null\n"); + PrevConditionValues = ConditionValues; + PrevInsertPoint = InsertPoint; + } + } else { + CHR_DEBUG(dbgs() << "Should split from prev at " + << RI.R->getNameStr() << "\n"); + if (shouldSplit(PrevInsertPoint, PrevConditionValues, ConditionValues, + DT, Unhoistables)) { + CHRScope *Tail = Scope->split(RI.R); + Scopes.insert(Tail); + Splits.push_back(Scope); + SplitsSplitFromOuter.push_back(PrevSplitFromOuter); + SplitsConditionValues.push_back(PrevConditionValues); + SplitsInsertPoints.push_back(PrevInsertPoint); + Scope = Tail; + PrevConditionValues = ConditionValues; + PrevInsertPoint = InsertPoint; + PrevSplitFromOuter = true; + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, + "SplitScopeFromPrev", + RI.R->getEntry()->getTerminator()) + << "Split scope from previous due to unhoistable branch/select " + << "and/or lack of common condition values"; + }); + } else { + // Not splitting. Union the bases. Keep the hoist point. + PrevConditionValues.insert(ConditionValues.begin(), ConditionValues.end()); + } + } + } + Splits.push_back(Scope); + SplitsSplitFromOuter.push_back(PrevSplitFromOuter); + SplitsConditionValues.push_back(PrevConditionValues); + assert(PrevInsertPoint && "Null PrevInsertPoint"); + SplitsInsertPoints.push_back(PrevInsertPoint); + assert(Splits.size() == SplitsConditionValues.size() && + Splits.size() == SplitsSplitFromOuter.size() && + Splits.size() == SplitsInsertPoints.size() && "Mismatching sizes"); + for (size_t I = 0; I < Splits.size(); ++I) { + CHRScope *Split = Splits[I]; + DenseSet<Value *> &SplitConditionValues = SplitsConditionValues[I]; + Instruction *SplitInsertPoint = SplitsInsertPoints[I]; + SmallVector<CHRScope *, 8> NewSubs; + DenseSet<Instruction *> SplitUnhoistables; + getSelectsInScope(Split, SplitUnhoistables); + for (CHRScope *Sub : Split->Subs) { + SmallVector<CHRScope *, 8> SubSplits = splitScope( + Sub, Split, &SplitConditionValues, SplitInsertPoint, Output, + SplitUnhoistables); llvm::append_range(NewSubs, SubSplits); - } - Split->Subs = NewSubs; - } - SmallVector<CHRScope *, 8> Result; - for (size_t I = 0; I < Splits.size(); ++I) { - CHRScope *Split = Splits[I]; - if (SplitsSplitFromOuter[I]) { - // Split from the outer. - Output.push_back(Split); - Split->BranchInsertPoint = SplitsInsertPoints[I]; - CHR_DEBUG(dbgs() << "BranchInsertPoint " << *SplitsInsertPoints[I] - << "\n"); - } else { - // Connected to the outer. - Result.push_back(Split); - } - } - if (!Outer) - assert(Result.empty() && - "If no outer (top-level), must return no nested ones"); - return Result; -} - -void CHR::classifyBiasedScopes(SmallVectorImpl<CHRScope *> &Scopes) { - for (CHRScope *Scope : Scopes) { - assert(Scope->TrueBiasedRegions.empty() && Scope->FalseBiasedRegions.empty() && "Empty"); - classifyBiasedScopes(Scope, Scope); - CHR_DEBUG( - dbgs() << "classifyBiasedScopes " << *Scope << "\n"; - dbgs() << "TrueBiasedRegions "; - for (Region *R : Scope->TrueBiasedRegions) { - dbgs() << R->getNameStr() << ", "; - } - dbgs() << "\n"; - dbgs() << "FalseBiasedRegions "; - for (Region *R : Scope->FalseBiasedRegions) { - dbgs() << R->getNameStr() << ", "; - } - dbgs() << "\n"; - dbgs() << "TrueBiasedSelects "; - for (SelectInst *SI : Scope->TrueBiasedSelects) { - dbgs() << *SI << ", "; - } - dbgs() << "\n"; - dbgs() << "FalseBiasedSelects "; - for (SelectInst *SI : Scope->FalseBiasedSelects) { - dbgs() << *SI << ", "; - } - dbgs() << "\n";); - } -} - -void CHR::classifyBiasedScopes(CHRScope *Scope, CHRScope *OutermostScope) { - for (RegInfo &RI : Scope->RegInfos) { - if (RI.HasBranch) { - Region *R = RI.R; + } + Split->Subs = NewSubs; + } + SmallVector<CHRScope *, 8> Result; + for (size_t I = 0; I < Splits.size(); ++I) { + CHRScope *Split = Splits[I]; + if (SplitsSplitFromOuter[I]) { + // Split from the outer. + Output.push_back(Split); + Split->BranchInsertPoint = SplitsInsertPoints[I]; + CHR_DEBUG(dbgs() << "BranchInsertPoint " << *SplitsInsertPoints[I] + << "\n"); + } else { + // Connected to the outer. + Result.push_back(Split); + } + } + if (!Outer) + assert(Result.empty() && + "If no outer (top-level), must return no nested ones"); + return Result; +} + +void CHR::classifyBiasedScopes(SmallVectorImpl<CHRScope *> &Scopes) { + for (CHRScope *Scope : Scopes) { + assert(Scope->TrueBiasedRegions.empty() && Scope->FalseBiasedRegions.empty() && "Empty"); + classifyBiasedScopes(Scope, Scope); + CHR_DEBUG( + dbgs() << "classifyBiasedScopes " << *Scope << "\n"; + dbgs() << "TrueBiasedRegions "; + for (Region *R : Scope->TrueBiasedRegions) { + dbgs() << R->getNameStr() << ", "; + } + dbgs() << "\n"; + dbgs() << "FalseBiasedRegions "; + for (Region *R : Scope->FalseBiasedRegions) { + dbgs() << R->getNameStr() << ", "; + } + dbgs() << "\n"; + dbgs() << "TrueBiasedSelects "; + for (SelectInst *SI : Scope->TrueBiasedSelects) { + dbgs() << *SI << ", "; + } + dbgs() << "\n"; + dbgs() << "FalseBiasedSelects "; + for (SelectInst *SI : Scope->FalseBiasedSelects) { + dbgs() << *SI << ", "; + } + dbgs() << "\n";); + } +} + +void CHR::classifyBiasedScopes(CHRScope *Scope, CHRScope *OutermostScope) { + for (RegInfo &RI : Scope->RegInfos) { + if (RI.HasBranch) { + Region *R = RI.R; if (TrueBiasedRegionsGlobal.contains(R)) - OutermostScope->TrueBiasedRegions.insert(R); + OutermostScope->TrueBiasedRegions.insert(R); else if (FalseBiasedRegionsGlobal.contains(R)) - OutermostScope->FalseBiasedRegions.insert(R); - else - llvm_unreachable("Must be biased"); - } - for (SelectInst *SI : RI.Selects) { + OutermostScope->FalseBiasedRegions.insert(R); + else + llvm_unreachable("Must be biased"); + } + for (SelectInst *SI : RI.Selects) { if (TrueBiasedSelectsGlobal.contains(SI)) - OutermostScope->TrueBiasedSelects.insert(SI); + OutermostScope->TrueBiasedSelects.insert(SI); else if (FalseBiasedSelectsGlobal.contains(SI)) - OutermostScope->FalseBiasedSelects.insert(SI); - else - llvm_unreachable("Must be biased"); - } - } - for (CHRScope *Sub : Scope->Subs) { - classifyBiasedScopes(Sub, OutermostScope); - } -} - -static bool hasAtLeastTwoBiasedBranches(CHRScope *Scope) { - unsigned NumBiased = Scope->TrueBiasedRegions.size() + - Scope->FalseBiasedRegions.size() + - Scope->TrueBiasedSelects.size() + - Scope->FalseBiasedSelects.size(); - return NumBiased >= CHRMergeThreshold; -} - -void CHR::filterScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output) { - for (CHRScope *Scope : Input) { - // Filter out the ones with only one region and no subs. - if (!hasAtLeastTwoBiasedBranches(Scope)) { - CHR_DEBUG(dbgs() << "Filtered out by biased branches truthy-regions " - << Scope->TrueBiasedRegions.size() - << " falsy-regions " << Scope->FalseBiasedRegions.size() - << " true-selects " << Scope->TrueBiasedSelects.size() - << " false-selects " << Scope->FalseBiasedSelects.size() << "\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed( - DEBUG_TYPE, - "DropScopeWithOneBranchOrSelect", - Scope->RegInfos[0].R->getEntry()->getTerminator()) - << "Drop scope with < " - << ore::NV("CHRMergeThreshold", CHRMergeThreshold) - << " biased branch(es) or select(s)"; - }); - continue; - } - Output.push_back(Scope); - } -} - -void CHR::setCHRRegions(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output) { - for (CHRScope *Scope : Input) { - assert(Scope->HoistStopMap.empty() && Scope->CHRRegions.empty() && - "Empty"); - setCHRRegions(Scope, Scope); - Output.push_back(Scope); - CHR_DEBUG( - dbgs() << "setCHRRegions HoistStopMap " << *Scope << "\n"; - for (auto pair : Scope->HoistStopMap) { - Region *R = pair.first; - dbgs() << "Region " << R->getNameStr() << "\n"; - for (Instruction *I : pair.second) { - dbgs() << "HoistStop " << *I << "\n"; - } - } - dbgs() << "CHRRegions" << "\n"; - for (RegInfo &RI : Scope->CHRRegions) { - dbgs() << RI.R->getNameStr() << "\n"; - }); - } -} - -void CHR::setCHRRegions(CHRScope *Scope, CHRScope *OutermostScope) { - DenseSet<Instruction *> Unhoistables; - // Put the biased selects in Unhoistables because they should stay where they - // are and constant-folded after CHR (in case one biased select or a branch - // can depend on another biased select.) - for (RegInfo &RI : Scope->RegInfos) { - for (SelectInst *SI : RI.Selects) { - Unhoistables.insert(SI); - } - } - Instruction *InsertPoint = OutermostScope->BranchInsertPoint; - for (RegInfo &RI : Scope->RegInfos) { - Region *R = RI.R; - DenseSet<Instruction *> HoistStops; - bool IsHoisted = false; - if (RI.HasBranch) { + OutermostScope->FalseBiasedSelects.insert(SI); + else + llvm_unreachable("Must be biased"); + } + } + for (CHRScope *Sub : Scope->Subs) { + classifyBiasedScopes(Sub, OutermostScope); + } +} + +static bool hasAtLeastTwoBiasedBranches(CHRScope *Scope) { + unsigned NumBiased = Scope->TrueBiasedRegions.size() + + Scope->FalseBiasedRegions.size() + + Scope->TrueBiasedSelects.size() + + Scope->FalseBiasedSelects.size(); + return NumBiased >= CHRMergeThreshold; +} + +void CHR::filterScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output) { + for (CHRScope *Scope : Input) { + // Filter out the ones with only one region and no subs. + if (!hasAtLeastTwoBiasedBranches(Scope)) { + CHR_DEBUG(dbgs() << "Filtered out by biased branches truthy-regions " + << Scope->TrueBiasedRegions.size() + << " falsy-regions " << Scope->FalseBiasedRegions.size() + << " true-selects " << Scope->TrueBiasedSelects.size() + << " false-selects " << Scope->FalseBiasedSelects.size() << "\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed( + DEBUG_TYPE, + "DropScopeWithOneBranchOrSelect", + Scope->RegInfos[0].R->getEntry()->getTerminator()) + << "Drop scope with < " + << ore::NV("CHRMergeThreshold", CHRMergeThreshold) + << " biased branch(es) or select(s)"; + }); + continue; + } + Output.push_back(Scope); + } +} + +void CHR::setCHRRegions(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output) { + for (CHRScope *Scope : Input) { + assert(Scope->HoistStopMap.empty() && Scope->CHRRegions.empty() && + "Empty"); + setCHRRegions(Scope, Scope); + Output.push_back(Scope); + CHR_DEBUG( + dbgs() << "setCHRRegions HoistStopMap " << *Scope << "\n"; + for (auto pair : Scope->HoistStopMap) { + Region *R = pair.first; + dbgs() << "Region " << R->getNameStr() << "\n"; + for (Instruction *I : pair.second) { + dbgs() << "HoistStop " << *I << "\n"; + } + } + dbgs() << "CHRRegions" << "\n"; + for (RegInfo &RI : Scope->CHRRegions) { + dbgs() << RI.R->getNameStr() << "\n"; + }); + } +} + +void CHR::setCHRRegions(CHRScope *Scope, CHRScope *OutermostScope) { + DenseSet<Instruction *> Unhoistables; + // Put the biased selects in Unhoistables because they should stay where they + // are and constant-folded after CHR (in case one biased select or a branch + // can depend on another biased select.) + for (RegInfo &RI : Scope->RegInfos) { + for (SelectInst *SI : RI.Selects) { + Unhoistables.insert(SI); + } + } + Instruction *InsertPoint = OutermostScope->BranchInsertPoint; + for (RegInfo &RI : Scope->RegInfos) { + Region *R = RI.R; + DenseSet<Instruction *> HoistStops; + bool IsHoisted = false; + if (RI.HasBranch) { assert((OutermostScope->TrueBiasedRegions.contains(R) || OutermostScope->FalseBiasedRegions.contains(R)) && - "Must be truthy or falsy"); - auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); - // Note checkHoistValue fills in HoistStops. - DenseMap<Instruction *, bool> Visited; - bool IsHoistable = checkHoistValue(BI->getCondition(), InsertPoint, DT, - Unhoistables, &HoistStops, Visited); - assert(IsHoistable && "Must be hoistable"); - (void)(IsHoistable); // Unused in release build - IsHoisted = true; - } - for (SelectInst *SI : RI.Selects) { + "Must be truthy or falsy"); + auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); + // Note checkHoistValue fills in HoistStops. + DenseMap<Instruction *, bool> Visited; + bool IsHoistable = checkHoistValue(BI->getCondition(), InsertPoint, DT, + Unhoistables, &HoistStops, Visited); + assert(IsHoistable && "Must be hoistable"); + (void)(IsHoistable); // Unused in release build + IsHoisted = true; + } + for (SelectInst *SI : RI.Selects) { assert((OutermostScope->TrueBiasedSelects.contains(SI) || OutermostScope->FalseBiasedSelects.contains(SI)) && - "Must be true or false biased"); - // Note checkHoistValue fills in HoistStops. - DenseMap<Instruction *, bool> Visited; - bool IsHoistable = checkHoistValue(SI->getCondition(), InsertPoint, DT, - Unhoistables, &HoistStops, Visited); - assert(IsHoistable && "Must be hoistable"); - (void)(IsHoistable); // Unused in release build - IsHoisted = true; - } - if (IsHoisted) { - OutermostScope->CHRRegions.push_back(RI); - OutermostScope->HoistStopMap[R] = HoistStops; - } - } - for (CHRScope *Sub : Scope->Subs) - setCHRRegions(Sub, OutermostScope); -} - -static bool CHRScopeSorter(CHRScope *Scope1, CHRScope *Scope2) { - return Scope1->RegInfos[0].R->getDepth() < Scope2->RegInfos[0].R->getDepth(); -} - -void CHR::sortScopes(SmallVectorImpl<CHRScope *> &Input, - SmallVectorImpl<CHRScope *> &Output) { - Output.resize(Input.size()); - llvm::copy(Input, Output.begin()); - llvm::stable_sort(Output, CHRScopeSorter); -} - -// Return true if V is already hoisted or was hoisted (along with its operands) -// to the insert point. -static void hoistValue(Value *V, Instruction *HoistPoint, Region *R, - HoistStopMapTy &HoistStopMap, - DenseSet<Instruction *> &HoistedSet, - DenseSet<PHINode *> &TrivialPHIs, - DominatorTree &DT) { - auto IT = HoistStopMap.find(R); - assert(IT != HoistStopMap.end() && "Region must be in hoist stop map"); - DenseSet<Instruction *> &HoistStops = IT->second; - if (auto *I = dyn_cast<Instruction>(V)) { - if (I == HoistPoint) - return; - if (HoistStops.count(I)) - return; - if (auto *PN = dyn_cast<PHINode>(I)) - if (TrivialPHIs.count(PN)) - // The trivial phi inserted by the previous CHR scope could replace a - // non-phi in HoistStops. Note that since this phi is at the exit of a - // previous CHR scope, which dominates this scope, it's safe to stop - // hoisting there. - return; - if (HoistedSet.count(I)) - // Already hoisted, return. - return; - assert(isHoistableInstructionType(I) && "Unhoistable instruction type"); - assert(DT.getNode(I->getParent()) && "DT must contain I's block"); - assert(DT.getNode(HoistPoint->getParent()) && - "DT must contain HoistPoint block"); - if (DT.dominates(I, HoistPoint)) - // We are already above the hoist point. Stop here. This may be necessary - // when multiple scopes would independently hoist the same - // instruction. Since an outer (dominating) scope would hoist it to its - // entry before an inner (dominated) scope would to its entry, the inner - // scope may see the instruction already hoisted, in which case it - // potentially wrong for the inner scope to hoist it and could cause bad - // IR (non-dominating def), but safe to skip hoisting it instead because - // it's already in a block that dominates the inner scope. - return; - for (Value *Op : I->operands()) { - hoistValue(Op, HoistPoint, R, HoistStopMap, HoistedSet, TrivialPHIs, DT); - } - I->moveBefore(HoistPoint); - HoistedSet.insert(I); - CHR_DEBUG(dbgs() << "hoistValue " << *I << "\n"); - } -} - -// Hoist the dependent condition values of the branches and the selects in the -// scope to the insert point. -static void hoistScopeConditions(CHRScope *Scope, Instruction *HoistPoint, - DenseSet<PHINode *> &TrivialPHIs, - DominatorTree &DT) { - DenseSet<Instruction *> HoistedSet; - for (const RegInfo &RI : Scope->CHRRegions) { - Region *R = RI.R; - bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); - bool IsFalseBiased = Scope->FalseBiasedRegions.count(R); - if (RI.HasBranch && (IsTrueBiased || IsFalseBiased)) { - auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); - hoistValue(BI->getCondition(), HoistPoint, R, Scope->HoistStopMap, - HoistedSet, TrivialPHIs, DT); - } - for (SelectInst *SI : RI.Selects) { - bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); - bool IsFalseBiased = Scope->FalseBiasedSelects.count(SI); - if (!(IsTrueBiased || IsFalseBiased)) - continue; - hoistValue(SI->getCondition(), HoistPoint, R, Scope->HoistStopMap, - HoistedSet, TrivialPHIs, DT); - } - } -} - -// Negate the predicate if an ICmp if it's used only by branches or selects by -// swapping the operands of the branches or the selects. Returns true if success. -static bool negateICmpIfUsedByBranchOrSelectOnly(ICmpInst *ICmp, - Instruction *ExcludedUser, - CHRScope *Scope) { - for (User *U : ICmp->users()) { - if (U == ExcludedUser) - continue; - if (isa<BranchInst>(U) && cast<BranchInst>(U)->isConditional()) - continue; - if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == ICmp) - continue; - return false; - } - for (User *U : ICmp->users()) { - if (U == ExcludedUser) - continue; - if (auto *BI = dyn_cast<BranchInst>(U)) { - assert(BI->isConditional() && "Must be conditional"); - BI->swapSuccessors(); - // Don't need to swap this in terms of - // TrueBiasedRegions/FalseBiasedRegions because true-based/false-based - // mean whehter the branch is likely go into the if-then rather than - // successor0/successor1 and because we can tell which edge is the then or - // the else one by comparing the destination to the region exit block. - continue; - } - if (auto *SI = dyn_cast<SelectInst>(U)) { - // Swap operands - SI->swapValues(); - SI->swapProfMetadata(); - if (Scope->TrueBiasedSelects.count(SI)) { - assert(Scope->FalseBiasedSelects.count(SI) == 0 && - "Must not be already in"); - Scope->FalseBiasedSelects.insert(SI); - } else if (Scope->FalseBiasedSelects.count(SI)) { - assert(Scope->TrueBiasedSelects.count(SI) == 0 && - "Must not be already in"); - Scope->TrueBiasedSelects.insert(SI); - } - continue; - } - llvm_unreachable("Must be a branch or a select"); - } - ICmp->setPredicate(CmpInst::getInversePredicate(ICmp->getPredicate())); - return true; -} - -// A helper for transformScopes. Insert a trivial phi at the scope exit block -// for a value that's defined in the scope but used outside it (meaning it's -// alive at the exit block). -static void insertTrivialPHIs(CHRScope *Scope, - BasicBlock *EntryBlock, BasicBlock *ExitBlock, - DenseSet<PHINode *> &TrivialPHIs) { - SmallSetVector<BasicBlock *, 8> BlocksInScope; - for (RegInfo &RI : Scope->RegInfos) { - for (BasicBlock *BB : RI.R->blocks()) { // This includes the blocks in the - // sub-Scopes. - BlocksInScope.insert(BB); - } - } - CHR_DEBUG({ - dbgs() << "Inserting redundant phis\n"; - for (BasicBlock *BB : BlocksInScope) - dbgs() << "BlockInScope " << BB->getName() << "\n"; - }); - for (BasicBlock *BB : BlocksInScope) { - for (Instruction &I : *BB) { - SmallVector<Instruction *, 8> Users; - for (User *U : I.users()) { - if (auto *UI = dyn_cast<Instruction>(U)) { - if (BlocksInScope.count(UI->getParent()) == 0 && - // Unless there's already a phi for I at the exit block. - !(isa<PHINode>(UI) && UI->getParent() == ExitBlock)) { - CHR_DEBUG(dbgs() << "V " << I << "\n"); - CHR_DEBUG(dbgs() << "Used outside scope by user " << *UI << "\n"); - Users.push_back(UI); - } else if (UI->getParent() == EntryBlock && isa<PHINode>(UI)) { - // There's a loop backedge from a block that's dominated by this - // scope to the entry block. - CHR_DEBUG(dbgs() << "V " << I << "\n"); - CHR_DEBUG(dbgs() - << "Used at entry block (for a back edge) by a phi user " - << *UI << "\n"); - Users.push_back(UI); - } - } - } - if (Users.size() > 0) { - // Insert a trivial phi for I (phi [&I, P0], [&I, P1], ...) at - // ExitBlock. Replace I with the new phi in UI unless UI is another - // phi at ExitBlock. + "Must be true or false biased"); + // Note checkHoistValue fills in HoistStops. + DenseMap<Instruction *, bool> Visited; + bool IsHoistable = checkHoistValue(SI->getCondition(), InsertPoint, DT, + Unhoistables, &HoistStops, Visited); + assert(IsHoistable && "Must be hoistable"); + (void)(IsHoistable); // Unused in release build + IsHoisted = true; + } + if (IsHoisted) { + OutermostScope->CHRRegions.push_back(RI); + OutermostScope->HoistStopMap[R] = HoistStops; + } + } + for (CHRScope *Sub : Scope->Subs) + setCHRRegions(Sub, OutermostScope); +} + +static bool CHRScopeSorter(CHRScope *Scope1, CHRScope *Scope2) { + return Scope1->RegInfos[0].R->getDepth() < Scope2->RegInfos[0].R->getDepth(); +} + +void CHR::sortScopes(SmallVectorImpl<CHRScope *> &Input, + SmallVectorImpl<CHRScope *> &Output) { + Output.resize(Input.size()); + llvm::copy(Input, Output.begin()); + llvm::stable_sort(Output, CHRScopeSorter); +} + +// Return true if V is already hoisted or was hoisted (along with its operands) +// to the insert point. +static void hoistValue(Value *V, Instruction *HoistPoint, Region *R, + HoistStopMapTy &HoistStopMap, + DenseSet<Instruction *> &HoistedSet, + DenseSet<PHINode *> &TrivialPHIs, + DominatorTree &DT) { + auto IT = HoistStopMap.find(R); + assert(IT != HoistStopMap.end() && "Region must be in hoist stop map"); + DenseSet<Instruction *> &HoistStops = IT->second; + if (auto *I = dyn_cast<Instruction>(V)) { + if (I == HoistPoint) + return; + if (HoistStops.count(I)) + return; + if (auto *PN = dyn_cast<PHINode>(I)) + if (TrivialPHIs.count(PN)) + // The trivial phi inserted by the previous CHR scope could replace a + // non-phi in HoistStops. Note that since this phi is at the exit of a + // previous CHR scope, which dominates this scope, it's safe to stop + // hoisting there. + return; + if (HoistedSet.count(I)) + // Already hoisted, return. + return; + assert(isHoistableInstructionType(I) && "Unhoistable instruction type"); + assert(DT.getNode(I->getParent()) && "DT must contain I's block"); + assert(DT.getNode(HoistPoint->getParent()) && + "DT must contain HoistPoint block"); + if (DT.dominates(I, HoistPoint)) + // We are already above the hoist point. Stop here. This may be necessary + // when multiple scopes would independently hoist the same + // instruction. Since an outer (dominating) scope would hoist it to its + // entry before an inner (dominated) scope would to its entry, the inner + // scope may see the instruction already hoisted, in which case it + // potentially wrong for the inner scope to hoist it and could cause bad + // IR (non-dominating def), but safe to skip hoisting it instead because + // it's already in a block that dominates the inner scope. + return; + for (Value *Op : I->operands()) { + hoistValue(Op, HoistPoint, R, HoistStopMap, HoistedSet, TrivialPHIs, DT); + } + I->moveBefore(HoistPoint); + HoistedSet.insert(I); + CHR_DEBUG(dbgs() << "hoistValue " << *I << "\n"); + } +} + +// Hoist the dependent condition values of the branches and the selects in the +// scope to the insert point. +static void hoistScopeConditions(CHRScope *Scope, Instruction *HoistPoint, + DenseSet<PHINode *> &TrivialPHIs, + DominatorTree &DT) { + DenseSet<Instruction *> HoistedSet; + for (const RegInfo &RI : Scope->CHRRegions) { + Region *R = RI.R; + bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); + bool IsFalseBiased = Scope->FalseBiasedRegions.count(R); + if (RI.HasBranch && (IsTrueBiased || IsFalseBiased)) { + auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); + hoistValue(BI->getCondition(), HoistPoint, R, Scope->HoistStopMap, + HoistedSet, TrivialPHIs, DT); + } + for (SelectInst *SI : RI.Selects) { + bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); + bool IsFalseBiased = Scope->FalseBiasedSelects.count(SI); + if (!(IsTrueBiased || IsFalseBiased)) + continue; + hoistValue(SI->getCondition(), HoistPoint, R, Scope->HoistStopMap, + HoistedSet, TrivialPHIs, DT); + } + } +} + +// Negate the predicate if an ICmp if it's used only by branches or selects by +// swapping the operands of the branches or the selects. Returns true if success. +static bool negateICmpIfUsedByBranchOrSelectOnly(ICmpInst *ICmp, + Instruction *ExcludedUser, + CHRScope *Scope) { + for (User *U : ICmp->users()) { + if (U == ExcludedUser) + continue; + if (isa<BranchInst>(U) && cast<BranchInst>(U)->isConditional()) + continue; + if (isa<SelectInst>(U) && cast<SelectInst>(U)->getCondition() == ICmp) + continue; + return false; + } + for (User *U : ICmp->users()) { + if (U == ExcludedUser) + continue; + if (auto *BI = dyn_cast<BranchInst>(U)) { + assert(BI->isConditional() && "Must be conditional"); + BI->swapSuccessors(); + // Don't need to swap this in terms of + // TrueBiasedRegions/FalseBiasedRegions because true-based/false-based + // mean whehter the branch is likely go into the if-then rather than + // successor0/successor1 and because we can tell which edge is the then or + // the else one by comparing the destination to the region exit block. + continue; + } + if (auto *SI = dyn_cast<SelectInst>(U)) { + // Swap operands + SI->swapValues(); + SI->swapProfMetadata(); + if (Scope->TrueBiasedSelects.count(SI)) { + assert(Scope->FalseBiasedSelects.count(SI) == 0 && + "Must not be already in"); + Scope->FalseBiasedSelects.insert(SI); + } else if (Scope->FalseBiasedSelects.count(SI)) { + assert(Scope->TrueBiasedSelects.count(SI) == 0 && + "Must not be already in"); + Scope->TrueBiasedSelects.insert(SI); + } + continue; + } + llvm_unreachable("Must be a branch or a select"); + } + ICmp->setPredicate(CmpInst::getInversePredicate(ICmp->getPredicate())); + return true; +} + +// A helper for transformScopes. Insert a trivial phi at the scope exit block +// for a value that's defined in the scope but used outside it (meaning it's +// alive at the exit block). +static void insertTrivialPHIs(CHRScope *Scope, + BasicBlock *EntryBlock, BasicBlock *ExitBlock, + DenseSet<PHINode *> &TrivialPHIs) { + SmallSetVector<BasicBlock *, 8> BlocksInScope; + for (RegInfo &RI : Scope->RegInfos) { + for (BasicBlock *BB : RI.R->blocks()) { // This includes the blocks in the + // sub-Scopes. + BlocksInScope.insert(BB); + } + } + CHR_DEBUG({ + dbgs() << "Inserting redundant phis\n"; + for (BasicBlock *BB : BlocksInScope) + dbgs() << "BlockInScope " << BB->getName() << "\n"; + }); + for (BasicBlock *BB : BlocksInScope) { + for (Instruction &I : *BB) { + SmallVector<Instruction *, 8> Users; + for (User *U : I.users()) { + if (auto *UI = dyn_cast<Instruction>(U)) { + if (BlocksInScope.count(UI->getParent()) == 0 && + // Unless there's already a phi for I at the exit block. + !(isa<PHINode>(UI) && UI->getParent() == ExitBlock)) { + CHR_DEBUG(dbgs() << "V " << I << "\n"); + CHR_DEBUG(dbgs() << "Used outside scope by user " << *UI << "\n"); + Users.push_back(UI); + } else if (UI->getParent() == EntryBlock && isa<PHINode>(UI)) { + // There's a loop backedge from a block that's dominated by this + // scope to the entry block. + CHR_DEBUG(dbgs() << "V " << I << "\n"); + CHR_DEBUG(dbgs() + << "Used at entry block (for a back edge) by a phi user " + << *UI << "\n"); + Users.push_back(UI); + } + } + } + if (Users.size() > 0) { + // Insert a trivial phi for I (phi [&I, P0], [&I, P1], ...) at + // ExitBlock. Replace I with the new phi in UI unless UI is another + // phi at ExitBlock. PHINode *PN = PHINode::Create(I.getType(), pred_size(ExitBlock), "", - &ExitBlock->front()); - for (BasicBlock *Pred : predecessors(ExitBlock)) { - PN->addIncoming(&I, Pred); - } - TrivialPHIs.insert(PN); - CHR_DEBUG(dbgs() << "Insert phi " << *PN << "\n"); - for (Instruction *UI : Users) { - for (unsigned J = 0, NumOps = UI->getNumOperands(); J < NumOps; ++J) { - if (UI->getOperand(J) == &I) { - UI->setOperand(J, PN); - } - } - CHR_DEBUG(dbgs() << "Updated user " << *UI << "\n"); - } - } - } - } -} - -// Assert that all the CHR regions of the scope have a biased branch or select. -static void LLVM_ATTRIBUTE_UNUSED -assertCHRRegionsHaveBiasedBranchOrSelect(CHRScope *Scope) { -#ifndef NDEBUG - auto HasBiasedBranchOrSelect = [](RegInfo &RI, CHRScope *Scope) { - if (Scope->TrueBiasedRegions.count(RI.R) || - Scope->FalseBiasedRegions.count(RI.R)) - return true; - for (SelectInst *SI : RI.Selects) - if (Scope->TrueBiasedSelects.count(SI) || - Scope->FalseBiasedSelects.count(SI)) - return true; - return false; - }; - for (RegInfo &RI : Scope->CHRRegions) { - assert(HasBiasedBranchOrSelect(RI, Scope) && - "Must have biased branch or select"); - } -#endif -} - -// Assert that all the condition values of the biased branches and selects have -// been hoisted to the pre-entry block or outside of the scope. -static void LLVM_ATTRIBUTE_UNUSED assertBranchOrSelectConditionHoisted( - CHRScope *Scope, BasicBlock *PreEntryBlock) { - CHR_DEBUG(dbgs() << "Biased regions condition values \n"); - for (RegInfo &RI : Scope->CHRRegions) { - Region *R = RI.R; - bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); - bool IsFalseBiased = Scope->FalseBiasedRegions.count(R); - if (RI.HasBranch && (IsTrueBiased || IsFalseBiased)) { - auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); - Value *V = BI->getCondition(); - CHR_DEBUG(dbgs() << *V << "\n"); - if (auto *I = dyn_cast<Instruction>(V)) { - (void)(I); // Unused in release build. - assert((I->getParent() == PreEntryBlock || - !Scope->contains(I)) && - "Must have been hoisted to PreEntryBlock or outside the scope"); - } - } - for (SelectInst *SI : RI.Selects) { - bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); - bool IsFalseBiased = Scope->FalseBiasedSelects.count(SI); - if (!(IsTrueBiased || IsFalseBiased)) - continue; - Value *V = SI->getCondition(); - CHR_DEBUG(dbgs() << *V << "\n"); - if (auto *I = dyn_cast<Instruction>(V)) { - (void)(I); // Unused in release build. - assert((I->getParent() == PreEntryBlock || - !Scope->contains(I)) && - "Must have been hoisted to PreEntryBlock or outside the scope"); - } - } - } -} - -void CHR::transformScopes(CHRScope *Scope, DenseSet<PHINode *> &TrivialPHIs) { - CHR_DEBUG(dbgs() << "transformScopes " << *Scope << "\n"); - - assert(Scope->RegInfos.size() >= 1 && "Should have at least one Region"); - Region *FirstRegion = Scope->RegInfos[0].R; - BasicBlock *EntryBlock = FirstRegion->getEntry(); - Region *LastRegion = Scope->RegInfos[Scope->RegInfos.size() - 1].R; - BasicBlock *ExitBlock = LastRegion->getExit(); - Optional<uint64_t> ProfileCount = BFI.getBlockProfileCount(EntryBlock); - - if (ExitBlock) { - // Insert a trivial phi at the exit block (where the CHR hot path and the - // cold path merges) for a value that's defined in the scope but used - // outside it (meaning it's alive at the exit block). We will add the - // incoming values for the CHR cold paths to it below. Without this, we'd - // miss updating phi's for such values unless there happens to already be a - // phi for that value there. - insertTrivialPHIs(Scope, EntryBlock, ExitBlock, TrivialPHIs); - } - - // Split the entry block of the first region. The new block becomes the new - // entry block of the first region. The old entry block becomes the block to - // insert the CHR branch into. Note DT gets updated. Since DT gets updated - // through the split, we update the entry of the first region after the split, - // and Region only points to the entry and the exit blocks, rather than - // keeping everything in a list or set, the blocks membership and the - // entry/exit blocks of the region are still valid after the split. - CHR_DEBUG(dbgs() << "Splitting entry block " << EntryBlock->getName() - << " at " << *Scope->BranchInsertPoint << "\n"); - BasicBlock *NewEntryBlock = - SplitBlock(EntryBlock, Scope->BranchInsertPoint, &DT); - assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && - "NewEntryBlock's only pred must be EntryBlock"); - FirstRegion->replaceEntryRecursive(NewEntryBlock); - BasicBlock *PreEntryBlock = EntryBlock; - - ValueToValueMapTy VMap; - // Clone the blocks in the scope (excluding the PreEntryBlock) to split into a - // hot path (originals) and a cold path (clones) and update the PHIs at the - // exit block. - cloneScopeBlocks(Scope, PreEntryBlock, ExitBlock, LastRegion, VMap); - - // Replace the old (placeholder) branch with the new (merged) conditional - // branch. - BranchInst *MergedBr = createMergedBranch(PreEntryBlock, EntryBlock, - NewEntryBlock, VMap); - -#ifndef NDEBUG - assertCHRRegionsHaveBiasedBranchOrSelect(Scope); -#endif - - // Hoist the conditional values of the branches/selects. - hoistScopeConditions(Scope, PreEntryBlock->getTerminator(), TrivialPHIs, DT); - -#ifndef NDEBUG - assertBranchOrSelectConditionHoisted(Scope, PreEntryBlock); -#endif - - // Create the combined branch condition and constant-fold the branches/selects - // in the hot path. - fixupBranchesAndSelects(Scope, PreEntryBlock, MergedBr, - ProfileCount ? ProfileCount.getValue() : 0); -} - -// A helper for transformScopes. Clone the blocks in the scope (excluding the -// PreEntryBlock) to split into a hot path and a cold path and update the PHIs -// at the exit block. -void CHR::cloneScopeBlocks(CHRScope *Scope, - BasicBlock *PreEntryBlock, - BasicBlock *ExitBlock, - Region *LastRegion, - ValueToValueMapTy &VMap) { - // Clone all the blocks. The original blocks will be the hot-path - // CHR-optimized code and the cloned blocks will be the original unoptimized - // code. This is so that the block pointers from the - // CHRScope/Region/RegionInfo can stay valid in pointing to the hot-path code - // which CHR should apply to. - SmallVector<BasicBlock*, 8> NewBlocks; - for (RegInfo &RI : Scope->RegInfos) - for (BasicBlock *BB : RI.R->blocks()) { // This includes the blocks in the - // sub-Scopes. - assert(BB != PreEntryBlock && "Don't copy the preetntry block"); - BasicBlock *NewBB = CloneBasicBlock(BB, VMap, ".nonchr", &F); - NewBlocks.push_back(NewBB); - VMap[BB] = NewBB; - } - - // Place the cloned blocks right after the original blocks (right before the - // exit block of.) - if (ExitBlock) - F.getBasicBlockList().splice(ExitBlock->getIterator(), - F.getBasicBlockList(), - NewBlocks[0]->getIterator(), F.end()); - - // Update the cloned blocks/instructions to refer to themselves. - for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) - for (Instruction &I : *NewBlocks[i]) - RemapInstruction(&I, VMap, - RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); - - // Add the cloned blocks to the PHIs of the exit blocks. ExitBlock is null for - // the top-level region but we don't need to add PHIs. The trivial PHIs - // inserted above will be updated here. - if (ExitBlock) - for (PHINode &PN : ExitBlock->phis()) - for (unsigned I = 0, NumOps = PN.getNumIncomingValues(); I < NumOps; - ++I) { - BasicBlock *Pred = PN.getIncomingBlock(I); - if (LastRegion->contains(Pred)) { - Value *V = PN.getIncomingValue(I); - auto It = VMap.find(V); - if (It != VMap.end()) V = It->second; - assert(VMap.find(Pred) != VMap.end() && "Pred must have been cloned"); - PN.addIncoming(V, cast<BasicBlock>(VMap[Pred])); - } - } -} - -// A helper for transformScope. Replace the old (placeholder) branch with the -// new (merged) conditional branch. -BranchInst *CHR::createMergedBranch(BasicBlock *PreEntryBlock, - BasicBlock *EntryBlock, - BasicBlock *NewEntryBlock, - ValueToValueMapTy &VMap) { - BranchInst *OldBR = cast<BranchInst>(PreEntryBlock->getTerminator()); - assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == NewEntryBlock && - "SplitBlock did not work correctly!"); - assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && - "NewEntryBlock's only pred must be EntryBlock"); - assert(VMap.find(NewEntryBlock) != VMap.end() && - "NewEntryBlock must have been copied"); - OldBR->dropAllReferences(); - OldBR->eraseFromParent(); - // The true predicate is a placeholder. It will be replaced later in - // fixupBranchesAndSelects(). - BranchInst *NewBR = BranchInst::Create(NewEntryBlock, - cast<BasicBlock>(VMap[NewEntryBlock]), - ConstantInt::getTrue(F.getContext())); - PreEntryBlock->getInstList().push_back(NewBR); - assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && - "NewEntryBlock's only pred must be EntryBlock"); - return NewBR; -} - -// A helper for transformScopes. Create the combined branch condition and -// constant-fold the branches/selects in the hot path. -void CHR::fixupBranchesAndSelects(CHRScope *Scope, - BasicBlock *PreEntryBlock, - BranchInst *MergedBR, - uint64_t ProfileCount) { - Value *MergedCondition = ConstantInt::getTrue(F.getContext()); - BranchProbability CHRBranchBias(1, 1); - uint64_t NumCHRedBranches = 0; - IRBuilder<> IRB(PreEntryBlock->getTerminator()); - for (RegInfo &RI : Scope->CHRRegions) { - Region *R = RI.R; - if (RI.HasBranch) { - fixupBranch(R, Scope, IRB, MergedCondition, CHRBranchBias); - ++NumCHRedBranches; - } - for (SelectInst *SI : RI.Selects) { - fixupSelect(SI, Scope, IRB, MergedCondition, CHRBranchBias); - ++NumCHRedBranches; - } - } - Stats.NumBranchesDelta += NumCHRedBranches - 1; - Stats.WeightedNumBranchesDelta += (NumCHRedBranches - 1) * ProfileCount; - ORE.emit([&]() { - return OptimizationRemark(DEBUG_TYPE, - "CHR", - // Refer to the hot (original) path - MergedBR->getSuccessor(0)->getTerminator()) - << "Merged " << ore::NV("NumCHRedBranches", NumCHRedBranches) - << " branches or selects"; - }); - MergedBR->setCondition(MergedCondition); - uint32_t Weights[] = { - static_cast<uint32_t>(CHRBranchBias.scale(1000)), - static_cast<uint32_t>(CHRBranchBias.getCompl().scale(1000)), - }; - MDBuilder MDB(F.getContext()); - MergedBR->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); - CHR_DEBUG(dbgs() << "CHR branch bias " << Weights[0] << ":" << Weights[1] - << "\n"); -} - -// A helper for fixupBranchesAndSelects. Add to the combined branch condition -// and constant-fold a branch in the hot path. -void CHR::fixupBranch(Region *R, CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition, - BranchProbability &CHRBranchBias) { - bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); - assert((IsTrueBiased || Scope->FalseBiasedRegions.count(R)) && - "Must be truthy or falsy"); - auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); - assert(BranchBiasMap.find(R) != BranchBiasMap.end() && - "Must be in the bias map"); - BranchProbability Bias = BranchBiasMap[R]; - assert(Bias >= getCHRBiasThreshold() && "Must be highly biased"); - // Take the min. - if (CHRBranchBias > Bias) - CHRBranchBias = Bias; - BasicBlock *IfThen = BI->getSuccessor(1); - BasicBlock *IfElse = BI->getSuccessor(0); - BasicBlock *RegionExitBlock = R->getExit(); - assert(RegionExitBlock && "Null ExitBlock"); - assert((IfThen == RegionExitBlock || IfElse == RegionExitBlock) && - IfThen != IfElse && "Invariant from findScopes"); - if (IfThen == RegionExitBlock) { - // Swap them so that IfThen means going into it and IfElse means skipping - // it. - std::swap(IfThen, IfElse); - } - CHR_DEBUG(dbgs() << "IfThen " << IfThen->getName() - << " IfElse " << IfElse->getName() << "\n"); - Value *Cond = BI->getCondition(); - BasicBlock *HotTarget = IsTrueBiased ? IfThen : IfElse; - bool ConditionTrue = HotTarget == BI->getSuccessor(0); - addToMergedCondition(ConditionTrue, Cond, BI, Scope, IRB, - MergedCondition); - // Constant-fold the branch at ClonedEntryBlock. - assert(ConditionTrue == (HotTarget == BI->getSuccessor(0)) && - "The successor shouldn't change"); - Value *NewCondition = ConditionTrue ? - ConstantInt::getTrue(F.getContext()) : - ConstantInt::getFalse(F.getContext()); - BI->setCondition(NewCondition); -} - -// A helper for fixupBranchesAndSelects. Add to the combined branch condition -// and constant-fold a select in the hot path. -void CHR::fixupSelect(SelectInst *SI, CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition, - BranchProbability &CHRBranchBias) { - bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); - assert((IsTrueBiased || - Scope->FalseBiasedSelects.count(SI)) && "Must be biased"); - assert(SelectBiasMap.find(SI) != SelectBiasMap.end() && - "Must be in the bias map"); - BranchProbability Bias = SelectBiasMap[SI]; - assert(Bias >= getCHRBiasThreshold() && "Must be highly biased"); - // Take the min. - if (CHRBranchBias > Bias) - CHRBranchBias = Bias; - Value *Cond = SI->getCondition(); - addToMergedCondition(IsTrueBiased, Cond, SI, Scope, IRB, - MergedCondition); - Value *NewCondition = IsTrueBiased ? - ConstantInt::getTrue(F.getContext()) : - ConstantInt::getFalse(F.getContext()); - SI->setCondition(NewCondition); -} - -// A helper for fixupBranch/fixupSelect. Add a branch condition to the merged -// condition. -void CHR::addToMergedCondition(bool IsTrueBiased, Value *Cond, - Instruction *BranchOrSelect, - CHRScope *Scope, - IRBuilder<> &IRB, - Value *&MergedCondition) { - if (IsTrueBiased) { - MergedCondition = IRB.CreateAnd(MergedCondition, Cond); - } else { - // If Cond is an icmp and all users of V except for BranchOrSelect is a - // branch, negate the icmp predicate and swap the branch targets and avoid - // inserting an Xor to negate Cond. - bool Done = false; - if (auto *ICmp = dyn_cast<ICmpInst>(Cond)) - if (negateICmpIfUsedByBranchOrSelectOnly(ICmp, BranchOrSelect, Scope)) { - MergedCondition = IRB.CreateAnd(MergedCondition, Cond); - Done = true; - } - if (!Done) { - Value *Negate = IRB.CreateXor( - ConstantInt::getTrue(F.getContext()), Cond); - MergedCondition = IRB.CreateAnd(MergedCondition, Negate); - } - } -} - -void CHR::transformScopes(SmallVectorImpl<CHRScope *> &CHRScopes) { - unsigned I = 0; - DenseSet<PHINode *> TrivialPHIs; - for (CHRScope *Scope : CHRScopes) { - transformScopes(Scope, TrivialPHIs); - CHR_DEBUG( - std::ostringstream oss; - oss << " after transformScopes " << I++; - dumpIR(F, oss.str().c_str(), nullptr)); - (void)I; - } -} - -static void LLVM_ATTRIBUTE_UNUSED -dumpScopes(SmallVectorImpl<CHRScope *> &Scopes, const char *Label) { - dbgs() << Label << " " << Scopes.size() << "\n"; - for (CHRScope *Scope : Scopes) { - dbgs() << *Scope << "\n"; - } -} - -bool CHR::run() { - if (!shouldApply(F, PSI)) - return false; - - CHR_DEBUG(dumpIR(F, "before", nullptr)); - - bool Changed = false; - { - CHR_DEBUG( - dbgs() << "RegionInfo:\n"; - RI.print(dbgs())); - - // Recursively traverse the region tree and find regions that have biased - // branches and/or selects and create scopes. - SmallVector<CHRScope *, 8> AllScopes; - findScopes(AllScopes); - CHR_DEBUG(dumpScopes(AllScopes, "All scopes")); - - // Split the scopes if 1) the conditiona values of the biased - // branches/selects of the inner/lower scope can't be hoisted up to the - // outermost/uppermost scope entry, or 2) the condition values of the biased - // branches/selects in a scope (including subscopes) don't share at least - // one common value. - SmallVector<CHRScope *, 8> SplitScopes; - splitScopes(AllScopes, SplitScopes); - CHR_DEBUG(dumpScopes(SplitScopes, "Split scopes")); - - // After splitting, set the biased regions and selects of a scope (a tree - // root) that include those of the subscopes. - classifyBiasedScopes(SplitScopes); - CHR_DEBUG(dbgs() << "Set per-scope bias " << SplitScopes.size() << "\n"); - - // Filter out the scopes that has only one biased region or select (CHR - // isn't useful in such a case). - SmallVector<CHRScope *, 8> FilteredScopes; - filterScopes(SplitScopes, FilteredScopes); - CHR_DEBUG(dumpScopes(FilteredScopes, "Filtered scopes")); - - // Set the regions to be CHR'ed and their hoist stops for each scope. - SmallVector<CHRScope *, 8> SetScopes; - setCHRRegions(FilteredScopes, SetScopes); - CHR_DEBUG(dumpScopes(SetScopes, "Set CHR regions")); - - // Sort CHRScopes by the depth so that outer CHRScopes comes before inner - // ones. We need to apply CHR from outer to inner so that we apply CHR only - // to the hot path, rather than both hot and cold paths. - SmallVector<CHRScope *, 8> SortedScopes; - sortScopes(SetScopes, SortedScopes); - CHR_DEBUG(dumpScopes(SortedScopes, "Sorted scopes")); - - CHR_DEBUG( - dbgs() << "RegionInfo:\n"; - RI.print(dbgs())); - - // Apply the CHR transformation. - if (!SortedScopes.empty()) { - transformScopes(SortedScopes); - Changed = true; - } - } - - if (Changed) { - CHR_DEBUG(dumpIR(F, "after", &Stats)); - ORE.emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "Stats", &F) - << ore::NV("Function", &F) << " " - << "Reduced the number of branches in hot paths by " - << ore::NV("NumBranchesDelta", Stats.NumBranchesDelta) - << " (static) and " - << ore::NV("WeightedNumBranchesDelta", Stats.WeightedNumBranchesDelta) - << " (weighted by PGO count)"; - }); - } - - return Changed; -} - -bool ControlHeightReductionLegacyPass::runOnFunction(Function &F) { - BlockFrequencyInfo &BFI = - getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); - DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - ProfileSummaryInfo &PSI = - getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - RegionInfo &RI = getAnalysis<RegionInfoPass>().getRegionInfo(); - std::unique_ptr<OptimizationRemarkEmitter> OwnedORE = - std::make_unique<OptimizationRemarkEmitter>(&F); - return CHR(F, BFI, DT, PSI, RI, *OwnedORE.get()).run(); -} - -namespace llvm { - -ControlHeightReductionPass::ControlHeightReductionPass() { - parseCHRFilterFiles(); -} - -PreservedAnalyses ControlHeightReductionPass::run( - Function &F, - FunctionAnalysisManager &FAM) { - auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); - auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); - auto &MAMProxy = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F); - auto &PSI = *MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); - auto &RI = FAM.getResult<RegionInfoAnalysis>(F); - auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); - bool Changed = CHR(F, BFI, DT, PSI, RI, ORE).run(); - if (!Changed) - return PreservedAnalyses::all(); - auto PA = PreservedAnalyses(); - PA.preserve<GlobalsAA>(); - return PA; -} - -} // namespace llvm + &ExitBlock->front()); + for (BasicBlock *Pred : predecessors(ExitBlock)) { + PN->addIncoming(&I, Pred); + } + TrivialPHIs.insert(PN); + CHR_DEBUG(dbgs() << "Insert phi " << *PN << "\n"); + for (Instruction *UI : Users) { + for (unsigned J = 0, NumOps = UI->getNumOperands(); J < NumOps; ++J) { + if (UI->getOperand(J) == &I) { + UI->setOperand(J, PN); + } + } + CHR_DEBUG(dbgs() << "Updated user " << *UI << "\n"); + } + } + } + } +} + +// Assert that all the CHR regions of the scope have a biased branch or select. +static void LLVM_ATTRIBUTE_UNUSED +assertCHRRegionsHaveBiasedBranchOrSelect(CHRScope *Scope) { +#ifndef NDEBUG + auto HasBiasedBranchOrSelect = [](RegInfo &RI, CHRScope *Scope) { + if (Scope->TrueBiasedRegions.count(RI.R) || + Scope->FalseBiasedRegions.count(RI.R)) + return true; + for (SelectInst *SI : RI.Selects) + if (Scope->TrueBiasedSelects.count(SI) || + Scope->FalseBiasedSelects.count(SI)) + return true; + return false; + }; + for (RegInfo &RI : Scope->CHRRegions) { + assert(HasBiasedBranchOrSelect(RI, Scope) && + "Must have biased branch or select"); + } +#endif +} + +// Assert that all the condition values of the biased branches and selects have +// been hoisted to the pre-entry block or outside of the scope. +static void LLVM_ATTRIBUTE_UNUSED assertBranchOrSelectConditionHoisted( + CHRScope *Scope, BasicBlock *PreEntryBlock) { + CHR_DEBUG(dbgs() << "Biased regions condition values \n"); + for (RegInfo &RI : Scope->CHRRegions) { + Region *R = RI.R; + bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); + bool IsFalseBiased = Scope->FalseBiasedRegions.count(R); + if (RI.HasBranch && (IsTrueBiased || IsFalseBiased)) { + auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); + Value *V = BI->getCondition(); + CHR_DEBUG(dbgs() << *V << "\n"); + if (auto *I = dyn_cast<Instruction>(V)) { + (void)(I); // Unused in release build. + assert((I->getParent() == PreEntryBlock || + !Scope->contains(I)) && + "Must have been hoisted to PreEntryBlock or outside the scope"); + } + } + for (SelectInst *SI : RI.Selects) { + bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); + bool IsFalseBiased = Scope->FalseBiasedSelects.count(SI); + if (!(IsTrueBiased || IsFalseBiased)) + continue; + Value *V = SI->getCondition(); + CHR_DEBUG(dbgs() << *V << "\n"); + if (auto *I = dyn_cast<Instruction>(V)) { + (void)(I); // Unused in release build. + assert((I->getParent() == PreEntryBlock || + !Scope->contains(I)) && + "Must have been hoisted to PreEntryBlock or outside the scope"); + } + } + } +} + +void CHR::transformScopes(CHRScope *Scope, DenseSet<PHINode *> &TrivialPHIs) { + CHR_DEBUG(dbgs() << "transformScopes " << *Scope << "\n"); + + assert(Scope->RegInfos.size() >= 1 && "Should have at least one Region"); + Region *FirstRegion = Scope->RegInfos[0].R; + BasicBlock *EntryBlock = FirstRegion->getEntry(); + Region *LastRegion = Scope->RegInfos[Scope->RegInfos.size() - 1].R; + BasicBlock *ExitBlock = LastRegion->getExit(); + Optional<uint64_t> ProfileCount = BFI.getBlockProfileCount(EntryBlock); + + if (ExitBlock) { + // Insert a trivial phi at the exit block (where the CHR hot path and the + // cold path merges) for a value that's defined in the scope but used + // outside it (meaning it's alive at the exit block). We will add the + // incoming values for the CHR cold paths to it below. Without this, we'd + // miss updating phi's for such values unless there happens to already be a + // phi for that value there. + insertTrivialPHIs(Scope, EntryBlock, ExitBlock, TrivialPHIs); + } + + // Split the entry block of the first region. The new block becomes the new + // entry block of the first region. The old entry block becomes the block to + // insert the CHR branch into. Note DT gets updated. Since DT gets updated + // through the split, we update the entry of the first region after the split, + // and Region only points to the entry and the exit blocks, rather than + // keeping everything in a list or set, the blocks membership and the + // entry/exit blocks of the region are still valid after the split. + CHR_DEBUG(dbgs() << "Splitting entry block " << EntryBlock->getName() + << " at " << *Scope->BranchInsertPoint << "\n"); + BasicBlock *NewEntryBlock = + SplitBlock(EntryBlock, Scope->BranchInsertPoint, &DT); + assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && + "NewEntryBlock's only pred must be EntryBlock"); + FirstRegion->replaceEntryRecursive(NewEntryBlock); + BasicBlock *PreEntryBlock = EntryBlock; + + ValueToValueMapTy VMap; + // Clone the blocks in the scope (excluding the PreEntryBlock) to split into a + // hot path (originals) and a cold path (clones) and update the PHIs at the + // exit block. + cloneScopeBlocks(Scope, PreEntryBlock, ExitBlock, LastRegion, VMap); + + // Replace the old (placeholder) branch with the new (merged) conditional + // branch. + BranchInst *MergedBr = createMergedBranch(PreEntryBlock, EntryBlock, + NewEntryBlock, VMap); + +#ifndef NDEBUG + assertCHRRegionsHaveBiasedBranchOrSelect(Scope); +#endif + + // Hoist the conditional values of the branches/selects. + hoistScopeConditions(Scope, PreEntryBlock->getTerminator(), TrivialPHIs, DT); + +#ifndef NDEBUG + assertBranchOrSelectConditionHoisted(Scope, PreEntryBlock); +#endif + + // Create the combined branch condition and constant-fold the branches/selects + // in the hot path. + fixupBranchesAndSelects(Scope, PreEntryBlock, MergedBr, + ProfileCount ? ProfileCount.getValue() : 0); +} + +// A helper for transformScopes. Clone the blocks in the scope (excluding the +// PreEntryBlock) to split into a hot path and a cold path and update the PHIs +// at the exit block. +void CHR::cloneScopeBlocks(CHRScope *Scope, + BasicBlock *PreEntryBlock, + BasicBlock *ExitBlock, + Region *LastRegion, + ValueToValueMapTy &VMap) { + // Clone all the blocks. The original blocks will be the hot-path + // CHR-optimized code and the cloned blocks will be the original unoptimized + // code. This is so that the block pointers from the + // CHRScope/Region/RegionInfo can stay valid in pointing to the hot-path code + // which CHR should apply to. + SmallVector<BasicBlock*, 8> NewBlocks; + for (RegInfo &RI : Scope->RegInfos) + for (BasicBlock *BB : RI.R->blocks()) { // This includes the blocks in the + // sub-Scopes. + assert(BB != PreEntryBlock && "Don't copy the preetntry block"); + BasicBlock *NewBB = CloneBasicBlock(BB, VMap, ".nonchr", &F); + NewBlocks.push_back(NewBB); + VMap[BB] = NewBB; + } + + // Place the cloned blocks right after the original blocks (right before the + // exit block of.) + if (ExitBlock) + F.getBasicBlockList().splice(ExitBlock->getIterator(), + F.getBasicBlockList(), + NewBlocks[0]->getIterator(), F.end()); + + // Update the cloned blocks/instructions to refer to themselves. + for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) + for (Instruction &I : *NewBlocks[i]) + RemapInstruction(&I, VMap, + RF_NoModuleLevelChanges | RF_IgnoreMissingLocals); + + // Add the cloned blocks to the PHIs of the exit blocks. ExitBlock is null for + // the top-level region but we don't need to add PHIs. The trivial PHIs + // inserted above will be updated here. + if (ExitBlock) + for (PHINode &PN : ExitBlock->phis()) + for (unsigned I = 0, NumOps = PN.getNumIncomingValues(); I < NumOps; + ++I) { + BasicBlock *Pred = PN.getIncomingBlock(I); + if (LastRegion->contains(Pred)) { + Value *V = PN.getIncomingValue(I); + auto It = VMap.find(V); + if (It != VMap.end()) V = It->second; + assert(VMap.find(Pred) != VMap.end() && "Pred must have been cloned"); + PN.addIncoming(V, cast<BasicBlock>(VMap[Pred])); + } + } +} + +// A helper for transformScope. Replace the old (placeholder) branch with the +// new (merged) conditional branch. +BranchInst *CHR::createMergedBranch(BasicBlock *PreEntryBlock, + BasicBlock *EntryBlock, + BasicBlock *NewEntryBlock, + ValueToValueMapTy &VMap) { + BranchInst *OldBR = cast<BranchInst>(PreEntryBlock->getTerminator()); + assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == NewEntryBlock && + "SplitBlock did not work correctly!"); + assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && + "NewEntryBlock's only pred must be EntryBlock"); + assert(VMap.find(NewEntryBlock) != VMap.end() && + "NewEntryBlock must have been copied"); + OldBR->dropAllReferences(); + OldBR->eraseFromParent(); + // The true predicate is a placeholder. It will be replaced later in + // fixupBranchesAndSelects(). + BranchInst *NewBR = BranchInst::Create(NewEntryBlock, + cast<BasicBlock>(VMap[NewEntryBlock]), + ConstantInt::getTrue(F.getContext())); + PreEntryBlock->getInstList().push_back(NewBR); + assert(NewEntryBlock->getSinglePredecessor() == EntryBlock && + "NewEntryBlock's only pred must be EntryBlock"); + return NewBR; +} + +// A helper for transformScopes. Create the combined branch condition and +// constant-fold the branches/selects in the hot path. +void CHR::fixupBranchesAndSelects(CHRScope *Scope, + BasicBlock *PreEntryBlock, + BranchInst *MergedBR, + uint64_t ProfileCount) { + Value *MergedCondition = ConstantInt::getTrue(F.getContext()); + BranchProbability CHRBranchBias(1, 1); + uint64_t NumCHRedBranches = 0; + IRBuilder<> IRB(PreEntryBlock->getTerminator()); + for (RegInfo &RI : Scope->CHRRegions) { + Region *R = RI.R; + if (RI.HasBranch) { + fixupBranch(R, Scope, IRB, MergedCondition, CHRBranchBias); + ++NumCHRedBranches; + } + for (SelectInst *SI : RI.Selects) { + fixupSelect(SI, Scope, IRB, MergedCondition, CHRBranchBias); + ++NumCHRedBranches; + } + } + Stats.NumBranchesDelta += NumCHRedBranches - 1; + Stats.WeightedNumBranchesDelta += (NumCHRedBranches - 1) * ProfileCount; + ORE.emit([&]() { + return OptimizationRemark(DEBUG_TYPE, + "CHR", + // Refer to the hot (original) path + MergedBR->getSuccessor(0)->getTerminator()) + << "Merged " << ore::NV("NumCHRedBranches", NumCHRedBranches) + << " branches or selects"; + }); + MergedBR->setCondition(MergedCondition); + uint32_t Weights[] = { + static_cast<uint32_t>(CHRBranchBias.scale(1000)), + static_cast<uint32_t>(CHRBranchBias.getCompl().scale(1000)), + }; + MDBuilder MDB(F.getContext()); + MergedBR->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); + CHR_DEBUG(dbgs() << "CHR branch bias " << Weights[0] << ":" << Weights[1] + << "\n"); +} + +// A helper for fixupBranchesAndSelects. Add to the combined branch condition +// and constant-fold a branch in the hot path. +void CHR::fixupBranch(Region *R, CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition, + BranchProbability &CHRBranchBias) { + bool IsTrueBiased = Scope->TrueBiasedRegions.count(R); + assert((IsTrueBiased || Scope->FalseBiasedRegions.count(R)) && + "Must be truthy or falsy"); + auto *BI = cast<BranchInst>(R->getEntry()->getTerminator()); + assert(BranchBiasMap.find(R) != BranchBiasMap.end() && + "Must be in the bias map"); + BranchProbability Bias = BranchBiasMap[R]; + assert(Bias >= getCHRBiasThreshold() && "Must be highly biased"); + // Take the min. + if (CHRBranchBias > Bias) + CHRBranchBias = Bias; + BasicBlock *IfThen = BI->getSuccessor(1); + BasicBlock *IfElse = BI->getSuccessor(0); + BasicBlock *RegionExitBlock = R->getExit(); + assert(RegionExitBlock && "Null ExitBlock"); + assert((IfThen == RegionExitBlock || IfElse == RegionExitBlock) && + IfThen != IfElse && "Invariant from findScopes"); + if (IfThen == RegionExitBlock) { + // Swap them so that IfThen means going into it and IfElse means skipping + // it. + std::swap(IfThen, IfElse); + } + CHR_DEBUG(dbgs() << "IfThen " << IfThen->getName() + << " IfElse " << IfElse->getName() << "\n"); + Value *Cond = BI->getCondition(); + BasicBlock *HotTarget = IsTrueBiased ? IfThen : IfElse; + bool ConditionTrue = HotTarget == BI->getSuccessor(0); + addToMergedCondition(ConditionTrue, Cond, BI, Scope, IRB, + MergedCondition); + // Constant-fold the branch at ClonedEntryBlock. + assert(ConditionTrue == (HotTarget == BI->getSuccessor(0)) && + "The successor shouldn't change"); + Value *NewCondition = ConditionTrue ? + ConstantInt::getTrue(F.getContext()) : + ConstantInt::getFalse(F.getContext()); + BI->setCondition(NewCondition); +} + +// A helper for fixupBranchesAndSelects. Add to the combined branch condition +// and constant-fold a select in the hot path. +void CHR::fixupSelect(SelectInst *SI, CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition, + BranchProbability &CHRBranchBias) { + bool IsTrueBiased = Scope->TrueBiasedSelects.count(SI); + assert((IsTrueBiased || + Scope->FalseBiasedSelects.count(SI)) && "Must be biased"); + assert(SelectBiasMap.find(SI) != SelectBiasMap.end() && + "Must be in the bias map"); + BranchProbability Bias = SelectBiasMap[SI]; + assert(Bias >= getCHRBiasThreshold() && "Must be highly biased"); + // Take the min. + if (CHRBranchBias > Bias) + CHRBranchBias = Bias; + Value *Cond = SI->getCondition(); + addToMergedCondition(IsTrueBiased, Cond, SI, Scope, IRB, + MergedCondition); + Value *NewCondition = IsTrueBiased ? + ConstantInt::getTrue(F.getContext()) : + ConstantInt::getFalse(F.getContext()); + SI->setCondition(NewCondition); +} + +// A helper for fixupBranch/fixupSelect. Add a branch condition to the merged +// condition. +void CHR::addToMergedCondition(bool IsTrueBiased, Value *Cond, + Instruction *BranchOrSelect, + CHRScope *Scope, + IRBuilder<> &IRB, + Value *&MergedCondition) { + if (IsTrueBiased) { + MergedCondition = IRB.CreateAnd(MergedCondition, Cond); + } else { + // If Cond is an icmp and all users of V except for BranchOrSelect is a + // branch, negate the icmp predicate and swap the branch targets and avoid + // inserting an Xor to negate Cond. + bool Done = false; + if (auto *ICmp = dyn_cast<ICmpInst>(Cond)) + if (negateICmpIfUsedByBranchOrSelectOnly(ICmp, BranchOrSelect, Scope)) { + MergedCondition = IRB.CreateAnd(MergedCondition, Cond); + Done = true; + } + if (!Done) { + Value *Negate = IRB.CreateXor( + ConstantInt::getTrue(F.getContext()), Cond); + MergedCondition = IRB.CreateAnd(MergedCondition, Negate); + } + } +} + +void CHR::transformScopes(SmallVectorImpl<CHRScope *> &CHRScopes) { + unsigned I = 0; + DenseSet<PHINode *> TrivialPHIs; + for (CHRScope *Scope : CHRScopes) { + transformScopes(Scope, TrivialPHIs); + CHR_DEBUG( + std::ostringstream oss; + oss << " after transformScopes " << I++; + dumpIR(F, oss.str().c_str(), nullptr)); + (void)I; + } +} + +static void LLVM_ATTRIBUTE_UNUSED +dumpScopes(SmallVectorImpl<CHRScope *> &Scopes, const char *Label) { + dbgs() << Label << " " << Scopes.size() << "\n"; + for (CHRScope *Scope : Scopes) { + dbgs() << *Scope << "\n"; + } +} + +bool CHR::run() { + if (!shouldApply(F, PSI)) + return false; + + CHR_DEBUG(dumpIR(F, "before", nullptr)); + + bool Changed = false; + { + CHR_DEBUG( + dbgs() << "RegionInfo:\n"; + RI.print(dbgs())); + + // Recursively traverse the region tree and find regions that have biased + // branches and/or selects and create scopes. + SmallVector<CHRScope *, 8> AllScopes; + findScopes(AllScopes); + CHR_DEBUG(dumpScopes(AllScopes, "All scopes")); + + // Split the scopes if 1) the conditiona values of the biased + // branches/selects of the inner/lower scope can't be hoisted up to the + // outermost/uppermost scope entry, or 2) the condition values of the biased + // branches/selects in a scope (including subscopes) don't share at least + // one common value. + SmallVector<CHRScope *, 8> SplitScopes; + splitScopes(AllScopes, SplitScopes); + CHR_DEBUG(dumpScopes(SplitScopes, "Split scopes")); + + // After splitting, set the biased regions and selects of a scope (a tree + // root) that include those of the subscopes. + classifyBiasedScopes(SplitScopes); + CHR_DEBUG(dbgs() << "Set per-scope bias " << SplitScopes.size() << "\n"); + + // Filter out the scopes that has only one biased region or select (CHR + // isn't useful in such a case). + SmallVector<CHRScope *, 8> FilteredScopes; + filterScopes(SplitScopes, FilteredScopes); + CHR_DEBUG(dumpScopes(FilteredScopes, "Filtered scopes")); + + // Set the regions to be CHR'ed and their hoist stops for each scope. + SmallVector<CHRScope *, 8> SetScopes; + setCHRRegions(FilteredScopes, SetScopes); + CHR_DEBUG(dumpScopes(SetScopes, "Set CHR regions")); + + // Sort CHRScopes by the depth so that outer CHRScopes comes before inner + // ones. We need to apply CHR from outer to inner so that we apply CHR only + // to the hot path, rather than both hot and cold paths. + SmallVector<CHRScope *, 8> SortedScopes; + sortScopes(SetScopes, SortedScopes); + CHR_DEBUG(dumpScopes(SortedScopes, "Sorted scopes")); + + CHR_DEBUG( + dbgs() << "RegionInfo:\n"; + RI.print(dbgs())); + + // Apply the CHR transformation. + if (!SortedScopes.empty()) { + transformScopes(SortedScopes); + Changed = true; + } + } + + if (Changed) { + CHR_DEBUG(dumpIR(F, "after", &Stats)); + ORE.emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "Stats", &F) + << ore::NV("Function", &F) << " " + << "Reduced the number of branches in hot paths by " + << ore::NV("NumBranchesDelta", Stats.NumBranchesDelta) + << " (static) and " + << ore::NV("WeightedNumBranchesDelta", Stats.WeightedNumBranchesDelta) + << " (weighted by PGO count)"; + }); + } + + return Changed; +} + +bool ControlHeightReductionLegacyPass::runOnFunction(Function &F) { + BlockFrequencyInfo &BFI = + getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); + DominatorTree &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree(); + ProfileSummaryInfo &PSI = + getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + RegionInfo &RI = getAnalysis<RegionInfoPass>().getRegionInfo(); + std::unique_ptr<OptimizationRemarkEmitter> OwnedORE = + std::make_unique<OptimizationRemarkEmitter>(&F); + return CHR(F, BFI, DT, PSI, RI, *OwnedORE.get()).run(); +} + +namespace llvm { + +ControlHeightReductionPass::ControlHeightReductionPass() { + parseCHRFilterFiles(); +} + +PreservedAnalyses ControlHeightReductionPass::run( + Function &F, + FunctionAnalysisManager &FAM) { + auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); + auto &DT = FAM.getResult<DominatorTreeAnalysis>(F); + auto &MAMProxy = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F); + auto &PSI = *MAMProxy.getCachedResult<ProfileSummaryAnalysis>(*F.getParent()); + auto &RI = FAM.getResult<RegionInfoAnalysis>(F); + auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); + bool Changed = CHR(F, BFI, DT, PSI, RI, ORE).run(); + if (!Changed) + return PreservedAnalyses::all(); + auto PA = PreservedAnalyses(); + PA.preserve<GlobalsAA>(); + return PA; +} + +} // namespace llvm diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp index ebd7a997dd..1b14b8d569 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/DataFlowSanitizer.cpp @@ -1,111 +1,111 @@ -//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow -/// analysis. -/// -/// Unlike other Sanitizer tools, this tool is not designed to detect a specific -/// class of bugs on its own. Instead, it provides a generic dynamic data flow -/// analysis framework to be used by clients to help detect application-specific -/// issues within their own code. -/// -/// The analysis is based on automatic propagation of data flow labels (also -/// known as taint labels) through a program as it performs computation. Each -/// byte of application memory is backed by two bytes of shadow memory which -/// hold the label. On Linux/x86_64, memory is laid out as follows: -/// -/// +--------------------+ 0x800000000000 (top of memory) -/// | application memory | -/// +--------------------+ 0x700000008000 (kAppAddr) -/// | | -/// | unused | -/// | | -/// +--------------------+ 0x200200000000 (kUnusedAddr) -/// | union table | -/// +--------------------+ 0x200000000000 (kUnionTableAddr) -/// | shadow memory | -/// +--------------------+ 0x000000010000 (kShadowAddr) -/// | reserved by kernel | -/// +--------------------+ 0x000000000000 -/// -/// To derive a shadow memory address from an application memory address, -/// bits 44-46 are cleared to bring the address into the range -/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to -/// account for the double byte representation of shadow labels and move the -/// address into the shadow memory range. See the function -/// DataFlowSanitizer::getShadowAddress below. -/// -/// For more information, please refer to the design document: -/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html -// -//===----------------------------------------------------------------------===// - +//===- DataFlowSanitizer.cpp - dynamic data flow analysis -----------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow +/// analysis. +/// +/// Unlike other Sanitizer tools, this tool is not designed to detect a specific +/// class of bugs on its own. Instead, it provides a generic dynamic data flow +/// analysis framework to be used by clients to help detect application-specific +/// issues within their own code. +/// +/// The analysis is based on automatic propagation of data flow labels (also +/// known as taint labels) through a program as it performs computation. Each +/// byte of application memory is backed by two bytes of shadow memory which +/// hold the label. On Linux/x86_64, memory is laid out as follows: +/// +/// +--------------------+ 0x800000000000 (top of memory) +/// | application memory | +/// +--------------------+ 0x700000008000 (kAppAddr) +/// | | +/// | unused | +/// | | +/// +--------------------+ 0x200200000000 (kUnusedAddr) +/// | union table | +/// +--------------------+ 0x200000000000 (kUnionTableAddr) +/// | shadow memory | +/// +--------------------+ 0x000000010000 (kShadowAddr) +/// | reserved by kernel | +/// +--------------------+ 0x000000000000 +/// +/// To derive a shadow memory address from an application memory address, +/// bits 44-46 are cleared to bring the address into the range +/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to +/// account for the double byte representation of shadow labels and move the +/// address into the shadow memory range. See the function +/// DataFlowSanitizer::getShadowAddress below. +/// +/// For more information, please refer to the design document: +/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html +// +//===----------------------------------------------------------------------===// + #include "llvm/Transforms/Instrumentation/DataFlowSanitizer.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/None.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" #include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/User.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/SpecialCaseList.h" -#include "llvm/Support/VirtualFileSystem.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <iterator> -#include <memory> -#include <set> -#include <string> -#include <utility> -#include <vector> - -using namespace llvm; - +#include "llvm/IR/Type.h" +#include "llvm/IR/User.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/SpecialCaseList.h" +#include "llvm/Support/VirtualFileSystem.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <iterator> +#include <memory> +#include <set> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + // This must be consistent with ShadowWidthBits. static const Align kShadowTLSAlignment = Align(2); @@ -114,78 +114,78 @@ static const Align kShadowTLSAlignment = Align(2); static const unsigned kArgTLSSize = 800; static const unsigned kRetvalTLSSize = 800; -// External symbol to be used when generating the shadow address for -// architectures with multiple VMAs. Instead of using a constant integer -// the runtime will set the external mask based on the VMA range. +// External symbol to be used when generating the shadow address for +// architectures with multiple VMAs. Instead of using a constant integer +// the runtime will set the external mask based on the VMA range. const char kDFSanExternShadowPtrMask[] = "__dfsan_shadow_ptr_mask"; - -// The -dfsan-preserve-alignment flag controls whether this pass assumes that -// alignment requirements provided by the input IR are correct. For example, -// if the input IR contains a load with alignment 8, this flag will cause -// the shadow load to have alignment 16. This flag is disabled by default as -// we have unfortunately encountered too much code (including Clang itself; -// see PR14291) which performs misaligned access. -static cl::opt<bool> ClPreserveAlignment( - "dfsan-preserve-alignment", - cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, - cl::init(false)); - -// The ABI list files control how shadow parameters are passed. The pass treats -// every function labelled "uninstrumented" in the ABI list file as conforming -// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains -// additional annotations for those functions, a call to one of those functions -// will produce a warning message, as the labelling behaviour of the function is -// unknown. The other supported annotations are "functional" and "discard", -// which are described below under DataFlowSanitizer::WrapperKind. -static cl::list<std::string> ClABIListFiles( - "dfsan-abilist", - cl::desc("File listing native ABI functions and how the pass treats them"), - cl::Hidden); - -// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented -// functions (see DataFlowSanitizer::InstrumentedABI below). -static cl::opt<bool> ClArgsABI( - "dfsan-args-abi", - cl::desc("Use the argument ABI rather than the TLS ABI"), - cl::Hidden); - -// Controls whether the pass includes or ignores the labels of pointers in load -// instructions. -static cl::opt<bool> ClCombinePointerLabelsOnLoad( - "dfsan-combine-pointer-labels-on-load", - cl::desc("Combine the label of the pointer with the label of the data when " - "loading from memory."), - cl::Hidden, cl::init(true)); - -// Controls whether the pass includes or ignores the labels of pointers in -// stores instructions. -static cl::opt<bool> ClCombinePointerLabelsOnStore( - "dfsan-combine-pointer-labels-on-store", - cl::desc("Combine the label of the pointer with the label of the data when " - "storing in memory."), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDebugNonzeroLabels( - "dfsan-debug-nonzero-labels", - cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " - "load or return with a nonzero label"), - cl::Hidden); - -// Experimental feature that inserts callbacks for certain data events. -// Currently callbacks are only inserted for loads, stores, memory transfers -// (i.e. memcpy and memmove), and comparisons. -// -// If this flag is set to true, the user must provide definitions for the -// following callback functions: + +// The -dfsan-preserve-alignment flag controls whether this pass assumes that +// alignment requirements provided by the input IR are correct. For example, +// if the input IR contains a load with alignment 8, this flag will cause +// the shadow load to have alignment 16. This flag is disabled by default as +// we have unfortunately encountered too much code (including Clang itself; +// see PR14291) which performs misaligned access. +static cl::opt<bool> ClPreserveAlignment( + "dfsan-preserve-alignment", + cl::desc("respect alignment requirements provided by input IR"), cl::Hidden, + cl::init(false)); + +// The ABI list files control how shadow parameters are passed. The pass treats +// every function labelled "uninstrumented" in the ABI list file as conforming +// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains +// additional annotations for those functions, a call to one of those functions +// will produce a warning message, as the labelling behaviour of the function is +// unknown. The other supported annotations are "functional" and "discard", +// which are described below under DataFlowSanitizer::WrapperKind. +static cl::list<std::string> ClABIListFiles( + "dfsan-abilist", + cl::desc("File listing native ABI functions and how the pass treats them"), + cl::Hidden); + +// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented +// functions (see DataFlowSanitizer::InstrumentedABI below). +static cl::opt<bool> ClArgsABI( + "dfsan-args-abi", + cl::desc("Use the argument ABI rather than the TLS ABI"), + cl::Hidden); + +// Controls whether the pass includes or ignores the labels of pointers in load +// instructions. +static cl::opt<bool> ClCombinePointerLabelsOnLoad( + "dfsan-combine-pointer-labels-on-load", + cl::desc("Combine the label of the pointer with the label of the data when " + "loading from memory."), + cl::Hidden, cl::init(true)); + +// Controls whether the pass includes or ignores the labels of pointers in +// stores instructions. +static cl::opt<bool> ClCombinePointerLabelsOnStore( + "dfsan-combine-pointer-labels-on-store", + cl::desc("Combine the label of the pointer with the label of the data when " + "storing in memory."), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClDebugNonzeroLabels( + "dfsan-debug-nonzero-labels", + cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, " + "load or return with a nonzero label"), + cl::Hidden); + +// Experimental feature that inserts callbacks for certain data events. +// Currently callbacks are only inserted for loads, stores, memory transfers +// (i.e. memcpy and memmove), and comparisons. +// +// If this flag is set to true, the user must provide definitions for the +// following callback functions: // void __dfsan_load_callback(dfsan_label Label, void* addr); // void __dfsan_store_callback(dfsan_label Label, void* addr); -// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); -// void __dfsan_cmp_callback(dfsan_label CombinedLabel); -static cl::opt<bool> ClEventCallbacks( - "dfsan-event-callbacks", - cl::desc("Insert calls to __dfsan_*_callback functions on data events."), - cl::Hidden, cl::init(false)); - +// void __dfsan_mem_transfer_callback(dfsan_label *Start, size_t Len); +// void __dfsan_cmp_callback(dfsan_label CombinedLabel); +static cl::opt<bool> ClEventCallbacks( + "dfsan-event-callbacks", + cl::desc("Insert calls to __dfsan_*_callback functions on data events."), + cl::Hidden, cl::init(false)); + // Use a distinct bit for each base label, enabling faster unions with less // instrumentation. Limits the max number of base labels to 16. static cl::opt<bool> ClFast16Labels( @@ -201,220 +201,220 @@ static cl::opt<bool> ClTrackSelectControlFlow( "to results."), cl::Hidden, cl::init(true)); -static StringRef GetGlobalTypeString(const GlobalValue &G) { - // Types of GlobalVariables are always pointer types. - Type *GType = G.getValueType(); - // For now we support excluding struct types only. - if (StructType *SGType = dyn_cast<StructType>(GType)) { - if (!SGType->isLiteral()) - return SGType->getName(); - } - return "<unknown type>"; -} - -namespace { - -class DFSanABIList { - std::unique_ptr<SpecialCaseList> SCL; - - public: - DFSanABIList() = default; - - void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } - - /// Returns whether either this function or its source file are listed in the - /// given category. - bool isIn(const Function &F, StringRef Category) const { - return isIn(*F.getParent(), Category) || - SCL->inSection("dataflow", "fun", F.getName(), Category); - } - - /// Returns whether this global alias is listed in the given category. - /// - /// If GA aliases a function, the alias's name is matched as a function name - /// would be. Similarly, aliases of globals are matched like globals. - bool isIn(const GlobalAlias &GA, StringRef Category) const { - if (isIn(*GA.getParent(), Category)) - return true; - - if (isa<FunctionType>(GA.getValueType())) - return SCL->inSection("dataflow", "fun", GA.getName(), Category); - - return SCL->inSection("dataflow", "global", GA.getName(), Category) || - SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), - Category); - } - - /// Returns whether this module is listed in the given category. - bool isIn(const Module &M, StringRef Category) const { - return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); - } -}; - -/// TransformedFunction is used to express the result of transforming one -/// function type into another. This struct is immutable. It holds metadata -/// useful for updating calls of the old function to the new type. -struct TransformedFunction { - TransformedFunction(FunctionType* OriginalType, - FunctionType* TransformedType, - std::vector<unsigned> ArgumentIndexMapping) - : OriginalType(OriginalType), - TransformedType(TransformedType), - ArgumentIndexMapping(ArgumentIndexMapping) {} - - // Disallow copies. - TransformedFunction(const TransformedFunction&) = delete; - TransformedFunction& operator=(const TransformedFunction&) = delete; - - // Allow moves. - TransformedFunction(TransformedFunction&&) = default; - TransformedFunction& operator=(TransformedFunction&&) = default; - - /// Type of the function before the transformation. - FunctionType *OriginalType; - - /// Type of the function after the transformation. - FunctionType *TransformedType; - - /// Transforming a function may change the position of arguments. This - /// member records the mapping from each argument's old position to its new - /// position. Argument positions are zero-indexed. If the transformation - /// from F to F' made the first argument of F into the third argument of F', - /// then ArgumentIndexMapping[0] will equal 2. - std::vector<unsigned> ArgumentIndexMapping; -}; - -/// Given function attributes from a call site for the original function, -/// return function attributes appropriate for a call to the transformed -/// function. -AttributeList TransformFunctionAttributes( - const TransformedFunction& TransformedFunction, - LLVMContext& Ctx, AttributeList CallSiteAttrs) { - - // Construct a vector of AttributeSet for each function argument. - std::vector<llvm::AttributeSet> ArgumentAttributes( - TransformedFunction.TransformedType->getNumParams()); - - // Copy attributes from the parameter of the original function to the - // transformed version. 'ArgumentIndexMapping' holds the mapping from - // old argument position to new. - for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); - i < ie; ++i) { - unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; - ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); - } - - // Copy annotations on varargs arguments. - for (unsigned i = TransformedFunction.OriginalType->getNumParams(), - ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { - ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); - } - - return AttributeList::get( - Ctx, - CallSiteAttrs.getFnAttributes(), - CallSiteAttrs.getRetAttributes(), - llvm::makeArrayRef(ArgumentAttributes)); -} - +static StringRef GetGlobalTypeString(const GlobalValue &G) { + // Types of GlobalVariables are always pointer types. + Type *GType = G.getValueType(); + // For now we support excluding struct types only. + if (StructType *SGType = dyn_cast<StructType>(GType)) { + if (!SGType->isLiteral()) + return SGType->getName(); + } + return "<unknown type>"; +} + +namespace { + +class DFSanABIList { + std::unique_ptr<SpecialCaseList> SCL; + + public: + DFSanABIList() = default; + + void set(std::unique_ptr<SpecialCaseList> List) { SCL = std::move(List); } + + /// Returns whether either this function or its source file are listed in the + /// given category. + bool isIn(const Function &F, StringRef Category) const { + return isIn(*F.getParent(), Category) || + SCL->inSection("dataflow", "fun", F.getName(), Category); + } + + /// Returns whether this global alias is listed in the given category. + /// + /// If GA aliases a function, the alias's name is matched as a function name + /// would be. Similarly, aliases of globals are matched like globals. + bool isIn(const GlobalAlias &GA, StringRef Category) const { + if (isIn(*GA.getParent(), Category)) + return true; + + if (isa<FunctionType>(GA.getValueType())) + return SCL->inSection("dataflow", "fun", GA.getName(), Category); + + return SCL->inSection("dataflow", "global", GA.getName(), Category) || + SCL->inSection("dataflow", "type", GetGlobalTypeString(GA), + Category); + } + + /// Returns whether this module is listed in the given category. + bool isIn(const Module &M, StringRef Category) const { + return SCL->inSection("dataflow", "src", M.getModuleIdentifier(), Category); + } +}; + +/// TransformedFunction is used to express the result of transforming one +/// function type into another. This struct is immutable. It holds metadata +/// useful for updating calls of the old function to the new type. +struct TransformedFunction { + TransformedFunction(FunctionType* OriginalType, + FunctionType* TransformedType, + std::vector<unsigned> ArgumentIndexMapping) + : OriginalType(OriginalType), + TransformedType(TransformedType), + ArgumentIndexMapping(ArgumentIndexMapping) {} + + // Disallow copies. + TransformedFunction(const TransformedFunction&) = delete; + TransformedFunction& operator=(const TransformedFunction&) = delete; + + // Allow moves. + TransformedFunction(TransformedFunction&&) = default; + TransformedFunction& operator=(TransformedFunction&&) = default; + + /// Type of the function before the transformation. + FunctionType *OriginalType; + + /// Type of the function after the transformation. + FunctionType *TransformedType; + + /// Transforming a function may change the position of arguments. This + /// member records the mapping from each argument's old position to its new + /// position. Argument positions are zero-indexed. If the transformation + /// from F to F' made the first argument of F into the third argument of F', + /// then ArgumentIndexMapping[0] will equal 2. + std::vector<unsigned> ArgumentIndexMapping; +}; + +/// Given function attributes from a call site for the original function, +/// return function attributes appropriate for a call to the transformed +/// function. +AttributeList TransformFunctionAttributes( + const TransformedFunction& TransformedFunction, + LLVMContext& Ctx, AttributeList CallSiteAttrs) { + + // Construct a vector of AttributeSet for each function argument. + std::vector<llvm::AttributeSet> ArgumentAttributes( + TransformedFunction.TransformedType->getNumParams()); + + // Copy attributes from the parameter of the original function to the + // transformed version. 'ArgumentIndexMapping' holds the mapping from + // old argument position to new. + for (unsigned i=0, ie = TransformedFunction.ArgumentIndexMapping.size(); + i < ie; ++i) { + unsigned TransformedIndex = TransformedFunction.ArgumentIndexMapping[i]; + ArgumentAttributes[TransformedIndex] = CallSiteAttrs.getParamAttributes(i); + } + + // Copy annotations on varargs arguments. + for (unsigned i = TransformedFunction.OriginalType->getNumParams(), + ie = CallSiteAttrs.getNumAttrSets(); i<ie; ++i) { + ArgumentAttributes.push_back(CallSiteAttrs.getParamAttributes(i)); + } + + return AttributeList::get( + Ctx, + CallSiteAttrs.getFnAttributes(), + CallSiteAttrs.getRetAttributes(), + llvm::makeArrayRef(ArgumentAttributes)); +} + class DataFlowSanitizer { - friend struct DFSanFunction; - friend class DFSanVisitor; - - enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; - - /// Which ABI should be used for instrumented functions? - enum InstrumentedABI { - /// Argument and return value labels are passed through additional - /// arguments and by modifying the return type. - IA_Args, - - /// Argument and return value labels are passed through TLS variables - /// __dfsan_arg_tls and __dfsan_retval_tls. - IA_TLS - }; - - /// How should calls to uninstrumented functions be handled? - enum WrapperKind { - /// This function is present in an uninstrumented form but we don't know - /// how it should be handled. Print a warning and call the function anyway. - /// Don't label the return value. - WK_Warning, - - /// This function does not write to (user-accessible) memory, and its return - /// value is unlabelled. - WK_Discard, - - /// This function does not write to (user-accessible) memory, and the label - /// of its return value is the union of the label of its arguments. - WK_Functional, - - /// Instead of calling the function, a custom wrapper __dfsw_F is called, - /// where F is the name of the function. This function may wrap the - /// original function or provide its own implementation. This is similar to - /// the IA_Args ABI, except that IA_Args uses a struct return type to - /// pass the return value shadow in a register, while WK_Custom uses an - /// extra pointer argument to return the shadow. This allows the wrapped - /// form of the function type to be expressed in C. - WK_Custom - }; - - Module *Mod; - LLVMContext *Ctx; + friend struct DFSanFunction; + friend class DFSanVisitor; + + enum { ShadowWidthBits = 16, ShadowWidthBytes = ShadowWidthBits / 8 }; + + /// Which ABI should be used for instrumented functions? + enum InstrumentedABI { + /// Argument and return value labels are passed through additional + /// arguments and by modifying the return type. + IA_Args, + + /// Argument and return value labels are passed through TLS variables + /// __dfsan_arg_tls and __dfsan_retval_tls. + IA_TLS + }; + + /// How should calls to uninstrumented functions be handled? + enum WrapperKind { + /// This function is present in an uninstrumented form but we don't know + /// how it should be handled. Print a warning and call the function anyway. + /// Don't label the return value. + WK_Warning, + + /// This function does not write to (user-accessible) memory, and its return + /// value is unlabelled. + WK_Discard, + + /// This function does not write to (user-accessible) memory, and the label + /// of its return value is the union of the label of its arguments. + WK_Functional, + + /// Instead of calling the function, a custom wrapper __dfsw_F is called, + /// where F is the name of the function. This function may wrap the + /// original function or provide its own implementation. This is similar to + /// the IA_Args ABI, except that IA_Args uses a struct return type to + /// pass the return value shadow in a register, while WK_Custom uses an + /// extra pointer argument to return the shadow. This allows the wrapped + /// form of the function type to be expressed in C. + WK_Custom + }; + + Module *Mod; + LLVMContext *Ctx; Type *Int8Ptr; /// The shadow type for all primitive types and vector types. IntegerType *PrimitiveShadowTy; PointerType *PrimitiveShadowPtrTy; - IntegerType *IntptrTy; + IntegerType *IntptrTy; ConstantInt *ZeroPrimitiveShadow; - ConstantInt *ShadowPtrMask; - ConstantInt *ShadowPtrMul; - Constant *ArgTLS; - Constant *RetvalTLS; - Constant *ExternalShadowMask; - FunctionType *DFSanUnionFnTy; - FunctionType *DFSanUnionLoadFnTy; - FunctionType *DFSanUnimplementedFnTy; - FunctionType *DFSanSetLabelFnTy; - FunctionType *DFSanNonzeroLabelFnTy; - FunctionType *DFSanVarargWrapperFnTy; + ConstantInt *ShadowPtrMask; + ConstantInt *ShadowPtrMul; + Constant *ArgTLS; + Constant *RetvalTLS; + Constant *ExternalShadowMask; + FunctionType *DFSanUnionFnTy; + FunctionType *DFSanUnionLoadFnTy; + FunctionType *DFSanUnimplementedFnTy; + FunctionType *DFSanSetLabelFnTy; + FunctionType *DFSanNonzeroLabelFnTy; + FunctionType *DFSanVarargWrapperFnTy; FunctionType *DFSanCmpCallbackFnTy; FunctionType *DFSanLoadStoreCallbackFnTy; - FunctionType *DFSanMemTransferCallbackFnTy; - FunctionCallee DFSanUnionFn; - FunctionCallee DFSanCheckedUnionFn; - FunctionCallee DFSanUnionLoadFn; + FunctionType *DFSanMemTransferCallbackFnTy; + FunctionCallee DFSanUnionFn; + FunctionCallee DFSanCheckedUnionFn; + FunctionCallee DFSanUnionLoadFn; FunctionCallee DFSanUnionLoadFast16LabelsFn; - FunctionCallee DFSanUnimplementedFn; - FunctionCallee DFSanSetLabelFn; - FunctionCallee DFSanNonzeroLabelFn; - FunctionCallee DFSanVarargWrapperFn; - FunctionCallee DFSanLoadCallbackFn; - FunctionCallee DFSanStoreCallbackFn; - FunctionCallee DFSanMemTransferCallbackFn; - FunctionCallee DFSanCmpCallbackFn; - MDNode *ColdCallWeights; - DFSanABIList ABIList; - DenseMap<Value *, Function *> UnwrappedFnMap; - AttrBuilder ReadOnlyNoneAttrs; - bool DFSanRuntimeShadowMask = false; - - Value *getShadowAddress(Value *Addr, Instruction *Pos); - bool isInstrumented(const Function *F); - bool isInstrumented(const GlobalAlias *GA); - FunctionType *getArgsFunctionType(FunctionType *T); - FunctionType *getTrampolineFunctionType(FunctionType *T); - TransformedFunction getCustomFunctionType(FunctionType *T); - InstrumentedABI getInstrumentedABI(); - WrapperKind getWrapperKind(Function *F); - void addGlobalNamePrefix(GlobalValue *GV); - Function *buildWrapperFunction(Function *F, StringRef NewFName, - GlobalValue::LinkageTypes NewFLink, - FunctionType *NewFT); - Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); - void initializeCallbackFunctions(Module &M); - void initializeRuntimeFunctions(Module &M); - + FunctionCallee DFSanUnimplementedFn; + FunctionCallee DFSanSetLabelFn; + FunctionCallee DFSanNonzeroLabelFn; + FunctionCallee DFSanVarargWrapperFn; + FunctionCallee DFSanLoadCallbackFn; + FunctionCallee DFSanStoreCallbackFn; + FunctionCallee DFSanMemTransferCallbackFn; + FunctionCallee DFSanCmpCallbackFn; + MDNode *ColdCallWeights; + DFSanABIList ABIList; + DenseMap<Value *, Function *> UnwrappedFnMap; + AttrBuilder ReadOnlyNoneAttrs; + bool DFSanRuntimeShadowMask = false; + + Value *getShadowAddress(Value *Addr, Instruction *Pos); + bool isInstrumented(const Function *F); + bool isInstrumented(const GlobalAlias *GA); + FunctionType *getArgsFunctionType(FunctionType *T); + FunctionType *getTrampolineFunctionType(FunctionType *T); + TransformedFunction getCustomFunctionType(FunctionType *T); + InstrumentedABI getInstrumentedABI(); + WrapperKind getWrapperKind(Function *F); + void addGlobalNamePrefix(GlobalValue *GV); + Function *buildWrapperFunction(Function *F, StringRef NewFName, + GlobalValue::LinkageTypes NewFLink, + FunctionType *NewFT); + Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName); + void initializeCallbackFunctions(Module &M); + void initializeRuntimeFunctions(Module &M); + bool init(Module &M); /// Returns whether the pass tracks labels for struct fields and array @@ -448,30 +448,30 @@ class DataFlowSanitizer { /// Returns the shadow type of of V's type. Type *getShadowTy(Value *V); -public: +public: DataFlowSanitizer(const std::vector<std::string> &ABIListFiles); - + bool runImpl(Module &M); -}; - -struct DFSanFunction { - DataFlowSanitizer &DFS; - Function *F; - DominatorTree DT; - DataFlowSanitizer::InstrumentedABI IA; - bool IsNativeABI; - AllocaInst *LabelReturnAlloca = nullptr; - DenseMap<Value *, Value *> ValShadowMap; - DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; - std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; - DenseSet<Instruction *> SkipInsts; - std::vector<Value *> NonZeroChecks; - bool AvoidNewBlocks; - +}; + +struct DFSanFunction { + DataFlowSanitizer &DFS; + Function *F; + DominatorTree DT; + DataFlowSanitizer::InstrumentedABI IA; + bool IsNativeABI; + AllocaInst *LabelReturnAlloca = nullptr; + DenseMap<Value *, Value *> ValShadowMap; + DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap; + std::vector<std::pair<PHINode *, PHINode *>> PHIFixups; + DenseSet<Instruction *> SkipInsts; + std::vector<Value *> NonZeroChecks; + bool AvoidNewBlocks; + struct CachedShadow { BasicBlock *Block; // The block where Shadow is defined. - Value *Shadow; - }; + Value *Shadow; + }; /// Maps a value to its latest shadow value in terms of domination tree. DenseMap<std::pair<Value *, Value *>, CachedShadow> CachedShadows; /// Maps a value to its latest collapsed shadow value it was converted to in @@ -479,16 +479,16 @@ struct DFSanFunction { /// used at a post process where CFG blocks are split. So it does not cache /// BasicBlock like CachedShadows, but uses domination between values. DenseMap<Value *, Value *> CachedCollapsedShadows; - DenseMap<Value *, std::set<Value *>> ShadowElements; - - DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) - : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { - DT.recalculate(*F); - // FIXME: Need to track down the register allocator issue which causes poor - // performance in pathological cases with large numbers of basic blocks. - AvoidNewBlocks = F->size() > 1000; - } - + DenseMap<Value *, std::set<Value *>> ShadowElements; + + DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI) + : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()), IsNativeABI(IsNativeABI) { + DT.recalculate(*F); + // FIXME: Need to track down the register allocator issue which causes poor + // performance in pathological cases with large numbers of basic blocks. + AvoidNewBlocks = F->size() > 1000; + } + /// Computes the shadow address for a given function argument. /// /// Shadow = ArgTLS+ArgOffset. @@ -497,18 +497,18 @@ struct DFSanFunction { /// Computes the shadow address for a retval. Value *getRetvalTLS(Type *T, IRBuilder<> &IRB); - Value *getShadow(Value *V); - void setShadow(Instruction *I, Value *Shadow); + Value *getShadow(Value *V); + void setShadow(Instruction *I, Value *Shadow); /// Generates IR to compute the union of the two given shadows, inserting it /// before Pos. The combined value is with primitive type. - Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); + Value *combineShadows(Value *V1, Value *V2, Instruction *Pos); /// Combines the shadow values of V1 and V2, then converts the combined value /// with primitive type into a shadow value with the original type T. Value *combineShadowsThenConvert(Type *T, Value *V1, Value *V2, Instruction *Pos); - Value *combineOperandShadows(Instruction *Inst); - Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, - Instruction *Pos); + Value *combineOperandShadows(Instruction *Inst); + Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align, + Instruction *Pos); void storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, Value *PrimitiveShadow, Instruction *Pos); /// Applies PrimitiveShadow to all primitive subtypes of T, returning @@ -539,110 +539,110 @@ private: /// Returns the shadow value of an argument A. Value *getShadowForTLSArgument(Argument *A); -}; - -class DFSanVisitor : public InstVisitor<DFSanVisitor> { -public: - DFSanFunction &DFSF; - - DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} - - const DataLayout &getDataLayout() const { - return DFSF.F->getParent()->getDataLayout(); - } - - // Combines shadow values for all of I's operands. Returns the combined shadow - // value. - Value *visitOperandShadowInst(Instruction &I); - - void visitUnaryOperator(UnaryOperator &UO); - void visitBinaryOperator(BinaryOperator &BO); - void visitCastInst(CastInst &CI); - void visitCmpInst(CmpInst &CI); - void visitGetElementPtrInst(GetElementPtrInst &GEPI); - void visitLoadInst(LoadInst &LI); - void visitStoreInst(StoreInst &SI); - void visitReturnInst(ReturnInst &RI); - void visitCallBase(CallBase &CB); - void visitPHINode(PHINode &PN); - void visitExtractElementInst(ExtractElementInst &I); - void visitInsertElementInst(InsertElementInst &I); - void visitShuffleVectorInst(ShuffleVectorInst &I); - void visitExtractValueInst(ExtractValueInst &I); - void visitInsertValueInst(InsertValueInst &I); - void visitAllocaInst(AllocaInst &I); - void visitSelectInst(SelectInst &I); - void visitMemSetInst(MemSetInst &I); - void visitMemTransferInst(MemTransferInst &I); -}; - -} // end anonymous namespace - -DataFlowSanitizer::DataFlowSanitizer( +}; + +class DFSanVisitor : public InstVisitor<DFSanVisitor> { +public: + DFSanFunction &DFSF; + + DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {} + + const DataLayout &getDataLayout() const { + return DFSF.F->getParent()->getDataLayout(); + } + + // Combines shadow values for all of I's operands. Returns the combined shadow + // value. + Value *visitOperandShadowInst(Instruction &I); + + void visitUnaryOperator(UnaryOperator &UO); + void visitBinaryOperator(BinaryOperator &BO); + void visitCastInst(CastInst &CI); + void visitCmpInst(CmpInst &CI); + void visitGetElementPtrInst(GetElementPtrInst &GEPI); + void visitLoadInst(LoadInst &LI); + void visitStoreInst(StoreInst &SI); + void visitReturnInst(ReturnInst &RI); + void visitCallBase(CallBase &CB); + void visitPHINode(PHINode &PN); + void visitExtractElementInst(ExtractElementInst &I); + void visitInsertElementInst(InsertElementInst &I); + void visitShuffleVectorInst(ShuffleVectorInst &I); + void visitExtractValueInst(ExtractValueInst &I); + void visitInsertValueInst(InsertValueInst &I); + void visitAllocaInst(AllocaInst &I); + void visitSelectInst(SelectInst &I); + void visitMemSetInst(MemSetInst &I); + void visitMemTransferInst(MemTransferInst &I); +}; + +} // end anonymous namespace + +DataFlowSanitizer::DataFlowSanitizer( const std::vector<std::string> &ABIListFiles) { - std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); + std::vector<std::string> AllABIListFiles(std::move(ABIListFiles)); llvm::append_range(AllABIListFiles, ClABIListFiles); - // FIXME: should we propagate vfs::FileSystem to this constructor? - ABIList.set( - SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); -} - -FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { - SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); + // FIXME: should we propagate vfs::FileSystem to this constructor? + ABIList.set( + SpecialCaseList::createOrDie(AllABIListFiles, *vfs::getRealFileSystem())); +} + +FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) { + SmallVector<Type *, 4> ArgTypes(T->param_begin(), T->param_end()); ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); - if (T->isVarArg()) + if (T->isVarArg()) ArgTypes.push_back(PrimitiveShadowPtrTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) + Type *RetType = T->getReturnType(); + if (!RetType->isVoidTy()) RetType = StructType::get(RetType, PrimitiveShadowTy); - return FunctionType::get(RetType, ArgTypes, T->isVarArg()); -} - -FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { - assert(!T->isVarArg()); - SmallVector<Type *, 4> ArgTypes; - ArgTypes.push_back(T->getPointerTo()); - ArgTypes.append(T->param_begin(), T->param_end()); + return FunctionType::get(RetType, ArgTypes, T->isVarArg()); +} + +FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) { + assert(!T->isVarArg()); + SmallVector<Type *, 4> ArgTypes; + ArgTypes.push_back(T->getPointerTo()); + ArgTypes.append(T->param_begin(), T->param_end()); ArgTypes.append(T->getNumParams(), PrimitiveShadowTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) + Type *RetType = T->getReturnType(); + if (!RetType->isVoidTy()) ArgTypes.push_back(PrimitiveShadowPtrTy); - return FunctionType::get(T->getReturnType(), ArgTypes, false); -} - -TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { - SmallVector<Type *, 4> ArgTypes; - - // Some parameters of the custom function being constructed are - // parameters of T. Record the mapping from parameters of T to - // parameters of the custom function, so that parameter attributes - // at call sites can be updated. - std::vector<unsigned> ArgumentIndexMapping; - for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { - Type* param_type = T->getParamType(i); - FunctionType *FT; - if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( - cast<PointerType>(param_type)->getElementType()))) { - ArgumentIndexMapping.push_back(ArgTypes.size()); - ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); - ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); - } else { - ArgumentIndexMapping.push_back(ArgTypes.size()); - ArgTypes.push_back(param_type); - } - } - for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) + return FunctionType::get(T->getReturnType(), ArgTypes, false); +} + +TransformedFunction DataFlowSanitizer::getCustomFunctionType(FunctionType *T) { + SmallVector<Type *, 4> ArgTypes; + + // Some parameters of the custom function being constructed are + // parameters of T. Record the mapping from parameters of T to + // parameters of the custom function, so that parameter attributes + // at call sites can be updated. + std::vector<unsigned> ArgumentIndexMapping; + for (unsigned i = 0, ie = T->getNumParams(); i != ie; ++i) { + Type* param_type = T->getParamType(i); + FunctionType *FT; + if (isa<PointerType>(param_type) && (FT = dyn_cast<FunctionType>( + cast<PointerType>(param_type)->getElementType()))) { + ArgumentIndexMapping.push_back(ArgTypes.size()); + ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo()); + ArgTypes.push_back(Type::getInt8PtrTy(*Ctx)); + } else { + ArgumentIndexMapping.push_back(ArgTypes.size()); + ArgTypes.push_back(param_type); + } + } + for (unsigned i = 0, e = T->getNumParams(); i != e; ++i) ArgTypes.push_back(PrimitiveShadowTy); - if (T->isVarArg()) + if (T->isVarArg()) ArgTypes.push_back(PrimitiveShadowPtrTy); - Type *RetType = T->getReturnType(); - if (!RetType->isVoidTy()) + Type *RetType = T->getReturnType(); + if (!RetType->isVoidTy()) ArgTypes.push_back(PrimitiveShadowPtrTy); - return TransformedFunction( - T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), - ArgumentIndexMapping); -} - + return TransformedFunction( + T, FunctionType::get(T->getReturnType(), ArgTypes, T->isVarArg()), + ArgumentIndexMapping); +} + bool DataFlowSanitizer::isZeroShadow(Value *V) { if (!shouldTrackFieldsAndIndices()) return ZeroPrimitiveShadow == V; @@ -800,48 +800,48 @@ Type *DataFlowSanitizer::getShadowTy(Value *V) { } bool DataFlowSanitizer::init(Module &M) { - Triple TargetTriple(M.getTargetTriple()); - bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; - bool IsMIPS64 = TargetTriple.isMIPS64(); - bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || - TargetTriple.getArch() == Triple::aarch64_be; - - const DataLayout &DL = M.getDataLayout(); - - Mod = &M; - Ctx = &M.getContext(); + Triple TargetTriple(M.getTargetTriple()); + bool IsX86_64 = TargetTriple.getArch() == Triple::x86_64; + bool IsMIPS64 = TargetTriple.isMIPS64(); + bool IsAArch64 = TargetTriple.getArch() == Triple::aarch64 || + TargetTriple.getArch() == Triple::aarch64_be; + + const DataLayout &DL = M.getDataLayout(); + + Mod = &M; + Ctx = &M.getContext(); Int8Ptr = Type::getInt8PtrTy(*Ctx); PrimitiveShadowTy = IntegerType::get(*Ctx, ShadowWidthBits); PrimitiveShadowPtrTy = PointerType::getUnqual(PrimitiveShadowTy); - IntptrTy = DL.getIntPtrType(*Ctx); + IntptrTy = DL.getIntPtrType(*Ctx); ZeroPrimitiveShadow = ConstantInt::getSigned(PrimitiveShadowTy, 0); - ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); - if (IsX86_64) - ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); - else if (IsMIPS64) - ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); - // AArch64 supports multiple VMAs and the shadow mask is set at runtime. - else if (IsAArch64) - DFSanRuntimeShadowMask = true; - else - report_fatal_error("unsupported triple"); - + ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidthBytes); + if (IsX86_64) + ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL); + else if (IsMIPS64) + ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0xF000000000LL); + // AArch64 supports multiple VMAs and the shadow mask is set at runtime. + else if (IsAArch64) + DFSanRuntimeShadowMask = true; + else + report_fatal_error("unsupported triple"); + Type *DFSanUnionArgs[2] = {PrimitiveShadowTy, PrimitiveShadowTy}; - DFSanUnionFnTy = + DFSanUnionFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionArgs, /*isVarArg=*/false); Type *DFSanUnionLoadArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; DFSanUnionLoadFnTy = FunctionType::get(PrimitiveShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/false); - DFSanUnimplementedFnTy = FunctionType::get( - Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); + DFSanUnimplementedFnTy = FunctionType::get( + Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); Type *DFSanSetLabelArgs[3] = {PrimitiveShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy}; - DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), - DFSanSetLabelArgs, /*isVarArg=*/false); + DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), + DFSanSetLabelArgs, /*isVarArg=*/false); DFSanNonzeroLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx), None, /*isVarArg=*/false); - DFSanVarargWrapperFnTy = FunctionType::get( - Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); + DFSanVarargWrapperFnTy = FunctionType::get( + Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false); DFSanCmpCallbackFnTy = FunctionType::get(Type::getVoidTy(*Ctx), PrimitiveShadowTy, /*isVarArg=*/false); @@ -850,169 +850,169 @@ bool DataFlowSanitizer::init(Module &M) { FunctionType::get(Type::getVoidTy(*Ctx), DFSanLoadStoreCallbackArgs, /*isVarArg=*/false); Type *DFSanMemTransferCallbackArgs[2] = {PrimitiveShadowPtrTy, IntptrTy}; - DFSanMemTransferCallbackFnTy = - FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, - /*isVarArg=*/false); - - ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); - return true; -} - -bool DataFlowSanitizer::isInstrumented(const Function *F) { - return !ABIList.isIn(*F, "uninstrumented"); -} - -bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { - return !ABIList.isIn(*GA, "uninstrumented"); -} - -DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { - return ClArgsABI ? IA_Args : IA_TLS; -} - -DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { - if (ABIList.isIn(*F, "functional")) - return WK_Functional; - if (ABIList.isIn(*F, "discard")) - return WK_Discard; - if (ABIList.isIn(*F, "custom")) - return WK_Custom; - - return WK_Warning; -} - -void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { - std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; - GV->setName(Prefix + GVName); - - // Try to change the name of the function in module inline asm. We only do - // this for specific asm directives, currently only ".symver", to try to avoid - // corrupting asm which happens to contain the symbol name as a substring. - // Note that the substitution for .symver assumes that the versioned symbol - // also has an instrumented name. - std::string Asm = GV->getParent()->getModuleInlineAsm(); - std::string SearchStr = ".symver " + GVName + ","; - size_t Pos = Asm.find(SearchStr); - if (Pos != std::string::npos) { - Asm.replace(Pos, SearchStr.size(), - ".symver " + Prefix + GVName + "," + Prefix); - GV->getParent()->setModuleInlineAsm(Asm); - } -} - -Function * -DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, - GlobalValue::LinkageTypes NewFLink, - FunctionType *NewFT) { - FunctionType *FT = F->getFunctionType(); - Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), - NewFName, F->getParent()); - NewF->copyAttributesFrom(F); - NewF->removeAttributes( - AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewFT->getReturnType())); - - BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); - if (F->isVarArg()) { - NewF->removeAttributes(AttributeList::FunctionIndex, - AttrBuilder().addAttribute("split-stack")); - CallInst::Create(DFSanVarargWrapperFn, - IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", - BB); - new UnreachableInst(*Ctx, BB); - } else { - std::vector<Value *> Args; - unsigned n = FT->getNumParams(); - for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) - Args.push_back(&*ai); - CallInst *CI = CallInst::Create(F, Args, "", BB); - if (FT->getReturnType()->isVoidTy()) - ReturnInst::Create(*Ctx, BB); - else - ReturnInst::Create(*Ctx, CI, BB); - } - - return NewF; -} - -Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, - StringRef FName) { - FunctionType *FTT = getTrampolineFunctionType(FT); - FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); - Function *F = dyn_cast<Function>(C.getCallee()); - if (F && F->isDeclaration()) { - F->setLinkage(GlobalValue::LinkOnceODRLinkage); - BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); - std::vector<Value *> Args; - Function::arg_iterator AI = F->arg_begin(); ++AI; - for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) - Args.push_back(&*AI); - CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); - ReturnInst *RI; - if (FT->getReturnType()->isVoidTy()) - RI = ReturnInst::Create(*Ctx, BB); - else - RI = ReturnInst::Create(*Ctx, CI, BB); - + DFSanMemTransferCallbackFnTy = + FunctionType::get(Type::getVoidTy(*Ctx), DFSanMemTransferCallbackArgs, + /*isVarArg=*/false); + + ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000); + return true; +} + +bool DataFlowSanitizer::isInstrumented(const Function *F) { + return !ABIList.isIn(*F, "uninstrumented"); +} + +bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) { + return !ABIList.isIn(*GA, "uninstrumented"); +} + +DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() { + return ClArgsABI ? IA_Args : IA_TLS; +} + +DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) { + if (ABIList.isIn(*F, "functional")) + return WK_Functional; + if (ABIList.isIn(*F, "discard")) + return WK_Discard; + if (ABIList.isIn(*F, "custom")) + return WK_Custom; + + return WK_Warning; +} + +void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) { + std::string GVName = std::string(GV->getName()), Prefix = "dfs$"; + GV->setName(Prefix + GVName); + + // Try to change the name of the function in module inline asm. We only do + // this for specific asm directives, currently only ".symver", to try to avoid + // corrupting asm which happens to contain the symbol name as a substring. + // Note that the substitution for .symver assumes that the versioned symbol + // also has an instrumented name. + std::string Asm = GV->getParent()->getModuleInlineAsm(); + std::string SearchStr = ".symver " + GVName + ","; + size_t Pos = Asm.find(SearchStr); + if (Pos != std::string::npos) { + Asm.replace(Pos, SearchStr.size(), + ".symver " + Prefix + GVName + "," + Prefix); + GV->getParent()->setModuleInlineAsm(Asm); + } +} + +Function * +DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName, + GlobalValue::LinkageTypes NewFLink, + FunctionType *NewFT) { + FunctionType *FT = F->getFunctionType(); + Function *NewF = Function::Create(NewFT, NewFLink, F->getAddressSpace(), + NewFName, F->getParent()); + NewF->copyAttributesFrom(F); + NewF->removeAttributes( + AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewFT->getReturnType())); + + BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF); + if (F->isVarArg()) { + NewF->removeAttributes(AttributeList::FunctionIndex, + AttrBuilder().addAttribute("split-stack")); + CallInst::Create(DFSanVarargWrapperFn, + IRBuilder<>(BB).CreateGlobalStringPtr(F->getName()), "", + BB); + new UnreachableInst(*Ctx, BB); + } else { + std::vector<Value *> Args; + unsigned n = FT->getNumParams(); + for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n) + Args.push_back(&*ai); + CallInst *CI = CallInst::Create(F, Args, "", BB); + if (FT->getReturnType()->isVoidTy()) + ReturnInst::Create(*Ctx, BB); + else + ReturnInst::Create(*Ctx, CI, BB); + } + + return NewF; +} + +Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT, + StringRef FName) { + FunctionType *FTT = getTrampolineFunctionType(FT); + FunctionCallee C = Mod->getOrInsertFunction(FName, FTT); + Function *F = dyn_cast<Function>(C.getCallee()); + if (F && F->isDeclaration()) { + F->setLinkage(GlobalValue::LinkOnceODRLinkage); + BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); + std::vector<Value *> Args; + Function::arg_iterator AI = F->arg_begin(); ++AI; + for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N) + Args.push_back(&*AI); + CallInst *CI = CallInst::Create(FT, &*F->arg_begin(), Args, "", BB); + ReturnInst *RI; + if (FT->getReturnType()->isVoidTy()) + RI = ReturnInst::Create(*Ctx, BB); + else + RI = ReturnInst::Create(*Ctx, CI, BB); + // F is called by a wrapped custom function with primitive shadows. So // its arguments and return value need conversion. - DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); - Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; + DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true); + Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI; for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N) { Value *Shadow = DFSF.expandFromPrimitiveShadow(ValAI->getType(), &*ShadowAI, CI); DFSF.ValShadowMap[&*ValAI] = Shadow; } - DFSanVisitor(DFSF).visitCallInst(*CI); + DFSanVisitor(DFSF).visitCallInst(*CI); if (!FT->getReturnType()->isVoidTy()) { Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow( DFSF.getShadow(RI->getReturnValue()), RI); new StoreInst(PrimitiveShadow, &*std::prev(F->arg_end()), RI); } - } - - return cast<Constant>(C.getCallee()); -} - -// Initialize DataFlowSanitizer runtime functions and declare them in the module -void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { - { - AttributeList AL; - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::NoUnwind); - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::ReadNone); - AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, - Attribute::ZExt); - AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); - AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); - DFSanUnionFn = - Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); - } - { - AttributeList AL; - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::NoUnwind); - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::ReadNone); - AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, - Attribute::ZExt); - AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); - AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); - DFSanCheckedUnionFn = - Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); - } - { - AttributeList AL; - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::NoUnwind); - AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::ReadOnly); - AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, - Attribute::ZExt); - DFSanUnionLoadFn = - Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); - } + } + + return cast<Constant>(C.getCallee()); +} + +// Initialize DataFlowSanitizer runtime functions and declare them in the module +void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { + { + AttributeList AL; + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::NoUnwind); + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::ReadNone); + AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, + Attribute::ZExt); + AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); + AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); + DFSanUnionFn = + Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy, AL); + } + { + AttributeList AL; + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::NoUnwind); + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::ReadNone); + AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, + Attribute::ZExt); + AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); + AL = AL.addParamAttribute(M.getContext(), 1, Attribute::ZExt); + DFSanCheckedUnionFn = + Mod->getOrInsertFunction("dfsan_union", DFSanUnionFnTy, AL); + } + { + AttributeList AL; + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::NoUnwind); + AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::ReadOnly); + AL = AL.addAttribute(M.getContext(), AttributeList::ReturnIndex, + Attribute::ZExt); + DFSanUnionLoadFn = + Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy, AL); + } { AttributeList AL; AL = AL.addAttribute(M.getContext(), AttributeList::FunctionIndex, @@ -1024,285 +1024,285 @@ void DataFlowSanitizer::initializeRuntimeFunctions(Module &M) { DFSanUnionLoadFast16LabelsFn = Mod->getOrInsertFunction( "__dfsan_union_load_fast16labels", DFSanUnionLoadFnTy, AL); } - DFSanUnimplementedFn = - Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); - { - AttributeList AL; - AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); - DFSanSetLabelFn = - Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); - } - DFSanNonzeroLabelFn = - Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); - DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", - DFSanVarargWrapperFnTy); -} - -// Initializes event callback functions and declare them in the module -void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { - DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", + DFSanUnimplementedFn = + Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy); + { + AttributeList AL; + AL = AL.addParamAttribute(M.getContext(), 0, Attribute::ZExt); + DFSanSetLabelFn = + Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy, AL); + } + DFSanNonzeroLabelFn = + Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy); + DFSanVarargWrapperFn = Mod->getOrInsertFunction("__dfsan_vararg_wrapper", + DFSanVarargWrapperFnTy); +} + +// Initializes event callback functions and declare them in the module +void DataFlowSanitizer::initializeCallbackFunctions(Module &M) { + DFSanLoadCallbackFn = Mod->getOrInsertFunction("__dfsan_load_callback", DFSanLoadStoreCallbackFnTy); DFSanStoreCallbackFn = Mod->getOrInsertFunction("__dfsan_store_callback", DFSanLoadStoreCallbackFnTy); - DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( - "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); + DFSanMemTransferCallbackFn = Mod->getOrInsertFunction( + "__dfsan_mem_transfer_callback", DFSanMemTransferCallbackFnTy); DFSanCmpCallbackFn = Mod->getOrInsertFunction("__dfsan_cmp_callback", DFSanCmpCallbackFnTy); -} - +} + bool DataFlowSanitizer::runImpl(Module &M) { init(M); - if (ABIList.isIn(M, "skip")) - return false; - - const unsigned InitialGlobalSize = M.global_size(); - const unsigned InitialModuleSize = M.size(); - - bool Changed = false; - + if (ABIList.isIn(M, "skip")) + return false; + + const unsigned InitialGlobalSize = M.global_size(); + const unsigned InitialModuleSize = M.size(); + + bool Changed = false; + Type *ArgTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kArgTLSSize / 8); ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy); if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS)) { Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); - } + } Type *RetvalTLSTy = ArrayType::get(Type::getInt64Ty(*Ctx), kRetvalTLSSize / 8); RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", RetvalTLSTy); if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS)) { Changed |= G->getThreadLocalMode() != GlobalVariable::InitialExecTLSModel; G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel); - } - - ExternalShadowMask = - Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); - - initializeCallbackFunctions(M); - initializeRuntimeFunctions(M); - - std::vector<Function *> FnsToInstrument; - SmallPtrSet<Function *, 2> FnsWithNativeABI; - for (Function &i : M) { - if (!i.isIntrinsic() && - &i != DFSanUnionFn.getCallee()->stripPointerCasts() && - &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && - &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && + } + + ExternalShadowMask = + Mod->getOrInsertGlobal(kDFSanExternShadowPtrMask, IntptrTy); + + initializeCallbackFunctions(M); + initializeRuntimeFunctions(M); + + std::vector<Function *> FnsToInstrument; + SmallPtrSet<Function *, 2> FnsWithNativeABI; + for (Function &i : M) { + if (!i.isIntrinsic() && + &i != DFSanUnionFn.getCallee()->stripPointerCasts() && + &i != DFSanCheckedUnionFn.getCallee()->stripPointerCasts() && + &i != DFSanUnionLoadFn.getCallee()->stripPointerCasts() && &i != DFSanUnionLoadFast16LabelsFn.getCallee()->stripPointerCasts() && - &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && - &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && - &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && - &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && - &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && - &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && - &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && - &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) - FnsToInstrument.push_back(&i); - } - - // Give function aliases prefixes when necessary, and build wrappers where the - // instrumentedness is inconsistent. - for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { - GlobalAlias *GA = &*i; - ++i; - // Don't stop on weak. We assume people aren't playing games with the - // instrumentedness of overridden weak aliases. - if (auto F = dyn_cast<Function>(GA->getBaseObject())) { - bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); - if (GAInst && FInst) { - addGlobalNamePrefix(GA); - } else if (GAInst != FInst) { - // Non-instrumented alias of an instrumented function, or vice versa. - // Replace the alias with a native-ABI wrapper of the aliasee. The pass - // below will take care of instrumenting it. - Function *NewF = - buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); - GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); - NewF->takeName(GA); - GA->eraseFromParent(); - FnsToInstrument.push_back(NewF); - } - } - } - - ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) - .addAttribute(Attribute::ReadNone); - - // First, change the ABI of every function in the module. ABI-listed - // functions keep their original ABI and get a wrapper function. - for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), - e = FnsToInstrument.end(); - i != e; ++i) { - Function &F = **i; - FunctionType *FT = F.getFunctionType(); - - bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && - FT->getReturnType()->isVoidTy()); - - if (isInstrumented(&F)) { - // Instrumented functions get a 'dfs$' prefix. This allows us to more - // easily identify cases of mismatching ABIs. - if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { - FunctionType *NewFT = getArgsFunctionType(FT); - Function *NewF = Function::Create(NewFT, F.getLinkage(), - F.getAddressSpace(), "", &M); - NewF->copyAttributesFrom(&F); - NewF->removeAttributes( - AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewFT->getReturnType())); - for (Function::arg_iterator FArg = F.arg_begin(), - NewFArg = NewF->arg_begin(), - FArgEnd = F.arg_end(); - FArg != FArgEnd; ++FArg, ++NewFArg) { - FArg->replaceAllUsesWith(&*NewFArg); - } - NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); - - for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); - UI != UE;) { - BlockAddress *BA = dyn_cast<BlockAddress>(*UI); - ++UI; - if (BA) { - BA->replaceAllUsesWith( - BlockAddress::get(NewF, BA->getBasicBlock())); - delete BA; - } - } - F.replaceAllUsesWith( - ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); - NewF->takeName(&F); - F.eraseFromParent(); - *i = NewF; - addGlobalNamePrefix(NewF); - } else { - addGlobalNamePrefix(&F); - } - } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { - // Build a wrapper function for F. The wrapper simply calls F, and is - // added to FnsToInstrument so that any instrumentation according to its - // WrapperKind is done in the second pass below. - FunctionType *NewFT = getInstrumentedABI() == IA_Args - ? getArgsFunctionType(FT) - : FT; - - // If the function being wrapped has local linkage, then preserve the - // function's linkage in the wrapper function. - GlobalValue::LinkageTypes wrapperLinkage = - F.hasLocalLinkage() - ? F.getLinkage() - : GlobalValue::LinkOnceODRLinkage; - - Function *NewF = buildWrapperFunction( - &F, std::string("dfsw$") + std::string(F.getName()), - wrapperLinkage, NewFT); - if (getInstrumentedABI() == IA_TLS) - NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); - - Value *WrappedFnCst = - ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); - F.replaceAllUsesWith(WrappedFnCst); - - UnwrappedFnMap[WrappedFnCst] = &F; - *i = NewF; - - if (!F.isDeclaration()) { - // This function is probably defining an interposition of an - // uninstrumented function and hence needs to keep the original ABI. - // But any functions it may call need to use the instrumented ABI, so - // we instrument it in a mode which preserves the original ABI. - FnsWithNativeABI.insert(&F); - - // This code needs to rebuild the iterators, as they may be invalidated - // by the push_back, taking care that the new range does not include - // any functions added by this code. - size_t N = i - FnsToInstrument.begin(), - Count = e - FnsToInstrument.begin(); - FnsToInstrument.push_back(&F); - i = FnsToInstrument.begin() + N; - e = FnsToInstrument.begin() + Count; - } - // Hopefully, nobody will try to indirectly call a vararg - // function... yet. - } else if (FT->isVarArg()) { - UnwrappedFnMap[&F] = &F; - *i = nullptr; - } - } - - for (Function *i : FnsToInstrument) { - if (!i || i->isDeclaration()) - continue; - - removeUnreachableBlocks(*i); - - DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); - - // DFSanVisitor may create new basic blocks, which confuses df_iterator. - // Build a copy of the list before iterating over it. - SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); - - for (BasicBlock *i : BBList) { - Instruction *Inst = &i->front(); - while (true) { - // DFSanVisitor may split the current basic block, changing the current - // instruction's next pointer and moving the next instruction to the - // tail block from which we should continue. - Instruction *Next = Inst->getNextNode(); - // DFSanVisitor may delete Inst, so keep track of whether it was a - // terminator. - bool IsTerminator = Inst->isTerminator(); - if (!DFSF.SkipInsts.count(Inst)) - DFSanVisitor(DFSF).visit(Inst); - if (IsTerminator) - break; - Inst = Next; - } - } - - // We will not necessarily be able to compute the shadow for every phi node - // until we have visited every block. Therefore, the code that handles phi - // nodes adds them to the PHIFixups list so that they can be properly - // handled here. - for (std::vector<std::pair<PHINode *, PHINode *>>::iterator - i = DFSF.PHIFixups.begin(), - e = DFSF.PHIFixups.end(); - i != e; ++i) { - for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; - ++val) { - i->second->setIncomingValue( - val, DFSF.getShadow(i->first->getIncomingValue(val))); - } - } - - // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy - // places (i.e. instructions in basic blocks we haven't even begun visiting - // yet). To make our life easier, do this work in a pass after the main - // instrumentation. - if (ClDebugNonzeroLabels) { - for (Value *V : DFSF.NonZeroChecks) { - Instruction *Pos; - if (Instruction *I = dyn_cast<Instruction>(V)) - Pos = I->getNextNode(); - else - Pos = &DFSF.F->getEntryBlock().front(); - while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) - Pos = Pos->getNextNode(); - IRBuilder<> IRB(Pos); + &i != DFSanUnimplementedFn.getCallee()->stripPointerCasts() && + &i != DFSanSetLabelFn.getCallee()->stripPointerCasts() && + &i != DFSanNonzeroLabelFn.getCallee()->stripPointerCasts() && + &i != DFSanVarargWrapperFn.getCallee()->stripPointerCasts() && + &i != DFSanLoadCallbackFn.getCallee()->stripPointerCasts() && + &i != DFSanStoreCallbackFn.getCallee()->stripPointerCasts() && + &i != DFSanMemTransferCallbackFn.getCallee()->stripPointerCasts() && + &i != DFSanCmpCallbackFn.getCallee()->stripPointerCasts()) + FnsToInstrument.push_back(&i); + } + + // Give function aliases prefixes when necessary, and build wrappers where the + // instrumentedness is inconsistent. + for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) { + GlobalAlias *GA = &*i; + ++i; + // Don't stop on weak. We assume people aren't playing games with the + // instrumentedness of overridden weak aliases. + if (auto F = dyn_cast<Function>(GA->getBaseObject())) { + bool GAInst = isInstrumented(GA), FInst = isInstrumented(F); + if (GAInst && FInst) { + addGlobalNamePrefix(GA); + } else if (GAInst != FInst) { + // Non-instrumented alias of an instrumented function, or vice versa. + // Replace the alias with a native-ABI wrapper of the aliasee. The pass + // below will take care of instrumenting it. + Function *NewF = + buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType()); + GA->replaceAllUsesWith(ConstantExpr::getBitCast(NewF, GA->getType())); + NewF->takeName(GA); + GA->eraseFromParent(); + FnsToInstrument.push_back(NewF); + } + } + } + + ReadOnlyNoneAttrs.addAttribute(Attribute::ReadOnly) + .addAttribute(Attribute::ReadNone); + + // First, change the ABI of every function in the module. ABI-listed + // functions keep their original ABI and get a wrapper function. + for (std::vector<Function *>::iterator i = FnsToInstrument.begin(), + e = FnsToInstrument.end(); + i != e; ++i) { + Function &F = **i; + FunctionType *FT = F.getFunctionType(); + + bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() && + FT->getReturnType()->isVoidTy()); + + if (isInstrumented(&F)) { + // Instrumented functions get a 'dfs$' prefix. This allows us to more + // easily identify cases of mismatching ABIs. + if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) { + FunctionType *NewFT = getArgsFunctionType(FT); + Function *NewF = Function::Create(NewFT, F.getLinkage(), + F.getAddressSpace(), "", &M); + NewF->copyAttributesFrom(&F); + NewF->removeAttributes( + AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewFT->getReturnType())); + for (Function::arg_iterator FArg = F.arg_begin(), + NewFArg = NewF->arg_begin(), + FArgEnd = F.arg_end(); + FArg != FArgEnd; ++FArg, ++NewFArg) { + FArg->replaceAllUsesWith(&*NewFArg); + } + NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList()); + + for (Function::user_iterator UI = F.user_begin(), UE = F.user_end(); + UI != UE;) { + BlockAddress *BA = dyn_cast<BlockAddress>(*UI); + ++UI; + if (BA) { + BA->replaceAllUsesWith( + BlockAddress::get(NewF, BA->getBasicBlock())); + delete BA; + } + } + F.replaceAllUsesWith( + ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT))); + NewF->takeName(&F); + F.eraseFromParent(); + *i = NewF; + addGlobalNamePrefix(NewF); + } else { + addGlobalNamePrefix(&F); + } + } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) { + // Build a wrapper function for F. The wrapper simply calls F, and is + // added to FnsToInstrument so that any instrumentation according to its + // WrapperKind is done in the second pass below. + FunctionType *NewFT = getInstrumentedABI() == IA_Args + ? getArgsFunctionType(FT) + : FT; + + // If the function being wrapped has local linkage, then preserve the + // function's linkage in the wrapper function. + GlobalValue::LinkageTypes wrapperLinkage = + F.hasLocalLinkage() + ? F.getLinkage() + : GlobalValue::LinkOnceODRLinkage; + + Function *NewF = buildWrapperFunction( + &F, std::string("dfsw$") + std::string(F.getName()), + wrapperLinkage, NewFT); + if (getInstrumentedABI() == IA_TLS) + NewF->removeAttributes(AttributeList::FunctionIndex, ReadOnlyNoneAttrs); + + Value *WrappedFnCst = + ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)); + F.replaceAllUsesWith(WrappedFnCst); + + UnwrappedFnMap[WrappedFnCst] = &F; + *i = NewF; + + if (!F.isDeclaration()) { + // This function is probably defining an interposition of an + // uninstrumented function and hence needs to keep the original ABI. + // But any functions it may call need to use the instrumented ABI, so + // we instrument it in a mode which preserves the original ABI. + FnsWithNativeABI.insert(&F); + + // This code needs to rebuild the iterators, as they may be invalidated + // by the push_back, taking care that the new range does not include + // any functions added by this code. + size_t N = i - FnsToInstrument.begin(), + Count = e - FnsToInstrument.begin(); + FnsToInstrument.push_back(&F); + i = FnsToInstrument.begin() + N; + e = FnsToInstrument.begin() + Count; + } + // Hopefully, nobody will try to indirectly call a vararg + // function... yet. + } else if (FT->isVarArg()) { + UnwrappedFnMap[&F] = &F; + *i = nullptr; + } + } + + for (Function *i : FnsToInstrument) { + if (!i || i->isDeclaration()) + continue; + + removeUnreachableBlocks(*i); + + DFSanFunction DFSF(*this, i, FnsWithNativeABI.count(i)); + + // DFSanVisitor may create new basic blocks, which confuses df_iterator. + // Build a copy of the list before iterating over it. + SmallVector<BasicBlock *, 4> BBList(depth_first(&i->getEntryBlock())); + + for (BasicBlock *i : BBList) { + Instruction *Inst = &i->front(); + while (true) { + // DFSanVisitor may split the current basic block, changing the current + // instruction's next pointer and moving the next instruction to the + // tail block from which we should continue. + Instruction *Next = Inst->getNextNode(); + // DFSanVisitor may delete Inst, so keep track of whether it was a + // terminator. + bool IsTerminator = Inst->isTerminator(); + if (!DFSF.SkipInsts.count(Inst)) + DFSanVisitor(DFSF).visit(Inst); + if (IsTerminator) + break; + Inst = Next; + } + } + + // We will not necessarily be able to compute the shadow for every phi node + // until we have visited every block. Therefore, the code that handles phi + // nodes adds them to the PHIFixups list so that they can be properly + // handled here. + for (std::vector<std::pair<PHINode *, PHINode *>>::iterator + i = DFSF.PHIFixups.begin(), + e = DFSF.PHIFixups.end(); + i != e; ++i) { + for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n; + ++val) { + i->second->setIncomingValue( + val, DFSF.getShadow(i->first->getIncomingValue(val))); + } + } + + // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy + // places (i.e. instructions in basic blocks we haven't even begun visiting + // yet). To make our life easier, do this work in a pass after the main + // instrumentation. + if (ClDebugNonzeroLabels) { + for (Value *V : DFSF.NonZeroChecks) { + Instruction *Pos; + if (Instruction *I = dyn_cast<Instruction>(V)) + Pos = I->getNextNode(); + else + Pos = &DFSF.F->getEntryBlock().front(); + while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos)) + Pos = Pos->getNextNode(); + IRBuilder<> IRB(Pos); Value *PrimitiveShadow = DFSF.collapseToPrimitiveShadow(V, Pos); Value *Ne = IRB.CreateICmpNE(PrimitiveShadow, DFSF.DFS.ZeroPrimitiveShadow); - BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( - Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); - IRBuilder<> ThenIRB(BI); - ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); - } - } - } - - return Changed || !FnsToInstrument.empty() || - M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; -} - + BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( + Ne, Pos, /*Unreachable=*/false, ColdCallWeights)); + IRBuilder<> ThenIRB(BI); + ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn, {}); + } + } + } + + return Changed || !FnsToInstrument.empty() || + M.global_size() != InitialGlobalSize || M.size() != InitialModuleSize; +} + Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { Value *Base = IRB.CreatePointerCast(DFS.ArgTLS, DFS.IntptrTy); if (ArgOffset) @@ -1310,12 +1310,12 @@ Value *DFSanFunction::getArgTLS(Type *T, unsigned ArgOffset, IRBuilder<> &IRB) { return IRB.CreateIntToPtr(Base, PointerType::get(DFS.getShadowTy(T), 0), "_dfsarg"); } - + Value *DFSanFunction::getRetvalTLS(Type *T, IRBuilder<> &IRB) { return IRB.CreatePointerCast( DFS.RetvalTLS, PointerType::get(DFS.getShadowTy(T), 0), "_dfsret"); -} - +} + Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { unsigned ArgOffset = 0; const DataLayout &DL = F->getParent()->getDataLayout(); @@ -1325,7 +1325,7 @@ Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { break; continue; } - + unsigned Size = DL.getTypeAllocSize(DFS.getShadowTy(&FArg)); if (A != &FArg) { ArgOffset += alignTo(Size, kShadowTLSAlignment); @@ -1333,7 +1333,7 @@ Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { break; // ArgTLS overflows, uses a zero shadow. continue; } - + if (ArgOffset + Size > kArgTLSSize) break; // ArgTLS overflows, uses a zero shadow. @@ -1345,224 +1345,224 @@ Value *DFSanFunction::getShadowForTLSArgument(Argument *A) { } return DFS.getZeroShadow(A); -} - -Value *DFSanFunction::getShadow(Value *V) { - if (!isa<Argument>(V) && !isa<Instruction>(V)) +} + +Value *DFSanFunction::getShadow(Value *V) { + if (!isa<Argument>(V) && !isa<Instruction>(V)) return DFS.getZeroShadow(V); - Value *&Shadow = ValShadowMap[V]; - if (!Shadow) { - if (Argument *A = dyn_cast<Argument>(V)) { - if (IsNativeABI) + Value *&Shadow = ValShadowMap[V]; + if (!Shadow) { + if (Argument *A = dyn_cast<Argument>(V)) { + if (IsNativeABI) return DFS.getZeroShadow(V); - switch (IA) { - case DataFlowSanitizer::IA_TLS: { + switch (IA) { + case DataFlowSanitizer::IA_TLS: { Shadow = getShadowForTLSArgument(A); - break; - } - case DataFlowSanitizer::IA_Args: { - unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; - Function::arg_iterator i = F->arg_begin(); - while (ArgIdx--) - ++i; - Shadow = &*i; + break; + } + case DataFlowSanitizer::IA_Args: { + unsigned ArgIdx = A->getArgNo() + F->arg_size() / 2; + Function::arg_iterator i = F->arg_begin(); + while (ArgIdx--) + ++i; + Shadow = &*i; assert(Shadow->getType() == DFS.PrimitiveShadowTy); - break; - } - } - NonZeroChecks.push_back(Shadow); - } else { + break; + } + } + NonZeroChecks.push_back(Shadow); + } else { Shadow = DFS.getZeroShadow(V); - } - } - return Shadow; -} - -void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { - assert(!ValShadowMap.count(I)); + } + } + return Shadow; +} + +void DFSanFunction::setShadow(Instruction *I, Value *Shadow) { + assert(!ValShadowMap.count(I)); assert(DFS.shouldTrackFieldsAndIndices() || Shadow->getType() == DFS.PrimitiveShadowTy); - ValShadowMap[I] = Shadow; -} - -Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { - assert(Addr != RetvalTLS && "Reinstrumenting?"); - IRBuilder<> IRB(Pos); - Value *ShadowPtrMaskValue; - if (DFSanRuntimeShadowMask) - ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); - else - ShadowPtrMaskValue = ShadowPtrMask; - return IRB.CreateIntToPtr( - IRB.CreateMul( - IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), - IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), - ShadowPtrMul), + ValShadowMap[I] = Shadow; +} + +Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) { + assert(Addr != RetvalTLS && "Reinstrumenting?"); + IRBuilder<> IRB(Pos); + Value *ShadowPtrMaskValue; + if (DFSanRuntimeShadowMask) + ShadowPtrMaskValue = IRB.CreateLoad(IntptrTy, ExternalShadowMask); + else + ShadowPtrMaskValue = ShadowPtrMask; + return IRB.CreateIntToPtr( + IRB.CreateMul( + IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), + IRB.CreatePtrToInt(ShadowPtrMaskValue, IntptrTy)), + ShadowPtrMul), PrimitiveShadowPtrTy); -} - +} + Value *DFSanFunction::combineShadowsThenConvert(Type *T, Value *V1, Value *V2, Instruction *Pos) { Value *PrimitiveValue = combineShadows(V1, V2, Pos); return expandFromPrimitiveShadow(T, PrimitiveValue, Pos); } -// Generates IR to compute the union of the two given shadows, inserting it +// Generates IR to compute the union of the two given shadows, inserting it // before Pos. The combined value is with primitive type. -Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { +Value *DFSanFunction::combineShadows(Value *V1, Value *V2, Instruction *Pos) { if (DFS.isZeroShadow(V1)) return collapseToPrimitiveShadow(V2, Pos); if (DFS.isZeroShadow(V2)) return collapseToPrimitiveShadow(V1, Pos); - if (V1 == V2) + if (V1 == V2) return collapseToPrimitiveShadow(V1, Pos); - - auto V1Elems = ShadowElements.find(V1); - auto V2Elems = ShadowElements.find(V2); - if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { - if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), - V2Elems->second.begin(), V2Elems->second.end())) { + + auto V1Elems = ShadowElements.find(V1); + auto V2Elems = ShadowElements.find(V2); + if (V1Elems != ShadowElements.end() && V2Elems != ShadowElements.end()) { + if (std::includes(V1Elems->second.begin(), V1Elems->second.end(), + V2Elems->second.begin(), V2Elems->second.end())) { return collapseToPrimitiveShadow(V1, Pos); - } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), - V1Elems->second.begin(), V1Elems->second.end())) { + } else if (std::includes(V2Elems->second.begin(), V2Elems->second.end(), + V1Elems->second.begin(), V1Elems->second.end())) { return collapseToPrimitiveShadow(V2, Pos); - } - } else if (V1Elems != ShadowElements.end()) { - if (V1Elems->second.count(V2)) + } + } else if (V1Elems != ShadowElements.end()) { + if (V1Elems->second.count(V2)) return collapseToPrimitiveShadow(V1, Pos); - } else if (V2Elems != ShadowElements.end()) { - if (V2Elems->second.count(V1)) + } else if (V2Elems != ShadowElements.end()) { + if (V2Elems->second.count(V1)) return collapseToPrimitiveShadow(V2, Pos); - } - - auto Key = std::make_pair(V1, V2); - if (V1 > V2) - std::swap(Key.first, Key.second); + } + + auto Key = std::make_pair(V1, V2); + if (V1 > V2) + std::swap(Key.first, Key.second); CachedShadow &CCS = CachedShadows[Key]; - if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) - return CCS.Shadow; - + if (CCS.Block && DT.dominates(CCS.Block, Pos->getParent())) + return CCS.Shadow; + // Converts inputs shadows to shadows with primitive types. Value *PV1 = collapseToPrimitiveShadow(V1, Pos); Value *PV2 = collapseToPrimitiveShadow(V2, Pos); - IRBuilder<> IRB(Pos); + IRBuilder<> IRB(Pos); if (ClFast16Labels) { CCS.Block = Pos->getParent(); CCS.Shadow = IRB.CreateOr(PV1, PV2); } else if (AvoidNewBlocks) { CallInst *Call = IRB.CreateCall(DFS.DFSanCheckedUnionFn, {PV1, PV2}); - Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - Call->addParamAttr(0, Attribute::ZExt); - Call->addParamAttr(1, Attribute::ZExt); - - CCS.Block = Pos->getParent(); - CCS.Shadow = Call; - } else { - BasicBlock *Head = Pos->getParent(); + Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); + Call->addParamAttr(0, Attribute::ZExt); + Call->addParamAttr(1, Attribute::ZExt); + + CCS.Block = Pos->getParent(); + CCS.Shadow = Call; + } else { + BasicBlock *Head = Pos->getParent(); Value *Ne = IRB.CreateICmpNE(PV1, PV2); - BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( - Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); - IRBuilder<> ThenIRB(BI); + BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen( + Ne, Pos, /*Unreachable=*/false, DFS.ColdCallWeights, &DT)); + IRBuilder<> ThenIRB(BI); CallInst *Call = ThenIRB.CreateCall(DFS.DFSanUnionFn, {PV1, PV2}); - Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - Call->addParamAttr(0, Attribute::ZExt); - Call->addParamAttr(1, Attribute::ZExt); - - BasicBlock *Tail = BI->getSuccessor(0); + Call->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); + Call->addParamAttr(0, Attribute::ZExt); + Call->addParamAttr(1, Attribute::ZExt); + + BasicBlock *Tail = BI->getSuccessor(0); PHINode *Phi = PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); - Phi->addIncoming(Call, Call->getParent()); + Phi->addIncoming(Call, Call->getParent()); Phi->addIncoming(PV1, Head); - - CCS.Block = Tail; - CCS.Shadow = Phi; - } - - std::set<Value *> UnionElems; - if (V1Elems != ShadowElements.end()) { - UnionElems = V1Elems->second; - } else { - UnionElems.insert(V1); - } - if (V2Elems != ShadowElements.end()) { - UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); - } else { - UnionElems.insert(V2); - } - ShadowElements[CCS.Shadow] = std::move(UnionElems); - - return CCS.Shadow; -} - -// A convenience function which folds the shadows of each of the operands -// of the provided instruction Inst, inserting the IR before Inst. Returns -// the computed union Value. -Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { - if (Inst->getNumOperands() == 0) + + CCS.Block = Tail; + CCS.Shadow = Phi; + } + + std::set<Value *> UnionElems; + if (V1Elems != ShadowElements.end()) { + UnionElems = V1Elems->second; + } else { + UnionElems.insert(V1); + } + if (V2Elems != ShadowElements.end()) { + UnionElems.insert(V2Elems->second.begin(), V2Elems->second.end()); + } else { + UnionElems.insert(V2); + } + ShadowElements[CCS.Shadow] = std::move(UnionElems); + + return CCS.Shadow; +} + +// A convenience function which folds the shadows of each of the operands +// of the provided instruction Inst, inserting the IR before Inst. Returns +// the computed union Value. +Value *DFSanFunction::combineOperandShadows(Instruction *Inst) { + if (Inst->getNumOperands() == 0) return DFS.getZeroShadow(Inst); - - Value *Shadow = getShadow(Inst->getOperand(0)); - for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { - Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); - } + + Value *Shadow = getShadow(Inst->getOperand(0)); + for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) { + Shadow = combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst); + } return expandFromPrimitiveShadow(Inst->getType(), Shadow, Inst); -} - -Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { - Value *CombinedShadow = DFSF.combineOperandShadows(&I); - DFSF.setShadow(&I, CombinedShadow); - return CombinedShadow; -} - -// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where +} + +Value *DFSanVisitor::visitOperandShadowInst(Instruction &I) { + Value *CombinedShadow = DFSF.combineOperandShadows(&I); + DFSF.setShadow(&I, CombinedShadow); + return CombinedShadow; +} + +// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where // Addr has alignment Align, and take the union of each of those shadows. The // returned shadow always has primitive type. -Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, - Instruction *Pos) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { - const auto i = AllocaShadowMap.find(AI); - if (i != AllocaShadowMap.end()) { - IRBuilder<> IRB(Pos); +Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, + Instruction *Pos) { + if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { + const auto i = AllocaShadowMap.find(AI); + if (i != AllocaShadowMap.end()) { + IRBuilder<> IRB(Pos); return IRB.CreateLoad(DFS.PrimitiveShadowTy, i->second); - } - } - - const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); - SmallVector<const Value *, 2> Objs; + } + } + + const llvm::Align ShadowAlign(Align * DFS.ShadowWidthBytes); + SmallVector<const Value *, 2> Objs; getUnderlyingObjects(Addr, Objs); - bool AllConstants = true; - for (const Value *Obj : Objs) { - if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) - continue; - if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) - continue; - - AllConstants = false; - break; - } - if (AllConstants) + bool AllConstants = true; + for (const Value *Obj : Objs) { + if (isa<Function>(Obj) || isa<BlockAddress>(Obj)) + continue; + if (isa<GlobalVariable>(Obj) && cast<GlobalVariable>(Obj)->isConstant()) + continue; + + AllConstants = false; + break; + } + if (AllConstants) return DFS.ZeroPrimitiveShadow; - - Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); - switch (Size) { - case 0: + + Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); + switch (Size) { + case 0: return DFS.ZeroPrimitiveShadow; - case 1: { + case 1: { LoadInst *LI = new LoadInst(DFS.PrimitiveShadowTy, ShadowAddr, "", Pos); - LI->setAlignment(ShadowAlign); - return LI; - } - case 2: { - IRBuilder<> IRB(Pos); + LI->setAlignment(ShadowAlign); + return LI; + } + case 2: { + IRBuilder<> IRB(Pos); Value *ShadowAddr1 = IRB.CreateGEP(DFS.PrimitiveShadowTy, ShadowAddr, - ConstantInt::get(DFS.IntptrTy, 1)); - return combineShadows( + ConstantInt::get(DFS.IntptrTy, 1)); + return combineShadows( IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr, ShadowAlign), IRB.CreateAlignedLoad(DFS.PrimitiveShadowTy, ShadowAddr1, ShadowAlign), Pos); - } - } + } + } if (ClFast16Labels && Size % (64 / DFS.ShadowWidthBits) == 0) { // First OR all the WideShadows, then OR individual shadows within the @@ -1587,226 +1587,226 @@ Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align, } return IRB.CreateTrunc(CombinedWideShadow, DFS.PrimitiveShadowTy); } - if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { - // Fast path for the common case where each byte has identical shadow: load - // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any - // shadow is non-equal. - BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); - IRBuilder<> FallbackIRB(FallbackBB); - CallInst *FallbackCall = FallbackIRB.CreateCall( - DFS.DFSanUnionLoadFn, - {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); - FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - - // Compare each of the shadows stored in the loaded 64 bits to each other, - // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. - IRBuilder<> IRB(Pos); - Value *WideAddr = - IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); - Value *WideShadow = - IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); + if (!AvoidNewBlocks && Size % (64 / DFS.ShadowWidthBits) == 0) { + // Fast path for the common case where each byte has identical shadow: load + // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any + // shadow is non-equal. + BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F); + IRBuilder<> FallbackIRB(FallbackBB); + CallInst *FallbackCall = FallbackIRB.CreateCall( + DFS.DFSanUnionLoadFn, + {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); + FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); + + // Compare each of the shadows stored in the loaded 64 bits to each other, + // by computing (WideShadow rotl ShadowWidthBits) == WideShadow. + IRBuilder<> IRB(Pos); + Value *WideAddr = + IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx)); + Value *WideShadow = + IRB.CreateAlignedLoad(IRB.getInt64Ty(), WideAddr, ShadowAlign); Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.PrimitiveShadowTy); - Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); - Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); - Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); - Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); - - BasicBlock *Head = Pos->getParent(); - BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); - - if (DomTreeNode *OldNode = DT.getNode(Head)) { - std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); - - DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); - for (auto Child : Children) - DT.changeImmediateDominator(Child, NewNode); - } - - // In the following code LastBr will refer to the previous basic block's - // conditional branch instruction, whose true successor is fixed up to point - // to the next block during the loop below or to the tail after the final - // iteration. - BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); - ReplaceInstWithInst(Head->getTerminator(), LastBr); - DT.addNewBlock(FallbackBB, Head); - - for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; - Ofs += 64 / DFS.ShadowWidthBits) { - BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); - DT.addNewBlock(NextBB, LastBr->getParent()); - IRBuilder<> NextIRB(NextBB); - WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, - ConstantInt::get(DFS.IntptrTy, 1)); - Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), - WideAddr, ShadowAlign); - ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); - LastBr->setSuccessor(0, NextBB); - LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); - } - - LastBr->setSuccessor(0, Tail); - FallbackIRB.CreateBr(Tail); + Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidthBits); + Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidthBits); + Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow); + Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow); + + BasicBlock *Head = Pos->getParent(); + BasicBlock *Tail = Head->splitBasicBlock(Pos->getIterator()); + + if (DomTreeNode *OldNode = DT.getNode(Head)) { + std::vector<DomTreeNode *> Children(OldNode->begin(), OldNode->end()); + + DomTreeNode *NewNode = DT.addNewBlock(Tail, Head); + for (auto Child : Children) + DT.changeImmediateDominator(Child, NewNode); + } + + // In the following code LastBr will refer to the previous basic block's + // conditional branch instruction, whose true successor is fixed up to point + // to the next block during the loop below or to the tail after the final + // iteration. + BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq); + ReplaceInstWithInst(Head->getTerminator(), LastBr); + DT.addNewBlock(FallbackBB, Head); + + for (uint64_t Ofs = 64 / DFS.ShadowWidthBits; Ofs != Size; + Ofs += 64 / DFS.ShadowWidthBits) { + BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F); + DT.addNewBlock(NextBB, LastBr->getParent()); + IRBuilder<> NextIRB(NextBB); + WideAddr = NextIRB.CreateGEP(Type::getInt64Ty(*DFS.Ctx), WideAddr, + ConstantInt::get(DFS.IntptrTy, 1)); + Value *NextWideShadow = NextIRB.CreateAlignedLoad(NextIRB.getInt64Ty(), + WideAddr, ShadowAlign); + ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow); + LastBr->setSuccessor(0, NextBB); + LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB); + } + + LastBr->setSuccessor(0, Tail); + FallbackIRB.CreateBr(Tail); PHINode *Shadow = PHINode::Create(DFS.PrimitiveShadowTy, 2, "", &Tail->front()); - Shadow->addIncoming(FallbackCall, FallbackBB); - Shadow->addIncoming(TruncShadow, LastBr->getParent()); - return Shadow; - } - - IRBuilder<> IRB(Pos); + Shadow->addIncoming(FallbackCall, FallbackBB); + Shadow->addIncoming(TruncShadow, LastBr->getParent()); + return Shadow; + } + + IRBuilder<> IRB(Pos); FunctionCallee &UnionLoadFn = ClFast16Labels ? DFS.DFSanUnionLoadFast16LabelsFn : DFS.DFSanUnionLoadFn; - CallInst *FallbackCall = IRB.CreateCall( + CallInst *FallbackCall = IRB.CreateCall( UnionLoadFn, {ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size)}); - FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); - return FallbackCall; -} - -void DFSanVisitor::visitLoadInst(LoadInst &LI) { - auto &DL = LI.getModule()->getDataLayout(); - uint64_t Size = DL.getTypeStoreSize(LI.getType()); - if (Size == 0) { + FallbackCall->addAttribute(AttributeList::ReturnIndex, Attribute::ZExt); + return FallbackCall; +} + +void DFSanVisitor::visitLoadInst(LoadInst &LI) { + auto &DL = LI.getModule()->getDataLayout(); + uint64_t Size = DL.getTypeStoreSize(LI.getType()); + if (Size == 0) { DFSF.setShadow(&LI, DFSF.DFS.getZeroShadow(&LI)); - return; - } - - Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); + return; + } + + Align Alignment = ClPreserveAlignment ? LI.getAlign() : Align(1); Value *PrimitiveShadow = - DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); - if (ClCombinePointerLabelsOnLoad) { - Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); + DFSF.loadShadow(LI.getPointerOperand(), Size, Alignment.value(), &LI); + if (ClCombinePointerLabelsOnLoad) { + Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand()); PrimitiveShadow = DFSF.combineShadows(PrimitiveShadow, PtrShadow, &LI); - } + } if (!DFSF.DFS.isZeroShadow(PrimitiveShadow)) DFSF.NonZeroChecks.push_back(PrimitiveShadow); - + Value *Shadow = DFSF.expandFromPrimitiveShadow(LI.getType(), PrimitiveShadow, &LI); - DFSF.setShadow(&LI, Shadow); - if (ClEventCallbacks) { - IRBuilder<> IRB(&LI); + DFSF.setShadow(&LI, Shadow); + if (ClEventCallbacks) { + IRBuilder<> IRB(&LI); Value *Addr8 = IRB.CreateBitCast(LI.getPointerOperand(), DFSF.DFS.Int8Ptr); IRB.CreateCall(DFSF.DFS.DFSanLoadCallbackFn, {PrimitiveShadow, Addr8}); - } -} - + } +} + void DFSanFunction::storePrimitiveShadow(Value *Addr, uint64_t Size, Align Alignment, Value *PrimitiveShadow, Instruction *Pos) { - if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { - const auto i = AllocaShadowMap.find(AI); - if (i != AllocaShadowMap.end()) { - IRBuilder<> IRB(Pos); + if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) { + const auto i = AllocaShadowMap.find(AI); + if (i != AllocaShadowMap.end()) { + IRBuilder<> IRB(Pos); IRB.CreateStore(PrimitiveShadow, i->second); - return; - } - } - - const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); - IRBuilder<> IRB(Pos); - Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); + return; + } + } + + const Align ShadowAlign(Alignment.value() * DFS.ShadowWidthBytes); + IRBuilder<> IRB(Pos); + Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos); if (DFS.isZeroShadow(PrimitiveShadow)) { - IntegerType *ShadowTy = - IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); - Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); - Value *ExtShadowAddr = - IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); - IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); - return; - } - - const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; - uint64_t Offset = 0; - if (Size >= ShadowVecSize) { + IntegerType *ShadowTy = + IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidthBits); + Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0); + Value *ExtShadowAddr = + IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy)); + IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign); + return; + } + + const unsigned ShadowVecSize = 128 / DFS.ShadowWidthBits; + uint64_t Offset = 0; + if (Size >= ShadowVecSize) { auto *ShadowVecTy = FixedVectorType::get(DFS.PrimitiveShadowTy, ShadowVecSize); - Value *ShadowVec = UndefValue::get(ShadowVecTy); - for (unsigned i = 0; i != ShadowVecSize; ++i) { - ShadowVec = IRB.CreateInsertElement( + Value *ShadowVec = UndefValue::get(ShadowVecTy); + for (unsigned i = 0; i != ShadowVecSize; ++i) { + ShadowVec = IRB.CreateInsertElement( ShadowVec, PrimitiveShadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i)); - } - Value *ShadowVecAddr = - IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); - do { - Value *CurShadowVecAddr = - IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); - IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); - Size -= ShadowVecSize; - ++Offset; - } while (Size >= ShadowVecSize); - Offset *= ShadowVecSize; - } - while (Size > 0) { - Value *CurShadowAddr = + } + Value *ShadowVecAddr = + IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy)); + do { + Value *CurShadowVecAddr = + IRB.CreateConstGEP1_32(ShadowVecTy, ShadowVecAddr, Offset); + IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign); + Size -= ShadowVecSize; + ++Offset; + } while (Size >= ShadowVecSize); + Offset *= ShadowVecSize; + } + while (Size > 0) { + Value *CurShadowAddr = IRB.CreateConstGEP1_32(DFS.PrimitiveShadowTy, ShadowAddr, Offset); IRB.CreateAlignedStore(PrimitiveShadow, CurShadowAddr, ShadowAlign); - --Size; - ++Offset; - } -} - -void DFSanVisitor::visitStoreInst(StoreInst &SI) { - auto &DL = SI.getModule()->getDataLayout(); - uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); - if (Size == 0) - return; - - const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); - - Value* Shadow = DFSF.getShadow(SI.getValueOperand()); + --Size; + ++Offset; + } +} + +void DFSanVisitor::visitStoreInst(StoreInst &SI) { + auto &DL = SI.getModule()->getDataLayout(); + uint64_t Size = DL.getTypeStoreSize(SI.getValueOperand()->getType()); + if (Size == 0) + return; + + const Align Alignment = ClPreserveAlignment ? SI.getAlign() : Align(1); + + Value* Shadow = DFSF.getShadow(SI.getValueOperand()); Value *PrimitiveShadow; - if (ClCombinePointerLabelsOnStore) { - Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); + if (ClCombinePointerLabelsOnStore) { + Value *PtrShadow = DFSF.getShadow(SI.getPointerOperand()); PrimitiveShadow = DFSF.combineShadows(Shadow, PtrShadow, &SI); } else { PrimitiveShadow = DFSF.collapseToPrimitiveShadow(Shadow, &SI); - } + } DFSF.storePrimitiveShadow(SI.getPointerOperand(), Size, Alignment, PrimitiveShadow, &SI); - if (ClEventCallbacks) { - IRBuilder<> IRB(&SI); + if (ClEventCallbacks) { + IRBuilder<> IRB(&SI); Value *Addr8 = IRB.CreateBitCast(SI.getPointerOperand(), DFSF.DFS.Int8Ptr); IRB.CreateCall(DFSF.DFS.DFSanStoreCallbackFn, {PrimitiveShadow, Addr8}); - } -} - -void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { - visitOperandShadowInst(UO); -} - -void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { - visitOperandShadowInst(BO); -} - -void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } - -void DFSanVisitor::visitCmpInst(CmpInst &CI) { - Value *CombinedShadow = visitOperandShadowInst(CI); - if (ClEventCallbacks) { - IRBuilder<> IRB(&CI); - IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); - } -} - -void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { - visitOperandShadowInst(GEPI); -} - -void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { - visitOperandShadowInst(I); -} - -void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { + } +} + +void DFSanVisitor::visitUnaryOperator(UnaryOperator &UO) { + visitOperandShadowInst(UO); +} + +void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) { + visitOperandShadowInst(BO); +} + +void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); } + +void DFSanVisitor::visitCmpInst(CmpInst &CI) { + Value *CombinedShadow = visitOperandShadowInst(CI); + if (ClEventCallbacks) { + IRBuilder<> IRB(&CI); + IRB.CreateCall(DFSF.DFS.DFSanCmpCallbackFn, CombinedShadow); + } +} + +void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) { + visitOperandShadowInst(GEPI); +} + +void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) { + visitOperandShadowInst(I); +} + +void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) { + visitOperandShadowInst(I); +} + +void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) { + visitOperandShadowInst(I); +} + +void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { visitOperandShadowInst(I); return; @@ -1817,9 +1817,9 @@ void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) { Value *AggShadow = DFSF.getShadow(Agg); Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); DFSF.setShadow(&I, ResShadow); -} - -void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { +} + +void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { if (!DFSF.DFS.shouldTrackFieldsAndIndices()) { visitOperandShadowInst(I); return; @@ -1830,93 +1830,93 @@ void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) { Value *InsShadow = DFSF.getShadow(I.getInsertedValueOperand()); Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); DFSF.setShadow(&I, Res); -} - -void DFSanVisitor::visitAllocaInst(AllocaInst &I) { - bool AllLoadsStores = true; - for (User *U : I.users()) { - if (isa<LoadInst>(U)) - continue; - - if (StoreInst *SI = dyn_cast<StoreInst>(U)) { - if (SI->getPointerOperand() == &I) - continue; - } - - AllLoadsStores = false; - break; - } - if (AllLoadsStores) { - IRBuilder<> IRB(&I); +} + +void DFSanVisitor::visitAllocaInst(AllocaInst &I) { + bool AllLoadsStores = true; + for (User *U : I.users()) { + if (isa<LoadInst>(U)) + continue; + + if (StoreInst *SI = dyn_cast<StoreInst>(U)) { + if (SI->getPointerOperand() == &I) + continue; + } + + AllLoadsStores = false; + break; + } + if (AllLoadsStores) { + IRBuilder<> IRB(&I); DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.PrimitiveShadowTy); - } + } DFSF.setShadow(&I, DFSF.DFS.ZeroPrimitiveShadow); -} - -void DFSanVisitor::visitSelectInst(SelectInst &I) { - Value *CondShadow = DFSF.getShadow(I.getCondition()); - Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); - Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); +} + +void DFSanVisitor::visitSelectInst(SelectInst &I) { + Value *CondShadow = DFSF.getShadow(I.getCondition()); + Value *TrueShadow = DFSF.getShadow(I.getTrueValue()); + Value *FalseShadow = DFSF.getShadow(I.getFalseValue()); Value *ShadowSel = nullptr; - - if (isa<VectorType>(I.getCondition()->getType())) { + + if (isa<VectorType>(I.getCondition()->getType())) { ShadowSel = DFSF.combineShadowsThenConvert(I.getType(), TrueShadow, FalseShadow, &I); - } else { - if (TrueShadow == FalseShadow) { - ShadowSel = TrueShadow; - } else { - ShadowSel = - SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); - } - } + } else { + if (TrueShadow == FalseShadow) { + ShadowSel = TrueShadow; + } else { + ShadowSel = + SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I); + } + } DFSF.setShadow(&I, ClTrackSelectControlFlow ? DFSF.combineShadowsThenConvert( I.getType(), CondShadow, ShadowSel, &I) : ShadowSel); -} - -void DFSanVisitor::visitMemSetInst(MemSetInst &I) { - IRBuilder<> IRB(&I); - Value *ValShadow = DFSF.getShadow(I.getValue()); - IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, - {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( - *DFSF.DFS.Ctx)), - IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); -} - -void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { - IRBuilder<> IRB(&I); - Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); - Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); - Value *LenShadow = - IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), - DFSF.DFS.ShadowWidthBytes)); - Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); - Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); - SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); - auto *MTI = cast<MemTransferInst>( - IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), - {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); - if (ClPreserveAlignment) { - MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); - MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); - } else { - MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); - MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); - } - if (ClEventCallbacks) { - IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, - {RawDestShadow, I.getLength()}); - } -} - -void DFSanVisitor::visitReturnInst(ReturnInst &RI) { - if (!DFSF.IsNativeABI && RI.getReturnValue()) { - switch (DFSF.IA) { - case DataFlowSanitizer::IA_TLS: { - Value *S = DFSF.getShadow(RI.getReturnValue()); - IRBuilder<> IRB(&RI); +} + +void DFSanVisitor::visitMemSetInst(MemSetInst &I) { + IRBuilder<> IRB(&I); + Value *ValShadow = DFSF.getShadow(I.getValue()); + IRB.CreateCall(DFSF.DFS.DFSanSetLabelFn, + {ValShadow, IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy( + *DFSF.DFS.Ctx)), + IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy)}); +} + +void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) { + IRBuilder<> IRB(&I); + Value *RawDestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I); + Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I); + Value *LenShadow = + IRB.CreateMul(I.getLength(), ConstantInt::get(I.getLength()->getType(), + DFSF.DFS.ShadowWidthBytes)); + Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx); + Value *DestShadow = IRB.CreateBitCast(RawDestShadow, Int8Ptr); + SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr); + auto *MTI = cast<MemTransferInst>( + IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), + {DestShadow, SrcShadow, LenShadow, I.getVolatileCst()})); + if (ClPreserveAlignment) { + MTI->setDestAlignment(I.getDestAlign() * DFSF.DFS.ShadowWidthBytes); + MTI->setSourceAlignment(I.getSourceAlign() * DFSF.DFS.ShadowWidthBytes); + } else { + MTI->setDestAlignment(Align(DFSF.DFS.ShadowWidthBytes)); + MTI->setSourceAlignment(Align(DFSF.DFS.ShadowWidthBytes)); + } + if (ClEventCallbacks) { + IRB.CreateCall(DFSF.DFS.DFSanMemTransferCallbackFn, + {RawDestShadow, I.getLength()}); + } +} + +void DFSanVisitor::visitReturnInst(ReturnInst &RI) { + if (!DFSF.IsNativeABI && RI.getReturnValue()) { + switch (DFSF.IA) { + case DataFlowSanitizer::IA_TLS: { + Value *S = DFSF.getShadow(RI.getReturnValue()); + IRBuilder<> IRB(&RI); Type *RT = DFSF.F->getFunctionType()->getReturnType(); unsigned Size = getDataLayout().getTypeAllocSize(DFSF.DFS.getShadowTy(RT)); @@ -1926,166 +1926,166 @@ void DFSanVisitor::visitReturnInst(ReturnInst &RI) { IRB.CreateAlignedStore(S, DFSF.getRetvalTLS(RT, IRB), kShadowTLSAlignment); } - break; - } - case DataFlowSanitizer::IA_Args: { - IRBuilder<> IRB(&RI); - Type *RT = DFSF.F->getFunctionType()->getReturnType(); - Value *InsVal = - IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); - Value *InsShadow = - IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); - RI.setOperand(0, InsShadow); - break; - } - } - } -} - -void DFSanVisitor::visitCallBase(CallBase &CB) { - Function *F = CB.getCalledFunction(); - if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { - visitOperandShadowInst(CB); - return; - } - - // Calls to this function are synthesized in wrappers, and we shouldn't - // instrument them. - if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) - return; - - IRBuilder<> IRB(&CB); - - DenseMap<Value *, Function *>::iterator i = - DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); - if (i != DFSF.DFS.UnwrappedFnMap.end()) { - Function *F = i->second; - switch (DFSF.DFS.getWrapperKind(F)) { - case DataFlowSanitizer::WK_Warning: - CB.setCalledFunction(F); - IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, - IRB.CreateGlobalStringPtr(F->getName())); + break; + } + case DataFlowSanitizer::IA_Args: { + IRBuilder<> IRB(&RI); + Type *RT = DFSF.F->getFunctionType()->getReturnType(); + Value *InsVal = + IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0); + Value *InsShadow = + IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1); + RI.setOperand(0, InsShadow); + break; + } + } + } +} + +void DFSanVisitor::visitCallBase(CallBase &CB) { + Function *F = CB.getCalledFunction(); + if ((F && F->isIntrinsic()) || CB.isInlineAsm()) { + visitOperandShadowInst(CB); + return; + } + + // Calls to this function are synthesized in wrappers, and we shouldn't + // instrument them. + if (F == DFSF.DFS.DFSanVarargWrapperFn.getCallee()->stripPointerCasts()) + return; + + IRBuilder<> IRB(&CB); + + DenseMap<Value *, Function *>::iterator i = + DFSF.DFS.UnwrappedFnMap.find(CB.getCalledOperand()); + if (i != DFSF.DFS.UnwrappedFnMap.end()) { + Function *F = i->second; + switch (DFSF.DFS.getWrapperKind(F)) { + case DataFlowSanitizer::WK_Warning: + CB.setCalledFunction(F); + IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn, + IRB.CreateGlobalStringPtr(F->getName())); DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); - return; - case DataFlowSanitizer::WK_Discard: - CB.setCalledFunction(F); + return; + case DataFlowSanitizer::WK_Discard: + CB.setCalledFunction(F); DFSF.setShadow(&CB, DFSF.DFS.getZeroShadow(&CB)); - return; - case DataFlowSanitizer::WK_Functional: - CB.setCalledFunction(F); - visitOperandShadowInst(CB); - return; - case DataFlowSanitizer::WK_Custom: - // Don't try to handle invokes of custom functions, it's too complicated. - // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ - // wrapper. - if (CallInst *CI = dyn_cast<CallInst>(&CB)) { - FunctionType *FT = F->getFunctionType(); - TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); - std::string CustomFName = "__dfsw_"; - CustomFName += F->getName(); - FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( - CustomFName, CustomFn.TransformedType); - if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { - CustomFn->copyAttributesFrom(F); - - // Custom functions returning non-void will write to the return label. - if (!FT->getReturnType()->isVoidTy()) { - CustomFn->removeAttributes(AttributeList::FunctionIndex, - DFSF.DFS.ReadOnlyNoneAttrs); - } - } - - std::vector<Value *> Args; - - auto i = CB.arg_begin(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { - Type *T = (*i)->getType(); - FunctionType *ParamFT; - if (isa<PointerType>(T) && - (ParamFT = dyn_cast<FunctionType>( - cast<PointerType>(T)->getElementType()))) { - std::string TName = "dfst"; - TName += utostr(FT->getNumParams() - n); - TName += "$"; - TName += F->getName(); - Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); - Args.push_back(T); - Args.push_back( - IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); - } else { - Args.push_back(*i); - } - } - - i = CB.arg_begin(); - const unsigned ShadowArgStart = Args.size(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) + return; + case DataFlowSanitizer::WK_Functional: + CB.setCalledFunction(F); + visitOperandShadowInst(CB); + return; + case DataFlowSanitizer::WK_Custom: + // Don't try to handle invokes of custom functions, it's too complicated. + // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_ + // wrapper. + if (CallInst *CI = dyn_cast<CallInst>(&CB)) { + FunctionType *FT = F->getFunctionType(); + TransformedFunction CustomFn = DFSF.DFS.getCustomFunctionType(FT); + std::string CustomFName = "__dfsw_"; + CustomFName += F->getName(); + FunctionCallee CustomF = DFSF.DFS.Mod->getOrInsertFunction( + CustomFName, CustomFn.TransformedType); + if (Function *CustomFn = dyn_cast<Function>(CustomF.getCallee())) { + CustomFn->copyAttributesFrom(F); + + // Custom functions returning non-void will write to the return label. + if (!FT->getReturnType()->isVoidTy()) { + CustomFn->removeAttributes(AttributeList::FunctionIndex, + DFSF.DFS.ReadOnlyNoneAttrs); + } + } + + std::vector<Value *> Args; + + auto i = CB.arg_begin(); + for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) { + Type *T = (*i)->getType(); + FunctionType *ParamFT; + if (isa<PointerType>(T) && + (ParamFT = dyn_cast<FunctionType>( + cast<PointerType>(T)->getElementType()))) { + std::string TName = "dfst"; + TName += utostr(FT->getNumParams() - n); + TName += "$"; + TName += F->getName(); + Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName); + Args.push_back(T); + Args.push_back( + IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx))); + } else { + Args.push_back(*i); + } + } + + i = CB.arg_begin(); + const unsigned ShadowArgStart = Args.size(); + for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) Args.push_back( DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB)); - - if (FT->isVarArg()) { + + if (FT->isVarArg()) { auto *LabelVATy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, - CB.arg_size() - FT->getNumParams()); - auto *LabelVAAlloca = new AllocaInst( - LabelVATy, getDataLayout().getAllocaAddrSpace(), - "labelva", &DFSF.F->getEntryBlock().front()); - - for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { - auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); + CB.arg_size() - FT->getNumParams()); + auto *LabelVAAlloca = new AllocaInst( + LabelVATy, getDataLayout().getAllocaAddrSpace(), + "labelva", &DFSF.F->getEntryBlock().front()); + + for (unsigned n = 0; i != CB.arg_end(); ++i, ++n) { + auto LabelVAPtr = IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, n); IRB.CreateStore( DFSF.collapseToPrimitiveShadow(DFSF.getShadow(*i), &CB), LabelVAPtr); - } - - Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); - } - - if (!FT->getReturnType()->isVoidTy()) { - if (!DFSF.LabelReturnAlloca) { - DFSF.LabelReturnAlloca = + } + + Args.push_back(IRB.CreateStructGEP(LabelVATy, LabelVAAlloca, 0)); + } + + if (!FT->getReturnType()->isVoidTy()) { + if (!DFSF.LabelReturnAlloca) { + DFSF.LabelReturnAlloca = new AllocaInst(DFSF.DFS.PrimitiveShadowTy, getDataLayout().getAllocaAddrSpace(), "labelreturn", &DFSF.F->getEntryBlock().front()); - } - Args.push_back(DFSF.LabelReturnAlloca); - } - - for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) - Args.push_back(*i); - - CallInst *CustomCI = IRB.CreateCall(CustomF, Args); - CustomCI->setCallingConv(CI->getCallingConv()); - CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, - CI->getContext(), CI->getAttributes())); - - // Update the parameter attributes of the custom call instruction to - // zero extend the shadow parameters. This is required for targets + } + Args.push_back(DFSF.LabelReturnAlloca); + } + + for (i = CB.arg_begin() + FT->getNumParams(); i != CB.arg_end(); ++i) + Args.push_back(*i); + + CallInst *CustomCI = IRB.CreateCall(CustomF, Args); + CustomCI->setCallingConv(CI->getCallingConv()); + CustomCI->setAttributes(TransformFunctionAttributes(CustomFn, + CI->getContext(), CI->getAttributes())); + + // Update the parameter attributes of the custom call instruction to + // zero extend the shadow parameters. This is required for targets // which consider PrimitiveShadowTy an illegal type. - for (unsigned n = 0; n < FT->getNumParams(); n++) { - const unsigned ArgNo = ShadowArgStart + n; + for (unsigned n = 0; n < FT->getNumParams(); n++) { + const unsigned ArgNo = ShadowArgStart + n; if (CustomCI->getArgOperand(ArgNo)->getType() == DFSF.DFS.PrimitiveShadowTy) - CustomCI->addParamAttr(ArgNo, Attribute::ZExt); - } - - if (!FT->getReturnType()->isVoidTy()) { + CustomCI->addParamAttr(ArgNo, Attribute::ZExt); + } + + if (!FT->getReturnType()->isVoidTy()) { LoadInst *LabelLoad = IRB.CreateLoad(DFSF.DFS.PrimitiveShadowTy, DFSF.LabelReturnAlloca); DFSF.setShadow(CustomCI, DFSF.expandFromPrimitiveShadow( FT->getReturnType(), LabelLoad, &CB)); - } - - CI->replaceAllUsesWith(CustomCI); - CI->eraseFromParent(); - return; - } - break; - } - } - - FunctionType *FT = CB.getFunctionType(); - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { + } + + CI->replaceAllUsesWith(CustomCI); + CI->eraseFromParent(); + return; + } + break; + } + } + + FunctionType *FT = CB.getFunctionType(); + if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { unsigned ArgOffset = 0; const DataLayout &DL = getDataLayout(); for (unsigned I = 0, N = FT->getNumParams(); I != N; ++I) { @@ -2100,26 +2100,26 @@ void DFSanVisitor::visitCallBase(CallBase &CB) { DFSF.getArgTLS(FT->getParamType(I), ArgOffset, IRB), kShadowTLSAlignment); ArgOffset += alignTo(Size, kShadowTLSAlignment); - } - } - - Instruction *Next = nullptr; - if (!CB.getType()->isVoidTy()) { - if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { - if (II->getNormalDest()->getSinglePredecessor()) { - Next = &II->getNormalDest()->front(); - } else { - BasicBlock *NewBB = - SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); - Next = &NewBB->front(); - } - } else { - assert(CB.getIterator() != CB.getParent()->end()); - Next = CB.getNextNode(); - } - - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { - IRBuilder<> NextIRB(Next); + } + } + + Instruction *Next = nullptr; + if (!CB.getType()->isVoidTy()) { + if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { + if (II->getNormalDest()->getSinglePredecessor()) { + Next = &II->getNormalDest()->front(); + } else { + BasicBlock *NewBB = + SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DT); + Next = &NewBB->front(); + } + } else { + assert(CB.getIterator() != CB.getParent()->end()); + Next = CB.getNextNode(); + } + + if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) { + IRBuilder<> NextIRB(Next); const DataLayout &DL = getDataLayout(); unsigned Size = DL.getTypeAllocSize(DFSF.DFS.getShadowTy(&CB)); if (Size > kRetvalTLSSize) { @@ -2133,83 +2133,83 @@ void DFSanVisitor::visitCallBase(CallBase &CB) { DFSF.setShadow(&CB, LI); DFSF.NonZeroChecks.push_back(LI); } - } - } - - // Do all instrumentation for IA_Args down here to defer tampering with the - // CFG in a way that SplitEdge may be able to detect. - if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { - FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); - Value *Func = - IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); - std::vector<Value *> Args; - - auto i = CB.arg_begin(), E = CB.arg_end(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) - Args.push_back(*i); - - i = CB.arg_begin(); - for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) - Args.push_back(DFSF.getShadow(*i)); - - if (FT->isVarArg()) { - unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); + } + } + + // Do all instrumentation for IA_Args down here to defer tampering with the + // CFG in a way that SplitEdge may be able to detect. + if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) { + FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT); + Value *Func = + IRB.CreateBitCast(CB.getCalledOperand(), PointerType::getUnqual(NewFT)); + std::vector<Value *> Args; + + auto i = CB.arg_begin(), E = CB.arg_end(); + for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) + Args.push_back(*i); + + i = CB.arg_begin(); + for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) + Args.push_back(DFSF.getShadow(*i)); + + if (FT->isVarArg()) { + unsigned VarArgSize = CB.arg_size() - FT->getNumParams(); ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.PrimitiveShadowTy, VarArgSize); - AllocaInst *VarArgShadow = - new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), - "", &DFSF.F->getEntryBlock().front()); - Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); - for (unsigned n = 0; i != E; ++i, ++n) { - IRB.CreateStore( - DFSF.getShadow(*i), - IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); - Args.push_back(*i); - } - } - - CallBase *NewCB; - if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { - NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), - II->getUnwindDest(), Args); - } else { - NewCB = IRB.CreateCall(NewFT, Func, Args); - } - NewCB->setCallingConv(CB.getCallingConv()); - NewCB->setAttributes(CB.getAttributes().removeAttributes( - *DFSF.DFS.Ctx, AttributeList::ReturnIndex, - AttributeFuncs::typeIncompatible(NewCB->getType()))); - - if (Next) { - ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); - DFSF.SkipInsts.insert(ExVal); - ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); - DFSF.SkipInsts.insert(ExShadow); - DFSF.setShadow(ExVal, ExShadow); - DFSF.NonZeroChecks.push_back(ExShadow); - - CB.replaceAllUsesWith(ExVal); - } - - CB.eraseFromParent(); - } -} - -void DFSanVisitor::visitPHINode(PHINode &PN) { + AllocaInst *VarArgShadow = + new AllocaInst(VarArgArrayTy, getDataLayout().getAllocaAddrSpace(), + "", &DFSF.F->getEntryBlock().front()); + Args.push_back(IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, 0)); + for (unsigned n = 0; i != E; ++i, ++n) { + IRB.CreateStore( + DFSF.getShadow(*i), + IRB.CreateConstGEP2_32(VarArgArrayTy, VarArgShadow, 0, n)); + Args.push_back(*i); + } + } + + CallBase *NewCB; + if (InvokeInst *II = dyn_cast<InvokeInst>(&CB)) { + NewCB = IRB.CreateInvoke(NewFT, Func, II->getNormalDest(), + II->getUnwindDest(), Args); + } else { + NewCB = IRB.CreateCall(NewFT, Func, Args); + } + NewCB->setCallingConv(CB.getCallingConv()); + NewCB->setAttributes(CB.getAttributes().removeAttributes( + *DFSF.DFS.Ctx, AttributeList::ReturnIndex, + AttributeFuncs::typeIncompatible(NewCB->getType()))); + + if (Next) { + ExtractValueInst *ExVal = ExtractValueInst::Create(NewCB, 0, "", Next); + DFSF.SkipInsts.insert(ExVal); + ExtractValueInst *ExShadow = ExtractValueInst::Create(NewCB, 1, "", Next); + DFSF.SkipInsts.insert(ExShadow); + DFSF.setShadow(ExVal, ExShadow); + DFSF.NonZeroChecks.push_back(ExShadow); + + CB.replaceAllUsesWith(ExVal); + } + + CB.eraseFromParent(); + } +} + +void DFSanVisitor::visitPHINode(PHINode &PN) { Type *ShadowTy = DFSF.DFS.getShadowTy(&PN); - PHINode *ShadowPN = + PHINode *ShadowPN = PHINode::Create(ShadowTy, PN.getNumIncomingValues(), "", &PN); - - // Give the shadow phi node valid predecessors to fool SplitEdge into working. + + // Give the shadow phi node valid predecessors to fool SplitEdge into working. Value *UndefShadow = UndefValue::get(ShadowTy); - for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; - ++i) { - ShadowPN->addIncoming(UndefShadow, *i); - } - - DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); - DFSF.setShadow(&PN, ShadowPN); -} + for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e; + ++i) { + ShadowPN->addIncoming(UndefShadow, *i); + } + + DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN)); + DFSF.setShadow(&PN, ShadowPN); +} namespace { class DataFlowSanitizerLegacyPass : public ModulePass { diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/GCOVProfiling.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/GCOVProfiling.cpp index 8d53a5d27f..527644a69d 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/GCOVProfiling.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/GCOVProfiling.cpp @@ -1,185 +1,185 @@ -//===- GCOVProfiling.cpp - Insert edge counters for gcov profiling --------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass implements GCOV-style profiling. When this pass is run it emits -// "gcno" files next to the existing source, and instruments the code that runs -// to records the edges between blocks that run and emit a complementary "gcda" -// file on exit. -// -//===----------------------------------------------------------------------===// - +//===- GCOVProfiling.cpp - Insert edge counters for gcov profiling --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass implements GCOV-style profiling. When this pass is run it emits +// "gcno" files next to the existing source, and instruments the code that runs +// to records the edges between blocks that run and emit a complementary "gcda" +// file on exit. +// +//===----------------------------------------------------------------------===// + #include "CFGMST.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/Hashing.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Hashing.h" #include "llvm/ADT/MapVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/Sequence.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringMap.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/Sequence.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringMap.h" #include "llvm/Analysis/BlockFrequencyInfo.h" #include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/DebugInfo.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" #include "llvm/Support/CRC.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FileSystem.h" -#include "llvm/Support/Path.h" -#include "llvm/Support/Regex.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Instrumentation/GCOVProfiler.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include <algorithm> -#include <memory> -#include <string> -#include <utility> - -using namespace llvm; -namespace endian = llvm::support::endian; - -#define DEBUG_TYPE "insert-gcov-profiling" - -enum : uint32_t { +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Path.h" +#include "llvm/Support/Regex.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/GCOVProfiler.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include <algorithm> +#include <memory> +#include <string> +#include <utility> + +using namespace llvm; +namespace endian = llvm::support::endian; + +#define DEBUG_TYPE "insert-gcov-profiling" + +enum : uint32_t { GCOV_ARC_ON_TREE = 1 << 0, - GCOV_TAG_FUNCTION = 0x01000000, - GCOV_TAG_BLOCKS = 0x01410000, - GCOV_TAG_ARCS = 0x01430000, - GCOV_TAG_LINES = 0x01450000, -}; - -static cl::opt<std::string> DefaultGCOVVersion("default-gcov-version", - cl::init("408*"), cl::Hidden, - cl::ValueRequired); - + GCOV_TAG_FUNCTION = 0x01000000, + GCOV_TAG_BLOCKS = 0x01410000, + GCOV_TAG_ARCS = 0x01430000, + GCOV_TAG_LINES = 0x01450000, +}; + +static cl::opt<std::string> DefaultGCOVVersion("default-gcov-version", + cl::init("408*"), cl::Hidden, + cl::ValueRequired); + static cl::opt<bool> AtomicCounter("gcov-atomic-counter", cl::Hidden, cl::desc("Make counter updates atomic")); -// Returns the number of words which will be used to represent this string. -static unsigned wordsOfString(StringRef s) { - // Length + NUL-terminated string + 0~3 padding NULs. - return (s.size() / 4) + 2; -} - -GCOVOptions GCOVOptions::getDefault() { - GCOVOptions Options; - Options.EmitNotes = true; - Options.EmitData = true; - Options.NoRedZone = false; +// Returns the number of words which will be used to represent this string. +static unsigned wordsOfString(StringRef s) { + // Length + NUL-terminated string + 0~3 padding NULs. + return (s.size() / 4) + 2; +} + +GCOVOptions GCOVOptions::getDefault() { + GCOVOptions Options; + Options.EmitNotes = true; + Options.EmitData = true; + Options.NoRedZone = false; Options.Atomic = AtomicCounter; - - if (DefaultGCOVVersion.size() != 4) { - llvm::report_fatal_error(std::string("Invalid -default-gcov-version: ") + - DefaultGCOVVersion); - } - memcpy(Options.Version, DefaultGCOVVersion.c_str(), 4); - return Options; -} - -namespace { -class GCOVFunction; - -class GCOVProfiler { -public: - GCOVProfiler() : GCOVProfiler(GCOVOptions::getDefault()) {} - GCOVProfiler(const GCOVOptions &Opts) : Options(Opts) {} - bool + + if (DefaultGCOVVersion.size() != 4) { + llvm::report_fatal_error(std::string("Invalid -default-gcov-version: ") + + DefaultGCOVVersion); + } + memcpy(Options.Version, DefaultGCOVVersion.c_str(), 4); + return Options; +} + +namespace { +class GCOVFunction; + +class GCOVProfiler { +public: + GCOVProfiler() : GCOVProfiler(GCOVOptions::getDefault()) {} + GCOVProfiler(const GCOVOptions &Opts) : Options(Opts) {} + bool runOnModule(Module &M, function_ref<BlockFrequencyInfo *(Function &F)> GetBFI, function_ref<BranchProbabilityInfo *(Function &F)> GetBPI, - std::function<const TargetLibraryInfo &(Function &F)> GetTLI); - - void write(uint32_t i) { - char Bytes[4]; - endian::write32(Bytes, i, Endian); - os->write(Bytes, 4); - } - void writeString(StringRef s) { - write(wordsOfString(s) - 1); - os->write(s.data(), s.size()); - os->write_zeros(4 - s.size() % 4); - } - void writeBytes(const char *Bytes, int Size) { os->write(Bytes, Size); } - -private: - // Create the .gcno files for the Module based on DebugInfo. + std::function<const TargetLibraryInfo &(Function &F)> GetTLI); + + void write(uint32_t i) { + char Bytes[4]; + endian::write32(Bytes, i, Endian); + os->write(Bytes, 4); + } + void writeString(StringRef s) { + write(wordsOfString(s) - 1); + os->write(s.data(), s.size()); + os->write_zeros(4 - s.size() % 4); + } + void writeBytes(const char *Bytes, int Size) { os->write(Bytes, Size); } + +private: + // Create the .gcno files for the Module based on DebugInfo. bool emitProfileNotes(NamedMDNode *CUNode, bool HasExecOrFork, function_ref<BlockFrequencyInfo *(Function &F)> GetBFI, function_ref<BranchProbabilityInfo *(Function &F)> GetBPI, function_ref<const TargetLibraryInfo &(Function &F)> GetTLI); - + void emitGlobalConstructor( SmallVectorImpl<std::pair<GlobalVariable *, MDNode *>> &CountersBySP); - - bool isFunctionInstrumented(const Function &F); - std::vector<Regex> createRegexesFromString(StringRef RegexesStr); - static bool doesFilenameMatchARegex(StringRef Filename, - std::vector<Regex> &Regexes); - - // Get pointers to the functions in the runtime library. - FunctionCallee getStartFileFunc(const TargetLibraryInfo *TLI); - FunctionCallee getEmitFunctionFunc(const TargetLibraryInfo *TLI); - FunctionCallee getEmitArcsFunc(const TargetLibraryInfo *TLI); - FunctionCallee getSummaryInfoFunc(); - FunctionCallee getEndFileFunc(); - - // Add the function to write out all our counters to the global destructor - // list. - Function * - insertCounterWriteout(ArrayRef<std::pair<GlobalVariable *, MDNode *>>); - Function *insertReset(ArrayRef<std::pair<GlobalVariable *, MDNode *>>); - - bool AddFlushBeforeForkAndExec(); - - enum class GCovFileType { GCNO, GCDA }; - std::string mangleName(const DICompileUnit *CU, GCovFileType FileType); - - GCOVOptions Options; - support::endianness Endian; - raw_ostream *os; - - // Checksum, produced by hash of EdgeDestinations - SmallVector<uint32_t, 4> FileChecksums; - - Module *M = nullptr; - std::function<const TargetLibraryInfo &(Function &F)> GetTLI; - LLVMContext *Ctx = nullptr; - SmallVector<std::unique_ptr<GCOVFunction>, 16> Funcs; - std::vector<Regex> FilterRe; - std::vector<Regex> ExcludeRe; + + bool isFunctionInstrumented(const Function &F); + std::vector<Regex> createRegexesFromString(StringRef RegexesStr); + static bool doesFilenameMatchARegex(StringRef Filename, + std::vector<Regex> &Regexes); + + // Get pointers to the functions in the runtime library. + FunctionCallee getStartFileFunc(const TargetLibraryInfo *TLI); + FunctionCallee getEmitFunctionFunc(const TargetLibraryInfo *TLI); + FunctionCallee getEmitArcsFunc(const TargetLibraryInfo *TLI); + FunctionCallee getSummaryInfoFunc(); + FunctionCallee getEndFileFunc(); + + // Add the function to write out all our counters to the global destructor + // list. + Function * + insertCounterWriteout(ArrayRef<std::pair<GlobalVariable *, MDNode *>>); + Function *insertReset(ArrayRef<std::pair<GlobalVariable *, MDNode *>>); + + bool AddFlushBeforeForkAndExec(); + + enum class GCovFileType { GCNO, GCDA }; + std::string mangleName(const DICompileUnit *CU, GCovFileType FileType); + + GCOVOptions Options; + support::endianness Endian; + raw_ostream *os; + + // Checksum, produced by hash of EdgeDestinations + SmallVector<uint32_t, 4> FileChecksums; + + Module *M = nullptr; + std::function<const TargetLibraryInfo &(Function &F)> GetTLI; + LLVMContext *Ctx = nullptr; + SmallVector<std::unique_ptr<GCOVFunction>, 16> Funcs; + std::vector<Regex> FilterRe; + std::vector<Regex> ExcludeRe; DenseSet<const BasicBlock *> ExecBlocks; - StringMap<bool> InstrumentedFiles; -}; - -class GCOVProfilerLegacyPass : public ModulePass { -public: - static char ID; - GCOVProfilerLegacyPass() - : GCOVProfilerLegacyPass(GCOVOptions::getDefault()) {} - GCOVProfilerLegacyPass(const GCOVOptions &Opts) - : ModulePass(ID), Profiler(Opts) { - initializeGCOVProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); - } - StringRef getPassName() const override { return "GCOV Profiler"; } - - bool runOnModule(Module &M) override { + StringMap<bool> InstrumentedFiles; +}; + +class GCOVProfilerLegacyPass : public ModulePass { +public: + static char ID; + GCOVProfilerLegacyPass() + : GCOVProfilerLegacyPass(GCOVOptions::getDefault()) {} + GCOVProfilerLegacyPass(const GCOVOptions &Opts) + : ModulePass(ID), Profiler(Opts) { + initializeGCOVProfilerLegacyPassPass(*PassRegistry::getPassRegistry()); + } + StringRef getPassName() const override { return "GCOV Profiler"; } + + bool runOnModule(Module &M) override { auto GetBFI = [this](Function &F) { return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); }; @@ -190,16 +190,16 @@ public: return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); }; return Profiler.runOnModule(M, GetBFI, GetBPI, GetTLI); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } - -private: - GCOVProfiler Profiler; -}; + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } + +private: + GCOVProfiler Profiler; +}; struct BBInfo { BBInfo *Group; @@ -234,225 +234,225 @@ struct Edge { .str(); } }; -} - -char GCOVProfilerLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN( - GCOVProfilerLegacyPass, "insert-gcov-profiling", - "Insert instrumentation for GCOV profiling", false, false) +} + +char GCOVProfilerLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN( + GCOVProfilerLegacyPass, "insert-gcov-profiling", + "Insert instrumentation for GCOV profiling", false, false) INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END( - GCOVProfilerLegacyPass, "insert-gcov-profiling", - "Insert instrumentation for GCOV profiling", false, false) - -ModulePass *llvm::createGCOVProfilerPass(const GCOVOptions &Options) { - return new GCOVProfilerLegacyPass(Options); -} - -static StringRef getFunctionName(const DISubprogram *SP) { - if (!SP->getLinkageName().empty()) - return SP->getLinkageName(); - return SP->getName(); -} - -/// Extract a filename for a DISubprogram. -/// -/// Prefer relative paths in the coverage notes. Clang also may split -/// up absolute paths into a directory and filename component. When -/// the relative path doesn't exist, reconstruct the absolute path. -static SmallString<128> getFilename(const DISubprogram *SP) { - SmallString<128> Path; - StringRef RelPath = SP->getFilename(); - if (sys::fs::exists(RelPath)) - Path = RelPath; - else - sys::path::append(Path, SP->getDirectory(), SP->getFilename()); - return Path; -} - -namespace { - class GCOVRecord { - protected: - GCOVProfiler *P; - - GCOVRecord(GCOVProfiler *P) : P(P) {} - - void write(uint32_t i) { P->write(i); } - void writeString(StringRef s) { P->writeString(s); } - void writeBytes(const char *Bytes, int Size) { P->writeBytes(Bytes, Size); } - }; - - class GCOVFunction; - class GCOVBlock; - - // Constructed only by requesting it from a GCOVBlock, this object stores a - // list of line numbers and a single filename, representing lines that belong - // to the block. - class GCOVLines : public GCOVRecord { - public: - void addLine(uint32_t Line) { - assert(Line != 0 && "Line zero is not a valid real line number."); - Lines.push_back(Line); - } - - uint32_t length() const { - return 1 + wordsOfString(Filename) + Lines.size(); - } - - void writeOut() { - write(0); - writeString(Filename); - for (int i = 0, e = Lines.size(); i != e; ++i) - write(Lines[i]); - } - - GCOVLines(GCOVProfiler *P, StringRef F) - : GCOVRecord(P), Filename(std::string(F)) {} - - private: - std::string Filename; - SmallVector<uint32_t, 32> Lines; - }; - - - // Represent a basic block in GCOV. Each block has a unique number in the - // function, number of lines belonging to each block, and a set of edges to - // other blocks. - class GCOVBlock : public GCOVRecord { - public: - GCOVLines &getFile(StringRef Filename) { - return LinesByFile.try_emplace(Filename, P, Filename).first->second; - } - +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END( + GCOVProfilerLegacyPass, "insert-gcov-profiling", + "Insert instrumentation for GCOV profiling", false, false) + +ModulePass *llvm::createGCOVProfilerPass(const GCOVOptions &Options) { + return new GCOVProfilerLegacyPass(Options); +} + +static StringRef getFunctionName(const DISubprogram *SP) { + if (!SP->getLinkageName().empty()) + return SP->getLinkageName(); + return SP->getName(); +} + +/// Extract a filename for a DISubprogram. +/// +/// Prefer relative paths in the coverage notes. Clang also may split +/// up absolute paths into a directory and filename component. When +/// the relative path doesn't exist, reconstruct the absolute path. +static SmallString<128> getFilename(const DISubprogram *SP) { + SmallString<128> Path; + StringRef RelPath = SP->getFilename(); + if (sys::fs::exists(RelPath)) + Path = RelPath; + else + sys::path::append(Path, SP->getDirectory(), SP->getFilename()); + return Path; +} + +namespace { + class GCOVRecord { + protected: + GCOVProfiler *P; + + GCOVRecord(GCOVProfiler *P) : P(P) {} + + void write(uint32_t i) { P->write(i); } + void writeString(StringRef s) { P->writeString(s); } + void writeBytes(const char *Bytes, int Size) { P->writeBytes(Bytes, Size); } + }; + + class GCOVFunction; + class GCOVBlock; + + // Constructed only by requesting it from a GCOVBlock, this object stores a + // list of line numbers and a single filename, representing lines that belong + // to the block. + class GCOVLines : public GCOVRecord { + public: + void addLine(uint32_t Line) { + assert(Line != 0 && "Line zero is not a valid real line number."); + Lines.push_back(Line); + } + + uint32_t length() const { + return 1 + wordsOfString(Filename) + Lines.size(); + } + + void writeOut() { + write(0); + writeString(Filename); + for (int i = 0, e = Lines.size(); i != e; ++i) + write(Lines[i]); + } + + GCOVLines(GCOVProfiler *P, StringRef F) + : GCOVRecord(P), Filename(std::string(F)) {} + + private: + std::string Filename; + SmallVector<uint32_t, 32> Lines; + }; + + + // Represent a basic block in GCOV. Each block has a unique number in the + // function, number of lines belonging to each block, and a set of edges to + // other blocks. + class GCOVBlock : public GCOVRecord { + public: + GCOVLines &getFile(StringRef Filename) { + return LinesByFile.try_emplace(Filename, P, Filename).first->second; + } + void addEdge(GCOVBlock &Successor, uint32_t Flags) { OutEdges.emplace_back(&Successor, Flags); - } - - void writeOut() { - uint32_t Len = 3; - SmallVector<StringMapEntry<GCOVLines> *, 32> SortedLinesByFile; - for (auto &I : LinesByFile) { - Len += I.second.length(); - SortedLinesByFile.push_back(&I); - } - - write(GCOV_TAG_LINES); - write(Len); - write(Number); - - llvm::sort(SortedLinesByFile, [](StringMapEntry<GCOVLines> *LHS, - StringMapEntry<GCOVLines> *RHS) { - return LHS->getKey() < RHS->getKey(); - }); - for (auto &I : SortedLinesByFile) - I->getValue().writeOut(); - write(0); - write(0); - } - - GCOVBlock(const GCOVBlock &RHS) : GCOVRecord(RHS), Number(RHS.Number) { - // Only allow copy before edges and lines have been added. After that, - // there are inter-block pointers (eg: edges) that won't take kindly to - // blocks being copied or moved around. - assert(LinesByFile.empty()); - assert(OutEdges.empty()); - } - + } + + void writeOut() { + uint32_t Len = 3; + SmallVector<StringMapEntry<GCOVLines> *, 32> SortedLinesByFile; + for (auto &I : LinesByFile) { + Len += I.second.length(); + SortedLinesByFile.push_back(&I); + } + + write(GCOV_TAG_LINES); + write(Len); + write(Number); + + llvm::sort(SortedLinesByFile, [](StringMapEntry<GCOVLines> *LHS, + StringMapEntry<GCOVLines> *RHS) { + return LHS->getKey() < RHS->getKey(); + }); + for (auto &I : SortedLinesByFile) + I->getValue().writeOut(); + write(0); + write(0); + } + + GCOVBlock(const GCOVBlock &RHS) : GCOVRecord(RHS), Number(RHS.Number) { + // Only allow copy before edges and lines have been added. After that, + // there are inter-block pointers (eg: edges) that won't take kindly to + // blocks being copied or moved around. + assert(LinesByFile.empty()); + assert(OutEdges.empty()); + } + uint32_t Number; SmallVector<std::pair<GCOVBlock *, uint32_t>, 4> OutEdges; private: - friend class GCOVFunction; - - GCOVBlock(GCOVProfiler *P, uint32_t Number) - : GCOVRecord(P), Number(Number) {} - - StringMap<GCOVLines> LinesByFile; - }; - - // A function has a unique identifier, a checksum (we leave as zero) and a - // set of blocks and a map of edges between blocks. This is the only GCOV - // object users can construct, the blocks and lines will be rooted here. - class GCOVFunction : public GCOVRecord { - public: - GCOVFunction(GCOVProfiler *P, Function *F, const DISubprogram *SP, - unsigned EndLine, uint32_t Ident, int Version) - : GCOVRecord(P), SP(SP), EndLine(EndLine), Ident(Ident), + friend class GCOVFunction; + + GCOVBlock(GCOVProfiler *P, uint32_t Number) + : GCOVRecord(P), Number(Number) {} + + StringMap<GCOVLines> LinesByFile; + }; + + // A function has a unique identifier, a checksum (we leave as zero) and a + // set of blocks and a map of edges between blocks. This is the only GCOV + // object users can construct, the blocks and lines will be rooted here. + class GCOVFunction : public GCOVRecord { + public: + GCOVFunction(GCOVProfiler *P, Function *F, const DISubprogram *SP, + unsigned EndLine, uint32_t Ident, int Version) + : GCOVRecord(P), SP(SP), EndLine(EndLine), Ident(Ident), Version(Version), EntryBlock(P, 0), ReturnBlock(P, 1) { - LLVM_DEBUG(dbgs() << "Function: " << getFunctionName(SP) << "\n"); - bool ExitBlockBeforeBody = Version >= 48; + LLVM_DEBUG(dbgs() << "Function: " << getFunctionName(SP) << "\n"); + bool ExitBlockBeforeBody = Version >= 48; uint32_t i = ExitBlockBeforeBody ? 2 : 1; for (BasicBlock &BB : *F) - Blocks.insert(std::make_pair(&BB, GCOVBlock(P, i++))); - if (!ExitBlockBeforeBody) - ReturnBlock.Number = i; - - std::string FunctionNameAndLine; - raw_string_ostream FNLOS(FunctionNameAndLine); - FNLOS << getFunctionName(SP) << SP->getLine(); - FNLOS.flush(); - FuncChecksum = hash_value(FunctionNameAndLine); - } - + Blocks.insert(std::make_pair(&BB, GCOVBlock(P, i++))); + if (!ExitBlockBeforeBody) + ReturnBlock.Number = i; + + std::string FunctionNameAndLine; + raw_string_ostream FNLOS(FunctionNameAndLine); + FNLOS << getFunctionName(SP) << SP->getLine(); + FNLOS.flush(); + FuncChecksum = hash_value(FunctionNameAndLine); + } + GCOVBlock &getBlock(const BasicBlock *BB) { return Blocks.find(const_cast<BasicBlock *>(BB))->second; - } - + } + GCOVBlock &getEntryBlock() { return EntryBlock; } - GCOVBlock &getReturnBlock() { - return ReturnBlock; - } - - uint32_t getFuncChecksum() const { - return FuncChecksum; - } - - void writeOut(uint32_t CfgChecksum) { - write(GCOV_TAG_FUNCTION); - SmallString<128> Filename = getFilename(SP); - uint32_t BlockLen = - 2 + (Version >= 47) + wordsOfString(getFunctionName(SP)); - if (Version < 80) - BlockLen += wordsOfString(Filename) + 1; - else - BlockLen += 1 + wordsOfString(Filename) + 3 + (Version >= 90); - - write(BlockLen); - write(Ident); - write(FuncChecksum); - if (Version >= 47) - write(CfgChecksum); - writeString(getFunctionName(SP)); - if (Version < 80) { - writeString(Filename); - write(SP->getLine()); - } else { - write(SP->isArtificial()); // artificial - writeString(Filename); - write(SP->getLine()); // start_line - write(0); // start_column - // EndLine is the last line with !dbg. It is not the } line as in GCC, - // but good enough. - write(EndLine); - if (Version >= 90) - write(0); // end_column - } - - // Emit count of blocks. - write(GCOV_TAG_BLOCKS); - if (Version < 80) { + GCOVBlock &getReturnBlock() { + return ReturnBlock; + } + + uint32_t getFuncChecksum() const { + return FuncChecksum; + } + + void writeOut(uint32_t CfgChecksum) { + write(GCOV_TAG_FUNCTION); + SmallString<128> Filename = getFilename(SP); + uint32_t BlockLen = + 2 + (Version >= 47) + wordsOfString(getFunctionName(SP)); + if (Version < 80) + BlockLen += wordsOfString(Filename) + 1; + else + BlockLen += 1 + wordsOfString(Filename) + 3 + (Version >= 90); + + write(BlockLen); + write(Ident); + write(FuncChecksum); + if (Version >= 47) + write(CfgChecksum); + writeString(getFunctionName(SP)); + if (Version < 80) { + writeString(Filename); + write(SP->getLine()); + } else { + write(SP->isArtificial()); // artificial + writeString(Filename); + write(SP->getLine()); // start_line + write(0); // start_column + // EndLine is the last line with !dbg. It is not the } line as in GCC, + // but good enough. + write(EndLine); + if (Version >= 90) + write(0); // end_column + } + + // Emit count of blocks. + write(GCOV_TAG_BLOCKS); + if (Version < 80) { write(Blocks.size() + 2); for (int i = Blocks.size() + 2; i; --i) - write(0); - } else { - write(1); + write(0); + } else { + write(1); write(Blocks.size() + 2); - } - LLVM_DEBUG(dbgs() << (Blocks.size() + 1) << " blocks\n"); - - // Emit edges between blocks. + } + LLVM_DEBUG(dbgs() << (Blocks.size() + 1) << " blocks\n"); + + // Emit edges between blocks. const uint32_t Outgoing = EntryBlock.OutEdges.size(); if (Outgoing) { write(GCOV_TAG_ARCS); @@ -465,169 +465,169 @@ namespace { } for (auto &It : Blocks) { const GCOVBlock &Block = It.second; - if (Block.OutEdges.empty()) continue; - - write(GCOV_TAG_ARCS); - write(Block.OutEdges.size() * 2 + 1); - write(Block.Number); + if (Block.OutEdges.empty()) continue; + + write(GCOV_TAG_ARCS); + write(Block.OutEdges.size() * 2 + 1); + write(Block.Number); for (const auto &E : Block.OutEdges) { write(E.first->Number); write(E.second); - } - } - - // Emit lines for each block. + } + } + + // Emit lines for each block. for (auto &It : Blocks) It.second.writeOut(); - } - + } + public: - const DISubprogram *SP; - unsigned EndLine; - uint32_t Ident; - uint32_t FuncChecksum; - int Version; + const DISubprogram *SP; + unsigned EndLine; + uint32_t Ident; + uint32_t FuncChecksum; + int Version; MapVector<BasicBlock *, GCOVBlock> Blocks; GCOVBlock EntryBlock; - GCOVBlock ReturnBlock; - }; -} - -// RegexesStr is a string containing differents regex separated by a semi-colon. -// For example "foo\..*$;bar\..*$". -std::vector<Regex> GCOVProfiler::createRegexesFromString(StringRef RegexesStr) { - std::vector<Regex> Regexes; - while (!RegexesStr.empty()) { - std::pair<StringRef, StringRef> HeadTail = RegexesStr.split(';'); - if (!HeadTail.first.empty()) { - Regex Re(HeadTail.first); - std::string Err; - if (!Re.isValid(Err)) { - Ctx->emitError(Twine("Regex ") + HeadTail.first + - " is not valid: " + Err); - } - Regexes.emplace_back(std::move(Re)); - } - RegexesStr = HeadTail.second; - } - return Regexes; -} - -bool GCOVProfiler::doesFilenameMatchARegex(StringRef Filename, - std::vector<Regex> &Regexes) { - for (Regex &Re : Regexes) - if (Re.match(Filename)) - return true; - return false; -} - -bool GCOVProfiler::isFunctionInstrumented(const Function &F) { - if (FilterRe.empty() && ExcludeRe.empty()) { - return true; - } - SmallString<128> Filename = getFilename(F.getSubprogram()); - auto It = InstrumentedFiles.find(Filename); - if (It != InstrumentedFiles.end()) { - return It->second; - } - - SmallString<256> RealPath; - StringRef RealFilename; - - // Path can be - // /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/bits/*.h so for - // such a case we must get the real_path. - if (sys::fs::real_path(Filename, RealPath)) { - // real_path can fail with path like "foo.c". - RealFilename = Filename; - } else { - RealFilename = RealPath; - } - - bool ShouldInstrument; - if (FilterRe.empty()) { - ShouldInstrument = !doesFilenameMatchARegex(RealFilename, ExcludeRe); - } else if (ExcludeRe.empty()) { - ShouldInstrument = doesFilenameMatchARegex(RealFilename, FilterRe); - } else { - ShouldInstrument = doesFilenameMatchARegex(RealFilename, FilterRe) && - !doesFilenameMatchARegex(RealFilename, ExcludeRe); - } - InstrumentedFiles[Filename] = ShouldInstrument; - return ShouldInstrument; -} - -std::string GCOVProfiler::mangleName(const DICompileUnit *CU, - GCovFileType OutputType) { - bool Notes = OutputType == GCovFileType::GCNO; - - if (NamedMDNode *GCov = M->getNamedMetadata("llvm.gcov")) { - for (int i = 0, e = GCov->getNumOperands(); i != e; ++i) { - MDNode *N = GCov->getOperand(i); - bool ThreeElement = N->getNumOperands() == 3; - if (!ThreeElement && N->getNumOperands() != 2) - continue; - if (dyn_cast<MDNode>(N->getOperand(ThreeElement ? 2 : 1)) != CU) - continue; - - if (ThreeElement) { - // These nodes have no mangling to apply, it's stored mangled in the - // bitcode. - MDString *NotesFile = dyn_cast<MDString>(N->getOperand(0)); - MDString *DataFile = dyn_cast<MDString>(N->getOperand(1)); - if (!NotesFile || !DataFile) - continue; - return std::string(Notes ? NotesFile->getString() - : DataFile->getString()); - } - - MDString *GCovFile = dyn_cast<MDString>(N->getOperand(0)); - if (!GCovFile) - continue; - - SmallString<128> Filename = GCovFile->getString(); - sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); - return std::string(Filename.str()); - } - } - - SmallString<128> Filename = CU->getFilename(); - sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); - StringRef FName = sys::path::filename(Filename); - SmallString<128> CurPath; - if (sys::fs::current_path(CurPath)) - return std::string(FName); - sys::path::append(CurPath, FName); - return std::string(CurPath.str()); -} - -bool GCOVProfiler::runOnModule( + GCOVBlock ReturnBlock; + }; +} + +// RegexesStr is a string containing differents regex separated by a semi-colon. +// For example "foo\..*$;bar\..*$". +std::vector<Regex> GCOVProfiler::createRegexesFromString(StringRef RegexesStr) { + std::vector<Regex> Regexes; + while (!RegexesStr.empty()) { + std::pair<StringRef, StringRef> HeadTail = RegexesStr.split(';'); + if (!HeadTail.first.empty()) { + Regex Re(HeadTail.first); + std::string Err; + if (!Re.isValid(Err)) { + Ctx->emitError(Twine("Regex ") + HeadTail.first + + " is not valid: " + Err); + } + Regexes.emplace_back(std::move(Re)); + } + RegexesStr = HeadTail.second; + } + return Regexes; +} + +bool GCOVProfiler::doesFilenameMatchARegex(StringRef Filename, + std::vector<Regex> &Regexes) { + for (Regex &Re : Regexes) + if (Re.match(Filename)) + return true; + return false; +} + +bool GCOVProfiler::isFunctionInstrumented(const Function &F) { + if (FilterRe.empty() && ExcludeRe.empty()) { + return true; + } + SmallString<128> Filename = getFilename(F.getSubprogram()); + auto It = InstrumentedFiles.find(Filename); + if (It != InstrumentedFiles.end()) { + return It->second; + } + + SmallString<256> RealPath; + StringRef RealFilename; + + // Path can be + // /usr/lib/gcc/x86_64-linux-gnu/8/../../../../include/c++/8/bits/*.h so for + // such a case we must get the real_path. + if (sys::fs::real_path(Filename, RealPath)) { + // real_path can fail with path like "foo.c". + RealFilename = Filename; + } else { + RealFilename = RealPath; + } + + bool ShouldInstrument; + if (FilterRe.empty()) { + ShouldInstrument = !doesFilenameMatchARegex(RealFilename, ExcludeRe); + } else if (ExcludeRe.empty()) { + ShouldInstrument = doesFilenameMatchARegex(RealFilename, FilterRe); + } else { + ShouldInstrument = doesFilenameMatchARegex(RealFilename, FilterRe) && + !doesFilenameMatchARegex(RealFilename, ExcludeRe); + } + InstrumentedFiles[Filename] = ShouldInstrument; + return ShouldInstrument; +} + +std::string GCOVProfiler::mangleName(const DICompileUnit *CU, + GCovFileType OutputType) { + bool Notes = OutputType == GCovFileType::GCNO; + + if (NamedMDNode *GCov = M->getNamedMetadata("llvm.gcov")) { + for (int i = 0, e = GCov->getNumOperands(); i != e; ++i) { + MDNode *N = GCov->getOperand(i); + bool ThreeElement = N->getNumOperands() == 3; + if (!ThreeElement && N->getNumOperands() != 2) + continue; + if (dyn_cast<MDNode>(N->getOperand(ThreeElement ? 2 : 1)) != CU) + continue; + + if (ThreeElement) { + // These nodes have no mangling to apply, it's stored mangled in the + // bitcode. + MDString *NotesFile = dyn_cast<MDString>(N->getOperand(0)); + MDString *DataFile = dyn_cast<MDString>(N->getOperand(1)); + if (!NotesFile || !DataFile) + continue; + return std::string(Notes ? NotesFile->getString() + : DataFile->getString()); + } + + MDString *GCovFile = dyn_cast<MDString>(N->getOperand(0)); + if (!GCovFile) + continue; + + SmallString<128> Filename = GCovFile->getString(); + sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); + return std::string(Filename.str()); + } + } + + SmallString<128> Filename = CU->getFilename(); + sys::path::replace_extension(Filename, Notes ? "gcno" : "gcda"); + StringRef FName = sys::path::filename(Filename); + SmallString<128> CurPath; + if (sys::fs::current_path(CurPath)) + return std::string(FName); + sys::path::append(CurPath, FName); + return std::string(CurPath.str()); +} + +bool GCOVProfiler::runOnModule( Module &M, function_ref<BlockFrequencyInfo *(Function &F)> GetBFI, function_ref<BranchProbabilityInfo *(Function &F)> GetBPI, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { - this->M = &M; - this->GetTLI = std::move(GetTLI); - Ctx = &M.getContext(); - + this->M = &M; + this->GetTLI = std::move(GetTLI); + Ctx = &M.getContext(); + NamedMDNode *CUNode = M.getNamedMetadata("llvm.dbg.cu"); if (!CUNode || (!Options.EmitNotes && !Options.EmitData)) return false; - + bool HasExecOrFork = AddFlushBeforeForkAndExec(); - FilterRe = createRegexesFromString(Options.Filter); - ExcludeRe = createRegexesFromString(Options.Exclude); + FilterRe = createRegexesFromString(Options.Filter); + ExcludeRe = createRegexesFromString(Options.Exclude); emitProfileNotes(CUNode, HasExecOrFork, GetBFI, GetBPI, this->GetTLI); return true; -} - -PreservedAnalyses GCOVProfilerPass::run(Module &M, - ModuleAnalysisManager &AM) { - - GCOVProfiler Profiler(GCOVOpts); - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - +} + +PreservedAnalyses GCOVProfilerPass::run(Module &M, + ModuleAnalysisManager &AM) { + + GCOVProfiler Profiler(GCOVOpts); + FunctionAnalysisManager &FAM = + AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto GetBFI = [&FAM](Function &F) { return &FAM.getResult<BlockFrequencyAnalysis>(F); }; @@ -639,124 +639,124 @@ PreservedAnalyses GCOVProfilerPass::run(Module &M, }; if (!Profiler.runOnModule(M, GetBFI, GetBPI, GetTLI)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} - -static bool functionHasLines(const Function &F, unsigned &EndLine) { - // Check whether this function actually has any source lines. Not only - // do these waste space, they also can crash gcov. - EndLine = 0; - for (auto &BB : F) { - for (auto &I : BB) { - // Debug intrinsic locations correspond to the location of the - // declaration, not necessarily any statements or expressions. - if (isa<DbgInfoIntrinsic>(&I)) continue; - - const DebugLoc &Loc = I.getDebugLoc(); - if (!Loc) - continue; - - // Artificial lines such as calls to the global constructors. - if (Loc.getLine() == 0) continue; - EndLine = std::max(EndLine, Loc.getLine()); - - return true; - } - } - return false; -} - -static bool isUsingScopeBasedEH(Function &F) { - if (!F.hasPersonalityFn()) return false; - - EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); - return isScopedEHPersonality(Personality); -} - -bool GCOVProfiler::AddFlushBeforeForkAndExec() { - SmallVector<CallInst *, 2> Forks; - SmallVector<CallInst *, 2> Execs; - for (auto &F : M->functions()) { - auto *TLI = &GetTLI(F); - for (auto &I : instructions(F)) { - if (CallInst *CI = dyn_cast<CallInst>(&I)) { - if (Function *Callee = CI->getCalledFunction()) { - LibFunc LF; - if (TLI->getLibFunc(*Callee, LF)) { - if (LF == LibFunc_fork) { -#if !defined(_WIN32) - Forks.push_back(CI); -#endif - } else if (LF == LibFunc_execl || LF == LibFunc_execle || - LF == LibFunc_execlp || LF == LibFunc_execv || - LF == LibFunc_execvp || LF == LibFunc_execve || - LF == LibFunc_execvpe || LF == LibFunc_execvP) { - Execs.push_back(CI); - } - } - } - } - } - } - - for (auto F : Forks) { - IRBuilder<> Builder(F); - BasicBlock *Parent = F->getParent(); - auto NextInst = ++F->getIterator(); - - // We've a fork so just reset the counters in the child process - FunctionType *FTy = FunctionType::get(Builder.getInt32Ty(), {}, false); - FunctionCallee GCOVFork = M->getOrInsertFunction("__gcov_fork", FTy); - F->setCalledFunction(GCOVFork); - - // We split just after the fork to have a counter for the lines after - // Anyway there's a bug: - // void foo() { fork(); } - // void bar() { foo(); blah(); } - // then "blah();" will be called 2 times but showed as 1 - // because "blah()" belongs to the same block as "foo();" - Parent->splitBasicBlock(NextInst); - - // back() is a br instruction with a debug location - // equals to the one from NextAfterFork - // So to avoid to have two debug locs on two blocks just change it - DebugLoc Loc = F->getDebugLoc(); - Parent->back().setDebugLoc(Loc); - } - - for (auto E : Execs) { - IRBuilder<> Builder(E); - BasicBlock *Parent = E->getParent(); - auto NextInst = ++E->getIterator(); - - // Since the process is replaced by a new one we need to write out gcdas - // No need to reset the counters since they'll be lost after the exec** - FunctionType *FTy = FunctionType::get(Builder.getVoidTy(), {}, false); - FunctionCallee WriteoutF = - M->getOrInsertFunction("llvm_writeout_files", FTy); - Builder.CreateCall(WriteoutF); - - DebugLoc Loc = E->getDebugLoc(); - Builder.SetInsertPoint(&*NextInst); - // If the exec** fails we must reset the counters since they've been - // dumped - FunctionCallee ResetF = M->getOrInsertFunction("llvm_reset_counters", FTy); - Builder.CreateCall(ResetF)->setDebugLoc(Loc); + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} + +static bool functionHasLines(const Function &F, unsigned &EndLine) { + // Check whether this function actually has any source lines. Not only + // do these waste space, they also can crash gcov. + EndLine = 0; + for (auto &BB : F) { + for (auto &I : BB) { + // Debug intrinsic locations correspond to the location of the + // declaration, not necessarily any statements or expressions. + if (isa<DbgInfoIntrinsic>(&I)) continue; + + const DebugLoc &Loc = I.getDebugLoc(); + if (!Loc) + continue; + + // Artificial lines such as calls to the global constructors. + if (Loc.getLine() == 0) continue; + EndLine = std::max(EndLine, Loc.getLine()); + + return true; + } + } + return false; +} + +static bool isUsingScopeBasedEH(Function &F) { + if (!F.hasPersonalityFn()) return false; + + EHPersonality Personality = classifyEHPersonality(F.getPersonalityFn()); + return isScopedEHPersonality(Personality); +} + +bool GCOVProfiler::AddFlushBeforeForkAndExec() { + SmallVector<CallInst *, 2> Forks; + SmallVector<CallInst *, 2> Execs; + for (auto &F : M->functions()) { + auto *TLI = &GetTLI(F); + for (auto &I : instructions(F)) { + if (CallInst *CI = dyn_cast<CallInst>(&I)) { + if (Function *Callee = CI->getCalledFunction()) { + LibFunc LF; + if (TLI->getLibFunc(*Callee, LF)) { + if (LF == LibFunc_fork) { +#if !defined(_WIN32) + Forks.push_back(CI); +#endif + } else if (LF == LibFunc_execl || LF == LibFunc_execle || + LF == LibFunc_execlp || LF == LibFunc_execv || + LF == LibFunc_execvp || LF == LibFunc_execve || + LF == LibFunc_execvpe || LF == LibFunc_execvP) { + Execs.push_back(CI); + } + } + } + } + } + } + + for (auto F : Forks) { + IRBuilder<> Builder(F); + BasicBlock *Parent = F->getParent(); + auto NextInst = ++F->getIterator(); + + // We've a fork so just reset the counters in the child process + FunctionType *FTy = FunctionType::get(Builder.getInt32Ty(), {}, false); + FunctionCallee GCOVFork = M->getOrInsertFunction("__gcov_fork", FTy); + F->setCalledFunction(GCOVFork); + + // We split just after the fork to have a counter for the lines after + // Anyway there's a bug: + // void foo() { fork(); } + // void bar() { foo(); blah(); } + // then "blah();" will be called 2 times but showed as 1 + // because "blah()" belongs to the same block as "foo();" + Parent->splitBasicBlock(NextInst); + + // back() is a br instruction with a debug location + // equals to the one from NextAfterFork + // So to avoid to have two debug locs on two blocks just change it + DebugLoc Loc = F->getDebugLoc(); + Parent->back().setDebugLoc(Loc); + } + + for (auto E : Execs) { + IRBuilder<> Builder(E); + BasicBlock *Parent = E->getParent(); + auto NextInst = ++E->getIterator(); + + // Since the process is replaced by a new one we need to write out gcdas + // No need to reset the counters since they'll be lost after the exec** + FunctionType *FTy = FunctionType::get(Builder.getVoidTy(), {}, false); + FunctionCallee WriteoutF = + M->getOrInsertFunction("llvm_writeout_files", FTy); + Builder.CreateCall(WriteoutF); + + DebugLoc Loc = E->getDebugLoc(); + Builder.SetInsertPoint(&*NextInst); + // If the exec** fails we must reset the counters since they've been + // dumped + FunctionCallee ResetF = M->getOrInsertFunction("llvm_reset_counters", FTy); + Builder.CreateCall(ResetF)->setDebugLoc(Loc); ExecBlocks.insert(Parent); - Parent->splitBasicBlock(NextInst); - Parent->back().setDebugLoc(Loc); - } - - return !Forks.empty() || !Execs.empty(); -} - + Parent->splitBasicBlock(NextInst); + Parent->back().setDebugLoc(Loc); + } + + return !Forks.empty() || !Execs.empty(); +} + static BasicBlock *getInstrBB(CFGMST<Edge, BBInfo> &MST, Edge &E, const DenseSet<const BasicBlock *> &ExecBlocks) { if (E.InMST || E.Removed) return nullptr; - + BasicBlock *SrcBB = const_cast<BasicBlock *>(E.SrcBB); BasicBlock *DestBB = const_cast<BasicBlock *>(E.DestBB); // For a fake edge, instrument the real BB. @@ -813,42 +813,42 @@ bool GCOVProfiler::emitProfileNotes( function_ref<BlockFrequencyInfo *(Function &F)> GetBFI, function_ref<BranchProbabilityInfo *(Function &F)> GetBPI, function_ref<const TargetLibraryInfo &(Function &F)> GetTLI) { - int Version; - { - uint8_t c3 = Options.Version[0]; - uint8_t c2 = Options.Version[1]; - uint8_t c1 = Options.Version[2]; - Version = c3 >= 'A' ? (c3 - 'A') * 100 + (c2 - '0') * 10 + c1 - '0' - : (c3 - '0') * 10 + c1 - '0'; - } - + int Version; + { + uint8_t c3 = Options.Version[0]; + uint8_t c2 = Options.Version[1]; + uint8_t c1 = Options.Version[2]; + Version = c3 >= 'A' ? (c3 - 'A') * 100 + (c2 - '0') * 10 + c1 - '0' + : (c3 - '0') * 10 + c1 - '0'; + } + bool EmitGCDA = Options.EmitData; for (unsigned i = 0, e = CUNode->getNumOperands(); i != e; ++i) { - // Each compile unit gets its own .gcno file. This means that whether we run - // this pass over the original .o's as they're produced, or run it after - // LTO, we'll generate the same .gcno files. - + // Each compile unit gets its own .gcno file. This means that whether we run + // this pass over the original .o's as they're produced, or run it after + // LTO, we'll generate the same .gcno files. + auto *CU = cast<DICompileUnit>(CUNode->getOperand(i)); - - // Skip module skeleton (and module) CUs. - if (CU->getDWOId()) - continue; - + + // Skip module skeleton (and module) CUs. + if (CU->getDWOId()) + continue; + std::vector<uint8_t> EdgeDestinations; SmallVector<std::pair<GlobalVariable *, MDNode *>, 8> CountersBySP; - - Endian = M->getDataLayout().isLittleEndian() ? support::endianness::little - : support::endianness::big; - unsigned FunctionIdent = 0; - for (auto &F : M->functions()) { - DISubprogram *SP = F.getSubprogram(); - unsigned EndLine; - if (!SP) continue; - if (!functionHasLines(F, EndLine) || !isFunctionInstrumented(F)) - continue; - // TODO: Functions using scope-based EH are currently not supported. - if (isUsingScopeBasedEH(F)) continue; - + + Endian = M->getDataLayout().isLittleEndian() ? support::endianness::little + : support::endianness::big; + unsigned FunctionIdent = 0; + for (auto &F : M->functions()) { + DISubprogram *SP = F.getSubprogram(); + unsigned EndLine; + if (!SP) continue; + if (!functionHasLines(F, EndLine) || !isFunctionInstrumented(F)) + continue; + // TODO: Functions using scope-based EH are currently not supported. + if (isUsingScopeBasedEH(F)) continue; + // Add the function line number to the lines of the entry block // to have a counter for the function definition. uint32_t Line = SP->getLine(); @@ -873,11 +873,11 @@ bool GCOVProfiler::emitProfileNotes( E.Place = getInstrBB(MST, E, ExecBlocks); } // Basic blocks in F are finalized at this point. - BasicBlock &EntryBlock = F.getEntryBlock(); - Funcs.push_back(std::make_unique<GCOVFunction>(this, &F, SP, EndLine, - FunctionIdent++, Version)); - GCOVFunction &Func = *Funcs.back(); - + BasicBlock &EntryBlock = F.getEntryBlock(); + Funcs.push_back(std::make_unique<GCOVFunction>(this, &F, SP, EndLine, + FunctionIdent++, Version)); + GCOVFunction &Func = *Funcs.back(); + // Some non-tree edges are IndirectBr which cannot be split. Ignore them // as well. llvm::erase_if(MST.AllEdges, [](std::unique_ptr<Edge> &E) { @@ -903,7 +903,7 @@ bool GCOVProfiler::emitProfileNotes( return L->SrcNumber != R->SrcNumber ? L->SrcNumber < R->SrcNumber : L->DstNumber < R->DstNumber; }); - + for (const Edge &E : make_pointee_range(MST.AllEdges)) { GCOVBlock &Src = E.SrcBB ? Func.getBlock(E.SrcBB) : Func.getEntryBlock(); @@ -912,10 +912,10 @@ bool GCOVProfiler::emitProfileNotes( Src.addEdge(Dst, E.Place ? 0 : uint32_t(GCOV_ARC_ON_TREE)); } - // Artificial functions such as global initializers - if (!SP->isArtificial()) - Func.getBlock(&EntryBlock).getFile(Filename).addLine(Line); - + // Artificial functions such as global initializers + if (!SP->isArtificial()) + Func.getBlock(&EntryBlock).getFile(Filename).addLine(Line); + LLVM_DEBUG(dumpEdges(MST, Func)); for (auto &GB : Func.Blocks) { @@ -925,31 +925,31 @@ bool GCOVProfiler::emitProfileNotes( uint32_t Idx = Succ.first->Number; do EdgeDestinations.push_back(Idx & 255); while ((Idx >>= 8) > 0); - } - - for (auto &I : BB) { - // Debug intrinsic locations correspond to the location of the - // declaration, not necessarily any statements or expressions. - if (isa<DbgInfoIntrinsic>(&I)) continue; - - const DebugLoc &Loc = I.getDebugLoc(); - if (!Loc) - continue; - - // Artificial lines such as calls to the global constructors. - if (Loc.getLine() == 0 || Loc.isImplicitCode()) - continue; - - if (Line == Loc.getLine()) continue; - Line = Loc.getLine(); - if (SP != getDISubprogram(Loc.getScope())) - continue; - - GCOVLines &Lines = Block.getFile(Filename); - Lines.addLine(Loc.getLine()); - } - Line = 0; - } + } + + for (auto &I : BB) { + // Debug intrinsic locations correspond to the location of the + // declaration, not necessarily any statements or expressions. + if (isa<DbgInfoIntrinsic>(&I)) continue; + + const DebugLoc &Loc = I.getDebugLoc(); + if (!Loc) + continue; + + // Artificial lines such as calls to the global constructors. + if (Loc.getLine() == 0 || Loc.isImplicitCode()) + continue; + + if (Line == Loc.getLine()) continue; + Line = Loc.getLine(); + if (SP != getDISubprogram(Loc.getScope())) + continue; + + GCOVLines &Lines = Block.getFile(Filename); + Lines.addLine(Loc.getLine()); + } + Line = 0; + } if (EmitGCDA) { DISubprogram *SP = F.getSubprogram(); ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(*Ctx), Measured); @@ -974,14 +974,14 @@ bool GCOVProfiler::emitProfileNotes( } } } - } - - char Tmp[4]; + } + + char Tmp[4]; JamCRC JC; JC.update(EdgeDestinations); uint32_t Stamp = JC.getCRC(); - FileChecksums.push_back(Stamp); - + FileChecksums.push_back(Stamp); + if (Options.EmitNotes) { std::error_code EC; raw_fd_ostream out(mangleName(CU, GCovFileType::GCNO), EC, @@ -990,8 +990,8 @@ bool GCOVProfiler::emitProfileNotes( Ctx->emitError( Twine("failed to open coverage notes file for writing: ") + EC.message()); - continue; - } + continue; + } os = &out; if (Endian == support::endianness::big) { out.write("gcno", 4); @@ -1006,28 +1006,28 @@ bool GCOVProfiler::emitProfileNotes( writeString(""); // unuseful current_working_directory if (Version >= 80) write(0); // unuseful has_unexecuted_blocks - + for (auto &Func : Funcs) Func->writeOut(Stamp); - + write(0); write(0); out.close(); } - + if (EmitGCDA) { emitGlobalConstructor(CountersBySP); EmitGCDA = false; - } + } } return true; } - + void GCOVProfiler::emitGlobalConstructor( SmallVectorImpl<std::pair<GlobalVariable *, MDNode *>> &CountersBySP) { Function *WriteoutF = insertCounterWriteout(CountersBySP); Function *ResetF = insertReset(CountersBySP); - + // Create a small bit of code that registers the "__llvm_gcov_writeout" to // be executed at exit and the "__llvm_gcov_flush" function to be executed // when "__gcov_flush" is called. @@ -1039,355 +1039,355 @@ void GCOVProfiler::emitGlobalConstructor( F->addFnAttr(Attribute::NoInline); if (Options.NoRedZone) F->addFnAttr(Attribute::NoRedZone); - + BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F); IRBuilder<> Builder(BB); - + FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); auto *PFTy = PointerType::get(FTy, 0); FTy = FunctionType::get(Builder.getVoidTy(), {PFTy, PFTy}, false); - + // Initialize the environment and register the local writeout, flush and // reset functions. FunctionCallee GCOVInit = M->getOrInsertFunction("llvm_gcov_init", FTy); Builder.CreateCall(GCOVInit, {WriteoutF, ResetF}); Builder.CreateRetVoid(); - + appendToGlobalCtors(*M, F, 0); -} - -FunctionCallee GCOVProfiler::getStartFileFunc(const TargetLibraryInfo *TLI) { - Type *Args[] = { - Type::getInt8PtrTy(*Ctx), // const char *orig_filename - Type::getInt32Ty(*Ctx), // uint32_t version - Type::getInt32Ty(*Ctx), // uint32_t checksum - }; - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); - AttributeList AL; - if (auto AK = TLI->getExtAttrForI32Param(false)) - AL = AL.addParamAttribute(*Ctx, 2, AK); - FunctionCallee Res = M->getOrInsertFunction("llvm_gcda_start_file", FTy, AL); - return Res; -} - -FunctionCallee GCOVProfiler::getEmitFunctionFunc(const TargetLibraryInfo *TLI) { - Type *Args[] = { - Type::getInt32Ty(*Ctx), // uint32_t ident - Type::getInt32Ty(*Ctx), // uint32_t func_checksum - Type::getInt32Ty(*Ctx), // uint32_t cfg_checksum - }; - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); - AttributeList AL; - if (auto AK = TLI->getExtAttrForI32Param(false)) { - AL = AL.addParamAttribute(*Ctx, 0, AK); - AL = AL.addParamAttribute(*Ctx, 1, AK); - AL = AL.addParamAttribute(*Ctx, 2, AK); - } - return M->getOrInsertFunction("llvm_gcda_emit_function", FTy); -} - -FunctionCallee GCOVProfiler::getEmitArcsFunc(const TargetLibraryInfo *TLI) { - Type *Args[] = { - Type::getInt32Ty(*Ctx), // uint32_t num_counters - Type::getInt64PtrTy(*Ctx), // uint64_t *counters - }; - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); - AttributeList AL; - if (auto AK = TLI->getExtAttrForI32Param(false)) - AL = AL.addParamAttribute(*Ctx, 0, AK); - return M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy, AL); -} - -FunctionCallee GCOVProfiler::getSummaryInfoFunc() { - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); - return M->getOrInsertFunction("llvm_gcda_summary_info", FTy); -} - -FunctionCallee GCOVProfiler::getEndFileFunc() { - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); - return M->getOrInsertFunction("llvm_gcda_end_file", FTy); -} - -Function *GCOVProfiler::insertCounterWriteout( - ArrayRef<std::pair<GlobalVariable *, MDNode *> > CountersBySP) { - FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false); - Function *WriteoutF = M->getFunction("__llvm_gcov_writeout"); - if (!WriteoutF) - WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage, - "__llvm_gcov_writeout", M); - WriteoutF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - WriteoutF->addFnAttr(Attribute::NoInline); - if (Options.NoRedZone) - WriteoutF->addFnAttr(Attribute::NoRedZone); - - BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF); - IRBuilder<> Builder(BB); - - auto *TLI = &GetTLI(*WriteoutF); - - FunctionCallee StartFile = getStartFileFunc(TLI); - FunctionCallee EmitFunction = getEmitFunctionFunc(TLI); - FunctionCallee EmitArcs = getEmitArcsFunc(TLI); - FunctionCallee SummaryInfo = getSummaryInfoFunc(); - FunctionCallee EndFile = getEndFileFunc(); - - NamedMDNode *CUNodes = M->getNamedMetadata("llvm.dbg.cu"); - if (!CUNodes) { - Builder.CreateRetVoid(); - return WriteoutF; - } - - // Collect the relevant data into a large constant data structure that we can - // walk to write out everything. - StructType *StartFileCallArgsTy = StructType::create( +} + +FunctionCallee GCOVProfiler::getStartFileFunc(const TargetLibraryInfo *TLI) { + Type *Args[] = { + Type::getInt8PtrTy(*Ctx), // const char *orig_filename + Type::getInt32Ty(*Ctx), // uint32_t version + Type::getInt32Ty(*Ctx), // uint32_t checksum + }; + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); + AttributeList AL; + if (auto AK = TLI->getExtAttrForI32Param(false)) + AL = AL.addParamAttribute(*Ctx, 2, AK); + FunctionCallee Res = M->getOrInsertFunction("llvm_gcda_start_file", FTy, AL); + return Res; +} + +FunctionCallee GCOVProfiler::getEmitFunctionFunc(const TargetLibraryInfo *TLI) { + Type *Args[] = { + Type::getInt32Ty(*Ctx), // uint32_t ident + Type::getInt32Ty(*Ctx), // uint32_t func_checksum + Type::getInt32Ty(*Ctx), // uint32_t cfg_checksum + }; + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); + AttributeList AL; + if (auto AK = TLI->getExtAttrForI32Param(false)) { + AL = AL.addParamAttribute(*Ctx, 0, AK); + AL = AL.addParamAttribute(*Ctx, 1, AK); + AL = AL.addParamAttribute(*Ctx, 2, AK); + } + return M->getOrInsertFunction("llvm_gcda_emit_function", FTy); +} + +FunctionCallee GCOVProfiler::getEmitArcsFunc(const TargetLibraryInfo *TLI) { + Type *Args[] = { + Type::getInt32Ty(*Ctx), // uint32_t num_counters + Type::getInt64PtrTy(*Ctx), // uint64_t *counters + }; + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), Args, false); + AttributeList AL; + if (auto AK = TLI->getExtAttrForI32Param(false)) + AL = AL.addParamAttribute(*Ctx, 0, AK); + return M->getOrInsertFunction("llvm_gcda_emit_arcs", FTy, AL); +} + +FunctionCallee GCOVProfiler::getSummaryInfoFunc() { + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); + return M->getOrInsertFunction("llvm_gcda_summary_info", FTy); +} + +FunctionCallee GCOVProfiler::getEndFileFunc() { + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); + return M->getOrInsertFunction("llvm_gcda_end_file", FTy); +} + +Function *GCOVProfiler::insertCounterWriteout( + ArrayRef<std::pair<GlobalVariable *, MDNode *> > CountersBySP) { + FunctionType *WriteoutFTy = FunctionType::get(Type::getVoidTy(*Ctx), false); + Function *WriteoutF = M->getFunction("__llvm_gcov_writeout"); + if (!WriteoutF) + WriteoutF = Function::Create(WriteoutFTy, GlobalValue::InternalLinkage, + "__llvm_gcov_writeout", M); + WriteoutF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + WriteoutF->addFnAttr(Attribute::NoInline); + if (Options.NoRedZone) + WriteoutF->addFnAttr(Attribute::NoRedZone); + + BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", WriteoutF); + IRBuilder<> Builder(BB); + + auto *TLI = &GetTLI(*WriteoutF); + + FunctionCallee StartFile = getStartFileFunc(TLI); + FunctionCallee EmitFunction = getEmitFunctionFunc(TLI); + FunctionCallee EmitArcs = getEmitArcsFunc(TLI); + FunctionCallee SummaryInfo = getSummaryInfoFunc(); + FunctionCallee EndFile = getEndFileFunc(); + + NamedMDNode *CUNodes = M->getNamedMetadata("llvm.dbg.cu"); + if (!CUNodes) { + Builder.CreateRetVoid(); + return WriteoutF; + } + + // Collect the relevant data into a large constant data structure that we can + // walk to write out everything. + StructType *StartFileCallArgsTy = StructType::create( {Builder.getInt8PtrTy(), Builder.getInt32Ty(), Builder.getInt32Ty()}, "start_file_args_ty"); - StructType *EmitFunctionCallArgsTy = StructType::create( + StructType *EmitFunctionCallArgsTy = StructType::create( {Builder.getInt32Ty(), Builder.getInt32Ty(), Builder.getInt32Ty()}, "emit_function_args_ty"); - StructType *EmitArcsCallArgsTy = StructType::create( + StructType *EmitArcsCallArgsTy = StructType::create( {Builder.getInt32Ty(), Builder.getInt64Ty()->getPointerTo()}, "emit_arcs_args_ty"); - StructType *FileInfoTy = - StructType::create({StartFileCallArgsTy, Builder.getInt32Ty(), - EmitFunctionCallArgsTy->getPointerTo(), + StructType *FileInfoTy = + StructType::create({StartFileCallArgsTy, Builder.getInt32Ty(), + EmitFunctionCallArgsTy->getPointerTo(), EmitArcsCallArgsTy->getPointerTo()}, "file_info"); - - Constant *Zero32 = Builder.getInt32(0); - // Build an explicit array of two zeros for use in ConstantExpr GEP building. - Constant *TwoZero32s[] = {Zero32, Zero32}; - - SmallVector<Constant *, 8> FileInfos; - for (int i : llvm::seq<int>(0, CUNodes->getNumOperands())) { - auto *CU = cast<DICompileUnit>(CUNodes->getOperand(i)); - - // Skip module skeleton (and module) CUs. - if (CU->getDWOId()) - continue; - - std::string FilenameGcda = mangleName(CU, GCovFileType::GCDA); - uint32_t CfgChecksum = FileChecksums.empty() ? 0 : FileChecksums[i]; - auto *StartFileCallArgs = ConstantStruct::get( - StartFileCallArgsTy, - {Builder.CreateGlobalStringPtr(FilenameGcda), - Builder.getInt32(endian::read32be(Options.Version)), - Builder.getInt32(CfgChecksum)}); - - SmallVector<Constant *, 8> EmitFunctionCallArgsArray; - SmallVector<Constant *, 8> EmitArcsCallArgsArray; - for (int j : llvm::seq<int>(0, CountersBySP.size())) { - uint32_t FuncChecksum = Funcs.empty() ? 0 : Funcs[j]->getFuncChecksum(); - EmitFunctionCallArgsArray.push_back(ConstantStruct::get( - EmitFunctionCallArgsTy, - {Builder.getInt32(j), - Builder.getInt32(FuncChecksum), - Builder.getInt32(CfgChecksum)})); - - GlobalVariable *GV = CountersBySP[j].first; - unsigned Arcs = cast<ArrayType>(GV->getValueType())->getNumElements(); - EmitArcsCallArgsArray.push_back(ConstantStruct::get( - EmitArcsCallArgsTy, - {Builder.getInt32(Arcs), ConstantExpr::getInBoundsGetElementPtr( - GV->getValueType(), GV, TwoZero32s)})); - } - // Create global arrays for the two emit calls. - int CountersSize = CountersBySP.size(); - assert(CountersSize == (int)EmitFunctionCallArgsArray.size() && - "Mismatched array size!"); - assert(CountersSize == (int)EmitArcsCallArgsArray.size() && - "Mismatched array size!"); - auto *EmitFunctionCallArgsArrayTy = - ArrayType::get(EmitFunctionCallArgsTy, CountersSize); - auto *EmitFunctionCallArgsArrayGV = new GlobalVariable( - *M, EmitFunctionCallArgsArrayTy, /*isConstant*/ true, - GlobalValue::InternalLinkage, - ConstantArray::get(EmitFunctionCallArgsArrayTy, - EmitFunctionCallArgsArray), - Twine("__llvm_internal_gcov_emit_function_args.") + Twine(i)); - auto *EmitArcsCallArgsArrayTy = - ArrayType::get(EmitArcsCallArgsTy, CountersSize); - EmitFunctionCallArgsArrayGV->setUnnamedAddr( - GlobalValue::UnnamedAddr::Global); - auto *EmitArcsCallArgsArrayGV = new GlobalVariable( - *M, EmitArcsCallArgsArrayTy, /*isConstant*/ true, - GlobalValue::InternalLinkage, - ConstantArray::get(EmitArcsCallArgsArrayTy, EmitArcsCallArgsArray), - Twine("__llvm_internal_gcov_emit_arcs_args.") + Twine(i)); - EmitArcsCallArgsArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - - FileInfos.push_back(ConstantStruct::get( - FileInfoTy, - {StartFileCallArgs, Builder.getInt32(CountersSize), - ConstantExpr::getInBoundsGetElementPtr(EmitFunctionCallArgsArrayTy, - EmitFunctionCallArgsArrayGV, - TwoZero32s), - ConstantExpr::getInBoundsGetElementPtr( - EmitArcsCallArgsArrayTy, EmitArcsCallArgsArrayGV, TwoZero32s)})); - } - - // If we didn't find anything to actually emit, bail on out. - if (FileInfos.empty()) { - Builder.CreateRetVoid(); - return WriteoutF; - } - - // To simplify code, we cap the number of file infos we write out to fit - // easily in a 32-bit signed integer. This gives consistent behavior between - // 32-bit and 64-bit systems without requiring (potentially very slow) 64-bit - // operations on 32-bit systems. It also seems unreasonable to try to handle - // more than 2 billion files. - if ((int64_t)FileInfos.size() > (int64_t)INT_MAX) - FileInfos.resize(INT_MAX); - - // Create a global for the entire data structure so we can walk it more - // easily. - auto *FileInfoArrayTy = ArrayType::get(FileInfoTy, FileInfos.size()); - auto *FileInfoArrayGV = new GlobalVariable( - *M, FileInfoArrayTy, /*isConstant*/ true, GlobalValue::InternalLinkage, - ConstantArray::get(FileInfoArrayTy, FileInfos), - "__llvm_internal_gcov_emit_file_info"); - FileInfoArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - - // Create the CFG for walking this data structure. - auto *FileLoopHeader = - BasicBlock::Create(*Ctx, "file.loop.header", WriteoutF); - auto *CounterLoopHeader = - BasicBlock::Create(*Ctx, "counter.loop.header", WriteoutF); - auto *FileLoopLatch = BasicBlock::Create(*Ctx, "file.loop.latch", WriteoutF); - auto *ExitBB = BasicBlock::Create(*Ctx, "exit", WriteoutF); - - // We always have at least one file, so just branch to the header. - Builder.CreateBr(FileLoopHeader); - - // The index into the files structure is our loop induction variable. - Builder.SetInsertPoint(FileLoopHeader); + + Constant *Zero32 = Builder.getInt32(0); + // Build an explicit array of two zeros for use in ConstantExpr GEP building. + Constant *TwoZero32s[] = {Zero32, Zero32}; + + SmallVector<Constant *, 8> FileInfos; + for (int i : llvm::seq<int>(0, CUNodes->getNumOperands())) { + auto *CU = cast<DICompileUnit>(CUNodes->getOperand(i)); + + // Skip module skeleton (and module) CUs. + if (CU->getDWOId()) + continue; + + std::string FilenameGcda = mangleName(CU, GCovFileType::GCDA); + uint32_t CfgChecksum = FileChecksums.empty() ? 0 : FileChecksums[i]; + auto *StartFileCallArgs = ConstantStruct::get( + StartFileCallArgsTy, + {Builder.CreateGlobalStringPtr(FilenameGcda), + Builder.getInt32(endian::read32be(Options.Version)), + Builder.getInt32(CfgChecksum)}); + + SmallVector<Constant *, 8> EmitFunctionCallArgsArray; + SmallVector<Constant *, 8> EmitArcsCallArgsArray; + for (int j : llvm::seq<int>(0, CountersBySP.size())) { + uint32_t FuncChecksum = Funcs.empty() ? 0 : Funcs[j]->getFuncChecksum(); + EmitFunctionCallArgsArray.push_back(ConstantStruct::get( + EmitFunctionCallArgsTy, + {Builder.getInt32(j), + Builder.getInt32(FuncChecksum), + Builder.getInt32(CfgChecksum)})); + + GlobalVariable *GV = CountersBySP[j].first; + unsigned Arcs = cast<ArrayType>(GV->getValueType())->getNumElements(); + EmitArcsCallArgsArray.push_back(ConstantStruct::get( + EmitArcsCallArgsTy, + {Builder.getInt32(Arcs), ConstantExpr::getInBoundsGetElementPtr( + GV->getValueType(), GV, TwoZero32s)})); + } + // Create global arrays for the two emit calls. + int CountersSize = CountersBySP.size(); + assert(CountersSize == (int)EmitFunctionCallArgsArray.size() && + "Mismatched array size!"); + assert(CountersSize == (int)EmitArcsCallArgsArray.size() && + "Mismatched array size!"); + auto *EmitFunctionCallArgsArrayTy = + ArrayType::get(EmitFunctionCallArgsTy, CountersSize); + auto *EmitFunctionCallArgsArrayGV = new GlobalVariable( + *M, EmitFunctionCallArgsArrayTy, /*isConstant*/ true, + GlobalValue::InternalLinkage, + ConstantArray::get(EmitFunctionCallArgsArrayTy, + EmitFunctionCallArgsArray), + Twine("__llvm_internal_gcov_emit_function_args.") + Twine(i)); + auto *EmitArcsCallArgsArrayTy = + ArrayType::get(EmitArcsCallArgsTy, CountersSize); + EmitFunctionCallArgsArrayGV->setUnnamedAddr( + GlobalValue::UnnamedAddr::Global); + auto *EmitArcsCallArgsArrayGV = new GlobalVariable( + *M, EmitArcsCallArgsArrayTy, /*isConstant*/ true, + GlobalValue::InternalLinkage, + ConstantArray::get(EmitArcsCallArgsArrayTy, EmitArcsCallArgsArray), + Twine("__llvm_internal_gcov_emit_arcs_args.") + Twine(i)); + EmitArcsCallArgsArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + + FileInfos.push_back(ConstantStruct::get( + FileInfoTy, + {StartFileCallArgs, Builder.getInt32(CountersSize), + ConstantExpr::getInBoundsGetElementPtr(EmitFunctionCallArgsArrayTy, + EmitFunctionCallArgsArrayGV, + TwoZero32s), + ConstantExpr::getInBoundsGetElementPtr( + EmitArcsCallArgsArrayTy, EmitArcsCallArgsArrayGV, TwoZero32s)})); + } + + // If we didn't find anything to actually emit, bail on out. + if (FileInfos.empty()) { + Builder.CreateRetVoid(); + return WriteoutF; + } + + // To simplify code, we cap the number of file infos we write out to fit + // easily in a 32-bit signed integer. This gives consistent behavior between + // 32-bit and 64-bit systems without requiring (potentially very slow) 64-bit + // operations on 32-bit systems. It also seems unreasonable to try to handle + // more than 2 billion files. + if ((int64_t)FileInfos.size() > (int64_t)INT_MAX) + FileInfos.resize(INT_MAX); + + // Create a global for the entire data structure so we can walk it more + // easily. + auto *FileInfoArrayTy = ArrayType::get(FileInfoTy, FileInfos.size()); + auto *FileInfoArrayGV = new GlobalVariable( + *M, FileInfoArrayTy, /*isConstant*/ true, GlobalValue::InternalLinkage, + ConstantArray::get(FileInfoArrayTy, FileInfos), + "__llvm_internal_gcov_emit_file_info"); + FileInfoArrayGV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + + // Create the CFG for walking this data structure. + auto *FileLoopHeader = + BasicBlock::Create(*Ctx, "file.loop.header", WriteoutF); + auto *CounterLoopHeader = + BasicBlock::Create(*Ctx, "counter.loop.header", WriteoutF); + auto *FileLoopLatch = BasicBlock::Create(*Ctx, "file.loop.latch", WriteoutF); + auto *ExitBB = BasicBlock::Create(*Ctx, "exit", WriteoutF); + + // We always have at least one file, so just branch to the header. + Builder.CreateBr(FileLoopHeader); + + // The index into the files structure is our loop induction variable. + Builder.SetInsertPoint(FileLoopHeader); PHINode *IV = Builder.CreatePHI(Builder.getInt32Ty(), /*NumReservedValues*/ 2, "file_idx"); - IV->addIncoming(Builder.getInt32(0), BB); - auto *FileInfoPtr = Builder.CreateInBoundsGEP( - FileInfoArrayTy, FileInfoArrayGV, {Builder.getInt32(0), IV}); - auto *StartFileCallArgsPtr = + IV->addIncoming(Builder.getInt32(0), BB); + auto *FileInfoPtr = Builder.CreateInBoundsGEP( + FileInfoArrayTy, FileInfoArrayGV, {Builder.getInt32(0), IV}); + auto *StartFileCallArgsPtr = Builder.CreateStructGEP(FileInfoTy, FileInfoPtr, 0, "start_file_args"); - auto *StartFileCall = Builder.CreateCall( - StartFile, - {Builder.CreateLoad(StartFileCallArgsTy->getElementType(0), - Builder.CreateStructGEP(StartFileCallArgsTy, + auto *StartFileCall = Builder.CreateCall( + StartFile, + {Builder.CreateLoad(StartFileCallArgsTy->getElementType(0), + Builder.CreateStructGEP(StartFileCallArgsTy, StartFileCallArgsPtr, 0), "filename"), - Builder.CreateLoad(StartFileCallArgsTy->getElementType(1), - Builder.CreateStructGEP(StartFileCallArgsTy, + Builder.CreateLoad(StartFileCallArgsTy->getElementType(1), + Builder.CreateStructGEP(StartFileCallArgsTy, StartFileCallArgsPtr, 1), "version"), - Builder.CreateLoad(StartFileCallArgsTy->getElementType(2), - Builder.CreateStructGEP(StartFileCallArgsTy, + Builder.CreateLoad(StartFileCallArgsTy->getElementType(2), + Builder.CreateStructGEP(StartFileCallArgsTy, StartFileCallArgsPtr, 2), "stamp")}); - if (auto AK = TLI->getExtAttrForI32Param(false)) - StartFileCall->addParamAttr(2, AK); + if (auto AK = TLI->getExtAttrForI32Param(false)) + StartFileCall->addParamAttr(2, AK); auto *NumCounters = Builder.CreateLoad( FileInfoTy->getElementType(1), Builder.CreateStructGEP(FileInfoTy, FileInfoPtr, 1), "num_ctrs"); - auto *EmitFunctionCallArgsArray = - Builder.CreateLoad(FileInfoTy->getElementType(2), + auto *EmitFunctionCallArgsArray = + Builder.CreateLoad(FileInfoTy->getElementType(2), Builder.CreateStructGEP(FileInfoTy, FileInfoPtr, 2), "emit_function_args"); auto *EmitArcsCallArgsArray = Builder.CreateLoad( FileInfoTy->getElementType(3), Builder.CreateStructGEP(FileInfoTy, FileInfoPtr, 3), "emit_arcs_args"); - auto *EnterCounterLoopCond = - Builder.CreateICmpSLT(Builder.getInt32(0), NumCounters); - Builder.CreateCondBr(EnterCounterLoopCond, CounterLoopHeader, FileLoopLatch); - - Builder.SetInsertPoint(CounterLoopHeader); + auto *EnterCounterLoopCond = + Builder.CreateICmpSLT(Builder.getInt32(0), NumCounters); + Builder.CreateCondBr(EnterCounterLoopCond, CounterLoopHeader, FileLoopLatch); + + Builder.SetInsertPoint(CounterLoopHeader); auto *JV = Builder.CreatePHI(Builder.getInt32Ty(), /*NumReservedValues*/ 2, "ctr_idx"); - JV->addIncoming(Builder.getInt32(0), FileLoopHeader); - auto *EmitFunctionCallArgsPtr = Builder.CreateInBoundsGEP( - EmitFunctionCallArgsTy, EmitFunctionCallArgsArray, JV); - auto *EmitFunctionCall = Builder.CreateCall( - EmitFunction, - {Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(0), - Builder.CreateStructGEP(EmitFunctionCallArgsTy, + JV->addIncoming(Builder.getInt32(0), FileLoopHeader); + auto *EmitFunctionCallArgsPtr = Builder.CreateInBoundsGEP( + EmitFunctionCallArgsTy, EmitFunctionCallArgsArray, JV); + auto *EmitFunctionCall = Builder.CreateCall( + EmitFunction, + {Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(0), + Builder.CreateStructGEP(EmitFunctionCallArgsTy, EmitFunctionCallArgsPtr, 0), "ident"), - Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(1), - Builder.CreateStructGEP(EmitFunctionCallArgsTy, + Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(1), + Builder.CreateStructGEP(EmitFunctionCallArgsTy, EmitFunctionCallArgsPtr, 1), "func_checkssum"), - Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(2), - Builder.CreateStructGEP(EmitFunctionCallArgsTy, + Builder.CreateLoad(EmitFunctionCallArgsTy->getElementType(2), + Builder.CreateStructGEP(EmitFunctionCallArgsTy, EmitFunctionCallArgsPtr, 2), "cfg_checksum")}); - if (auto AK = TLI->getExtAttrForI32Param(false)) { - EmitFunctionCall->addParamAttr(0, AK); - EmitFunctionCall->addParamAttr(1, AK); - EmitFunctionCall->addParamAttr(2, AK); - } - auto *EmitArcsCallArgsPtr = - Builder.CreateInBoundsGEP(EmitArcsCallArgsTy, EmitArcsCallArgsArray, JV); - auto *EmitArcsCall = Builder.CreateCall( - EmitArcs, - {Builder.CreateLoad( - EmitArcsCallArgsTy->getElementType(0), + if (auto AK = TLI->getExtAttrForI32Param(false)) { + EmitFunctionCall->addParamAttr(0, AK); + EmitFunctionCall->addParamAttr(1, AK); + EmitFunctionCall->addParamAttr(2, AK); + } + auto *EmitArcsCallArgsPtr = + Builder.CreateInBoundsGEP(EmitArcsCallArgsTy, EmitArcsCallArgsArray, JV); + auto *EmitArcsCall = Builder.CreateCall( + EmitArcs, + {Builder.CreateLoad( + EmitArcsCallArgsTy->getElementType(0), Builder.CreateStructGEP(EmitArcsCallArgsTy, EmitArcsCallArgsPtr, 0), "num_counters"), Builder.CreateLoad( EmitArcsCallArgsTy->getElementType(1), Builder.CreateStructGEP(EmitArcsCallArgsTy, EmitArcsCallArgsPtr, 1), "counters")}); - if (auto AK = TLI->getExtAttrForI32Param(false)) - EmitArcsCall->addParamAttr(0, AK); - auto *NextJV = Builder.CreateAdd(JV, Builder.getInt32(1)); - auto *CounterLoopCond = Builder.CreateICmpSLT(NextJV, NumCounters); - Builder.CreateCondBr(CounterLoopCond, CounterLoopHeader, FileLoopLatch); - JV->addIncoming(NextJV, CounterLoopHeader); - - Builder.SetInsertPoint(FileLoopLatch); - Builder.CreateCall(SummaryInfo, {}); - Builder.CreateCall(EndFile, {}); + if (auto AK = TLI->getExtAttrForI32Param(false)) + EmitArcsCall->addParamAttr(0, AK); + auto *NextJV = Builder.CreateAdd(JV, Builder.getInt32(1)); + auto *CounterLoopCond = Builder.CreateICmpSLT(NextJV, NumCounters); + Builder.CreateCondBr(CounterLoopCond, CounterLoopHeader, FileLoopLatch); + JV->addIncoming(NextJV, CounterLoopHeader); + + Builder.SetInsertPoint(FileLoopLatch); + Builder.CreateCall(SummaryInfo, {}); + Builder.CreateCall(EndFile, {}); auto *NextIV = Builder.CreateAdd(IV, Builder.getInt32(1), "next_file_idx"); - auto *FileLoopCond = - Builder.CreateICmpSLT(NextIV, Builder.getInt32(FileInfos.size())); - Builder.CreateCondBr(FileLoopCond, FileLoopHeader, ExitBB); - IV->addIncoming(NextIV, FileLoopLatch); - - Builder.SetInsertPoint(ExitBB); - Builder.CreateRetVoid(); - - return WriteoutF; -} - -Function *GCOVProfiler::insertReset( - ArrayRef<std::pair<GlobalVariable *, MDNode *>> CountersBySP) { - FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); - Function *ResetF = M->getFunction("__llvm_gcov_reset"); - if (!ResetF) - ResetF = Function::Create(FTy, GlobalValue::InternalLinkage, - "__llvm_gcov_reset", M); - ResetF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - ResetF->addFnAttr(Attribute::NoInline); - if (Options.NoRedZone) - ResetF->addFnAttr(Attribute::NoRedZone); - - BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", ResetF); - IRBuilder<> Builder(Entry); - - // Zero out the counters. - for (const auto &I : CountersBySP) { - GlobalVariable *GV = I.first; - Constant *Null = Constant::getNullValue(GV->getValueType()); - Builder.CreateStore(Null, GV); - } - - Type *RetTy = ResetF->getReturnType(); - if (RetTy->isVoidTy()) - Builder.CreateRetVoid(); - else if (RetTy->isIntegerTy()) - // Used if __llvm_gcov_reset was implicitly declared. - Builder.CreateRet(ConstantInt::get(RetTy, 0)); - else - report_fatal_error("invalid return type for __llvm_gcov_reset"); - - return ResetF; -} + auto *FileLoopCond = + Builder.CreateICmpSLT(NextIV, Builder.getInt32(FileInfos.size())); + Builder.CreateCondBr(FileLoopCond, FileLoopHeader, ExitBB); + IV->addIncoming(NextIV, FileLoopLatch); + + Builder.SetInsertPoint(ExitBB); + Builder.CreateRetVoid(); + + return WriteoutF; +} + +Function *GCOVProfiler::insertReset( + ArrayRef<std::pair<GlobalVariable *, MDNode *>> CountersBySP) { + FunctionType *FTy = FunctionType::get(Type::getVoidTy(*Ctx), false); + Function *ResetF = M->getFunction("__llvm_gcov_reset"); + if (!ResetF) + ResetF = Function::Create(FTy, GlobalValue::InternalLinkage, + "__llvm_gcov_reset", M); + ResetF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + ResetF->addFnAttr(Attribute::NoInline); + if (Options.NoRedZone) + ResetF->addFnAttr(Attribute::NoRedZone); + + BasicBlock *Entry = BasicBlock::Create(*Ctx, "entry", ResetF); + IRBuilder<> Builder(Entry); + + // Zero out the counters. + for (const auto &I : CountersBySP) { + GlobalVariable *GV = I.first; + Constant *Null = Constant::getNullValue(GV->getValueType()); + Builder.CreateStore(Null, GV); + } + + Type *RetTy = ResetF->getReturnType(); + if (RetTy->isVoidTy()) + Builder.CreateRetVoid(); + else if (RetTy->isIntegerTy()) + // Used if __llvm_gcov_reset was implicitly declared. + Builder.CreateRet(ConstantInt::get(RetTy, 0)); + else + report_fatal_error("invalid return type for __llvm_gcov_reset"); + + return ResetF; +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp index 1dffdacc3a..fedd9bfc97 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/HWAddressSanitizer.cpp @@ -1,375 +1,375 @@ -//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file is a part of HWAddressSanitizer, an address sanity checker -/// based on tagged addressing. -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/BinaryFormat/ELF.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include "llvm/Transforms/Utils/PromoteMemToReg.h" -#include <sstream> - -using namespace llvm; - -#define DEBUG_TYPE "hwasan" - +//===- HWAddressSanitizer.cpp - detector of uninitialized reads -------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file is a part of HWAddressSanitizer, an address sanity checker +/// based on tagged addressing. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/HWAddressSanitizer.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/BinaryFormat/ELF.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/AddressSanitizerCommon.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include "llvm/Transforms/Utils/PromoteMemToReg.h" +#include <sstream> + +using namespace llvm; + +#define DEBUG_TYPE "hwasan" + const char kHwasanModuleCtorName[] = "hwasan.module_ctor"; const char kHwasanNoteName[] = "hwasan.note"; const char kHwasanInitName[] = "__hwasan_init"; const char kHwasanPersonalityThunkName[] = "__hwasan_personality_thunk"; - + const char kHwasanShadowMemoryDynamicAddress[] = - "__hwasan_shadow_memory_dynamic_address"; - -// Accesses sizes are powers of two: 1, 2, 4, 8, 16. -static const size_t kNumberOfAccessSizes = 5; - -static const size_t kDefaultShadowScale = 4; -static const uint64_t kDynamicShadowSentinel = - std::numeric_limits<uint64_t>::max(); -static const unsigned kPointerTagShift = 56; - -static const unsigned kShadowBaseAlignment = 32; - -static cl::opt<std::string> ClMemoryAccessCallbackPrefix( - "hwasan-memory-access-callback-prefix", - cl::desc("Prefix for memory access callbacks"), cl::Hidden, - cl::init("__hwasan_")); - -static cl::opt<bool> - ClInstrumentWithCalls("hwasan-instrument-with-calls", - cl::desc("instrument reads and writes with callbacks"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads", - cl::desc("instrument read instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentWrites( - "hwasan-instrument-writes", cl::desc("instrument write instructions"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClInstrumentAtomics( - "hwasan-instrument-atomics", - cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, - cl::init(true)); - -static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval", - cl::desc("instrument byval arguments"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClRecover( - "hwasan-recover", - cl::desc("Enable recovery mode (continue-after-error)."), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack", - cl::desc("instrument stack (allocas)"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClUARRetagToZero( - "hwasan-uar-retag-to-zero", - cl::desc("Clear alloca tags before returning from the function to allow " - "non-instrumented and instrumented function calls mix. When set " - "to false, allocas are retagged before returning from the " - "function to detect use after return."), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClGenerateTagsWithCalls( - "hwasan-generate-tags-with-calls", - cl::desc("generate new tags with runtime library calls"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"), - cl::Hidden, cl::init(false), cl::ZeroOrMore); - -static cl::opt<int> ClMatchAllTag( - "hwasan-match-all-tag", - cl::desc("don't report bad accesses via pointers with this tag"), - cl::Hidden, cl::init(-1)); - -static cl::opt<bool> ClEnableKhwasan( - "hwasan-kernel", - cl::desc("Enable KernelHWAddressSanitizer instrumentation"), - cl::Hidden, cl::init(false)); - -// These flags allow to change the shadow mapping and control how shadow memory -// is accessed. The shadow mapping looks like: -// Shadow = (Mem >> scale) + offset - -static cl::opt<uint64_t> - ClMappingOffset("hwasan-mapping-offset", - cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"), - cl::Hidden, cl::init(0)); - -static cl::opt<bool> - ClWithIfunc("hwasan-with-ifunc", - cl::desc("Access dynamic shadow through an ifunc global on " - "platforms that support this"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClWithTls( - "hwasan-with-tls", - cl::desc("Access dynamic shadow through an thread-local pointer on " - "platforms that support this"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> - ClRecordStackHistory("hwasan-record-stack-history", - cl::desc("Record stack frames with tagged allocations " - "in a thread-local ring buffer"), - cl::Hidden, cl::init(true)); -static cl::opt<bool> - ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics", - cl::desc("instrument memory intrinsics"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> - ClInstrumentLandingPads("hwasan-instrument-landing-pads", - cl::desc("instrument landing pads"), cl::Hidden, - cl::init(false), cl::ZeroOrMore); - -static cl::opt<bool> ClUseShortGranules( - "hwasan-use-short-granules", - cl::desc("use short granules in allocas and outlined checks"), cl::Hidden, - cl::init(false), cl::ZeroOrMore); - -static cl::opt<bool> ClInstrumentPersonalityFunctions( - "hwasan-instrument-personality-functions", - cl::desc("instrument personality functions"), cl::Hidden, cl::init(false), - cl::ZeroOrMore); - -static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks", - cl::desc("inline all checks"), - cl::Hidden, cl::init(false)); - -namespace { - -/// An instrumentation pass implementing detection of addressability bugs -/// using tagged pointers. -class HWAddressSanitizer { -public: - explicit HWAddressSanitizer(Module &M, bool CompileKernel = false, - bool Recover = false) : M(M) { - this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; - this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ? - ClEnableKhwasan : CompileKernel; - - initializeModule(); - } - - bool sanitizeFunction(Function &F); - void initializeModule(); + "__hwasan_shadow_memory_dynamic_address"; + +// Accesses sizes are powers of two: 1, 2, 4, 8, 16. +static const size_t kNumberOfAccessSizes = 5; + +static const size_t kDefaultShadowScale = 4; +static const uint64_t kDynamicShadowSentinel = + std::numeric_limits<uint64_t>::max(); +static const unsigned kPointerTagShift = 56; + +static const unsigned kShadowBaseAlignment = 32; + +static cl::opt<std::string> ClMemoryAccessCallbackPrefix( + "hwasan-memory-access-callback-prefix", + cl::desc("Prefix for memory access callbacks"), cl::Hidden, + cl::init("__hwasan_")); + +static cl::opt<bool> + ClInstrumentWithCalls("hwasan-instrument-with-calls", + cl::desc("instrument reads and writes with callbacks"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClInstrumentReads("hwasan-instrument-reads", + cl::desc("instrument read instructions"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClInstrumentWrites( + "hwasan-instrument-writes", cl::desc("instrument write instructions"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClInstrumentAtomics( + "hwasan-instrument-atomics", + cl::desc("instrument atomic instructions (rmw, cmpxchg)"), cl::Hidden, + cl::init(true)); + +static cl::opt<bool> ClInstrumentByval("hwasan-instrument-byval", + cl::desc("instrument byval arguments"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClRecover( + "hwasan-recover", + cl::desc("Enable recovery mode (continue-after-error)."), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClInstrumentStack("hwasan-instrument-stack", + cl::desc("instrument stack (allocas)"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClUARRetagToZero( + "hwasan-uar-retag-to-zero", + cl::desc("Clear alloca tags before returning from the function to allow " + "non-instrumented and instrumented function calls mix. When set " + "to false, allocas are retagged before returning from the " + "function to detect use after return."), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClGenerateTagsWithCalls( + "hwasan-generate-tags-with-calls", + cl::desc("generate new tags with runtime library calls"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> ClGlobals("hwasan-globals", cl::desc("Instrument globals"), + cl::Hidden, cl::init(false), cl::ZeroOrMore); + +static cl::opt<int> ClMatchAllTag( + "hwasan-match-all-tag", + cl::desc("don't report bad accesses via pointers with this tag"), + cl::Hidden, cl::init(-1)); + +static cl::opt<bool> ClEnableKhwasan( + "hwasan-kernel", + cl::desc("Enable KernelHWAddressSanitizer instrumentation"), + cl::Hidden, cl::init(false)); + +// These flags allow to change the shadow mapping and control how shadow memory +// is accessed. The shadow mapping looks like: +// Shadow = (Mem >> scale) + offset + +static cl::opt<uint64_t> + ClMappingOffset("hwasan-mapping-offset", + cl::desc("HWASan shadow mapping offset [EXPERIMENTAL]"), + cl::Hidden, cl::init(0)); + +static cl::opt<bool> + ClWithIfunc("hwasan-with-ifunc", + cl::desc("Access dynamic shadow through an ifunc global on " + "platforms that support this"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClWithTls( + "hwasan-with-tls", + cl::desc("Access dynamic shadow through an thread-local pointer on " + "platforms that support this"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> + ClRecordStackHistory("hwasan-record-stack-history", + cl::desc("Record stack frames with tagged allocations " + "in a thread-local ring buffer"), + cl::Hidden, cl::init(true)); +static cl::opt<bool> + ClInstrumentMemIntrinsics("hwasan-instrument-mem-intrinsics", + cl::desc("instrument memory intrinsics"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> + ClInstrumentLandingPads("hwasan-instrument-landing-pads", + cl::desc("instrument landing pads"), cl::Hidden, + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> ClUseShortGranules( + "hwasan-use-short-granules", + cl::desc("use short granules in allocas and outlined checks"), cl::Hidden, + cl::init(false), cl::ZeroOrMore); + +static cl::opt<bool> ClInstrumentPersonalityFunctions( + "hwasan-instrument-personality-functions", + cl::desc("instrument personality functions"), cl::Hidden, cl::init(false), + cl::ZeroOrMore); + +static cl::opt<bool> ClInlineAllChecks("hwasan-inline-all-checks", + cl::desc("inline all checks"), + cl::Hidden, cl::init(false)); + +namespace { + +/// An instrumentation pass implementing detection of addressability bugs +/// using tagged pointers. +class HWAddressSanitizer { +public: + explicit HWAddressSanitizer(Module &M, bool CompileKernel = false, + bool Recover = false) : M(M) { + this->Recover = ClRecover.getNumOccurrences() > 0 ? ClRecover : Recover; + this->CompileKernel = ClEnableKhwasan.getNumOccurrences() > 0 ? + ClEnableKhwasan : CompileKernel; + + initializeModule(); + } + + bool sanitizeFunction(Function &F); + void initializeModule(); void createHwasanCtorComdat(); - - void initializeCallbacks(Module &M); - + + void initializeCallbacks(Module &M); + Value *getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val); - Value *getDynamicShadowIfunc(IRBuilder<> &IRB); + Value *getDynamicShadowIfunc(IRBuilder<> &IRB); Value *getShadowNonTls(IRBuilder<> &IRB); - - void untagPointerOperand(Instruction *I, Value *Addr); - Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); - void instrumentMemAccessInline(Value *Ptr, bool IsWrite, - unsigned AccessSizeIndex, - Instruction *InsertBefore); - void instrumentMemIntrinsic(MemIntrinsic *MI); - bool instrumentMemAccess(InterestingMemoryOperand &O); - bool ignoreAccess(Value *Ptr); - void getInterestingMemoryOperands( - Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); - - bool isInterestingAlloca(const AllocaInst &AI); - bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size); - Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag); - Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong); - bool instrumentStack( - SmallVectorImpl<AllocaInst *> &Allocas, - DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap, - SmallVectorImpl<Instruction *> &RetVec, Value *StackTag); - Value *readRegister(IRBuilder<> &IRB, StringRef Name); - bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec); - Value *getNextTagWithCall(IRBuilder<> &IRB); - Value *getStackBaseTag(IRBuilder<> &IRB); - Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI, - unsigned AllocaNo); - Value *getUARTag(IRBuilder<> &IRB, Value *StackTag); - - Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty); - void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord); - - void instrumentGlobal(GlobalVariable *GV, uint8_t Tag); - void instrumentGlobals(); - - void instrumentPersonalityFunctions(); - -private: - LLVMContext *C; - Module &M; - Triple TargetTriple; - FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset; - FunctionCallee HWAsanHandleVfork; - - /// This struct defines the shadow mapping using the rule: - /// shadow = (mem >> Scale) + Offset. - /// If InGlobal is true, then - /// extern char __hwasan_shadow[]; - /// shadow = (mem >> Scale) + &__hwasan_shadow - /// If InTls is true, then - /// extern char *__hwasan_tls; - /// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment) - struct ShadowMapping { - int Scale; - uint64_t Offset; - bool InGlobal; - bool InTls; - - void init(Triple &TargetTriple); - unsigned getObjectAlignment() const { return 1U << Scale; } - }; - ShadowMapping Mapping; - - Type *VoidTy = Type::getVoidTy(M.getContext()); - Type *IntptrTy; - Type *Int8PtrTy; - Type *Int8Ty; - Type *Int32Ty; - Type *Int64Ty = Type::getInt64Ty(M.getContext()); - - bool CompileKernel; - bool Recover; + + void untagPointerOperand(Instruction *I, Value *Addr); + Value *memToShadow(Value *Shadow, IRBuilder<> &IRB); + void instrumentMemAccessInline(Value *Ptr, bool IsWrite, + unsigned AccessSizeIndex, + Instruction *InsertBefore); + void instrumentMemIntrinsic(MemIntrinsic *MI); + bool instrumentMemAccess(InterestingMemoryOperand &O); + bool ignoreAccess(Value *Ptr); + void getInterestingMemoryOperands( + Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting); + + bool isInterestingAlloca(const AllocaInst &AI); + bool tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, Value *Tag, size_t Size); + Value *tagPointer(IRBuilder<> &IRB, Type *Ty, Value *PtrLong, Value *Tag); + Value *untagPointer(IRBuilder<> &IRB, Value *PtrLong); + bool instrumentStack( + SmallVectorImpl<AllocaInst *> &Allocas, + DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap, + SmallVectorImpl<Instruction *> &RetVec, Value *StackTag); + Value *readRegister(IRBuilder<> &IRB, StringRef Name); + bool instrumentLandingPads(SmallVectorImpl<Instruction *> &RetVec); + Value *getNextTagWithCall(IRBuilder<> &IRB); + Value *getStackBaseTag(IRBuilder<> &IRB); + Value *getAllocaTag(IRBuilder<> &IRB, Value *StackTag, AllocaInst *AI, + unsigned AllocaNo); + Value *getUARTag(IRBuilder<> &IRB, Value *StackTag); + + Value *getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty); + void emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord); + + void instrumentGlobal(GlobalVariable *GV, uint8_t Tag); + void instrumentGlobals(); + + void instrumentPersonalityFunctions(); + +private: + LLVMContext *C; + Module &M; + Triple TargetTriple; + FunctionCallee HWAsanMemmove, HWAsanMemcpy, HWAsanMemset; + FunctionCallee HWAsanHandleVfork; + + /// This struct defines the shadow mapping using the rule: + /// shadow = (mem >> Scale) + Offset. + /// If InGlobal is true, then + /// extern char __hwasan_shadow[]; + /// shadow = (mem >> Scale) + &__hwasan_shadow + /// If InTls is true, then + /// extern char *__hwasan_tls; + /// shadow = (mem>>Scale) + align_up(__hwasan_shadow, kShadowBaseAlignment) + struct ShadowMapping { + int Scale; + uint64_t Offset; + bool InGlobal; + bool InTls; + + void init(Triple &TargetTriple); + unsigned getObjectAlignment() const { return 1U << Scale; } + }; + ShadowMapping Mapping; + + Type *VoidTy = Type::getVoidTy(M.getContext()); + Type *IntptrTy; + Type *Int8PtrTy; + Type *Int8Ty; + Type *Int32Ty; + Type *Int64Ty = Type::getInt64Ty(M.getContext()); + + bool CompileKernel; + bool Recover; bool OutlinedChecks; - bool UseShortGranules; - bool InstrumentLandingPads; - + bool UseShortGranules; + bool InstrumentLandingPads; + bool HasMatchAllTag = false; uint8_t MatchAllTag = 0; - Function *HwasanCtorFunction; - - FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes]; - FunctionCallee HwasanMemoryAccessCallbackSized[2]; - - FunctionCallee HwasanTagMemoryFunc; - FunctionCallee HwasanGenerateTagFunc; - - Constant *ShadowGlobal; - + Function *HwasanCtorFunction; + + FunctionCallee HwasanMemoryAccessCallback[2][kNumberOfAccessSizes]; + FunctionCallee HwasanMemoryAccessCallbackSized[2]; + + FunctionCallee HwasanTagMemoryFunc; + FunctionCallee HwasanGenerateTagFunc; + + Constant *ShadowGlobal; + Value *ShadowBase = nullptr; - Value *StackBaseTag = nullptr; - GlobalValue *ThreadPtrGlobal = nullptr; -}; - -class HWAddressSanitizerLegacyPass : public FunctionPass { -public: - // Pass identification, replacement for typeid. - static char ID; - - explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false, - bool Recover = false) - : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) { - initializeHWAddressSanitizerLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { return "HWAddressSanitizer"; } - - bool doInitialization(Module &M) override { - HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover); - return true; - } - - bool runOnFunction(Function &F) override { - return HWASan->sanitizeFunction(F); - } - - bool doFinalization(Module &M) override { - HWASan.reset(); - return false; - } - -private: - std::unique_ptr<HWAddressSanitizer> HWASan; - bool CompileKernel; - bool Recover; -}; - -} // end anonymous namespace - -char HWAddressSanitizerLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN( - HWAddressSanitizerLegacyPass, "hwasan", - "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, - false) -INITIALIZE_PASS_END( - HWAddressSanitizerLegacyPass, "hwasan", - "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, - false) - -FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel, - bool Recover) { - assert(!CompileKernel || Recover); - return new HWAddressSanitizerLegacyPass(CompileKernel, Recover); -} - -HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover) - : CompileKernel(CompileKernel), Recover(Recover) {} - -PreservedAnalyses HWAddressSanitizerPass::run(Module &M, - ModuleAnalysisManager &MAM) { - HWAddressSanitizer HWASan(M, CompileKernel, Recover); - bool Modified = false; - for (Function &F : M) - Modified |= HWASan.sanitizeFunction(F); - if (Modified) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - + Value *StackBaseTag = nullptr; + GlobalValue *ThreadPtrGlobal = nullptr; +}; + +class HWAddressSanitizerLegacyPass : public FunctionPass { +public: + // Pass identification, replacement for typeid. + static char ID; + + explicit HWAddressSanitizerLegacyPass(bool CompileKernel = false, + bool Recover = false) + : FunctionPass(ID), CompileKernel(CompileKernel), Recover(Recover) { + initializeHWAddressSanitizerLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "HWAddressSanitizer"; } + + bool doInitialization(Module &M) override { + HWASan = std::make_unique<HWAddressSanitizer>(M, CompileKernel, Recover); + return true; + } + + bool runOnFunction(Function &F) override { + return HWASan->sanitizeFunction(F); + } + + bool doFinalization(Module &M) override { + HWASan.reset(); + return false; + } + +private: + std::unique_ptr<HWAddressSanitizer> HWASan; + bool CompileKernel; + bool Recover; +}; + +} // end anonymous namespace + +char HWAddressSanitizerLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN( + HWAddressSanitizerLegacyPass, "hwasan", + "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, + false) +INITIALIZE_PASS_END( + HWAddressSanitizerLegacyPass, "hwasan", + "HWAddressSanitizer: detect memory bugs using tagged addressing.", false, + false) + +FunctionPass *llvm::createHWAddressSanitizerLegacyPassPass(bool CompileKernel, + bool Recover) { + assert(!CompileKernel || Recover); + return new HWAddressSanitizerLegacyPass(CompileKernel, Recover); +} + +HWAddressSanitizerPass::HWAddressSanitizerPass(bool CompileKernel, bool Recover) + : CompileKernel(CompileKernel), Recover(Recover) {} + +PreservedAnalyses HWAddressSanitizerPass::run(Module &M, + ModuleAnalysisManager &MAM) { + HWAddressSanitizer HWASan(M, CompileKernel, Recover); + bool Modified = false; + for (Function &F : M) + Modified |= HWASan.sanitizeFunction(F); + if (Modified) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + void HWAddressSanitizer::createHwasanCtorComdat() { std::tie(HwasanCtorFunction, std::ignore) = getOrCreateSanitizerCtorAndInitFunctions( @@ -470,38 +470,38 @@ void HWAddressSanitizer::createHwasanCtorComdat() { appendToCompilerUsed(M, Dummy); } -/// Module-level initialization. -/// -/// inserts a call to __hwasan_init to the module's constructor list. -void HWAddressSanitizer::initializeModule() { - LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n"); - auto &DL = M.getDataLayout(); - - TargetTriple = Triple(M.getTargetTriple()); - - Mapping.init(TargetTriple); - - C = &(M.getContext()); - IRBuilder<> IRB(*C); - IntptrTy = IRB.getIntPtrTy(DL); - Int8PtrTy = IRB.getInt8PtrTy(); - Int8Ty = IRB.getInt8Ty(); - Int32Ty = IRB.getInt32Ty(); - - HwasanCtorFunction = nullptr; - - // Older versions of Android do not have the required runtime support for - // short granules, global or personality function instrumentation. On other - // platforms we currently require using the latest version of the runtime. - bool NewRuntime = - !TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30); - - UseShortGranules = - ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime; +/// Module-level initialization. +/// +/// inserts a call to __hwasan_init to the module's constructor list. +void HWAddressSanitizer::initializeModule() { + LLVM_DEBUG(dbgs() << "Init " << M.getName() << "\n"); + auto &DL = M.getDataLayout(); + + TargetTriple = Triple(M.getTargetTriple()); + + Mapping.init(TargetTriple); + + C = &(M.getContext()); + IRBuilder<> IRB(*C); + IntptrTy = IRB.getIntPtrTy(DL); + Int8PtrTy = IRB.getInt8PtrTy(); + Int8Ty = IRB.getInt8Ty(); + Int32Ty = IRB.getInt32Ty(); + + HwasanCtorFunction = nullptr; + + // Older versions of Android do not have the required runtime support for + // short granules, global or personality function instrumentation. On other + // platforms we currently require using the latest version of the runtime. + bool NewRuntime = + !TargetTriple.isAndroid() || !TargetTriple.isAndroidVersionLT(30); + + UseShortGranules = + ClUseShortGranules.getNumOccurrences() ? ClUseShortGranules : NewRuntime; OutlinedChecks = TargetTriple.isAArch64() && TargetTriple.isOSBinFormatELF() && (ClInlineAllChecks.getNumOccurrences() ? !ClInlineAllChecks : !Recover); - + if (ClMatchAllTag.getNumOccurrences()) { if (ClMatchAllTag != -1) { HasMatchAllTag = true; @@ -512,86 +512,86 @@ void HWAddressSanitizer::initializeModule() { MatchAllTag = 0xFF; } - // If we don't have personality function support, fall back to landing pads. - InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences() - ? ClInstrumentLandingPads - : !NewRuntime; - - if (!CompileKernel) { + // If we don't have personality function support, fall back to landing pads. + InstrumentLandingPads = ClInstrumentLandingPads.getNumOccurrences() + ? ClInstrumentLandingPads + : !NewRuntime; + + if (!CompileKernel) { createHwasanCtorComdat(); - bool InstrumentGlobals = - ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime; - if (InstrumentGlobals) - instrumentGlobals(); - - bool InstrumentPersonalityFunctions = - ClInstrumentPersonalityFunctions.getNumOccurrences() - ? ClInstrumentPersonalityFunctions - : NewRuntime; - if (InstrumentPersonalityFunctions) - instrumentPersonalityFunctions(); - } - - if (!TargetTriple.isAndroid()) { - Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] { - auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false, - GlobalValue::ExternalLinkage, nullptr, - "__hwasan_tls", nullptr, - GlobalVariable::InitialExecTLSModel); - appendToCompilerUsed(M, GV); - return GV; - }); - ThreadPtrGlobal = cast<GlobalVariable>(C); - } -} - -void HWAddressSanitizer::initializeCallbacks(Module &M) { - IRBuilder<> IRB(*C); - for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { - const std::string TypeStr = AccessIsWrite ? "store" : "load"; - const std::string EndingStr = Recover ? "_noabort" : ""; - - HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr, - FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false)); - - for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; - AccessSizeIndex++) { - HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] = - M.getOrInsertFunction( - ClMemoryAccessCallbackPrefix + TypeStr + - itostr(1ULL << AccessSizeIndex) + EndingStr, - FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false)); - } - } - - HwasanTagMemoryFunc = M.getOrInsertFunction( - "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy); - HwasanGenerateTagFunc = - M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty); - - ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow", - ArrayType::get(IRB.getInt8Ty(), 0)); - - const std::string MemIntrinCallbackPrefix = - CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; - HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt32Ty(), IntptrTy); - - HWAsanHandleVfork = - M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy); -} - + bool InstrumentGlobals = + ClGlobals.getNumOccurrences() ? ClGlobals : NewRuntime; + if (InstrumentGlobals) + instrumentGlobals(); + + bool InstrumentPersonalityFunctions = + ClInstrumentPersonalityFunctions.getNumOccurrences() + ? ClInstrumentPersonalityFunctions + : NewRuntime; + if (InstrumentPersonalityFunctions) + instrumentPersonalityFunctions(); + } + + if (!TargetTriple.isAndroid()) { + Constant *C = M.getOrInsertGlobal("__hwasan_tls", IntptrTy, [&] { + auto *GV = new GlobalVariable(M, IntptrTy, /*isConstant=*/false, + GlobalValue::ExternalLinkage, nullptr, + "__hwasan_tls", nullptr, + GlobalVariable::InitialExecTLSModel); + appendToCompilerUsed(M, GV); + return GV; + }); + ThreadPtrGlobal = cast<GlobalVariable>(C); + } +} + +void HWAddressSanitizer::initializeCallbacks(Module &M) { + IRBuilder<> IRB(*C); + for (size_t AccessIsWrite = 0; AccessIsWrite <= 1; AccessIsWrite++) { + const std::string TypeStr = AccessIsWrite ? "store" : "load"; + const std::string EndingStr = Recover ? "_noabort" : ""; + + HwasanMemoryAccessCallbackSized[AccessIsWrite] = M.getOrInsertFunction( + ClMemoryAccessCallbackPrefix + TypeStr + "N" + EndingStr, + FunctionType::get(IRB.getVoidTy(), {IntptrTy, IntptrTy}, false)); + + for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; + AccessSizeIndex++) { + HwasanMemoryAccessCallback[AccessIsWrite][AccessSizeIndex] = + M.getOrInsertFunction( + ClMemoryAccessCallbackPrefix + TypeStr + + itostr(1ULL << AccessSizeIndex) + EndingStr, + FunctionType::get(IRB.getVoidTy(), {IntptrTy}, false)); + } + } + + HwasanTagMemoryFunc = M.getOrInsertFunction( + "__hwasan_tag_memory", IRB.getVoidTy(), Int8PtrTy, Int8Ty, IntptrTy); + HwasanGenerateTagFunc = + M.getOrInsertFunction("__hwasan_generate_tag", Int8Ty); + + ShadowGlobal = M.getOrInsertGlobal("__hwasan_shadow", + ArrayType::get(IRB.getInt8Ty(), 0)); + + const std::string MemIntrinCallbackPrefix = + CompileKernel ? std::string("") : ClMemoryAccessCallbackPrefix; + HWAsanMemmove = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memmove", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy); + HWAsanMemcpy = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memcpy", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy); + HWAsanMemset = M.getOrInsertFunction(MemIntrinCallbackPrefix + "memset", + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt32Ty(), IntptrTy); + + HWAsanHandleVfork = + M.getOrInsertFunction("__hwasan_handle_vfork", IRB.getVoidTy(), IntptrTy); +} + Value *HWAddressSanitizer::getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val) { - // An empty inline asm with input reg == output reg. - // An opaque no-op cast, basically. + // An empty inline asm with input reg == output reg. + // An opaque no-op cast, basically. // This prevents code bloat as a result of rematerializing trivial definitions // such as constants or global addresses at every load and store. InlineAsm *Asm = @@ -599,128 +599,128 @@ Value *HWAddressSanitizer::getOpaqueNoopCast(IRBuilder<> &IRB, Value *Val) { StringRef(""), StringRef("=r,0"), /*hasSideEffects=*/false); return IRB.CreateCall(Asm, {Val}, ".hwasan.shadow"); -} - +} + Value *HWAddressSanitizer::getDynamicShadowIfunc(IRBuilder<> &IRB) { return getOpaqueNoopCast(IRB, ShadowGlobal); } Value *HWAddressSanitizer::getShadowNonTls(IRBuilder<> &IRB) { - if (Mapping.Offset != kDynamicShadowSentinel) + if (Mapping.Offset != kDynamicShadowSentinel) return getOpaqueNoopCast( IRB, ConstantExpr::getIntToPtr( ConstantInt::get(IntptrTy, Mapping.Offset), Int8PtrTy)); - - if (Mapping.InGlobal) { - return getDynamicShadowIfunc(IRB); - } else { - Value *GlobalDynamicAddress = - IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal( - kHwasanShadowMemoryDynamicAddress, Int8PtrTy); - return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress); - } -} - -bool HWAddressSanitizer::ignoreAccess(Value *Ptr) { - // Do not instrument acesses from different address spaces; we cannot deal - // with them. - Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); - if (PtrTy->getPointerAddressSpace() != 0) - return true; - - // Ignore swifterror addresses. - // swifterror memory addresses are mem2reg promoted by instruction - // selection. As such they cannot have regular uses like an instrumentation - // function and it makes no sense to track them as memory. - if (Ptr->isSwiftError()) - return true; - - return false; -} - -void HWAddressSanitizer::getInterestingMemoryOperands( - Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { - // Skip memory accesses inserted by another instrumentation. - if (I->hasMetadata("nosanitize")) - return; - - // Do not instrument the load fetching the dynamic shadow address. + + if (Mapping.InGlobal) { + return getDynamicShadowIfunc(IRB); + } else { + Value *GlobalDynamicAddress = + IRB.GetInsertBlock()->getParent()->getParent()->getOrInsertGlobal( + kHwasanShadowMemoryDynamicAddress, Int8PtrTy); + return IRB.CreateLoad(Int8PtrTy, GlobalDynamicAddress); + } +} + +bool HWAddressSanitizer::ignoreAccess(Value *Ptr) { + // Do not instrument acesses from different address spaces; we cannot deal + // with them. + Type *PtrTy = cast<PointerType>(Ptr->getType()->getScalarType()); + if (PtrTy->getPointerAddressSpace() != 0) + return true; + + // Ignore swifterror addresses. + // swifterror memory addresses are mem2reg promoted by instruction + // selection. As such they cannot have regular uses like an instrumentation + // function and it makes no sense to track them as memory. + if (Ptr->isSwiftError()) + return true; + + return false; +} + +void HWAddressSanitizer::getInterestingMemoryOperands( + Instruction *I, SmallVectorImpl<InterestingMemoryOperand> &Interesting) { + // Skip memory accesses inserted by another instrumentation. + if (I->hasMetadata("nosanitize")) + return; + + // Do not instrument the load fetching the dynamic shadow address. if (ShadowBase == I) - return; - - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) - return; - Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, - LI->getType(), LI->getAlign()); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) - return; - Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, - SI->getValueOperand()->getType(), SI->getAlign()); - } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { - if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) - return; - Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, - RMW->getValOperand()->getType(), None); - } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { - if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) - return; - Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, - XCHG->getCompareOperand()->getType(), None); - } else if (auto CI = dyn_cast<CallInst>(I)) { - for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { - if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || - ignoreAccess(CI->getArgOperand(ArgNo))) - continue; - Type *Ty = CI->getParamByValType(ArgNo); - Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); - } - } -} - -static unsigned getPointerOperandIndex(Instruction *I) { - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->getPointerOperandIndex(); - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->getPointerOperandIndex(); - if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) - return RMW->getPointerOperandIndex(); - if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) - return XCHG->getPointerOperandIndex(); - report_fatal_error("Unexpected instruction"); - return -1; -} - -static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { - size_t Res = countTrailingZeros(TypeSize / 8); - assert(Res < kNumberOfAccessSizes); - return Res; -} - -void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) { - if (TargetTriple.isAArch64()) - return; - - IRBuilder<> IRB(I); - Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); - Value *UntaggedPtr = - IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType()); - I->setOperand(getPointerOperandIndex(I), UntaggedPtr); -} - -Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) { - // Mem >> Scale - Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale); - if (Mapping.Offset == 0) - return IRB.CreateIntToPtr(Shadow, Int8PtrTy); - // (Mem >> Scale) + Offset + return; + + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + if (!ClInstrumentReads || ignoreAccess(LI->getPointerOperand())) + return; + Interesting.emplace_back(I, LI->getPointerOperandIndex(), false, + LI->getType(), LI->getAlign()); + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + if (!ClInstrumentWrites || ignoreAccess(SI->getPointerOperand())) + return; + Interesting.emplace_back(I, SI->getPointerOperandIndex(), true, + SI->getValueOperand()->getType(), SI->getAlign()); + } else if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) { + if (!ClInstrumentAtomics || ignoreAccess(RMW->getPointerOperand())) + return; + Interesting.emplace_back(I, RMW->getPointerOperandIndex(), true, + RMW->getValOperand()->getType(), None); + } else if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) { + if (!ClInstrumentAtomics || ignoreAccess(XCHG->getPointerOperand())) + return; + Interesting.emplace_back(I, XCHG->getPointerOperandIndex(), true, + XCHG->getCompareOperand()->getType(), None); + } else if (auto CI = dyn_cast<CallInst>(I)) { + for (unsigned ArgNo = 0; ArgNo < CI->getNumArgOperands(); ArgNo++) { + if (!ClInstrumentByval || !CI->isByValArgument(ArgNo) || + ignoreAccess(CI->getArgOperand(ArgNo))) + continue; + Type *Ty = CI->getParamByValType(ArgNo); + Interesting.emplace_back(I, ArgNo, false, Ty, Align(1)); + } + } +} + +static unsigned getPointerOperandIndex(Instruction *I) { + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->getPointerOperandIndex(); + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->getPointerOperandIndex(); + if (AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(I)) + return RMW->getPointerOperandIndex(); + if (AtomicCmpXchgInst *XCHG = dyn_cast<AtomicCmpXchgInst>(I)) + return XCHG->getPointerOperandIndex(); + report_fatal_error("Unexpected instruction"); + return -1; +} + +static size_t TypeSizeToSizeIndex(uint32_t TypeSize) { + size_t Res = countTrailingZeros(TypeSize / 8); + assert(Res < kNumberOfAccessSizes); + return Res; +} + +void HWAddressSanitizer::untagPointerOperand(Instruction *I, Value *Addr) { + if (TargetTriple.isAArch64()) + return; + + IRBuilder<> IRB(I); + Value *AddrLong = IRB.CreatePointerCast(Addr, IntptrTy); + Value *UntaggedPtr = + IRB.CreateIntToPtr(untagPointer(IRB, AddrLong), Addr->getType()); + I->setOperand(getPointerOperandIndex(I), UntaggedPtr); +} + +Value *HWAddressSanitizer::memToShadow(Value *Mem, IRBuilder<> &IRB) { + // Mem >> Scale + Value *Shadow = IRB.CreateLShr(Mem, Mapping.Scale); + if (Mapping.Offset == 0) + return IRB.CreateIntToPtr(Shadow, Int8PtrTy); + // (Mem >> Scale) + Offset return IRB.CreateGEP(Int8Ty, ShadowBase, Shadow); -} - -void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite, - unsigned AccessSizeIndex, - Instruction *InsertBefore) { +} + +void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite, + unsigned AccessSizeIndex, + Instruction *InsertBefore) { const int64_t AccessInfo = (CompileKernel << HWASanAccessInfo::CompileKernelShift) + (HasMatchAllTag << HWASanAccessInfo::HasMatchAllShift) + @@ -728,809 +728,809 @@ void HWAddressSanitizer::instrumentMemAccessInline(Value *Ptr, bool IsWrite, (Recover << HWASanAccessInfo::RecoverShift) + (IsWrite << HWASanAccessInfo::IsWriteShift) + (AccessSizeIndex << HWASanAccessInfo::AccessSizeShift); - IRBuilder<> IRB(InsertBefore); - + IRBuilder<> IRB(InsertBefore); + if (OutlinedChecks) { - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy); - IRB.CreateCall(Intrinsic::getDeclaration( - M, UseShortGranules - ? Intrinsic::hwasan_check_memaccess_shortgranules - : Intrinsic::hwasan_check_memaccess), + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Ptr = IRB.CreateBitCast(Ptr, Int8PtrTy); + IRB.CreateCall(Intrinsic::getDeclaration( + M, UseShortGranules + ? Intrinsic::hwasan_check_memaccess_shortgranules + : Intrinsic::hwasan_check_memaccess), {ShadowBase, Ptr, ConstantInt::get(Int32Ty, AccessInfo)}); - return; - } - - Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy); - Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift), - IRB.getInt8Ty()); - Value *AddrLong = untagPointer(IRB, PtrLong); - Value *Shadow = memToShadow(AddrLong, IRB); - Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow); - Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag); - + return; + } + + Value *PtrLong = IRB.CreatePointerCast(Ptr, IntptrTy); + Value *PtrTag = IRB.CreateTrunc(IRB.CreateLShr(PtrLong, kPointerTagShift), + IRB.getInt8Ty()); + Value *AddrLong = untagPointer(IRB, PtrLong); + Value *Shadow = memToShadow(AddrLong, IRB); + Value *MemTag = IRB.CreateLoad(Int8Ty, Shadow); + Value *TagMismatch = IRB.CreateICmpNE(PtrTag, MemTag); + if (HasMatchAllTag) { Value *TagNotIgnored = IRB.CreateICmpNE( PtrTag, ConstantInt::get(PtrTag->getType(), MatchAllTag)); - TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored); - } - - Instruction *CheckTerm = - SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false, - MDBuilder(*C).createBranchWeights(1, 100000)); - - IRB.SetInsertPoint(CheckTerm); - Value *OutOfShortGranuleTagRange = - IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15)); - Instruction *CheckFailTerm = - SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover, - MDBuilder(*C).createBranchWeights(1, 100000)); - - IRB.SetInsertPoint(CheckTerm); - Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty); - PtrLowBits = IRB.CreateAdd( - PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1)); - Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag); - SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false, - MDBuilder(*C).createBranchWeights(1, 100000), + TagMismatch = IRB.CreateAnd(TagMismatch, TagNotIgnored); + } + + Instruction *CheckTerm = + SplitBlockAndInsertIfThen(TagMismatch, InsertBefore, false, + MDBuilder(*C).createBranchWeights(1, 100000)); + + IRB.SetInsertPoint(CheckTerm); + Value *OutOfShortGranuleTagRange = + IRB.CreateICmpUGT(MemTag, ConstantInt::get(Int8Ty, 15)); + Instruction *CheckFailTerm = + SplitBlockAndInsertIfThen(OutOfShortGranuleTagRange, CheckTerm, !Recover, + MDBuilder(*C).createBranchWeights(1, 100000)); + + IRB.SetInsertPoint(CheckTerm); + Value *PtrLowBits = IRB.CreateTrunc(IRB.CreateAnd(PtrLong, 15), Int8Ty); + PtrLowBits = IRB.CreateAdd( + PtrLowBits, ConstantInt::get(Int8Ty, (1 << AccessSizeIndex) - 1)); + Value *PtrLowBitsOOB = IRB.CreateICmpUGE(PtrLowBits, MemTag); + SplitBlockAndInsertIfThen(PtrLowBitsOOB, CheckTerm, false, + MDBuilder(*C).createBranchWeights(1, 100000), (DomTreeUpdater *)nullptr, nullptr, CheckFailTerm->getParent()); - - IRB.SetInsertPoint(CheckTerm); - Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15); - InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy); - Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr); - Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag); - SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false, - MDBuilder(*C).createBranchWeights(1, 100000), + + IRB.SetInsertPoint(CheckTerm); + Value *InlineTagAddr = IRB.CreateOr(AddrLong, 15); + InlineTagAddr = IRB.CreateIntToPtr(InlineTagAddr, Int8PtrTy); + Value *InlineTag = IRB.CreateLoad(Int8Ty, InlineTagAddr); + Value *InlineTagMismatch = IRB.CreateICmpNE(PtrTag, InlineTag); + SplitBlockAndInsertIfThen(InlineTagMismatch, CheckTerm, false, + MDBuilder(*C).createBranchWeights(1, 100000), (DomTreeUpdater *)nullptr, nullptr, CheckFailTerm->getParent()); - - IRB.SetInsertPoint(CheckFailTerm); - InlineAsm *Asm; - switch (TargetTriple.getArch()) { - case Triple::x86_64: - // The signal handler will find the data address in rdi. - Asm = InlineAsm::get( - FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), + + IRB.SetInsertPoint(CheckFailTerm); + InlineAsm *Asm; + switch (TargetTriple.getArch()) { + case Triple::x86_64: + // The signal handler will find the data address in rdi. + Asm = InlineAsm::get( + FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), "int3\nnopl " + itostr(0x40 + (AccessInfo & HWASanAccessInfo::RuntimeMask)) + "(%rax)", - "{rdi}", - /*hasSideEffects=*/true); - break; - case Triple::aarch64: - case Triple::aarch64_be: - // The signal handler will find the data address in x0. - Asm = InlineAsm::get( - FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), + "{rdi}", + /*hasSideEffects=*/true); + break; + case Triple::aarch64: + case Triple::aarch64_be: + // The signal handler will find the data address in x0. + Asm = InlineAsm::get( + FunctionType::get(IRB.getVoidTy(), {PtrLong->getType()}, false), "brk #" + itostr(0x900 + (AccessInfo & HWASanAccessInfo::RuntimeMask)), - "{x0}", - /*hasSideEffects=*/true); - break; - default: - report_fatal_error("unsupported architecture"); - } - IRB.CreateCall(Asm, PtrLong); - if (Recover) - cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent()); -} - -void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { - IRBuilder<> IRB(MI); - if (isa<MemTransferInst>(MI)) { - IRB.CreateCall( - isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } else if (isa<MemSetInst>(MI)) { - IRB.CreateCall( - HWAsanMemset, - {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); - } - MI->eraseFromParent(); -} - -bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) { - Value *Addr = O.getPtr(); - - LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n"); - - if (O.MaybeMask) - return false; //FIXME - - IRBuilder<> IRB(O.getInsn()); - if (isPowerOf2_64(O.TypeSize) && - (O.TypeSize / 8 <= (1ULL << (kNumberOfAccessSizes - 1))) && - (!O.Alignment || *O.Alignment >= (1ULL << Mapping.Scale) || - *O.Alignment >= O.TypeSize / 8)) { - size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize); - if (ClInstrumentWithCalls) { - IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex], - IRB.CreatePointerCast(Addr, IntptrTy)); - } else { - instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn()); - } - } else { - IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite], - {IRB.CreatePointerCast(Addr, IntptrTy), - ConstantInt::get(IntptrTy, O.TypeSize / 8)}); - } - untagPointerOperand(O.getInsn(), Addr); - - return true; -} - -static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) { - uint64_t ArraySize = 1; - if (AI.isArrayAllocation()) { - const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); - assert(CI && "non-constant array size"); - ArraySize = CI->getZExtValue(); - } - Type *Ty = AI.getAllocatedType(); - uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty); - return SizeInBytes * ArraySize; -} - -bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, - Value *Tag, size_t Size) { - size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment()); - if (!UseShortGranules) - Size = AlignedSize; - - Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty()); - if (ClInstrumentWithCalls) { - IRB.CreateCall(HwasanTagMemoryFunc, - {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag, - ConstantInt::get(IntptrTy, AlignedSize)}); - } else { - size_t ShadowSize = Size >> Mapping.Scale; - Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB); - // If this memset is not inlined, it will be intercepted in the hwasan - // runtime library. That's OK, because the interceptor skips the checks if - // the address is in the shadow region. - // FIXME: the interceptor is not as fast as real memset. Consider lowering - // llvm.memset right here into either a sequence of stores, or a call to - // hwasan_tag_memory. - if (ShadowSize) - IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1)); - if (Size != AlignedSize) { - IRB.CreateStore( - ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()), - IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize)); - IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32( - Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy), - AlignedSize - 1)); - } - } - return true; -} - -static unsigned RetagMask(unsigned AllocaNo) { - // A list of 8-bit numbers that have at most one run of non-zero bits. - // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these - // masks. - // The list does not include the value 255, which is used for UAR. - // - // Because we are more likely to use earlier elements of this list than later - // ones, it is sorted in increasing order of probability of collision with a - // mask allocated (temporally) nearby. The program that generated this list - // can be found at: - // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py - static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240, - 48, 16, 120, 248, 56, 24, 8, 124, 252, - 60, 28, 12, 4, 126, 254, 62, 30, 14, - 6, 2, 127, 63, 31, 15, 7, 3, 1}; - return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))]; -} - -Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) { - return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy); -} - -Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) { - if (ClGenerateTagsWithCalls) - return getNextTagWithCall(IRB); - if (StackBaseTag) - return StackBaseTag; - // FIXME: use addressofreturnaddress (but implement it in aarch64 backend - // first). - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - auto GetStackPointerFn = Intrinsic::getDeclaration( - M, Intrinsic::frameaddress, - IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); - Value *StackPointer = IRB.CreateCall( - GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())}); - - // Extract some entropy from the stack pointer for the tags. - // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ - // between functions). - Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy); - Value *StackTag = - IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20), - "hwasan.stack.base.tag"); - return StackTag; -} - -Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag, - AllocaInst *AI, unsigned AllocaNo) { - if (ClGenerateTagsWithCalls) - return getNextTagWithCall(IRB); - return IRB.CreateXor(StackTag, - ConstantInt::get(IntptrTy, RetagMask(AllocaNo))); -} - -Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) { - if (ClUARRetagToZero) - return ConstantInt::get(IntptrTy, 0); - if (ClGenerateTagsWithCalls) - return getNextTagWithCall(IRB); - return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU)); -} - -// Add a tag to an address. -Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty, - Value *PtrLong, Value *Tag) { - Value *TaggedPtrLong; - if (CompileKernel) { - // Kernel addresses have 0xFF in the most significant byte. - Value *ShiftedTag = IRB.CreateOr( - IRB.CreateShl(Tag, kPointerTagShift), - ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1)); - TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag); - } else { - // Userspace can simply do OR (tag << 56); - Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift); - TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag); - } - return IRB.CreateIntToPtr(TaggedPtrLong, Ty); -} - -// Remove tag from an address. -Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) { - Value *UntaggedPtrLong; - if (CompileKernel) { - // Kernel addresses have 0xFF in the most significant byte. - UntaggedPtrLong = IRB.CreateOr(PtrLong, - ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift)); - } else { - // Userspace addresses have 0x00. - UntaggedPtrLong = IRB.CreateAnd(PtrLong, - ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift))); - } - return UntaggedPtrLong; -} - -Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) { - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) { - // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER - // in Bionic's libc/private/bionic_tls.h. - Function *ThreadPointerFunc = - Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); - Value *SlotPtr = IRB.CreatePointerCast( - IRB.CreateConstGEP1_32(IRB.getInt8Ty(), - IRB.CreateCall(ThreadPointerFunc), 0x30), - Ty->getPointerTo(0)); - return SlotPtr; - } - if (ThreadPtrGlobal) - return ThreadPtrGlobal; - - - return nullptr; -} - -void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) { - if (!Mapping.InTls) { + "{x0}", + /*hasSideEffects=*/true); + break; + default: + report_fatal_error("unsupported architecture"); + } + IRB.CreateCall(Asm, PtrLong); + if (Recover) + cast<BranchInst>(CheckFailTerm)->setSuccessor(0, CheckTerm->getParent()); +} + +void HWAddressSanitizer::instrumentMemIntrinsic(MemIntrinsic *MI) { + IRBuilder<> IRB(MI); + if (isa<MemTransferInst>(MI)) { + IRB.CreateCall( + isa<MemMoveInst>(MI) ? HWAsanMemmove : HWAsanMemcpy, + {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(MI->getOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); + } else if (isa<MemSetInst>(MI)) { + IRB.CreateCall( + HWAsanMemset, + {IRB.CreatePointerCast(MI->getOperand(0), IRB.getInt8PtrTy()), + IRB.CreateIntCast(MI->getOperand(1), IRB.getInt32Ty(), false), + IRB.CreateIntCast(MI->getOperand(2), IntptrTy, false)}); + } + MI->eraseFromParent(); +} + +bool HWAddressSanitizer::instrumentMemAccess(InterestingMemoryOperand &O) { + Value *Addr = O.getPtr(); + + LLVM_DEBUG(dbgs() << "Instrumenting: " << O.getInsn() << "\n"); + + if (O.MaybeMask) + return false; //FIXME + + IRBuilder<> IRB(O.getInsn()); + if (isPowerOf2_64(O.TypeSize) && + (O.TypeSize / 8 <= (1ULL << (kNumberOfAccessSizes - 1))) && + (!O.Alignment || *O.Alignment >= (1ULL << Mapping.Scale) || + *O.Alignment >= O.TypeSize / 8)) { + size_t AccessSizeIndex = TypeSizeToSizeIndex(O.TypeSize); + if (ClInstrumentWithCalls) { + IRB.CreateCall(HwasanMemoryAccessCallback[O.IsWrite][AccessSizeIndex], + IRB.CreatePointerCast(Addr, IntptrTy)); + } else { + instrumentMemAccessInline(Addr, O.IsWrite, AccessSizeIndex, O.getInsn()); + } + } else { + IRB.CreateCall(HwasanMemoryAccessCallbackSized[O.IsWrite], + {IRB.CreatePointerCast(Addr, IntptrTy), + ConstantInt::get(IntptrTy, O.TypeSize / 8)}); + } + untagPointerOperand(O.getInsn(), Addr); + + return true; +} + +static uint64_t getAllocaSizeInBytes(const AllocaInst &AI) { + uint64_t ArraySize = 1; + if (AI.isArrayAllocation()) { + const ConstantInt *CI = dyn_cast<ConstantInt>(AI.getArraySize()); + assert(CI && "non-constant array size"); + ArraySize = CI->getZExtValue(); + } + Type *Ty = AI.getAllocatedType(); + uint64_t SizeInBytes = AI.getModule()->getDataLayout().getTypeAllocSize(Ty); + return SizeInBytes * ArraySize; +} + +bool HWAddressSanitizer::tagAlloca(IRBuilder<> &IRB, AllocaInst *AI, + Value *Tag, size_t Size) { + size_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment()); + if (!UseShortGranules) + Size = AlignedSize; + + Value *JustTag = IRB.CreateTrunc(Tag, IRB.getInt8Ty()); + if (ClInstrumentWithCalls) { + IRB.CreateCall(HwasanTagMemoryFunc, + {IRB.CreatePointerCast(AI, Int8PtrTy), JustTag, + ConstantInt::get(IntptrTy, AlignedSize)}); + } else { + size_t ShadowSize = Size >> Mapping.Scale; + Value *ShadowPtr = memToShadow(IRB.CreatePointerCast(AI, IntptrTy), IRB); + // If this memset is not inlined, it will be intercepted in the hwasan + // runtime library. That's OK, because the interceptor skips the checks if + // the address is in the shadow region. + // FIXME: the interceptor is not as fast as real memset. Consider lowering + // llvm.memset right here into either a sequence of stores, or a call to + // hwasan_tag_memory. + if (ShadowSize) + IRB.CreateMemSet(ShadowPtr, JustTag, ShadowSize, Align(1)); + if (Size != AlignedSize) { + IRB.CreateStore( + ConstantInt::get(Int8Ty, Size % Mapping.getObjectAlignment()), + IRB.CreateConstGEP1_32(Int8Ty, ShadowPtr, ShadowSize)); + IRB.CreateStore(JustTag, IRB.CreateConstGEP1_32( + Int8Ty, IRB.CreateBitCast(AI, Int8PtrTy), + AlignedSize - 1)); + } + } + return true; +} + +static unsigned RetagMask(unsigned AllocaNo) { + // A list of 8-bit numbers that have at most one run of non-zero bits. + // x = x ^ (mask << 56) can be encoded as a single armv8 instruction for these + // masks. + // The list does not include the value 255, which is used for UAR. + // + // Because we are more likely to use earlier elements of this list than later + // ones, it is sorted in increasing order of probability of collision with a + // mask allocated (temporally) nearby. The program that generated this list + // can be found at: + // https://github.com/google/sanitizers/blob/master/hwaddress-sanitizer/sort_masks.py + static unsigned FastMasks[] = {0, 128, 64, 192, 32, 96, 224, 112, 240, + 48, 16, 120, 248, 56, 24, 8, 124, 252, + 60, 28, 12, 4, 126, 254, 62, 30, 14, + 6, 2, 127, 63, 31, 15, 7, 3, 1}; + return FastMasks[AllocaNo % (sizeof(FastMasks) / sizeof(FastMasks[0]))]; +} + +Value *HWAddressSanitizer::getNextTagWithCall(IRBuilder<> &IRB) { + return IRB.CreateZExt(IRB.CreateCall(HwasanGenerateTagFunc), IntptrTy); +} + +Value *HWAddressSanitizer::getStackBaseTag(IRBuilder<> &IRB) { + if (ClGenerateTagsWithCalls) + return getNextTagWithCall(IRB); + if (StackBaseTag) + return StackBaseTag; + // FIXME: use addressofreturnaddress (but implement it in aarch64 backend + // first). + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + auto GetStackPointerFn = Intrinsic::getDeclaration( + M, Intrinsic::frameaddress, + IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); + Value *StackPointer = IRB.CreateCall( + GetStackPointerFn, {Constant::getNullValue(IRB.getInt32Ty())}); + + // Extract some entropy from the stack pointer for the tags. + // Take bits 20..28 (ASLR entropy) and xor with bits 0..8 (these differ + // between functions). + Value *StackPointerLong = IRB.CreatePointerCast(StackPointer, IntptrTy); + Value *StackTag = + IRB.CreateXor(StackPointerLong, IRB.CreateLShr(StackPointerLong, 20), + "hwasan.stack.base.tag"); + return StackTag; +} + +Value *HWAddressSanitizer::getAllocaTag(IRBuilder<> &IRB, Value *StackTag, + AllocaInst *AI, unsigned AllocaNo) { + if (ClGenerateTagsWithCalls) + return getNextTagWithCall(IRB); + return IRB.CreateXor(StackTag, + ConstantInt::get(IntptrTy, RetagMask(AllocaNo))); +} + +Value *HWAddressSanitizer::getUARTag(IRBuilder<> &IRB, Value *StackTag) { + if (ClUARRetagToZero) + return ConstantInt::get(IntptrTy, 0); + if (ClGenerateTagsWithCalls) + return getNextTagWithCall(IRB); + return IRB.CreateXor(StackTag, ConstantInt::get(IntptrTy, 0xFFU)); +} + +// Add a tag to an address. +Value *HWAddressSanitizer::tagPointer(IRBuilder<> &IRB, Type *Ty, + Value *PtrLong, Value *Tag) { + Value *TaggedPtrLong; + if (CompileKernel) { + // Kernel addresses have 0xFF in the most significant byte. + Value *ShiftedTag = IRB.CreateOr( + IRB.CreateShl(Tag, kPointerTagShift), + ConstantInt::get(IntptrTy, (1ULL << kPointerTagShift) - 1)); + TaggedPtrLong = IRB.CreateAnd(PtrLong, ShiftedTag); + } else { + // Userspace can simply do OR (tag << 56); + Value *ShiftedTag = IRB.CreateShl(Tag, kPointerTagShift); + TaggedPtrLong = IRB.CreateOr(PtrLong, ShiftedTag); + } + return IRB.CreateIntToPtr(TaggedPtrLong, Ty); +} + +// Remove tag from an address. +Value *HWAddressSanitizer::untagPointer(IRBuilder<> &IRB, Value *PtrLong) { + Value *UntaggedPtrLong; + if (CompileKernel) { + // Kernel addresses have 0xFF in the most significant byte. + UntaggedPtrLong = IRB.CreateOr(PtrLong, + ConstantInt::get(PtrLong->getType(), 0xFFULL << kPointerTagShift)); + } else { + // Userspace addresses have 0x00. + UntaggedPtrLong = IRB.CreateAnd(PtrLong, + ConstantInt::get(PtrLong->getType(), ~(0xFFULL << kPointerTagShift))); + } + return UntaggedPtrLong; +} + +Value *HWAddressSanitizer::getHwasanThreadSlotPtr(IRBuilder<> &IRB, Type *Ty) { + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + if (TargetTriple.isAArch64() && TargetTriple.isAndroid()) { + // Android provides a fixed TLS slot for sanitizers. See TLS_SLOT_SANITIZER + // in Bionic's libc/private/bionic_tls.h. + Function *ThreadPointerFunc = + Intrinsic::getDeclaration(M, Intrinsic::thread_pointer); + Value *SlotPtr = IRB.CreatePointerCast( + IRB.CreateConstGEP1_32(IRB.getInt8Ty(), + IRB.CreateCall(ThreadPointerFunc), 0x30), + Ty->getPointerTo(0)); + return SlotPtr; + } + if (ThreadPtrGlobal) + return ThreadPtrGlobal; + + + return nullptr; +} + +void HWAddressSanitizer::emitPrologue(IRBuilder<> &IRB, bool WithFrameRecord) { + if (!Mapping.InTls) { ShadowBase = getShadowNonTls(IRB); - return; - } - - if (!WithFrameRecord && TargetTriple.isAndroid()) { + return; + } + + if (!WithFrameRecord && TargetTriple.isAndroid()) { ShadowBase = getDynamicShadowIfunc(IRB); - return; - } - - Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy); - assert(SlotPtr); - - Value *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr); - // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI. - Value *ThreadLongMaybeUntagged = - TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong); - - if (WithFrameRecord) { - Function *F = IRB.GetInsertBlock()->getParent(); - StackBaseTag = IRB.CreateAShr(ThreadLong, 3); - - // Prepare ring buffer data. - Value *PC; - if (TargetTriple.getArch() == Triple::aarch64) - PC = readRegister(IRB, "pc"); - else - PC = IRB.CreatePtrToInt(F, IntptrTy); - Module *M = F->getParent(); - auto GetStackPointerFn = Intrinsic::getDeclaration( - M, Intrinsic::frameaddress, - IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); - Value *SP = IRB.CreatePtrToInt( - IRB.CreateCall(GetStackPointerFn, - {Constant::getNullValue(IRB.getInt32Ty())}), - IntptrTy); - // Mix SP and PC. - // Assumptions: - // PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero) - // SP is 0xsssssssssssSSSS0 (4 lower bits are zero) - // We only really need ~20 lower non-zero bits (SSSS), so we mix like this: - // 0xSSSSPPPPPPPPPPPP - SP = IRB.CreateShl(SP, 44); - - // Store data to ring buffer. - Value *RecordPtr = - IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0)); - IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr); - - // Update the ring buffer. Top byte of ThreadLong defines the size of the - // buffer in pages, it must be a power of two, and the start of the buffer - // must be aligned by twice that much. Therefore wrap around of the ring - // buffer is simply Addr &= ~((ThreadLong >> 56) << 12). - // The use of AShr instead of LShr is due to - // https://bugs.llvm.org/show_bug.cgi?id=39030 - // Runtime library makes sure not to use the highest bit. - Value *WrapMask = IRB.CreateXor( - IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true), - ConstantInt::get(IntptrTy, (uint64_t)-1)); - Value *ThreadLongNew = IRB.CreateAnd( - IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask); - IRB.CreateStore(ThreadLongNew, SlotPtr); - } - - // Get shadow base address by aligning RecordPtr up. - // Note: this is not correct if the pointer is already aligned. - // Runtime library will make sure this never happens. + return; + } + + Value *SlotPtr = getHwasanThreadSlotPtr(IRB, IntptrTy); + assert(SlotPtr); + + Value *ThreadLong = IRB.CreateLoad(IntptrTy, SlotPtr); + // Extract the address field from ThreadLong. Unnecessary on AArch64 with TBI. + Value *ThreadLongMaybeUntagged = + TargetTriple.isAArch64() ? ThreadLong : untagPointer(IRB, ThreadLong); + + if (WithFrameRecord) { + Function *F = IRB.GetInsertBlock()->getParent(); + StackBaseTag = IRB.CreateAShr(ThreadLong, 3); + + // Prepare ring buffer data. + Value *PC; + if (TargetTriple.getArch() == Triple::aarch64) + PC = readRegister(IRB, "pc"); + else + PC = IRB.CreatePtrToInt(F, IntptrTy); + Module *M = F->getParent(); + auto GetStackPointerFn = Intrinsic::getDeclaration( + M, Intrinsic::frameaddress, + IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); + Value *SP = IRB.CreatePtrToInt( + IRB.CreateCall(GetStackPointerFn, + {Constant::getNullValue(IRB.getInt32Ty())}), + IntptrTy); + // Mix SP and PC. + // Assumptions: + // PC is 0x0000PPPPPPPPPPPP (48 bits are meaningful, others are zero) + // SP is 0xsssssssssssSSSS0 (4 lower bits are zero) + // We only really need ~20 lower non-zero bits (SSSS), so we mix like this: + // 0xSSSSPPPPPPPPPPPP + SP = IRB.CreateShl(SP, 44); + + // Store data to ring buffer. + Value *RecordPtr = + IRB.CreateIntToPtr(ThreadLongMaybeUntagged, IntptrTy->getPointerTo(0)); + IRB.CreateStore(IRB.CreateOr(PC, SP), RecordPtr); + + // Update the ring buffer. Top byte of ThreadLong defines the size of the + // buffer in pages, it must be a power of two, and the start of the buffer + // must be aligned by twice that much. Therefore wrap around of the ring + // buffer is simply Addr &= ~((ThreadLong >> 56) << 12). + // The use of AShr instead of LShr is due to + // https://bugs.llvm.org/show_bug.cgi?id=39030 + // Runtime library makes sure not to use the highest bit. + Value *WrapMask = IRB.CreateXor( + IRB.CreateShl(IRB.CreateAShr(ThreadLong, 56), 12, "", true, true), + ConstantInt::get(IntptrTy, (uint64_t)-1)); + Value *ThreadLongNew = IRB.CreateAnd( + IRB.CreateAdd(ThreadLong, ConstantInt::get(IntptrTy, 8)), WrapMask); + IRB.CreateStore(ThreadLongNew, SlotPtr); + } + + // Get shadow base address by aligning RecordPtr up. + // Note: this is not correct if the pointer is already aligned. + // Runtime library will make sure this never happens. ShadowBase = IRB.CreateAdd( - IRB.CreateOr( - ThreadLongMaybeUntagged, - ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)), - ConstantInt::get(IntptrTy, 1), "hwasan.shadow"); + IRB.CreateOr( + ThreadLongMaybeUntagged, + ConstantInt::get(IntptrTy, (1ULL << kShadowBaseAlignment) - 1)), + ConstantInt::get(IntptrTy, 1), "hwasan.shadow"); ShadowBase = IRB.CreateIntToPtr(ShadowBase, Int8PtrTy); -} - -Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) { - Module *M = IRB.GetInsertBlock()->getParent()->getParent(); - Function *ReadRegister = - Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy); - MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)}); - Value *Args[] = {MetadataAsValue::get(*C, MD)}; - return IRB.CreateCall(ReadRegister, Args); -} - -bool HWAddressSanitizer::instrumentLandingPads( - SmallVectorImpl<Instruction *> &LandingPadVec) { - for (auto *LP : LandingPadVec) { - IRBuilder<> IRB(LP->getNextNode()); - IRB.CreateCall( - HWAsanHandleVfork, - {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp" - : "sp")}); - } - return true; -} - -bool HWAddressSanitizer::instrumentStack( - SmallVectorImpl<AllocaInst *> &Allocas, - DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap, - SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) { - // Ideally, we want to calculate tagged stack base pointer, and rewrite all - // alloca addresses using that. Unfortunately, offsets are not known yet - // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a - // temp, shift-OR it into each alloca address and xor with the retag mask. - // This generates one extra instruction per alloca use. - for (unsigned N = 0; N < Allocas.size(); ++N) { - auto *AI = Allocas[N]; - IRBuilder<> IRB(AI->getNextNode()); - - // Replace uses of the alloca with tagged address. - Value *Tag = getAllocaTag(IRB, StackTag, AI, N); - Value *AILong = IRB.CreatePointerCast(AI, IntptrTy); - Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag); - std::string Name = - AI->hasName() ? AI->getName().str() : "alloca." + itostr(N); - Replacement->setName(Name + ".hwasan"); - - AI->replaceUsesWithIf(Replacement, - [AILong](Use &U) { return U.getUser() != AILong; }); - - for (auto *DDI : AllocaDbgMap.lookup(AI)) { - // Prepend "tag_offset, N" to the dwarf expression. - // Tag offset logically applies to the alloca pointer, and it makes sense - // to put it at the beginning of the expression. - SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset, - RetagMask(N)}; - DDI->setArgOperand( - 2, MetadataAsValue::get(*C, DIExpression::prependOpcodes( - DDI->getExpression(), NewOps))); - } - - size_t Size = getAllocaSizeInBytes(*AI); - tagAlloca(IRB, AI, Tag, Size); - - for (auto RI : RetVec) { - IRB.SetInsertPoint(RI); - - // Re-tag alloca memory with the special UAR tag. - Value *Tag = getUARTag(IRB, StackTag); - tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment())); - } - } - - return true; -} - -bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { - return (AI.getAllocatedType()->isSized() && - // FIXME: instrument dynamic allocas, too - AI.isStaticAlloca() && - // alloca() may be called with 0 size, ignore it. - getAllocaSizeInBytes(AI) > 0 && - // We are only interested in allocas not promotable to registers. - // Promotable allocas are common under -O0. - !isAllocaPromotable(&AI) && - // inalloca allocas are not treated as static, and we don't want - // dynamic alloca instrumentation for them as well. - !AI.isUsedWithInAlloca() && - // swifterror allocas are register promoted by ISel - !AI.isSwiftError()); -} - -bool HWAddressSanitizer::sanitizeFunction(Function &F) { - if (&F == HwasanCtorFunction) - return false; - - if (!F.hasFnAttribute(Attribute::SanitizeHWAddress)) - return false; - - LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n"); - - SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; - SmallVector<MemIntrinsic *, 16> IntrinToInstrument; - SmallVector<AllocaInst*, 8> AllocasToInstrument; - SmallVector<Instruction*, 8> RetVec; - SmallVector<Instruction*, 8> LandingPadVec; - DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> AllocaDbgMap; - for (auto &BB : F) { - for (auto &Inst : BB) { - if (ClInstrumentStack) - if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { - if (isInterestingAlloca(*AI)) - AllocasToInstrument.push_back(AI); - continue; - } - - if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) || - isa<CleanupReturnInst>(Inst)) - RetVec.push_back(&Inst); - - if (auto *DDI = dyn_cast<DbgVariableIntrinsic>(&Inst)) - if (auto *Alloca = - dyn_cast_or_null<AllocaInst>(DDI->getVariableLocation())) - AllocaDbgMap[Alloca].push_back(DDI); - - if (InstrumentLandingPads && isa<LandingPadInst>(Inst)) - LandingPadVec.push_back(&Inst); - - getInterestingMemoryOperands(&Inst, OperandsToInstrument); - - if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) - IntrinToInstrument.push_back(MI); - } - } - - initializeCallbacks(*F.getParent()); - - bool Changed = false; - - if (!LandingPadVec.empty()) - Changed |= instrumentLandingPads(LandingPadVec); - - if (AllocasToInstrument.empty() && F.hasPersonalityFn() && - F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) { - // __hwasan_personality_thunk is a no-op for functions without an - // instrumented stack, so we can drop it. - F.setPersonalityFn(nullptr); - Changed = true; - } - - if (AllocasToInstrument.empty() && OperandsToInstrument.empty() && - IntrinToInstrument.empty()) - return Changed; - +} + +Value *HWAddressSanitizer::readRegister(IRBuilder<> &IRB, StringRef Name) { + Module *M = IRB.GetInsertBlock()->getParent()->getParent(); + Function *ReadRegister = + Intrinsic::getDeclaration(M, Intrinsic::read_register, IntptrTy); + MDNode *MD = MDNode::get(*C, {MDString::get(*C, Name)}); + Value *Args[] = {MetadataAsValue::get(*C, MD)}; + return IRB.CreateCall(ReadRegister, Args); +} + +bool HWAddressSanitizer::instrumentLandingPads( + SmallVectorImpl<Instruction *> &LandingPadVec) { + for (auto *LP : LandingPadVec) { + IRBuilder<> IRB(LP->getNextNode()); + IRB.CreateCall( + HWAsanHandleVfork, + {readRegister(IRB, (TargetTriple.getArch() == Triple::x86_64) ? "rsp" + : "sp")}); + } + return true; +} + +bool HWAddressSanitizer::instrumentStack( + SmallVectorImpl<AllocaInst *> &Allocas, + DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> &AllocaDbgMap, + SmallVectorImpl<Instruction *> &RetVec, Value *StackTag) { + // Ideally, we want to calculate tagged stack base pointer, and rewrite all + // alloca addresses using that. Unfortunately, offsets are not known yet + // (unless we use ASan-style mega-alloca). Instead we keep the base tag in a + // temp, shift-OR it into each alloca address and xor with the retag mask. + // This generates one extra instruction per alloca use. + for (unsigned N = 0; N < Allocas.size(); ++N) { + auto *AI = Allocas[N]; + IRBuilder<> IRB(AI->getNextNode()); + + // Replace uses of the alloca with tagged address. + Value *Tag = getAllocaTag(IRB, StackTag, AI, N); + Value *AILong = IRB.CreatePointerCast(AI, IntptrTy); + Value *Replacement = tagPointer(IRB, AI->getType(), AILong, Tag); + std::string Name = + AI->hasName() ? AI->getName().str() : "alloca." + itostr(N); + Replacement->setName(Name + ".hwasan"); + + AI->replaceUsesWithIf(Replacement, + [AILong](Use &U) { return U.getUser() != AILong; }); + + for (auto *DDI : AllocaDbgMap.lookup(AI)) { + // Prepend "tag_offset, N" to the dwarf expression. + // Tag offset logically applies to the alloca pointer, and it makes sense + // to put it at the beginning of the expression. + SmallVector<uint64_t, 8> NewOps = {dwarf::DW_OP_LLVM_tag_offset, + RetagMask(N)}; + DDI->setArgOperand( + 2, MetadataAsValue::get(*C, DIExpression::prependOpcodes( + DDI->getExpression(), NewOps))); + } + + size_t Size = getAllocaSizeInBytes(*AI); + tagAlloca(IRB, AI, Tag, Size); + + for (auto RI : RetVec) { + IRB.SetInsertPoint(RI); + + // Re-tag alloca memory with the special UAR tag. + Value *Tag = getUARTag(IRB, StackTag); + tagAlloca(IRB, AI, Tag, alignTo(Size, Mapping.getObjectAlignment())); + } + } + + return true; +} + +bool HWAddressSanitizer::isInterestingAlloca(const AllocaInst &AI) { + return (AI.getAllocatedType()->isSized() && + // FIXME: instrument dynamic allocas, too + AI.isStaticAlloca() && + // alloca() may be called with 0 size, ignore it. + getAllocaSizeInBytes(AI) > 0 && + // We are only interested in allocas not promotable to registers. + // Promotable allocas are common under -O0. + !isAllocaPromotable(&AI) && + // inalloca allocas are not treated as static, and we don't want + // dynamic alloca instrumentation for them as well. + !AI.isUsedWithInAlloca() && + // swifterror allocas are register promoted by ISel + !AI.isSwiftError()); +} + +bool HWAddressSanitizer::sanitizeFunction(Function &F) { + if (&F == HwasanCtorFunction) + return false; + + if (!F.hasFnAttribute(Attribute::SanitizeHWAddress)) + return false; + + LLVM_DEBUG(dbgs() << "Function: " << F.getName() << "\n"); + + SmallVector<InterestingMemoryOperand, 16> OperandsToInstrument; + SmallVector<MemIntrinsic *, 16> IntrinToInstrument; + SmallVector<AllocaInst*, 8> AllocasToInstrument; + SmallVector<Instruction*, 8> RetVec; + SmallVector<Instruction*, 8> LandingPadVec; + DenseMap<AllocaInst *, std::vector<DbgVariableIntrinsic *>> AllocaDbgMap; + for (auto &BB : F) { + for (auto &Inst : BB) { + if (ClInstrumentStack) + if (AllocaInst *AI = dyn_cast<AllocaInst>(&Inst)) { + if (isInterestingAlloca(*AI)) + AllocasToInstrument.push_back(AI); + continue; + } + + if (isa<ReturnInst>(Inst) || isa<ResumeInst>(Inst) || + isa<CleanupReturnInst>(Inst)) + RetVec.push_back(&Inst); + + if (auto *DDI = dyn_cast<DbgVariableIntrinsic>(&Inst)) + if (auto *Alloca = + dyn_cast_or_null<AllocaInst>(DDI->getVariableLocation())) + AllocaDbgMap[Alloca].push_back(DDI); + + if (InstrumentLandingPads && isa<LandingPadInst>(Inst)) + LandingPadVec.push_back(&Inst); + + getInterestingMemoryOperands(&Inst, OperandsToInstrument); + + if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&Inst)) + IntrinToInstrument.push_back(MI); + } + } + + initializeCallbacks(*F.getParent()); + + bool Changed = false; + + if (!LandingPadVec.empty()) + Changed |= instrumentLandingPads(LandingPadVec); + + if (AllocasToInstrument.empty() && F.hasPersonalityFn() && + F.getPersonalityFn()->getName() == kHwasanPersonalityThunkName) { + // __hwasan_personality_thunk is a no-op for functions without an + // instrumented stack, so we can drop it. + F.setPersonalityFn(nullptr); + Changed = true; + } + + if (AllocasToInstrument.empty() && OperandsToInstrument.empty() && + IntrinToInstrument.empty()) + return Changed; + assert(!ShadowBase); - - Instruction *InsertPt = &*F.getEntryBlock().begin(); - IRBuilder<> EntryIRB(InsertPt); - emitPrologue(EntryIRB, - /*WithFrameRecord*/ ClRecordStackHistory && - !AllocasToInstrument.empty()); - - if (!AllocasToInstrument.empty()) { - Value *StackTag = - ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB); - instrumentStack(AllocasToInstrument, AllocaDbgMap, RetVec, StackTag); - } - // Pad and align each of the allocas that we instrumented to stop small - // uninteresting allocas from hiding in instrumented alloca's padding and so - // that we have enough space to store real tags for short granules. - DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap; - for (AllocaInst *AI : AllocasToInstrument) { - uint64_t Size = getAllocaSizeInBytes(*AI); - uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment()); - AI->setAlignment( - Align(std::max(AI->getAlignment(), Mapping.getObjectAlignment()))); - if (Size != AlignedSize) { - Type *AllocatedType = AI->getAllocatedType(); - if (AI->isArrayAllocation()) { - uint64_t ArraySize = - cast<ConstantInt>(AI->getArraySize())->getZExtValue(); - AllocatedType = ArrayType::get(AllocatedType, ArraySize); - } - Type *TypeWithPadding = StructType::get( - AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size)); - auto *NewAI = new AllocaInst( - TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI); - NewAI->takeName(AI); - NewAI->setAlignment(AI->getAlign()); - NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca()); - NewAI->setSwiftError(AI->isSwiftError()); - NewAI->copyMetadata(*AI); - auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI); - AI->replaceAllUsesWith(Bitcast); - AllocaToPaddedAllocaMap[AI] = NewAI; - } - } - - if (!AllocaToPaddedAllocaMap.empty()) { - for (auto &BB : F) - for (auto &Inst : BB) - if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst)) - if (auto *AI = - dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) - if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI)) - DVI->setArgOperand( - 0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI))); - for (auto &P : AllocaToPaddedAllocaMap) - P.first->eraseFromParent(); - } - - // If we split the entry block, move any allocas that were originally in the - // entry block back into the entry block so that they aren't treated as - // dynamic allocas. - if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) { - InsertPt = &*F.getEntryBlock().begin(); - for (auto II = EntryIRB.GetInsertBlock()->begin(), - IE = EntryIRB.GetInsertBlock()->end(); - II != IE;) { - Instruction *I = &*II++; - if (auto *AI = dyn_cast<AllocaInst>(I)) - if (isa<ConstantInt>(AI->getArraySize())) - I->moveBefore(InsertPt); - } - } - - for (auto &Operand : OperandsToInstrument) - instrumentMemAccess(Operand); - - if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) { - for (auto Inst : IntrinToInstrument) - instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); - } - + + Instruction *InsertPt = &*F.getEntryBlock().begin(); + IRBuilder<> EntryIRB(InsertPt); + emitPrologue(EntryIRB, + /*WithFrameRecord*/ ClRecordStackHistory && + !AllocasToInstrument.empty()); + + if (!AllocasToInstrument.empty()) { + Value *StackTag = + ClGenerateTagsWithCalls ? nullptr : getStackBaseTag(EntryIRB); + instrumentStack(AllocasToInstrument, AllocaDbgMap, RetVec, StackTag); + } + // Pad and align each of the allocas that we instrumented to stop small + // uninteresting allocas from hiding in instrumented alloca's padding and so + // that we have enough space to store real tags for short granules. + DenseMap<AllocaInst *, AllocaInst *> AllocaToPaddedAllocaMap; + for (AllocaInst *AI : AllocasToInstrument) { + uint64_t Size = getAllocaSizeInBytes(*AI); + uint64_t AlignedSize = alignTo(Size, Mapping.getObjectAlignment()); + AI->setAlignment( + Align(std::max(AI->getAlignment(), Mapping.getObjectAlignment()))); + if (Size != AlignedSize) { + Type *AllocatedType = AI->getAllocatedType(); + if (AI->isArrayAllocation()) { + uint64_t ArraySize = + cast<ConstantInt>(AI->getArraySize())->getZExtValue(); + AllocatedType = ArrayType::get(AllocatedType, ArraySize); + } + Type *TypeWithPadding = StructType::get( + AllocatedType, ArrayType::get(Int8Ty, AlignedSize - Size)); + auto *NewAI = new AllocaInst( + TypeWithPadding, AI->getType()->getAddressSpace(), nullptr, "", AI); + NewAI->takeName(AI); + NewAI->setAlignment(AI->getAlign()); + NewAI->setUsedWithInAlloca(AI->isUsedWithInAlloca()); + NewAI->setSwiftError(AI->isSwiftError()); + NewAI->copyMetadata(*AI); + auto *Bitcast = new BitCastInst(NewAI, AI->getType(), "", AI); + AI->replaceAllUsesWith(Bitcast); + AllocaToPaddedAllocaMap[AI] = NewAI; + } + } + + if (!AllocaToPaddedAllocaMap.empty()) { + for (auto &BB : F) + for (auto &Inst : BB) + if (auto *DVI = dyn_cast<DbgVariableIntrinsic>(&Inst)) + if (auto *AI = + dyn_cast_or_null<AllocaInst>(DVI->getVariableLocation())) + if (auto *NewAI = AllocaToPaddedAllocaMap.lookup(AI)) + DVI->setArgOperand( + 0, MetadataAsValue::get(*C, LocalAsMetadata::get(NewAI))); + for (auto &P : AllocaToPaddedAllocaMap) + P.first->eraseFromParent(); + } + + // If we split the entry block, move any allocas that were originally in the + // entry block back into the entry block so that they aren't treated as + // dynamic allocas. + if (EntryIRB.GetInsertBlock() != &F.getEntryBlock()) { + InsertPt = &*F.getEntryBlock().begin(); + for (auto II = EntryIRB.GetInsertBlock()->begin(), + IE = EntryIRB.GetInsertBlock()->end(); + II != IE;) { + Instruction *I = &*II++; + if (auto *AI = dyn_cast<AllocaInst>(I)) + if (isa<ConstantInt>(AI->getArraySize())) + I->moveBefore(InsertPt); + } + } + + for (auto &Operand : OperandsToInstrument) + instrumentMemAccess(Operand); + + if (ClInstrumentMemIntrinsics && !IntrinToInstrument.empty()) { + for (auto Inst : IntrinToInstrument) + instrumentMemIntrinsic(cast<MemIntrinsic>(Inst)); + } + ShadowBase = nullptr; - StackBaseTag = nullptr; - - return true; -} - -void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) { - Constant *Initializer = GV->getInitializer(); - uint64_t SizeInBytes = - M.getDataLayout().getTypeAllocSize(Initializer->getType()); - uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment()); - if (SizeInBytes != NewSize) { - // Pad the initializer out to the next multiple of 16 bytes and add the - // required short granule tag. - std::vector<uint8_t> Init(NewSize - SizeInBytes, 0); - Init.back() = Tag; - Constant *Padding = ConstantDataArray::get(*C, Init); - Initializer = ConstantStruct::getAnon({Initializer, Padding}); - } - - auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(), - GlobalValue::ExternalLinkage, Initializer, - GV->getName() + ".hwasan"); - NewGV->copyAttributesFrom(GV); - NewGV->setLinkage(GlobalValue::PrivateLinkage); - NewGV->copyMetadata(GV, 0); - NewGV->setAlignment( - MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment()))); - - // It is invalid to ICF two globals that have different tags. In the case - // where the size of the global is a multiple of the tag granularity the - // contents of the globals may be the same but the tags (i.e. symbol values) - // may be different, and the symbols are not considered during ICF. In the - // case where the size is not a multiple of the granularity, the short granule - // tags would discriminate two globals with different tags, but there would - // otherwise be nothing stopping such a global from being incorrectly ICF'd - // with an uninstrumented (i.e. tag 0) global that happened to have the short - // granule tag in the last byte. - NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None); - - // Descriptor format (assuming little-endian): - // bytes 0-3: relative address of global - // bytes 4-6: size of global (16MB ought to be enough for anyone, but in case - // it isn't, we create multiple descriptors) - // byte 7: tag - auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty); - const uint64_t MaxDescriptorSize = 0xfffff0; - for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes; - DescriptorPos += MaxDescriptorSize) { - auto *Descriptor = - new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage, - nullptr, GV->getName() + ".hwasan.descriptor"); - auto *GVRelPtr = ConstantExpr::getTrunc( - ConstantExpr::getAdd( - ConstantExpr::getSub( - ConstantExpr::getPtrToInt(NewGV, Int64Ty), - ConstantExpr::getPtrToInt(Descriptor, Int64Ty)), - ConstantInt::get(Int64Ty, DescriptorPos)), - Int32Ty); - uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize); - auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24)); - Descriptor->setComdat(NewGV->getComdat()); - Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag})); - Descriptor->setSection("hwasan_globals"); - Descriptor->setMetadata(LLVMContext::MD_associated, - MDNode::get(*C, ValueAsMetadata::get(NewGV))); - appendToCompilerUsed(M, Descriptor); - } - - Constant *Aliasee = ConstantExpr::getIntToPtr( - ConstantExpr::getAdd( - ConstantExpr::getPtrToInt(NewGV, Int64Ty), - ConstantInt::get(Int64Ty, uint64_t(Tag) << kPointerTagShift)), - GV->getType()); - auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(), - GV->getLinkage(), "", Aliasee, &M); - Alias->setVisibility(GV->getVisibility()); - Alias->takeName(GV); - GV->replaceAllUsesWith(Alias); - GV->eraseFromParent(); -} - -void HWAddressSanitizer::instrumentGlobals() { - std::vector<GlobalVariable *> Globals; - for (GlobalVariable &GV : M.globals()) { - if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") || - GV.isThreadLocal()) - continue; - - // Common symbols can't have aliases point to them, so they can't be tagged. - if (GV.hasCommonLinkage()) - continue; - - // Globals with custom sections may be used in __start_/__stop_ enumeration, - // which would be broken both by adding tags and potentially by the extra - // padding/alignment that we insert. - if (GV.hasSection()) - continue; - - Globals.push_back(&GV); - } - - MD5 Hasher; - Hasher.update(M.getSourceFileName()); - MD5::MD5Result Hash; - Hasher.final(Hash); - uint8_t Tag = Hash[0]; - - for (GlobalVariable *GV : Globals) { - // Skip tag 0 in order to avoid collisions with untagged memory. - if (Tag == 0) - Tag = 1; - instrumentGlobal(GV, Tag++); - } -} - -void HWAddressSanitizer::instrumentPersonalityFunctions() { - // We need to untag stack frames as we unwind past them. That is the job of - // the personality function wrapper, which either wraps an existing - // personality function or acts as a personality function on its own. Each - // function that has a personality function or that can be unwound past has - // its personality function changed to a thunk that calls the personality - // function wrapper in the runtime. - MapVector<Constant *, std::vector<Function *>> PersonalityFns; - for (Function &F : M) { - if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress)) - continue; - - if (F.hasPersonalityFn()) { - PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F); - } else if (!F.hasFnAttribute(Attribute::NoUnwind)) { - PersonalityFns[nullptr].push_back(&F); - } - } - - if (PersonalityFns.empty()) - return; - - FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction( - "__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty, - Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy); - FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy); - FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy); - - for (auto &P : PersonalityFns) { - std::string ThunkName = kHwasanPersonalityThunkName; - if (P.first) - ThunkName += ("." + P.first->getName()).str(); - FunctionType *ThunkFnTy = FunctionType::get( - Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false); - bool IsLocal = P.first && (!isa<GlobalValue>(P.first) || - cast<GlobalValue>(P.first)->hasLocalLinkage()); - auto *ThunkFn = Function::Create(ThunkFnTy, - IsLocal ? GlobalValue::InternalLinkage - : GlobalValue::LinkOnceODRLinkage, - ThunkName, &M); - if (!IsLocal) { - ThunkFn->setVisibility(GlobalValue::HiddenVisibility); - ThunkFn->setComdat(M.getOrInsertComdat(ThunkName)); - } - - auto *BB = BasicBlock::Create(*C, "entry", ThunkFn); - IRBuilder<> IRB(BB); - CallInst *WrapperCall = IRB.CreateCall( - HwasanPersonalityWrapper, - {ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2), - ThunkFn->getArg(3), ThunkFn->getArg(4), - P.first ? IRB.CreateBitCast(P.first, Int8PtrTy) - : Constant::getNullValue(Int8PtrTy), - IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy), - IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)}); - WrapperCall->setTailCall(); - IRB.CreateRet(WrapperCall); - - for (Function *F : P.second) - F->setPersonalityFn(ThunkFn); - } -} - -void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) { - Scale = kDefaultShadowScale; - if (ClMappingOffset.getNumOccurrences() > 0) { - InGlobal = false; - InTls = false; - Offset = ClMappingOffset; - } else if (ClEnableKhwasan || ClInstrumentWithCalls) { - InGlobal = false; - InTls = false; - Offset = 0; - } else if (ClWithIfunc) { - InGlobal = true; - InTls = false; - Offset = kDynamicShadowSentinel; - } else if (ClWithTls) { - InGlobal = false; - InTls = true; - Offset = kDynamicShadowSentinel; - } else { - InGlobal = false; - InTls = false; - Offset = kDynamicShadowSentinel; - } -} + StackBaseTag = nullptr; + + return true; +} + +void HWAddressSanitizer::instrumentGlobal(GlobalVariable *GV, uint8_t Tag) { + Constant *Initializer = GV->getInitializer(); + uint64_t SizeInBytes = + M.getDataLayout().getTypeAllocSize(Initializer->getType()); + uint64_t NewSize = alignTo(SizeInBytes, Mapping.getObjectAlignment()); + if (SizeInBytes != NewSize) { + // Pad the initializer out to the next multiple of 16 bytes and add the + // required short granule tag. + std::vector<uint8_t> Init(NewSize - SizeInBytes, 0); + Init.back() = Tag; + Constant *Padding = ConstantDataArray::get(*C, Init); + Initializer = ConstantStruct::getAnon({Initializer, Padding}); + } + + auto *NewGV = new GlobalVariable(M, Initializer->getType(), GV->isConstant(), + GlobalValue::ExternalLinkage, Initializer, + GV->getName() + ".hwasan"); + NewGV->copyAttributesFrom(GV); + NewGV->setLinkage(GlobalValue::PrivateLinkage); + NewGV->copyMetadata(GV, 0); + NewGV->setAlignment( + MaybeAlign(std::max(GV->getAlignment(), Mapping.getObjectAlignment()))); + + // It is invalid to ICF two globals that have different tags. In the case + // where the size of the global is a multiple of the tag granularity the + // contents of the globals may be the same but the tags (i.e. symbol values) + // may be different, and the symbols are not considered during ICF. In the + // case where the size is not a multiple of the granularity, the short granule + // tags would discriminate two globals with different tags, but there would + // otherwise be nothing stopping such a global from being incorrectly ICF'd + // with an uninstrumented (i.e. tag 0) global that happened to have the short + // granule tag in the last byte. + NewGV->setUnnamedAddr(GlobalValue::UnnamedAddr::None); + + // Descriptor format (assuming little-endian): + // bytes 0-3: relative address of global + // bytes 4-6: size of global (16MB ought to be enough for anyone, but in case + // it isn't, we create multiple descriptors) + // byte 7: tag + auto *DescriptorTy = StructType::get(Int32Ty, Int32Ty); + const uint64_t MaxDescriptorSize = 0xfffff0; + for (uint64_t DescriptorPos = 0; DescriptorPos < SizeInBytes; + DescriptorPos += MaxDescriptorSize) { + auto *Descriptor = + new GlobalVariable(M, DescriptorTy, true, GlobalValue::PrivateLinkage, + nullptr, GV->getName() + ".hwasan.descriptor"); + auto *GVRelPtr = ConstantExpr::getTrunc( + ConstantExpr::getAdd( + ConstantExpr::getSub( + ConstantExpr::getPtrToInt(NewGV, Int64Ty), + ConstantExpr::getPtrToInt(Descriptor, Int64Ty)), + ConstantInt::get(Int64Ty, DescriptorPos)), + Int32Ty); + uint32_t Size = std::min(SizeInBytes - DescriptorPos, MaxDescriptorSize); + auto *SizeAndTag = ConstantInt::get(Int32Ty, Size | (uint32_t(Tag) << 24)); + Descriptor->setComdat(NewGV->getComdat()); + Descriptor->setInitializer(ConstantStruct::getAnon({GVRelPtr, SizeAndTag})); + Descriptor->setSection("hwasan_globals"); + Descriptor->setMetadata(LLVMContext::MD_associated, + MDNode::get(*C, ValueAsMetadata::get(NewGV))); + appendToCompilerUsed(M, Descriptor); + } + + Constant *Aliasee = ConstantExpr::getIntToPtr( + ConstantExpr::getAdd( + ConstantExpr::getPtrToInt(NewGV, Int64Ty), + ConstantInt::get(Int64Ty, uint64_t(Tag) << kPointerTagShift)), + GV->getType()); + auto *Alias = GlobalAlias::create(GV->getValueType(), GV->getAddressSpace(), + GV->getLinkage(), "", Aliasee, &M); + Alias->setVisibility(GV->getVisibility()); + Alias->takeName(GV); + GV->replaceAllUsesWith(Alias); + GV->eraseFromParent(); +} + +void HWAddressSanitizer::instrumentGlobals() { + std::vector<GlobalVariable *> Globals; + for (GlobalVariable &GV : M.globals()) { + if (GV.isDeclarationForLinker() || GV.getName().startswith("llvm.") || + GV.isThreadLocal()) + continue; + + // Common symbols can't have aliases point to them, so they can't be tagged. + if (GV.hasCommonLinkage()) + continue; + + // Globals with custom sections may be used in __start_/__stop_ enumeration, + // which would be broken both by adding tags and potentially by the extra + // padding/alignment that we insert. + if (GV.hasSection()) + continue; + + Globals.push_back(&GV); + } + + MD5 Hasher; + Hasher.update(M.getSourceFileName()); + MD5::MD5Result Hash; + Hasher.final(Hash); + uint8_t Tag = Hash[0]; + + for (GlobalVariable *GV : Globals) { + // Skip tag 0 in order to avoid collisions with untagged memory. + if (Tag == 0) + Tag = 1; + instrumentGlobal(GV, Tag++); + } +} + +void HWAddressSanitizer::instrumentPersonalityFunctions() { + // We need to untag stack frames as we unwind past them. That is the job of + // the personality function wrapper, which either wraps an existing + // personality function or acts as a personality function on its own. Each + // function that has a personality function or that can be unwound past has + // its personality function changed to a thunk that calls the personality + // function wrapper in the runtime. + MapVector<Constant *, std::vector<Function *>> PersonalityFns; + for (Function &F : M) { + if (F.isDeclaration() || !F.hasFnAttribute(Attribute::SanitizeHWAddress)) + continue; + + if (F.hasPersonalityFn()) { + PersonalityFns[F.getPersonalityFn()->stripPointerCasts()].push_back(&F); + } else if (!F.hasFnAttribute(Attribute::NoUnwind)) { + PersonalityFns[nullptr].push_back(&F); + } + } + + if (PersonalityFns.empty()) + return; + + FunctionCallee HwasanPersonalityWrapper = M.getOrInsertFunction( + "__hwasan_personality_wrapper", Int32Ty, Int32Ty, Int32Ty, Int64Ty, + Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy, Int8PtrTy); + FunctionCallee UnwindGetGR = M.getOrInsertFunction("_Unwind_GetGR", VoidTy); + FunctionCallee UnwindGetCFA = M.getOrInsertFunction("_Unwind_GetCFA", VoidTy); + + for (auto &P : PersonalityFns) { + std::string ThunkName = kHwasanPersonalityThunkName; + if (P.first) + ThunkName += ("." + P.first->getName()).str(); + FunctionType *ThunkFnTy = FunctionType::get( + Int32Ty, {Int32Ty, Int32Ty, Int64Ty, Int8PtrTy, Int8PtrTy}, false); + bool IsLocal = P.first && (!isa<GlobalValue>(P.first) || + cast<GlobalValue>(P.first)->hasLocalLinkage()); + auto *ThunkFn = Function::Create(ThunkFnTy, + IsLocal ? GlobalValue::InternalLinkage + : GlobalValue::LinkOnceODRLinkage, + ThunkName, &M); + if (!IsLocal) { + ThunkFn->setVisibility(GlobalValue::HiddenVisibility); + ThunkFn->setComdat(M.getOrInsertComdat(ThunkName)); + } + + auto *BB = BasicBlock::Create(*C, "entry", ThunkFn); + IRBuilder<> IRB(BB); + CallInst *WrapperCall = IRB.CreateCall( + HwasanPersonalityWrapper, + {ThunkFn->getArg(0), ThunkFn->getArg(1), ThunkFn->getArg(2), + ThunkFn->getArg(3), ThunkFn->getArg(4), + P.first ? IRB.CreateBitCast(P.first, Int8PtrTy) + : Constant::getNullValue(Int8PtrTy), + IRB.CreateBitCast(UnwindGetGR.getCallee(), Int8PtrTy), + IRB.CreateBitCast(UnwindGetCFA.getCallee(), Int8PtrTy)}); + WrapperCall->setTailCall(); + IRB.CreateRet(WrapperCall); + + for (Function *F : P.second) + F->setPersonalityFn(ThunkFn); + } +} + +void HWAddressSanitizer::ShadowMapping::init(Triple &TargetTriple) { + Scale = kDefaultShadowScale; + if (ClMappingOffset.getNumOccurrences() > 0) { + InGlobal = false; + InTls = false; + Offset = ClMappingOffset; + } else if (ClEnableKhwasan || ClInstrumentWithCalls) { + InGlobal = false; + InTls = false; + Offset = 0; + } else if (ClWithIfunc) { + InGlobal = true; + InTls = false; + Offset = kDynamicShadowSentinel; + } else if (ClWithTls) { + InGlobal = false; + InTls = true; + Offset = kDynamicShadowSentinel; + } else { + InGlobal = false; + InTls = false; + Offset = kDynamicShadowSentinel; + } +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp index 6baf7e7dae..5b9557a9b3 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/IndirectCallPromotion.cpp @@ -1,268 +1,268 @@ -//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the transformation that promotes indirect calls to -// conditional direct calls when the indirect-call value profile metadata is -// available. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/IndirectCallPromotionAnalysis.h" -#include "llvm/Analysis/IndirectCallVisitor.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/Error.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/CallPromotionUtils.h" -#include <cassert> -#include <cstdint> -#include <memory> -#include <string> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "pgo-icall-prom" - -STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); -STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); - -// Command line option to disable indirect-call promotion with the default as -// false. This is for debug purpose. -static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden, - cl::desc("Disable indirect call promotion")); - -// Set the cutoff value for the promotion. If the value is other than 0, we -// stop the transformation once the total number of promotions equals the cutoff -// value. -// For debug use only. -static cl::opt<unsigned> - ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, cl::ZeroOrMore, - cl::desc("Max number of promotions for this compilation")); - -// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. -// For debug use only. -static cl::opt<unsigned> - ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, cl::ZeroOrMore, - cl::desc("Skip Callsite up to this number for this compilation")); - -// Set if the pass is called in LTO optimization. The difference for LTO mode -// is the pass won't prefix the source module name to the internal linkage -// symbols. -static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, - cl::desc("Run indirect-call promotion in LTO " - "mode")); - -// Set if the pass is called in SamplePGO mode. The difference for SamplePGO -// mode is it will add prof metadatato the created direct call. -static cl::opt<bool> - ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, - cl::desc("Run indirect-call promotion in SamplePGO mode")); - -// If the option is set to true, only call instructions will be considered for -// transformation -- invoke instructions will be ignored. -static cl::opt<bool> - ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, - cl::desc("Run indirect-call promotion for call instructions " - "only")); - -// If the option is set to true, only invoke instructions will be considered for -// transformation -- call instructions will be ignored. -static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false), - cl::Hidden, - cl::desc("Run indirect-call promotion for " - "invoke instruction only")); - -// Dump the function level IR if the transformation happened in this -// function. For debug use only. -static cl::opt<bool> - ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, - cl::desc("Dump IR after transformation happens")); - -namespace { - -class PGOIndirectCallPromotionLegacyPass : public ModulePass { -public: - static char ID; - - PGOIndirectCallPromotionLegacyPass(bool InLTO = false, bool SamplePGO = false) - : ModulePass(ID), InLTO(InLTO), SamplePGO(SamplePGO) { - initializePGOIndirectCallPromotionLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - } - - StringRef getPassName() const override { return "PGOIndirectCallPromotion"; } - -private: - bool runOnModule(Module &M) override; - - // If this pass is called in LTO. We need to special handling the PGOFuncName - // for the static variables due to LTO's internalization. - bool InLTO; - - // If this pass is called in SamplePGO. We need to add the prof metadata to - // the promoted direct call. - bool SamplePGO; -}; - -} // end anonymous namespace - -char PGOIndirectCallPromotionLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom", - "Use PGO instrumentation profile to promote indirect " - "calls to direct calls.", - false, false) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_END(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom", - "Use PGO instrumentation profile to promote indirect " - "calls to direct calls.", - false, false) - -ModulePass *llvm::createPGOIndirectCallPromotionLegacyPass(bool InLTO, - bool SamplePGO) { - return new PGOIndirectCallPromotionLegacyPass(InLTO, SamplePGO); -} - -namespace { - -// The class for main data structure to promote indirect calls to conditional -// direct calls. -class ICallPromotionFunc { -private: - Function &F; - Module *M; - - // Symtab that maps indirect call profile values to function names and - // defines. - InstrProfSymtab *Symtab; - - bool SamplePGO; - - OptimizationRemarkEmitter &ORE; - - // A struct that records the direct target and it's call count. - struct PromotionCandidate { - Function *TargetFunction; - uint64_t Count; - - PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} - }; - - // Check if the indirect-call call site should be promoted. Return the number - // of promotions. Inst is the candidate indirect call, ValueDataRef - // contains the array of value profile data for profiled targets, - // TotalCount is the total profiled count of call executions, and - // NumCandidates is the number of candidate entries in ValueDataRef. - std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( - const CallBase &CB, const ArrayRef<InstrProfValueData> &ValueDataRef, - uint64_t TotalCount, uint32_t NumCandidates); - - // Promote a list of targets for one indirect-call callsite. Return - // the number of promotions. - uint32_t tryToPromote(CallBase &CB, - const std::vector<PromotionCandidate> &Candidates, - uint64_t &TotalCount); - -public: - ICallPromotionFunc(Function &Func, Module *Modu, InstrProfSymtab *Symtab, - bool SamplePGO, OptimizationRemarkEmitter &ORE) - : F(Func), M(Modu), Symtab(Symtab), SamplePGO(SamplePGO), ORE(ORE) {} - ICallPromotionFunc(const ICallPromotionFunc &) = delete; - ICallPromotionFunc &operator=(const ICallPromotionFunc &) = delete; - - bool processFunction(ProfileSummaryInfo *PSI); -}; - -} // end anonymous namespace - -// Indirect-call promotion heuristic. The direct targets are sorted based on -// the count. Stop at the first target that is not promoted. -std::vector<ICallPromotionFunc::PromotionCandidate> -ICallPromotionFunc::getPromotionCandidatesForCallSite( - const CallBase &CB, const ArrayRef<InstrProfValueData> &ValueDataRef, - uint64_t TotalCount, uint32_t NumCandidates) { - std::vector<PromotionCandidate> Ret; - - LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB - << " Num_targets: " << ValueDataRef.size() - << " Num_candidates: " << NumCandidates << "\n"); - NumOfPGOICallsites++; - if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { - LLVM_DEBUG(dbgs() << " Skip: User options.\n"); - return Ret; - } - - for (uint32_t I = 0; I < NumCandidates; I++) { - uint64_t Count = ValueDataRef[I].Count; - assert(Count <= TotalCount); - uint64_t Target = ValueDataRef[I].Value; - LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count - << " Target_func: " << Target << "\n"); - - if (ICPInvokeOnly && isa<CallInst>(CB)) { - LLVM_DEBUG(dbgs() << " Not promote: User options.\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) - << " Not promote: User options"; - }); - break; - } - if (ICPCallOnly && isa<InvokeInst>(CB)) { - LLVM_DEBUG(dbgs() << " Not promote: User option.\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) - << " Not promote: User options"; - }); - break; - } - if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { - LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB) - << " Not promote: Cutoff reached"; - }); - break; - } - +//===- IndirectCallPromotion.cpp - Optimizations based on value profiling -===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the transformation that promotes indirect calls to +// conditional direct calls when the indirect-call value profile metadata is +// available. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/IndirectCallPromotionAnalysis.h" +#include "llvm/Analysis/IndirectCallVisitor.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/CallPromotionUtils.h" +#include <cassert> +#include <cstdint> +#include <memory> +#include <string> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "pgo-icall-prom" + +STATISTIC(NumOfPGOICallPromotion, "Number of indirect call promotions."); +STATISTIC(NumOfPGOICallsites, "Number of indirect call candidate sites."); + +// Command line option to disable indirect-call promotion with the default as +// false. This is for debug purpose. +static cl::opt<bool> DisableICP("disable-icp", cl::init(false), cl::Hidden, + cl::desc("Disable indirect call promotion")); + +// Set the cutoff value for the promotion. If the value is other than 0, we +// stop the transformation once the total number of promotions equals the cutoff +// value. +// For debug use only. +static cl::opt<unsigned> + ICPCutOff("icp-cutoff", cl::init(0), cl::Hidden, cl::ZeroOrMore, + cl::desc("Max number of promotions for this compilation")); + +// If ICPCSSkip is non zero, the first ICPCSSkip callsites will be skipped. +// For debug use only. +static cl::opt<unsigned> + ICPCSSkip("icp-csskip", cl::init(0), cl::Hidden, cl::ZeroOrMore, + cl::desc("Skip Callsite up to this number for this compilation")); + +// Set if the pass is called in LTO optimization. The difference for LTO mode +// is the pass won't prefix the source module name to the internal linkage +// symbols. +static cl::opt<bool> ICPLTOMode("icp-lto", cl::init(false), cl::Hidden, + cl::desc("Run indirect-call promotion in LTO " + "mode")); + +// Set if the pass is called in SamplePGO mode. The difference for SamplePGO +// mode is it will add prof metadatato the created direct call. +static cl::opt<bool> + ICPSamplePGOMode("icp-samplepgo", cl::init(false), cl::Hidden, + cl::desc("Run indirect-call promotion in SamplePGO mode")); + +// If the option is set to true, only call instructions will be considered for +// transformation -- invoke instructions will be ignored. +static cl::opt<bool> + ICPCallOnly("icp-call-only", cl::init(false), cl::Hidden, + cl::desc("Run indirect-call promotion for call instructions " + "only")); + +// If the option is set to true, only invoke instructions will be considered for +// transformation -- call instructions will be ignored. +static cl::opt<bool> ICPInvokeOnly("icp-invoke-only", cl::init(false), + cl::Hidden, + cl::desc("Run indirect-call promotion for " + "invoke instruction only")); + +// Dump the function level IR if the transformation happened in this +// function. For debug use only. +static cl::opt<bool> + ICPDUMPAFTER("icp-dumpafter", cl::init(false), cl::Hidden, + cl::desc("Dump IR after transformation happens")); + +namespace { + +class PGOIndirectCallPromotionLegacyPass : public ModulePass { +public: + static char ID; + + PGOIndirectCallPromotionLegacyPass(bool InLTO = false, bool SamplePGO = false) + : ModulePass(ID), InLTO(InLTO), SamplePGO(SamplePGO) { + initializePGOIndirectCallPromotionLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + } + + StringRef getPassName() const override { return "PGOIndirectCallPromotion"; } + +private: + bool runOnModule(Module &M) override; + + // If this pass is called in LTO. We need to special handling the PGOFuncName + // for the static variables due to LTO's internalization. + bool InLTO; + + // If this pass is called in SamplePGO. We need to add the prof metadata to + // the promoted direct call. + bool SamplePGO; +}; + +} // end anonymous namespace + +char PGOIndirectCallPromotionLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom", + "Use PGO instrumentation profile to promote indirect " + "calls to direct calls.", + false, false) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_END(PGOIndirectCallPromotionLegacyPass, "pgo-icall-prom", + "Use PGO instrumentation profile to promote indirect " + "calls to direct calls.", + false, false) + +ModulePass *llvm::createPGOIndirectCallPromotionLegacyPass(bool InLTO, + bool SamplePGO) { + return new PGOIndirectCallPromotionLegacyPass(InLTO, SamplePGO); +} + +namespace { + +// The class for main data structure to promote indirect calls to conditional +// direct calls. +class ICallPromotionFunc { +private: + Function &F; + Module *M; + + // Symtab that maps indirect call profile values to function names and + // defines. + InstrProfSymtab *Symtab; + + bool SamplePGO; + + OptimizationRemarkEmitter &ORE; + + // A struct that records the direct target and it's call count. + struct PromotionCandidate { + Function *TargetFunction; + uint64_t Count; + + PromotionCandidate(Function *F, uint64_t C) : TargetFunction(F), Count(C) {} + }; + + // Check if the indirect-call call site should be promoted. Return the number + // of promotions. Inst is the candidate indirect call, ValueDataRef + // contains the array of value profile data for profiled targets, + // TotalCount is the total profiled count of call executions, and + // NumCandidates is the number of candidate entries in ValueDataRef. + std::vector<PromotionCandidate> getPromotionCandidatesForCallSite( + const CallBase &CB, const ArrayRef<InstrProfValueData> &ValueDataRef, + uint64_t TotalCount, uint32_t NumCandidates); + + // Promote a list of targets for one indirect-call callsite. Return + // the number of promotions. + uint32_t tryToPromote(CallBase &CB, + const std::vector<PromotionCandidate> &Candidates, + uint64_t &TotalCount); + +public: + ICallPromotionFunc(Function &Func, Module *Modu, InstrProfSymtab *Symtab, + bool SamplePGO, OptimizationRemarkEmitter &ORE) + : F(Func), M(Modu), Symtab(Symtab), SamplePGO(SamplePGO), ORE(ORE) {} + ICallPromotionFunc(const ICallPromotionFunc &) = delete; + ICallPromotionFunc &operator=(const ICallPromotionFunc &) = delete; + + bool processFunction(ProfileSummaryInfo *PSI); +}; + +} // end anonymous namespace + +// Indirect-call promotion heuristic. The direct targets are sorted based on +// the count. Stop at the first target that is not promoted. +std::vector<ICallPromotionFunc::PromotionCandidate> +ICallPromotionFunc::getPromotionCandidatesForCallSite( + const CallBase &CB, const ArrayRef<InstrProfValueData> &ValueDataRef, + uint64_t TotalCount, uint32_t NumCandidates) { + std::vector<PromotionCandidate> Ret; + + LLVM_DEBUG(dbgs() << " \nWork on callsite #" << NumOfPGOICallsites << CB + << " Num_targets: " << ValueDataRef.size() + << " Num_candidates: " << NumCandidates << "\n"); + NumOfPGOICallsites++; + if (ICPCSSkip != 0 && NumOfPGOICallsites <= ICPCSSkip) { + LLVM_DEBUG(dbgs() << " Skip: User options.\n"); + return Ret; + } + + for (uint32_t I = 0; I < NumCandidates; I++) { + uint64_t Count = ValueDataRef[I].Count; + assert(Count <= TotalCount); + uint64_t Target = ValueDataRef[I].Value; + LLVM_DEBUG(dbgs() << " Candidate " << I << " Count=" << Count + << " Target_func: " << Target << "\n"); + + if (ICPInvokeOnly && isa<CallInst>(CB)) { + LLVM_DEBUG(dbgs() << " Not promote: User options.\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) + << " Not promote: User options"; + }); + break; + } + if (ICPCallOnly && isa<InvokeInst>(CB)) { + LLVM_DEBUG(dbgs() << " Not promote: User option.\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UserOptions", &CB) + << " Not promote: User options"; + }); + break; + } + if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { + LLVM_DEBUG(dbgs() << " Not promote: Cutoff reached.\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "CutOffReached", &CB) + << " Not promote: Cutoff reached"; + }); + break; + } + // Don't promote if the symbol is not defined in the module. This avoids // creating a reference to a symbol that doesn't exist in the module // This can happen when we compile with a sample profile collected from @@ -270,180 +270,180 @@ ICallPromotionFunc::getPromotionCandidatesForCallSite( // aren't used in the new binary. We might have a declaration initially in // the case where the symbol is globally dead in the binary and removed by // ThinLTO. - Function *TargetFunction = Symtab->getFunction(Target); + Function *TargetFunction = Symtab->getFunction(Target); if (TargetFunction == nullptr || TargetFunction->isDeclaration()) { - LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n"); - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB) - << "Cannot promote indirect call: target with md5sum " - << ore::NV("target md5sum", Target) << " not found"; - }); - break; - } - - const char *Reason = nullptr; - if (!isLegalToPromote(CB, TargetFunction, &Reason)) { - using namespace ore; - - ORE.emit([&]() { - return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB) - << "Cannot promote indirect call to " - << NV("TargetFunction", TargetFunction) << " with count of " - << NV("Count", Count) << ": " << Reason; - }); - break; - } - - Ret.push_back(PromotionCandidate(TargetFunction, Count)); - TotalCount -= Count; - } - return Ret; -} - -CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee, - uint64_t Count, uint64_t TotalCount, - bool AttachProfToDirectCall, - OptimizationRemarkEmitter *ORE) { - - uint64_t ElseCount = TotalCount - Count; - uint64_t MaxCount = (Count >= ElseCount ? Count : ElseCount); - uint64_t Scale = calculateCountScale(MaxCount); - MDBuilder MDB(CB.getContext()); - MDNode *BranchWeights = MDB.createBranchWeights( - scaleBranchCount(Count, Scale), scaleBranchCount(ElseCount, Scale)); - - CallBase &NewInst = - promoteCallWithIfThenElse(CB, DirectCallee, BranchWeights); - - if (AttachProfToDirectCall) { - MDBuilder MDB(NewInst.getContext()); - NewInst.setMetadata( - LLVMContext::MD_prof, - MDB.createBranchWeights({static_cast<uint32_t>(Count)})); - } - - using namespace ore; - - if (ORE) - ORE->emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB) - << "Promote indirect call to " << NV("DirectCallee", DirectCallee) - << " with count " << NV("Count", Count) << " out of " - << NV("TotalCount", TotalCount); - }); - return NewInst; -} - -// Promote indirect-call to conditional direct-call for one callsite. -uint32_t ICallPromotionFunc::tryToPromote( - CallBase &CB, const std::vector<PromotionCandidate> &Candidates, - uint64_t &TotalCount) { - uint32_t NumPromoted = 0; - - for (auto &C : Candidates) { - uint64_t Count = C.Count; - pgo::promoteIndirectCall(CB, C.TargetFunction, Count, TotalCount, SamplePGO, - &ORE); - assert(TotalCount >= Count); - TotalCount -= Count; - NumOfPGOICallPromotion++; - NumPromoted++; - } - return NumPromoted; -} - -// Traverse all the indirect-call callsite and get the value profile -// annotation to perform indirect-call promotion. -bool ICallPromotionFunc::processFunction(ProfileSummaryInfo *PSI) { - bool Changed = false; - ICallPromotionAnalysis ICallAnalysis; - for (auto *CB : findIndirectCalls(F)) { - uint32_t NumVals, NumCandidates; - uint64_t TotalCount; - auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( - CB, NumVals, TotalCount, NumCandidates); - if (!NumCandidates || - (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount))) - continue; - auto PromotionCandidates = getPromotionCandidatesForCallSite( - *CB, ICallProfDataRef, TotalCount, NumCandidates); - uint32_t NumPromoted = tryToPromote(*CB, PromotionCandidates, TotalCount); - if (NumPromoted == 0) - continue; - - Changed = true; - // Adjust the MD.prof metadata. First delete the old one. - CB->setMetadata(LLVMContext::MD_prof, nullptr); - // If all promoted, we don't need the MD.prof metadata. - if (TotalCount == 0 || NumPromoted == NumVals) - continue; - // Otherwise we need update with the un-promoted records back. - annotateValueSite(*M, *CB, ICallProfDataRef.slice(NumPromoted), TotalCount, - IPVK_IndirectCallTarget, NumCandidates); - } - return Changed; -} - -// A wrapper function that does the actual work. -static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, - bool InLTO, bool SamplePGO, - ModuleAnalysisManager *AM = nullptr) { - if (DisableICP) - return false; - InstrProfSymtab Symtab; - if (Error E = Symtab.create(M, InLTO)) { - std::string SymtabFailure = toString(std::move(E)); - LLVM_DEBUG(dbgs() << "Failed to create symtab: " << SymtabFailure << "\n"); - (void)SymtabFailure; - return false; - } - bool Changed = false; - for (auto &F : M) { - if (F.isDeclaration() || F.hasOptNone()) - continue; - - std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; - OptimizationRemarkEmitter *ORE; - if (AM) { - auto &FAM = - AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); - } else { - OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); - ORE = OwnedORE.get(); - } - - ICallPromotionFunc ICallPromotion(F, &M, &Symtab, SamplePGO, *ORE); - bool FuncChanged = ICallPromotion.processFunction(PSI); - if (ICPDUMPAFTER && FuncChanged) { - LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); - LLVM_DEBUG(dbgs() << "\n"); - } - Changed |= FuncChanged; - if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { - LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n"); - break; - } - } - return Changed; -} - -bool PGOIndirectCallPromotionLegacyPass::runOnModule(Module &M) { - ProfileSummaryInfo *PSI = - &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - - // Command-line option has the priority for InLTO. - return promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, - SamplePGO | ICPSamplePGOMode); -} - -PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, - ModuleAnalysisManager &AM) { - ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); - - if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, - SamplePGO | ICPSamplePGOMode, &AM)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} + LLVM_DEBUG(dbgs() << " Not promote: Cannot find the target\n"); + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToFindTarget", &CB) + << "Cannot promote indirect call: target with md5sum " + << ore::NV("target md5sum", Target) << " not found"; + }); + break; + } + + const char *Reason = nullptr; + if (!isLegalToPromote(CB, TargetFunction, &Reason)) { + using namespace ore; + + ORE.emit([&]() { + return OptimizationRemarkMissed(DEBUG_TYPE, "UnableToPromote", &CB) + << "Cannot promote indirect call to " + << NV("TargetFunction", TargetFunction) << " with count of " + << NV("Count", Count) << ": " << Reason; + }); + break; + } + + Ret.push_back(PromotionCandidate(TargetFunction, Count)); + TotalCount -= Count; + } + return Ret; +} + +CallBase &llvm::pgo::promoteIndirectCall(CallBase &CB, Function *DirectCallee, + uint64_t Count, uint64_t TotalCount, + bool AttachProfToDirectCall, + OptimizationRemarkEmitter *ORE) { + + uint64_t ElseCount = TotalCount - Count; + uint64_t MaxCount = (Count >= ElseCount ? Count : ElseCount); + uint64_t Scale = calculateCountScale(MaxCount); + MDBuilder MDB(CB.getContext()); + MDNode *BranchWeights = MDB.createBranchWeights( + scaleBranchCount(Count, Scale), scaleBranchCount(ElseCount, Scale)); + + CallBase &NewInst = + promoteCallWithIfThenElse(CB, DirectCallee, BranchWeights); + + if (AttachProfToDirectCall) { + MDBuilder MDB(NewInst.getContext()); + NewInst.setMetadata( + LLVMContext::MD_prof, + MDB.createBranchWeights({static_cast<uint32_t>(Count)})); + } + + using namespace ore; + + if (ORE) + ORE->emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "Promoted", &CB) + << "Promote indirect call to " << NV("DirectCallee", DirectCallee) + << " with count " << NV("Count", Count) << " out of " + << NV("TotalCount", TotalCount); + }); + return NewInst; +} + +// Promote indirect-call to conditional direct-call for one callsite. +uint32_t ICallPromotionFunc::tryToPromote( + CallBase &CB, const std::vector<PromotionCandidate> &Candidates, + uint64_t &TotalCount) { + uint32_t NumPromoted = 0; + + for (auto &C : Candidates) { + uint64_t Count = C.Count; + pgo::promoteIndirectCall(CB, C.TargetFunction, Count, TotalCount, SamplePGO, + &ORE); + assert(TotalCount >= Count); + TotalCount -= Count; + NumOfPGOICallPromotion++; + NumPromoted++; + } + return NumPromoted; +} + +// Traverse all the indirect-call callsite and get the value profile +// annotation to perform indirect-call promotion. +bool ICallPromotionFunc::processFunction(ProfileSummaryInfo *PSI) { + bool Changed = false; + ICallPromotionAnalysis ICallAnalysis; + for (auto *CB : findIndirectCalls(F)) { + uint32_t NumVals, NumCandidates; + uint64_t TotalCount; + auto ICallProfDataRef = ICallAnalysis.getPromotionCandidatesForInstruction( + CB, NumVals, TotalCount, NumCandidates); + if (!NumCandidates || + (PSI && PSI->hasProfileSummary() && !PSI->isHotCount(TotalCount))) + continue; + auto PromotionCandidates = getPromotionCandidatesForCallSite( + *CB, ICallProfDataRef, TotalCount, NumCandidates); + uint32_t NumPromoted = tryToPromote(*CB, PromotionCandidates, TotalCount); + if (NumPromoted == 0) + continue; + + Changed = true; + // Adjust the MD.prof metadata. First delete the old one. + CB->setMetadata(LLVMContext::MD_prof, nullptr); + // If all promoted, we don't need the MD.prof metadata. + if (TotalCount == 0 || NumPromoted == NumVals) + continue; + // Otherwise we need update with the un-promoted records back. + annotateValueSite(*M, *CB, ICallProfDataRef.slice(NumPromoted), TotalCount, + IPVK_IndirectCallTarget, NumCandidates); + } + return Changed; +} + +// A wrapper function that does the actual work. +static bool promoteIndirectCalls(Module &M, ProfileSummaryInfo *PSI, + bool InLTO, bool SamplePGO, + ModuleAnalysisManager *AM = nullptr) { + if (DisableICP) + return false; + InstrProfSymtab Symtab; + if (Error E = Symtab.create(M, InLTO)) { + std::string SymtabFailure = toString(std::move(E)); + LLVM_DEBUG(dbgs() << "Failed to create symtab: " << SymtabFailure << "\n"); + (void)SymtabFailure; + return false; + } + bool Changed = false; + for (auto &F : M) { + if (F.isDeclaration() || F.hasOptNone()) + continue; + + std::unique_ptr<OptimizationRemarkEmitter> OwnedORE; + OptimizationRemarkEmitter *ORE; + if (AM) { + auto &FAM = + AM->getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); + } else { + OwnedORE = std::make_unique<OptimizationRemarkEmitter>(&F); + ORE = OwnedORE.get(); + } + + ICallPromotionFunc ICallPromotion(F, &M, &Symtab, SamplePGO, *ORE); + bool FuncChanged = ICallPromotion.processFunction(PSI); + if (ICPDUMPAFTER && FuncChanged) { + LLVM_DEBUG(dbgs() << "\n== IR Dump After =="; F.print(dbgs())); + LLVM_DEBUG(dbgs() << "\n"); + } + Changed |= FuncChanged; + if (ICPCutOff != 0 && NumOfPGOICallPromotion >= ICPCutOff) { + LLVM_DEBUG(dbgs() << " Stop: Cutoff reached.\n"); + break; + } + } + return Changed; +} + +bool PGOIndirectCallPromotionLegacyPass::runOnModule(Module &M) { + ProfileSummaryInfo *PSI = + &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + + // Command-line option has the priority for InLTO. + return promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, + SamplePGO | ICPSamplePGOMode); +} + +PreservedAnalyses PGOIndirectCallPromotion::run(Module &M, + ModuleAnalysisManager &AM) { + ProfileSummaryInfo *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); + + if (!promoteIndirectCalls(M, PSI, InLTO | ICPLTOMode, + SamplePGO | ICPSamplePGOMode, &AM)) + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrOrderFile.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrOrderFile.cpp index 0addfb46b2..853385fbf8 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrOrderFile.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrOrderFile.cpp @@ -1,212 +1,212 @@ -//===- InstrOrderFile.cpp ---- Late IR instrumentation for order file ----===// -// -// The LLVM Compiler Infrastructure -// -// This file is distributed under the University of Illinois Open Source -// License. See LICENSE.TXT for details. -// -//===----------------------------------------------------------------------===// -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/InstrOrderFile.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/PassRegistry.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FileSystem.h" -#include "llvm/Support/Path.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include <fstream> -#include <map> -#include <mutex> -#include <set> -#include <sstream> - -using namespace llvm; -#define DEBUG_TYPE "instrorderfile" - -static cl::opt<std::string> ClOrderFileWriteMapping( - "orderfile-write-mapping", cl::init(""), - cl::desc( - "Dump functions and their MD5 hash to deobfuscate profile data"), - cl::Hidden); - -namespace { - -// We need a global bitmap to tell if a function is executed. We also -// need a global variable to save the order of functions. We can use a -// fixed-size buffer that saves the MD5 hash of the function. We need -// a global variable to save the index into the buffer. - -std::mutex MappingMutex; - -struct InstrOrderFile { -private: - GlobalVariable *OrderFileBuffer; - GlobalVariable *BufferIdx; - GlobalVariable *BitMap; - ArrayType *BufferTy; - ArrayType *MapTy; - -public: - InstrOrderFile() {} - - void createOrderFileData(Module &M) { - LLVMContext &Ctx = M.getContext(); - int NumFunctions = 0; - for (Function &F : M) { - if (!F.isDeclaration()) - NumFunctions++; - } - - BufferTy = - ArrayType::get(Type::getInt64Ty(Ctx), INSTR_ORDER_FILE_BUFFER_SIZE); - Type *IdxTy = Type::getInt32Ty(Ctx); - MapTy = ArrayType::get(Type::getInt8Ty(Ctx), NumFunctions); - - // Create the global variables. - std::string SymbolName = INSTR_PROF_ORDERFILE_BUFFER_NAME_STR; - OrderFileBuffer = new GlobalVariable(M, BufferTy, false, GlobalValue::LinkOnceODRLinkage, - Constant::getNullValue(BufferTy), SymbolName); - Triple TT = Triple(M.getTargetTriple()); - OrderFileBuffer->setSection( - getInstrProfSectionName(IPSK_orderfile, TT.getObjectFormat())); - - std::string IndexName = INSTR_PROF_ORDERFILE_BUFFER_IDX_NAME_STR; - BufferIdx = new GlobalVariable(M, IdxTy, false, GlobalValue::LinkOnceODRLinkage, - Constant::getNullValue(IdxTy), IndexName); - - std::string BitMapName = "bitmap_0"; - BitMap = new GlobalVariable(M, MapTy, false, GlobalValue::PrivateLinkage, - Constant::getNullValue(MapTy), BitMapName); - } - - // Generate the code sequence in the entry block of each function to - // update the buffer. - void generateCodeSequence(Module &M, Function &F, int FuncId) { - if (!ClOrderFileWriteMapping.empty()) { - std::lock_guard<std::mutex> LogLock(MappingMutex); - std::error_code EC; - llvm::raw_fd_ostream OS(ClOrderFileWriteMapping, EC, - llvm::sys::fs::OF_Append); - if (EC) { - report_fatal_error(Twine("Failed to open ") + ClOrderFileWriteMapping + - " to save mapping file for order file instrumentation\n"); - } else { - std::stringstream stream; - stream << std::hex << MD5Hash(F.getName()); - std::string singleLine = "MD5 " + stream.str() + " " + - std::string(F.getName()) + '\n'; - OS << singleLine; - } - } - - BasicBlock *OrigEntry = &F.getEntryBlock(); - - LLVMContext &Ctx = M.getContext(); - IntegerType *Int32Ty = Type::getInt32Ty(Ctx); - IntegerType *Int8Ty = Type::getInt8Ty(Ctx); - - // Create a new entry block for instrumentation. We will check the bitmap - // in this basic block. - BasicBlock *NewEntry = - BasicBlock::Create(M.getContext(), "order_file_entry", &F, OrigEntry); - IRBuilder<> entryB(NewEntry); - // Create a basic block for updating the circular buffer. - BasicBlock *UpdateOrderFileBB = - BasicBlock::Create(M.getContext(), "order_file_set", &F, OrigEntry); - IRBuilder<> updateB(UpdateOrderFileBB); - - // Check the bitmap, if it is already 1, do nothing. - // Otherwise, set the bit, grab the index, update the buffer. - Value *IdxFlags[] = {ConstantInt::get(Int32Ty, 0), - ConstantInt::get(Int32Ty, FuncId)}; - Value *MapAddr = entryB.CreateGEP(MapTy, BitMap, IdxFlags, ""); - LoadInst *loadBitMap = entryB.CreateLoad(Int8Ty, MapAddr, ""); - entryB.CreateStore(ConstantInt::get(Int8Ty, 1), MapAddr); - Value *IsNotExecuted = - entryB.CreateICmpEQ(loadBitMap, ConstantInt::get(Int8Ty, 0)); - entryB.CreateCondBr(IsNotExecuted, UpdateOrderFileBB, OrigEntry); - - // Fill up UpdateOrderFileBB: grab the index, update the buffer! - Value *IdxVal = updateB.CreateAtomicRMW( - AtomicRMWInst::Add, BufferIdx, ConstantInt::get(Int32Ty, 1), - AtomicOrdering::SequentiallyConsistent); - // We need to wrap around the index to fit it inside the buffer. - Value *WrappedIdx = updateB.CreateAnd( - IdxVal, ConstantInt::get(Int32Ty, INSTR_ORDER_FILE_BUFFER_MASK)); - Value *BufferGEPIdx[] = {ConstantInt::get(Int32Ty, 0), WrappedIdx}; - Value *BufferAddr = - updateB.CreateGEP(BufferTy, OrderFileBuffer, BufferGEPIdx, ""); - updateB.CreateStore(ConstantInt::get(Type::getInt64Ty(Ctx), MD5Hash(F.getName())), - BufferAddr); - updateB.CreateBr(OrigEntry); - } - - bool run(Module &M) { - createOrderFileData(M); - - int FuncId = 0; - for (Function &F : M) { - if (F.isDeclaration()) - continue; - generateCodeSequence(M, F, FuncId); - ++FuncId; - } - - return true; - } - -}; // End of InstrOrderFile struct - -class InstrOrderFileLegacyPass : public ModulePass { -public: - static char ID; - - InstrOrderFileLegacyPass() : ModulePass(ID) { - initializeInstrOrderFileLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - bool runOnModule(Module &M) override; -}; - -} // End anonymous namespace - -bool InstrOrderFileLegacyPass::runOnModule(Module &M) { - if (skipModule(M)) - return false; - - return InstrOrderFile().run(M); -} - -PreservedAnalyses -InstrOrderFilePass::run(Module &M, ModuleAnalysisManager &AM) { - if (InstrOrderFile().run(M)) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -INITIALIZE_PASS_BEGIN(InstrOrderFileLegacyPass, "instrorderfile", - "Instrumentation for Order File", false, false) -INITIALIZE_PASS_END(InstrOrderFileLegacyPass, "instrorderfile", - "Instrumentation for Order File", false, false) - -char InstrOrderFileLegacyPass::ID = 0; - -ModulePass *llvm::createInstrOrderFilePass() { - return new InstrOrderFileLegacyPass(); -} +//===- InstrOrderFile.cpp ---- Late IR instrumentation for order file ----===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/InstrOrderFile.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Path.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include <fstream> +#include <map> +#include <mutex> +#include <set> +#include <sstream> + +using namespace llvm; +#define DEBUG_TYPE "instrorderfile" + +static cl::opt<std::string> ClOrderFileWriteMapping( + "orderfile-write-mapping", cl::init(""), + cl::desc( + "Dump functions and their MD5 hash to deobfuscate profile data"), + cl::Hidden); + +namespace { + +// We need a global bitmap to tell if a function is executed. We also +// need a global variable to save the order of functions. We can use a +// fixed-size buffer that saves the MD5 hash of the function. We need +// a global variable to save the index into the buffer. + +std::mutex MappingMutex; + +struct InstrOrderFile { +private: + GlobalVariable *OrderFileBuffer; + GlobalVariable *BufferIdx; + GlobalVariable *BitMap; + ArrayType *BufferTy; + ArrayType *MapTy; + +public: + InstrOrderFile() {} + + void createOrderFileData(Module &M) { + LLVMContext &Ctx = M.getContext(); + int NumFunctions = 0; + for (Function &F : M) { + if (!F.isDeclaration()) + NumFunctions++; + } + + BufferTy = + ArrayType::get(Type::getInt64Ty(Ctx), INSTR_ORDER_FILE_BUFFER_SIZE); + Type *IdxTy = Type::getInt32Ty(Ctx); + MapTy = ArrayType::get(Type::getInt8Ty(Ctx), NumFunctions); + + // Create the global variables. + std::string SymbolName = INSTR_PROF_ORDERFILE_BUFFER_NAME_STR; + OrderFileBuffer = new GlobalVariable(M, BufferTy, false, GlobalValue::LinkOnceODRLinkage, + Constant::getNullValue(BufferTy), SymbolName); + Triple TT = Triple(M.getTargetTriple()); + OrderFileBuffer->setSection( + getInstrProfSectionName(IPSK_orderfile, TT.getObjectFormat())); + + std::string IndexName = INSTR_PROF_ORDERFILE_BUFFER_IDX_NAME_STR; + BufferIdx = new GlobalVariable(M, IdxTy, false, GlobalValue::LinkOnceODRLinkage, + Constant::getNullValue(IdxTy), IndexName); + + std::string BitMapName = "bitmap_0"; + BitMap = new GlobalVariable(M, MapTy, false, GlobalValue::PrivateLinkage, + Constant::getNullValue(MapTy), BitMapName); + } + + // Generate the code sequence in the entry block of each function to + // update the buffer. + void generateCodeSequence(Module &M, Function &F, int FuncId) { + if (!ClOrderFileWriteMapping.empty()) { + std::lock_guard<std::mutex> LogLock(MappingMutex); + std::error_code EC; + llvm::raw_fd_ostream OS(ClOrderFileWriteMapping, EC, + llvm::sys::fs::OF_Append); + if (EC) { + report_fatal_error(Twine("Failed to open ") + ClOrderFileWriteMapping + + " to save mapping file for order file instrumentation\n"); + } else { + std::stringstream stream; + stream << std::hex << MD5Hash(F.getName()); + std::string singleLine = "MD5 " + stream.str() + " " + + std::string(F.getName()) + '\n'; + OS << singleLine; + } + } + + BasicBlock *OrigEntry = &F.getEntryBlock(); + + LLVMContext &Ctx = M.getContext(); + IntegerType *Int32Ty = Type::getInt32Ty(Ctx); + IntegerType *Int8Ty = Type::getInt8Ty(Ctx); + + // Create a new entry block for instrumentation. We will check the bitmap + // in this basic block. + BasicBlock *NewEntry = + BasicBlock::Create(M.getContext(), "order_file_entry", &F, OrigEntry); + IRBuilder<> entryB(NewEntry); + // Create a basic block for updating the circular buffer. + BasicBlock *UpdateOrderFileBB = + BasicBlock::Create(M.getContext(), "order_file_set", &F, OrigEntry); + IRBuilder<> updateB(UpdateOrderFileBB); + + // Check the bitmap, if it is already 1, do nothing. + // Otherwise, set the bit, grab the index, update the buffer. + Value *IdxFlags[] = {ConstantInt::get(Int32Ty, 0), + ConstantInt::get(Int32Ty, FuncId)}; + Value *MapAddr = entryB.CreateGEP(MapTy, BitMap, IdxFlags, ""); + LoadInst *loadBitMap = entryB.CreateLoad(Int8Ty, MapAddr, ""); + entryB.CreateStore(ConstantInt::get(Int8Ty, 1), MapAddr); + Value *IsNotExecuted = + entryB.CreateICmpEQ(loadBitMap, ConstantInt::get(Int8Ty, 0)); + entryB.CreateCondBr(IsNotExecuted, UpdateOrderFileBB, OrigEntry); + + // Fill up UpdateOrderFileBB: grab the index, update the buffer! + Value *IdxVal = updateB.CreateAtomicRMW( + AtomicRMWInst::Add, BufferIdx, ConstantInt::get(Int32Ty, 1), + AtomicOrdering::SequentiallyConsistent); + // We need to wrap around the index to fit it inside the buffer. + Value *WrappedIdx = updateB.CreateAnd( + IdxVal, ConstantInt::get(Int32Ty, INSTR_ORDER_FILE_BUFFER_MASK)); + Value *BufferGEPIdx[] = {ConstantInt::get(Int32Ty, 0), WrappedIdx}; + Value *BufferAddr = + updateB.CreateGEP(BufferTy, OrderFileBuffer, BufferGEPIdx, ""); + updateB.CreateStore(ConstantInt::get(Type::getInt64Ty(Ctx), MD5Hash(F.getName())), + BufferAddr); + updateB.CreateBr(OrigEntry); + } + + bool run(Module &M) { + createOrderFileData(M); + + int FuncId = 0; + for (Function &F : M) { + if (F.isDeclaration()) + continue; + generateCodeSequence(M, F, FuncId); + ++FuncId; + } + + return true; + } + +}; // End of InstrOrderFile struct + +class InstrOrderFileLegacyPass : public ModulePass { +public: + static char ID; + + InstrOrderFileLegacyPass() : ModulePass(ID) { + initializeInstrOrderFileLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + bool runOnModule(Module &M) override; +}; + +} // End anonymous namespace + +bool InstrOrderFileLegacyPass::runOnModule(Module &M) { + if (skipModule(M)) + return false; + + return InstrOrderFile().run(M); +} + +PreservedAnalyses +InstrOrderFilePass::run(Module &M, ModuleAnalysisManager &AM) { + if (InstrOrderFile().run(M)) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +INITIALIZE_PASS_BEGIN(InstrOrderFileLegacyPass, "instrorderfile", + "Instrumentation for Order File", false, false) +INITIALIZE_PASS_END(InstrOrderFileLegacyPass, "instrorderfile", + "Instrumentation for Order File", false, false) + +char InstrOrderFileLegacyPass::ID = 0; + +ModulePass *llvm::createInstrOrderFilePass() { + return new InstrOrderFileLegacyPass(); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrProfiling.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrProfiling.cpp index 925c018135..9efc7d1ac5 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrProfiling.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/InstrProfiling.cpp @@ -1,266 +1,266 @@ -//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. -// It also builds the data structures and initialization code needed for -// updating execution counts and emitting the profile at runtime. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/InstrProfiling.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Error.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include "llvm/Transforms/Utils/SSAUpdater.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <string> - -using namespace llvm; - -#define DEBUG_TYPE "instrprof" - -namespace { - -cl::opt<bool> DoHashBasedCounterSplit( - "hash-based-counter-split", - cl::desc("Rename counter variable of a comdat function based on cfg hash"), - cl::init(true)); - -cl::opt<bool> RuntimeCounterRelocation( - "runtime-counter-relocation", - cl::desc("Enable relocating counters at runtime."), - cl::init(false)); - -cl::opt<bool> ValueProfileStaticAlloc( - "vp-static-alloc", - cl::desc("Do static counter allocation for value profiler"), - cl::init(true)); - -cl::opt<double> NumCountersPerValueSite( - "vp-counters-per-site", - cl::desc("The average number of profile counters allocated " - "per value profiling site."), - // This is set to a very small value because in real programs, only - // a very small percentage of value sites have non-zero targets, e.g, 1/30. - // For those sites with non-zero profile, the average number of targets - // is usually smaller than 2. - cl::init(1.0)); - -cl::opt<bool> AtomicCounterUpdateAll( - "instrprof-atomic-counter-update-all", cl::ZeroOrMore, - cl::desc("Make all profile counter updates atomic (for testing only)"), - cl::init(false)); - -cl::opt<bool> AtomicCounterUpdatePromoted( - "atomic-counter-update-promoted", cl::ZeroOrMore, - cl::desc("Do counter update using atomic fetch add " - " for promoted counters only"), - cl::init(false)); - -cl::opt<bool> AtomicFirstCounter( - "atomic-first-counter", cl::ZeroOrMore, - cl::desc("Use atomic fetch add for first counter in a function (usually " - "the entry counter)"), - cl::init(false)); - -// If the option is not specified, the default behavior about whether -// counter promotion is done depends on how instrumentaiton lowering -// pipeline is setup, i.e., the default value of true of this option -// does not mean the promotion will be done by default. Explicitly -// setting this option can override the default behavior. -cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore, - cl::desc("Do counter register promotion"), - cl::init(false)); -cl::opt<unsigned> MaxNumOfPromotionsPerLoop( - cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20), - cl::desc("Max number counter promotions per loop to avoid" - " increasing register pressure too much")); - -// A debug option -cl::opt<int> - MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1), - cl::desc("Max number of allowed counter promotions")); - -cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( - cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3), - cl::desc("The max number of exiting blocks of a loop to allow " - " speculative counter promotion")); - -cl::opt<bool> SpeculativeCounterPromotionToLoop( - cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false), - cl::desc("When the option is false, if the target block is in a loop, " - "the promotion will be disallowed unless the promoted counter " - " update can be further/iteratively promoted into an acyclic " - " region.")); - -cl::opt<bool> IterativeCounterPromotion( - cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true), - cl::desc("Allow counter promotion across the whole loop nest.")); - +//===-- InstrProfiling.cpp - Frontend instrumentation based profiling -----===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This pass lowers instrprof_* intrinsics emitted by a frontend for profiling. +// It also builds the data structures and initialization code needed for +// updating execution counts and emitting the profile at runtime. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/InstrProfiling.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include "llvm/Transforms/Utils/SSAUpdater.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <string> + +using namespace llvm; + +#define DEBUG_TYPE "instrprof" + +namespace { + +cl::opt<bool> DoHashBasedCounterSplit( + "hash-based-counter-split", + cl::desc("Rename counter variable of a comdat function based on cfg hash"), + cl::init(true)); + +cl::opt<bool> RuntimeCounterRelocation( + "runtime-counter-relocation", + cl::desc("Enable relocating counters at runtime."), + cl::init(false)); + +cl::opt<bool> ValueProfileStaticAlloc( + "vp-static-alloc", + cl::desc("Do static counter allocation for value profiler"), + cl::init(true)); + +cl::opt<double> NumCountersPerValueSite( + "vp-counters-per-site", + cl::desc("The average number of profile counters allocated " + "per value profiling site."), + // This is set to a very small value because in real programs, only + // a very small percentage of value sites have non-zero targets, e.g, 1/30. + // For those sites with non-zero profile, the average number of targets + // is usually smaller than 2. + cl::init(1.0)); + +cl::opt<bool> AtomicCounterUpdateAll( + "instrprof-atomic-counter-update-all", cl::ZeroOrMore, + cl::desc("Make all profile counter updates atomic (for testing only)"), + cl::init(false)); + +cl::opt<bool> AtomicCounterUpdatePromoted( + "atomic-counter-update-promoted", cl::ZeroOrMore, + cl::desc("Do counter update using atomic fetch add " + " for promoted counters only"), + cl::init(false)); + +cl::opt<bool> AtomicFirstCounter( + "atomic-first-counter", cl::ZeroOrMore, + cl::desc("Use atomic fetch add for first counter in a function (usually " + "the entry counter)"), + cl::init(false)); + +// If the option is not specified, the default behavior about whether +// counter promotion is done depends on how instrumentaiton lowering +// pipeline is setup, i.e., the default value of true of this option +// does not mean the promotion will be done by default. Explicitly +// setting this option can override the default behavior. +cl::opt<bool> DoCounterPromotion("do-counter-promotion", cl::ZeroOrMore, + cl::desc("Do counter register promotion"), + cl::init(false)); +cl::opt<unsigned> MaxNumOfPromotionsPerLoop( + cl::ZeroOrMore, "max-counter-promotions-per-loop", cl::init(20), + cl::desc("Max number counter promotions per loop to avoid" + " increasing register pressure too much")); + +// A debug option +cl::opt<int> + MaxNumOfPromotions(cl::ZeroOrMore, "max-counter-promotions", cl::init(-1), + cl::desc("Max number of allowed counter promotions")); + +cl::opt<unsigned> SpeculativeCounterPromotionMaxExiting( + cl::ZeroOrMore, "speculative-counter-promotion-max-exiting", cl::init(3), + cl::desc("The max number of exiting blocks of a loop to allow " + " speculative counter promotion")); + +cl::opt<bool> SpeculativeCounterPromotionToLoop( + cl::ZeroOrMore, "speculative-counter-promotion-to-loop", cl::init(false), + cl::desc("When the option is false, if the target block is in a loop, " + "the promotion will be disallowed unless the promoted counter " + " update can be further/iteratively promoted into an acyclic " + " region.")); + +cl::opt<bool> IterativeCounterPromotion( + cl::ZeroOrMore, "iterative-counter-promotion", cl::init(true), + cl::desc("Allow counter promotion across the whole loop nest.")); + cl::opt<bool> SkipRetExitBlock( cl::ZeroOrMore, "skip-ret-exit-block", cl::init(true), cl::desc("Suppress counter promotion if exit blocks contain ret.")); -class InstrProfilingLegacyPass : public ModulePass { - InstrProfiling InstrProf; - -public: - static char ID; - - InstrProfilingLegacyPass() : ModulePass(ID) {} - InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false) - : ModulePass(ID), InstrProf(Options, IsCS) { - initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { - return "Frontend instrumentation-based coverage lowering"; - } - - bool runOnModule(Module &M) override { - auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { - return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - }; - return InstrProf.run(M, GetTLI); - } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.setPreservesCFG(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } -}; - -/// -/// A helper class to promote one counter RMW operation in the loop -/// into register update. -/// -/// RWM update for the counter will be sinked out of the loop after -/// the transformation. -/// -class PGOCounterPromoterHelper : public LoadAndStorePromoter { -public: - PGOCounterPromoterHelper( - Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, - BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, - ArrayRef<Instruction *> InsertPts, - DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, - LoopInfo &LI) - : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), - InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { - assert(isa<LoadInst>(L)); - assert(isa<StoreInst>(S)); - SSA.AddAvailableValue(PH, Init); - } - - void doExtraRewritesBeforeFinalDeletion() override { - for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { - BasicBlock *ExitBlock = ExitBlocks[i]; - Instruction *InsertPos = InsertPts[i]; - // Get LiveIn value into the ExitBlock. If there are multiple - // predecessors, the value is defined by a PHI node in this - // block. - Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); - Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); - Type *Ty = LiveInValue->getType(); - IRBuilder<> Builder(InsertPos); - if (AtomicCounterUpdatePromoted) - // automic update currently can only be promoted across the current - // loop, not the whole loop nest. - Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, - AtomicOrdering::SequentiallyConsistent); - else { - LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); - auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); - auto *NewStore = Builder.CreateStore(NewVal, Addr); - - // Now update the parent loop's candidate list: - if (IterativeCounterPromotion) { - auto *TargetLoop = LI.getLoopFor(ExitBlock); - if (TargetLoop) - LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); - } - } - } - } - -private: - Instruction *Store; - ArrayRef<BasicBlock *> ExitBlocks; - ArrayRef<Instruction *> InsertPts; - DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; - LoopInfo &LI; -}; - -/// A helper class to do register promotion for all profile counter -/// updates in a loop. -/// -class PGOCounterPromoter { -public: - PGOCounterPromoter( - DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, - Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) - : LoopToCandidates(LoopToCands), ExitBlocks(), InsertPts(), L(CurLoop), - LI(LI), BFI(BFI) { - - // Skip collection of ExitBlocks and InsertPts for loops that will not be - // able to have counters promoted. - SmallVector<BasicBlock *, 8> LoopExitBlocks; - SmallPtrSet<BasicBlock *, 8> BlockSet; - - L.getExitBlocks(LoopExitBlocks); - if (!isPromotionPossible(&L, LoopExitBlocks)) - return; - - for (BasicBlock *ExitBlock : LoopExitBlocks) { - if (BlockSet.insert(ExitBlock).second) { - ExitBlocks.push_back(ExitBlock); - InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); - } - } - } - - bool run(int64_t *NumPromoted) { - // Skip 'infinite' loops: - if (ExitBlocks.size() == 0) - return false; +class InstrProfilingLegacyPass : public ModulePass { + InstrProfiling InstrProf; + +public: + static char ID; + + InstrProfilingLegacyPass() : ModulePass(ID) {} + InstrProfilingLegacyPass(const InstrProfOptions &Options, bool IsCS = false) + : ModulePass(ID), InstrProf(Options, IsCS) { + initializeInstrProfilingLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { + return "Frontend instrumentation-based coverage lowering"; + } + + bool runOnModule(Module &M) override { + auto GetTLI = [this](Function &F) -> TargetLibraryInfo & { + return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + }; + return InstrProf.run(M, GetTLI); + } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.setPreservesCFG(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } +}; + +/// +/// A helper class to promote one counter RMW operation in the loop +/// into register update. +/// +/// RWM update for the counter will be sinked out of the loop after +/// the transformation. +/// +class PGOCounterPromoterHelper : public LoadAndStorePromoter { +public: + PGOCounterPromoterHelper( + Instruction *L, Instruction *S, SSAUpdater &SSA, Value *Init, + BasicBlock *PH, ArrayRef<BasicBlock *> ExitBlocks, + ArrayRef<Instruction *> InsertPts, + DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, + LoopInfo &LI) + : LoadAndStorePromoter({L, S}, SSA), Store(S), ExitBlocks(ExitBlocks), + InsertPts(InsertPts), LoopToCandidates(LoopToCands), LI(LI) { + assert(isa<LoadInst>(L)); + assert(isa<StoreInst>(S)); + SSA.AddAvailableValue(PH, Init); + } + + void doExtraRewritesBeforeFinalDeletion() override { + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) { + BasicBlock *ExitBlock = ExitBlocks[i]; + Instruction *InsertPos = InsertPts[i]; + // Get LiveIn value into the ExitBlock. If there are multiple + // predecessors, the value is defined by a PHI node in this + // block. + Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock); + Value *Addr = cast<StoreInst>(Store)->getPointerOperand(); + Type *Ty = LiveInValue->getType(); + IRBuilder<> Builder(InsertPos); + if (AtomicCounterUpdatePromoted) + // automic update currently can only be promoted across the current + // loop, not the whole loop nest. + Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, LiveInValue, + AtomicOrdering::SequentiallyConsistent); + else { + LoadInst *OldVal = Builder.CreateLoad(Ty, Addr, "pgocount.promoted"); + auto *NewVal = Builder.CreateAdd(OldVal, LiveInValue); + auto *NewStore = Builder.CreateStore(NewVal, Addr); + + // Now update the parent loop's candidate list: + if (IterativeCounterPromotion) { + auto *TargetLoop = LI.getLoopFor(ExitBlock); + if (TargetLoop) + LoopToCandidates[TargetLoop].emplace_back(OldVal, NewStore); + } + } + } + } + +private: + Instruction *Store; + ArrayRef<BasicBlock *> ExitBlocks; + ArrayRef<Instruction *> InsertPts; + DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; + LoopInfo &LI; +}; + +/// A helper class to do register promotion for all profile counter +/// updates in a loop. +/// +class PGOCounterPromoter { +public: + PGOCounterPromoter( + DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCands, + Loop &CurLoop, LoopInfo &LI, BlockFrequencyInfo *BFI) + : LoopToCandidates(LoopToCands), ExitBlocks(), InsertPts(), L(CurLoop), + LI(LI), BFI(BFI) { + + // Skip collection of ExitBlocks and InsertPts for loops that will not be + // able to have counters promoted. + SmallVector<BasicBlock *, 8> LoopExitBlocks; + SmallPtrSet<BasicBlock *, 8> BlockSet; + + L.getExitBlocks(LoopExitBlocks); + if (!isPromotionPossible(&L, LoopExitBlocks)) + return; + + for (BasicBlock *ExitBlock : LoopExitBlocks) { + if (BlockSet.insert(ExitBlock).second) { + ExitBlocks.push_back(ExitBlock); + InsertPts.push_back(&*ExitBlock->getFirstInsertionPt()); + } + } + } + + bool run(int64_t *NumPromoted) { + // Skip 'infinite' loops: + if (ExitBlocks.size() == 0) + return false; // Skip if any of the ExitBlocks contains a ret instruction. // This is to prevent dumping of incomplete profile -- if the @@ -273,129 +273,129 @@ public: return false; } - unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); - if (MaxProm == 0) - return false; - - unsigned Promoted = 0; - for (auto &Cand : LoopToCandidates[&L]) { - - SmallVector<PHINode *, 4> NewPHIs; - SSAUpdater SSA(&NewPHIs); - Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); - - // If BFI is set, we will use it to guide the promotions. - if (BFI) { - auto *BB = Cand.first->getParent(); - auto InstrCount = BFI->getBlockProfileCount(BB); - if (!InstrCount) - continue; - auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); - // If the average loop trip count is not greater than 1.5, we skip - // promotion. - if (PreheaderCount && - (PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2)) - continue; - } - - PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, - L.getLoopPreheader(), ExitBlocks, - InsertPts, LoopToCandidates, LI); - Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); - Promoted++; - if (Promoted >= MaxProm) - break; - - (*NumPromoted)++; - if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) - break; - } - - LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" - << L.getLoopDepth() << ")\n"); - return Promoted != 0; - } - -private: - bool allowSpeculativeCounterPromotion(Loop *LP) { - SmallVector<BasicBlock *, 8> ExitingBlocks; - L.getExitingBlocks(ExitingBlocks); - // Not considierered speculative. - if (ExitingBlocks.size() == 1) - return true; - if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) - return false; - return true; - } - - // Check whether the loop satisfies the basic conditions needed to perform - // Counter Promotions. - bool isPromotionPossible(Loop *LP, - const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { - // We can't insert into a catchswitch. - if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { - return isa<CatchSwitchInst>(Exit->getTerminator()); - })) - return false; - - if (!LP->hasDedicatedExits()) - return false; - - BasicBlock *PH = LP->getLoopPreheader(); - if (!PH) - return false; - - return true; - } - - // Returns the max number of Counter Promotions for LP. - unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { - SmallVector<BasicBlock *, 8> LoopExitBlocks; - LP->getExitBlocks(LoopExitBlocks); - if (!isPromotionPossible(LP, LoopExitBlocks)) - return 0; - - SmallVector<BasicBlock *, 8> ExitingBlocks; - LP->getExitingBlocks(ExitingBlocks); - - // If BFI is set, we do more aggressive promotions based on BFI. - if (BFI) - return (unsigned)-1; - - // Not considierered speculative. - if (ExitingBlocks.size() == 1) - return MaxNumOfPromotionsPerLoop; - - if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) - return 0; - - // Whether the target block is in a loop does not matter: - if (SpeculativeCounterPromotionToLoop) - return MaxNumOfPromotionsPerLoop; - - // Now check the target block: - unsigned MaxProm = MaxNumOfPromotionsPerLoop; - for (auto *TargetBlock : LoopExitBlocks) { - auto *TargetLoop = LI.getLoopFor(TargetBlock); - if (!TargetLoop) - continue; - unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); - unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); - MaxProm = - std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - - PendingCandsInTarget); - } - return MaxProm; - } - - DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; - SmallVector<BasicBlock *, 8> ExitBlocks; - SmallVector<Instruction *, 8> InsertPts; - Loop &L; - LoopInfo &LI; - BlockFrequencyInfo *BFI; -}; - + unsigned MaxProm = getMaxNumOfPromotionsInLoop(&L); + if (MaxProm == 0) + return false; + + unsigned Promoted = 0; + for (auto &Cand : LoopToCandidates[&L]) { + + SmallVector<PHINode *, 4> NewPHIs; + SSAUpdater SSA(&NewPHIs); + Value *InitVal = ConstantInt::get(Cand.first->getType(), 0); + + // If BFI is set, we will use it to guide the promotions. + if (BFI) { + auto *BB = Cand.first->getParent(); + auto InstrCount = BFI->getBlockProfileCount(BB); + if (!InstrCount) + continue; + auto PreheaderCount = BFI->getBlockProfileCount(L.getLoopPreheader()); + // If the average loop trip count is not greater than 1.5, we skip + // promotion. + if (PreheaderCount && + (PreheaderCount.getValue() * 3) >= (InstrCount.getValue() * 2)) + continue; + } + + PGOCounterPromoterHelper Promoter(Cand.first, Cand.second, SSA, InitVal, + L.getLoopPreheader(), ExitBlocks, + InsertPts, LoopToCandidates, LI); + Promoter.run(SmallVector<Instruction *, 2>({Cand.first, Cand.second})); + Promoted++; + if (Promoted >= MaxProm) + break; + + (*NumPromoted)++; + if (MaxNumOfPromotions != -1 && *NumPromoted >= MaxNumOfPromotions) + break; + } + + LLVM_DEBUG(dbgs() << Promoted << " counters promoted for loop (depth=" + << L.getLoopDepth() << ")\n"); + return Promoted != 0; + } + +private: + bool allowSpeculativeCounterPromotion(Loop *LP) { + SmallVector<BasicBlock *, 8> ExitingBlocks; + L.getExitingBlocks(ExitingBlocks); + // Not considierered speculative. + if (ExitingBlocks.size() == 1) + return true; + if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) + return false; + return true; + } + + // Check whether the loop satisfies the basic conditions needed to perform + // Counter Promotions. + bool isPromotionPossible(Loop *LP, + const SmallVectorImpl<BasicBlock *> &LoopExitBlocks) { + // We can't insert into a catchswitch. + if (llvm::any_of(LoopExitBlocks, [](BasicBlock *Exit) { + return isa<CatchSwitchInst>(Exit->getTerminator()); + })) + return false; + + if (!LP->hasDedicatedExits()) + return false; + + BasicBlock *PH = LP->getLoopPreheader(); + if (!PH) + return false; + + return true; + } + + // Returns the max number of Counter Promotions for LP. + unsigned getMaxNumOfPromotionsInLoop(Loop *LP) { + SmallVector<BasicBlock *, 8> LoopExitBlocks; + LP->getExitBlocks(LoopExitBlocks); + if (!isPromotionPossible(LP, LoopExitBlocks)) + return 0; + + SmallVector<BasicBlock *, 8> ExitingBlocks; + LP->getExitingBlocks(ExitingBlocks); + + // If BFI is set, we do more aggressive promotions based on BFI. + if (BFI) + return (unsigned)-1; + + // Not considierered speculative. + if (ExitingBlocks.size() == 1) + return MaxNumOfPromotionsPerLoop; + + if (ExitingBlocks.size() > SpeculativeCounterPromotionMaxExiting) + return 0; + + // Whether the target block is in a loop does not matter: + if (SpeculativeCounterPromotionToLoop) + return MaxNumOfPromotionsPerLoop; + + // Now check the target block: + unsigned MaxProm = MaxNumOfPromotionsPerLoop; + for (auto *TargetBlock : LoopExitBlocks) { + auto *TargetLoop = LI.getLoopFor(TargetBlock); + if (!TargetLoop) + continue; + unsigned MaxPromForTarget = getMaxNumOfPromotionsInLoop(TargetLoop); + unsigned PendingCandsInTarget = LoopToCandidates[TargetLoop].size(); + MaxProm = + std::min(MaxProm, std::max(MaxPromForTarget, PendingCandsInTarget) - + PendingCandsInTarget); + } + return MaxProm; + } + + DenseMap<Loop *, SmallVector<LoadStorePair, 8>> &LoopToCandidates; + SmallVector<BasicBlock *, 8> ExitBlocks; + SmallVector<Instruction *, 8> InsertPts; + Loop &L; + LoopInfo &LI; + BlockFrequencyInfo *BFI; +}; + enum class ValueProfilingCallType { // Individual values are tracked. Currently used for indiret call target // profiling. @@ -405,204 +405,204 @@ enum class ValueProfilingCallType { MemOp }; -} // end anonymous namespace - -PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { - FunctionAnalysisManager &FAM = - AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { - return FAM.getResult<TargetLibraryAnalysis>(F); - }; - if (!run(M, GetTLI)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} - -char InstrProfilingLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN( - InstrProfilingLegacyPass, "instrprof", - "Frontend instrumentation-based coverage lowering.", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END( - InstrProfilingLegacyPass, "instrprof", - "Frontend instrumentation-based coverage lowering.", false, false) - -ModulePass * -llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options, - bool IsCS) { - return new InstrProfilingLegacyPass(Options, IsCS); -} - -static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) { - InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr); - if (Inc) - return Inc; - return dyn_cast<InstrProfIncrementInst>(Instr); -} - -bool InstrProfiling::lowerIntrinsics(Function *F) { - bool MadeChange = false; - PromotionCandidates.clear(); - for (BasicBlock &BB : *F) { - for (auto I = BB.begin(), E = BB.end(); I != E;) { - auto Instr = I++; - InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr); - if (Inc) { - lowerIncrement(Inc); - MadeChange = true; - } else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) { - lowerValueProfileInst(Ind); - MadeChange = true; - } - } - } - - if (!MadeChange) - return false; - - promoteCounterLoadStores(F); - return true; -} - -bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { - if (RuntimeCounterRelocation.getNumOccurrences() > 0) - return RuntimeCounterRelocation; - - return TT.isOSFuchsia(); -} - -bool InstrProfiling::isCounterPromotionEnabled() const { - if (DoCounterPromotion.getNumOccurrences() > 0) - return DoCounterPromotion; - - return Options.DoCounterPromotion; -} - -void InstrProfiling::promoteCounterLoadStores(Function *F) { - if (!isCounterPromotionEnabled()) - return; - - DominatorTree DT(*F); - LoopInfo LI(DT); - DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; - - std::unique_ptr<BlockFrequencyInfo> BFI; - if (Options.UseBFIInPromotion) { - std::unique_ptr<BranchProbabilityInfo> BPI; - BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); - BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); - } - - for (const auto &LoadStore : PromotionCandidates) { - auto *CounterLoad = LoadStore.first; - auto *CounterStore = LoadStore.second; - BasicBlock *BB = CounterLoad->getParent(); - Loop *ParentLoop = LI.getLoopFor(BB); - if (!ParentLoop) - continue; - LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); - } - - SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); - - // Do a post-order traversal of the loops so that counter updates can be - // iteratively hoisted outside the loop nest. - for (auto *Loop : llvm::reverse(Loops)) { - PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); - Promoter.run(&TotalCountersPromoted); - } -} - -/// Check if the module contains uses of any profiling intrinsics. -static bool containsProfilingIntrinsics(Module &M) { - if (auto *F = M.getFunction( - Intrinsic::getName(llvm::Intrinsic::instrprof_increment))) - if (!F->use_empty()) - return true; - if (auto *F = M.getFunction( - Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step))) - if (!F->use_empty()) - return true; - if (auto *F = M.getFunction( - Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile))) - if (!F->use_empty()) - return true; - return false; -} - -bool InstrProfiling::run( - Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { - this->M = &M; - this->GetTLI = std::move(GetTLI); - NamesVar = nullptr; - NamesSize = 0; - ProfileDataMap.clear(); - UsedVars.clear(); - TT = Triple(M.getTargetTriple()); - - // Emit the runtime hook even if no counters are present. - bool MadeChange = emitRuntimeHook(); - - // Improve compile time by avoiding linear scans when there is no work. - GlobalVariable *CoverageNamesVar = - M.getNamedGlobal(getCoverageUnusedNamesVarName()); - if (!containsProfilingIntrinsics(M) && !CoverageNamesVar) - return MadeChange; - - // We did not know how many value sites there would be inside - // the instrumented function. This is counting the number of instrumented - // target value sites to enter it as field in the profile data variable. - for (Function &F : M) { - InstrProfIncrementInst *FirstProfIncInst = nullptr; - for (BasicBlock &BB : F) - for (auto I = BB.begin(), E = BB.end(); I != E; I++) - if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) - computeNumValueSiteCounts(Ind); - else if (FirstProfIncInst == nullptr) - FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I); - - // Value profiling intrinsic lowering requires per-function profile data - // variable to be created first. - if (FirstProfIncInst != nullptr) - static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst)); - } - - for (Function &F : M) - MadeChange |= lowerIntrinsics(&F); - - if (CoverageNamesVar) { - lowerCoverageData(CoverageNamesVar); - MadeChange = true; - } - - if (!MadeChange) - return false; - - emitVNodes(); - emitNameData(); - emitRegistration(); - emitUses(); - emitInitialization(); - return true; -} - +} // end anonymous namespace + +PreservedAnalyses InstrProfiling::run(Module &M, ModuleAnalysisManager &AM) { + FunctionAnalysisManager &FAM = + AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto GetTLI = [&FAM](Function &F) -> TargetLibraryInfo & { + return FAM.getResult<TargetLibraryAnalysis>(F); + }; + if (!run(M, GetTLI)) + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} + +char InstrProfilingLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN( + InstrProfilingLegacyPass, "instrprof", + "Frontend instrumentation-based coverage lowering.", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END( + InstrProfilingLegacyPass, "instrprof", + "Frontend instrumentation-based coverage lowering.", false, false) + +ModulePass * +llvm::createInstrProfilingLegacyPass(const InstrProfOptions &Options, + bool IsCS) { + return new InstrProfilingLegacyPass(Options, IsCS); +} + +static InstrProfIncrementInst *castToIncrementInst(Instruction *Instr) { + InstrProfIncrementInst *Inc = dyn_cast<InstrProfIncrementInstStep>(Instr); + if (Inc) + return Inc; + return dyn_cast<InstrProfIncrementInst>(Instr); +} + +bool InstrProfiling::lowerIntrinsics(Function *F) { + bool MadeChange = false; + PromotionCandidates.clear(); + for (BasicBlock &BB : *F) { + for (auto I = BB.begin(), E = BB.end(); I != E;) { + auto Instr = I++; + InstrProfIncrementInst *Inc = castToIncrementInst(&*Instr); + if (Inc) { + lowerIncrement(Inc); + MadeChange = true; + } else if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(Instr)) { + lowerValueProfileInst(Ind); + MadeChange = true; + } + } + } + + if (!MadeChange) + return false; + + promoteCounterLoadStores(F); + return true; +} + +bool InstrProfiling::isRuntimeCounterRelocationEnabled() const { + if (RuntimeCounterRelocation.getNumOccurrences() > 0) + return RuntimeCounterRelocation; + + return TT.isOSFuchsia(); +} + +bool InstrProfiling::isCounterPromotionEnabled() const { + if (DoCounterPromotion.getNumOccurrences() > 0) + return DoCounterPromotion; + + return Options.DoCounterPromotion; +} + +void InstrProfiling::promoteCounterLoadStores(Function *F) { + if (!isCounterPromotionEnabled()) + return; + + DominatorTree DT(*F); + LoopInfo LI(DT); + DenseMap<Loop *, SmallVector<LoadStorePair, 8>> LoopPromotionCandidates; + + std::unique_ptr<BlockFrequencyInfo> BFI; + if (Options.UseBFIInPromotion) { + std::unique_ptr<BranchProbabilityInfo> BPI; + BPI.reset(new BranchProbabilityInfo(*F, LI, &GetTLI(*F))); + BFI.reset(new BlockFrequencyInfo(*F, *BPI, LI)); + } + + for (const auto &LoadStore : PromotionCandidates) { + auto *CounterLoad = LoadStore.first; + auto *CounterStore = LoadStore.second; + BasicBlock *BB = CounterLoad->getParent(); + Loop *ParentLoop = LI.getLoopFor(BB); + if (!ParentLoop) + continue; + LoopPromotionCandidates[ParentLoop].emplace_back(CounterLoad, CounterStore); + } + + SmallVector<Loop *, 4> Loops = LI.getLoopsInPreorder(); + + // Do a post-order traversal of the loops so that counter updates can be + // iteratively hoisted outside the loop nest. + for (auto *Loop : llvm::reverse(Loops)) { + PGOCounterPromoter Promoter(LoopPromotionCandidates, *Loop, LI, BFI.get()); + Promoter.run(&TotalCountersPromoted); + } +} + +/// Check if the module contains uses of any profiling intrinsics. +static bool containsProfilingIntrinsics(Module &M) { + if (auto *F = M.getFunction( + Intrinsic::getName(llvm::Intrinsic::instrprof_increment))) + if (!F->use_empty()) + return true; + if (auto *F = M.getFunction( + Intrinsic::getName(llvm::Intrinsic::instrprof_increment_step))) + if (!F->use_empty()) + return true; + if (auto *F = M.getFunction( + Intrinsic::getName(llvm::Intrinsic::instrprof_value_profile))) + if (!F->use_empty()) + return true; + return false; +} + +bool InstrProfiling::run( + Module &M, std::function<const TargetLibraryInfo &(Function &F)> GetTLI) { + this->M = &M; + this->GetTLI = std::move(GetTLI); + NamesVar = nullptr; + NamesSize = 0; + ProfileDataMap.clear(); + UsedVars.clear(); + TT = Triple(M.getTargetTriple()); + + // Emit the runtime hook even if no counters are present. + bool MadeChange = emitRuntimeHook(); + + // Improve compile time by avoiding linear scans when there is no work. + GlobalVariable *CoverageNamesVar = + M.getNamedGlobal(getCoverageUnusedNamesVarName()); + if (!containsProfilingIntrinsics(M) && !CoverageNamesVar) + return MadeChange; + + // We did not know how many value sites there would be inside + // the instrumented function. This is counting the number of instrumented + // target value sites to enter it as field in the profile data variable. + for (Function &F : M) { + InstrProfIncrementInst *FirstProfIncInst = nullptr; + for (BasicBlock &BB : F) + for (auto I = BB.begin(), E = BB.end(); I != E; I++) + if (auto *Ind = dyn_cast<InstrProfValueProfileInst>(I)) + computeNumValueSiteCounts(Ind); + else if (FirstProfIncInst == nullptr) + FirstProfIncInst = dyn_cast<InstrProfIncrementInst>(I); + + // Value profiling intrinsic lowering requires per-function profile data + // variable to be created first. + if (FirstProfIncInst != nullptr) + static_cast<void>(getOrCreateRegionCounters(FirstProfIncInst)); + } + + for (Function &F : M) + MadeChange |= lowerIntrinsics(&F); + + if (CoverageNamesVar) { + lowerCoverageData(CoverageNamesVar); + MadeChange = true; + } + + if (!MadeChange) + return false; + + emitVNodes(); + emitNameData(); + emitRegistration(); + emitUses(); + emitInitialization(); + return true; +} + static FunctionCallee getOrInsertValueProfilingCall( Module &M, const TargetLibraryInfo &TLI, ValueProfilingCallType CallType = ValueProfilingCallType::Default) { - LLVMContext &Ctx = M.getContext(); - auto *ReturnTy = Type::getVoidTy(M.getContext()); - - AttributeList AL; - if (auto AK = TLI.getExtAttrForI32Param(false)) - AL = AL.addParamAttribute(M.getContext(), 2, AK); - + LLVMContext &Ctx = M.getContext(); + auto *ReturnTy = Type::getVoidTy(M.getContext()); + + AttributeList AL; + if (auto AK = TLI.getExtAttrForI32Param(false)) + AL = AL.addParamAttribute(M.getContext(), 2, AK); + assert((CallType == ValueProfilingCallType::Default || CallType == ValueProfilingCallType::MemOp) && "Must be Default or MemOp"); Type *ParamTypes[] = { -#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType -#include "llvm/ProfileData/InstrProfData.inc" +#define VALUE_PROF_FUNC_PARAM(ParamType, ParamName, ParamLLVMType) ParamLLVMType +#include "llvm/ProfileData/InstrProfData.inc" }; auto *ValueProfilingCallTy = FunctionType::get(ReturnTy, makeArrayRef(ParamTypes), false); @@ -610,501 +610,501 @@ static FunctionCallee getOrInsertValueProfilingCall( ? getInstrProfValueProfFuncName() : getInstrProfValueProfMemOpFuncName(); return M.getOrInsertFunction(FuncName, ValueProfilingCallTy, AL); -} - -void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { - GlobalVariable *Name = Ind->getName(); - uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); - uint64_t Index = Ind->getIndex()->getZExtValue(); - auto It = ProfileDataMap.find(Name); - if (It == ProfileDataMap.end()) { - PerFunctionProfileData PD; - PD.NumValueSites[ValueKind] = Index + 1; - ProfileDataMap[Name] = PD; - } else if (It->second.NumValueSites[ValueKind] <= Index) - It->second.NumValueSites[ValueKind] = Index + 1; -} - -void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { - GlobalVariable *Name = Ind->getName(); - auto It = ProfileDataMap.find(Name); - assert(It != ProfileDataMap.end() && It->second.DataVar && - "value profiling detected in function with no counter incerement"); - - GlobalVariable *DataVar = It->second.DataVar; - uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); - uint64_t Index = Ind->getIndex()->getZExtValue(); - for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) - Index += It->second.NumValueSites[Kind]; - - IRBuilder<> Builder(Ind); +} + +void InstrProfiling::computeNumValueSiteCounts(InstrProfValueProfileInst *Ind) { + GlobalVariable *Name = Ind->getName(); + uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); + uint64_t Index = Ind->getIndex()->getZExtValue(); + auto It = ProfileDataMap.find(Name); + if (It == ProfileDataMap.end()) { + PerFunctionProfileData PD; + PD.NumValueSites[ValueKind] = Index + 1; + ProfileDataMap[Name] = PD; + } else if (It->second.NumValueSites[ValueKind] <= Index) + It->second.NumValueSites[ValueKind] = Index + 1; +} + +void InstrProfiling::lowerValueProfileInst(InstrProfValueProfileInst *Ind) { + GlobalVariable *Name = Ind->getName(); + auto It = ProfileDataMap.find(Name); + assert(It != ProfileDataMap.end() && It->second.DataVar && + "value profiling detected in function with no counter incerement"); + + GlobalVariable *DataVar = It->second.DataVar; + uint64_t ValueKind = Ind->getValueKind()->getZExtValue(); + uint64_t Index = Ind->getIndex()->getZExtValue(); + for (uint32_t Kind = IPVK_First; Kind < ValueKind; ++Kind) + Index += It->second.NumValueSites[Kind]; + + IRBuilder<> Builder(Ind); bool IsMemOpSize = (Ind->getValueKind()->getZExtValue() == llvm::InstrProfValueKind::IPVK_MemOPSize); - CallInst *Call = nullptr; - auto *TLI = &GetTLI(*Ind->getFunction()); - - // To support value profiling calls within Windows exception handlers, funclet - // information contained within operand bundles needs to be copied over to - // the library call. This is required for the IR to be processed by the - // WinEHPrepare pass. - SmallVector<OperandBundleDef, 1> OpBundles; - Ind->getOperandBundlesAsDefs(OpBundles); + CallInst *Call = nullptr; + auto *TLI = &GetTLI(*Ind->getFunction()); + + // To support value profiling calls within Windows exception handlers, funclet + // information contained within operand bundles needs to be copied over to + // the library call. This is required for the IR to be processed by the + // WinEHPrepare pass. + SmallVector<OperandBundleDef, 1> OpBundles; + Ind->getOperandBundlesAsDefs(OpBundles); if (!IsMemOpSize) { - Value *Args[3] = {Ind->getTargetValue(), - Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), - Builder.getInt32(Index)}; - Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, - OpBundles); - } else { + Value *Args[3] = {Ind->getTargetValue(), + Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), + Builder.getInt32(Index)}; + Call = Builder.CreateCall(getOrInsertValueProfilingCall(*M, *TLI), Args, + OpBundles); + } else { Value *Args[3] = {Ind->getTargetValue(), Builder.CreateBitCast(DataVar, Builder.getInt8PtrTy()), Builder.getInt32(Index)}; Call = Builder.CreateCall( getOrInsertValueProfilingCall(*M, *TLI, ValueProfilingCallType::MemOp), Args, OpBundles); - } - if (auto AK = TLI->getExtAttrForI32Param(false)) - Call->addParamAttr(2, AK); - Ind->replaceAllUsesWith(Call); - Ind->eraseFromParent(); -} - -void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { - GlobalVariable *Counters = getOrCreateRegionCounters(Inc); - - IRBuilder<> Builder(Inc); - uint64_t Index = Inc->getIndex()->getZExtValue(); - Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters->getValueType(), - Counters, 0, Index); - - if (isRuntimeCounterRelocationEnabled()) { - Type *Int64Ty = Type::getInt64Ty(M->getContext()); - Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext()); - Function *Fn = Inc->getParent()->getParent(); - Instruction &I = Fn->getEntryBlock().front(); - LoadInst *LI = dyn_cast<LoadInst>(&I); - if (!LI) { - IRBuilder<> Builder(&I); - Type *Int64Ty = Type::getInt64Ty(M->getContext()); - GlobalVariable *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName()); - if (!Bias) { - Bias = new GlobalVariable(*M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, - Constant::getNullValue(Int64Ty), - getInstrProfCounterBiasVarName()); - Bias->setVisibility(GlobalVariable::HiddenVisibility); - } - LI = Builder.CreateLoad(Int64Ty, Bias); - } - auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI); - Addr = Builder.CreateIntToPtr(Add, Int64PtrTy); - } - - if (Options.Atomic || AtomicCounterUpdateAll || - (Index == 0 && AtomicFirstCounter)) { - Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), - AtomicOrdering::Monotonic); - } else { - Value *IncStep = Inc->getStep(); - Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); - auto *Count = Builder.CreateAdd(Load, Inc->getStep()); - auto *Store = Builder.CreateStore(Count, Addr); - if (isCounterPromotionEnabled()) - PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); - } - Inc->eraseFromParent(); -} - -void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { - ConstantArray *Names = - cast<ConstantArray>(CoverageNamesVar->getInitializer()); - for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { - Constant *NC = Names->getOperand(I); - Value *V = NC->stripPointerCasts(); - assert(isa<GlobalVariable>(V) && "Missing reference to function name"); - GlobalVariable *Name = cast<GlobalVariable>(V); - - Name->setLinkage(GlobalValue::PrivateLinkage); - ReferencedNames.push_back(Name); - NC->dropAllReferences(); - } - CoverageNamesVar->eraseFromParent(); -} - -/// Get the name of a profiling variable for a particular function. -static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) { - StringRef NamePrefix = getInstrProfNameVarPrefix(); - StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); - Function *F = Inc->getParent()->getParent(); - Module *M = F->getParent(); - if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || - !canRenameComdatFunc(*F)) - return (Prefix + Name).str(); - uint64_t FuncHash = Inc->getHash()->getZExtValue(); - SmallVector<char, 24> HashPostfix; - if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) - return (Prefix + Name).str(); - return (Prefix + Name + "." + Twine(FuncHash)).str(); -} - -static inline bool shouldRecordFunctionAddr(Function *F) { - // Check the linkage - bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); - if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && - !HasAvailableExternallyLinkage) - return true; - - // A function marked 'alwaysinline' with available_externally linkage can't - // have its address taken. Doing so would create an undefined external ref to - // the function, which would fail to link. - if (HasAvailableExternallyLinkage && - F->hasFnAttribute(Attribute::AlwaysInline)) - return false; - - // Prohibit function address recording if the function is both internal and - // COMDAT. This avoids the profile data variable referencing internal symbols - // in COMDAT. - if (F->hasLocalLinkage() && F->hasComdat()) - return false; - - // Check uses of this function for other than direct calls or invokes to it. - // Inline virtual functions have linkeOnceODR linkage. When a key method - // exists, the vtable will only be emitted in the TU where the key method - // is defined. In a TU where vtable is not available, the function won't - // be 'addresstaken'. If its address is not recorded here, the profile data - // with missing address may be picked by the linker leading to missing - // indirect call target info. - return F->hasAddressTaken() || F->hasLinkOnceLinkage(); -} - -static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { - // Don't do this for Darwin. compiler-rt uses linker magic. - if (TT.isOSDarwin()) - return false; - // Use linker script magic to get data/cnts/name start/end. - if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || - TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() || - TT.isOSWindows()) - return false; - - return true; -} - -GlobalVariable * -InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) { - GlobalVariable *NamePtr = Inc->getName(); - auto It = ProfileDataMap.find(NamePtr); - PerFunctionProfileData PD; - if (It != ProfileDataMap.end()) { - if (It->second.RegionCounters) - return It->second.RegionCounters; - PD = It->second; - } - - // Match the linkage and visibility of the name global. COFF supports using - // comdats with internal symbols, so do that if we can. - Function *Fn = Inc->getParent()->getParent(); - GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); - GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); - if (TT.isOSBinFormatCOFF()) { - Linkage = GlobalValue::InternalLinkage; - Visibility = GlobalValue::DefaultVisibility; - } - - // Move the name variable to the right section. Place them in a COMDAT group - // if the associated function is a COMDAT. This will make sure that only one - // copy of counters of the COMDAT function will be emitted after linking. Keep - // in mind that this pass may run before the inliner, so we need to create a - // new comdat group for the counters and profiling data. If we use the comdat - // of the parent function, that will result in relocations against discarded - // sections. - bool NeedComdat = needsComdatForCounter(*Fn, *M); - if (NeedComdat) { - if (TT.isOSBinFormatCOFF()) { - // For COFF, put the counters, data, and values each into their own - // comdats. We can't use a group because the Visual C++ linker will - // report duplicate symbol errors if there are multiple external symbols - // with the same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. - Linkage = GlobalValue::LinkOnceODRLinkage; - Visibility = GlobalValue::HiddenVisibility; - } - } + } + if (auto AK = TLI->getExtAttrForI32Param(false)) + Call->addParamAttr(2, AK); + Ind->replaceAllUsesWith(Call); + Ind->eraseFromParent(); +} + +void InstrProfiling::lowerIncrement(InstrProfIncrementInst *Inc) { + GlobalVariable *Counters = getOrCreateRegionCounters(Inc); + + IRBuilder<> Builder(Inc); + uint64_t Index = Inc->getIndex()->getZExtValue(); + Value *Addr = Builder.CreateConstInBoundsGEP2_64(Counters->getValueType(), + Counters, 0, Index); + + if (isRuntimeCounterRelocationEnabled()) { + Type *Int64Ty = Type::getInt64Ty(M->getContext()); + Type *Int64PtrTy = Type::getInt64PtrTy(M->getContext()); + Function *Fn = Inc->getParent()->getParent(); + Instruction &I = Fn->getEntryBlock().front(); + LoadInst *LI = dyn_cast<LoadInst>(&I); + if (!LI) { + IRBuilder<> Builder(&I); + Type *Int64Ty = Type::getInt64Ty(M->getContext()); + GlobalVariable *Bias = M->getGlobalVariable(getInstrProfCounterBiasVarName()); + if (!Bias) { + Bias = new GlobalVariable(*M, Int64Ty, false, GlobalValue::LinkOnceODRLinkage, + Constant::getNullValue(Int64Ty), + getInstrProfCounterBiasVarName()); + Bias->setVisibility(GlobalVariable::HiddenVisibility); + } + LI = Builder.CreateLoad(Int64Ty, Bias); + } + auto *Add = Builder.CreateAdd(Builder.CreatePtrToInt(Addr, Int64Ty), LI); + Addr = Builder.CreateIntToPtr(Add, Int64PtrTy); + } + + if (Options.Atomic || AtomicCounterUpdateAll || + (Index == 0 && AtomicFirstCounter)) { + Builder.CreateAtomicRMW(AtomicRMWInst::Add, Addr, Inc->getStep(), + AtomicOrdering::Monotonic); + } else { + Value *IncStep = Inc->getStep(); + Value *Load = Builder.CreateLoad(IncStep->getType(), Addr, "pgocount"); + auto *Count = Builder.CreateAdd(Load, Inc->getStep()); + auto *Store = Builder.CreateStore(Count, Addr); + if (isCounterPromotionEnabled()) + PromotionCandidates.emplace_back(cast<Instruction>(Load), Store); + } + Inc->eraseFromParent(); +} + +void InstrProfiling::lowerCoverageData(GlobalVariable *CoverageNamesVar) { + ConstantArray *Names = + cast<ConstantArray>(CoverageNamesVar->getInitializer()); + for (unsigned I = 0, E = Names->getNumOperands(); I < E; ++I) { + Constant *NC = Names->getOperand(I); + Value *V = NC->stripPointerCasts(); + assert(isa<GlobalVariable>(V) && "Missing reference to function name"); + GlobalVariable *Name = cast<GlobalVariable>(V); + + Name->setLinkage(GlobalValue::PrivateLinkage); + ReferencedNames.push_back(Name); + NC->dropAllReferences(); + } + CoverageNamesVar->eraseFromParent(); +} + +/// Get the name of a profiling variable for a particular function. +static std::string getVarName(InstrProfIncrementInst *Inc, StringRef Prefix) { + StringRef NamePrefix = getInstrProfNameVarPrefix(); + StringRef Name = Inc->getName()->getName().substr(NamePrefix.size()); + Function *F = Inc->getParent()->getParent(); + Module *M = F->getParent(); + if (!DoHashBasedCounterSplit || !isIRPGOFlagSet(M) || + !canRenameComdatFunc(*F)) + return (Prefix + Name).str(); + uint64_t FuncHash = Inc->getHash()->getZExtValue(); + SmallVector<char, 24> HashPostfix; + if (Name.endswith((Twine(".") + Twine(FuncHash)).toStringRef(HashPostfix))) + return (Prefix + Name).str(); + return (Prefix + Name + "." + Twine(FuncHash)).str(); +} + +static inline bool shouldRecordFunctionAddr(Function *F) { + // Check the linkage + bool HasAvailableExternallyLinkage = F->hasAvailableExternallyLinkage(); + if (!F->hasLinkOnceLinkage() && !F->hasLocalLinkage() && + !HasAvailableExternallyLinkage) + return true; + + // A function marked 'alwaysinline' with available_externally linkage can't + // have its address taken. Doing so would create an undefined external ref to + // the function, which would fail to link. + if (HasAvailableExternallyLinkage && + F->hasFnAttribute(Attribute::AlwaysInline)) + return false; + + // Prohibit function address recording if the function is both internal and + // COMDAT. This avoids the profile data variable referencing internal symbols + // in COMDAT. + if (F->hasLocalLinkage() && F->hasComdat()) + return false; + + // Check uses of this function for other than direct calls or invokes to it. + // Inline virtual functions have linkeOnceODR linkage. When a key method + // exists, the vtable will only be emitted in the TU where the key method + // is defined. In a TU where vtable is not available, the function won't + // be 'addresstaken'. If its address is not recorded here, the profile data + // with missing address may be picked by the linker leading to missing + // indirect call target info. + return F->hasAddressTaken() || F->hasLinkOnceLinkage(); +} + +static bool needsRuntimeRegistrationOfSectionRange(const Triple &TT) { + // Don't do this for Darwin. compiler-rt uses linker magic. + if (TT.isOSDarwin()) + return false; + // Use linker script magic to get data/cnts/name start/end. + if (TT.isOSLinux() || TT.isOSFreeBSD() || TT.isOSNetBSD() || + TT.isOSSolaris() || TT.isOSFuchsia() || TT.isPS4CPU() || + TT.isOSWindows()) + return false; + + return true; +} + +GlobalVariable * +InstrProfiling::getOrCreateRegionCounters(InstrProfIncrementInst *Inc) { + GlobalVariable *NamePtr = Inc->getName(); + auto It = ProfileDataMap.find(NamePtr); + PerFunctionProfileData PD; + if (It != ProfileDataMap.end()) { + if (It->second.RegionCounters) + return It->second.RegionCounters; + PD = It->second; + } + + // Match the linkage and visibility of the name global. COFF supports using + // comdats with internal symbols, so do that if we can. + Function *Fn = Inc->getParent()->getParent(); + GlobalValue::LinkageTypes Linkage = NamePtr->getLinkage(); + GlobalValue::VisibilityTypes Visibility = NamePtr->getVisibility(); + if (TT.isOSBinFormatCOFF()) { + Linkage = GlobalValue::InternalLinkage; + Visibility = GlobalValue::DefaultVisibility; + } + + // Move the name variable to the right section. Place them in a COMDAT group + // if the associated function is a COMDAT. This will make sure that only one + // copy of counters of the COMDAT function will be emitted after linking. Keep + // in mind that this pass may run before the inliner, so we need to create a + // new comdat group for the counters and profiling data. If we use the comdat + // of the parent function, that will result in relocations against discarded + // sections. + bool NeedComdat = needsComdatForCounter(*Fn, *M); + if (NeedComdat) { + if (TT.isOSBinFormatCOFF()) { + // For COFF, put the counters, data, and values each into their own + // comdats. We can't use a group because the Visual C++ linker will + // report duplicate symbol errors if there are multiple external symbols + // with the same name marked IMAGE_COMDAT_SELECT_ASSOCIATIVE. + Linkage = GlobalValue::LinkOnceODRLinkage; + Visibility = GlobalValue::HiddenVisibility; + } + } std::string DataVarName = getVarName(Inc, getInstrProfDataVarPrefix()); - auto MaybeSetComdat = [=](GlobalVariable *GV) { - if (NeedComdat) + auto MaybeSetComdat = [=](GlobalVariable *GV) { + if (NeedComdat) GV->setComdat(M->getOrInsertComdat(TT.isOSBinFormatCOFF() ? GV->getName() : DataVarName)); - }; - - uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); - LLVMContext &Ctx = M->getContext(); - ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); - - // Create the counters variable. - auto *CounterPtr = - new GlobalVariable(*M, CounterTy, false, Linkage, - Constant::getNullValue(CounterTy), - getVarName(Inc, getInstrProfCountersVarPrefix())); - CounterPtr->setVisibility(Visibility); - CounterPtr->setSection( - getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); - CounterPtr->setAlignment(Align(8)); - MaybeSetComdat(CounterPtr); - CounterPtr->setLinkage(Linkage); - - auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); - // Allocate statically the array of pointers to value profile nodes for - // the current function. - Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); - if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(TT)) { - uint64_t NS = 0; - for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) - NS += PD.NumValueSites[Kind]; - if (NS) { - ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); - - auto *ValuesVar = - new GlobalVariable(*M, ValuesTy, false, Linkage, - Constant::getNullValue(ValuesTy), - getVarName(Inc, getInstrProfValuesVarPrefix())); - ValuesVar->setVisibility(Visibility); - ValuesVar->setSection( - getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); - ValuesVar->setAlignment(Align(8)); - MaybeSetComdat(ValuesVar); - ValuesPtrExpr = - ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); - } - } - - // Create data variable. - auto *Int16Ty = Type::getInt16Ty(Ctx); - auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); - Type *DataTypes[] = { -#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, -#include "llvm/ProfileData/InstrProfData.inc" - }; - auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes)); - - Constant *FunctionAddr = shouldRecordFunctionAddr(Fn) - ? ConstantExpr::getBitCast(Fn, Int8PtrTy) - : ConstantPointerNull::get(Int8PtrTy); - - Constant *Int16ArrayVals[IPVK_Last + 1]; - for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) - Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); - - Constant *DataVals[] = { -#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, -#include "llvm/ProfileData/InstrProfData.inc" - }; + }; + + uint64_t NumCounters = Inc->getNumCounters()->getZExtValue(); + LLVMContext &Ctx = M->getContext(); + ArrayType *CounterTy = ArrayType::get(Type::getInt64Ty(Ctx), NumCounters); + + // Create the counters variable. + auto *CounterPtr = + new GlobalVariable(*M, CounterTy, false, Linkage, + Constant::getNullValue(CounterTy), + getVarName(Inc, getInstrProfCountersVarPrefix())); + CounterPtr->setVisibility(Visibility); + CounterPtr->setSection( + getInstrProfSectionName(IPSK_cnts, TT.getObjectFormat())); + CounterPtr->setAlignment(Align(8)); + MaybeSetComdat(CounterPtr); + CounterPtr->setLinkage(Linkage); + + auto *Int8PtrTy = Type::getInt8PtrTy(Ctx); + // Allocate statically the array of pointers to value profile nodes for + // the current function. + Constant *ValuesPtrExpr = ConstantPointerNull::get(Int8PtrTy); + if (ValueProfileStaticAlloc && !needsRuntimeRegistrationOfSectionRange(TT)) { + uint64_t NS = 0; + for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) + NS += PD.NumValueSites[Kind]; + if (NS) { + ArrayType *ValuesTy = ArrayType::get(Type::getInt64Ty(Ctx), NS); + + auto *ValuesVar = + new GlobalVariable(*M, ValuesTy, false, Linkage, + Constant::getNullValue(ValuesTy), + getVarName(Inc, getInstrProfValuesVarPrefix())); + ValuesVar->setVisibility(Visibility); + ValuesVar->setSection( + getInstrProfSectionName(IPSK_vals, TT.getObjectFormat())); + ValuesVar->setAlignment(Align(8)); + MaybeSetComdat(ValuesVar); + ValuesPtrExpr = + ConstantExpr::getBitCast(ValuesVar, Type::getInt8PtrTy(Ctx)); + } + } + + // Create data variable. + auto *Int16Ty = Type::getInt16Ty(Ctx); + auto *Int16ArrayTy = ArrayType::get(Int16Ty, IPVK_Last + 1); + Type *DataTypes[] = { +#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) LLVMType, +#include "llvm/ProfileData/InstrProfData.inc" + }; + auto *DataTy = StructType::get(Ctx, makeArrayRef(DataTypes)); + + Constant *FunctionAddr = shouldRecordFunctionAddr(Fn) + ? ConstantExpr::getBitCast(Fn, Int8PtrTy) + : ConstantPointerNull::get(Int8PtrTy); + + Constant *Int16ArrayVals[IPVK_Last + 1]; + for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) + Int16ArrayVals[Kind] = ConstantInt::get(Int16Ty, PD.NumValueSites[Kind]); + + Constant *DataVals[] = { +#define INSTR_PROF_DATA(Type, LLVMType, Name, Init) Init, +#include "llvm/ProfileData/InstrProfData.inc" + }; auto *Data = new GlobalVariable(*M, DataTy, false, Linkage, ConstantStruct::get(DataTy, DataVals), DataVarName); - Data->setVisibility(Visibility); - Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); - Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); - MaybeSetComdat(Data); - Data->setLinkage(Linkage); - - PD.RegionCounters = CounterPtr; - PD.DataVar = Data; - ProfileDataMap[NamePtr] = PD; - - // Mark the data variable as used so that it isn't stripped out. - UsedVars.push_back(Data); - // Now that the linkage set by the FE has been passed to the data and counter - // variables, reset Name variable's linkage and visibility to private so that - // it can be removed later by the compiler. - NamePtr->setLinkage(GlobalValue::PrivateLinkage); - // Collect the referenced names to be used by emitNameData. - ReferencedNames.push_back(NamePtr); - - return CounterPtr; -} - -void InstrProfiling::emitVNodes() { - if (!ValueProfileStaticAlloc) - return; - - // For now only support this on platforms that do - // not require runtime registration to discover - // named section start/end. - if (needsRuntimeRegistrationOfSectionRange(TT)) - return; - - size_t TotalNS = 0; - for (auto &PD : ProfileDataMap) { - for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) - TotalNS += PD.second.NumValueSites[Kind]; - } - - if (!TotalNS) - return; - - uint64_t NumCounters = TotalNS * NumCountersPerValueSite; -// Heuristic for small programs with very few total value sites. -// The default value of vp-counters-per-site is chosen based on -// the observation that large apps usually have a low percentage -// of value sites that actually have any profile data, and thus -// the average number of counters per site is low. For small -// apps with very few sites, this may not be true. Bump up the -// number of counters in this case. -#define INSTR_PROF_MIN_VAL_COUNTS 10 - if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) - NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); - - auto &Ctx = M->getContext(); - Type *VNodeTypes[] = { -#define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, -#include "llvm/ProfileData/InstrProfData.inc" - }; - auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes)); - - ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); - auto *VNodesVar = new GlobalVariable( - *M, VNodesTy, false, GlobalValue::PrivateLinkage, - Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); - VNodesVar->setSection( - getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); - UsedVars.push_back(VNodesVar); -} - -void InstrProfiling::emitNameData() { - std::string UncompressedData; - - if (ReferencedNames.empty()) - return; - - std::string CompressedNameStr; - if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, - DoInstrProfNameCompression)) { - report_fatal_error(toString(std::move(E)), false); - } - - auto &Ctx = M->getContext(); - auto *NamesVal = ConstantDataArray::getString( - Ctx, StringRef(CompressedNameStr), false); - NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, - GlobalValue::PrivateLinkage, NamesVal, - getInstrProfNamesVarName()); - NamesSize = CompressedNameStr.size(); - NamesVar->setSection( - getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); - // On COFF, it's important to reduce the alignment down to 1 to prevent the - // linker from inserting padding before the start of the names section or - // between names entries. - NamesVar->setAlignment(Align(1)); - UsedVars.push_back(NamesVar); - - for (auto *NamePtr : ReferencedNames) - NamePtr->eraseFromParent(); -} - -void InstrProfiling::emitRegistration() { - if (!needsRuntimeRegistrationOfSectionRange(TT)) - return; - - // Construct the function. - auto *VoidTy = Type::getVoidTy(M->getContext()); - auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); - auto *Int64Ty = Type::getInt64Ty(M->getContext()); - auto *RegisterFTy = FunctionType::get(VoidTy, false); - auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, - getInstrProfRegFuncsName(), M); - RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - if (Options.NoRedZone) - RegisterF->addFnAttr(Attribute::NoRedZone); - - auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); - auto *RuntimeRegisterF = - Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, - getInstrProfRegFuncName(), M); - - IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); - for (Value *Data : UsedVars) - if (Data != NamesVar && !isa<Function>(Data)) - IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); - - if (NamesVar) { - Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; - auto *NamesRegisterTy = - FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false); - auto *NamesRegisterF = - Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, - getInstrProfNamesRegFuncName(), M); - IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), - IRB.getInt64(NamesSize)}); - } - - IRB.CreateRetVoid(); -} - -bool InstrProfiling::emitRuntimeHook() { - // We expect the linker to be invoked with -u<hook_var> flag for Linux or - // Fuchsia, in which case there is no need to emit the user function. - if (TT.isOSLinux() || TT.isOSFuchsia()) - return false; - - // If the module's provided its own runtime, we don't need to do anything. - if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) - return false; - - // Declare an external variable that will pull in the runtime initialization. - auto *Int32Ty = Type::getInt32Ty(M->getContext()); - auto *Var = - new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, - nullptr, getInstrProfRuntimeHookVarName()); - - // Make a function that uses it. - auto *User = Function::Create(FunctionType::get(Int32Ty, false), - GlobalValue::LinkOnceODRLinkage, - getInstrProfRuntimeHookVarUseFuncName(), M); - User->addFnAttr(Attribute::NoInline); - if (Options.NoRedZone) - User->addFnAttr(Attribute::NoRedZone); - User->setVisibility(GlobalValue::HiddenVisibility); - if (TT.supportsCOMDAT()) - User->setComdat(M->getOrInsertComdat(User->getName())); - - IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); - auto *Load = IRB.CreateLoad(Int32Ty, Var); - IRB.CreateRet(Load); - - // Mark the user variable as used so that it isn't stripped out. - UsedVars.push_back(User); - return true; -} - -void InstrProfiling::emitUses() { - if (!UsedVars.empty()) - appendToUsed(*M, UsedVars); -} - -void InstrProfiling::emitInitialization() { - // Create ProfileFileName variable. Don't don't this for the - // context-sensitive instrumentation lowering: This lowering is after - // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should - // have already create the variable before LTO/ThinLTO linking. - if (!IsCS) - createProfileFileNameVar(*M, Options.InstrProfileOutput); - Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); - if (!RegisterF) - return; - - // Create the initialization function. - auto *VoidTy = Type::getVoidTy(M->getContext()); - auto *F = Function::Create(FunctionType::get(VoidTy, false), - GlobalValue::InternalLinkage, - getInstrProfInitFuncName(), M); - F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - F->addFnAttr(Attribute::NoInline); - if (Options.NoRedZone) - F->addFnAttr(Attribute::NoRedZone); - - // Add the basic block and the necessary calls. - IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); - IRB.CreateCall(RegisterF, {}); - IRB.CreateRetVoid(); - - appendToGlobalCtors(*M, F, 0); -} + Data->setVisibility(Visibility); + Data->setSection(getInstrProfSectionName(IPSK_data, TT.getObjectFormat())); + Data->setAlignment(Align(INSTR_PROF_DATA_ALIGNMENT)); + MaybeSetComdat(Data); + Data->setLinkage(Linkage); + + PD.RegionCounters = CounterPtr; + PD.DataVar = Data; + ProfileDataMap[NamePtr] = PD; + + // Mark the data variable as used so that it isn't stripped out. + UsedVars.push_back(Data); + // Now that the linkage set by the FE has been passed to the data and counter + // variables, reset Name variable's linkage and visibility to private so that + // it can be removed later by the compiler. + NamePtr->setLinkage(GlobalValue::PrivateLinkage); + // Collect the referenced names to be used by emitNameData. + ReferencedNames.push_back(NamePtr); + + return CounterPtr; +} + +void InstrProfiling::emitVNodes() { + if (!ValueProfileStaticAlloc) + return; + + // For now only support this on platforms that do + // not require runtime registration to discover + // named section start/end. + if (needsRuntimeRegistrationOfSectionRange(TT)) + return; + + size_t TotalNS = 0; + for (auto &PD : ProfileDataMap) { + for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) + TotalNS += PD.second.NumValueSites[Kind]; + } + + if (!TotalNS) + return; + + uint64_t NumCounters = TotalNS * NumCountersPerValueSite; +// Heuristic for small programs with very few total value sites. +// The default value of vp-counters-per-site is chosen based on +// the observation that large apps usually have a low percentage +// of value sites that actually have any profile data, and thus +// the average number of counters per site is low. For small +// apps with very few sites, this may not be true. Bump up the +// number of counters in this case. +#define INSTR_PROF_MIN_VAL_COUNTS 10 + if (NumCounters < INSTR_PROF_MIN_VAL_COUNTS) + NumCounters = std::max(INSTR_PROF_MIN_VAL_COUNTS, (int)NumCounters * 2); + + auto &Ctx = M->getContext(); + Type *VNodeTypes[] = { +#define INSTR_PROF_VALUE_NODE(Type, LLVMType, Name, Init) LLVMType, +#include "llvm/ProfileData/InstrProfData.inc" + }; + auto *VNodeTy = StructType::get(Ctx, makeArrayRef(VNodeTypes)); + + ArrayType *VNodesTy = ArrayType::get(VNodeTy, NumCounters); + auto *VNodesVar = new GlobalVariable( + *M, VNodesTy, false, GlobalValue::PrivateLinkage, + Constant::getNullValue(VNodesTy), getInstrProfVNodesVarName()); + VNodesVar->setSection( + getInstrProfSectionName(IPSK_vnodes, TT.getObjectFormat())); + UsedVars.push_back(VNodesVar); +} + +void InstrProfiling::emitNameData() { + std::string UncompressedData; + + if (ReferencedNames.empty()) + return; + + std::string CompressedNameStr; + if (Error E = collectPGOFuncNameStrings(ReferencedNames, CompressedNameStr, + DoInstrProfNameCompression)) { + report_fatal_error(toString(std::move(E)), false); + } + + auto &Ctx = M->getContext(); + auto *NamesVal = ConstantDataArray::getString( + Ctx, StringRef(CompressedNameStr), false); + NamesVar = new GlobalVariable(*M, NamesVal->getType(), true, + GlobalValue::PrivateLinkage, NamesVal, + getInstrProfNamesVarName()); + NamesSize = CompressedNameStr.size(); + NamesVar->setSection( + getInstrProfSectionName(IPSK_name, TT.getObjectFormat())); + // On COFF, it's important to reduce the alignment down to 1 to prevent the + // linker from inserting padding before the start of the names section or + // between names entries. + NamesVar->setAlignment(Align(1)); + UsedVars.push_back(NamesVar); + + for (auto *NamePtr : ReferencedNames) + NamePtr->eraseFromParent(); +} + +void InstrProfiling::emitRegistration() { + if (!needsRuntimeRegistrationOfSectionRange(TT)) + return; + + // Construct the function. + auto *VoidTy = Type::getVoidTy(M->getContext()); + auto *VoidPtrTy = Type::getInt8PtrTy(M->getContext()); + auto *Int64Ty = Type::getInt64Ty(M->getContext()); + auto *RegisterFTy = FunctionType::get(VoidTy, false); + auto *RegisterF = Function::Create(RegisterFTy, GlobalValue::InternalLinkage, + getInstrProfRegFuncsName(), M); + RegisterF->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + if (Options.NoRedZone) + RegisterF->addFnAttr(Attribute::NoRedZone); + + auto *RuntimeRegisterTy = FunctionType::get(VoidTy, VoidPtrTy, false); + auto *RuntimeRegisterF = + Function::Create(RuntimeRegisterTy, GlobalVariable::ExternalLinkage, + getInstrProfRegFuncName(), M); + + IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", RegisterF)); + for (Value *Data : UsedVars) + if (Data != NamesVar && !isa<Function>(Data)) + IRB.CreateCall(RuntimeRegisterF, IRB.CreateBitCast(Data, VoidPtrTy)); + + if (NamesVar) { + Type *ParamTypes[] = {VoidPtrTy, Int64Ty}; + auto *NamesRegisterTy = + FunctionType::get(VoidTy, makeArrayRef(ParamTypes), false); + auto *NamesRegisterF = + Function::Create(NamesRegisterTy, GlobalVariable::ExternalLinkage, + getInstrProfNamesRegFuncName(), M); + IRB.CreateCall(NamesRegisterF, {IRB.CreateBitCast(NamesVar, VoidPtrTy), + IRB.getInt64(NamesSize)}); + } + + IRB.CreateRetVoid(); +} + +bool InstrProfiling::emitRuntimeHook() { + // We expect the linker to be invoked with -u<hook_var> flag for Linux or + // Fuchsia, in which case there is no need to emit the user function. + if (TT.isOSLinux() || TT.isOSFuchsia()) + return false; + + // If the module's provided its own runtime, we don't need to do anything. + if (M->getGlobalVariable(getInstrProfRuntimeHookVarName())) + return false; + + // Declare an external variable that will pull in the runtime initialization. + auto *Int32Ty = Type::getInt32Ty(M->getContext()); + auto *Var = + new GlobalVariable(*M, Int32Ty, false, GlobalValue::ExternalLinkage, + nullptr, getInstrProfRuntimeHookVarName()); + + // Make a function that uses it. + auto *User = Function::Create(FunctionType::get(Int32Ty, false), + GlobalValue::LinkOnceODRLinkage, + getInstrProfRuntimeHookVarUseFuncName(), M); + User->addFnAttr(Attribute::NoInline); + if (Options.NoRedZone) + User->addFnAttr(Attribute::NoRedZone); + User->setVisibility(GlobalValue::HiddenVisibility); + if (TT.supportsCOMDAT()) + User->setComdat(M->getOrInsertComdat(User->getName())); + + IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", User)); + auto *Load = IRB.CreateLoad(Int32Ty, Var); + IRB.CreateRet(Load); + + // Mark the user variable as used so that it isn't stripped out. + UsedVars.push_back(User); + return true; +} + +void InstrProfiling::emitUses() { + if (!UsedVars.empty()) + appendToUsed(*M, UsedVars); +} + +void InstrProfiling::emitInitialization() { + // Create ProfileFileName variable. Don't don't this for the + // context-sensitive instrumentation lowering: This lowering is after + // LTO/ThinLTO linking. Pass PGOInstrumentationGenCreateVar should + // have already create the variable before LTO/ThinLTO linking. + if (!IsCS) + createProfileFileNameVar(*M, Options.InstrProfileOutput); + Function *RegisterF = M->getFunction(getInstrProfRegFuncsName()); + if (!RegisterF) + return; + + // Create the initialization function. + auto *VoidTy = Type::getVoidTy(M->getContext()); + auto *F = Function::Create(FunctionType::get(VoidTy, false), + GlobalValue::InternalLinkage, + getInstrProfInitFuncName(), M); + F->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + F->addFnAttr(Attribute::NoInline); + if (Options.NoRedZone) + F->addFnAttr(Attribute::NoRedZone); + + // Add the basic block and the necessary calls. + IRBuilder<> IRB(BasicBlock::Create(M->getContext(), "", F)); + IRB.CreateCall(RegisterF, {}); + IRB.CreateRetVoid(); + + appendToGlobalCtors(*M, F, 0); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/Instrumentation.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/Instrumentation.cpp index 08137cf836..cfdf3cad97 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/Instrumentation.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/Instrumentation.cpp @@ -1,131 +1,131 @@ -//===-- Instrumentation.cpp - TransformUtils Infrastructure ---------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file defines the common initialization infrastructure for the -// Instrumentation library. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation.h" -#include "llvm-c/Initialization.h" -#include "llvm/ADT/Triple.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Module.h" -#include "llvm/InitializePasses.h" -#include "llvm/PassRegistry.h" - -using namespace llvm; - -/// Moves I before IP. Returns new insert point. -static BasicBlock::iterator moveBeforeInsertPoint(BasicBlock::iterator I, BasicBlock::iterator IP) { - // If I is IP, move the insert point down. - if (I == IP) { - ++IP; - } else { - // Otherwise, move I before IP and return IP. - I->moveBefore(&*IP); - } - return IP; -} - -/// Instrumentation passes often insert conditional checks into entry blocks. -/// Call this function before splitting the entry block to move instructions -/// that must remain in the entry block up before the split point. Static -/// allocas and llvm.localescape calls, for example, must remain in the entry -/// block. -BasicBlock::iterator llvm::PrepareToSplitEntryBlock(BasicBlock &BB, - BasicBlock::iterator IP) { - assert(&BB.getParent()->getEntryBlock() == &BB); - for (auto I = IP, E = BB.end(); I != E; ++I) { - bool KeepInEntry = false; - if (auto *AI = dyn_cast<AllocaInst>(I)) { - if (AI->isStaticAlloca()) - KeepInEntry = true; - } else if (auto *II = dyn_cast<IntrinsicInst>(I)) { - if (II->getIntrinsicID() == llvm::Intrinsic::localescape) - KeepInEntry = true; - } - if (KeepInEntry) - IP = moveBeforeInsertPoint(I, IP); - } - return IP; -} - -// Create a constant for Str so that we can pass it to the run-time lib. -GlobalVariable *llvm::createPrivateGlobalForString(Module &M, StringRef Str, - bool AllowMerging, - const char *NamePrefix) { - Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); - // We use private linkage for module-local strings. If they can be merged - // with another one, we set the unnamed_addr attribute. - GlobalVariable *GV = - new GlobalVariable(M, StrConst->getType(), true, - GlobalValue::PrivateLinkage, StrConst, NamePrefix); - if (AllowMerging) - GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); - GV->setAlignment(Align(1)); // Strings may not be merged w/o setting - // alignment explicitly. - return GV; -} - -Comdat *llvm::GetOrCreateFunctionComdat(Function &F, Triple &T, - const std::string &ModuleId) { - if (auto Comdat = F.getComdat()) return Comdat; - assert(F.hasName()); - Module *M = F.getParent(); - std::string Name = std::string(F.getName()); - - // Make a unique comdat name for internal linkage things on ELF. On COFF, the - // name of the comdat group identifies the leader symbol of the comdat group. - // The linkage of the leader symbol is considered during comdat resolution, - // and internal symbols with the same name from different objects will not be - // merged. - if (T.isOSBinFormatELF() && F.hasLocalLinkage()) { - if (ModuleId.empty()) - return nullptr; - Name += ModuleId; - } - - // Make a new comdat for the function. Use the "no duplicates" selection kind - // for non-weak symbols if the object file format supports it. - Comdat *C = M->getOrInsertComdat(Name); - if (T.isOSBinFormatCOFF() && !F.isWeakForLinker()) - C->setSelectionKind(Comdat::NoDuplicates); - F.setComdat(C); - return C; -} - -/// initializeInstrumentation - Initialize all passes in the TransformUtils -/// library. -void llvm::initializeInstrumentation(PassRegistry &Registry) { - initializeAddressSanitizerLegacyPassPass(Registry); - initializeModuleAddressSanitizerLegacyPassPass(Registry); +//===-- Instrumentation.cpp - TransformUtils Infrastructure ---------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the common initialization infrastructure for the +// Instrumentation library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation.h" +#include "llvm-c/Initialization.h" +#include "llvm/ADT/Triple.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Module.h" +#include "llvm/InitializePasses.h" +#include "llvm/PassRegistry.h" + +using namespace llvm; + +/// Moves I before IP. Returns new insert point. +static BasicBlock::iterator moveBeforeInsertPoint(BasicBlock::iterator I, BasicBlock::iterator IP) { + // If I is IP, move the insert point down. + if (I == IP) { + ++IP; + } else { + // Otherwise, move I before IP and return IP. + I->moveBefore(&*IP); + } + return IP; +} + +/// Instrumentation passes often insert conditional checks into entry blocks. +/// Call this function before splitting the entry block to move instructions +/// that must remain in the entry block up before the split point. Static +/// allocas and llvm.localescape calls, for example, must remain in the entry +/// block. +BasicBlock::iterator llvm::PrepareToSplitEntryBlock(BasicBlock &BB, + BasicBlock::iterator IP) { + assert(&BB.getParent()->getEntryBlock() == &BB); + for (auto I = IP, E = BB.end(); I != E; ++I) { + bool KeepInEntry = false; + if (auto *AI = dyn_cast<AllocaInst>(I)) { + if (AI->isStaticAlloca()) + KeepInEntry = true; + } else if (auto *II = dyn_cast<IntrinsicInst>(I)) { + if (II->getIntrinsicID() == llvm::Intrinsic::localescape) + KeepInEntry = true; + } + if (KeepInEntry) + IP = moveBeforeInsertPoint(I, IP); + } + return IP; +} + +// Create a constant for Str so that we can pass it to the run-time lib. +GlobalVariable *llvm::createPrivateGlobalForString(Module &M, StringRef Str, + bool AllowMerging, + const char *NamePrefix) { + Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); + // We use private linkage for module-local strings. If they can be merged + // with another one, we set the unnamed_addr attribute. + GlobalVariable *GV = + new GlobalVariable(M, StrConst->getType(), true, + GlobalValue::PrivateLinkage, StrConst, NamePrefix); + if (AllowMerging) + GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); + GV->setAlignment(Align(1)); // Strings may not be merged w/o setting + // alignment explicitly. + return GV; +} + +Comdat *llvm::GetOrCreateFunctionComdat(Function &F, Triple &T, + const std::string &ModuleId) { + if (auto Comdat = F.getComdat()) return Comdat; + assert(F.hasName()); + Module *M = F.getParent(); + std::string Name = std::string(F.getName()); + + // Make a unique comdat name for internal linkage things on ELF. On COFF, the + // name of the comdat group identifies the leader symbol of the comdat group. + // The linkage of the leader symbol is considered during comdat resolution, + // and internal symbols with the same name from different objects will not be + // merged. + if (T.isOSBinFormatELF() && F.hasLocalLinkage()) { + if (ModuleId.empty()) + return nullptr; + Name += ModuleId; + } + + // Make a new comdat for the function. Use the "no duplicates" selection kind + // for non-weak symbols if the object file format supports it. + Comdat *C = M->getOrInsertComdat(Name); + if (T.isOSBinFormatCOFF() && !F.isWeakForLinker()) + C->setSelectionKind(Comdat::NoDuplicates); + F.setComdat(C); + return C; +} + +/// initializeInstrumentation - Initialize all passes in the TransformUtils +/// library. +void llvm::initializeInstrumentation(PassRegistry &Registry) { + initializeAddressSanitizerLegacyPassPass(Registry); + initializeModuleAddressSanitizerLegacyPassPass(Registry); initializeMemProfilerLegacyPassPass(Registry); initializeModuleMemProfilerLegacyPassPass(Registry); - initializeBoundsCheckingLegacyPassPass(Registry); - initializeControlHeightReductionLegacyPassPass(Registry); - initializeGCOVProfilerLegacyPassPass(Registry); - initializePGOInstrumentationGenLegacyPassPass(Registry); - initializePGOInstrumentationUseLegacyPassPass(Registry); - initializePGOIndirectCallPromotionLegacyPassPass(Registry); - initializePGOMemOPSizeOptLegacyPassPass(Registry); - initializeCGProfileLegacyPassPass(Registry); - initializeInstrOrderFileLegacyPassPass(Registry); - initializeInstrProfilingLegacyPassPass(Registry); - initializeMemorySanitizerLegacyPassPass(Registry); - initializeHWAddressSanitizerLegacyPassPass(Registry); - initializeThreadSanitizerLegacyPassPass(Registry); - initializeModuleSanitizerCoverageLegacyPassPass(Registry); + initializeBoundsCheckingLegacyPassPass(Registry); + initializeControlHeightReductionLegacyPassPass(Registry); + initializeGCOVProfilerLegacyPassPass(Registry); + initializePGOInstrumentationGenLegacyPassPass(Registry); + initializePGOInstrumentationUseLegacyPassPass(Registry); + initializePGOIndirectCallPromotionLegacyPassPass(Registry); + initializePGOMemOPSizeOptLegacyPassPass(Registry); + initializeCGProfileLegacyPassPass(Registry); + initializeInstrOrderFileLegacyPassPass(Registry); + initializeInstrProfilingLegacyPassPass(Registry); + initializeMemorySanitizerLegacyPassPass(Registry); + initializeHWAddressSanitizerLegacyPassPass(Registry); + initializeThreadSanitizerLegacyPassPass(Registry); + initializeModuleSanitizerCoverageLegacyPassPass(Registry); initializeDataFlowSanitizerLegacyPassPass(Registry); -} - -/// LLVMInitializeInstrumentation - C binding for -/// initializeInstrumentation. -void LLVMInitializeInstrumentation(LLVMPassRegistryRef R) { - initializeInstrumentation(*unwrap(R)); -} +} + +/// LLVMInitializeInstrumentation - C binding for +/// initializeInstrumentation. +void LLVMInitializeInstrumentation(LLVMPassRegistryRef R) { + initializeInstrumentation(*unwrap(R)); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/MemorySanitizer.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/MemorySanitizer.cpp index 4159f82db5..7a6874584d 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/MemorySanitizer.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/MemorySanitizer.cpp @@ -1,1176 +1,1176 @@ -//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -/// \file -/// This file is a part of MemorySanitizer, a detector of uninitialized -/// reads. -/// -/// The algorithm of the tool is similar to Memcheck -/// (http://goo.gl/QKbem). We associate a few shadow bits with every -/// byte of the application memory, poison the shadow of the malloc-ed -/// or alloca-ed memory, load the shadow bits on every memory read, -/// propagate the shadow bits through some of the arithmetic -/// instruction (including MOV), store the shadow bits on every memory -/// write, report a bug on some other instructions (e.g. JMP) if the -/// associated shadow is poisoned. -/// -/// But there are differences too. The first and the major one: -/// compiler instrumentation instead of binary instrumentation. This -/// gives us much better register allocation, possible compiler -/// optimizations and a fast start-up. But this brings the major issue -/// as well: msan needs to see all program events, including system -/// calls and reads/writes in system libraries, so we either need to -/// compile *everything* with msan or use a binary translation -/// component (e.g. DynamoRIO) to instrument pre-built libraries. -/// Another difference from Memcheck is that we use 8 shadow bits per -/// byte of application memory and use a direct shadow mapping. This -/// greatly simplifies the instrumentation code and avoids races on -/// shadow updates (Memcheck is single-threaded so races are not a -/// concern there. Memcheck uses 2 shadow bits per byte with a slow -/// path storage that uses 8 bits per byte). -/// -/// The default value of shadow is 0, which means "clean" (not poisoned). -/// -/// Every module initializer should call __msan_init to ensure that the -/// shadow memory is ready. On error, __msan_warning is called. Since -/// parameters and return values may be passed via registers, we have a -/// specialized thread-local shadow for return values -/// (__msan_retval_tls) and parameters (__msan_param_tls). -/// -/// Origin tracking. -/// -/// MemorySanitizer can track origins (allocation points) of all uninitialized -/// values. This behavior is controlled with a flag (msan-track-origins) and is -/// disabled by default. -/// -/// Origins are 4-byte values created and interpreted by the runtime library. -/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes -/// of application memory. Propagation of origins is basically a bunch of -/// "select" instructions that pick the origin of a dirty argument, if an -/// instruction has one. -/// -/// Every 4 aligned, consecutive bytes of application memory have one origin -/// value associated with them. If these bytes contain uninitialized data -/// coming from 2 different allocations, the last store wins. Because of this, -/// MemorySanitizer reports can show unrelated origins, but this is unlikely in -/// practice. -/// -/// Origins are meaningless for fully initialized values, so MemorySanitizer -/// avoids storing origin to memory when a fully initialized value is stored. -/// This way it avoids needless overwriting origin of the 4-byte region on -/// a short (i.e. 1 byte) clean store, and it is also good for performance. -/// -/// Atomic handling. -/// -/// Ideally, every atomic store of application value should update the -/// corresponding shadow location in an atomic way. Unfortunately, atomic store -/// of two disjoint locations can not be done without severe slowdown. -/// -/// Therefore, we implement an approximation that may err on the safe side. -/// In this implementation, every atomically accessed location in the program -/// may only change from (partially) uninitialized to fully initialized, but -/// not the other way around. We load the shadow _after_ the application load, -/// and we store the shadow _before_ the app store. Also, we always store clean -/// shadow (if the application store is atomic). This way, if the store-load -/// pair constitutes a happens-before arc, shadow store and load are correctly -/// ordered such that the load will get either the value that was stored, or -/// some later value (which is always clean). -/// -/// This does not work very well with Compare-And-Swap (CAS) and -/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW -/// must store the new shadow before the app operation, and load the shadow -/// after the app operation. Computers don't work this way. Current -/// implementation ignores the load aspect of CAS/RMW, always returning a clean -/// value. It implements the store part as a simple atomic store by storing a -/// clean shadow. -/// -/// Instrumenting inline assembly. -/// -/// For inline assembly code LLVM has little idea about which memory locations -/// become initialized depending on the arguments. It can be possible to figure -/// out which arguments are meant to point to inputs and outputs, but the -/// actual semantics can be only visible at runtime. In the Linux kernel it's -/// also possible that the arguments only indicate the offset for a base taken -/// from a segment register, so it's dangerous to treat any asm() arguments as -/// pointers. We take a conservative approach generating calls to -/// __msan_instrument_asm_store(ptr, size) -/// , which defer the memory unpoisoning to the runtime library. -/// The latter can perform more complex address checks to figure out whether -/// it's safe to touch the shadow memory. -/// Like with atomic operations, we call __msan_instrument_asm_store() before -/// the assembly call, so that changes to the shadow memory will be seen by -/// other threads together with main memory initialization. -/// -/// KernelMemorySanitizer (KMSAN) implementation. -/// -/// The major differences between KMSAN and MSan instrumentation are: -/// - KMSAN always tracks the origins and implies msan-keep-going=true; -/// - KMSAN allocates shadow and origin memory for each page separately, so -/// there are no explicit accesses to shadow and origin in the -/// instrumentation. -/// Shadow and origin values for a particular X-byte memory location -/// (X=1,2,4,8) are accessed through pointers obtained via the -/// __msan_metadata_ptr_for_load_X(ptr) -/// __msan_metadata_ptr_for_store_X(ptr) -/// functions. The corresponding functions check that the X-byte accesses -/// are possible and returns the pointers to shadow and origin memory. -/// Arbitrary sized accesses are handled with: -/// __msan_metadata_ptr_for_load_n(ptr, size) -/// __msan_metadata_ptr_for_store_n(ptr, size); -/// - TLS variables are stored in a single per-task struct. A call to a -/// function __msan_get_context_state() returning a pointer to that struct -/// is inserted into every instrumented function before the entry block; -/// - __msan_warning() takes a 32-bit origin parameter; -/// - local variables are poisoned with __msan_poison_alloca() upon function -/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the -/// function; -/// - the pass doesn't declare any global variables or add global constructors -/// to the translation unit. -/// -/// Also, KMSAN currently ignores uninitialized memory passed into inline asm -/// calls, making sure we're on the safe side wrt. possible false positives. -/// -/// KernelMemorySanitizer only supports X86_64 at the moment. -/// -// -// FIXME: This sanitizer does not yet handle scalable vectors -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/MemorySanitizer.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/Analysis/TargetLibraryInfo.h" +//===- MemorySanitizer.cpp - detector of uninitialized reads --------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// \file +/// This file is a part of MemorySanitizer, a detector of uninitialized +/// reads. +/// +/// The algorithm of the tool is similar to Memcheck +/// (http://goo.gl/QKbem). We associate a few shadow bits with every +/// byte of the application memory, poison the shadow of the malloc-ed +/// or alloca-ed memory, load the shadow bits on every memory read, +/// propagate the shadow bits through some of the arithmetic +/// instruction (including MOV), store the shadow bits on every memory +/// write, report a bug on some other instructions (e.g. JMP) if the +/// associated shadow is poisoned. +/// +/// But there are differences too. The first and the major one: +/// compiler instrumentation instead of binary instrumentation. This +/// gives us much better register allocation, possible compiler +/// optimizations and a fast start-up. But this brings the major issue +/// as well: msan needs to see all program events, including system +/// calls and reads/writes in system libraries, so we either need to +/// compile *everything* with msan or use a binary translation +/// component (e.g. DynamoRIO) to instrument pre-built libraries. +/// Another difference from Memcheck is that we use 8 shadow bits per +/// byte of application memory and use a direct shadow mapping. This +/// greatly simplifies the instrumentation code and avoids races on +/// shadow updates (Memcheck is single-threaded so races are not a +/// concern there. Memcheck uses 2 shadow bits per byte with a slow +/// path storage that uses 8 bits per byte). +/// +/// The default value of shadow is 0, which means "clean" (not poisoned). +/// +/// Every module initializer should call __msan_init to ensure that the +/// shadow memory is ready. On error, __msan_warning is called. Since +/// parameters and return values may be passed via registers, we have a +/// specialized thread-local shadow for return values +/// (__msan_retval_tls) and parameters (__msan_param_tls). +/// +/// Origin tracking. +/// +/// MemorySanitizer can track origins (allocation points) of all uninitialized +/// values. This behavior is controlled with a flag (msan-track-origins) and is +/// disabled by default. +/// +/// Origins are 4-byte values created and interpreted by the runtime library. +/// They are stored in a second shadow mapping, one 4-byte value for 4 bytes +/// of application memory. Propagation of origins is basically a bunch of +/// "select" instructions that pick the origin of a dirty argument, if an +/// instruction has one. +/// +/// Every 4 aligned, consecutive bytes of application memory have one origin +/// value associated with them. If these bytes contain uninitialized data +/// coming from 2 different allocations, the last store wins. Because of this, +/// MemorySanitizer reports can show unrelated origins, but this is unlikely in +/// practice. +/// +/// Origins are meaningless for fully initialized values, so MemorySanitizer +/// avoids storing origin to memory when a fully initialized value is stored. +/// This way it avoids needless overwriting origin of the 4-byte region on +/// a short (i.e. 1 byte) clean store, and it is also good for performance. +/// +/// Atomic handling. +/// +/// Ideally, every atomic store of application value should update the +/// corresponding shadow location in an atomic way. Unfortunately, atomic store +/// of two disjoint locations can not be done without severe slowdown. +/// +/// Therefore, we implement an approximation that may err on the safe side. +/// In this implementation, every atomically accessed location in the program +/// may only change from (partially) uninitialized to fully initialized, but +/// not the other way around. We load the shadow _after_ the application load, +/// and we store the shadow _before_ the app store. Also, we always store clean +/// shadow (if the application store is atomic). This way, if the store-load +/// pair constitutes a happens-before arc, shadow store and load are correctly +/// ordered such that the load will get either the value that was stored, or +/// some later value (which is always clean). +/// +/// This does not work very well with Compare-And-Swap (CAS) and +/// Read-Modify-Write (RMW) operations. To follow the above logic, CAS and RMW +/// must store the new shadow before the app operation, and load the shadow +/// after the app operation. Computers don't work this way. Current +/// implementation ignores the load aspect of CAS/RMW, always returning a clean +/// value. It implements the store part as a simple atomic store by storing a +/// clean shadow. +/// +/// Instrumenting inline assembly. +/// +/// For inline assembly code LLVM has little idea about which memory locations +/// become initialized depending on the arguments. It can be possible to figure +/// out which arguments are meant to point to inputs and outputs, but the +/// actual semantics can be only visible at runtime. In the Linux kernel it's +/// also possible that the arguments only indicate the offset for a base taken +/// from a segment register, so it's dangerous to treat any asm() arguments as +/// pointers. We take a conservative approach generating calls to +/// __msan_instrument_asm_store(ptr, size) +/// , which defer the memory unpoisoning to the runtime library. +/// The latter can perform more complex address checks to figure out whether +/// it's safe to touch the shadow memory. +/// Like with atomic operations, we call __msan_instrument_asm_store() before +/// the assembly call, so that changes to the shadow memory will be seen by +/// other threads together with main memory initialization. +/// +/// KernelMemorySanitizer (KMSAN) implementation. +/// +/// The major differences between KMSAN and MSan instrumentation are: +/// - KMSAN always tracks the origins and implies msan-keep-going=true; +/// - KMSAN allocates shadow and origin memory for each page separately, so +/// there are no explicit accesses to shadow and origin in the +/// instrumentation. +/// Shadow and origin values for a particular X-byte memory location +/// (X=1,2,4,8) are accessed through pointers obtained via the +/// __msan_metadata_ptr_for_load_X(ptr) +/// __msan_metadata_ptr_for_store_X(ptr) +/// functions. The corresponding functions check that the X-byte accesses +/// are possible and returns the pointers to shadow and origin memory. +/// Arbitrary sized accesses are handled with: +/// __msan_metadata_ptr_for_load_n(ptr, size) +/// __msan_metadata_ptr_for_store_n(ptr, size); +/// - TLS variables are stored in a single per-task struct. A call to a +/// function __msan_get_context_state() returning a pointer to that struct +/// is inserted into every instrumented function before the entry block; +/// - __msan_warning() takes a 32-bit origin parameter; +/// - local variables are poisoned with __msan_poison_alloca() upon function +/// entry and unpoisoned with __msan_unpoison_alloca() before leaving the +/// function; +/// - the pass doesn't declare any global variables or add global constructors +/// to the translation unit. +/// +/// Also, KMSAN currently ignores uninitialized memory passed into inline asm +/// calls, making sure we're on the safe side wrt. possible false positives. +/// +/// KernelMemorySanitizer only supports X86_64 at the moment. +/// +// +// FIXME: This sanitizer does not yet handle scalable vectors +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/MemorySanitizer.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/DepthFirstIterator.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/Analysis/TargetLibraryInfo.h" #include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/Argument.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CallingConv.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/IntrinsicsX86.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/IR/ValueMap.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/Support/AtomicOrdering.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <cstdint> -#include <memory> -#include <string> -#include <tuple> - -using namespace llvm; - -#define DEBUG_TYPE "msan" - -static const unsigned kOriginSize = 4; -static const Align kMinOriginAlignment = Align(4); -static const Align kShadowTLSAlignment = Align(8); - -// These constants must be kept in sync with the ones in msan.h. -static const unsigned kParamTLSSize = 800; -static const unsigned kRetvalTLSSize = 800; - -// Accesses sizes are powers of two: 1, 2, 4, 8. -static const size_t kNumberOfAccessSizes = 4; - -/// Track origins of uninitialized values. -/// -/// Adds a section to MemorySanitizer report that points to the allocation -/// (stack or heap) the uninitialized bits came from originally. -static cl::opt<int> ClTrackOrigins("msan-track-origins", - cl::desc("Track origins (allocation sites) of poisoned memory"), - cl::Hidden, cl::init(0)); - -static cl::opt<bool> ClKeepGoing("msan-keep-going", - cl::desc("keep going after reporting a UMR"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClPoisonStack("msan-poison-stack", - cl::desc("poison uninitialized stack variables"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", - cl::desc("poison uninitialized stack variables with a call"), - cl::Hidden, cl::init(false)); - -static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", - cl::desc("poison uninitialized stack variables with the given pattern"), - cl::Hidden, cl::init(0xff)); - -static cl::opt<bool> ClPoisonUndef("msan-poison-undef", - cl::desc("poison undef temps"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClHandleICmp("msan-handle-icmp", - cl::desc("propagate shadow through ICmpEQ and ICmpNE"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", - cl::desc("exact handling of relational integer ICmp"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClHandleLifetimeIntrinsics( - "msan-handle-lifetime-intrinsics", - cl::desc( - "when possible, poison scoped variables at the beginning of the scope " - "(slower, but more precise)"), - cl::Hidden, cl::init(true)); - -// When compiling the Linux kernel, we sometimes see false positives related to -// MSan being unable to understand that inline assembly calls may initialize -// local variables. -// This flag makes the compiler conservatively unpoison every memory location -// passed into an assembly call. Note that this may cause false positives. -// Because it's impossible to figure out the array sizes, we can only unpoison -// the first sizeof(type) bytes for each type* pointer. -// The instrumentation is only enabled in KMSAN builds, and only if -// -msan-handle-asm-conservative is on. This is done because we may want to -// quickly disable assembly instrumentation when it breaks. -static cl::opt<bool> ClHandleAsmConservative( - "msan-handle-asm-conservative", - cl::desc("conservative handling of inline assembly"), cl::Hidden, - cl::init(true)); - -// This flag controls whether we check the shadow of the address -// operand of load or store. Such bugs are very rare, since load from -// a garbage address typically results in SEGV, but still happen -// (e.g. only lower bits of address are garbage, or the access happens -// early at program startup where malloc-ed memory is more likely to -// be zeroed. As of 2012-08-28 this flag adds 20% slowdown. -static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", - cl::desc("report accesses through a pointer which has poisoned shadow"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClEagerChecks( - "msan-eager-checks", - cl::desc("check arguments and return values at function call boundaries"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", - cl::desc("print out instructions with default strict semantics"), - cl::Hidden, cl::init(false)); - -static cl::opt<int> ClInstrumentationWithCallThreshold( - "msan-instrumentation-with-call-threshold", - cl::desc( - "If the function being instrumented requires more than " - "this number of checks and origin stores, use callbacks instead of " - "inline checks (-1 means never use callbacks)."), - cl::Hidden, cl::init(3500)); - -static cl::opt<bool> - ClEnableKmsan("msan-kernel", - cl::desc("Enable KernelMemorySanitizer instrumentation"), - cl::Hidden, cl::init(false)); - -// This is an experiment to enable handling of cases where shadow is a non-zero -// compile-time constant. For some unexplainable reason they were silently -// ignored in the instrumentation. -static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", - cl::desc("Insert checks for constant shadow values"), - cl::Hidden, cl::init(false)); - -// This is off by default because of a bug in gold: -// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 -static cl::opt<bool> ClWithComdat("msan-with-comdat", - cl::desc("Place MSan constructors in comdat sections"), - cl::Hidden, cl::init(false)); - -// These options allow to specify custom memory map parameters -// See MemoryMapParams for details. -static cl::opt<uint64_t> ClAndMask("msan-and-mask", - cl::desc("Define custom MSan AndMask"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClXorMask("msan-xor-mask", - cl::desc("Define custom MSan XorMask"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", - cl::desc("Define custom MSan ShadowBase"), - cl::Hidden, cl::init(0)); - -static cl::opt<uint64_t> ClOriginBase("msan-origin-base", - cl::desc("Define custom MSan OriginBase"), - cl::Hidden, cl::init(0)); - +#include "llvm/IR/Argument.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CallingConv.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/IntrinsicsX86.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/IR/ValueMap.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/Support/AtomicOrdering.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdint> +#include <memory> +#include <string> +#include <tuple> + +using namespace llvm; + +#define DEBUG_TYPE "msan" + +static const unsigned kOriginSize = 4; +static const Align kMinOriginAlignment = Align(4); +static const Align kShadowTLSAlignment = Align(8); + +// These constants must be kept in sync with the ones in msan.h. +static const unsigned kParamTLSSize = 800; +static const unsigned kRetvalTLSSize = 800; + +// Accesses sizes are powers of two: 1, 2, 4, 8. +static const size_t kNumberOfAccessSizes = 4; + +/// Track origins of uninitialized values. +/// +/// Adds a section to MemorySanitizer report that points to the allocation +/// (stack or heap) the uninitialized bits came from originally. +static cl::opt<int> ClTrackOrigins("msan-track-origins", + cl::desc("Track origins (allocation sites) of poisoned memory"), + cl::Hidden, cl::init(0)); + +static cl::opt<bool> ClKeepGoing("msan-keep-going", + cl::desc("keep going after reporting a UMR"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClPoisonStack("msan-poison-stack", + cl::desc("poison uninitialized stack variables"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClPoisonStackWithCall("msan-poison-stack-with-call", + cl::desc("poison uninitialized stack variables with a call"), + cl::Hidden, cl::init(false)); + +static cl::opt<int> ClPoisonStackPattern("msan-poison-stack-pattern", + cl::desc("poison uninitialized stack variables with the given pattern"), + cl::Hidden, cl::init(0xff)); + +static cl::opt<bool> ClPoisonUndef("msan-poison-undef", + cl::desc("poison undef temps"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClHandleICmp("msan-handle-icmp", + cl::desc("propagate shadow through ICmpEQ and ICmpNE"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClHandleICmpExact("msan-handle-icmp-exact", + cl::desc("exact handling of relational integer ICmp"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClHandleLifetimeIntrinsics( + "msan-handle-lifetime-intrinsics", + cl::desc( + "when possible, poison scoped variables at the beginning of the scope " + "(slower, but more precise)"), + cl::Hidden, cl::init(true)); + +// When compiling the Linux kernel, we sometimes see false positives related to +// MSan being unable to understand that inline assembly calls may initialize +// local variables. +// This flag makes the compiler conservatively unpoison every memory location +// passed into an assembly call. Note that this may cause false positives. +// Because it's impossible to figure out the array sizes, we can only unpoison +// the first sizeof(type) bytes for each type* pointer. +// The instrumentation is only enabled in KMSAN builds, and only if +// -msan-handle-asm-conservative is on. This is done because we may want to +// quickly disable assembly instrumentation when it breaks. +static cl::opt<bool> ClHandleAsmConservative( + "msan-handle-asm-conservative", + cl::desc("conservative handling of inline assembly"), cl::Hidden, + cl::init(true)); + +// This flag controls whether we check the shadow of the address +// operand of load or store. Such bugs are very rare, since load from +// a garbage address typically results in SEGV, but still happen +// (e.g. only lower bits of address are garbage, or the access happens +// early at program startup where malloc-ed memory is more likely to +// be zeroed. As of 2012-08-28 this flag adds 20% slowdown. +static cl::opt<bool> ClCheckAccessAddress("msan-check-access-address", + cl::desc("report accesses through a pointer which has poisoned shadow"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClEagerChecks( + "msan-eager-checks", + cl::desc("check arguments and return values at function call boundaries"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClDumpStrictInstructions("msan-dump-strict-instructions", + cl::desc("print out instructions with default strict semantics"), + cl::Hidden, cl::init(false)); + +static cl::opt<int> ClInstrumentationWithCallThreshold( + "msan-instrumentation-with-call-threshold", + cl::desc( + "If the function being instrumented requires more than " + "this number of checks and origin stores, use callbacks instead of " + "inline checks (-1 means never use callbacks)."), + cl::Hidden, cl::init(3500)); + +static cl::opt<bool> + ClEnableKmsan("msan-kernel", + cl::desc("Enable KernelMemorySanitizer instrumentation"), + cl::Hidden, cl::init(false)); + +// This is an experiment to enable handling of cases where shadow is a non-zero +// compile-time constant. For some unexplainable reason they were silently +// ignored in the instrumentation. +static cl::opt<bool> ClCheckConstantShadow("msan-check-constant-shadow", + cl::desc("Insert checks for constant shadow values"), + cl::Hidden, cl::init(false)); + +// This is off by default because of a bug in gold: +// https://sourceware.org/bugzilla/show_bug.cgi?id=19002 +static cl::opt<bool> ClWithComdat("msan-with-comdat", + cl::desc("Place MSan constructors in comdat sections"), + cl::Hidden, cl::init(false)); + +// These options allow to specify custom memory map parameters +// See MemoryMapParams for details. +static cl::opt<uint64_t> ClAndMask("msan-and-mask", + cl::desc("Define custom MSan AndMask"), + cl::Hidden, cl::init(0)); + +static cl::opt<uint64_t> ClXorMask("msan-xor-mask", + cl::desc("Define custom MSan XorMask"), + cl::Hidden, cl::init(0)); + +static cl::opt<uint64_t> ClShadowBase("msan-shadow-base", + cl::desc("Define custom MSan ShadowBase"), + cl::Hidden, cl::init(0)); + +static cl::opt<uint64_t> ClOriginBase("msan-origin-base", + cl::desc("Define custom MSan OriginBase"), + cl::Hidden, cl::init(0)); + const char kMsanModuleCtorName[] = "msan.module_ctor"; const char kMsanInitName[] = "__msan_init"; - -namespace { - -// Memory map parameters used in application-to-shadow address calculation. -// Offset = (Addr & ~AndMask) ^ XorMask -// Shadow = ShadowBase + Offset -// Origin = OriginBase + Offset -struct MemoryMapParams { - uint64_t AndMask; - uint64_t XorMask; - uint64_t ShadowBase; - uint64_t OriginBase; -}; - -struct PlatformMemoryMapParams { - const MemoryMapParams *bits32; - const MemoryMapParams *bits64; -}; - -} // end anonymous namespace - -// i386 Linux -static const MemoryMapParams Linux_I386_MemoryMapParams = { - 0x000080000000, // AndMask - 0, // XorMask (not used) - 0, // ShadowBase (not used) - 0x000040000000, // OriginBase -}; - -// x86_64 Linux -static const MemoryMapParams Linux_X86_64_MemoryMapParams = { -#ifdef MSAN_LINUX_X86_64_OLD_MAPPING - 0x400000000000, // AndMask - 0, // XorMask (not used) - 0, // ShadowBase (not used) - 0x200000000000, // OriginBase -#else - 0, // AndMask (not used) - 0x500000000000, // XorMask - 0, // ShadowBase (not used) - 0x100000000000, // OriginBase -#endif -}; - -// mips64 Linux -static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { - 0, // AndMask (not used) - 0x008000000000, // XorMask - 0, // ShadowBase (not used) - 0x002000000000, // OriginBase -}; - -// ppc64 Linux -static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { - 0xE00000000000, // AndMask - 0x100000000000, // XorMask - 0x080000000000, // ShadowBase - 0x1C0000000000, // OriginBase -}; - -// s390x Linux -static const MemoryMapParams Linux_S390X_MemoryMapParams = { - 0xC00000000000, // AndMask - 0, // XorMask (not used) - 0x080000000000, // ShadowBase - 0x1C0000000000, // OriginBase -}; - -// aarch64 Linux -static const MemoryMapParams Linux_AArch64_MemoryMapParams = { - 0, // AndMask (not used) - 0x06000000000, // XorMask - 0, // ShadowBase (not used) - 0x01000000000, // OriginBase -}; - -// i386 FreeBSD -static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { - 0x000180000000, // AndMask - 0x000040000000, // XorMask - 0x000020000000, // ShadowBase - 0x000700000000, // OriginBase -}; - -// x86_64 FreeBSD -static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { - 0xc00000000000, // AndMask - 0x200000000000, // XorMask - 0x100000000000, // ShadowBase - 0x380000000000, // OriginBase -}; - -// x86_64 NetBSD -static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { - 0, // AndMask - 0x500000000000, // XorMask - 0, // ShadowBase - 0x100000000000, // OriginBase -}; - -static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { - &Linux_I386_MemoryMapParams, - &Linux_X86_64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { - nullptr, - &Linux_MIPS64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { - nullptr, - &Linux_PowerPC64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { - nullptr, - &Linux_S390X_MemoryMapParams, -}; - -static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { - nullptr, - &Linux_AArch64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { - &FreeBSD_I386_MemoryMapParams, - &FreeBSD_X86_64_MemoryMapParams, -}; - -static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { - nullptr, - &NetBSD_X86_64_MemoryMapParams, -}; - -namespace { - -/// Instrument functions of a module to detect uninitialized reads. -/// -/// Instantiating MemorySanitizer inserts the msan runtime library API function -/// declarations into the module if they don't exist already. Instantiating -/// ensures the __msan_init function is in the list of global constructors for -/// the module. -class MemorySanitizer { -public: - MemorySanitizer(Module &M, MemorySanitizerOptions Options) - : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), - Recover(Options.Recover) { - initializeModule(M); - } - - // MSan cannot be moved or copied because of MapParams. - MemorySanitizer(MemorySanitizer &&) = delete; - MemorySanitizer &operator=(MemorySanitizer &&) = delete; - MemorySanitizer(const MemorySanitizer &) = delete; - MemorySanitizer &operator=(const MemorySanitizer &) = delete; - - bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); - -private: - friend struct MemorySanitizerVisitor; - friend struct VarArgAMD64Helper; - friend struct VarArgMIPS64Helper; - friend struct VarArgAArch64Helper; - friend struct VarArgPowerPC64Helper; - friend struct VarArgSystemZHelper; - - void initializeModule(Module &M); - void initializeCallbacks(Module &M); - void createKernelApi(Module &M); - void createUserspaceApi(Module &M); - - /// True if we're compiling the Linux kernel. - bool CompileKernel; - /// Track origins (allocation points) of uninitialized values. - int TrackOrigins; - bool Recover; - - LLVMContext *C; - Type *IntptrTy; - Type *OriginTy; - - // XxxTLS variables represent the per-thread state in MSan and per-task state - // in KMSAN. - // For the userspace these point to thread-local globals. In the kernel land - // they point to the members of a per-task struct obtained via a call to - // __msan_get_context_state(). - - /// Thread-local shadow storage for function parameters. - Value *ParamTLS; - - /// Thread-local origin storage for function parameters. - Value *ParamOriginTLS; - - /// Thread-local shadow storage for function return value. - Value *RetvalTLS; - - /// Thread-local origin storage for function return value. - Value *RetvalOriginTLS; - - /// Thread-local shadow storage for in-register va_arg function - /// parameters (x86_64-specific). - Value *VAArgTLS; - - /// Thread-local shadow storage for in-register va_arg function - /// parameters (x86_64-specific). - Value *VAArgOriginTLS; - - /// Thread-local shadow storage for va_arg overflow area - /// (x86_64-specific). - Value *VAArgOverflowSizeTLS; - - /// Are the instrumentation callbacks set up? - bool CallbacksInitialized = false; - - /// The run-time callback to print a warning. - FunctionCallee WarningFn; - - // These arrays are indexed by log2(AccessSize). - FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; - FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; - - /// Run-time helper that generates a new origin value for a stack - /// allocation. - FunctionCallee MsanSetAllocaOrigin4Fn; - - /// Run-time helper that poisons stack on function entry. - FunctionCallee MsanPoisonStackFn; - - /// Run-time helper that records a store (or any event) of an - /// uninitialized value and returns an updated origin id encoding this info. - FunctionCallee MsanChainOriginFn; - + +namespace { + +// Memory map parameters used in application-to-shadow address calculation. +// Offset = (Addr & ~AndMask) ^ XorMask +// Shadow = ShadowBase + Offset +// Origin = OriginBase + Offset +struct MemoryMapParams { + uint64_t AndMask; + uint64_t XorMask; + uint64_t ShadowBase; + uint64_t OriginBase; +}; + +struct PlatformMemoryMapParams { + const MemoryMapParams *bits32; + const MemoryMapParams *bits64; +}; + +} // end anonymous namespace + +// i386 Linux +static const MemoryMapParams Linux_I386_MemoryMapParams = { + 0x000080000000, // AndMask + 0, // XorMask (not used) + 0, // ShadowBase (not used) + 0x000040000000, // OriginBase +}; + +// x86_64 Linux +static const MemoryMapParams Linux_X86_64_MemoryMapParams = { +#ifdef MSAN_LINUX_X86_64_OLD_MAPPING + 0x400000000000, // AndMask + 0, // XorMask (not used) + 0, // ShadowBase (not used) + 0x200000000000, // OriginBase +#else + 0, // AndMask (not used) + 0x500000000000, // XorMask + 0, // ShadowBase (not used) + 0x100000000000, // OriginBase +#endif +}; + +// mips64 Linux +static const MemoryMapParams Linux_MIPS64_MemoryMapParams = { + 0, // AndMask (not used) + 0x008000000000, // XorMask + 0, // ShadowBase (not used) + 0x002000000000, // OriginBase +}; + +// ppc64 Linux +static const MemoryMapParams Linux_PowerPC64_MemoryMapParams = { + 0xE00000000000, // AndMask + 0x100000000000, // XorMask + 0x080000000000, // ShadowBase + 0x1C0000000000, // OriginBase +}; + +// s390x Linux +static const MemoryMapParams Linux_S390X_MemoryMapParams = { + 0xC00000000000, // AndMask + 0, // XorMask (not used) + 0x080000000000, // ShadowBase + 0x1C0000000000, // OriginBase +}; + +// aarch64 Linux +static const MemoryMapParams Linux_AArch64_MemoryMapParams = { + 0, // AndMask (not used) + 0x06000000000, // XorMask + 0, // ShadowBase (not used) + 0x01000000000, // OriginBase +}; + +// i386 FreeBSD +static const MemoryMapParams FreeBSD_I386_MemoryMapParams = { + 0x000180000000, // AndMask + 0x000040000000, // XorMask + 0x000020000000, // ShadowBase + 0x000700000000, // OriginBase +}; + +// x86_64 FreeBSD +static const MemoryMapParams FreeBSD_X86_64_MemoryMapParams = { + 0xc00000000000, // AndMask + 0x200000000000, // XorMask + 0x100000000000, // ShadowBase + 0x380000000000, // OriginBase +}; + +// x86_64 NetBSD +static const MemoryMapParams NetBSD_X86_64_MemoryMapParams = { + 0, // AndMask + 0x500000000000, // XorMask + 0, // ShadowBase + 0x100000000000, // OriginBase +}; + +static const PlatformMemoryMapParams Linux_X86_MemoryMapParams = { + &Linux_I386_MemoryMapParams, + &Linux_X86_64_MemoryMapParams, +}; + +static const PlatformMemoryMapParams Linux_MIPS_MemoryMapParams = { + nullptr, + &Linux_MIPS64_MemoryMapParams, +}; + +static const PlatformMemoryMapParams Linux_PowerPC_MemoryMapParams = { + nullptr, + &Linux_PowerPC64_MemoryMapParams, +}; + +static const PlatformMemoryMapParams Linux_S390_MemoryMapParams = { + nullptr, + &Linux_S390X_MemoryMapParams, +}; + +static const PlatformMemoryMapParams Linux_ARM_MemoryMapParams = { + nullptr, + &Linux_AArch64_MemoryMapParams, +}; + +static const PlatformMemoryMapParams FreeBSD_X86_MemoryMapParams = { + &FreeBSD_I386_MemoryMapParams, + &FreeBSD_X86_64_MemoryMapParams, +}; + +static const PlatformMemoryMapParams NetBSD_X86_MemoryMapParams = { + nullptr, + &NetBSD_X86_64_MemoryMapParams, +}; + +namespace { + +/// Instrument functions of a module to detect uninitialized reads. +/// +/// Instantiating MemorySanitizer inserts the msan runtime library API function +/// declarations into the module if they don't exist already. Instantiating +/// ensures the __msan_init function is in the list of global constructors for +/// the module. +class MemorySanitizer { +public: + MemorySanitizer(Module &M, MemorySanitizerOptions Options) + : CompileKernel(Options.Kernel), TrackOrigins(Options.TrackOrigins), + Recover(Options.Recover) { + initializeModule(M); + } + + // MSan cannot be moved or copied because of MapParams. + MemorySanitizer(MemorySanitizer &&) = delete; + MemorySanitizer &operator=(MemorySanitizer &&) = delete; + MemorySanitizer(const MemorySanitizer &) = delete; + MemorySanitizer &operator=(const MemorySanitizer &) = delete; + + bool sanitizeFunction(Function &F, TargetLibraryInfo &TLI); + +private: + friend struct MemorySanitizerVisitor; + friend struct VarArgAMD64Helper; + friend struct VarArgMIPS64Helper; + friend struct VarArgAArch64Helper; + friend struct VarArgPowerPC64Helper; + friend struct VarArgSystemZHelper; + + void initializeModule(Module &M); + void initializeCallbacks(Module &M); + void createKernelApi(Module &M); + void createUserspaceApi(Module &M); + + /// True if we're compiling the Linux kernel. + bool CompileKernel; + /// Track origins (allocation points) of uninitialized values. + int TrackOrigins; + bool Recover; + + LLVMContext *C; + Type *IntptrTy; + Type *OriginTy; + + // XxxTLS variables represent the per-thread state in MSan and per-task state + // in KMSAN. + // For the userspace these point to thread-local globals. In the kernel land + // they point to the members of a per-task struct obtained via a call to + // __msan_get_context_state(). + + /// Thread-local shadow storage for function parameters. + Value *ParamTLS; + + /// Thread-local origin storage for function parameters. + Value *ParamOriginTLS; + + /// Thread-local shadow storage for function return value. + Value *RetvalTLS; + + /// Thread-local origin storage for function return value. + Value *RetvalOriginTLS; + + /// Thread-local shadow storage for in-register va_arg function + /// parameters (x86_64-specific). + Value *VAArgTLS; + + /// Thread-local shadow storage for in-register va_arg function + /// parameters (x86_64-specific). + Value *VAArgOriginTLS; + + /// Thread-local shadow storage for va_arg overflow area + /// (x86_64-specific). + Value *VAArgOverflowSizeTLS; + + /// Are the instrumentation callbacks set up? + bool CallbacksInitialized = false; + + /// The run-time callback to print a warning. + FunctionCallee WarningFn; + + // These arrays are indexed by log2(AccessSize). + FunctionCallee MaybeWarningFn[kNumberOfAccessSizes]; + FunctionCallee MaybeStoreOriginFn[kNumberOfAccessSizes]; + + /// Run-time helper that generates a new origin value for a stack + /// allocation. + FunctionCallee MsanSetAllocaOrigin4Fn; + + /// Run-time helper that poisons stack on function entry. + FunctionCallee MsanPoisonStackFn; + + /// Run-time helper that records a store (or any event) of an + /// uninitialized value and returns an updated origin id encoding this info. + FunctionCallee MsanChainOriginFn; + /// Run-time helper that paints an origin over a region. FunctionCallee MsanSetOriginFn; - /// MSan runtime replacements for memmove, memcpy and memset. - FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; - - /// KMSAN callback for task-local function argument shadow. - StructType *MsanContextStateTy; - FunctionCallee MsanGetContextStateFn; - - /// Functions for poisoning/unpoisoning local variables - FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; - - /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin - /// pointers. - FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; - FunctionCallee MsanMetadataPtrForLoad_1_8[4]; - FunctionCallee MsanMetadataPtrForStore_1_8[4]; - FunctionCallee MsanInstrumentAsmStoreFn; - - /// Helper to choose between different MsanMetadataPtrXxx(). - FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); - - /// Memory map parameters used in application-to-shadow calculation. - const MemoryMapParams *MapParams; - - /// Custom memory map parameters used when -msan-shadow-base or - // -msan-origin-base is provided. - MemoryMapParams CustomMapParams; - - MDNode *ColdCallWeights; - - /// Branch weights for origin store. - MDNode *OriginStoreWeights; -}; - -void insertModuleCtor(Module &M) { - getOrCreateSanitizerCtorAndInitFunctions( - M, kMsanModuleCtorName, kMsanInitName, - /*InitArgTypes=*/{}, - /*InitArgs=*/{}, - // This callback is invoked when the functions are created the first - // time. Hook them into the global ctors list in that case: - [&](Function *Ctor, FunctionCallee) { - if (!ClWithComdat) { - appendToGlobalCtors(M, Ctor, 0); - return; - } - Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); - Ctor->setComdat(MsanCtorComdat); - appendToGlobalCtors(M, Ctor, 0, Ctor); - }); -} - -/// A legacy function pass for msan instrumentation. -/// -/// Instruments functions to detect uninitialized reads. -struct MemorySanitizerLegacyPass : public FunctionPass { - // Pass identification, replacement for typeid. - static char ID; - - MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) - : FunctionPass(ID), Options(Options) { - initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); - } - StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } - - bool runOnFunction(Function &F) override { - return MSan->sanitizeFunction( - F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); - } - bool doInitialization(Module &M) override; - - Optional<MemorySanitizer> MSan; - MemorySanitizerOptions Options; -}; - -template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { - return (Opt.getNumOccurrences() > 0) ? Opt : Default; -} - -} // end anonymous namespace - -MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) - : Kernel(getOptOrDefault(ClEnableKmsan, K)), - TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), - Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} - -PreservedAnalyses MemorySanitizerPass::run(Function &F, - FunctionAnalysisManager &FAM) { - MemorySanitizer Msan(*F.getParent(), Options); - if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -PreservedAnalyses MemorySanitizerPass::run(Module &M, - ModuleAnalysisManager &AM) { - if (Options.Kernel) - return PreservedAnalyses::all(); - insertModuleCtor(M); - return PreservedAnalyses::none(); -} - -char MemorySanitizerLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", - "MemorySanitizer: detects uninitialized reads.", false, - false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", - "MemorySanitizer: detects uninitialized reads.", false, - false) - -FunctionPass * -llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { - return new MemorySanitizerLegacyPass(Options); -} - -/// Create a non-const global initialized with the given string. -/// -/// Creates a writable global for Str so that we can pass it to the -/// run-time lib. Runtime uses first 4 bytes of the string to store the -/// frame ID, so the string needs to be mutable. -static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, - StringRef Str) { - Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); - return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, - GlobalValue::PrivateLinkage, StrConst, ""); -} - -/// Create KMSAN API callbacks. -void MemorySanitizer::createKernelApi(Module &M) { - IRBuilder<> IRB(*C); - - // These will be initialized in insertKmsanPrologue(). - RetvalTLS = nullptr; - RetvalOriginTLS = nullptr; - ParamTLS = nullptr; - ParamOriginTLS = nullptr; - VAArgTLS = nullptr; - VAArgOriginTLS = nullptr; - VAArgOverflowSizeTLS = nullptr; - - WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), - IRB.getInt32Ty()); - // Requests the per-task context state (kmsan_context_state*) from the - // runtime library. - MsanContextStateTy = StructType::get( - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ - IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, - OriginTy); - MsanGetContextStateFn = M.getOrInsertFunction( - "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); - - Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), - PointerType::get(IRB.getInt32Ty(), 0)); - - for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { - std::string name_load = - "__msan_metadata_ptr_for_load_" + std::to_string(size); - std::string name_store = - "__msan_metadata_ptr_for_store_" + std::to_string(size); - MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( - name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); - MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( - name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); - } - - MsanMetadataPtrForLoadN = M.getOrInsertFunction( - "__msan_metadata_ptr_for_load_n", RetTy, - PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); - MsanMetadataPtrForStoreN = M.getOrInsertFunction( - "__msan_metadata_ptr_for_store_n", RetTy, - PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); - - // Functions for poisoning and unpoisoning memory. - MsanPoisonAllocaFn = - M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); - MsanUnpoisonAllocaFn = M.getOrInsertFunction( - "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); -} - -static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { - return M.getOrInsertGlobal(Name, Ty, [&] { - return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, - nullptr, Name, nullptr, - GlobalVariable::InitialExecTLSModel); - }); -} - -/// Insert declarations for userspace-specific functions and globals. -void MemorySanitizer::createUserspaceApi(Module &M) { - IRBuilder<> IRB(*C); - - // Create the callback. - // FIXME: this function should have "Cold" calling conv, - // which is not yet implemented. - StringRef WarningFnName = Recover ? "__msan_warning_with_origin" - : "__msan_warning_with_origin_noreturn"; - WarningFn = - M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); - - // Create the global TLS variables. - RetvalTLS = - getOrInsertGlobal(M, "__msan_retval_tls", - ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); - - RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); - - ParamTLS = - getOrInsertGlobal(M, "__msan_param_tls", - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); - - ParamOriginTLS = - getOrInsertGlobal(M, "__msan_param_origin_tls", - ArrayType::get(OriginTy, kParamTLSSize / 4)); - - VAArgTLS = - getOrInsertGlobal(M, "__msan_va_arg_tls", - ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); - - VAArgOriginTLS = - getOrInsertGlobal(M, "__msan_va_arg_origin_tls", - ArrayType::get(OriginTy, kParamTLSSize / 4)); - - VAArgOverflowSizeTLS = - getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); - - for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; - AccessSizeIndex++) { - unsigned AccessSize = 1 << AccessSizeIndex; - std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); - SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; - MaybeWarningFnAttrs.push_back(std::make_pair( - AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); - MaybeWarningFnAttrs.push_back(std::make_pair( - AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); - MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( - FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), - IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); - - FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); - SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; - MaybeStoreOriginFnAttrs.push_back(std::make_pair( - AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); - MaybeStoreOriginFnAttrs.push_back(std::make_pair( - AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); - MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( - FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), - IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), - IRB.getInt32Ty()); - } - - MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( - "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, - IRB.getInt8PtrTy(), IntptrTy); - MsanPoisonStackFn = - M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), - IRB.getInt8PtrTy(), IntptrTy); -} - -/// Insert extern declaration of runtime-provided functions and globals. -void MemorySanitizer::initializeCallbacks(Module &M) { - // Only do this once. - if (CallbacksInitialized) - return; - - IRBuilder<> IRB(*C); - // Initialize callbacks that are common for kernel and userspace - // instrumentation. - MsanChainOriginFn = M.getOrInsertFunction( - "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); + /// MSan runtime replacements for memmove, memcpy and memset. + FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; + + /// KMSAN callback for task-local function argument shadow. + StructType *MsanContextStateTy; + FunctionCallee MsanGetContextStateFn; + + /// Functions for poisoning/unpoisoning local variables + FunctionCallee MsanPoisonAllocaFn, MsanUnpoisonAllocaFn; + + /// Each of the MsanMetadataPtrXxx functions returns a pair of shadow/origin + /// pointers. + FunctionCallee MsanMetadataPtrForLoadN, MsanMetadataPtrForStoreN; + FunctionCallee MsanMetadataPtrForLoad_1_8[4]; + FunctionCallee MsanMetadataPtrForStore_1_8[4]; + FunctionCallee MsanInstrumentAsmStoreFn; + + /// Helper to choose between different MsanMetadataPtrXxx(). + FunctionCallee getKmsanShadowOriginAccessFn(bool isStore, int size); + + /// Memory map parameters used in application-to-shadow calculation. + const MemoryMapParams *MapParams; + + /// Custom memory map parameters used when -msan-shadow-base or + // -msan-origin-base is provided. + MemoryMapParams CustomMapParams; + + MDNode *ColdCallWeights; + + /// Branch weights for origin store. + MDNode *OriginStoreWeights; +}; + +void insertModuleCtor(Module &M) { + getOrCreateSanitizerCtorAndInitFunctions( + M, kMsanModuleCtorName, kMsanInitName, + /*InitArgTypes=*/{}, + /*InitArgs=*/{}, + // This callback is invoked when the functions are created the first + // time. Hook them into the global ctors list in that case: + [&](Function *Ctor, FunctionCallee) { + if (!ClWithComdat) { + appendToGlobalCtors(M, Ctor, 0); + return; + } + Comdat *MsanCtorComdat = M.getOrInsertComdat(kMsanModuleCtorName); + Ctor->setComdat(MsanCtorComdat); + appendToGlobalCtors(M, Ctor, 0, Ctor); + }); +} + +/// A legacy function pass for msan instrumentation. +/// +/// Instruments functions to detect uninitialized reads. +struct MemorySanitizerLegacyPass : public FunctionPass { + // Pass identification, replacement for typeid. + static char ID; + + MemorySanitizerLegacyPass(MemorySanitizerOptions Options = {}) + : FunctionPass(ID), Options(Options) { + initializeMemorySanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); + } + StringRef getPassName() const override { return "MemorySanitizerLegacyPass"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } + + bool runOnFunction(Function &F) override { + return MSan->sanitizeFunction( + F, getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F)); + } + bool doInitialization(Module &M) override; + + Optional<MemorySanitizer> MSan; + MemorySanitizerOptions Options; +}; + +template <class T> T getOptOrDefault(const cl::opt<T> &Opt, T Default) { + return (Opt.getNumOccurrences() > 0) ? Opt : Default; +} + +} // end anonymous namespace + +MemorySanitizerOptions::MemorySanitizerOptions(int TO, bool R, bool K) + : Kernel(getOptOrDefault(ClEnableKmsan, K)), + TrackOrigins(getOptOrDefault(ClTrackOrigins, Kernel ? 2 : TO)), + Recover(getOptOrDefault(ClKeepGoing, Kernel || R)) {} + +PreservedAnalyses MemorySanitizerPass::run(Function &F, + FunctionAnalysisManager &FAM) { + MemorySanitizer Msan(*F.getParent(), Options); + if (Msan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +PreservedAnalyses MemorySanitizerPass::run(Module &M, + ModuleAnalysisManager &AM) { + if (Options.Kernel) + return PreservedAnalyses::all(); + insertModuleCtor(M); + return PreservedAnalyses::none(); +} + +char MemorySanitizerLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(MemorySanitizerLegacyPass, "msan", + "MemorySanitizer: detects uninitialized reads.", false, + false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(MemorySanitizerLegacyPass, "msan", + "MemorySanitizer: detects uninitialized reads.", false, + false) + +FunctionPass * +llvm::createMemorySanitizerLegacyPassPass(MemorySanitizerOptions Options) { + return new MemorySanitizerLegacyPass(Options); +} + +/// Create a non-const global initialized with the given string. +/// +/// Creates a writable global for Str so that we can pass it to the +/// run-time lib. Runtime uses first 4 bytes of the string to store the +/// frame ID, so the string needs to be mutable. +static GlobalVariable *createPrivateNonConstGlobalForString(Module &M, + StringRef Str) { + Constant *StrConst = ConstantDataArray::getString(M.getContext(), Str); + return new GlobalVariable(M, StrConst->getType(), /*isConstant=*/false, + GlobalValue::PrivateLinkage, StrConst, ""); +} + +/// Create KMSAN API callbacks. +void MemorySanitizer::createKernelApi(Module &M) { + IRBuilder<> IRB(*C); + + // These will be initialized in insertKmsanPrologue(). + RetvalTLS = nullptr; + RetvalOriginTLS = nullptr; + ParamTLS = nullptr; + ParamOriginTLS = nullptr; + VAArgTLS = nullptr; + VAArgOriginTLS = nullptr; + VAArgOverflowSizeTLS = nullptr; + + WarningFn = M.getOrInsertFunction("__msan_warning", IRB.getVoidTy(), + IRB.getInt32Ty()); + // Requests the per-task context state (kmsan_context_state*) from the + // runtime library. + MsanContextStateTy = StructType::get( + ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), + ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8), + ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), + ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8), /* va_arg_origin */ + IRB.getInt64Ty(), ArrayType::get(OriginTy, kParamTLSSize / 4), OriginTy, + OriginTy); + MsanGetContextStateFn = M.getOrInsertFunction( + "__msan_get_context_state", PointerType::get(MsanContextStateTy, 0)); + + Type *RetTy = StructType::get(PointerType::get(IRB.getInt8Ty(), 0), + PointerType::get(IRB.getInt32Ty(), 0)); + + for (int ind = 0, size = 1; ind < 4; ind++, size <<= 1) { + std::string name_load = + "__msan_metadata_ptr_for_load_" + std::to_string(size); + std::string name_store = + "__msan_metadata_ptr_for_store_" + std::to_string(size); + MsanMetadataPtrForLoad_1_8[ind] = M.getOrInsertFunction( + name_load, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); + MsanMetadataPtrForStore_1_8[ind] = M.getOrInsertFunction( + name_store, RetTy, PointerType::get(IRB.getInt8Ty(), 0)); + } + + MsanMetadataPtrForLoadN = M.getOrInsertFunction( + "__msan_metadata_ptr_for_load_n", RetTy, + PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); + MsanMetadataPtrForStoreN = M.getOrInsertFunction( + "__msan_metadata_ptr_for_store_n", RetTy, + PointerType::get(IRB.getInt8Ty(), 0), IRB.getInt64Ty()); + + // Functions for poisoning and unpoisoning memory. + MsanPoisonAllocaFn = + M.getOrInsertFunction("__msan_poison_alloca", IRB.getVoidTy(), + IRB.getInt8PtrTy(), IntptrTy, IRB.getInt8PtrTy()); + MsanUnpoisonAllocaFn = M.getOrInsertFunction( + "__msan_unpoison_alloca", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy); +} + +static Constant *getOrInsertGlobal(Module &M, StringRef Name, Type *Ty) { + return M.getOrInsertGlobal(Name, Ty, [&] { + return new GlobalVariable(M, Ty, false, GlobalVariable::ExternalLinkage, + nullptr, Name, nullptr, + GlobalVariable::InitialExecTLSModel); + }); +} + +/// Insert declarations for userspace-specific functions and globals. +void MemorySanitizer::createUserspaceApi(Module &M) { + IRBuilder<> IRB(*C); + + // Create the callback. + // FIXME: this function should have "Cold" calling conv, + // which is not yet implemented. + StringRef WarningFnName = Recover ? "__msan_warning_with_origin" + : "__msan_warning_with_origin_noreturn"; + WarningFn = + M.getOrInsertFunction(WarningFnName, IRB.getVoidTy(), IRB.getInt32Ty()); + + // Create the global TLS variables. + RetvalTLS = + getOrInsertGlobal(M, "__msan_retval_tls", + ArrayType::get(IRB.getInt64Ty(), kRetvalTLSSize / 8)); + + RetvalOriginTLS = getOrInsertGlobal(M, "__msan_retval_origin_tls", OriginTy); + + ParamTLS = + getOrInsertGlobal(M, "__msan_param_tls", + ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); + + ParamOriginTLS = + getOrInsertGlobal(M, "__msan_param_origin_tls", + ArrayType::get(OriginTy, kParamTLSSize / 4)); + + VAArgTLS = + getOrInsertGlobal(M, "__msan_va_arg_tls", + ArrayType::get(IRB.getInt64Ty(), kParamTLSSize / 8)); + + VAArgOriginTLS = + getOrInsertGlobal(M, "__msan_va_arg_origin_tls", + ArrayType::get(OriginTy, kParamTLSSize / 4)); + + VAArgOverflowSizeTLS = + getOrInsertGlobal(M, "__msan_va_arg_overflow_size_tls", IRB.getInt64Ty()); + + for (size_t AccessSizeIndex = 0; AccessSizeIndex < kNumberOfAccessSizes; + AccessSizeIndex++) { + unsigned AccessSize = 1 << AccessSizeIndex; + std::string FunctionName = "__msan_maybe_warning_" + itostr(AccessSize); + SmallVector<std::pair<unsigned, Attribute>, 2> MaybeWarningFnAttrs; + MaybeWarningFnAttrs.push_back(std::make_pair( + AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); + MaybeWarningFnAttrs.push_back(std::make_pair( + AttributeList::FirstArgIndex + 1, Attribute::get(*C, Attribute::ZExt))); + MaybeWarningFn[AccessSizeIndex] = M.getOrInsertFunction( + FunctionName, AttributeList::get(*C, MaybeWarningFnAttrs), + IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt32Ty()); + + FunctionName = "__msan_maybe_store_origin_" + itostr(AccessSize); + SmallVector<std::pair<unsigned, Attribute>, 2> MaybeStoreOriginFnAttrs; + MaybeStoreOriginFnAttrs.push_back(std::make_pair( + AttributeList::FirstArgIndex, Attribute::get(*C, Attribute::ZExt))); + MaybeStoreOriginFnAttrs.push_back(std::make_pair( + AttributeList::FirstArgIndex + 2, Attribute::get(*C, Attribute::ZExt))); + MaybeStoreOriginFn[AccessSizeIndex] = M.getOrInsertFunction( + FunctionName, AttributeList::get(*C, MaybeStoreOriginFnAttrs), + IRB.getVoidTy(), IRB.getIntNTy(AccessSize * 8), IRB.getInt8PtrTy(), + IRB.getInt32Ty()); + } + + MsanSetAllocaOrigin4Fn = M.getOrInsertFunction( + "__msan_set_alloca_origin4", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, + IRB.getInt8PtrTy(), IntptrTy); + MsanPoisonStackFn = + M.getOrInsertFunction("__msan_poison_stack", IRB.getVoidTy(), + IRB.getInt8PtrTy(), IntptrTy); +} + +/// Insert extern declaration of runtime-provided functions and globals. +void MemorySanitizer::initializeCallbacks(Module &M) { + // Only do this once. + if (CallbacksInitialized) + return; + + IRBuilder<> IRB(*C); + // Initialize callbacks that are common for kernel and userspace + // instrumentation. + MsanChainOriginFn = M.getOrInsertFunction( + "__msan_chain_origin", IRB.getInt32Ty(), IRB.getInt32Ty()); MsanSetOriginFn = M.getOrInsertFunction("__msan_set_origin", IRB.getVoidTy(), IRB.getInt8PtrTy(), IntptrTy, IRB.getInt32Ty()); - MemmoveFn = M.getOrInsertFunction( - "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IntptrTy); - MemcpyFn = M.getOrInsertFunction( - "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), - IntptrTy); - MemsetFn = M.getOrInsertFunction( - "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), - IntptrTy); - - MsanInstrumentAsmStoreFn = - M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), - PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); - - if (CompileKernel) { - createKernelApi(M); - } else { - createUserspaceApi(M); - } - CallbacksInitialized = true; -} - -FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, - int size) { - FunctionCallee *Fns = - isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; - switch (size) { - case 1: - return Fns[0]; - case 2: - return Fns[1]; - case 4: - return Fns[2]; - case 8: - return Fns[3]; - default: - return nullptr; - } -} - -/// Module-level initialization. -/// -/// inserts a call to __msan_init to the module's constructor list. -void MemorySanitizer::initializeModule(Module &M) { - auto &DL = M.getDataLayout(); - - bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; - bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; - // Check the overrides first - if (ShadowPassed || OriginPassed) { - CustomMapParams.AndMask = ClAndMask; - CustomMapParams.XorMask = ClXorMask; - CustomMapParams.ShadowBase = ClShadowBase; - CustomMapParams.OriginBase = ClOriginBase; - MapParams = &CustomMapParams; - } else { - Triple TargetTriple(M.getTargetTriple()); - switch (TargetTriple.getOS()) { - case Triple::FreeBSD: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = FreeBSD_X86_MemoryMapParams.bits64; - break; - case Triple::x86: - MapParams = FreeBSD_X86_MemoryMapParams.bits32; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - case Triple::NetBSD: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = NetBSD_X86_MemoryMapParams.bits64; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - case Triple::Linux: - switch (TargetTriple.getArch()) { - case Triple::x86_64: - MapParams = Linux_X86_MemoryMapParams.bits64; - break; - case Triple::x86: - MapParams = Linux_X86_MemoryMapParams.bits32; - break; - case Triple::mips64: - case Triple::mips64el: - MapParams = Linux_MIPS_MemoryMapParams.bits64; - break; - case Triple::ppc64: - case Triple::ppc64le: - MapParams = Linux_PowerPC_MemoryMapParams.bits64; - break; - case Triple::systemz: - MapParams = Linux_S390_MemoryMapParams.bits64; - break; - case Triple::aarch64: - case Triple::aarch64_be: - MapParams = Linux_ARM_MemoryMapParams.bits64; - break; - default: - report_fatal_error("unsupported architecture"); - } - break; - default: - report_fatal_error("unsupported operating system"); - } - } - - C = &(M.getContext()); - IRBuilder<> IRB(*C); - IntptrTy = IRB.getIntPtrTy(DL); - OriginTy = IRB.getInt32Ty(); - - ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); - OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); - - if (!CompileKernel) { - if (TrackOrigins) - M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { - return new GlobalVariable( - M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, - IRB.getInt32(TrackOrigins), "__msan_track_origins"); - }); - - if (Recover) - M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { - return new GlobalVariable(M, IRB.getInt32Ty(), true, - GlobalValue::WeakODRLinkage, - IRB.getInt32(Recover), "__msan_keep_going"); - }); -} -} - -bool MemorySanitizerLegacyPass::doInitialization(Module &M) { - if (!Options.Kernel) - insertModuleCtor(M); - MSan.emplace(M, Options); - return true; -} - -namespace { - -/// A helper class that handles instrumentation of VarArg -/// functions on a particular platform. -/// -/// Implementations are expected to insert the instrumentation -/// necessary to propagate argument shadow through VarArg function -/// calls. Visit* methods are called during an InstVisitor pass over -/// the function, and should avoid creating new basic blocks. A new -/// instance of this class is created for each instrumented function. -struct VarArgHelper { - virtual ~VarArgHelper() = default; - - /// Visit a CallBase. - virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; - - /// Visit a va_start call. - virtual void visitVAStartInst(VAStartInst &I) = 0; - - /// Visit a va_copy call. - virtual void visitVACopyInst(VACopyInst &I) = 0; - - /// Finalize function instrumentation. - /// - /// This method is called after visiting all interesting (see above) - /// instructions in a function. - virtual void finalizeInstrumentation() = 0; -}; - -struct MemorySanitizerVisitor; - -} // end anonymous namespace - -static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, - MemorySanitizerVisitor &Visitor); - -static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { - if (TypeSize <= 8) return 0; - return Log2_32_Ceil((TypeSize + 7) / 8); -} - -namespace { - -/// This class does all the work for a given function. Store and Load -/// instructions store and load corresponding shadow and origin -/// values. Most instructions propagate shadow from arguments to their -/// return values. Certain instructions (most importantly, BranchInst) -/// test their argument shadow and print reports (with a runtime call) if it's -/// non-zero. -struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { - Function &F; - MemorySanitizer &MS; - SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; - ValueMap<Value*, Value*> ShadowMap, OriginMap; - std::unique_ptr<VarArgHelper> VAHelper; - const TargetLibraryInfo *TLI; + MemmoveFn = M.getOrInsertFunction( + "__msan_memmove", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IntptrTy); + MemcpyFn = M.getOrInsertFunction( + "__msan_memcpy", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), + IntptrTy); + MemsetFn = M.getOrInsertFunction( + "__msan_memset", IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IRB.getInt32Ty(), + IntptrTy); + + MsanInstrumentAsmStoreFn = + M.getOrInsertFunction("__msan_instrument_asm_store", IRB.getVoidTy(), + PointerType::get(IRB.getInt8Ty(), 0), IntptrTy); + + if (CompileKernel) { + createKernelApi(M); + } else { + createUserspaceApi(M); + } + CallbacksInitialized = true; +} + +FunctionCallee MemorySanitizer::getKmsanShadowOriginAccessFn(bool isStore, + int size) { + FunctionCallee *Fns = + isStore ? MsanMetadataPtrForStore_1_8 : MsanMetadataPtrForLoad_1_8; + switch (size) { + case 1: + return Fns[0]; + case 2: + return Fns[1]; + case 4: + return Fns[2]; + case 8: + return Fns[3]; + default: + return nullptr; + } +} + +/// Module-level initialization. +/// +/// inserts a call to __msan_init to the module's constructor list. +void MemorySanitizer::initializeModule(Module &M) { + auto &DL = M.getDataLayout(); + + bool ShadowPassed = ClShadowBase.getNumOccurrences() > 0; + bool OriginPassed = ClOriginBase.getNumOccurrences() > 0; + // Check the overrides first + if (ShadowPassed || OriginPassed) { + CustomMapParams.AndMask = ClAndMask; + CustomMapParams.XorMask = ClXorMask; + CustomMapParams.ShadowBase = ClShadowBase; + CustomMapParams.OriginBase = ClOriginBase; + MapParams = &CustomMapParams; + } else { + Triple TargetTriple(M.getTargetTriple()); + switch (TargetTriple.getOS()) { + case Triple::FreeBSD: + switch (TargetTriple.getArch()) { + case Triple::x86_64: + MapParams = FreeBSD_X86_MemoryMapParams.bits64; + break; + case Triple::x86: + MapParams = FreeBSD_X86_MemoryMapParams.bits32; + break; + default: + report_fatal_error("unsupported architecture"); + } + break; + case Triple::NetBSD: + switch (TargetTriple.getArch()) { + case Triple::x86_64: + MapParams = NetBSD_X86_MemoryMapParams.bits64; + break; + default: + report_fatal_error("unsupported architecture"); + } + break; + case Triple::Linux: + switch (TargetTriple.getArch()) { + case Triple::x86_64: + MapParams = Linux_X86_MemoryMapParams.bits64; + break; + case Triple::x86: + MapParams = Linux_X86_MemoryMapParams.bits32; + break; + case Triple::mips64: + case Triple::mips64el: + MapParams = Linux_MIPS_MemoryMapParams.bits64; + break; + case Triple::ppc64: + case Triple::ppc64le: + MapParams = Linux_PowerPC_MemoryMapParams.bits64; + break; + case Triple::systemz: + MapParams = Linux_S390_MemoryMapParams.bits64; + break; + case Triple::aarch64: + case Triple::aarch64_be: + MapParams = Linux_ARM_MemoryMapParams.bits64; + break; + default: + report_fatal_error("unsupported architecture"); + } + break; + default: + report_fatal_error("unsupported operating system"); + } + } + + C = &(M.getContext()); + IRBuilder<> IRB(*C); + IntptrTy = IRB.getIntPtrTy(DL); + OriginTy = IRB.getInt32Ty(); + + ColdCallWeights = MDBuilder(*C).createBranchWeights(1, 1000); + OriginStoreWeights = MDBuilder(*C).createBranchWeights(1, 1000); + + if (!CompileKernel) { + if (TrackOrigins) + M.getOrInsertGlobal("__msan_track_origins", IRB.getInt32Ty(), [&] { + return new GlobalVariable( + M, IRB.getInt32Ty(), true, GlobalValue::WeakODRLinkage, + IRB.getInt32(TrackOrigins), "__msan_track_origins"); + }); + + if (Recover) + M.getOrInsertGlobal("__msan_keep_going", IRB.getInt32Ty(), [&] { + return new GlobalVariable(M, IRB.getInt32Ty(), true, + GlobalValue::WeakODRLinkage, + IRB.getInt32(Recover), "__msan_keep_going"); + }); +} +} + +bool MemorySanitizerLegacyPass::doInitialization(Module &M) { + if (!Options.Kernel) + insertModuleCtor(M); + MSan.emplace(M, Options); + return true; +} + +namespace { + +/// A helper class that handles instrumentation of VarArg +/// functions on a particular platform. +/// +/// Implementations are expected to insert the instrumentation +/// necessary to propagate argument shadow through VarArg function +/// calls. Visit* methods are called during an InstVisitor pass over +/// the function, and should avoid creating new basic blocks. A new +/// instance of this class is created for each instrumented function. +struct VarArgHelper { + virtual ~VarArgHelper() = default; + + /// Visit a CallBase. + virtual void visitCallBase(CallBase &CB, IRBuilder<> &IRB) = 0; + + /// Visit a va_start call. + virtual void visitVAStartInst(VAStartInst &I) = 0; + + /// Visit a va_copy call. + virtual void visitVACopyInst(VACopyInst &I) = 0; + + /// Finalize function instrumentation. + /// + /// This method is called after visiting all interesting (see above) + /// instructions in a function. + virtual void finalizeInstrumentation() = 0; +}; + +struct MemorySanitizerVisitor; + +} // end anonymous namespace + +static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, + MemorySanitizerVisitor &Visitor); + +static unsigned TypeSizeToSizeIndex(unsigned TypeSize) { + if (TypeSize <= 8) return 0; + return Log2_32_Ceil((TypeSize + 7) / 8); +} + +namespace { + +/// This class does all the work for a given function. Store and Load +/// instructions store and load corresponding shadow and origin +/// values. Most instructions propagate shadow from arguments to their +/// return values. Certain instructions (most importantly, BranchInst) +/// test their argument shadow and print reports (with a runtime call) if it's +/// non-zero. +struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { + Function &F; + MemorySanitizer &MS; + SmallVector<PHINode *, 16> ShadowPHINodes, OriginPHINodes; + ValueMap<Value*, Value*> ShadowMap, OriginMap; + std::unique_ptr<VarArgHelper> VAHelper; + const TargetLibraryInfo *TLI; Instruction *FnPrologueEnd; - - // The following flags disable parts of MSan instrumentation based on - // exclusion list contents and command-line options. - bool InsertChecks; - bool PropagateShadow; - bool PoisonStack; - bool PoisonUndef; - - struct ShadowOriginAndInsertPoint { - Value *Shadow; - Value *Origin; - Instruction *OrigIns; - - ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) - : Shadow(S), Origin(O), OrigIns(I) {} - }; - SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; - bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; - SmallSet<AllocaInst *, 16> AllocaSet; - SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; - SmallVector<StoreInst *, 16> StoreList; - - MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, - const TargetLibraryInfo &TLI) - : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { - bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); - InsertChecks = SanitizeFunction; - PropagateShadow = SanitizeFunction; - PoisonStack = SanitizeFunction && ClPoisonStack; - PoisonUndef = SanitizeFunction && ClPoisonUndef; - + + // The following flags disable parts of MSan instrumentation based on + // exclusion list contents and command-line options. + bool InsertChecks; + bool PropagateShadow; + bool PoisonStack; + bool PoisonUndef; + + struct ShadowOriginAndInsertPoint { + Value *Shadow; + Value *Origin; + Instruction *OrigIns; + + ShadowOriginAndInsertPoint(Value *S, Value *O, Instruction *I) + : Shadow(S), Origin(O), OrigIns(I) {} + }; + SmallVector<ShadowOriginAndInsertPoint, 16> InstrumentationList; + bool InstrumentLifetimeStart = ClHandleLifetimeIntrinsics; + SmallSet<AllocaInst *, 16> AllocaSet; + SmallVector<std::pair<IntrinsicInst *, AllocaInst *>, 16> LifetimeStartList; + SmallVector<StoreInst *, 16> StoreList; + + MemorySanitizerVisitor(Function &F, MemorySanitizer &MS, + const TargetLibraryInfo &TLI) + : F(F), MS(MS), VAHelper(CreateVarArgHelper(F, MS, *this)), TLI(&TLI) { + bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeMemory); + InsertChecks = SanitizeFunction; + PropagateShadow = SanitizeFunction; + PoisonStack = SanitizeFunction && ClPoisonStack; + PoisonUndef = SanitizeFunction && ClPoisonUndef; + // In the presence of unreachable blocks, we may see Phi nodes with // incoming nodes from such blocks. Since InstVisitor skips unreachable // blocks, such nodes will not have any shadow value associated with them. // It's easier to remove unreachable blocks than deal with missing shadow. removeUnreachableBlocks(F); - MS.initializeCallbacks(*F.getParent()); + MS.initializeCallbacks(*F.getParent()); FnPrologueEnd = IRBuilder<>(F.getEntryBlock().getFirstNonPHI()) .CreateIntrinsic(Intrinsic::donothing, {}, {}); - + if (MS.CompileKernel) { IRBuilder<> IRB(FnPrologueEnd); insertKmsanPrologue(IRB); } - LLVM_DEBUG(if (!InsertChecks) dbgs() - << "MemorySanitizer is not inserting checks into '" - << F.getName() << "'\n"); - } - + LLVM_DEBUG(if (!InsertChecks) dbgs() + << "MemorySanitizer is not inserting checks into '" + << F.getName() << "'\n"); + } + bool isInPrologue(Instruction &I) { return I.getParent() == FnPrologueEnd->getParent() && (&I == FnPrologueEnd || I.comesBefore(FnPrologueEnd)); } - Value *updateOrigin(Value *V, IRBuilder<> &IRB) { - if (MS.TrackOrigins <= 1) return V; - return IRB.CreateCall(MS.MsanChainOriginFn, V); - } - - Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { - const DataLayout &DL = F.getParent()->getDataLayout(); - unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); - if (IntptrSize == kOriginSize) return Origin; - assert(IntptrSize == kOriginSize * 2); - Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); - return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); - } - - /// Fill memory range with the given origin value. - void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, - unsigned Size, Align Alignment) { - const DataLayout &DL = F.getParent()->getDataLayout(); - const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); - unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); - assert(IntptrAlignment >= kMinOriginAlignment); - assert(IntptrSize >= kOriginSize); - - unsigned Ofs = 0; - Align CurrentAlignment = Alignment; - if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { - Value *IntptrOrigin = originToIntptr(IRB, Origin); - Value *IntptrOriginPtr = - IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); - for (unsigned i = 0; i < Size / IntptrSize; ++i) { - Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) - : IntptrOriginPtr; - IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); - Ofs += IntptrSize / kOriginSize; - CurrentAlignment = IntptrAlignment; - } - } - - for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { - Value *GEP = - i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; - IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); - CurrentAlignment = kMinOriginAlignment; - } - } - - void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, - Value *OriginPtr, Align Alignment, bool AsCall) { - const DataLayout &DL = F.getParent()->getDataLayout(); - const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); - unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); + Value *updateOrigin(Value *V, IRBuilder<> &IRB) { + if (MS.TrackOrigins <= 1) return V; + return IRB.CreateCall(MS.MsanChainOriginFn, V); + } + + Value *originToIntptr(IRBuilder<> &IRB, Value *Origin) { + const DataLayout &DL = F.getParent()->getDataLayout(); + unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); + if (IntptrSize == kOriginSize) return Origin; + assert(IntptrSize == kOriginSize * 2); + Origin = IRB.CreateIntCast(Origin, MS.IntptrTy, /* isSigned */ false); + return IRB.CreateOr(Origin, IRB.CreateShl(Origin, kOriginSize * 8)); + } + + /// Fill memory range with the given origin value. + void paintOrigin(IRBuilder<> &IRB, Value *Origin, Value *OriginPtr, + unsigned Size, Align Alignment) { + const DataLayout &DL = F.getParent()->getDataLayout(); + const Align IntptrAlignment = DL.getABITypeAlign(MS.IntptrTy); + unsigned IntptrSize = DL.getTypeStoreSize(MS.IntptrTy); + assert(IntptrAlignment >= kMinOriginAlignment); + assert(IntptrSize >= kOriginSize); + + unsigned Ofs = 0; + Align CurrentAlignment = Alignment; + if (Alignment >= IntptrAlignment && IntptrSize > kOriginSize) { + Value *IntptrOrigin = originToIntptr(IRB, Origin); + Value *IntptrOriginPtr = + IRB.CreatePointerCast(OriginPtr, PointerType::get(MS.IntptrTy, 0)); + for (unsigned i = 0; i < Size / IntptrSize; ++i) { + Value *Ptr = i ? IRB.CreateConstGEP1_32(MS.IntptrTy, IntptrOriginPtr, i) + : IntptrOriginPtr; + IRB.CreateAlignedStore(IntptrOrigin, Ptr, CurrentAlignment); + Ofs += IntptrSize / kOriginSize; + CurrentAlignment = IntptrAlignment; + } + } + + for (unsigned i = Ofs; i < (Size + kOriginSize - 1) / kOriginSize; ++i) { + Value *GEP = + i ? IRB.CreateConstGEP1_32(MS.OriginTy, OriginPtr, i) : OriginPtr; + IRB.CreateAlignedStore(Origin, GEP, CurrentAlignment); + CurrentAlignment = kMinOriginAlignment; + } + } + + void storeOrigin(IRBuilder<> &IRB, Value *Addr, Value *Shadow, Value *Origin, + Value *OriginPtr, Align Alignment, bool AsCall) { + const DataLayout &DL = F.getParent()->getDataLayout(); + const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); + unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) paintOrigin(IRB, updateOrigin(Origin, IRB), OriginPtr, StoreSize, - OriginAlignment); + OriginAlignment); return; - } + } unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); @@ -1189,206 +1189,206 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { paintOrigin(IRBNew, updateOrigin(Origin, IRBNew), OriginPtr, StoreSize, OriginAlignment); } - } - - void materializeStores(bool InstrumentWithCalls) { - for (StoreInst *SI : StoreList) { - IRBuilder<> IRB(SI); - Value *Val = SI->getValueOperand(); - Value *Addr = SI->getPointerOperand(); - Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); - Value *ShadowPtr, *OriginPtr; - Type *ShadowTy = Shadow->getType(); - const Align Alignment = assumeAligned(SI->getAlignment()); - const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); - - StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); - LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); - (void)NewSI; - - if (SI->isAtomic()) - SI->setOrdering(addReleaseOrdering(SI->getOrdering())); - - if (MS.TrackOrigins && !SI->isAtomic()) - storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, - OriginAlignment, InstrumentWithCalls); - } - } - - /// Helper function to insert a warning at IRB's current insert point. - void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { - if (!Origin) - Origin = (Value *)IRB.getInt32(0); - assert(Origin->getType()->isIntegerTy()); - IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); - // FIXME: Insert UnreachableInst if !MS.Recover? - // This may invalidate some of the following checks and needs to be done - // at the very end. - } - - void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, - bool AsCall) { - IRBuilder<> IRB(OrigIns); - LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); + } + + void materializeStores(bool InstrumentWithCalls) { + for (StoreInst *SI : StoreList) { + IRBuilder<> IRB(SI); + Value *Val = SI->getValueOperand(); + Value *Addr = SI->getPointerOperand(); + Value *Shadow = SI->isAtomic() ? getCleanShadow(Val) : getShadow(Val); + Value *ShadowPtr, *OriginPtr; + Type *ShadowTy = Shadow->getType(); + const Align Alignment = assumeAligned(SI->getAlignment()); + const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); + std::tie(ShadowPtr, OriginPtr) = + getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ true); + + StoreInst *NewSI = IRB.CreateAlignedStore(Shadow, ShadowPtr, Alignment); + LLVM_DEBUG(dbgs() << " STORE: " << *NewSI << "\n"); + (void)NewSI; + + if (SI->isAtomic()) + SI->setOrdering(addReleaseOrdering(SI->getOrdering())); + + if (MS.TrackOrigins && !SI->isAtomic()) + storeOrigin(IRB, Addr, Shadow, getOrigin(Val), OriginPtr, + OriginAlignment, InstrumentWithCalls); + } + } + + /// Helper function to insert a warning at IRB's current insert point. + void insertWarningFn(IRBuilder<> &IRB, Value *Origin) { + if (!Origin) + Origin = (Value *)IRB.getInt32(0); + assert(Origin->getType()->isIntegerTy()); + IRB.CreateCall(MS.WarningFn, Origin)->setCannotMerge(); + // FIXME: Insert UnreachableInst if !MS.Recover? + // This may invalidate some of the following checks and needs to be done + // at the very end. + } + + void materializeOneCheck(Instruction *OrigIns, Value *Shadow, Value *Origin, + bool AsCall) { + IRBuilder<> IRB(OrigIns); + LLVM_DEBUG(dbgs() << " SHAD0 : " << *Shadow << "\n"); Value *ConvertedShadow = convertShadowToScalar(Shadow, IRB); - LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); - - if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { - if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { - insertWarningFn(IRB, Origin); - } - return; - } - - const DataLayout &DL = OrigIns->getModule()->getDataLayout(); - - unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); - unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); - if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { - FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; - Value *ConvertedShadow2 = - IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); - IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin - ? Origin - : (Value *)IRB.getInt32(0)}); - } else { + LLVM_DEBUG(dbgs() << " SHAD1 : " << *ConvertedShadow << "\n"); + + if (auto *ConstantShadow = dyn_cast<Constant>(ConvertedShadow)) { + if (ClCheckConstantShadow && !ConstantShadow->isZeroValue()) { + insertWarningFn(IRB, Origin); + } + return; + } + + const DataLayout &DL = OrigIns->getModule()->getDataLayout(); + + unsigned TypeSizeInBits = DL.getTypeSizeInBits(ConvertedShadow->getType()); + unsigned SizeIndex = TypeSizeToSizeIndex(TypeSizeInBits); + if (AsCall && SizeIndex < kNumberOfAccessSizes && !MS.CompileKernel) { + FunctionCallee Fn = MS.MaybeWarningFn[SizeIndex]; + Value *ConvertedShadow2 = + IRB.CreateZExt(ConvertedShadow, IRB.getIntNTy(8 * (1 << SizeIndex))); + IRB.CreateCall(Fn, {ConvertedShadow2, MS.TrackOrigins && Origin + ? Origin + : (Value *)IRB.getInt32(0)}); + } else { Value *Cmp = convertToBool(ConvertedShadow, IRB, "_mscmp"); - Instruction *CheckTerm = SplitBlockAndInsertIfThen( - Cmp, OrigIns, - /* Unreachable */ !MS.Recover, MS.ColdCallWeights); - - IRB.SetInsertPoint(CheckTerm); - insertWarningFn(IRB, Origin); - LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); - } - } - - void materializeChecks(bool InstrumentWithCalls) { - for (const auto &ShadowData : InstrumentationList) { - Instruction *OrigIns = ShadowData.OrigIns; - Value *Shadow = ShadowData.Shadow; - Value *Origin = ShadowData.Origin; - materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); - } - LLVM_DEBUG(dbgs() << "DONE:\n" << F); - } - + Instruction *CheckTerm = SplitBlockAndInsertIfThen( + Cmp, OrigIns, + /* Unreachable */ !MS.Recover, MS.ColdCallWeights); + + IRB.SetInsertPoint(CheckTerm); + insertWarningFn(IRB, Origin); + LLVM_DEBUG(dbgs() << " CHECK: " << *Cmp << "\n"); + } + } + + void materializeChecks(bool InstrumentWithCalls) { + for (const auto &ShadowData : InstrumentationList) { + Instruction *OrigIns = ShadowData.OrigIns; + Value *Shadow = ShadowData.Shadow; + Value *Origin = ShadowData.Origin; + materializeOneCheck(OrigIns, Shadow, Origin, InstrumentWithCalls); + } + LLVM_DEBUG(dbgs() << "DONE:\n" << F); + } + // Returns the last instruction in the new prologue void insertKmsanPrologue(IRBuilder<> &IRB) { - Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); - Constant *Zero = IRB.getInt32(0); - MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(0)}, "param_shadow"); - MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(1)}, "retval_shadow"); - MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(2)}, "va_arg_shadow"); - MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(3)}, "va_arg_origin"); - MS.VAArgOverflowSizeTLS = - IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); - MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(5)}, "param_origin"); - MS.RetvalOriginTLS = - IRB.CreateGEP(MS.MsanContextStateTy, ContextState, - {Zero, IRB.getInt32(6)}, "retval_origin"); - } - - /// Add MemorySanitizer instrumentation to a function. - bool runOnFunction() { - // Iterate all BBs in depth-first order and create shadow instructions - // for all instructions (where applicable). - // For PHI nodes we create dummy shadow PHIs which will be finalized later. + Value *ContextState = IRB.CreateCall(MS.MsanGetContextStateFn, {}); + Constant *Zero = IRB.getInt32(0); + MS.ParamTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(0)}, "param_shadow"); + MS.RetvalTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(1)}, "retval_shadow"); + MS.VAArgTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(2)}, "va_arg_shadow"); + MS.VAArgOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(3)}, "va_arg_origin"); + MS.VAArgOverflowSizeTLS = + IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(4)}, "va_arg_overflow_size"); + MS.ParamOriginTLS = IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(5)}, "param_origin"); + MS.RetvalOriginTLS = + IRB.CreateGEP(MS.MsanContextStateTy, ContextState, + {Zero, IRB.getInt32(6)}, "retval_origin"); + } + + /// Add MemorySanitizer instrumentation to a function. + bool runOnFunction() { + // Iterate all BBs in depth-first order and create shadow instructions + // for all instructions (where applicable). + // For PHI nodes we create dummy shadow PHIs which will be finalized later. for (BasicBlock *BB : depth_first(FnPrologueEnd->getParent())) - visit(*BB); - - // Finalize PHI nodes. - for (PHINode *PN : ShadowPHINodes) { - PHINode *PNS = cast<PHINode>(getShadow(PN)); - PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; - size_t NumValues = PN->getNumIncomingValues(); - for (size_t v = 0; v < NumValues; v++) { - PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); - if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); - } - } - - VAHelper->finalizeInstrumentation(); - - // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to - // instrumenting only allocas. - if (InstrumentLifetimeStart) { - for (auto Item : LifetimeStartList) { - instrumentAlloca(*Item.second, Item.first); - AllocaSet.erase(Item.second); - } - } - // Poison the allocas for which we didn't instrument the corresponding - // lifetime intrinsics. - for (AllocaInst *AI : AllocaSet) - instrumentAlloca(*AI); - - bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && - InstrumentationList.size() + StoreList.size() > - (unsigned)ClInstrumentationWithCallThreshold; - - // Insert shadow value checks. - materializeChecks(InstrumentWithCalls); - - // Delayed instrumentation of StoreInst. - // This may not add new address checks. - materializeStores(InstrumentWithCalls); - - return true; - } - - /// Compute the shadow type that corresponds to a given Value. - Type *getShadowTy(Value *V) { - return getShadowTy(V->getType()); - } - - /// Compute the shadow type that corresponds to a given Type. - Type *getShadowTy(Type *OrigTy) { - if (!OrigTy->isSized()) { - return nullptr; - } - // For integer type, shadow is the same as the original type. - // This may return weird-sized types like i1. - if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) - return IT; - const DataLayout &DL = F.getParent()->getDataLayout(); - if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { - uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); - return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), - cast<FixedVectorType>(VT)->getNumElements()); - } - if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { - return ArrayType::get(getShadowTy(AT->getElementType()), - AT->getNumElements()); - } - if (StructType *ST = dyn_cast<StructType>(OrigTy)) { - SmallVector<Type*, 4> Elements; - for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) - Elements.push_back(getShadowTy(ST->getElementType(i))); - StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); - LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); - return Res; - } - uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); - return IntegerType::get(*MS.C, TypeSize); - } - - /// Flatten a vector type. - Type *getShadowTyNoVec(Type *ty) { - if (VectorType *vt = dyn_cast<VectorType>(ty)) - return IntegerType::get(*MS.C, - vt->getPrimitiveSizeInBits().getFixedSize()); - return ty; - } - + visit(*BB); + + // Finalize PHI nodes. + for (PHINode *PN : ShadowPHINodes) { + PHINode *PNS = cast<PHINode>(getShadow(PN)); + PHINode *PNO = MS.TrackOrigins ? cast<PHINode>(getOrigin(PN)) : nullptr; + size_t NumValues = PN->getNumIncomingValues(); + for (size_t v = 0; v < NumValues; v++) { + PNS->addIncoming(getShadow(PN, v), PN->getIncomingBlock(v)); + if (PNO) PNO->addIncoming(getOrigin(PN, v), PN->getIncomingBlock(v)); + } + } + + VAHelper->finalizeInstrumentation(); + + // Poison llvm.lifetime.start intrinsics, if we haven't fallen back to + // instrumenting only allocas. + if (InstrumentLifetimeStart) { + for (auto Item : LifetimeStartList) { + instrumentAlloca(*Item.second, Item.first); + AllocaSet.erase(Item.second); + } + } + // Poison the allocas for which we didn't instrument the corresponding + // lifetime intrinsics. + for (AllocaInst *AI : AllocaSet) + instrumentAlloca(*AI); + + bool InstrumentWithCalls = ClInstrumentationWithCallThreshold >= 0 && + InstrumentationList.size() + StoreList.size() > + (unsigned)ClInstrumentationWithCallThreshold; + + // Insert shadow value checks. + materializeChecks(InstrumentWithCalls); + + // Delayed instrumentation of StoreInst. + // This may not add new address checks. + materializeStores(InstrumentWithCalls); + + return true; + } + + /// Compute the shadow type that corresponds to a given Value. + Type *getShadowTy(Value *V) { + return getShadowTy(V->getType()); + } + + /// Compute the shadow type that corresponds to a given Type. + Type *getShadowTy(Type *OrigTy) { + if (!OrigTy->isSized()) { + return nullptr; + } + // For integer type, shadow is the same as the original type. + // This may return weird-sized types like i1. + if (IntegerType *IT = dyn_cast<IntegerType>(OrigTy)) + return IT; + const DataLayout &DL = F.getParent()->getDataLayout(); + if (VectorType *VT = dyn_cast<VectorType>(OrigTy)) { + uint32_t EltSize = DL.getTypeSizeInBits(VT->getElementType()); + return FixedVectorType::get(IntegerType::get(*MS.C, EltSize), + cast<FixedVectorType>(VT)->getNumElements()); + } + if (ArrayType *AT = dyn_cast<ArrayType>(OrigTy)) { + return ArrayType::get(getShadowTy(AT->getElementType()), + AT->getNumElements()); + } + if (StructType *ST = dyn_cast<StructType>(OrigTy)) { + SmallVector<Type*, 4> Elements; + for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) + Elements.push_back(getShadowTy(ST->getElementType(i))); + StructType *Res = StructType::get(*MS.C, Elements, ST->isPacked()); + LLVM_DEBUG(dbgs() << "getShadowTy: " << *ST << " ===> " << *Res << "\n"); + return Res; + } + uint32_t TypeSize = DL.getTypeSizeInBits(OrigTy); + return IntegerType::get(*MS.C, TypeSize); + } + + /// Flatten a vector type. + Type *getShadowTyNoVec(Type *ty) { + if (VectorType *vt = dyn_cast<VectorType>(ty)) + return IntegerType::get(*MS.C, + vt->getPrimitiveSizeInBits().getFixedSize()); + return ty; + } + /// Extract combined shadow of struct elements as a bool Value *collapseStructShadow(StructType *Struct, Value *Shadow, IRBuilder<> &IRB) { @@ -1435,12 +1435,12 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { return collapseStructShadow(Struct, V, IRB); if (ArrayType *Array = dyn_cast<ArrayType>(V->getType())) return collapseArrayShadow(Array, V, IRB); - Type *Ty = V->getType(); - Type *NoVecTy = getShadowTyNoVec(Ty); - if (Ty == NoVecTy) return V; - return IRB.CreateBitCast(V, NoVecTy); - } - + Type *Ty = V->getType(); + Type *NoVecTy = getShadowTyNoVec(Ty); + if (Ty == NoVecTy) return V; + return IRB.CreateBitCast(V, NoVecTy); + } + // Convert a scalar value to an i1 by comparing with 0 Value *convertToBool(Value *V, IRBuilder<> &IRB, const Twine &name = "") { Type *VTy = V->getType(); @@ -1451,386 +1451,386 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { return IRB.CreateICmpNE(V, ConstantInt::get(VTy, 0), name); } - /// Compute the integer shadow offset that corresponds to a given - /// application address. - /// - /// Offset = (Addr & ~AndMask) ^ XorMask - Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { - Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); - - uint64_t AndMask = MS.MapParams->AndMask; - if (AndMask) - OffsetLong = - IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); - - uint64_t XorMask = MS.MapParams->XorMask; - if (XorMask) - OffsetLong = - IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); - return OffsetLong; - } - - /// Compute the shadow and origin addresses corresponding to a given - /// application address. - /// - /// Shadow = ShadowBase + Offset - /// Origin = (OriginBase + Offset) & ~3ULL - std::pair<Value *, Value *> - getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, - MaybeAlign Alignment) { - Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); - Value *ShadowLong = ShadowOffset; - uint64_t ShadowBase = MS.MapParams->ShadowBase; - if (ShadowBase != 0) { - ShadowLong = - IRB.CreateAdd(ShadowLong, - ConstantInt::get(MS.IntptrTy, ShadowBase)); - } - Value *ShadowPtr = - IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); - Value *OriginPtr = nullptr; - if (MS.TrackOrigins) { - Value *OriginLong = ShadowOffset; - uint64_t OriginBase = MS.MapParams->OriginBase; - if (OriginBase != 0) - OriginLong = IRB.CreateAdd(OriginLong, - ConstantInt::get(MS.IntptrTy, OriginBase)); - if (!Alignment || *Alignment < kMinOriginAlignment) { - uint64_t Mask = kMinOriginAlignment.value() - 1; - OriginLong = - IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); - } - OriginPtr = - IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); - } - return std::make_pair(ShadowPtr, OriginPtr); - } - - std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, - IRBuilder<> &IRB, - Type *ShadowTy, - bool isStore) { - Value *ShadowOriginPtrs; - const DataLayout &DL = F.getParent()->getDataLayout(); - int Size = DL.getTypeStoreSize(ShadowTy); - - FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); - Value *AddrCast = - IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); - if (Getter) { - ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); - } else { - Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); - ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN - : MS.MsanMetadataPtrForLoadN, - {AddrCast, SizeVal}); - } - Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); - ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); - Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); - - return std::make_pair(ShadowPtr, OriginPtr); - } - - std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, - Type *ShadowTy, - MaybeAlign Alignment, - bool isStore) { - if (MS.CompileKernel) - return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); - return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); - } - - /// Compute the shadow address for a given function argument. - /// - /// Shadow = ParamTLS+ArgOffset. - Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, - int ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); - if (ArgOffset) - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), - "_msarg"); - } - - /// Compute the origin address for a given function argument. - Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, - int ArgOffset) { - if (!MS.TrackOrigins) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); - if (ArgOffset) - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), - "_msarg_o"); - } - - /// Compute the shadow address for a retval. - Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { - return IRB.CreatePointerCast(MS.RetvalTLS, - PointerType::get(getShadowTy(A), 0), - "_msret"); - } - - /// Compute the origin address for a retval. - Value *getOriginPtrForRetval(IRBuilder<> &IRB) { - // We keep a single origin for the entire retval. Might be too optimistic. - return MS.RetvalOriginTLS; - } - - /// Set SV to be the shadow value for V. - void setShadow(Value *V, Value *SV) { - assert(!ShadowMap.count(V) && "Values may only have one shadow"); - ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); - } - - /// Set Origin to be the origin value for V. - void setOrigin(Value *V, Value *Origin) { - if (!MS.TrackOrigins) return; - assert(!OriginMap.count(V) && "Values may only have one origin"); - LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); - OriginMap[V] = Origin; - } - - Constant *getCleanShadow(Type *OrigTy) { - Type *ShadowTy = getShadowTy(OrigTy); - if (!ShadowTy) - return nullptr; - return Constant::getNullValue(ShadowTy); - } - - /// Create a clean shadow value for a given value. - /// - /// Clean shadow (all zeroes) means all bits of the value are defined - /// (initialized). - Constant *getCleanShadow(Value *V) { - return getCleanShadow(V->getType()); - } - - /// Create a dirty shadow of a given shadow type. - Constant *getPoisonedShadow(Type *ShadowTy) { - assert(ShadowTy); - if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) - return Constant::getAllOnesValue(ShadowTy); - if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { - SmallVector<Constant *, 4> Vals(AT->getNumElements(), - getPoisonedShadow(AT->getElementType())); - return ConstantArray::get(AT, Vals); - } - if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { - SmallVector<Constant *, 4> Vals; - for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) - Vals.push_back(getPoisonedShadow(ST->getElementType(i))); - return ConstantStruct::get(ST, Vals); - } - llvm_unreachable("Unexpected shadow type"); - } - - /// Create a dirty shadow for a given value. - Constant *getPoisonedShadow(Value *V) { - Type *ShadowTy = getShadowTy(V); - if (!ShadowTy) - return nullptr; - return getPoisonedShadow(ShadowTy); - } - - /// Create a clean (zero) origin. - Value *getCleanOrigin() { - return Constant::getNullValue(MS.OriginTy); - } - - /// Get the shadow value for a given Value. - /// - /// This function either returns the value set earlier with setShadow, - /// or extracts if from ParamTLS (for function arguments). - Value *getShadow(Value *V) { - if (!PropagateShadow) return getCleanShadow(V); - if (Instruction *I = dyn_cast<Instruction>(V)) { - if (I->getMetadata("nosanitize")) - return getCleanShadow(V); - // For instructions the shadow is already stored in the map. - Value *Shadow = ShadowMap[V]; - if (!Shadow) { - LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); - (void)I; - assert(Shadow && "No shadow for a value"); - } - return Shadow; - } - if (UndefValue *U = dyn_cast<UndefValue>(V)) { - Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); - LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); - (void)U; - return AllOnes; - } - if (Argument *A = dyn_cast<Argument>(V)) { - // For arguments we compute the shadow on demand and store it in the map. - Value **ShadowPtr = &ShadowMap[V]; - if (*ShadowPtr) - return *ShadowPtr; - Function *F = A->getParent(); + /// Compute the integer shadow offset that corresponds to a given + /// application address. + /// + /// Offset = (Addr & ~AndMask) ^ XorMask + Value *getShadowPtrOffset(Value *Addr, IRBuilder<> &IRB) { + Value *OffsetLong = IRB.CreatePointerCast(Addr, MS.IntptrTy); + + uint64_t AndMask = MS.MapParams->AndMask; + if (AndMask) + OffsetLong = + IRB.CreateAnd(OffsetLong, ConstantInt::get(MS.IntptrTy, ~AndMask)); + + uint64_t XorMask = MS.MapParams->XorMask; + if (XorMask) + OffsetLong = + IRB.CreateXor(OffsetLong, ConstantInt::get(MS.IntptrTy, XorMask)); + return OffsetLong; + } + + /// Compute the shadow and origin addresses corresponding to a given + /// application address. + /// + /// Shadow = ShadowBase + Offset + /// Origin = (OriginBase + Offset) & ~3ULL + std::pair<Value *, Value *> + getShadowOriginPtrUserspace(Value *Addr, IRBuilder<> &IRB, Type *ShadowTy, + MaybeAlign Alignment) { + Value *ShadowOffset = getShadowPtrOffset(Addr, IRB); + Value *ShadowLong = ShadowOffset; + uint64_t ShadowBase = MS.MapParams->ShadowBase; + if (ShadowBase != 0) { + ShadowLong = + IRB.CreateAdd(ShadowLong, + ConstantInt::get(MS.IntptrTy, ShadowBase)); + } + Value *ShadowPtr = + IRB.CreateIntToPtr(ShadowLong, PointerType::get(ShadowTy, 0)); + Value *OriginPtr = nullptr; + if (MS.TrackOrigins) { + Value *OriginLong = ShadowOffset; + uint64_t OriginBase = MS.MapParams->OriginBase; + if (OriginBase != 0) + OriginLong = IRB.CreateAdd(OriginLong, + ConstantInt::get(MS.IntptrTy, OriginBase)); + if (!Alignment || *Alignment < kMinOriginAlignment) { + uint64_t Mask = kMinOriginAlignment.value() - 1; + OriginLong = + IRB.CreateAnd(OriginLong, ConstantInt::get(MS.IntptrTy, ~Mask)); + } + OriginPtr = + IRB.CreateIntToPtr(OriginLong, PointerType::get(MS.OriginTy, 0)); + } + return std::make_pair(ShadowPtr, OriginPtr); + } + + std::pair<Value *, Value *> getShadowOriginPtrKernel(Value *Addr, + IRBuilder<> &IRB, + Type *ShadowTy, + bool isStore) { + Value *ShadowOriginPtrs; + const DataLayout &DL = F.getParent()->getDataLayout(); + int Size = DL.getTypeStoreSize(ShadowTy); + + FunctionCallee Getter = MS.getKmsanShadowOriginAccessFn(isStore, Size); + Value *AddrCast = + IRB.CreatePointerCast(Addr, PointerType::get(IRB.getInt8Ty(), 0)); + if (Getter) { + ShadowOriginPtrs = IRB.CreateCall(Getter, AddrCast); + } else { + Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); + ShadowOriginPtrs = IRB.CreateCall(isStore ? MS.MsanMetadataPtrForStoreN + : MS.MsanMetadataPtrForLoadN, + {AddrCast, SizeVal}); + } + Value *ShadowPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 0); + ShadowPtr = IRB.CreatePointerCast(ShadowPtr, PointerType::get(ShadowTy, 0)); + Value *OriginPtr = IRB.CreateExtractValue(ShadowOriginPtrs, 1); + + return std::make_pair(ShadowPtr, OriginPtr); + } + + std::pair<Value *, Value *> getShadowOriginPtr(Value *Addr, IRBuilder<> &IRB, + Type *ShadowTy, + MaybeAlign Alignment, + bool isStore) { + if (MS.CompileKernel) + return getShadowOriginPtrKernel(Addr, IRB, ShadowTy, isStore); + return getShadowOriginPtrUserspace(Addr, IRB, ShadowTy, Alignment); + } + + /// Compute the shadow address for a given function argument. + /// + /// Shadow = ParamTLS+ArgOffset. + Value *getShadowPtrForArgument(Value *A, IRBuilder<> &IRB, + int ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.ParamTLS, MS.IntptrTy); + if (ArgOffset) + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(getShadowTy(A), 0), + "_msarg"); + } + + /// Compute the origin address for a given function argument. + Value *getOriginPtrForArgument(Value *A, IRBuilder<> &IRB, + int ArgOffset) { + if (!MS.TrackOrigins) + return nullptr; + Value *Base = IRB.CreatePointerCast(MS.ParamOriginTLS, MS.IntptrTy); + if (ArgOffset) + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), + "_msarg_o"); + } + + /// Compute the shadow address for a retval. + Value *getShadowPtrForRetval(Value *A, IRBuilder<> &IRB) { + return IRB.CreatePointerCast(MS.RetvalTLS, + PointerType::get(getShadowTy(A), 0), + "_msret"); + } + + /// Compute the origin address for a retval. + Value *getOriginPtrForRetval(IRBuilder<> &IRB) { + // We keep a single origin for the entire retval. Might be too optimistic. + return MS.RetvalOriginTLS; + } + + /// Set SV to be the shadow value for V. + void setShadow(Value *V, Value *SV) { + assert(!ShadowMap.count(V) && "Values may only have one shadow"); + ShadowMap[V] = PropagateShadow ? SV : getCleanShadow(V); + } + + /// Set Origin to be the origin value for V. + void setOrigin(Value *V, Value *Origin) { + if (!MS.TrackOrigins) return; + assert(!OriginMap.count(V) && "Values may only have one origin"); + LLVM_DEBUG(dbgs() << "ORIGIN: " << *V << " ==> " << *Origin << "\n"); + OriginMap[V] = Origin; + } + + Constant *getCleanShadow(Type *OrigTy) { + Type *ShadowTy = getShadowTy(OrigTy); + if (!ShadowTy) + return nullptr; + return Constant::getNullValue(ShadowTy); + } + + /// Create a clean shadow value for a given value. + /// + /// Clean shadow (all zeroes) means all bits of the value are defined + /// (initialized). + Constant *getCleanShadow(Value *V) { + return getCleanShadow(V->getType()); + } + + /// Create a dirty shadow of a given shadow type. + Constant *getPoisonedShadow(Type *ShadowTy) { + assert(ShadowTy); + if (isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy)) + return Constant::getAllOnesValue(ShadowTy); + if (ArrayType *AT = dyn_cast<ArrayType>(ShadowTy)) { + SmallVector<Constant *, 4> Vals(AT->getNumElements(), + getPoisonedShadow(AT->getElementType())); + return ConstantArray::get(AT, Vals); + } + if (StructType *ST = dyn_cast<StructType>(ShadowTy)) { + SmallVector<Constant *, 4> Vals; + for (unsigned i = 0, n = ST->getNumElements(); i < n; i++) + Vals.push_back(getPoisonedShadow(ST->getElementType(i))); + return ConstantStruct::get(ST, Vals); + } + llvm_unreachable("Unexpected shadow type"); + } + + /// Create a dirty shadow for a given value. + Constant *getPoisonedShadow(Value *V) { + Type *ShadowTy = getShadowTy(V); + if (!ShadowTy) + return nullptr; + return getPoisonedShadow(ShadowTy); + } + + /// Create a clean (zero) origin. + Value *getCleanOrigin() { + return Constant::getNullValue(MS.OriginTy); + } + + /// Get the shadow value for a given Value. + /// + /// This function either returns the value set earlier with setShadow, + /// or extracts if from ParamTLS (for function arguments). + Value *getShadow(Value *V) { + if (!PropagateShadow) return getCleanShadow(V); + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (I->getMetadata("nosanitize")) + return getCleanShadow(V); + // For instructions the shadow is already stored in the map. + Value *Shadow = ShadowMap[V]; + if (!Shadow) { + LLVM_DEBUG(dbgs() << "No shadow: " << *V << "\n" << *(I->getParent())); + (void)I; + assert(Shadow && "No shadow for a value"); + } + return Shadow; + } + if (UndefValue *U = dyn_cast<UndefValue>(V)) { + Value *AllOnes = PoisonUndef ? getPoisonedShadow(V) : getCleanShadow(V); + LLVM_DEBUG(dbgs() << "Undef: " << *U << " ==> " << *AllOnes << "\n"); + (void)U; + return AllOnes; + } + if (Argument *A = dyn_cast<Argument>(V)) { + // For arguments we compute the shadow on demand and store it in the map. + Value **ShadowPtr = &ShadowMap[V]; + if (*ShadowPtr) + return *ShadowPtr; + Function *F = A->getParent(); IRBuilder<> EntryIRB(FnPrologueEnd); - unsigned ArgOffset = 0; - const DataLayout &DL = F->getParent()->getDataLayout(); - for (auto &FArg : F->args()) { - if (!FArg.getType()->isSized()) { - LLVM_DEBUG(dbgs() << "Arg is not sized\n"); - continue; - } - - bool FArgByVal = FArg.hasByValAttr(); - bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); - bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; - unsigned Size = - FArg.hasByValAttr() - ? DL.getTypeAllocSize(FArg.getParamByValType()) - : DL.getTypeAllocSize(FArg.getType()); - - if (A == &FArg) { - bool Overflow = ArgOffset + Size > kParamTLSSize; - if (FArgEagerCheck) { - *ShadowPtr = getCleanShadow(V); - setOrigin(A, getCleanOrigin()); - continue; - } else if (FArgByVal) { - Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); - // ByVal pointer itself has clean shadow. We copy the actual - // argument shadow to the underlying memory. - // Figure out maximal valid memcpy alignment. - const Align ArgAlign = DL.getValueOrABITypeAlignment( - MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); - Value *CpShadowPtr = - getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, - /*isStore*/ true) - .first; - // TODO(glider): need to copy origins. - if (Overflow) { - // ParamTLS overflow. - EntryIRB.CreateMemSet( - CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), - Size, ArgAlign); - } else { - const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); - Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, - CopyAlign, Size); - LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); - (void)Cpy; - } - *ShadowPtr = getCleanShadow(V); - } else { - // Shadow over TLS - Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); - if (Overflow) { - // ParamTLS overflow. - *ShadowPtr = getCleanShadow(V); - } else { - *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, - kShadowTLSAlignment); - } - } - LLVM_DEBUG(dbgs() - << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); - if (MS.TrackOrigins && !Overflow) { - Value *OriginPtr = - getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); - setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); - } else { - setOrigin(A, getCleanOrigin()); - } + unsigned ArgOffset = 0; + const DataLayout &DL = F->getParent()->getDataLayout(); + for (auto &FArg : F->args()) { + if (!FArg.getType()->isSized()) { + LLVM_DEBUG(dbgs() << "Arg is not sized\n"); + continue; + } + + bool FArgByVal = FArg.hasByValAttr(); + bool FArgNoUndef = FArg.hasAttribute(Attribute::NoUndef); + bool FArgEagerCheck = ClEagerChecks && !FArgByVal && FArgNoUndef; + unsigned Size = + FArg.hasByValAttr() + ? DL.getTypeAllocSize(FArg.getParamByValType()) + : DL.getTypeAllocSize(FArg.getType()); + + if (A == &FArg) { + bool Overflow = ArgOffset + Size > kParamTLSSize; + if (FArgEagerCheck) { + *ShadowPtr = getCleanShadow(V); + setOrigin(A, getCleanOrigin()); + continue; + } else if (FArgByVal) { + Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); + // ByVal pointer itself has clean shadow. We copy the actual + // argument shadow to the underlying memory. + // Figure out maximal valid memcpy alignment. + const Align ArgAlign = DL.getValueOrABITypeAlignment( + MaybeAlign(FArg.getParamAlignment()), FArg.getParamByValType()); + Value *CpShadowPtr = + getShadowOriginPtr(V, EntryIRB, EntryIRB.getInt8Ty(), ArgAlign, + /*isStore*/ true) + .first; + // TODO(glider): need to copy origins. + if (Overflow) { + // ParamTLS overflow. + EntryIRB.CreateMemSet( + CpShadowPtr, Constant::getNullValue(EntryIRB.getInt8Ty()), + Size, ArgAlign); + } else { + const Align CopyAlign = std::min(ArgAlign, kShadowTLSAlignment); + Value *Cpy = EntryIRB.CreateMemCpy(CpShadowPtr, CopyAlign, Base, + CopyAlign, Size); + LLVM_DEBUG(dbgs() << " ByValCpy: " << *Cpy << "\n"); + (void)Cpy; + } + *ShadowPtr = getCleanShadow(V); + } else { + // Shadow over TLS + Value *Base = getShadowPtrForArgument(&FArg, EntryIRB, ArgOffset); + if (Overflow) { + // ParamTLS overflow. + *ShadowPtr = getCleanShadow(V); + } else { + *ShadowPtr = EntryIRB.CreateAlignedLoad(getShadowTy(&FArg), Base, + kShadowTLSAlignment); + } + } + LLVM_DEBUG(dbgs() + << " ARG: " << FArg << " ==> " << **ShadowPtr << "\n"); + if (MS.TrackOrigins && !Overflow) { + Value *OriginPtr = + getOriginPtrForArgument(&FArg, EntryIRB, ArgOffset); + setOrigin(A, EntryIRB.CreateLoad(MS.OriginTy, OriginPtr)); + } else { + setOrigin(A, getCleanOrigin()); + } break; - } - - if (!FArgEagerCheck) - ArgOffset += alignTo(Size, kShadowTLSAlignment); - } - assert(*ShadowPtr && "Could not find shadow for an argument"); - return *ShadowPtr; - } - // For everything else the shadow is zero. - return getCleanShadow(V); - } - - /// Get the shadow for i-th argument of the instruction I. - Value *getShadow(Instruction *I, int i) { - return getShadow(I->getOperand(i)); - } - - /// Get the origin for a value. - Value *getOrigin(Value *V) { - if (!MS.TrackOrigins) return nullptr; - if (!PropagateShadow) return getCleanOrigin(); - if (isa<Constant>(V)) return getCleanOrigin(); - assert((isa<Instruction>(V) || isa<Argument>(V)) && - "Unexpected value type in getOrigin()"); - if (Instruction *I = dyn_cast<Instruction>(V)) { - if (I->getMetadata("nosanitize")) - return getCleanOrigin(); - } - Value *Origin = OriginMap[V]; - assert(Origin && "Missing origin"); - return Origin; - } - - /// Get the origin for i-th argument of the instruction I. - Value *getOrigin(Instruction *I, int i) { - return getOrigin(I->getOperand(i)); - } - - /// Remember the place where a shadow check should be inserted. - /// - /// This location will be later instrumented with a check that will print a - /// UMR warning in runtime if the shadow value is not 0. - void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { - assert(Shadow); - if (!InsertChecks) return; -#ifndef NDEBUG - Type *ShadowTy = Shadow->getType(); + } + + if (!FArgEagerCheck) + ArgOffset += alignTo(Size, kShadowTLSAlignment); + } + assert(*ShadowPtr && "Could not find shadow for an argument"); + return *ShadowPtr; + } + // For everything else the shadow is zero. + return getCleanShadow(V); + } + + /// Get the shadow for i-th argument of the instruction I. + Value *getShadow(Instruction *I, int i) { + return getShadow(I->getOperand(i)); + } + + /// Get the origin for a value. + Value *getOrigin(Value *V) { + if (!MS.TrackOrigins) return nullptr; + if (!PropagateShadow) return getCleanOrigin(); + if (isa<Constant>(V)) return getCleanOrigin(); + assert((isa<Instruction>(V) || isa<Argument>(V)) && + "Unexpected value type in getOrigin()"); + if (Instruction *I = dyn_cast<Instruction>(V)) { + if (I->getMetadata("nosanitize")) + return getCleanOrigin(); + } + Value *Origin = OriginMap[V]; + assert(Origin && "Missing origin"); + return Origin; + } + + /// Get the origin for i-th argument of the instruction I. + Value *getOrigin(Instruction *I, int i) { + return getOrigin(I->getOperand(i)); + } + + /// Remember the place where a shadow check should be inserted. + /// + /// This location will be later instrumented with a check that will print a + /// UMR warning in runtime if the shadow value is not 0. + void insertShadowCheck(Value *Shadow, Value *Origin, Instruction *OrigIns) { + assert(Shadow); + if (!InsertChecks) return; +#ifndef NDEBUG + Type *ShadowTy = Shadow->getType(); assert((isa<IntegerType>(ShadowTy) || isa<VectorType>(ShadowTy) || isa<StructType>(ShadowTy) || isa<ArrayType>(ShadowTy)) && "Can only insert checks for integer, vector, and aggregate shadow " "types"); -#endif - InstrumentationList.push_back( - ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); - } - - /// Remember the place where a shadow check should be inserted. - /// - /// This location will be later instrumented with a check that will print a - /// UMR warning in runtime if the value is not fully defined. - void insertShadowCheck(Value *Val, Instruction *OrigIns) { - assert(Val); - Value *Shadow, *Origin; - if (ClCheckConstantShadow) { - Shadow = getShadow(Val); - if (!Shadow) return; - Origin = getOrigin(Val); - } else { - Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); - if (!Shadow) return; - Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); - } - insertShadowCheck(Shadow, Origin, OrigIns); - } - - AtomicOrdering addReleaseOrdering(AtomicOrdering a) { - switch (a) { - case AtomicOrdering::NotAtomic: - return AtomicOrdering::NotAtomic; - case AtomicOrdering::Unordered: - case AtomicOrdering::Monotonic: - case AtomicOrdering::Release: - return AtomicOrdering::Release; - case AtomicOrdering::Acquire: - case AtomicOrdering::AcquireRelease: - return AtomicOrdering::AcquireRelease; - case AtomicOrdering::SequentiallyConsistent: - return AtomicOrdering::SequentiallyConsistent; - } - llvm_unreachable("Unknown ordering"); - } - +#endif + InstrumentationList.push_back( + ShadowOriginAndInsertPoint(Shadow, Origin, OrigIns)); + } + + /// Remember the place where a shadow check should be inserted. + /// + /// This location will be later instrumented with a check that will print a + /// UMR warning in runtime if the value is not fully defined. + void insertShadowCheck(Value *Val, Instruction *OrigIns) { + assert(Val); + Value *Shadow, *Origin; + if (ClCheckConstantShadow) { + Shadow = getShadow(Val); + if (!Shadow) return; + Origin = getOrigin(Val); + } else { + Shadow = dyn_cast_or_null<Instruction>(getShadow(Val)); + if (!Shadow) return; + Origin = dyn_cast_or_null<Instruction>(getOrigin(Val)); + } + insertShadowCheck(Shadow, Origin, OrigIns); + } + + AtomicOrdering addReleaseOrdering(AtomicOrdering a) { + switch (a) { + case AtomicOrdering::NotAtomic: + return AtomicOrdering::NotAtomic; + case AtomicOrdering::Unordered: + case AtomicOrdering::Monotonic: + case AtomicOrdering::Release: + return AtomicOrdering::Release; + case AtomicOrdering::Acquire: + case AtomicOrdering::AcquireRelease: + return AtomicOrdering::AcquireRelease; + case AtomicOrdering::SequentiallyConsistent: + return AtomicOrdering::SequentiallyConsistent; + } + llvm_unreachable("Unknown ordering"); + } + Value *makeAddReleaseOrderingTable(IRBuilder<> &IRB) { constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; uint32_t OrderingTable[NumOrderings] = {}; @@ -1849,23 +1849,23 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { makeArrayRef(OrderingTable, NumOrderings)); } - AtomicOrdering addAcquireOrdering(AtomicOrdering a) { - switch (a) { - case AtomicOrdering::NotAtomic: - return AtomicOrdering::NotAtomic; - case AtomicOrdering::Unordered: - case AtomicOrdering::Monotonic: - case AtomicOrdering::Acquire: - return AtomicOrdering::Acquire; - case AtomicOrdering::Release: - case AtomicOrdering::AcquireRelease: - return AtomicOrdering::AcquireRelease; - case AtomicOrdering::SequentiallyConsistent: - return AtomicOrdering::SequentiallyConsistent; - } - llvm_unreachable("Unknown ordering"); - } - + AtomicOrdering addAcquireOrdering(AtomicOrdering a) { + switch (a) { + case AtomicOrdering::NotAtomic: + return AtomicOrdering::NotAtomic; + case AtomicOrdering::Unordered: + case AtomicOrdering::Monotonic: + case AtomicOrdering::Acquire: + return AtomicOrdering::Acquire; + case AtomicOrdering::Release: + case AtomicOrdering::AcquireRelease: + return AtomicOrdering::AcquireRelease; + case AtomicOrdering::SequentiallyConsistent: + return AtomicOrdering::SequentiallyConsistent; + } + llvm_unreachable("Unknown ordering"); + } + Value *makeAddAcquireOrderingTable(IRBuilder<> &IRB) { constexpr int NumOrderings = (int)AtomicOrderingCABI::seq_cst + 1; uint32_t OrderingTable[NumOrderings] = {}; @@ -1884,1353 +1884,1353 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { makeArrayRef(OrderingTable, NumOrderings)); } - // ------------------- Visitors. - using InstVisitor<MemorySanitizerVisitor>::visit; - void visit(Instruction &I) { + // ------------------- Visitors. + using InstVisitor<MemorySanitizerVisitor>::visit; + void visit(Instruction &I) { if (I.getMetadata("nosanitize")) return; // Don't want to visit if we're in the prologue if (isInPrologue(I)) return; InstVisitor<MemorySanitizerVisitor>::visit(I); - } - - /// Instrument LoadInst - /// - /// Loads the corresponding shadow and (optionally) origin. - /// Optionally, checks that the load address is fully defined. - void visitLoadInst(LoadInst &I) { - assert(I.getType()->isSized() && "Load type must have size"); - assert(!I.getMetadata("nosanitize")); - IRBuilder<> IRB(I.getNextNode()); - Type *ShadowTy = getShadowTy(&I); - Value *Addr = I.getPointerOperand(); - Value *ShadowPtr = nullptr, *OriginPtr = nullptr; - const Align Alignment = assumeAligned(I.getAlignment()); - if (PropagateShadow) { - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); - setShadow(&I, - IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) - insertShadowCheck(I.getPointerOperand(), &I); - - if (I.isAtomic()) - I.setOrdering(addAcquireOrdering(I.getOrdering())); - - if (MS.TrackOrigins) { - if (PropagateShadow) { - const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); - setOrigin( - &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); - } else { - setOrigin(&I, getCleanOrigin()); - } - } - } - - /// Instrument StoreInst - /// - /// Stores the corresponding shadow and (optionally) origin. - /// Optionally, checks that the store address is fully defined. - void visitStoreInst(StoreInst &I) { - StoreList.push_back(&I); - if (ClCheckAccessAddress) - insertShadowCheck(I.getPointerOperand(), &I); - } - - void handleCASOrRMW(Instruction &I) { - assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); - - IRBuilder<> IRB(&I); - Value *Addr = I.getOperand(0); - Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), - /*isStore*/ true) - .first; - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - // Only test the conditional argument of cmpxchg instruction. - // The other argument can potentially be uninitialized, but we can not - // detect this situation reliably without possible false positives. - if (isa<AtomicCmpXchgInst>(I)) - insertShadowCheck(I.getOperand(1), &I); - - IRB.CreateStore(getCleanShadow(&I), ShadowPtr); - - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitAtomicRMWInst(AtomicRMWInst &I) { - handleCASOrRMW(I); - I.setOrdering(addReleaseOrdering(I.getOrdering())); - } - - void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { - handleCASOrRMW(I); - I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); - } - - // Vector manipulation. - void visitExtractElementInst(ExtractElementInst &I) { - insertShadowCheck(I.getOperand(1), &I); - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), - "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitInsertElementInst(InsertElementInst &I) { - insertShadowCheck(I.getOperand(2), &I); - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), - I.getOperand(2), "_msprop")); - setOriginForNaryOp(I); - } - - void visitShuffleVectorInst(ShuffleVectorInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), - I.getShuffleMask(), "_msprop")); - setOriginForNaryOp(I); - } - - // Casts. - void visitSExtInst(SExtInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitZExtInst(ZExtInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitTruncInst(TruncInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitBitCastInst(BitCastInst &I) { - // Special case: if this is the bitcast (there is exactly 1 allowed) between - // a musttail call and a ret, don't instrument. New instructions are not - // allowed after a musttail call. - if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) - if (CI->isMustTailCall()) - return; - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitPtrToIntInst(PtrToIntInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, - "_msprop_ptrtoint")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitIntToPtrInst(IntToPtrInst &I) { - IRBuilder<> IRB(&I); - setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, - "_msprop_inttoptr")); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } - void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } - void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } - void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } - void visitFPExtInst(CastInst& I) { handleShadowOr(I); } - void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } - - /// Propagate shadow for bitwise AND. - /// - /// This code is exact, i.e. if, for example, a bit in the left argument - /// is defined and 0, then neither the value not definedness of the - /// corresponding bit in B don't affect the resulting shadow. - void visitAnd(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // "And" of 0 and a poisoned value results in unpoisoned value. - // 1&1 => 1; 0&1 => 0; p&1 => p; - // 1&0 => 0; 0&0 => 0; p&0 => 0; - // 1&p => p; 0&p => 0; p&p => p; - // S = (S1 & S2) | (V1 & S2) | (S1 & V2) - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *V1 = I.getOperand(0); - Value *V2 = I.getOperand(1); - if (V1->getType() != S1->getType()) { - V1 = IRB.CreateIntCast(V1, S1->getType(), false); - V2 = IRB.CreateIntCast(V2, S2->getType(), false); - } - Value *S1S2 = IRB.CreateAnd(S1, S2); - Value *V1S2 = IRB.CreateAnd(V1, S2); - Value *S1V2 = IRB.CreateAnd(S1, V2); - setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); - setOriginForNaryOp(I); - } - - void visitOr(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // "Or" of 1 and a poisoned value results in unpoisoned value. - // 1|1 => 1; 0|1 => 1; p|1 => 1; - // 1|0 => 1; 0|0 => 0; p|0 => p; - // 1|p => 1; 0|p => p; p|p => p; - // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *V1 = IRB.CreateNot(I.getOperand(0)); - Value *V2 = IRB.CreateNot(I.getOperand(1)); - if (V1->getType() != S1->getType()) { - V1 = IRB.CreateIntCast(V1, S1->getType(), false); - V2 = IRB.CreateIntCast(V2, S2->getType(), false); - } - Value *S1S2 = IRB.CreateAnd(S1, S2); - Value *V1S2 = IRB.CreateAnd(V1, S2); - Value *S1V2 = IRB.CreateAnd(S1, V2); - setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); - setOriginForNaryOp(I); - } - - /// Default propagation of shadow and/or origin. - /// - /// This class implements the general case of shadow propagation, used in all - /// cases where we don't know and/or don't care about what the operation - /// actually does. It converts all input shadow values to a common type - /// (extending or truncating as necessary), and bitwise OR's them. - /// - /// This is much cheaper than inserting checks (i.e. requiring inputs to be - /// fully initialized), and less prone to false positives. - /// - /// This class also implements the general case of origin propagation. For a - /// Nary operation, result origin is set to the origin of an argument that is - /// not entirely initialized. If there is more than one such arguments, the - /// rightmost of them is picked. It does not matter which one is picked if all - /// arguments are initialized. - template <bool CombineShadow> - class Combiner { - Value *Shadow = nullptr; - Value *Origin = nullptr; - IRBuilder<> &IRB; - MemorySanitizerVisitor *MSV; - - public: - Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) - : IRB(IRB), MSV(MSV) {} - - /// Add a pair of shadow and origin values to the mix. - Combiner &Add(Value *OpShadow, Value *OpOrigin) { - if (CombineShadow) { - assert(OpShadow); - if (!Shadow) - Shadow = OpShadow; - else { - OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); - Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); - } - } - - if (MSV->MS.TrackOrigins) { - assert(OpOrigin); - if (!Origin) { - Origin = OpOrigin; - } else { - Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); - // No point in adding something that might result in 0 origin value. - if (!ConstOrigin || !ConstOrigin->isNullValue()) { + } + + /// Instrument LoadInst + /// + /// Loads the corresponding shadow and (optionally) origin. + /// Optionally, checks that the load address is fully defined. + void visitLoadInst(LoadInst &I) { + assert(I.getType()->isSized() && "Load type must have size"); + assert(!I.getMetadata("nosanitize")); + IRBuilder<> IRB(I.getNextNode()); + Type *ShadowTy = getShadowTy(&I); + Value *Addr = I.getPointerOperand(); + Value *ShadowPtr = nullptr, *OriginPtr = nullptr; + const Align Alignment = assumeAligned(I.getAlignment()); + if (PropagateShadow) { + std::tie(ShadowPtr, OriginPtr) = + getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); + setShadow(&I, + IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); + } else { + setShadow(&I, getCleanShadow(&I)); + } + + if (ClCheckAccessAddress) + insertShadowCheck(I.getPointerOperand(), &I); + + if (I.isAtomic()) + I.setOrdering(addAcquireOrdering(I.getOrdering())); + + if (MS.TrackOrigins) { + if (PropagateShadow) { + const Align OriginAlignment = std::max(kMinOriginAlignment, Alignment); + setOrigin( + &I, IRB.CreateAlignedLoad(MS.OriginTy, OriginPtr, OriginAlignment)); + } else { + setOrigin(&I, getCleanOrigin()); + } + } + } + + /// Instrument StoreInst + /// + /// Stores the corresponding shadow and (optionally) origin. + /// Optionally, checks that the store address is fully defined. + void visitStoreInst(StoreInst &I) { + StoreList.push_back(&I); + if (ClCheckAccessAddress) + insertShadowCheck(I.getPointerOperand(), &I); + } + + void handleCASOrRMW(Instruction &I) { + assert(isa<AtomicRMWInst>(I) || isa<AtomicCmpXchgInst>(I)); + + IRBuilder<> IRB(&I); + Value *Addr = I.getOperand(0); + Value *ShadowPtr = getShadowOriginPtr(Addr, IRB, I.getType(), Align(1), + /*isStore*/ true) + .first; + + if (ClCheckAccessAddress) + insertShadowCheck(Addr, &I); + + // Only test the conditional argument of cmpxchg instruction. + // The other argument can potentially be uninitialized, but we can not + // detect this situation reliably without possible false positives. + if (isa<AtomicCmpXchgInst>(I)) + insertShadowCheck(I.getOperand(1), &I); + + IRB.CreateStore(getCleanShadow(&I), ShadowPtr); + + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + + void visitAtomicRMWInst(AtomicRMWInst &I) { + handleCASOrRMW(I); + I.setOrdering(addReleaseOrdering(I.getOrdering())); + } + + void visitAtomicCmpXchgInst(AtomicCmpXchgInst &I) { + handleCASOrRMW(I); + I.setSuccessOrdering(addReleaseOrdering(I.getSuccessOrdering())); + } + + // Vector manipulation. + void visitExtractElementInst(ExtractElementInst &I) { + insertShadowCheck(I.getOperand(1), &I); + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateExtractElement(getShadow(&I, 0), I.getOperand(1), + "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitInsertElementInst(InsertElementInst &I) { + insertShadowCheck(I.getOperand(2), &I); + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateInsertElement(getShadow(&I, 0), getShadow(&I, 1), + I.getOperand(2), "_msprop")); + setOriginForNaryOp(I); + } + + void visitShuffleVectorInst(ShuffleVectorInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateShuffleVector(getShadow(&I, 0), getShadow(&I, 1), + I.getShuffleMask(), "_msprop")); + setOriginForNaryOp(I); + } + + // Casts. + void visitSExtInst(SExtInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateSExt(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitZExtInst(ZExtInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateZExt(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitTruncInst(TruncInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateTrunc(getShadow(&I, 0), I.getType(), "_msprop")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitBitCastInst(BitCastInst &I) { + // Special case: if this is the bitcast (there is exactly 1 allowed) between + // a musttail call and a ret, don't instrument. New instructions are not + // allowed after a musttail call. + if (auto *CI = dyn_cast<CallInst>(I.getOperand(0))) + if (CI->isMustTailCall()) + return; + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateBitCast(getShadow(&I, 0), getShadowTy(&I))); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitPtrToIntInst(PtrToIntInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, + "_msprop_ptrtoint")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitIntToPtrInst(IntToPtrInst &I) { + IRBuilder<> IRB(&I); + setShadow(&I, IRB.CreateIntCast(getShadow(&I, 0), getShadowTy(&I), false, + "_msprop_inttoptr")); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitFPToSIInst(CastInst& I) { handleShadowOr(I); } + void visitFPToUIInst(CastInst& I) { handleShadowOr(I); } + void visitSIToFPInst(CastInst& I) { handleShadowOr(I); } + void visitUIToFPInst(CastInst& I) { handleShadowOr(I); } + void visitFPExtInst(CastInst& I) { handleShadowOr(I); } + void visitFPTruncInst(CastInst& I) { handleShadowOr(I); } + + /// Propagate shadow for bitwise AND. + /// + /// This code is exact, i.e. if, for example, a bit in the left argument + /// is defined and 0, then neither the value not definedness of the + /// corresponding bit in B don't affect the resulting shadow. + void visitAnd(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // "And" of 0 and a poisoned value results in unpoisoned value. + // 1&1 => 1; 0&1 => 0; p&1 => p; + // 1&0 => 0; 0&0 => 0; p&0 => 0; + // 1&p => p; 0&p => 0; p&p => p; + // S = (S1 & S2) | (V1 & S2) | (S1 & V2) + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *V1 = I.getOperand(0); + Value *V2 = I.getOperand(1); + if (V1->getType() != S1->getType()) { + V1 = IRB.CreateIntCast(V1, S1->getType(), false); + V2 = IRB.CreateIntCast(V2, S2->getType(), false); + } + Value *S1S2 = IRB.CreateAnd(S1, S2); + Value *V1S2 = IRB.CreateAnd(V1, S2); + Value *S1V2 = IRB.CreateAnd(S1, V2); + setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); + setOriginForNaryOp(I); + } + + void visitOr(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // "Or" of 1 and a poisoned value results in unpoisoned value. + // 1|1 => 1; 0|1 => 1; p|1 => 1; + // 1|0 => 1; 0|0 => 0; p|0 => p; + // 1|p => 1; 0|p => p; p|p => p; + // S = (S1 & S2) | (~V1 & S2) | (S1 & ~V2) + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *V1 = IRB.CreateNot(I.getOperand(0)); + Value *V2 = IRB.CreateNot(I.getOperand(1)); + if (V1->getType() != S1->getType()) { + V1 = IRB.CreateIntCast(V1, S1->getType(), false); + V2 = IRB.CreateIntCast(V2, S2->getType(), false); + } + Value *S1S2 = IRB.CreateAnd(S1, S2); + Value *V1S2 = IRB.CreateAnd(V1, S2); + Value *S1V2 = IRB.CreateAnd(S1, V2); + setShadow(&I, IRB.CreateOr({S1S2, V1S2, S1V2})); + setOriginForNaryOp(I); + } + + /// Default propagation of shadow and/or origin. + /// + /// This class implements the general case of shadow propagation, used in all + /// cases where we don't know and/or don't care about what the operation + /// actually does. It converts all input shadow values to a common type + /// (extending or truncating as necessary), and bitwise OR's them. + /// + /// This is much cheaper than inserting checks (i.e. requiring inputs to be + /// fully initialized), and less prone to false positives. + /// + /// This class also implements the general case of origin propagation. For a + /// Nary operation, result origin is set to the origin of an argument that is + /// not entirely initialized. If there is more than one such arguments, the + /// rightmost of them is picked. It does not matter which one is picked if all + /// arguments are initialized. + template <bool CombineShadow> + class Combiner { + Value *Shadow = nullptr; + Value *Origin = nullptr; + IRBuilder<> &IRB; + MemorySanitizerVisitor *MSV; + + public: + Combiner(MemorySanitizerVisitor *MSV, IRBuilder<> &IRB) + : IRB(IRB), MSV(MSV) {} + + /// Add a pair of shadow and origin values to the mix. + Combiner &Add(Value *OpShadow, Value *OpOrigin) { + if (CombineShadow) { + assert(OpShadow); + if (!Shadow) + Shadow = OpShadow; + else { + OpShadow = MSV->CreateShadowCast(IRB, OpShadow, Shadow->getType()); + Shadow = IRB.CreateOr(Shadow, OpShadow, "_msprop"); + } + } + + if (MSV->MS.TrackOrigins) { + assert(OpOrigin); + if (!Origin) { + Origin = OpOrigin; + } else { + Constant *ConstOrigin = dyn_cast<Constant>(OpOrigin); + // No point in adding something that might result in 0 origin value. + if (!ConstOrigin || !ConstOrigin->isNullValue()) { Value *FlatShadow = MSV->convertShadowToScalar(OpShadow, IRB); - Value *Cond = - IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); - Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); - } - } - } - return *this; - } - - /// Add an application value to the mix. - Combiner &Add(Value *V) { - Value *OpShadow = MSV->getShadow(V); - Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; - return Add(OpShadow, OpOrigin); - } - - /// Set the current combined values as the given instruction's shadow - /// and origin. - void Done(Instruction *I) { - if (CombineShadow) { - assert(Shadow); - Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); - MSV->setShadow(I, Shadow); - } - if (MSV->MS.TrackOrigins) { - assert(Origin); - MSV->setOrigin(I, Origin); - } - } - }; - - using ShadowAndOriginCombiner = Combiner<true>; - using OriginCombiner = Combiner<false>; - - /// Propagate origin for arbitrary operation. - void setOriginForNaryOp(Instruction &I) { - if (!MS.TrackOrigins) return; - IRBuilder<> IRB(&I); - OriginCombiner OC(this, IRB); - for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) - OC.Add(OI->get()); - OC.Done(&I); - } - - size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { - assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && - "Vector of pointers is not a valid shadow type"); - return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * - Ty->getScalarSizeInBits() - : Ty->getPrimitiveSizeInBits(); - } - - /// Cast between two shadow types, extending or truncating as - /// necessary. - Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, - bool Signed = false) { - Type *srcTy = V->getType(); - size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); - size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); - if (srcSizeInBits > 1 && dstSizeInBits == 1) - return IRB.CreateICmpNE(V, getCleanShadow(V)); - - if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) - return IRB.CreateIntCast(V, dstTy, Signed); - if (dstTy->isVectorTy() && srcTy->isVectorTy() && - cast<FixedVectorType>(dstTy)->getNumElements() == - cast<FixedVectorType>(srcTy)->getNumElements()) - return IRB.CreateIntCast(V, dstTy, Signed); - Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); - Value *V2 = - IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); - return IRB.CreateBitCast(V2, dstTy); - // TODO: handle struct types. - } - - /// Cast an application value to the type of its own shadow. - Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { - Type *ShadowTy = getShadowTy(V); - if (V->getType() == ShadowTy) - return V; - if (V->getType()->isPtrOrPtrVectorTy()) - return IRB.CreatePtrToInt(V, ShadowTy); - else - return IRB.CreateBitCast(V, ShadowTy); - } - - /// Propagate shadow for arbitrary operation. - void handleShadowOr(Instruction &I) { - IRBuilder<> IRB(&I); - ShadowAndOriginCombiner SC(this, IRB); - for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) - SC.Add(OI->get()); - SC.Done(&I); - } - - void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } - - // Handle multiplication by constant. - // - // Handle a special case of multiplication by constant that may have one or - // more zeros in the lower bits. This makes corresponding number of lower bits - // of the result zero as well. We model it by shifting the other operand - // shadow left by the required number of bits. Effectively, we transform - // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). - // We use multiplication by 2**N instead of shift to cover the case of - // multiplication by 0, which may occur in some elements of a vector operand. - void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, - Value *OtherArg) { - Constant *ShadowMul; - Type *Ty = ConstArg->getType(); - if (auto *VTy = dyn_cast<VectorType>(Ty)) { - unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); - Type *EltTy = VTy->getElementType(); - SmallVector<Constant *, 16> Elements; - for (unsigned Idx = 0; Idx < NumElements; ++Idx) { - if (ConstantInt *Elt = - dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { - const APInt &V = Elt->getValue(); - APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); - Elements.push_back(ConstantInt::get(EltTy, V2)); - } else { - Elements.push_back(ConstantInt::get(EltTy, 1)); - } - } - ShadowMul = ConstantVector::get(Elements); - } else { - if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { - const APInt &V = Elt->getValue(); - APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); - ShadowMul = ConstantInt::get(Ty, V2); - } else { - ShadowMul = ConstantInt::get(Ty, 1); - } - } - - IRBuilder<> IRB(&I); - setShadow(&I, - IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); - setOrigin(&I, getOrigin(OtherArg)); - } - - void visitMul(BinaryOperator &I) { - Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); - Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); - if (constOp0 && !constOp1) - handleMulByConstant(I, constOp0, I.getOperand(1)); - else if (constOp1 && !constOp0) - handleMulByConstant(I, constOp1, I.getOperand(0)); - else - handleShadowOr(I); - } - - void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } - void visitFSub(BinaryOperator &I) { handleShadowOr(I); } - void visitFMul(BinaryOperator &I) { handleShadowOr(I); } - void visitAdd(BinaryOperator &I) { handleShadowOr(I); } - void visitSub(BinaryOperator &I) { handleShadowOr(I); } - void visitXor(BinaryOperator &I) { handleShadowOr(I); } - - void handleIntegerDiv(Instruction &I) { - IRBuilder<> IRB(&I); - // Strict on the second argument. - insertShadowCheck(I.getOperand(1), &I); - setShadow(&I, getShadow(&I, 0)); - setOrigin(&I, getOrigin(&I, 0)); - } - - void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } - void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } - void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } - void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } - - // Floating point division is side-effect free. We can not require that the - // divisor is fully initialized and must propagate shadow. See PR37523. - void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } - void visitFRem(BinaryOperator &I) { handleShadowOr(I); } - - /// Instrument == and != comparisons. - /// - /// Sometimes the comparison result is known even if some of the bits of the - /// arguments are not. - void handleEqualityComparison(ICmpInst &I) { - IRBuilder<> IRB(&I); - Value *A = I.getOperand(0); - Value *B = I.getOperand(1); - Value *Sa = getShadow(A); - Value *Sb = getShadow(B); - - // Get rid of pointers and vectors of pointers. - // For ints (and vectors of ints), types of A and Sa match, - // and this is a no-op. - A = IRB.CreatePointerCast(A, Sa->getType()); - B = IRB.CreatePointerCast(B, Sb->getType()); - - // A == B <==> (C = A^B) == 0 - // A != B <==> (C = A^B) != 0 - // Sc = Sa | Sb - Value *C = IRB.CreateXor(A, B); - Value *Sc = IRB.CreateOr(Sa, Sb); - // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) - // Result is defined if one of the following is true - // * there is a defined 1 bit in C - // * C is fully defined - // Si = !(C & ~Sc) && Sc - Value *Zero = Constant::getNullValue(Sc->getType()); - Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); - Value *Si = - IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), - IRB.CreateICmpEQ( - IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); - Si->setName("_msprop_icmp"); - setShadow(&I, Si); - setOriginForNaryOp(I); - } - - /// Build the lowest possible value of V, taking into account V's - /// uninitialized bits. - Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, - bool isSigned) { - if (isSigned) { - // Split shadow into sign bit and other bits. - Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); - Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); - // Maximise the undefined shadow bit, minimize other undefined bits. - return - IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); - } else { - // Minimize undefined bits. - return IRB.CreateAnd(A, IRB.CreateNot(Sa)); - } - } - - /// Build the highest possible value of V, taking into account V's - /// uninitialized bits. - Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, - bool isSigned) { - if (isSigned) { - // Split shadow into sign bit and other bits. - Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); - Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); - // Minimise the undefined shadow bit, maximise other undefined bits. - return - IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); - } else { - // Maximize undefined bits. - return IRB.CreateOr(A, Sa); - } - } - - /// Instrument relational comparisons. - /// - /// This function does exact shadow propagation for all relational - /// comparisons of integers, pointers and vectors of those. - /// FIXME: output seems suboptimal when one of the operands is a constant - void handleRelationalComparisonExact(ICmpInst &I) { - IRBuilder<> IRB(&I); - Value *A = I.getOperand(0); - Value *B = I.getOperand(1); - Value *Sa = getShadow(A); - Value *Sb = getShadow(B); - - // Get rid of pointers and vectors of pointers. - // For ints (and vectors of ints), types of A and Sa match, - // and this is a no-op. - A = IRB.CreatePointerCast(A, Sa->getType()); - B = IRB.CreatePointerCast(B, Sb->getType()); - - // Let [a0, a1] be the interval of possible values of A, taking into account - // its undefined bits. Let [b0, b1] be the interval of possible values of B. - // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). - bool IsSigned = I.isSigned(); - Value *S1 = IRB.CreateICmp(I.getPredicate(), - getLowestPossibleValue(IRB, A, Sa, IsSigned), - getHighestPossibleValue(IRB, B, Sb, IsSigned)); - Value *S2 = IRB.CreateICmp(I.getPredicate(), - getHighestPossibleValue(IRB, A, Sa, IsSigned), - getLowestPossibleValue(IRB, B, Sb, IsSigned)); - Value *Si = IRB.CreateXor(S1, S2); - setShadow(&I, Si); - setOriginForNaryOp(I); - } - - /// Instrument signed relational comparisons. - /// - /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest - /// bit of the shadow. Everything else is delegated to handleShadowOr(). - void handleSignedRelationalComparison(ICmpInst &I) { - Constant *constOp; - Value *op = nullptr; - CmpInst::Predicate pre; - if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { - op = I.getOperand(0); - pre = I.getPredicate(); - } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { - op = I.getOperand(1); - pre = I.getSwappedPredicate(); - } else { - handleShadowOr(I); - return; - } - - if ((constOp->isNullValue() && - (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || - (constOp->isAllOnesValue() && - (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { - IRBuilder<> IRB(&I); - Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), - "_msprop_icmp_s"); - setShadow(&I, Shadow); - setOrigin(&I, getOrigin(op)); - } else { - handleShadowOr(I); - } - } - - void visitICmpInst(ICmpInst &I) { - if (!ClHandleICmp) { - handleShadowOr(I); - return; - } - if (I.isEquality()) { - handleEqualityComparison(I); - return; - } - - assert(I.isRelational()); - if (ClHandleICmpExact) { - handleRelationalComparisonExact(I); - return; - } - if (I.isSigned()) { - handleSignedRelationalComparison(I); - return; - } - - assert(I.isUnsigned()); - if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { - handleRelationalComparisonExact(I); - return; - } - - handleShadowOr(I); - } - - void visitFCmpInst(FCmpInst &I) { - handleShadowOr(I); - } - - void handleShift(BinaryOperator &I) { - IRBuilder<> IRB(&I); - // If any of the S2 bits are poisoned, the whole thing is poisoned. - // Otherwise perform the same shift on S1. - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), - S2->getType()); - Value *V2 = I.getOperand(1); - Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); - setShadow(&I, IRB.CreateOr(Shift, S2Conv)); - setOriginForNaryOp(I); - } - - void visitShl(BinaryOperator &I) { handleShift(I); } - void visitAShr(BinaryOperator &I) { handleShift(I); } - void visitLShr(BinaryOperator &I) { handleShift(I); } - - /// Instrument llvm.memmove - /// - /// At this point we don't know if llvm.memmove will be inlined or not. - /// If we don't instrument it and it gets inlined, - /// our interceptor will not kick in and we will lose the memmove. - /// If we instrument the call here, but it does not get inlined, - /// we will memove the shadow twice: which is bad in case - /// of overlapping regions. So, we simply lower the intrinsic to a call. - /// - /// Similar situation exists for memcpy and memset. - void visitMemMoveInst(MemMoveInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemmoveFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - // Similar to memmove: avoid copying shadow twice. - // This is somewhat unfortunate as it may slowdown small constant memcpys. - // FIXME: consider doing manual inline for small constant sizes and proper - // alignment. - void visitMemCpyInst(MemCpyInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemcpyFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - // Same as memcpy. - void visitMemSetInst(MemSetInst &I) { - IRBuilder<> IRB(&I); - IRB.CreateCall( - MS.MemsetFn, - {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); - I.eraseFromParent(); - } - - void visitVAStartInst(VAStartInst &I) { - VAHelper->visitVAStartInst(I); - } - - void visitVACopyInst(VACopyInst &I) { - VAHelper->visitVACopyInst(I); - } - - /// Handle vector store-like intrinsics. - /// - /// Instrument intrinsics that look like a simple SIMD store: writes memory, - /// has 1 pointer argument and 1 vector argument, returns void. - bool handleVectorStoreIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value* Addr = I.getArgOperand(0); - Value *Shadow = getShadow(&I, 1); - Value *ShadowPtr, *OriginPtr; - - // We don't know the pointer alignment (could be unaligned SSE store!). - // Have to assume to worst case. - std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( - Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); - IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - // FIXME: factor out common code from materializeStores - if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); - return true; - } - - /// Handle vector load-like intrinsics. - /// - /// Instrument intrinsics that look like a simple SIMD load: reads memory, - /// has 1 pointer argument, returns a vector. - bool handleVectorLoadIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - - Type *ShadowTy = getShadowTy(&I); - Value *ShadowPtr = nullptr, *OriginPtr = nullptr; - if (PropagateShadow) { - // We don't know the pointer alignment (could be unaligned SSE load!). - // Have to assume to worst case. - const Align Alignment = Align(1); - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); - setShadow(&I, - IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - if (MS.TrackOrigins) { - if (PropagateShadow) - setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); - else - setOrigin(&I, getCleanOrigin()); - } - return true; - } - - /// Handle (SIMD arithmetic)-like intrinsics. - /// - /// Instrument intrinsics with any number of arguments of the same type, - /// equal to the return type. The type should be simple (no aggregates or - /// pointers; vectors are fine). - /// Caller guarantees that this intrinsic does not access memory. - bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { - Type *RetTy = I.getType(); - if (!(RetTy->isIntOrIntVectorTy() || - RetTy->isFPOrFPVectorTy() || - RetTy->isX86_MMXTy())) - return false; - - unsigned NumArgOperands = I.getNumArgOperands(); - for (unsigned i = 0; i < NumArgOperands; ++i) { - Type *Ty = I.getArgOperand(i)->getType(); - if (Ty != RetTy) - return false; - } - - IRBuilder<> IRB(&I); - ShadowAndOriginCombiner SC(this, IRB); - for (unsigned i = 0; i < NumArgOperands; ++i) - SC.Add(I.getArgOperand(i)); - SC.Done(&I); - - return true; - } - - /// Heuristically instrument unknown intrinsics. - /// - /// The main purpose of this code is to do something reasonable with all - /// random intrinsics we might encounter, most importantly - SIMD intrinsics. - /// We recognize several classes of intrinsics by their argument types and - /// ModRefBehaviour and apply special instrumentation when we are reasonably - /// sure that we know what the intrinsic does. - /// - /// We special-case intrinsics where this approach fails. See llvm.bswap - /// handling as an example of that. - bool handleUnknownIntrinsic(IntrinsicInst &I) { - unsigned NumArgOperands = I.getNumArgOperands(); - if (NumArgOperands == 0) - return false; - - if (NumArgOperands == 2 && - I.getArgOperand(0)->getType()->isPointerTy() && - I.getArgOperand(1)->getType()->isVectorTy() && - I.getType()->isVoidTy() && - !I.onlyReadsMemory()) { - // This looks like a vector store. - return handleVectorStoreIntrinsic(I); - } - - if (NumArgOperands == 1 && - I.getArgOperand(0)->getType()->isPointerTy() && - I.getType()->isVectorTy() && - I.onlyReadsMemory()) { - // This looks like a vector load. - return handleVectorLoadIntrinsic(I); - } - - if (I.doesNotAccessMemory()) - if (maybeHandleSimpleNomemIntrinsic(I)) - return true; - - // FIXME: detect and handle SSE maskstore/maskload - return false; - } - - void handleInvariantGroup(IntrinsicInst &I) { - setShadow(&I, getShadow(&I, 0)); - setOrigin(&I, getOrigin(&I, 0)); - } - - void handleLifetimeStart(IntrinsicInst &I) { - if (!PoisonStack) - return; + Value *Cond = + IRB.CreateICmpNE(FlatShadow, MSV->getCleanShadow(FlatShadow)); + Origin = IRB.CreateSelect(Cond, OpOrigin, Origin); + } + } + } + return *this; + } + + /// Add an application value to the mix. + Combiner &Add(Value *V) { + Value *OpShadow = MSV->getShadow(V); + Value *OpOrigin = MSV->MS.TrackOrigins ? MSV->getOrigin(V) : nullptr; + return Add(OpShadow, OpOrigin); + } + + /// Set the current combined values as the given instruction's shadow + /// and origin. + void Done(Instruction *I) { + if (CombineShadow) { + assert(Shadow); + Shadow = MSV->CreateShadowCast(IRB, Shadow, MSV->getShadowTy(I)); + MSV->setShadow(I, Shadow); + } + if (MSV->MS.TrackOrigins) { + assert(Origin); + MSV->setOrigin(I, Origin); + } + } + }; + + using ShadowAndOriginCombiner = Combiner<true>; + using OriginCombiner = Combiner<false>; + + /// Propagate origin for arbitrary operation. + void setOriginForNaryOp(Instruction &I) { + if (!MS.TrackOrigins) return; + IRBuilder<> IRB(&I); + OriginCombiner OC(this, IRB); + for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) + OC.Add(OI->get()); + OC.Done(&I); + } + + size_t VectorOrPrimitiveTypeSizeInBits(Type *Ty) { + assert(!(Ty->isVectorTy() && Ty->getScalarType()->isPointerTy()) && + "Vector of pointers is not a valid shadow type"); + return Ty->isVectorTy() ? cast<FixedVectorType>(Ty)->getNumElements() * + Ty->getScalarSizeInBits() + : Ty->getPrimitiveSizeInBits(); + } + + /// Cast between two shadow types, extending or truncating as + /// necessary. + Value *CreateShadowCast(IRBuilder<> &IRB, Value *V, Type *dstTy, + bool Signed = false) { + Type *srcTy = V->getType(); + size_t srcSizeInBits = VectorOrPrimitiveTypeSizeInBits(srcTy); + size_t dstSizeInBits = VectorOrPrimitiveTypeSizeInBits(dstTy); + if (srcSizeInBits > 1 && dstSizeInBits == 1) + return IRB.CreateICmpNE(V, getCleanShadow(V)); + + if (dstTy->isIntegerTy() && srcTy->isIntegerTy()) + return IRB.CreateIntCast(V, dstTy, Signed); + if (dstTy->isVectorTy() && srcTy->isVectorTy() && + cast<FixedVectorType>(dstTy)->getNumElements() == + cast<FixedVectorType>(srcTy)->getNumElements()) + return IRB.CreateIntCast(V, dstTy, Signed); + Value *V1 = IRB.CreateBitCast(V, Type::getIntNTy(*MS.C, srcSizeInBits)); + Value *V2 = + IRB.CreateIntCast(V1, Type::getIntNTy(*MS.C, dstSizeInBits), Signed); + return IRB.CreateBitCast(V2, dstTy); + // TODO: handle struct types. + } + + /// Cast an application value to the type of its own shadow. + Value *CreateAppToShadowCast(IRBuilder<> &IRB, Value *V) { + Type *ShadowTy = getShadowTy(V); + if (V->getType() == ShadowTy) + return V; + if (V->getType()->isPtrOrPtrVectorTy()) + return IRB.CreatePtrToInt(V, ShadowTy); + else + return IRB.CreateBitCast(V, ShadowTy); + } + + /// Propagate shadow for arbitrary operation. + void handleShadowOr(Instruction &I) { + IRBuilder<> IRB(&I); + ShadowAndOriginCombiner SC(this, IRB); + for (Instruction::op_iterator OI = I.op_begin(); OI != I.op_end(); ++OI) + SC.Add(OI->get()); + SC.Done(&I); + } + + void visitFNeg(UnaryOperator &I) { handleShadowOr(I); } + + // Handle multiplication by constant. + // + // Handle a special case of multiplication by constant that may have one or + // more zeros in the lower bits. This makes corresponding number of lower bits + // of the result zero as well. We model it by shifting the other operand + // shadow left by the required number of bits. Effectively, we transform + // (X * (A * 2**B)) to ((X << B) * A) and instrument (X << B) as (Sx << B). + // We use multiplication by 2**N instead of shift to cover the case of + // multiplication by 0, which may occur in some elements of a vector operand. + void handleMulByConstant(BinaryOperator &I, Constant *ConstArg, + Value *OtherArg) { + Constant *ShadowMul; + Type *Ty = ConstArg->getType(); + if (auto *VTy = dyn_cast<VectorType>(Ty)) { + unsigned NumElements = cast<FixedVectorType>(VTy)->getNumElements(); + Type *EltTy = VTy->getElementType(); + SmallVector<Constant *, 16> Elements; + for (unsigned Idx = 0; Idx < NumElements; ++Idx) { + if (ConstantInt *Elt = + dyn_cast<ConstantInt>(ConstArg->getAggregateElement(Idx))) { + const APInt &V = Elt->getValue(); + APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); + Elements.push_back(ConstantInt::get(EltTy, V2)); + } else { + Elements.push_back(ConstantInt::get(EltTy, 1)); + } + } + ShadowMul = ConstantVector::get(Elements); + } else { + if (ConstantInt *Elt = dyn_cast<ConstantInt>(ConstArg)) { + const APInt &V = Elt->getValue(); + APInt V2 = APInt(V.getBitWidth(), 1) << V.countTrailingZeros(); + ShadowMul = ConstantInt::get(Ty, V2); + } else { + ShadowMul = ConstantInt::get(Ty, 1); + } + } + + IRBuilder<> IRB(&I); + setShadow(&I, + IRB.CreateMul(getShadow(OtherArg), ShadowMul, "msprop_mul_cst")); + setOrigin(&I, getOrigin(OtherArg)); + } + + void visitMul(BinaryOperator &I) { + Constant *constOp0 = dyn_cast<Constant>(I.getOperand(0)); + Constant *constOp1 = dyn_cast<Constant>(I.getOperand(1)); + if (constOp0 && !constOp1) + handleMulByConstant(I, constOp0, I.getOperand(1)); + else if (constOp1 && !constOp0) + handleMulByConstant(I, constOp1, I.getOperand(0)); + else + handleShadowOr(I); + } + + void visitFAdd(BinaryOperator &I) { handleShadowOr(I); } + void visitFSub(BinaryOperator &I) { handleShadowOr(I); } + void visitFMul(BinaryOperator &I) { handleShadowOr(I); } + void visitAdd(BinaryOperator &I) { handleShadowOr(I); } + void visitSub(BinaryOperator &I) { handleShadowOr(I); } + void visitXor(BinaryOperator &I) { handleShadowOr(I); } + + void handleIntegerDiv(Instruction &I) { + IRBuilder<> IRB(&I); + // Strict on the second argument. + insertShadowCheck(I.getOperand(1), &I); + setShadow(&I, getShadow(&I, 0)); + setOrigin(&I, getOrigin(&I, 0)); + } + + void visitUDiv(BinaryOperator &I) { handleIntegerDiv(I); } + void visitSDiv(BinaryOperator &I) { handleIntegerDiv(I); } + void visitURem(BinaryOperator &I) { handleIntegerDiv(I); } + void visitSRem(BinaryOperator &I) { handleIntegerDiv(I); } + + // Floating point division is side-effect free. We can not require that the + // divisor is fully initialized and must propagate shadow. See PR37523. + void visitFDiv(BinaryOperator &I) { handleShadowOr(I); } + void visitFRem(BinaryOperator &I) { handleShadowOr(I); } + + /// Instrument == and != comparisons. + /// + /// Sometimes the comparison result is known even if some of the bits of the + /// arguments are not. + void handleEqualityComparison(ICmpInst &I) { + IRBuilder<> IRB(&I); + Value *A = I.getOperand(0); + Value *B = I.getOperand(1); + Value *Sa = getShadow(A); + Value *Sb = getShadow(B); + + // Get rid of pointers and vectors of pointers. + // For ints (and vectors of ints), types of A and Sa match, + // and this is a no-op. + A = IRB.CreatePointerCast(A, Sa->getType()); + B = IRB.CreatePointerCast(B, Sb->getType()); + + // A == B <==> (C = A^B) == 0 + // A != B <==> (C = A^B) != 0 + // Sc = Sa | Sb + Value *C = IRB.CreateXor(A, B); + Value *Sc = IRB.CreateOr(Sa, Sb); + // Now dealing with i = (C == 0) comparison (or C != 0, does not matter now) + // Result is defined if one of the following is true + // * there is a defined 1 bit in C + // * C is fully defined + // Si = !(C & ~Sc) && Sc + Value *Zero = Constant::getNullValue(Sc->getType()); + Value *MinusOne = Constant::getAllOnesValue(Sc->getType()); + Value *Si = + IRB.CreateAnd(IRB.CreateICmpNE(Sc, Zero), + IRB.CreateICmpEQ( + IRB.CreateAnd(IRB.CreateXor(Sc, MinusOne), C), Zero)); + Si->setName("_msprop_icmp"); + setShadow(&I, Si); + setOriginForNaryOp(I); + } + + /// Build the lowest possible value of V, taking into account V's + /// uninitialized bits. + Value *getLowestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, + bool isSigned) { + if (isSigned) { + // Split shadow into sign bit and other bits. + Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); + Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); + // Maximise the undefined shadow bit, minimize other undefined bits. + return + IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaOtherBits)), SaSignBit); + } else { + // Minimize undefined bits. + return IRB.CreateAnd(A, IRB.CreateNot(Sa)); + } + } + + /// Build the highest possible value of V, taking into account V's + /// uninitialized bits. + Value *getHighestPossibleValue(IRBuilder<> &IRB, Value *A, Value *Sa, + bool isSigned) { + if (isSigned) { + // Split shadow into sign bit and other bits. + Value *SaOtherBits = IRB.CreateLShr(IRB.CreateShl(Sa, 1), 1); + Value *SaSignBit = IRB.CreateXor(Sa, SaOtherBits); + // Minimise the undefined shadow bit, maximise other undefined bits. + return + IRB.CreateOr(IRB.CreateAnd(A, IRB.CreateNot(SaSignBit)), SaOtherBits); + } else { + // Maximize undefined bits. + return IRB.CreateOr(A, Sa); + } + } + + /// Instrument relational comparisons. + /// + /// This function does exact shadow propagation for all relational + /// comparisons of integers, pointers and vectors of those. + /// FIXME: output seems suboptimal when one of the operands is a constant + void handleRelationalComparisonExact(ICmpInst &I) { + IRBuilder<> IRB(&I); + Value *A = I.getOperand(0); + Value *B = I.getOperand(1); + Value *Sa = getShadow(A); + Value *Sb = getShadow(B); + + // Get rid of pointers and vectors of pointers. + // For ints (and vectors of ints), types of A and Sa match, + // and this is a no-op. + A = IRB.CreatePointerCast(A, Sa->getType()); + B = IRB.CreatePointerCast(B, Sb->getType()); + + // Let [a0, a1] be the interval of possible values of A, taking into account + // its undefined bits. Let [b0, b1] be the interval of possible values of B. + // Then (A cmp B) is defined iff (a0 cmp b1) == (a1 cmp b0). + bool IsSigned = I.isSigned(); + Value *S1 = IRB.CreateICmp(I.getPredicate(), + getLowestPossibleValue(IRB, A, Sa, IsSigned), + getHighestPossibleValue(IRB, B, Sb, IsSigned)); + Value *S2 = IRB.CreateICmp(I.getPredicate(), + getHighestPossibleValue(IRB, A, Sa, IsSigned), + getLowestPossibleValue(IRB, B, Sb, IsSigned)); + Value *Si = IRB.CreateXor(S1, S2); + setShadow(&I, Si); + setOriginForNaryOp(I); + } + + /// Instrument signed relational comparisons. + /// + /// Handle sign bit tests: x<0, x>=0, x<=-1, x>-1 by propagating the highest + /// bit of the shadow. Everything else is delegated to handleShadowOr(). + void handleSignedRelationalComparison(ICmpInst &I) { + Constant *constOp; + Value *op = nullptr; + CmpInst::Predicate pre; + if ((constOp = dyn_cast<Constant>(I.getOperand(1)))) { + op = I.getOperand(0); + pre = I.getPredicate(); + } else if ((constOp = dyn_cast<Constant>(I.getOperand(0)))) { + op = I.getOperand(1); + pre = I.getSwappedPredicate(); + } else { + handleShadowOr(I); + return; + } + + if ((constOp->isNullValue() && + (pre == CmpInst::ICMP_SLT || pre == CmpInst::ICMP_SGE)) || + (constOp->isAllOnesValue() && + (pre == CmpInst::ICMP_SGT || pre == CmpInst::ICMP_SLE))) { + IRBuilder<> IRB(&I); + Value *Shadow = IRB.CreateICmpSLT(getShadow(op), getCleanShadow(op), + "_msprop_icmp_s"); + setShadow(&I, Shadow); + setOrigin(&I, getOrigin(op)); + } else { + handleShadowOr(I); + } + } + + void visitICmpInst(ICmpInst &I) { + if (!ClHandleICmp) { + handleShadowOr(I); + return; + } + if (I.isEquality()) { + handleEqualityComparison(I); + return; + } + + assert(I.isRelational()); + if (ClHandleICmpExact) { + handleRelationalComparisonExact(I); + return; + } + if (I.isSigned()) { + handleSignedRelationalComparison(I); + return; + } + + assert(I.isUnsigned()); + if ((isa<Constant>(I.getOperand(0)) || isa<Constant>(I.getOperand(1)))) { + handleRelationalComparisonExact(I); + return; + } + + handleShadowOr(I); + } + + void visitFCmpInst(FCmpInst &I) { + handleShadowOr(I); + } + + void handleShift(BinaryOperator &I) { + IRBuilder<> IRB(&I); + // If any of the S2 bits are poisoned, the whole thing is poisoned. + // Otherwise perform the same shift on S1. + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *S2Conv = IRB.CreateSExt(IRB.CreateICmpNE(S2, getCleanShadow(S2)), + S2->getType()); + Value *V2 = I.getOperand(1); + Value *Shift = IRB.CreateBinOp(I.getOpcode(), S1, V2); + setShadow(&I, IRB.CreateOr(Shift, S2Conv)); + setOriginForNaryOp(I); + } + + void visitShl(BinaryOperator &I) { handleShift(I); } + void visitAShr(BinaryOperator &I) { handleShift(I); } + void visitLShr(BinaryOperator &I) { handleShift(I); } + + /// Instrument llvm.memmove + /// + /// At this point we don't know if llvm.memmove will be inlined or not. + /// If we don't instrument it and it gets inlined, + /// our interceptor will not kick in and we will lose the memmove. + /// If we instrument the call here, but it does not get inlined, + /// we will memove the shadow twice: which is bad in case + /// of overlapping regions. So, we simply lower the intrinsic to a call. + /// + /// Similar situation exists for memcpy and memset. + void visitMemMoveInst(MemMoveInst &I) { + IRBuilder<> IRB(&I); + IRB.CreateCall( + MS.MemmoveFn, + {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); + I.eraseFromParent(); + } + + // Similar to memmove: avoid copying shadow twice. + // This is somewhat unfortunate as it may slowdown small constant memcpys. + // FIXME: consider doing manual inline for small constant sizes and proper + // alignment. + void visitMemCpyInst(MemCpyInst &I) { + IRBuilder<> IRB(&I); + IRB.CreateCall( + MS.MemcpyFn, + {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(I.getArgOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); + I.eraseFromParent(); + } + + // Same as memcpy. + void visitMemSetInst(MemSetInst &I) { + IRBuilder<> IRB(&I); + IRB.CreateCall( + MS.MemsetFn, + {IRB.CreatePointerCast(I.getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreateIntCast(I.getArgOperand(1), IRB.getInt32Ty(), false), + IRB.CreateIntCast(I.getArgOperand(2), MS.IntptrTy, false)}); + I.eraseFromParent(); + } + + void visitVAStartInst(VAStartInst &I) { + VAHelper->visitVAStartInst(I); + } + + void visitVACopyInst(VACopyInst &I) { + VAHelper->visitVACopyInst(I); + } + + /// Handle vector store-like intrinsics. + /// + /// Instrument intrinsics that look like a simple SIMD store: writes memory, + /// has 1 pointer argument and 1 vector argument, returns void. + bool handleVectorStoreIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value* Addr = I.getArgOperand(0); + Value *Shadow = getShadow(&I, 1); + Value *ShadowPtr, *OriginPtr; + + // We don't know the pointer alignment (could be unaligned SSE store!). + // Have to assume to worst case. + std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( + Addr, IRB, Shadow->getType(), Align(1), /*isStore*/ true); + IRB.CreateAlignedStore(Shadow, ShadowPtr, Align(1)); + + if (ClCheckAccessAddress) + insertShadowCheck(Addr, &I); + + // FIXME: factor out common code from materializeStores + if (MS.TrackOrigins) IRB.CreateStore(getOrigin(&I, 1), OriginPtr); + return true; + } + + /// Handle vector load-like intrinsics. + /// + /// Instrument intrinsics that look like a simple SIMD load: reads memory, + /// has 1 pointer argument, returns a vector. + bool handleVectorLoadIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *Addr = I.getArgOperand(0); + + Type *ShadowTy = getShadowTy(&I); + Value *ShadowPtr = nullptr, *OriginPtr = nullptr; + if (PropagateShadow) { + // We don't know the pointer alignment (could be unaligned SSE load!). + // Have to assume to worst case. + const Align Alignment = Align(1); + std::tie(ShadowPtr, OriginPtr) = + getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); + setShadow(&I, + IRB.CreateAlignedLoad(ShadowTy, ShadowPtr, Alignment, "_msld")); + } else { + setShadow(&I, getCleanShadow(&I)); + } + + if (ClCheckAccessAddress) + insertShadowCheck(Addr, &I); + + if (MS.TrackOrigins) { + if (PropagateShadow) + setOrigin(&I, IRB.CreateLoad(MS.OriginTy, OriginPtr)); + else + setOrigin(&I, getCleanOrigin()); + } + return true; + } + + /// Handle (SIMD arithmetic)-like intrinsics. + /// + /// Instrument intrinsics with any number of arguments of the same type, + /// equal to the return type. The type should be simple (no aggregates or + /// pointers; vectors are fine). + /// Caller guarantees that this intrinsic does not access memory. + bool maybeHandleSimpleNomemIntrinsic(IntrinsicInst &I) { + Type *RetTy = I.getType(); + if (!(RetTy->isIntOrIntVectorTy() || + RetTy->isFPOrFPVectorTy() || + RetTy->isX86_MMXTy())) + return false; + + unsigned NumArgOperands = I.getNumArgOperands(); + for (unsigned i = 0; i < NumArgOperands; ++i) { + Type *Ty = I.getArgOperand(i)->getType(); + if (Ty != RetTy) + return false; + } + + IRBuilder<> IRB(&I); + ShadowAndOriginCombiner SC(this, IRB); + for (unsigned i = 0; i < NumArgOperands; ++i) + SC.Add(I.getArgOperand(i)); + SC.Done(&I); + + return true; + } + + /// Heuristically instrument unknown intrinsics. + /// + /// The main purpose of this code is to do something reasonable with all + /// random intrinsics we might encounter, most importantly - SIMD intrinsics. + /// We recognize several classes of intrinsics by their argument types and + /// ModRefBehaviour and apply special instrumentation when we are reasonably + /// sure that we know what the intrinsic does. + /// + /// We special-case intrinsics where this approach fails. See llvm.bswap + /// handling as an example of that. + bool handleUnknownIntrinsic(IntrinsicInst &I) { + unsigned NumArgOperands = I.getNumArgOperands(); + if (NumArgOperands == 0) + return false; + + if (NumArgOperands == 2 && + I.getArgOperand(0)->getType()->isPointerTy() && + I.getArgOperand(1)->getType()->isVectorTy() && + I.getType()->isVoidTy() && + !I.onlyReadsMemory()) { + // This looks like a vector store. + return handleVectorStoreIntrinsic(I); + } + + if (NumArgOperands == 1 && + I.getArgOperand(0)->getType()->isPointerTy() && + I.getType()->isVectorTy() && + I.onlyReadsMemory()) { + // This looks like a vector load. + return handleVectorLoadIntrinsic(I); + } + + if (I.doesNotAccessMemory()) + if (maybeHandleSimpleNomemIntrinsic(I)) + return true; + + // FIXME: detect and handle SSE maskstore/maskload + return false; + } + + void handleInvariantGroup(IntrinsicInst &I) { + setShadow(&I, getShadow(&I, 0)); + setOrigin(&I, getOrigin(&I, 0)); + } + + void handleLifetimeStart(IntrinsicInst &I) { + if (!PoisonStack) + return; AllocaInst *AI = llvm::findAllocaForValue(I.getArgOperand(1)); - if (!AI) - InstrumentLifetimeStart = false; - LifetimeStartList.push_back(std::make_pair(&I, AI)); - } - - void handleBswap(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Op = I.getArgOperand(0); - Type *OpType = Op->getType(); - Function *BswapFunc = Intrinsic::getDeclaration( - F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); - setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); - setOrigin(&I, getOrigin(Op)); - } - - // Instrument vector convert intrinsic. - // - // This function instruments intrinsics like cvtsi2ss: - // %Out = int_xxx_cvtyyy(%ConvertOp) - // or - // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) - // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same - // number \p Out elements, and (if has 2 arguments) copies the rest of the - // elements from \p CopyOp. - // In most cases conversion involves floating-point value which may trigger a - // hardware exception when not fully initialized. For this reason we require - // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. - // We copy the shadow of \p CopyOp[NumUsedElements:] to \p - // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always - // return a fully initialized value. + if (!AI) + InstrumentLifetimeStart = false; + LifetimeStartList.push_back(std::make_pair(&I, AI)); + } + + void handleBswap(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *Op = I.getArgOperand(0); + Type *OpType = Op->getType(); + Function *BswapFunc = Intrinsic::getDeclaration( + F.getParent(), Intrinsic::bswap, makeArrayRef(&OpType, 1)); + setShadow(&I, IRB.CreateCall(BswapFunc, getShadow(Op))); + setOrigin(&I, getOrigin(Op)); + } + + // Instrument vector convert intrinsic. + // + // This function instruments intrinsics like cvtsi2ss: + // %Out = int_xxx_cvtyyy(%ConvertOp) + // or + // %Out = int_xxx_cvtyyy(%CopyOp, %ConvertOp) + // Intrinsic converts \p NumUsedElements elements of \p ConvertOp to the same + // number \p Out elements, and (if has 2 arguments) copies the rest of the + // elements from \p CopyOp. + // In most cases conversion involves floating-point value which may trigger a + // hardware exception when not fully initialized. For this reason we require + // \p ConvertOp[0:NumUsedElements] to be fully initialized and trap otherwise. + // We copy the shadow of \p CopyOp[NumUsedElements:] to \p + // Out[NumUsedElements:]. This means that intrinsics without \p CopyOp always + // return a fully initialized value. void handleVectorConvertIntrinsic(IntrinsicInst &I, int NumUsedElements, bool HasRoundingMode = false) { - IRBuilder<> IRB(&I); - Value *CopyOp, *ConvertOp; - + IRBuilder<> IRB(&I); + Value *CopyOp, *ConvertOp; + assert((!HasRoundingMode || isa<ConstantInt>(I.getArgOperand(I.getNumArgOperands() - 1))) && "Invalid rounding mode"); switch (I.getNumArgOperands() - HasRoundingMode) { - case 2: - CopyOp = I.getArgOperand(0); - ConvertOp = I.getArgOperand(1); - break; - case 1: - ConvertOp = I.getArgOperand(0); - CopyOp = nullptr; - break; - default: - llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); - } - - // The first *NumUsedElements* elements of ConvertOp are converted to the - // same number of output elements. The rest of the output is copied from - // CopyOp, or (if not available) filled with zeroes. - // Combine shadow for elements of ConvertOp that are used in this operation, - // and insert a check. - // FIXME: consider propagating shadow of ConvertOp, at least in the case of - // int->any conversion. - Value *ConvertShadow = getShadow(ConvertOp); - Value *AggShadow = nullptr; - if (ConvertOp->getType()->isVectorTy()) { - AggShadow = IRB.CreateExtractElement( - ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); - for (int i = 1; i < NumUsedElements; ++i) { - Value *MoreShadow = IRB.CreateExtractElement( - ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); - AggShadow = IRB.CreateOr(AggShadow, MoreShadow); - } - } else { - AggShadow = ConvertShadow; - } - assert(AggShadow->getType()->isIntegerTy()); - insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); - - // Build result shadow by zero-filling parts of CopyOp shadow that come from - // ConvertOp. - if (CopyOp) { - assert(CopyOp->getType() == I.getType()); - assert(CopyOp->getType()->isVectorTy()); - Value *ResultShadow = getShadow(CopyOp); - Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); - for (int i = 0; i < NumUsedElements; ++i) { - ResultShadow = IRB.CreateInsertElement( - ResultShadow, ConstantInt::getNullValue(EltTy), - ConstantInt::get(IRB.getInt32Ty(), i)); - } - setShadow(&I, ResultShadow); - setOrigin(&I, getOrigin(CopyOp)); - } else { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - } - - // Given a scalar or vector, extract lower 64 bits (or less), and return all - // zeroes if it is zero, and all ones otherwise. - Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { - if (S->getType()->isVectorTy()) - S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); - assert(S->getType()->getPrimitiveSizeInBits() <= 64); - Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); - return CreateShadowCast(IRB, S2, T, /* Signed */ true); - } - - // Given a vector, extract its first element, and return all - // zeroes if it is zero, and all ones otherwise. - Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { - Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); - Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); - return CreateShadowCast(IRB, S2, T, /* Signed */ true); - } - - Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { - Type *T = S->getType(); - assert(T->isVectorTy()); - Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); - return IRB.CreateSExt(S2, T); - } - - // Instrument vector shift intrinsic. - // - // This function instruments intrinsics like int_x86_avx2_psll_w. - // Intrinsic shifts %In by %ShiftSize bits. - // %ShiftSize may be a vector. In that case the lower 64 bits determine shift - // size, and the rest is ignored. Behavior is defined even if shift size is - // greater than register (or field) width. - void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { - assert(I.getNumArgOperands() == 2); - IRBuilder<> IRB(&I); - // If any of the S2 bits are poisoned, the whole thing is poisoned. - // Otherwise perform the same shift on S1. - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) - : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); - Value *V1 = I.getOperand(0); - Value *V2 = I.getOperand(1); - Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), - {IRB.CreateBitCast(S1, V1->getType()), V2}); - Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); - setShadow(&I, IRB.CreateOr(Shift, S2Conv)); - setOriginForNaryOp(I); - } - - // Get an X86_MMX-sized vector type. - Type *getMMXVectorTy(unsigned EltSizeInBits) { - const unsigned X86_MMXSizeInBits = 64; - assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && - "Illegal MMX vector element size"); - return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), - X86_MMXSizeInBits / EltSizeInBits); - } - - // Returns a signed counterpart for an (un)signed-saturate-and-pack - // intrinsic. - Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { - switch (id) { - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_sse2_packuswb_128: - return Intrinsic::x86_sse2_packsswb_128; - - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse41_packusdw: - return Intrinsic::x86_sse2_packssdw_128; - - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx2_packuswb: - return Intrinsic::x86_avx2_packsswb; - - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packusdw: - return Intrinsic::x86_avx2_packssdw; - - case Intrinsic::x86_mmx_packsswb: - case Intrinsic::x86_mmx_packuswb: - return Intrinsic::x86_mmx_packsswb; - - case Intrinsic::x86_mmx_packssdw: - return Intrinsic::x86_mmx_packssdw; - default: - llvm_unreachable("unexpected intrinsic id"); - } - } - - // Instrument vector pack intrinsic. - // - // This function instruments intrinsics like x86_mmx_packsswb, that - // packs elements of 2 input vectors into half as many bits with saturation. - // Shadow is propagated with the signed variant of the same intrinsic applied - // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). - // EltSizeInBits is used only for x86mmx arguments. - void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { - assert(I.getNumArgOperands() == 2); - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - IRBuilder<> IRB(&I); - Value *S1 = getShadow(&I, 0); - Value *S2 = getShadow(&I, 1); - assert(isX86_MMX || S1->getType()->isVectorTy()); - - // SExt and ICmpNE below must apply to individual elements of input vectors. - // In case of x86mmx arguments, cast them to appropriate vector types and - // back. - Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); - if (isX86_MMX) { - S1 = IRB.CreateBitCast(S1, T); - S2 = IRB.CreateBitCast(S2, T); - } - Value *S1_ext = IRB.CreateSExt( - IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); - Value *S2_ext = IRB.CreateSExt( - IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); - if (isX86_MMX) { - Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); - S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); - S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); - } - - Function *ShadowFn = Intrinsic::getDeclaration( - F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); - - Value *S = - IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); - if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument sum-of-absolute-differences intrinsic. - void handleVectorSadIntrinsic(IntrinsicInst &I) { - const unsigned SignificantBitsPerResultElement = 16; - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); - unsigned ZeroBitsPerResultElement = - ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; - - IRBuilder<> IRB(&I); - Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - S = IRB.CreateBitCast(S, ResTy); - S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), - ResTy); - S = IRB.CreateLShr(S, ZeroBitsPerResultElement); - S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument multiply-add intrinsic. - void handleVectorPmaddIntrinsic(IntrinsicInst &I, - unsigned EltSizeInBits = 0) { - bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); - Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); - IRBuilder<> IRB(&I); - Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - S = IRB.CreateBitCast(S, ResTy); - S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), - ResTy); - S = IRB.CreateBitCast(S, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument compare-packed intrinsic. - // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or - // all-ones shadow. - void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Type *ResTy = getShadowTy(&I); - Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - Value *S = IRB.CreateSExt( - IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument compare-scalar intrinsic. - // This handles both cmp* intrinsics which return the result in the first - // element of a vector, and comi* which return the result as i32. - void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); - Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - // Instrument generic vector reduction intrinsics - // by ORing together all their fields. - void handleVectorReduceIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); - setShadow(&I, S); - setOrigin(&I, getOrigin(&I, 0)); - } - + case 2: + CopyOp = I.getArgOperand(0); + ConvertOp = I.getArgOperand(1); + break; + case 1: + ConvertOp = I.getArgOperand(0); + CopyOp = nullptr; + break; + default: + llvm_unreachable("Cvt intrinsic with unsupported number of arguments."); + } + + // The first *NumUsedElements* elements of ConvertOp are converted to the + // same number of output elements. The rest of the output is copied from + // CopyOp, or (if not available) filled with zeroes. + // Combine shadow for elements of ConvertOp that are used in this operation, + // and insert a check. + // FIXME: consider propagating shadow of ConvertOp, at least in the case of + // int->any conversion. + Value *ConvertShadow = getShadow(ConvertOp); + Value *AggShadow = nullptr; + if (ConvertOp->getType()->isVectorTy()) { + AggShadow = IRB.CreateExtractElement( + ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); + for (int i = 1; i < NumUsedElements; ++i) { + Value *MoreShadow = IRB.CreateExtractElement( + ConvertShadow, ConstantInt::get(IRB.getInt32Ty(), i)); + AggShadow = IRB.CreateOr(AggShadow, MoreShadow); + } + } else { + AggShadow = ConvertShadow; + } + assert(AggShadow->getType()->isIntegerTy()); + insertShadowCheck(AggShadow, getOrigin(ConvertOp), &I); + + // Build result shadow by zero-filling parts of CopyOp shadow that come from + // ConvertOp. + if (CopyOp) { + assert(CopyOp->getType() == I.getType()); + assert(CopyOp->getType()->isVectorTy()); + Value *ResultShadow = getShadow(CopyOp); + Type *EltTy = cast<VectorType>(ResultShadow->getType())->getElementType(); + for (int i = 0; i < NumUsedElements; ++i) { + ResultShadow = IRB.CreateInsertElement( + ResultShadow, ConstantInt::getNullValue(EltTy), + ConstantInt::get(IRB.getInt32Ty(), i)); + } + setShadow(&I, ResultShadow); + setOrigin(&I, getOrigin(CopyOp)); + } else { + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + } + + // Given a scalar or vector, extract lower 64 bits (or less), and return all + // zeroes if it is zero, and all ones otherwise. + Value *Lower64ShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { + if (S->getType()->isVectorTy()) + S = CreateShadowCast(IRB, S, IRB.getInt64Ty(), /* Signed */ true); + assert(S->getType()->getPrimitiveSizeInBits() <= 64); + Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); + return CreateShadowCast(IRB, S2, T, /* Signed */ true); + } + + // Given a vector, extract its first element, and return all + // zeroes if it is zero, and all ones otherwise. + Value *LowerElementShadowExtend(IRBuilder<> &IRB, Value *S, Type *T) { + Value *S1 = IRB.CreateExtractElement(S, (uint64_t)0); + Value *S2 = IRB.CreateICmpNE(S1, getCleanShadow(S1)); + return CreateShadowCast(IRB, S2, T, /* Signed */ true); + } + + Value *VariableShadowExtend(IRBuilder<> &IRB, Value *S) { + Type *T = S->getType(); + assert(T->isVectorTy()); + Value *S2 = IRB.CreateICmpNE(S, getCleanShadow(S)); + return IRB.CreateSExt(S2, T); + } + + // Instrument vector shift intrinsic. + // + // This function instruments intrinsics like int_x86_avx2_psll_w. + // Intrinsic shifts %In by %ShiftSize bits. + // %ShiftSize may be a vector. In that case the lower 64 bits determine shift + // size, and the rest is ignored. Behavior is defined even if shift size is + // greater than register (or field) width. + void handleVectorShiftIntrinsic(IntrinsicInst &I, bool Variable) { + assert(I.getNumArgOperands() == 2); + IRBuilder<> IRB(&I); + // If any of the S2 bits are poisoned, the whole thing is poisoned. + // Otherwise perform the same shift on S1. + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + Value *S2Conv = Variable ? VariableShadowExtend(IRB, S2) + : Lower64ShadowExtend(IRB, S2, getShadowTy(&I)); + Value *V1 = I.getOperand(0); + Value *V2 = I.getOperand(1); + Value *Shift = IRB.CreateCall(I.getFunctionType(), I.getCalledOperand(), + {IRB.CreateBitCast(S1, V1->getType()), V2}); + Shift = IRB.CreateBitCast(Shift, getShadowTy(&I)); + setShadow(&I, IRB.CreateOr(Shift, S2Conv)); + setOriginForNaryOp(I); + } + + // Get an X86_MMX-sized vector type. + Type *getMMXVectorTy(unsigned EltSizeInBits) { + const unsigned X86_MMXSizeInBits = 64; + assert(EltSizeInBits != 0 && (X86_MMXSizeInBits % EltSizeInBits) == 0 && + "Illegal MMX vector element size"); + return FixedVectorType::get(IntegerType::get(*MS.C, EltSizeInBits), + X86_MMXSizeInBits / EltSizeInBits); + } + + // Returns a signed counterpart for an (un)signed-saturate-and-pack + // intrinsic. + Intrinsic::ID getSignedPackIntrinsic(Intrinsic::ID id) { + switch (id) { + case Intrinsic::x86_sse2_packsswb_128: + case Intrinsic::x86_sse2_packuswb_128: + return Intrinsic::x86_sse2_packsswb_128; + + case Intrinsic::x86_sse2_packssdw_128: + case Intrinsic::x86_sse41_packusdw: + return Intrinsic::x86_sse2_packssdw_128; + + case Intrinsic::x86_avx2_packsswb: + case Intrinsic::x86_avx2_packuswb: + return Intrinsic::x86_avx2_packsswb; + + case Intrinsic::x86_avx2_packssdw: + case Intrinsic::x86_avx2_packusdw: + return Intrinsic::x86_avx2_packssdw; + + case Intrinsic::x86_mmx_packsswb: + case Intrinsic::x86_mmx_packuswb: + return Intrinsic::x86_mmx_packsswb; + + case Intrinsic::x86_mmx_packssdw: + return Intrinsic::x86_mmx_packssdw; + default: + llvm_unreachable("unexpected intrinsic id"); + } + } + + // Instrument vector pack intrinsic. + // + // This function instruments intrinsics like x86_mmx_packsswb, that + // packs elements of 2 input vectors into half as many bits with saturation. + // Shadow is propagated with the signed variant of the same intrinsic applied + // to sext(Sa != zeroinitializer), sext(Sb != zeroinitializer). + // EltSizeInBits is used only for x86mmx arguments. + void handleVectorPackIntrinsic(IntrinsicInst &I, unsigned EltSizeInBits = 0) { + assert(I.getNumArgOperands() == 2); + bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); + IRBuilder<> IRB(&I); + Value *S1 = getShadow(&I, 0); + Value *S2 = getShadow(&I, 1); + assert(isX86_MMX || S1->getType()->isVectorTy()); + + // SExt and ICmpNE below must apply to individual elements of input vectors. + // In case of x86mmx arguments, cast them to appropriate vector types and + // back. + Type *T = isX86_MMX ? getMMXVectorTy(EltSizeInBits) : S1->getType(); + if (isX86_MMX) { + S1 = IRB.CreateBitCast(S1, T); + S2 = IRB.CreateBitCast(S2, T); + } + Value *S1_ext = IRB.CreateSExt( + IRB.CreateICmpNE(S1, Constant::getNullValue(T)), T); + Value *S2_ext = IRB.CreateSExt( + IRB.CreateICmpNE(S2, Constant::getNullValue(T)), T); + if (isX86_MMX) { + Type *X86_MMXTy = Type::getX86_MMXTy(*MS.C); + S1_ext = IRB.CreateBitCast(S1_ext, X86_MMXTy); + S2_ext = IRB.CreateBitCast(S2_ext, X86_MMXTy); + } + + Function *ShadowFn = Intrinsic::getDeclaration( + F.getParent(), getSignedPackIntrinsic(I.getIntrinsicID())); + + Value *S = + IRB.CreateCall(ShadowFn, {S1_ext, S2_ext}, "_msprop_vector_pack"); + if (isX86_MMX) S = IRB.CreateBitCast(S, getShadowTy(&I)); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + // Instrument sum-of-absolute-differences intrinsic. + void handleVectorSadIntrinsic(IntrinsicInst &I) { + const unsigned SignificantBitsPerResultElement = 16; + bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); + Type *ResTy = isX86_MMX ? IntegerType::get(*MS.C, 64) : I.getType(); + unsigned ZeroBitsPerResultElement = + ResTy->getScalarSizeInBits() - SignificantBitsPerResultElement; + + IRBuilder<> IRB(&I); + Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); + S = IRB.CreateBitCast(S, ResTy); + S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), + ResTy); + S = IRB.CreateLShr(S, ZeroBitsPerResultElement); + S = IRB.CreateBitCast(S, getShadowTy(&I)); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + // Instrument multiply-add intrinsic. + void handleVectorPmaddIntrinsic(IntrinsicInst &I, + unsigned EltSizeInBits = 0) { + bool isX86_MMX = I.getOperand(0)->getType()->isX86_MMXTy(); + Type *ResTy = isX86_MMX ? getMMXVectorTy(EltSizeInBits * 2) : I.getType(); + IRBuilder<> IRB(&I); + Value *S = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); + S = IRB.CreateBitCast(S, ResTy); + S = IRB.CreateSExt(IRB.CreateICmpNE(S, Constant::getNullValue(ResTy)), + ResTy); + S = IRB.CreateBitCast(S, getShadowTy(&I)); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + // Instrument compare-packed intrinsic. + // Basically, an or followed by sext(icmp ne 0) to end up with all-zeros or + // all-ones shadow. + void handleVectorComparePackedIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Type *ResTy = getShadowTy(&I); + Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); + Value *S = IRB.CreateSExt( + IRB.CreateICmpNE(S0, Constant::getNullValue(ResTy)), ResTy); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + // Instrument compare-scalar intrinsic. + // This handles both cmp* intrinsics which return the result in the first + // element of a vector, and comi* which return the result as i32. + void handleVectorCompareScalarIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *S0 = IRB.CreateOr(getShadow(&I, 0), getShadow(&I, 1)); + Value *S = LowerElementShadowExtend(IRB, S0, getShadowTy(&I)); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + // Instrument generic vector reduction intrinsics + // by ORing together all their fields. + void handleVectorReduceIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *S = IRB.CreateOrReduce(getShadow(&I, 0)); + setShadow(&I, S); + setOrigin(&I, getOrigin(&I, 0)); + } + // Instrument vector.reduce.or intrinsic. - // Valid (non-poisoned) set bits in the operand pull low the - // corresponding shadow bits. - void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *OperandShadow = getShadow(&I, 0); - Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); - Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); - // Bit N is clean if any field's bit N is 1 and unpoison - Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); - // Otherwise, it is clean if every field's bit N is unpoison - Value *OrShadow = IRB.CreateOrReduce(OperandShadow); - Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); - - setShadow(&I, S); - setOrigin(&I, getOrigin(&I, 0)); - } - + // Valid (non-poisoned) set bits in the operand pull low the + // corresponding shadow bits. + void handleVectorReduceOrIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *OperandShadow = getShadow(&I, 0); + Value *OperandUnsetBits = IRB.CreateNot(I.getOperand(0)); + Value *OperandUnsetOrPoison = IRB.CreateOr(OperandUnsetBits, OperandShadow); + // Bit N is clean if any field's bit N is 1 and unpoison + Value *OutShadowMask = IRB.CreateAndReduce(OperandUnsetOrPoison); + // Otherwise, it is clean if every field's bit N is unpoison + Value *OrShadow = IRB.CreateOrReduce(OperandShadow); + Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); + + setShadow(&I, S); + setOrigin(&I, getOrigin(&I, 0)); + } + // Instrument vector.reduce.and intrinsic. - // Valid (non-poisoned) unset bits in the operand pull down the - // corresponding shadow bits. - void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *OperandShadow = getShadow(&I, 0); - Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); - // Bit N is clean if any field's bit N is 0 and unpoison - Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); - // Otherwise, it is clean if every field's bit N is unpoison - Value *OrShadow = IRB.CreateOrReduce(OperandShadow); - Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); - - setShadow(&I, S); - setOrigin(&I, getOrigin(&I, 0)); - } - - void handleStmxcsr(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value* Addr = I.getArgOperand(0); - Type *Ty = IRB.getInt32Ty(); - Value *ShadowPtr = - getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; - - IRB.CreateStore(getCleanShadow(Ty), - IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - } - - void handleLdmxcsr(IntrinsicInst &I) { - if (!InsertChecks) return; - - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - Type *Ty = IRB.getInt32Ty(); - const Align Alignment = Align(1); - Value *ShadowPtr, *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); - - if (ClCheckAccessAddress) - insertShadowCheck(Addr, &I); - - Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); - Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) - : getCleanOrigin(); - insertShadowCheck(Shadow, Origin, &I); - } - - void handleMaskedStore(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *V = I.getArgOperand(0); - Value *Addr = I.getArgOperand(1); - const Align Alignment( - cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); - Value *Mask = I.getArgOperand(3); - Value *Shadow = getShadow(V); - - Value *ShadowPtr; - Value *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( - Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); - - if (ClCheckAccessAddress) { - insertShadowCheck(Addr, &I); - // Uninitialized mask is kind of like uninitialized address, but not as - // scary. - insertShadowCheck(Mask, &I); - } - - IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); - - if (MS.TrackOrigins) { - auto &DL = F.getParent()->getDataLayout(); - paintOrigin(IRB, getOrigin(V), OriginPtr, - DL.getTypeStoreSize(Shadow->getType()), - std::max(Alignment, kMinOriginAlignment)); - } - } - - bool handleMaskedLoad(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *Addr = I.getArgOperand(0); - const Align Alignment( - cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); - Value *Mask = I.getArgOperand(2); - Value *PassThru = I.getArgOperand(3); - - Type *ShadowTy = getShadowTy(&I); - Value *ShadowPtr, *OriginPtr; - if (PropagateShadow) { - std::tie(ShadowPtr, OriginPtr) = - getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); - setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, - getShadow(PassThru), "_msmaskedld")); - } else { - setShadow(&I, getCleanShadow(&I)); - } - - if (ClCheckAccessAddress) { - insertShadowCheck(Addr, &I); - insertShadowCheck(Mask, &I); - } - - if (MS.TrackOrigins) { - if (PropagateShadow) { - // Choose between PassThru's and the loaded value's origins. - Value *MaskedPassThruShadow = IRB.CreateAnd( - getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); - - Value *Acc = IRB.CreateExtractElement( - MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); - for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) - ->getNumElements(); - i < N; ++i) { - Value *More = IRB.CreateExtractElement( - MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); - Acc = IRB.CreateOr(Acc, More); - } - - Value *Origin = IRB.CreateSelect( - IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), - getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); - - setOrigin(&I, Origin); - } else { - setOrigin(&I, getCleanOrigin()); - } - } - return true; - } - - // Instrument BMI / BMI2 intrinsics. - // All of these intrinsics are Z = I(X, Y) - // where the types of all operands and the result match, and are either i32 or i64. - // The following instrumentation happens to work for all of them: - // Sz = I(Sx, Y) | (sext (Sy != 0)) - void handleBmiIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Type *ShadowTy = getShadowTy(&I); - - // If any bit of the mask operand is poisoned, then the whole thing is. - Value *SMask = getShadow(&I, 1); - SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), - ShadowTy); - // Apply the same intrinsic to the shadow of the first operand. - Value *S = IRB.CreateCall(I.getCalledFunction(), - {getShadow(&I, 0), I.getOperand(1)}); - S = IRB.CreateOr(SMask, S); - setShadow(&I, S); - setOriginForNaryOp(I); - } - - SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { - SmallVector<int, 8> Mask; - for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { - Mask.append(2, X); - } - return Mask; - } - - // Instrument pclmul intrinsics. - // These intrinsics operate either on odd or on even elements of the input - // vectors, depending on the constant in the 3rd argument, ignoring the rest. - // Replace the unused elements with copies of the used ones, ex: - // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) - // or - // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) - // and then apply the usual shadow combining logic. - void handlePclmulIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - unsigned Width = - cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); - assert(isa<ConstantInt>(I.getArgOperand(2)) && - "pclmul 3rd operand must be a constant"); - unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); + // Valid (non-poisoned) unset bits in the operand pull down the + // corresponding shadow bits. + void handleVectorReduceAndIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *OperandShadow = getShadow(&I, 0); + Value *OperandSetOrPoison = IRB.CreateOr(I.getOperand(0), OperandShadow); + // Bit N is clean if any field's bit N is 0 and unpoison + Value *OutShadowMask = IRB.CreateAndReduce(OperandSetOrPoison); + // Otherwise, it is clean if every field's bit N is unpoison + Value *OrShadow = IRB.CreateOrReduce(OperandShadow); + Value *S = IRB.CreateAnd(OutShadowMask, OrShadow); + + setShadow(&I, S); + setOrigin(&I, getOrigin(&I, 0)); + } + + void handleStmxcsr(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value* Addr = I.getArgOperand(0); + Type *Ty = IRB.getInt32Ty(); + Value *ShadowPtr = + getShadowOriginPtr(Addr, IRB, Ty, Align(1), /*isStore*/ true).first; + + IRB.CreateStore(getCleanShadow(Ty), + IRB.CreatePointerCast(ShadowPtr, Ty->getPointerTo())); + + if (ClCheckAccessAddress) + insertShadowCheck(Addr, &I); + } + + void handleLdmxcsr(IntrinsicInst &I) { + if (!InsertChecks) return; + + IRBuilder<> IRB(&I); + Value *Addr = I.getArgOperand(0); + Type *Ty = IRB.getInt32Ty(); + const Align Alignment = Align(1); + Value *ShadowPtr, *OriginPtr; + std::tie(ShadowPtr, OriginPtr) = + getShadowOriginPtr(Addr, IRB, Ty, Alignment, /*isStore*/ false); + + if (ClCheckAccessAddress) + insertShadowCheck(Addr, &I); + + Value *Shadow = IRB.CreateAlignedLoad(Ty, ShadowPtr, Alignment, "_ldmxcsr"); + Value *Origin = MS.TrackOrigins ? IRB.CreateLoad(MS.OriginTy, OriginPtr) + : getCleanOrigin(); + insertShadowCheck(Shadow, Origin, &I); + } + + void handleMaskedStore(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *V = I.getArgOperand(0); + Value *Addr = I.getArgOperand(1); + const Align Alignment( + cast<ConstantInt>(I.getArgOperand(2))->getZExtValue()); + Value *Mask = I.getArgOperand(3); + Value *Shadow = getShadow(V); + + Value *ShadowPtr; + Value *OriginPtr; + std::tie(ShadowPtr, OriginPtr) = getShadowOriginPtr( + Addr, IRB, Shadow->getType(), Alignment, /*isStore*/ true); + + if (ClCheckAccessAddress) { + insertShadowCheck(Addr, &I); + // Uninitialized mask is kind of like uninitialized address, but not as + // scary. + insertShadowCheck(Mask, &I); + } + + IRB.CreateMaskedStore(Shadow, ShadowPtr, Alignment, Mask); + + if (MS.TrackOrigins) { + auto &DL = F.getParent()->getDataLayout(); + paintOrigin(IRB, getOrigin(V), OriginPtr, + DL.getTypeStoreSize(Shadow->getType()), + std::max(Alignment, kMinOriginAlignment)); + } + } + + bool handleMaskedLoad(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *Addr = I.getArgOperand(0); + const Align Alignment( + cast<ConstantInt>(I.getArgOperand(1))->getZExtValue()); + Value *Mask = I.getArgOperand(2); + Value *PassThru = I.getArgOperand(3); + + Type *ShadowTy = getShadowTy(&I); + Value *ShadowPtr, *OriginPtr; + if (PropagateShadow) { + std::tie(ShadowPtr, OriginPtr) = + getShadowOriginPtr(Addr, IRB, ShadowTy, Alignment, /*isStore*/ false); + setShadow(&I, IRB.CreateMaskedLoad(ShadowPtr, Alignment, Mask, + getShadow(PassThru), "_msmaskedld")); + } else { + setShadow(&I, getCleanShadow(&I)); + } + + if (ClCheckAccessAddress) { + insertShadowCheck(Addr, &I); + insertShadowCheck(Mask, &I); + } + + if (MS.TrackOrigins) { + if (PropagateShadow) { + // Choose between PassThru's and the loaded value's origins. + Value *MaskedPassThruShadow = IRB.CreateAnd( + getShadow(PassThru), IRB.CreateSExt(IRB.CreateNeg(Mask), ShadowTy)); + + Value *Acc = IRB.CreateExtractElement( + MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), 0)); + for (int i = 1, N = cast<FixedVectorType>(PassThru->getType()) + ->getNumElements(); + i < N; ++i) { + Value *More = IRB.CreateExtractElement( + MaskedPassThruShadow, ConstantInt::get(IRB.getInt32Ty(), i)); + Acc = IRB.CreateOr(Acc, More); + } + + Value *Origin = IRB.CreateSelect( + IRB.CreateICmpNE(Acc, Constant::getNullValue(Acc->getType())), + getOrigin(PassThru), IRB.CreateLoad(MS.OriginTy, OriginPtr)); + + setOrigin(&I, Origin); + } else { + setOrigin(&I, getCleanOrigin()); + } + } + return true; + } + + // Instrument BMI / BMI2 intrinsics. + // All of these intrinsics are Z = I(X, Y) + // where the types of all operands and the result match, and are either i32 or i64. + // The following instrumentation happens to work for all of them: + // Sz = I(Sx, Y) | (sext (Sy != 0)) + void handleBmiIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Type *ShadowTy = getShadowTy(&I); + + // If any bit of the mask operand is poisoned, then the whole thing is. + Value *SMask = getShadow(&I, 1); + SMask = IRB.CreateSExt(IRB.CreateICmpNE(SMask, getCleanShadow(ShadowTy)), + ShadowTy); + // Apply the same intrinsic to the shadow of the first operand. + Value *S = IRB.CreateCall(I.getCalledFunction(), + {getShadow(&I, 0), I.getOperand(1)}); + S = IRB.CreateOr(SMask, S); + setShadow(&I, S); + setOriginForNaryOp(I); + } + + SmallVector<int, 8> getPclmulMask(unsigned Width, bool OddElements) { + SmallVector<int, 8> Mask; + for (unsigned X = OddElements ? 1 : 0; X < Width; X += 2) { + Mask.append(2, X); + } + return Mask; + } + + // Instrument pclmul intrinsics. + // These intrinsics operate either on odd or on even elements of the input + // vectors, depending on the constant in the 3rd argument, ignoring the rest. + // Replace the unused elements with copies of the used ones, ex: + // (0, 1, 2, 3) -> (0, 0, 2, 2) (even case) + // or + // (0, 1, 2, 3) -> (1, 1, 3, 3) (odd case) + // and then apply the usual shadow combining logic. + void handlePclmulIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + unsigned Width = + cast<FixedVectorType>(I.getArgOperand(0)->getType())->getNumElements(); + assert(isa<ConstantInt>(I.getArgOperand(2)) && + "pclmul 3rd operand must be a constant"); + unsigned Imm = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue(); Value *Shuf0 = IRB.CreateShuffleVector(getShadow(&I, 0), getPclmulMask(Width, Imm & 0x01)); Value *Shuf1 = IRB.CreateShuffleVector(getShadow(&I, 1), getPclmulMask(Width, Imm & 0x10)); - ShadowAndOriginCombiner SOC(this, IRB); - SOC.Add(Shuf0, getOrigin(&I, 0)); - SOC.Add(Shuf1, getOrigin(&I, 1)); - SOC.Done(&I); - } - - // Instrument _mm_*_sd intrinsics - void handleUnarySdIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *First = getShadow(&I, 0); - Value *Second = getShadow(&I, 1); - // High word of first operand, low word of second - Value *Shadow = - IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); - - setShadow(&I, Shadow); - setOriginForNaryOp(I); - } - - void handleBinarySdIntrinsic(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *First = getShadow(&I, 0); - Value *Second = getShadow(&I, 1); - Value *OrShadow = IRB.CreateOr(First, Second); - // High word of first operand, low word of both OR'd together - Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, - llvm::makeArrayRef<int>({2, 1})); - - setShadow(&I, Shadow); - setOriginForNaryOp(I); - } - + ShadowAndOriginCombiner SOC(this, IRB); + SOC.Add(Shuf0, getOrigin(&I, 0)); + SOC.Add(Shuf1, getOrigin(&I, 1)); + SOC.Done(&I); + } + + // Instrument _mm_*_sd intrinsics + void handleUnarySdIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *First = getShadow(&I, 0); + Value *Second = getShadow(&I, 1); + // High word of first operand, low word of second + Value *Shadow = + IRB.CreateShuffleVector(First, Second, llvm::makeArrayRef<int>({2, 1})); + + setShadow(&I, Shadow); + setOriginForNaryOp(I); + } + + void handleBinarySdIntrinsic(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *First = getShadow(&I, 0); + Value *Second = getShadow(&I, 1); + Value *OrShadow = IRB.CreateOr(First, Second); + // High word of first operand, low word of both OR'd together + Value *Shadow = IRB.CreateShuffleVector(First, OrShadow, + llvm::makeArrayRef<int>({2, 1})); + + setShadow(&I, Shadow); + setOriginForNaryOp(I); + } + // Instrument abs intrinsic. // handleUnknownIntrinsic can't handle it because of the last // is_int_min_poison argument which does not match the result type. @@ -3244,282 +3244,282 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { setOrigin(&I, getOrigin(&I, 0)); } - void visitIntrinsicInst(IntrinsicInst &I) { - switch (I.getIntrinsicID()) { + void visitIntrinsicInst(IntrinsicInst &I) { + switch (I.getIntrinsicID()) { case Intrinsic::abs: handleAbsIntrinsic(I); break; - case Intrinsic::lifetime_start: - handleLifetimeStart(I); - break; - case Intrinsic::launder_invariant_group: - case Intrinsic::strip_invariant_group: - handleInvariantGroup(I); - break; - case Intrinsic::bswap: - handleBswap(I); - break; - case Intrinsic::masked_store: - handleMaskedStore(I); - break; - case Intrinsic::masked_load: - handleMaskedLoad(I); - break; + case Intrinsic::lifetime_start: + handleLifetimeStart(I); + break; + case Intrinsic::launder_invariant_group: + case Intrinsic::strip_invariant_group: + handleInvariantGroup(I); + break; + case Intrinsic::bswap: + handleBswap(I); + break; + case Intrinsic::masked_store: + handleMaskedStore(I); + break; + case Intrinsic::masked_load: + handleMaskedLoad(I); + break; case Intrinsic::vector_reduce_and: - handleVectorReduceAndIntrinsic(I); - break; + handleVectorReduceAndIntrinsic(I); + break; case Intrinsic::vector_reduce_or: - handleVectorReduceOrIntrinsic(I); - break; + handleVectorReduceOrIntrinsic(I); + break; case Intrinsic::vector_reduce_add: case Intrinsic::vector_reduce_xor: case Intrinsic::vector_reduce_mul: - handleVectorReduceIntrinsic(I); - break; - case Intrinsic::x86_sse_stmxcsr: - handleStmxcsr(I); - break; - case Intrinsic::x86_sse_ldmxcsr: - handleLdmxcsr(I); - break; - case Intrinsic::x86_avx512_vcvtsd2usi64: - case Intrinsic::x86_avx512_vcvtsd2usi32: - case Intrinsic::x86_avx512_vcvtss2usi64: - case Intrinsic::x86_avx512_vcvtss2usi32: - case Intrinsic::x86_avx512_cvttss2usi64: - case Intrinsic::x86_avx512_cvttss2usi: - case Intrinsic::x86_avx512_cvttsd2usi64: - case Intrinsic::x86_avx512_cvttsd2usi: - case Intrinsic::x86_avx512_cvtusi2ss: - case Intrinsic::x86_avx512_cvtusi642sd: - case Intrinsic::x86_avx512_cvtusi642ss: + handleVectorReduceIntrinsic(I); + break; + case Intrinsic::x86_sse_stmxcsr: + handleStmxcsr(I); + break; + case Intrinsic::x86_sse_ldmxcsr: + handleLdmxcsr(I); + break; + case Intrinsic::x86_avx512_vcvtsd2usi64: + case Intrinsic::x86_avx512_vcvtsd2usi32: + case Intrinsic::x86_avx512_vcvtss2usi64: + case Intrinsic::x86_avx512_vcvtss2usi32: + case Intrinsic::x86_avx512_cvttss2usi64: + case Intrinsic::x86_avx512_cvttss2usi: + case Intrinsic::x86_avx512_cvttsd2usi64: + case Intrinsic::x86_avx512_cvttsd2usi: + case Intrinsic::x86_avx512_cvtusi2ss: + case Intrinsic::x86_avx512_cvtusi642sd: + case Intrinsic::x86_avx512_cvtusi642ss: handleVectorConvertIntrinsic(I, 1, true); break; - case Intrinsic::x86_sse2_cvtsd2si64: - case Intrinsic::x86_sse2_cvtsd2si: - case Intrinsic::x86_sse2_cvtsd2ss: - case Intrinsic::x86_sse2_cvttsd2si64: - case Intrinsic::x86_sse2_cvttsd2si: - case Intrinsic::x86_sse_cvtss2si64: - case Intrinsic::x86_sse_cvtss2si: - case Intrinsic::x86_sse_cvttss2si64: - case Intrinsic::x86_sse_cvttss2si: - handleVectorConvertIntrinsic(I, 1); - break; - case Intrinsic::x86_sse_cvtps2pi: - case Intrinsic::x86_sse_cvttps2pi: - handleVectorConvertIntrinsic(I, 2); - break; - - case Intrinsic::x86_avx512_psll_w_512: - case Intrinsic::x86_avx512_psll_d_512: - case Intrinsic::x86_avx512_psll_q_512: - case Intrinsic::x86_avx512_pslli_w_512: - case Intrinsic::x86_avx512_pslli_d_512: - case Intrinsic::x86_avx512_pslli_q_512: - case Intrinsic::x86_avx512_psrl_w_512: - case Intrinsic::x86_avx512_psrl_d_512: - case Intrinsic::x86_avx512_psrl_q_512: - case Intrinsic::x86_avx512_psra_w_512: - case Intrinsic::x86_avx512_psra_d_512: - case Intrinsic::x86_avx512_psra_q_512: - case Intrinsic::x86_avx512_psrli_w_512: - case Intrinsic::x86_avx512_psrli_d_512: - case Intrinsic::x86_avx512_psrli_q_512: - case Intrinsic::x86_avx512_psrai_w_512: - case Intrinsic::x86_avx512_psrai_d_512: - case Intrinsic::x86_avx512_psrai_q_512: - case Intrinsic::x86_avx512_psra_q_256: - case Intrinsic::x86_avx512_psra_q_128: - case Intrinsic::x86_avx512_psrai_q_256: - case Intrinsic::x86_avx512_psrai_q_128: - case Intrinsic::x86_avx2_psll_w: - case Intrinsic::x86_avx2_psll_d: - case Intrinsic::x86_avx2_psll_q: - case Intrinsic::x86_avx2_pslli_w: - case Intrinsic::x86_avx2_pslli_d: - case Intrinsic::x86_avx2_pslli_q: - case Intrinsic::x86_avx2_psrl_w: - case Intrinsic::x86_avx2_psrl_d: - case Intrinsic::x86_avx2_psrl_q: - case Intrinsic::x86_avx2_psra_w: - case Intrinsic::x86_avx2_psra_d: - case Intrinsic::x86_avx2_psrli_w: - case Intrinsic::x86_avx2_psrli_d: - case Intrinsic::x86_avx2_psrli_q: - case Intrinsic::x86_avx2_psrai_w: - case Intrinsic::x86_avx2_psrai_d: - case Intrinsic::x86_sse2_psll_w: - case Intrinsic::x86_sse2_psll_d: - case Intrinsic::x86_sse2_psll_q: - case Intrinsic::x86_sse2_pslli_w: - case Intrinsic::x86_sse2_pslli_d: - case Intrinsic::x86_sse2_pslli_q: - case Intrinsic::x86_sse2_psrl_w: - case Intrinsic::x86_sse2_psrl_d: - case Intrinsic::x86_sse2_psrl_q: - case Intrinsic::x86_sse2_psra_w: - case Intrinsic::x86_sse2_psra_d: - case Intrinsic::x86_sse2_psrli_w: - case Intrinsic::x86_sse2_psrli_d: - case Intrinsic::x86_sse2_psrli_q: - case Intrinsic::x86_sse2_psrai_w: - case Intrinsic::x86_sse2_psrai_d: - case Intrinsic::x86_mmx_psll_w: - case Intrinsic::x86_mmx_psll_d: - case Intrinsic::x86_mmx_psll_q: - case Intrinsic::x86_mmx_pslli_w: - case Intrinsic::x86_mmx_pslli_d: - case Intrinsic::x86_mmx_pslli_q: - case Intrinsic::x86_mmx_psrl_w: - case Intrinsic::x86_mmx_psrl_d: - case Intrinsic::x86_mmx_psrl_q: - case Intrinsic::x86_mmx_psra_w: - case Intrinsic::x86_mmx_psra_d: - case Intrinsic::x86_mmx_psrli_w: - case Intrinsic::x86_mmx_psrli_d: - case Intrinsic::x86_mmx_psrli_q: - case Intrinsic::x86_mmx_psrai_w: - case Intrinsic::x86_mmx_psrai_d: - handleVectorShiftIntrinsic(I, /* Variable */ false); - break; - case Intrinsic::x86_avx2_psllv_d: - case Intrinsic::x86_avx2_psllv_d_256: - case Intrinsic::x86_avx512_psllv_d_512: - case Intrinsic::x86_avx2_psllv_q: - case Intrinsic::x86_avx2_psllv_q_256: - case Intrinsic::x86_avx512_psllv_q_512: - case Intrinsic::x86_avx2_psrlv_d: - case Intrinsic::x86_avx2_psrlv_d_256: - case Intrinsic::x86_avx512_psrlv_d_512: - case Intrinsic::x86_avx2_psrlv_q: - case Intrinsic::x86_avx2_psrlv_q_256: - case Intrinsic::x86_avx512_psrlv_q_512: - case Intrinsic::x86_avx2_psrav_d: - case Intrinsic::x86_avx2_psrav_d_256: - case Intrinsic::x86_avx512_psrav_d_512: - case Intrinsic::x86_avx512_psrav_q_128: - case Intrinsic::x86_avx512_psrav_q_256: - case Intrinsic::x86_avx512_psrav_q_512: - handleVectorShiftIntrinsic(I, /* Variable */ true); - break; - - case Intrinsic::x86_sse2_packsswb_128: - case Intrinsic::x86_sse2_packssdw_128: - case Intrinsic::x86_sse2_packuswb_128: - case Intrinsic::x86_sse41_packusdw: - case Intrinsic::x86_avx2_packsswb: - case Intrinsic::x86_avx2_packssdw: - case Intrinsic::x86_avx2_packuswb: - case Intrinsic::x86_avx2_packusdw: - handleVectorPackIntrinsic(I); - break; - - case Intrinsic::x86_mmx_packsswb: - case Intrinsic::x86_mmx_packuswb: - handleVectorPackIntrinsic(I, 16); - break; - - case Intrinsic::x86_mmx_packssdw: - handleVectorPackIntrinsic(I, 32); - break; - - case Intrinsic::x86_mmx_psad_bw: - case Intrinsic::x86_sse2_psad_bw: - case Intrinsic::x86_avx2_psad_bw: - handleVectorSadIntrinsic(I); - break; - - case Intrinsic::x86_sse2_pmadd_wd: - case Intrinsic::x86_avx2_pmadd_wd: - case Intrinsic::x86_ssse3_pmadd_ub_sw_128: - case Intrinsic::x86_avx2_pmadd_ub_sw: - handleVectorPmaddIntrinsic(I); - break; - - case Intrinsic::x86_ssse3_pmadd_ub_sw: - handleVectorPmaddIntrinsic(I, 8); - break; - - case Intrinsic::x86_mmx_pmadd_wd: - handleVectorPmaddIntrinsic(I, 16); - break; - - case Intrinsic::x86_sse_cmp_ss: - case Intrinsic::x86_sse2_cmp_sd: - case Intrinsic::x86_sse_comieq_ss: - case Intrinsic::x86_sse_comilt_ss: - case Intrinsic::x86_sse_comile_ss: - case Intrinsic::x86_sse_comigt_ss: - case Intrinsic::x86_sse_comige_ss: - case Intrinsic::x86_sse_comineq_ss: - case Intrinsic::x86_sse_ucomieq_ss: - case Intrinsic::x86_sse_ucomilt_ss: - case Intrinsic::x86_sse_ucomile_ss: - case Intrinsic::x86_sse_ucomigt_ss: - case Intrinsic::x86_sse_ucomige_ss: - case Intrinsic::x86_sse_ucomineq_ss: - case Intrinsic::x86_sse2_comieq_sd: - case Intrinsic::x86_sse2_comilt_sd: - case Intrinsic::x86_sse2_comile_sd: - case Intrinsic::x86_sse2_comigt_sd: - case Intrinsic::x86_sse2_comige_sd: - case Intrinsic::x86_sse2_comineq_sd: - case Intrinsic::x86_sse2_ucomieq_sd: - case Intrinsic::x86_sse2_ucomilt_sd: - case Intrinsic::x86_sse2_ucomile_sd: - case Intrinsic::x86_sse2_ucomigt_sd: - case Intrinsic::x86_sse2_ucomige_sd: - case Intrinsic::x86_sse2_ucomineq_sd: - handleVectorCompareScalarIntrinsic(I); - break; - - case Intrinsic::x86_sse_cmp_ps: - case Intrinsic::x86_sse2_cmp_pd: - // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function - // generates reasonably looking IR that fails in the backend with "Do not - // know how to split the result of this operator!". - handleVectorComparePackedIntrinsic(I); - break; - - case Intrinsic::x86_bmi_bextr_32: - case Intrinsic::x86_bmi_bextr_64: - case Intrinsic::x86_bmi_bzhi_32: - case Intrinsic::x86_bmi_bzhi_64: - case Intrinsic::x86_bmi_pdep_32: - case Intrinsic::x86_bmi_pdep_64: - case Intrinsic::x86_bmi_pext_32: - case Intrinsic::x86_bmi_pext_64: - handleBmiIntrinsic(I); - break; - - case Intrinsic::x86_pclmulqdq: - case Intrinsic::x86_pclmulqdq_256: - case Intrinsic::x86_pclmulqdq_512: - handlePclmulIntrinsic(I); - break; - - case Intrinsic::x86_sse41_round_sd: - handleUnarySdIntrinsic(I); - break; - case Intrinsic::x86_sse2_max_sd: - case Intrinsic::x86_sse2_min_sd: - handleBinarySdIntrinsic(I); - break; - - case Intrinsic::is_constant: - // The result of llvm.is.constant() is always defined. - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - break; - - default: - if (!handleUnknownIntrinsic(I)) - visitInstruction(I); - break; - } - } - + case Intrinsic::x86_sse2_cvtsd2si64: + case Intrinsic::x86_sse2_cvtsd2si: + case Intrinsic::x86_sse2_cvtsd2ss: + case Intrinsic::x86_sse2_cvttsd2si64: + case Intrinsic::x86_sse2_cvttsd2si: + case Intrinsic::x86_sse_cvtss2si64: + case Intrinsic::x86_sse_cvtss2si: + case Intrinsic::x86_sse_cvttss2si64: + case Intrinsic::x86_sse_cvttss2si: + handleVectorConvertIntrinsic(I, 1); + break; + case Intrinsic::x86_sse_cvtps2pi: + case Intrinsic::x86_sse_cvttps2pi: + handleVectorConvertIntrinsic(I, 2); + break; + + case Intrinsic::x86_avx512_psll_w_512: + case Intrinsic::x86_avx512_psll_d_512: + case Intrinsic::x86_avx512_psll_q_512: + case Intrinsic::x86_avx512_pslli_w_512: + case Intrinsic::x86_avx512_pslli_d_512: + case Intrinsic::x86_avx512_pslli_q_512: + case Intrinsic::x86_avx512_psrl_w_512: + case Intrinsic::x86_avx512_psrl_d_512: + case Intrinsic::x86_avx512_psrl_q_512: + case Intrinsic::x86_avx512_psra_w_512: + case Intrinsic::x86_avx512_psra_d_512: + case Intrinsic::x86_avx512_psra_q_512: + case Intrinsic::x86_avx512_psrli_w_512: + case Intrinsic::x86_avx512_psrli_d_512: + case Intrinsic::x86_avx512_psrli_q_512: + case Intrinsic::x86_avx512_psrai_w_512: + case Intrinsic::x86_avx512_psrai_d_512: + case Intrinsic::x86_avx512_psrai_q_512: + case Intrinsic::x86_avx512_psra_q_256: + case Intrinsic::x86_avx512_psra_q_128: + case Intrinsic::x86_avx512_psrai_q_256: + case Intrinsic::x86_avx512_psrai_q_128: + case Intrinsic::x86_avx2_psll_w: + case Intrinsic::x86_avx2_psll_d: + case Intrinsic::x86_avx2_psll_q: + case Intrinsic::x86_avx2_pslli_w: + case Intrinsic::x86_avx2_pslli_d: + case Intrinsic::x86_avx2_pslli_q: + case Intrinsic::x86_avx2_psrl_w: + case Intrinsic::x86_avx2_psrl_d: + case Intrinsic::x86_avx2_psrl_q: + case Intrinsic::x86_avx2_psra_w: + case Intrinsic::x86_avx2_psra_d: + case Intrinsic::x86_avx2_psrli_w: + case Intrinsic::x86_avx2_psrli_d: + case Intrinsic::x86_avx2_psrli_q: + case Intrinsic::x86_avx2_psrai_w: + case Intrinsic::x86_avx2_psrai_d: + case Intrinsic::x86_sse2_psll_w: + case Intrinsic::x86_sse2_psll_d: + case Intrinsic::x86_sse2_psll_q: + case Intrinsic::x86_sse2_pslli_w: + case Intrinsic::x86_sse2_pslli_d: + case Intrinsic::x86_sse2_pslli_q: + case Intrinsic::x86_sse2_psrl_w: + case Intrinsic::x86_sse2_psrl_d: + case Intrinsic::x86_sse2_psrl_q: + case Intrinsic::x86_sse2_psra_w: + case Intrinsic::x86_sse2_psra_d: + case Intrinsic::x86_sse2_psrli_w: + case Intrinsic::x86_sse2_psrli_d: + case Intrinsic::x86_sse2_psrli_q: + case Intrinsic::x86_sse2_psrai_w: + case Intrinsic::x86_sse2_psrai_d: + case Intrinsic::x86_mmx_psll_w: + case Intrinsic::x86_mmx_psll_d: + case Intrinsic::x86_mmx_psll_q: + case Intrinsic::x86_mmx_pslli_w: + case Intrinsic::x86_mmx_pslli_d: + case Intrinsic::x86_mmx_pslli_q: + case Intrinsic::x86_mmx_psrl_w: + case Intrinsic::x86_mmx_psrl_d: + case Intrinsic::x86_mmx_psrl_q: + case Intrinsic::x86_mmx_psra_w: + case Intrinsic::x86_mmx_psra_d: + case Intrinsic::x86_mmx_psrli_w: + case Intrinsic::x86_mmx_psrli_d: + case Intrinsic::x86_mmx_psrli_q: + case Intrinsic::x86_mmx_psrai_w: + case Intrinsic::x86_mmx_psrai_d: + handleVectorShiftIntrinsic(I, /* Variable */ false); + break; + case Intrinsic::x86_avx2_psllv_d: + case Intrinsic::x86_avx2_psllv_d_256: + case Intrinsic::x86_avx512_psllv_d_512: + case Intrinsic::x86_avx2_psllv_q: + case Intrinsic::x86_avx2_psllv_q_256: + case Intrinsic::x86_avx512_psllv_q_512: + case Intrinsic::x86_avx2_psrlv_d: + case Intrinsic::x86_avx2_psrlv_d_256: + case Intrinsic::x86_avx512_psrlv_d_512: + case Intrinsic::x86_avx2_psrlv_q: + case Intrinsic::x86_avx2_psrlv_q_256: + case Intrinsic::x86_avx512_psrlv_q_512: + case Intrinsic::x86_avx2_psrav_d: + case Intrinsic::x86_avx2_psrav_d_256: + case Intrinsic::x86_avx512_psrav_d_512: + case Intrinsic::x86_avx512_psrav_q_128: + case Intrinsic::x86_avx512_psrav_q_256: + case Intrinsic::x86_avx512_psrav_q_512: + handleVectorShiftIntrinsic(I, /* Variable */ true); + break; + + case Intrinsic::x86_sse2_packsswb_128: + case Intrinsic::x86_sse2_packssdw_128: + case Intrinsic::x86_sse2_packuswb_128: + case Intrinsic::x86_sse41_packusdw: + case Intrinsic::x86_avx2_packsswb: + case Intrinsic::x86_avx2_packssdw: + case Intrinsic::x86_avx2_packuswb: + case Intrinsic::x86_avx2_packusdw: + handleVectorPackIntrinsic(I); + break; + + case Intrinsic::x86_mmx_packsswb: + case Intrinsic::x86_mmx_packuswb: + handleVectorPackIntrinsic(I, 16); + break; + + case Intrinsic::x86_mmx_packssdw: + handleVectorPackIntrinsic(I, 32); + break; + + case Intrinsic::x86_mmx_psad_bw: + case Intrinsic::x86_sse2_psad_bw: + case Intrinsic::x86_avx2_psad_bw: + handleVectorSadIntrinsic(I); + break; + + case Intrinsic::x86_sse2_pmadd_wd: + case Intrinsic::x86_avx2_pmadd_wd: + case Intrinsic::x86_ssse3_pmadd_ub_sw_128: + case Intrinsic::x86_avx2_pmadd_ub_sw: + handleVectorPmaddIntrinsic(I); + break; + + case Intrinsic::x86_ssse3_pmadd_ub_sw: + handleVectorPmaddIntrinsic(I, 8); + break; + + case Intrinsic::x86_mmx_pmadd_wd: + handleVectorPmaddIntrinsic(I, 16); + break; + + case Intrinsic::x86_sse_cmp_ss: + case Intrinsic::x86_sse2_cmp_sd: + case Intrinsic::x86_sse_comieq_ss: + case Intrinsic::x86_sse_comilt_ss: + case Intrinsic::x86_sse_comile_ss: + case Intrinsic::x86_sse_comigt_ss: + case Intrinsic::x86_sse_comige_ss: + case Intrinsic::x86_sse_comineq_ss: + case Intrinsic::x86_sse_ucomieq_ss: + case Intrinsic::x86_sse_ucomilt_ss: + case Intrinsic::x86_sse_ucomile_ss: + case Intrinsic::x86_sse_ucomigt_ss: + case Intrinsic::x86_sse_ucomige_ss: + case Intrinsic::x86_sse_ucomineq_ss: + case Intrinsic::x86_sse2_comieq_sd: + case Intrinsic::x86_sse2_comilt_sd: + case Intrinsic::x86_sse2_comile_sd: + case Intrinsic::x86_sse2_comigt_sd: + case Intrinsic::x86_sse2_comige_sd: + case Intrinsic::x86_sse2_comineq_sd: + case Intrinsic::x86_sse2_ucomieq_sd: + case Intrinsic::x86_sse2_ucomilt_sd: + case Intrinsic::x86_sse2_ucomile_sd: + case Intrinsic::x86_sse2_ucomigt_sd: + case Intrinsic::x86_sse2_ucomige_sd: + case Intrinsic::x86_sse2_ucomineq_sd: + handleVectorCompareScalarIntrinsic(I); + break; + + case Intrinsic::x86_sse_cmp_ps: + case Intrinsic::x86_sse2_cmp_pd: + // FIXME: For x86_avx_cmp_pd_256 and x86_avx_cmp_ps_256 this function + // generates reasonably looking IR that fails in the backend with "Do not + // know how to split the result of this operator!". + handleVectorComparePackedIntrinsic(I); + break; + + case Intrinsic::x86_bmi_bextr_32: + case Intrinsic::x86_bmi_bextr_64: + case Intrinsic::x86_bmi_bzhi_32: + case Intrinsic::x86_bmi_bzhi_64: + case Intrinsic::x86_bmi_pdep_32: + case Intrinsic::x86_bmi_pdep_64: + case Intrinsic::x86_bmi_pext_32: + case Intrinsic::x86_bmi_pext_64: + handleBmiIntrinsic(I); + break; + + case Intrinsic::x86_pclmulqdq: + case Intrinsic::x86_pclmulqdq_256: + case Intrinsic::x86_pclmulqdq_512: + handlePclmulIntrinsic(I); + break; + + case Intrinsic::x86_sse41_round_sd: + handleUnarySdIntrinsic(I); + break; + case Intrinsic::x86_sse2_max_sd: + case Intrinsic::x86_sse2_min_sd: + handleBinarySdIntrinsic(I); + break; + + case Intrinsic::is_constant: + // The result of llvm.is.constant() is always defined. + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + break; + + default: + if (!handleUnknownIntrinsic(I)) + visitInstruction(I); + break; + } + } + void visitLibAtomicLoad(CallBase &CB) { // Since we use getNextNode here, we can't have CB terminate the BB. assert(isa<CallInst>(CB)); @@ -3577,19 +3577,19 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { Align(1)); } - void visitCallBase(CallBase &CB) { - assert(!CB.getMetadata("nosanitize")); - if (CB.isInlineAsm()) { - // For inline asm (either a call to asm function, or callbr instruction), - // do the usual thing: check argument shadow and mark all outputs as - // clean. Note that any side effects of the inline asm that are not - // immediately visible in its constraints are not handled. - if (ClHandleAsmConservative && MS.CompileKernel) - visitAsmInstruction(CB); - else - visitInstruction(CB); - return; - } + void visitCallBase(CallBase &CB) { + assert(!CB.getMetadata("nosanitize")); + if (CB.isInlineAsm()) { + // For inline asm (either a call to asm function, or callbr instruction), + // do the usual thing: check argument shadow and mark all outputs as + // clean. Note that any side effects of the inline asm that are not + // immediately visible in its constraints are not handled. + if (ClHandleAsmConservative && MS.CompileKernel) + visitAsmInstruction(CB); + else + visitInstruction(CB); + return; + } LibFunc LF; if (TLI->getLibFunc(CB, LF)) { // libatomic.a functions need to have special handling because there isn't @@ -3612,13 +3612,13 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { } } - if (auto *Call = dyn_cast<CallInst>(&CB)) { - assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); - - // We are going to insert code that relies on the fact that the callee - // will become a non-readonly function after it is instrumented by us. To - // prevent this code from being optimized out, mark that function - // non-readonly in advance. + if (auto *Call = dyn_cast<CallInst>(&CB)) { + assert(!isa<IntrinsicInst>(Call) && "intrinsics are handled elsewhere"); + + // We are going to insert code that relies on the fact that the callee + // will become a non-readonly function after it is instrumented by us. To + // prevent this code from being optimized out, mark that function + // non-readonly in advance. AttrBuilder B; B.addAttribute(Attribute::ReadOnly) .addAttribute(Attribute::ReadNone) @@ -3627,1693 +3627,1693 @@ struct MemorySanitizerVisitor : public InstVisitor<MemorySanitizerVisitor> { .addAttribute(Attribute::Speculatable); Call->removeAttributes(AttributeList::FunctionIndex, B); - if (Function *Func = Call->getCalledFunction()) { - Func->removeAttributes(AttributeList::FunctionIndex, B); - } - - maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); - } - IRBuilder<> IRB(&CB); + if (Function *Func = Call->getCalledFunction()) { + Func->removeAttributes(AttributeList::FunctionIndex, B); + } + + maybeMarkSanitizerLibraryCallNoBuiltin(Call, TLI); + } + IRBuilder<> IRB(&CB); bool MayCheckCall = ClEagerChecks; if (Function *Func = CB.getCalledFunction()) { // __sanitizer_unaligned_{load,store} functions may be called by users // and always expects shadows in the TLS. So don't check them. MayCheckCall &= !Func->getName().startswith("__sanitizer_unaligned_"); } - - unsigned ArgOffset = 0; - LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); - for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; - ++ArgIt) { - Value *A = *ArgIt; - unsigned i = ArgIt - CB.arg_begin(); - if (!A->getType()->isSized()) { - LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); - continue; - } - unsigned Size = 0; - Value *Store = nullptr; - // Compute the Shadow for arg even if it is ByVal, because - // in that case getShadow() will copy the actual arg shadow to - // __msan_param_tls. - Value *ArgShadow = getShadow(A); - Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); - LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A - << " Shadow: " << *ArgShadow << "\n"); - bool ArgIsInitialized = false; - const DataLayout &DL = F.getParent()->getDataLayout(); - - bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); - bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); + + unsigned ArgOffset = 0; + LLVM_DEBUG(dbgs() << " CallSite: " << CB << "\n"); + for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; + ++ArgIt) { + Value *A = *ArgIt; + unsigned i = ArgIt - CB.arg_begin(); + if (!A->getType()->isSized()) { + LLVM_DEBUG(dbgs() << "Arg " << i << " is not sized: " << CB << "\n"); + continue; + } + unsigned Size = 0; + Value *Store = nullptr; + // Compute the Shadow for arg even if it is ByVal, because + // in that case getShadow() will copy the actual arg shadow to + // __msan_param_tls. + Value *ArgShadow = getShadow(A); + Value *ArgShadowBase = getShadowPtrForArgument(A, IRB, ArgOffset); + LLVM_DEBUG(dbgs() << " Arg#" << i << ": " << *A + << " Shadow: " << *ArgShadow << "\n"); + bool ArgIsInitialized = false; + const DataLayout &DL = F.getParent()->getDataLayout(); + + bool ByVal = CB.paramHasAttr(i, Attribute::ByVal); + bool NoUndef = CB.paramHasAttr(i, Attribute::NoUndef); bool EagerCheck = MayCheckCall && !ByVal && NoUndef; - - if (EagerCheck) { - insertShadowCheck(A, &CB); - continue; - } - if (ByVal) { - // ByVal requires some special handling as it's too big for a single - // load - assert(A->getType()->isPointerTy() && - "ByVal argument is not a pointer!"); - Size = DL.getTypeAllocSize(CB.getParamByValType(i)); - if (ArgOffset + Size > kParamTLSSize) break; - const MaybeAlign ParamAlignment(CB.getParamAlign(i)); - MaybeAlign Alignment = llvm::None; - if (ParamAlignment) - Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); - Value *AShadowPtr = - getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ false) - .first; - - Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, - Alignment, Size); - // TODO(glider): need to copy origins. - } else { - // Any other parameters mean we need bit-grained tracking of uninit data - Size = DL.getTypeAllocSize(A->getType()); - if (ArgOffset + Size > kParamTLSSize) break; - Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, - kShadowTLSAlignment); - Constant *Cst = dyn_cast<Constant>(ArgShadow); - if (Cst && Cst->isNullValue()) ArgIsInitialized = true; - } - if (MS.TrackOrigins && !ArgIsInitialized) - IRB.CreateStore(getOrigin(A), - getOriginPtrForArgument(A, IRB, ArgOffset)); - (void)Store; - assert(Size != 0 && Store != nullptr); - LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); + + if (EagerCheck) { + insertShadowCheck(A, &CB); + continue; + } + if (ByVal) { + // ByVal requires some special handling as it's too big for a single + // load + assert(A->getType()->isPointerTy() && + "ByVal argument is not a pointer!"); + Size = DL.getTypeAllocSize(CB.getParamByValType(i)); + if (ArgOffset + Size > kParamTLSSize) break; + const MaybeAlign ParamAlignment(CB.getParamAlign(i)); + MaybeAlign Alignment = llvm::None; + if (ParamAlignment) + Alignment = std::min(*ParamAlignment, kShadowTLSAlignment); + Value *AShadowPtr = + getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), Alignment, + /*isStore*/ false) + .first; + + Store = IRB.CreateMemCpy(ArgShadowBase, Alignment, AShadowPtr, + Alignment, Size); + // TODO(glider): need to copy origins. + } else { + // Any other parameters mean we need bit-grained tracking of uninit data + Size = DL.getTypeAllocSize(A->getType()); + if (ArgOffset + Size > kParamTLSSize) break; + Store = IRB.CreateAlignedStore(ArgShadow, ArgShadowBase, + kShadowTLSAlignment); + Constant *Cst = dyn_cast<Constant>(ArgShadow); + if (Cst && Cst->isNullValue()) ArgIsInitialized = true; + } + if (MS.TrackOrigins && !ArgIsInitialized) + IRB.CreateStore(getOrigin(A), + getOriginPtrForArgument(A, IRB, ArgOffset)); + (void)Store; + assert(Size != 0 && Store != nullptr); + LLVM_DEBUG(dbgs() << " Param:" << *Store << "\n"); ArgOffset += alignTo(Size, kShadowTLSAlignment); - } - LLVM_DEBUG(dbgs() << " done with call args\n"); - - FunctionType *FT = CB.getFunctionType(); - if (FT->isVarArg()) { - VAHelper->visitCallBase(CB, IRB); - } - - // Now, get the shadow for the RetVal. - if (!CB.getType()->isSized()) - return; - // Don't emit the epilogue for musttail call returns. - if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) - return; - + } + LLVM_DEBUG(dbgs() << " done with call args\n"); + + FunctionType *FT = CB.getFunctionType(); + if (FT->isVarArg()) { + VAHelper->visitCallBase(CB, IRB); + } + + // Now, get the shadow for the RetVal. + if (!CB.getType()->isSized()) + return; + // Don't emit the epilogue for musttail call returns. + if (isa<CallInst>(CB) && cast<CallInst>(CB).isMustTailCall()) + return; + if (MayCheckCall && CB.hasRetAttr(Attribute::NoUndef)) { - setShadow(&CB, getCleanShadow(&CB)); - setOrigin(&CB, getCleanOrigin()); - return; - } - - IRBuilder<> IRBBefore(&CB); - // Until we have full dynamic coverage, make sure the retval shadow is 0. - Value *Base = getShadowPtrForRetval(&CB, IRBBefore); - IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, - kShadowTLSAlignment); - BasicBlock::iterator NextInsn; - if (isa<CallInst>(CB)) { - NextInsn = ++CB.getIterator(); - assert(NextInsn != CB.getParent()->end()); - } else { - BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); - if (!NormalDest->getSinglePredecessor()) { - // FIXME: this case is tricky, so we are just conservative here. - // Perhaps we need to split the edge between this BB and NormalDest, - // but a naive attempt to use SplitEdge leads to a crash. - setShadow(&CB, getCleanShadow(&CB)); - setOrigin(&CB, getCleanOrigin()); - return; - } - // FIXME: NextInsn is likely in a basic block that has not been visited yet. - // Anything inserted there will be instrumented by MSan later! - NextInsn = NormalDest->getFirstInsertionPt(); - assert(NextInsn != NormalDest->end() && - "Could not find insertion point for retval shadow load"); - } - IRBuilder<> IRBAfter(&*NextInsn); - Value *RetvalShadow = IRBAfter.CreateAlignedLoad( - getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), - kShadowTLSAlignment, "_msret"); - setShadow(&CB, RetvalShadow); - if (MS.TrackOrigins) - setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, - getOriginPtrForRetval(IRBAfter))); - } - - bool isAMustTailRetVal(Value *RetVal) { - if (auto *I = dyn_cast<BitCastInst>(RetVal)) { - RetVal = I->getOperand(0); - } - if (auto *I = dyn_cast<CallInst>(RetVal)) { - return I->isMustTailCall(); - } - return false; - } - - void visitReturnInst(ReturnInst &I) { - IRBuilder<> IRB(&I); - Value *RetVal = I.getReturnValue(); - if (!RetVal) return; - // Don't emit the epilogue for musttail call returns. - if (isAMustTailRetVal(RetVal)) return; - Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); - bool HasNoUndef = - F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); - bool StoreShadow = !(ClEagerChecks && HasNoUndef); - // FIXME: Consider using SpecialCaseList to specify a list of functions that - // must always return fully initialized values. For now, we hardcode "main". - bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); - - Value *Shadow = getShadow(RetVal); - bool StoreOrigin = true; - if (EagerCheck) { - insertShadowCheck(RetVal, &I); - Shadow = getCleanShadow(RetVal); - StoreOrigin = false; - } - - // The caller may still expect information passed over TLS if we pass our - // check - if (StoreShadow) { - IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); - if (MS.TrackOrigins && StoreOrigin) - IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); - } - } - - void visitPHINode(PHINode &I) { - IRBuilder<> IRB(&I); - if (!PropagateShadow) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - return; - } - - ShadowPHINodes.push_back(&I); - setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), - "_msphi_s")); - if (MS.TrackOrigins) - setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), - "_msphi_o")); - } - - Value *getLocalVarDescription(AllocaInst &I) { - SmallString<2048> StackDescriptionStorage; - raw_svector_ostream StackDescription(StackDescriptionStorage); - // We create a string with a description of the stack allocation and - // pass it into __msan_set_alloca_origin. - // It will be printed by the run-time if stack-originated UMR is found. - // The first 4 bytes of the string are set to '----' and will be replaced - // by __msan_va_arg_overflow_size_tls at the first call. - StackDescription << "----" << I.getName() << "@" << F.getName(); - return createPrivateNonConstGlobalForString(*F.getParent(), - StackDescription.str()); - } - - void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { - if (PoisonStack && ClPoisonStackWithCall) { - IRB.CreateCall(MS.MsanPoisonStackFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); - } else { - Value *ShadowBase, *OriginBase; - std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( - &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); - - Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); - IRB.CreateMemSet(ShadowBase, PoisonValue, Len, - MaybeAlign(I.getAlignment())); - } - - if (PoisonStack && MS.TrackOrigins) { - Value *Descr = getLocalVarDescription(I); - IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, - IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), - IRB.CreatePointerCast(&F, MS.IntptrTy)}); - } - } - - void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { - Value *Descr = getLocalVarDescription(I); - if (PoisonStack) { - IRB.CreateCall(MS.MsanPoisonAllocaFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, - IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); - } else { - IRB.CreateCall(MS.MsanUnpoisonAllocaFn, - {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); - } - } - - void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { - if (!InsPoint) - InsPoint = &I; - IRBuilder<> IRB(InsPoint->getNextNode()); - const DataLayout &DL = F.getParent()->getDataLayout(); - uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); - Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); - if (I.isArrayAllocation()) - Len = IRB.CreateMul(Len, I.getArraySize()); - - if (MS.CompileKernel) - poisonAllocaKmsan(I, IRB, Len); - else - poisonAllocaUserspace(I, IRB, Len); - } - - void visitAllocaInst(AllocaInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - // We'll get to this alloca later unless it's poisoned at the corresponding - // llvm.lifetime.start. - AllocaSet.insert(&I); - } - - void visitSelectInst(SelectInst& I) { - IRBuilder<> IRB(&I); - // a = select b, c, d - Value *B = I.getCondition(); - Value *C = I.getTrueValue(); - Value *D = I.getFalseValue(); - Value *Sb = getShadow(B); - Value *Sc = getShadow(C); - Value *Sd = getShadow(D); - - // Result shadow if condition shadow is 0. - Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); - Value *Sa1; - if (I.getType()->isAggregateType()) { - // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do - // an extra "select". This results in much more compact IR. - // Sa = select Sb, poisoned, (select b, Sc, Sd) - Sa1 = getPoisonedShadow(getShadowTy(I.getType())); - } else { - // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] - // If Sb (condition is poisoned), look for bits in c and d that are equal - // and both unpoisoned. - // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. - - // Cast arguments to shadow-compatible type. - C = CreateAppToShadowCast(IRB, C); - D = CreateAppToShadowCast(IRB, D); - - // Result shadow if condition shadow is 1. - Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); - } - Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); - setShadow(&I, Sa); - if (MS.TrackOrigins) { - // Origins are always i32, so any vector conditions must be flattened. - // FIXME: consider tracking vector origins for app vectors? - if (B->getType()->isVectorTy()) { - Type *FlatTy = getShadowTyNoVec(B->getType()); - B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), - ConstantInt::getNullValue(FlatTy)); - Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), - ConstantInt::getNullValue(FlatTy)); - } - // a = select b, c, d - // Oa = Sb ? Ob : (b ? Oc : Od) - setOrigin( - &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), - IRB.CreateSelect(B, getOrigin(I.getTrueValue()), - getOrigin(I.getFalseValue())))); - } - } - - void visitLandingPadInst(LandingPadInst &I) { - // Do nothing. - // See https://github.com/google/sanitizers/issues/504 - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitCatchSwitchInst(CatchSwitchInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitFuncletPadInst(FuncletPadInst &I) { - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - - void visitGetElementPtrInst(GetElementPtrInst &I) { - handleShadowOr(I); - } - - void visitExtractValueInst(ExtractValueInst &I) { - IRBuilder<> IRB(&I); - Value *Agg = I.getAggregateOperand(); - LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); - Value *AggShadow = getShadow(Agg); - LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); - Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); - LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); - setShadow(&I, ResShadow); - setOriginForNaryOp(I); - } - - void visitInsertValueInst(InsertValueInst &I) { - IRBuilder<> IRB(&I); - LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); - Value *AggShadow = getShadow(I.getAggregateOperand()); - Value *InsShadow = getShadow(I.getInsertedValueOperand()); - LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); - LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); - Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); - LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); - setShadow(&I, Res); - setOriginForNaryOp(I); - } - - void dumpInst(Instruction &I) { - if (CallInst *CI = dyn_cast<CallInst>(&I)) { - errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; - } else { - errs() << "ZZZ " << I.getOpcodeName() << "\n"; - } - errs() << "QQQ " << I << "\n"; - } - - void visitResumeInst(ResumeInst &I) { - LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); - // Nothing to do here. - } - - void visitCleanupReturnInst(CleanupReturnInst &CRI) { - LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); - // Nothing to do here. - } - - void visitCatchReturnInst(CatchReturnInst &CRI) { - LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); - // Nothing to do here. - } - - void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, - const DataLayout &DL, bool isOutput) { - // For each assembly argument, we check its value for being initialized. - // If the argument is a pointer, we assume it points to a single element - // of the corresponding type (or to a 8-byte word, if the type is unsized). - // Each such pointer is instrumented with a call to the runtime library. - Type *OpType = Operand->getType(); - // Check the operand value itself. - insertShadowCheck(Operand, &I); - if (!OpType->isPointerTy() || !isOutput) { - assert(!isOutput); - return; - } - Type *ElType = OpType->getPointerElementType(); - if (!ElType->isSized()) - return; - int Size = DL.getTypeStoreSize(ElType); - Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); - Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); - IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); - } - - /// Get the number of output arguments returned by pointers. - int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { - int NumRetOutputs = 0; - int NumOutputs = 0; - Type *RetTy = cast<Value>(CB)->getType(); - if (!RetTy->isVoidTy()) { - // Register outputs are returned via the CallInst return value. - auto *ST = dyn_cast<StructType>(RetTy); - if (ST) - NumRetOutputs = ST->getNumElements(); - else - NumRetOutputs = 1; - } - InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); - for (size_t i = 0, n = Constraints.size(); i < n; i++) { - InlineAsm::ConstraintInfo Info = Constraints[i]; - switch (Info.Type) { - case InlineAsm::isOutput: - NumOutputs++; - break; - default: - break; - } - } - return NumOutputs - NumRetOutputs; - } - - void visitAsmInstruction(Instruction &I) { - // Conservative inline assembly handling: check for poisoned shadow of - // asm() arguments, then unpoison the result and all the memory locations - // pointed to by those arguments. - // An inline asm() statement in C++ contains lists of input and output - // arguments used by the assembly code. These are mapped to operands of the - // CallInst as follows: - // - nR register outputs ("=r) are returned by value in a single structure - // (SSA value of the CallInst); - // - nO other outputs ("=m" and others) are returned by pointer as first - // nO operands of the CallInst; - // - nI inputs ("r", "m" and others) are passed to CallInst as the - // remaining nI operands. - // The total number of asm() arguments in the source is nR+nO+nI, and the - // corresponding CallInst has nO+nI+1 operands (the last operand is the - // function to be called). - const DataLayout &DL = F.getParent()->getDataLayout(); - CallBase *CB = cast<CallBase>(&I); - IRBuilder<> IRB(&I); - InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); - int OutputArgs = getNumOutputArgs(IA, CB); - // The last operand of a CallInst is the function itself. - int NumOperands = CB->getNumOperands() - 1; - - // Check input arguments. Doing so before unpoisoning output arguments, so - // that we won't overwrite uninit values before checking them. - for (int i = OutputArgs; i < NumOperands; i++) { - Value *Operand = CB->getOperand(i); - instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); - } - // Unpoison output arguments. This must happen before the actual InlineAsm - // call, so that the shadow for memory published in the asm() statement - // remains valid. - for (int i = 0; i < OutputArgs; i++) { - Value *Operand = CB->getOperand(i); - instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); - } - - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } - + setShadow(&CB, getCleanShadow(&CB)); + setOrigin(&CB, getCleanOrigin()); + return; + } + + IRBuilder<> IRBBefore(&CB); + // Until we have full dynamic coverage, make sure the retval shadow is 0. + Value *Base = getShadowPtrForRetval(&CB, IRBBefore); + IRBBefore.CreateAlignedStore(getCleanShadow(&CB), Base, + kShadowTLSAlignment); + BasicBlock::iterator NextInsn; + if (isa<CallInst>(CB)) { + NextInsn = ++CB.getIterator(); + assert(NextInsn != CB.getParent()->end()); + } else { + BasicBlock *NormalDest = cast<InvokeInst>(CB).getNormalDest(); + if (!NormalDest->getSinglePredecessor()) { + // FIXME: this case is tricky, so we are just conservative here. + // Perhaps we need to split the edge between this BB and NormalDest, + // but a naive attempt to use SplitEdge leads to a crash. + setShadow(&CB, getCleanShadow(&CB)); + setOrigin(&CB, getCleanOrigin()); + return; + } + // FIXME: NextInsn is likely in a basic block that has not been visited yet. + // Anything inserted there will be instrumented by MSan later! + NextInsn = NormalDest->getFirstInsertionPt(); + assert(NextInsn != NormalDest->end() && + "Could not find insertion point for retval shadow load"); + } + IRBuilder<> IRBAfter(&*NextInsn); + Value *RetvalShadow = IRBAfter.CreateAlignedLoad( + getShadowTy(&CB), getShadowPtrForRetval(&CB, IRBAfter), + kShadowTLSAlignment, "_msret"); + setShadow(&CB, RetvalShadow); + if (MS.TrackOrigins) + setOrigin(&CB, IRBAfter.CreateLoad(MS.OriginTy, + getOriginPtrForRetval(IRBAfter))); + } + + bool isAMustTailRetVal(Value *RetVal) { + if (auto *I = dyn_cast<BitCastInst>(RetVal)) { + RetVal = I->getOperand(0); + } + if (auto *I = dyn_cast<CallInst>(RetVal)) { + return I->isMustTailCall(); + } + return false; + } + + void visitReturnInst(ReturnInst &I) { + IRBuilder<> IRB(&I); + Value *RetVal = I.getReturnValue(); + if (!RetVal) return; + // Don't emit the epilogue for musttail call returns. + if (isAMustTailRetVal(RetVal)) return; + Value *ShadowPtr = getShadowPtrForRetval(RetVal, IRB); + bool HasNoUndef = + F.hasAttribute(AttributeList::ReturnIndex, Attribute::NoUndef); + bool StoreShadow = !(ClEagerChecks && HasNoUndef); + // FIXME: Consider using SpecialCaseList to specify a list of functions that + // must always return fully initialized values. For now, we hardcode "main". + bool EagerCheck = (ClEagerChecks && HasNoUndef) || (F.getName() == "main"); + + Value *Shadow = getShadow(RetVal); + bool StoreOrigin = true; + if (EagerCheck) { + insertShadowCheck(RetVal, &I); + Shadow = getCleanShadow(RetVal); + StoreOrigin = false; + } + + // The caller may still expect information passed over TLS if we pass our + // check + if (StoreShadow) { + IRB.CreateAlignedStore(Shadow, ShadowPtr, kShadowTLSAlignment); + if (MS.TrackOrigins && StoreOrigin) + IRB.CreateStore(getOrigin(RetVal), getOriginPtrForRetval(IRB)); + } + } + + void visitPHINode(PHINode &I) { + IRBuilder<> IRB(&I); + if (!PropagateShadow) { + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + return; + } + + ShadowPHINodes.push_back(&I); + setShadow(&I, IRB.CreatePHI(getShadowTy(&I), I.getNumIncomingValues(), + "_msphi_s")); + if (MS.TrackOrigins) + setOrigin(&I, IRB.CreatePHI(MS.OriginTy, I.getNumIncomingValues(), + "_msphi_o")); + } + + Value *getLocalVarDescription(AllocaInst &I) { + SmallString<2048> StackDescriptionStorage; + raw_svector_ostream StackDescription(StackDescriptionStorage); + // We create a string with a description of the stack allocation and + // pass it into __msan_set_alloca_origin. + // It will be printed by the run-time if stack-originated UMR is found. + // The first 4 bytes of the string are set to '----' and will be replaced + // by __msan_va_arg_overflow_size_tls at the first call. + StackDescription << "----" << I.getName() << "@" << F.getName(); + return createPrivateNonConstGlobalForString(*F.getParent(), + StackDescription.str()); + } + + void poisonAllocaUserspace(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { + if (PoisonStack && ClPoisonStackWithCall) { + IRB.CreateCall(MS.MsanPoisonStackFn, + {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); + } else { + Value *ShadowBase, *OriginBase; + std::tie(ShadowBase, OriginBase) = getShadowOriginPtr( + &I, IRB, IRB.getInt8Ty(), Align(1), /*isStore*/ true); + + Value *PoisonValue = IRB.getInt8(PoisonStack ? ClPoisonStackPattern : 0); + IRB.CreateMemSet(ShadowBase, PoisonValue, Len, + MaybeAlign(I.getAlignment())); + } + + if (PoisonStack && MS.TrackOrigins) { + Value *Descr = getLocalVarDescription(I); + IRB.CreateCall(MS.MsanSetAllocaOrigin4Fn, + {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, + IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy()), + IRB.CreatePointerCast(&F, MS.IntptrTy)}); + } + } + + void poisonAllocaKmsan(AllocaInst &I, IRBuilder<> &IRB, Value *Len) { + Value *Descr = getLocalVarDescription(I); + if (PoisonStack) { + IRB.CreateCall(MS.MsanPoisonAllocaFn, + {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len, + IRB.CreatePointerCast(Descr, IRB.getInt8PtrTy())}); + } else { + IRB.CreateCall(MS.MsanUnpoisonAllocaFn, + {IRB.CreatePointerCast(&I, IRB.getInt8PtrTy()), Len}); + } + } + + void instrumentAlloca(AllocaInst &I, Instruction *InsPoint = nullptr) { + if (!InsPoint) + InsPoint = &I; + IRBuilder<> IRB(InsPoint->getNextNode()); + const DataLayout &DL = F.getParent()->getDataLayout(); + uint64_t TypeSize = DL.getTypeAllocSize(I.getAllocatedType()); + Value *Len = ConstantInt::get(MS.IntptrTy, TypeSize); + if (I.isArrayAllocation()) + Len = IRB.CreateMul(Len, I.getArraySize()); + + if (MS.CompileKernel) + poisonAllocaKmsan(I, IRB, Len); + else + poisonAllocaUserspace(I, IRB, Len); + } + + void visitAllocaInst(AllocaInst &I) { + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + // We'll get to this alloca later unless it's poisoned at the corresponding + // llvm.lifetime.start. + AllocaSet.insert(&I); + } + + void visitSelectInst(SelectInst& I) { + IRBuilder<> IRB(&I); + // a = select b, c, d + Value *B = I.getCondition(); + Value *C = I.getTrueValue(); + Value *D = I.getFalseValue(); + Value *Sb = getShadow(B); + Value *Sc = getShadow(C); + Value *Sd = getShadow(D); + + // Result shadow if condition shadow is 0. + Value *Sa0 = IRB.CreateSelect(B, Sc, Sd); + Value *Sa1; + if (I.getType()->isAggregateType()) { + // To avoid "sign extending" i1 to an arbitrary aggregate type, we just do + // an extra "select". This results in much more compact IR. + // Sa = select Sb, poisoned, (select b, Sc, Sd) + Sa1 = getPoisonedShadow(getShadowTy(I.getType())); + } else { + // Sa = select Sb, [ (c^d) | Sc | Sd ], [ b ? Sc : Sd ] + // If Sb (condition is poisoned), look for bits in c and d that are equal + // and both unpoisoned. + // If !Sb (condition is unpoisoned), simply pick one of Sc and Sd. + + // Cast arguments to shadow-compatible type. + C = CreateAppToShadowCast(IRB, C); + D = CreateAppToShadowCast(IRB, D); + + // Result shadow if condition shadow is 1. + Sa1 = IRB.CreateOr({IRB.CreateXor(C, D), Sc, Sd}); + } + Value *Sa = IRB.CreateSelect(Sb, Sa1, Sa0, "_msprop_select"); + setShadow(&I, Sa); + if (MS.TrackOrigins) { + // Origins are always i32, so any vector conditions must be flattened. + // FIXME: consider tracking vector origins for app vectors? + if (B->getType()->isVectorTy()) { + Type *FlatTy = getShadowTyNoVec(B->getType()); + B = IRB.CreateICmpNE(IRB.CreateBitCast(B, FlatTy), + ConstantInt::getNullValue(FlatTy)); + Sb = IRB.CreateICmpNE(IRB.CreateBitCast(Sb, FlatTy), + ConstantInt::getNullValue(FlatTy)); + } + // a = select b, c, d + // Oa = Sb ? Ob : (b ? Oc : Od) + setOrigin( + &I, IRB.CreateSelect(Sb, getOrigin(I.getCondition()), + IRB.CreateSelect(B, getOrigin(I.getTrueValue()), + getOrigin(I.getFalseValue())))); + } + } + + void visitLandingPadInst(LandingPadInst &I) { + // Do nothing. + // See https://github.com/google/sanitizers/issues/504 + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + + void visitCatchSwitchInst(CatchSwitchInst &I) { + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + + void visitFuncletPadInst(FuncletPadInst &I) { + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + + void visitGetElementPtrInst(GetElementPtrInst &I) { + handleShadowOr(I); + } + + void visitExtractValueInst(ExtractValueInst &I) { + IRBuilder<> IRB(&I); + Value *Agg = I.getAggregateOperand(); + LLVM_DEBUG(dbgs() << "ExtractValue: " << I << "\n"); + Value *AggShadow = getShadow(Agg); + LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); + Value *ResShadow = IRB.CreateExtractValue(AggShadow, I.getIndices()); + LLVM_DEBUG(dbgs() << " ResShadow: " << *ResShadow << "\n"); + setShadow(&I, ResShadow); + setOriginForNaryOp(I); + } + + void visitInsertValueInst(InsertValueInst &I) { + IRBuilder<> IRB(&I); + LLVM_DEBUG(dbgs() << "InsertValue: " << I << "\n"); + Value *AggShadow = getShadow(I.getAggregateOperand()); + Value *InsShadow = getShadow(I.getInsertedValueOperand()); + LLVM_DEBUG(dbgs() << " AggShadow: " << *AggShadow << "\n"); + LLVM_DEBUG(dbgs() << " InsShadow: " << *InsShadow << "\n"); + Value *Res = IRB.CreateInsertValue(AggShadow, InsShadow, I.getIndices()); + LLVM_DEBUG(dbgs() << " Res: " << *Res << "\n"); + setShadow(&I, Res); + setOriginForNaryOp(I); + } + + void dumpInst(Instruction &I) { + if (CallInst *CI = dyn_cast<CallInst>(&I)) { + errs() << "ZZZ call " << CI->getCalledFunction()->getName() << "\n"; + } else { + errs() << "ZZZ " << I.getOpcodeName() << "\n"; + } + errs() << "QQQ " << I << "\n"; + } + + void visitResumeInst(ResumeInst &I) { + LLVM_DEBUG(dbgs() << "Resume: " << I << "\n"); + // Nothing to do here. + } + + void visitCleanupReturnInst(CleanupReturnInst &CRI) { + LLVM_DEBUG(dbgs() << "CleanupReturn: " << CRI << "\n"); + // Nothing to do here. + } + + void visitCatchReturnInst(CatchReturnInst &CRI) { + LLVM_DEBUG(dbgs() << "CatchReturn: " << CRI << "\n"); + // Nothing to do here. + } + + void instrumentAsmArgument(Value *Operand, Instruction &I, IRBuilder<> &IRB, + const DataLayout &DL, bool isOutput) { + // For each assembly argument, we check its value for being initialized. + // If the argument is a pointer, we assume it points to a single element + // of the corresponding type (or to a 8-byte word, if the type is unsized). + // Each such pointer is instrumented with a call to the runtime library. + Type *OpType = Operand->getType(); + // Check the operand value itself. + insertShadowCheck(Operand, &I); + if (!OpType->isPointerTy() || !isOutput) { + assert(!isOutput); + return; + } + Type *ElType = OpType->getPointerElementType(); + if (!ElType->isSized()) + return; + int Size = DL.getTypeStoreSize(ElType); + Value *Ptr = IRB.CreatePointerCast(Operand, IRB.getInt8PtrTy()); + Value *SizeVal = ConstantInt::get(MS.IntptrTy, Size); + IRB.CreateCall(MS.MsanInstrumentAsmStoreFn, {Ptr, SizeVal}); + } + + /// Get the number of output arguments returned by pointers. + int getNumOutputArgs(InlineAsm *IA, CallBase *CB) { + int NumRetOutputs = 0; + int NumOutputs = 0; + Type *RetTy = cast<Value>(CB)->getType(); + if (!RetTy->isVoidTy()) { + // Register outputs are returned via the CallInst return value. + auto *ST = dyn_cast<StructType>(RetTy); + if (ST) + NumRetOutputs = ST->getNumElements(); + else + NumRetOutputs = 1; + } + InlineAsm::ConstraintInfoVector Constraints = IA->ParseConstraints(); + for (size_t i = 0, n = Constraints.size(); i < n; i++) { + InlineAsm::ConstraintInfo Info = Constraints[i]; + switch (Info.Type) { + case InlineAsm::isOutput: + NumOutputs++; + break; + default: + break; + } + } + return NumOutputs - NumRetOutputs; + } + + void visitAsmInstruction(Instruction &I) { + // Conservative inline assembly handling: check for poisoned shadow of + // asm() arguments, then unpoison the result and all the memory locations + // pointed to by those arguments. + // An inline asm() statement in C++ contains lists of input and output + // arguments used by the assembly code. These are mapped to operands of the + // CallInst as follows: + // - nR register outputs ("=r) are returned by value in a single structure + // (SSA value of the CallInst); + // - nO other outputs ("=m" and others) are returned by pointer as first + // nO operands of the CallInst; + // - nI inputs ("r", "m" and others) are passed to CallInst as the + // remaining nI operands. + // The total number of asm() arguments in the source is nR+nO+nI, and the + // corresponding CallInst has nO+nI+1 operands (the last operand is the + // function to be called). + const DataLayout &DL = F.getParent()->getDataLayout(); + CallBase *CB = cast<CallBase>(&I); + IRBuilder<> IRB(&I); + InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); + int OutputArgs = getNumOutputArgs(IA, CB); + // The last operand of a CallInst is the function itself. + int NumOperands = CB->getNumOperands() - 1; + + // Check input arguments. Doing so before unpoisoning output arguments, so + // that we won't overwrite uninit values before checking them. + for (int i = OutputArgs; i < NumOperands; i++) { + Value *Operand = CB->getOperand(i); + instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ false); + } + // Unpoison output arguments. This must happen before the actual InlineAsm + // call, so that the shadow for memory published in the asm() statement + // remains valid. + for (int i = 0; i < OutputArgs; i++) { + Value *Operand = CB->getOperand(i); + instrumentAsmArgument(Operand, I, IRB, DL, /*isOutput*/ true); + } + + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } + void visitFreezeInst(FreezeInst &I) { // Freeze always returns a fully defined value. setShadow(&I, getCleanShadow(&I)); setOrigin(&I, getCleanOrigin()); } - void visitInstruction(Instruction &I) { - // Everything else: stop propagating and check for poisoned shadow. - if (ClDumpStrictInstructions) - dumpInst(I); - LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); - for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { - Value *Operand = I.getOperand(i); - if (Operand->getType()->isSized()) - insertShadowCheck(Operand, &I); - } - setShadow(&I, getCleanShadow(&I)); - setOrigin(&I, getCleanOrigin()); - } -}; - -/// AMD64-specific implementation of VarArgHelper. -struct VarArgAMD64Helper : public VarArgHelper { - // An unfortunate workaround for asymmetric lowering of va_arg stuff. - // See a comment in visitCallBase for more details. - static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 - static const unsigned AMD64FpEndOffsetSSE = 176; - // If SSE is disabled, fp_offset in va_list is zero. - static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; - - unsigned AMD64FpEndOffset; - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgTLSOriginCopy = nullptr; - Value *VAArgOverflowSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; - - VarArgAMD64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) - : F(F), MS(MS), MSV(MSV) { - AMD64FpEndOffset = AMD64FpEndOffsetSSE; - for (const auto &Attr : F.getAttributes().getFnAttributes()) { - if (Attr.isStringAttribute() && - (Attr.getKindAsString() == "target-features")) { - if (Attr.getValueAsString().contains("-sse")) - AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; - break; - } - } - } - - ArgKind classifyArgument(Value* arg) { - // A very rough approximation of X86_64 argument classification rules. - Type *T = arg->getType(); - if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) - return AK_FloatingPoint; - if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) - return AK_GeneralPurpose; - if (T->isPointerTy()) - return AK_GeneralPurpose; - return AK_Memory; - } - - // For VarArg functions, store the argument shadow in an ABI-specific format - // that corresponds to va_list layout. - // We do this because Clang lowers va_arg in the frontend, and this pass - // only sees the low level code that deals with va_list internals. - // A much easier alternative (provided that Clang emits va_arg instructions) - // would have been to associate each live instance of va_list with a copy of - // MSanParamTLS, and extract shadow on va_arg() call in the argument list - // order. - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { - unsigned GpOffset = 0; - unsigned FpOffset = AMD64GpEndOffset; - unsigned OverflowOffset = AMD64FpEndOffset; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; - ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CB.getArgOperandNo(ArgIt); - bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); - bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); - if (IsByVal) { - // ByVal arguments always go to the overflow area. - // Fixed arguments passed through the overflow area will be stepped - // over by va_start, so don't count them towards the offset. - if (IsFixed) - continue; - assert(A->getType()->isPointerTy()); - Type *RealTy = CB.getParamByValType(ArgNo); - uint64_t ArgSize = DL.getTypeAllocSize(RealTy); - Value *ShadowBase = getShadowPtrForVAArgument( - RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); - Value *OriginBase = nullptr; - if (MS.TrackOrigins) - OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); - OverflowOffset += alignTo(ArgSize, 8); - if (!ShadowBase) - continue; - Value *ShadowPtr, *OriginPtr; - std::tie(ShadowPtr, OriginPtr) = - MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, - /*isStore*/ false); - - IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, - kShadowTLSAlignment, ArgSize); - if (MS.TrackOrigins) - IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, - kShadowTLSAlignment, ArgSize); - } else { - ArgKind AK = classifyArgument(A); - if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) - AK = AK_Memory; - if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) - AK = AK_Memory; - Value *ShadowBase, *OriginBase = nullptr; - switch (AK) { - case AK_GeneralPurpose: - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); - GpOffset += 8; - break; - case AK_FloatingPoint: - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); - FpOffset += 16; - break; - case AK_Memory: - if (IsFixed) - continue; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - ShadowBase = - getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); - OverflowOffset += alignTo(ArgSize, 8); - } - // Take fixed arguments into account for GpOffset and FpOffset, - // but don't actually store shadows for them. - // TODO(glider): don't call get*PtrForVAArgument() for them. - if (IsFixed) - continue; - if (!ShadowBase) - continue; - Value *Shadow = MSV.getShadow(A); - IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); - if (MS.TrackOrigins) { - Value *Origin = MSV.getOrigin(A); - unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); - MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, - std::max(kShadowTLSAlignment, kMinOriginAlignment)); - } - } - } - Constant *OverflowSize = - ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); - IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg_va_s"); - } - - /// Compute the origin address for a given va_arg. - Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); - // getOriginPtrForVAArgument() is always called after - // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never - // overflow. - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), - "_msarg_va_o"); - } - - void unpoisonVAListTagForInst(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = - MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ true); - - // Unpoison the whole __va_list_tag. - // FIXME: magic ABI constants. - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 24, Alignment, false); - // We shouldn't need to zero out the origins, as they're only checked for - // nonzero shadow. - } - - void visitVAStartInst(VAStartInst &I) override { - if (F.getCallingConv() == CallingConv::Win64) - return; - VAStartInstrumentationList.push_back(&I); - unpoisonVAListTagForInst(I); - } - - void visitVACopyInst(VACopyInst &I) override { - if (F.getCallingConv() == CallingConv::Win64) return; - unpoisonVAListTagForInst(I); - } - - void finalizeInstrumentation() override { - assert(!VAArgOverflowSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. + void visitInstruction(Instruction &I) { + // Everything else: stop propagating and check for poisoned shadow. + if (ClDumpStrictInstructions) + dumpInst(I); + LLVM_DEBUG(dbgs() << "DEFAULT: " << I << "\n"); + for (size_t i = 0, n = I.getNumOperands(); i < n; i++) { + Value *Operand = I.getOperand(i); + if (Operand->getType()->isSized()) + insertShadowCheck(Operand, &I); + } + setShadow(&I, getCleanShadow(&I)); + setOrigin(&I, getCleanOrigin()); + } +}; + +/// AMD64-specific implementation of VarArgHelper. +struct VarArgAMD64Helper : public VarArgHelper { + // An unfortunate workaround for asymmetric lowering of va_arg stuff. + // See a comment in visitCallBase for more details. + static const unsigned AMD64GpEndOffset = 48; // AMD64 ABI Draft 0.99.6 p3.5.7 + static const unsigned AMD64FpEndOffsetSSE = 176; + // If SSE is disabled, fp_offset in va_list is zero. + static const unsigned AMD64FpEndOffsetNoSSE = AMD64GpEndOffset; + + unsigned AMD64FpEndOffset; + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy = nullptr; + Value *VAArgTLSOriginCopy = nullptr; + Value *VAArgOverflowSize = nullptr; + + SmallVector<CallInst*, 16> VAStartInstrumentationList; + + enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; + + VarArgAMD64Helper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) + : F(F), MS(MS), MSV(MSV) { + AMD64FpEndOffset = AMD64FpEndOffsetSSE; + for (const auto &Attr : F.getAttributes().getFnAttributes()) { + if (Attr.isStringAttribute() && + (Attr.getKindAsString() == "target-features")) { + if (Attr.getValueAsString().contains("-sse")) + AMD64FpEndOffset = AMD64FpEndOffsetNoSSE; + break; + } + } + } + + ArgKind classifyArgument(Value* arg) { + // A very rough approximation of X86_64 argument classification rules. + Type *T = arg->getType(); + if (T->isFPOrFPVectorTy() || T->isX86_MMXTy()) + return AK_FloatingPoint; + if (T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) + return AK_GeneralPurpose; + if (T->isPointerTy()) + return AK_GeneralPurpose; + return AK_Memory; + } + + // For VarArg functions, store the argument shadow in an ABI-specific format + // that corresponds to va_list layout. + // We do this because Clang lowers va_arg in the frontend, and this pass + // only sees the low level code that deals with va_list internals. + // A much easier alternative (provided that Clang emits va_arg instructions) + // would have been to associate each live instance of va_list with a copy of + // MSanParamTLS, and extract shadow on va_arg() call in the argument list + // order. + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { + unsigned GpOffset = 0; + unsigned FpOffset = AMD64GpEndOffset; + unsigned OverflowOffset = AMD64FpEndOffset; + const DataLayout &DL = F.getParent()->getDataLayout(); + for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; + ++ArgIt) { + Value *A = *ArgIt; + unsigned ArgNo = CB.getArgOperandNo(ArgIt); + bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); + bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); + if (IsByVal) { + // ByVal arguments always go to the overflow area. + // Fixed arguments passed through the overflow area will be stepped + // over by va_start, so don't count them towards the offset. + if (IsFixed) + continue; + assert(A->getType()->isPointerTy()); + Type *RealTy = CB.getParamByValType(ArgNo); + uint64_t ArgSize = DL.getTypeAllocSize(RealTy); + Value *ShadowBase = getShadowPtrForVAArgument( + RealTy, IRB, OverflowOffset, alignTo(ArgSize, 8)); + Value *OriginBase = nullptr; + if (MS.TrackOrigins) + OriginBase = getOriginPtrForVAArgument(RealTy, IRB, OverflowOffset); + OverflowOffset += alignTo(ArgSize, 8); + if (!ShadowBase) + continue; + Value *ShadowPtr, *OriginPtr; + std::tie(ShadowPtr, OriginPtr) = + MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), kShadowTLSAlignment, + /*isStore*/ false); + + IRB.CreateMemCpy(ShadowBase, kShadowTLSAlignment, ShadowPtr, + kShadowTLSAlignment, ArgSize); + if (MS.TrackOrigins) + IRB.CreateMemCpy(OriginBase, kShadowTLSAlignment, OriginPtr, + kShadowTLSAlignment, ArgSize); + } else { + ArgKind AK = classifyArgument(A); + if (AK == AK_GeneralPurpose && GpOffset >= AMD64GpEndOffset) + AK = AK_Memory; + if (AK == AK_FloatingPoint && FpOffset >= AMD64FpEndOffset) + AK = AK_Memory; + Value *ShadowBase, *OriginBase = nullptr; + switch (AK) { + case AK_GeneralPurpose: + ShadowBase = + getShadowPtrForVAArgument(A->getType(), IRB, GpOffset, 8); + if (MS.TrackOrigins) + OriginBase = + getOriginPtrForVAArgument(A->getType(), IRB, GpOffset); + GpOffset += 8; + break; + case AK_FloatingPoint: + ShadowBase = + getShadowPtrForVAArgument(A->getType(), IRB, FpOffset, 16); + if (MS.TrackOrigins) + OriginBase = + getOriginPtrForVAArgument(A->getType(), IRB, FpOffset); + FpOffset += 16; + break; + case AK_Memory: + if (IsFixed) + continue; + uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); + ShadowBase = + getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, 8); + if (MS.TrackOrigins) + OriginBase = + getOriginPtrForVAArgument(A->getType(), IRB, OverflowOffset); + OverflowOffset += alignTo(ArgSize, 8); + } + // Take fixed arguments into account for GpOffset and FpOffset, + // but don't actually store shadows for them. + // TODO(glider): don't call get*PtrForVAArgument() for them. + if (IsFixed) + continue; + if (!ShadowBase) + continue; + Value *Shadow = MSV.getShadow(A); + IRB.CreateAlignedStore(Shadow, ShadowBase, kShadowTLSAlignment); + if (MS.TrackOrigins) { + Value *Origin = MSV.getOrigin(A); + unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); + MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, + std::max(kShadowTLSAlignment, kMinOriginAlignment)); + } + } + } + Constant *OverflowSize = + ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AMD64FpEndOffset); + IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); + } + + /// Compute the shadow address for a given va_arg. + Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, + unsigned ArgOffset, unsigned ArgSize) { + // Make sure we don't overflow __msan_va_arg_tls. + if (ArgOffset + ArgSize > kParamTLSSize) + return nullptr; + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), + "_msarg_va_s"); + } + + /// Compute the origin address for a given va_arg. + Value *getOriginPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, int ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); + // getOriginPtrForVAArgument() is always called after + // getShadowPtrForVAArgument(), so __msan_va_arg_origin_tls can never + // overflow. + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), + "_msarg_va_o"); + } + + void unpoisonVAListTagForInst(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = + MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, + /*isStore*/ true); + + // Unpoison the whole __va_list_tag. + // FIXME: magic ABI constants. + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 24, Alignment, false); + // We shouldn't need to zero out the origins, as they're only checked for + // nonzero shadow. + } + + void visitVAStartInst(VAStartInst &I) override { + if (F.getCallingConv() == CallingConv::Win64) + return; + VAStartInstrumentationList.push_back(&I); + unpoisonVAListTagForInst(I); + } + + void visitVACopyInst(VACopyInst &I) override { + if (F.getCallingConv() == CallingConv::Win64) return; + unpoisonVAListTagForInst(I); + } + + void finalizeInstrumentation() override { + assert(!VAArgOverflowSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. IRBuilder<> IRB(MSV.FnPrologueEnd); - VAArgOverflowSize = - IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = - IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), - VAArgOverflowSize); - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); - if (MS.TrackOrigins) { - VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, - Align(8), CopySize); - } - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, 16)), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - const Align Alignment = Align(16); - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - AMD64FpEndOffset); - if (MS.TrackOrigins) - IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, - Alignment, AMD64FpEndOffset); - Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, 8)), - PointerType::get(OverflowArgAreaPtrTy, 0)); - Value *OverflowArgAreaPtr = - IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); - Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; - std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = - MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, - AMD64FpEndOffset); - IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - if (MS.TrackOrigins) { - SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, - AMD64FpEndOffset); - IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - } - } - } -}; - -/// MIPS64-specific implementation of VarArgHelper. -struct VarArgMIPS64Helper : public VarArgHelper { - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { - unsigned VAArgOffset = 0; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), - End = CB.arg_end(); - ArgIt != End; ++ArgIt) { - Triple TargetTriple(F.getParent()->getTargetTriple()); - Value *A = *ArgIt; - Value *Base; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - if (TargetTriple.getArch() == Triple::mips64) { - // Adjusting the shadow for argument with size < 8 to match the placement - // of bits in big endian system - if (ArgSize < 8) - VAArgOffset += (8 - ArgSize); - } - Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); - VAArgOffset += ArgSize; - VAArgOffset = alignTo(VAArgOffset, 8); - if (!Base) - continue; - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - - Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); - // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of - // a new class member i.e. it is the total size of all VarArgs. - IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void finalizeInstrumentation() override { - assert(!VAArgSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); + VAArgOverflowSize = + IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); + Value *CopySize = + IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AMD64FpEndOffset), + VAArgOverflowSize); + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); + if (MS.TrackOrigins) { + VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, + Align(8), CopySize); + } + } + + // Instrument va_start. + // Copy va_list shadow from the backup copy of the TLS contents. + for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { + CallInst *OrigInst = VAStartInstrumentationList[i]; + IRBuilder<> IRB(OrigInst->getNextNode()); + Value *VAListTag = OrigInst->getArgOperand(0); + + Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, 16)), + PointerType::get(RegSaveAreaPtrTy, 0)); + Value *RegSaveAreaPtr = + IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); + Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; + const Align Alignment = Align(16); + std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = + MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), + Alignment, /*isStore*/ true); + IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, + AMD64FpEndOffset); + if (MS.TrackOrigins) + IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, + Alignment, AMD64FpEndOffset); + Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, 8)), + PointerType::get(OverflowArgAreaPtrTy, 0)); + Value *OverflowArgAreaPtr = + IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); + Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; + std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = + MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), + Alignment, /*isStore*/ true); + Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, + AMD64FpEndOffset); + IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, + VAArgOverflowSize); + if (MS.TrackOrigins) { + SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, + AMD64FpEndOffset); + IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, + VAArgOverflowSize); + } + } + } +}; + +/// MIPS64-specific implementation of VarArgHelper. +struct VarArgMIPS64Helper : public VarArgHelper { + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy = nullptr; + Value *VAArgSize = nullptr; + + SmallVector<CallInst*, 16> VAStartInstrumentationList; + + VarArgMIPS64Helper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} + + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { + unsigned VAArgOffset = 0; + const DataLayout &DL = F.getParent()->getDataLayout(); + for (auto ArgIt = CB.arg_begin() + CB.getFunctionType()->getNumParams(), + End = CB.arg_end(); + ArgIt != End; ++ArgIt) { + Triple TargetTriple(F.getParent()->getTargetTriple()); + Value *A = *ArgIt; + Value *Base; + uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); + if (TargetTriple.getArch() == Triple::mips64) { + // Adjusting the shadow for argument with size < 8 to match the placement + // of bits in big endian system + if (ArgSize < 8) + VAArgOffset += (8 - ArgSize); + } + Base = getShadowPtrForVAArgument(A->getType(), IRB, VAArgOffset, ArgSize); + VAArgOffset += ArgSize; + VAArgOffset = alignTo(VAArgOffset, 8); + if (!Base) + continue; + IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); + } + + Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), VAArgOffset); + // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of + // a new class member i.e. it is the total size of all VarArgs. + IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); + } + + /// Compute the shadow address for a given va_arg. + Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, + unsigned ArgOffset, unsigned ArgSize) { + // Make sure we don't overflow __msan_va_arg_tls. + if (ArgOffset + ArgSize > kParamTLSSize) + return nullptr; + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), + "_msarg"); + } + + void visitVAStartInst(VAStartInst &I) override { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 8, Alignment, false); + } + + void visitVACopyInst(VACopyInst &I) override { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 8, Alignment, false); + } + + void finalizeInstrumentation() override { + assert(!VAArgSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); IRBuilder<> IRB(MSV.FnPrologueEnd); - VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), - VAArgSize); - - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = - IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - const Align Alignment = Align(8); - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - CopySize); - } - } -}; - -/// AArch64-specific implementation of VarArgHelper. -struct VarArgAArch64Helper : public VarArgHelper { - static const unsigned kAArch64GrArgSize = 64; - static const unsigned kAArch64VrArgSize = 128; - - static const unsigned AArch64GrBegOffset = 0; - static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; - // Make VR space aligned to 16 bytes. - static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; - static const unsigned AArch64VrEndOffset = AArch64VrBegOffset - + kAArch64VrArgSize; - static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; - - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgOverflowSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; - - VarArgAArch64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - ArgKind classifyArgument(Value* arg) { - Type *T = arg->getType(); - if (T->isFPOrFPVectorTy()) - return AK_FloatingPoint; - if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) - || (T->isPointerTy())) - return AK_GeneralPurpose; - return AK_Memory; - } - - // The instrumentation stores the argument shadow in a non ABI-specific - // format because it does not know which argument is named (since Clang, - // like x86_64 case, lowers the va_args in the frontend and this pass only - // sees the low level code that deals with va_list internals). - // The first seven GR registers are saved in the first 56 bytes of the - // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then - // the remaining arguments. - // Using constant offset within the va_arg TLS array allows fast copy - // in the finalize instrumentation. - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { - unsigned GrOffset = AArch64GrBegOffset; - unsigned VrOffset = AArch64VrBegOffset; - unsigned OverflowOffset = AArch64VAEndOffset; - - const DataLayout &DL = F.getParent()->getDataLayout(); - for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; - ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CB.getArgOperandNo(ArgIt); - bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); - ArgKind AK = classifyArgument(A); - if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) - AK = AK_Memory; - if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) - AK = AK_Memory; - Value *Base; - switch (AK) { - case AK_GeneralPurpose: - Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); - GrOffset += 8; - break; - case AK_FloatingPoint: - Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); - VrOffset += 16; - break; - case AK_Memory: - // Don't count fixed arguments in the overflow area - va_start will - // skip right over them. - if (IsFixed) - continue; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, - alignTo(ArgSize, 8)); - OverflowOffset += alignTo(ArgSize, 8); - break; - } - // Count Gp/Vr fixed arguments to their respective offsets, but don't - // bother to actually store a shadow. - if (IsFixed) - continue; - if (!Base) - continue; - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - Constant *OverflowSize = - ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); - IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 32, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 32, Alignment, false); - } - - // Retrieve a va_list field of 'void*' size. - Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { - Value *SaveAreaPtrPtr = - IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, offset)), - Type::getInt64PtrTy(*MS.C)); - return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); - } - - // Retrieve a va_list field of 'int' size. - Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { - Value *SaveAreaPtr = - IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, offset)), - Type::getInt32PtrTy(*MS.C)); - Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); - return IRB.CreateSExt(SaveArea32, MS.IntptrTy); - } - - void finalizeInstrumentation() override { - assert(!VAArgOverflowSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. + VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); + Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), + VAArgSize); + + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); + } + + // Instrument va_start. + // Copy va_list shadow from the backup copy of the TLS contents. + for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { + CallInst *OrigInst = VAStartInstrumentationList[i]; + IRBuilder<> IRB(OrigInst->getNextNode()); + Value *VAListTag = OrigInst->getArgOperand(0); + Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *RegSaveAreaPtrPtr = + IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + PointerType::get(RegSaveAreaPtrTy, 0)); + Value *RegSaveAreaPtr = + IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); + Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; + const Align Alignment = Align(8); + std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = + MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), + Alignment, /*isStore*/ true); + IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, + CopySize); + } + } +}; + +/// AArch64-specific implementation of VarArgHelper. +struct VarArgAArch64Helper : public VarArgHelper { + static const unsigned kAArch64GrArgSize = 64; + static const unsigned kAArch64VrArgSize = 128; + + static const unsigned AArch64GrBegOffset = 0; + static const unsigned AArch64GrEndOffset = kAArch64GrArgSize; + // Make VR space aligned to 16 bytes. + static const unsigned AArch64VrBegOffset = AArch64GrEndOffset; + static const unsigned AArch64VrEndOffset = AArch64VrBegOffset + + kAArch64VrArgSize; + static const unsigned AArch64VAEndOffset = AArch64VrEndOffset; + + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy = nullptr; + Value *VAArgOverflowSize = nullptr; + + SmallVector<CallInst*, 16> VAStartInstrumentationList; + + enum ArgKind { AK_GeneralPurpose, AK_FloatingPoint, AK_Memory }; + + VarArgAArch64Helper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} + + ArgKind classifyArgument(Value* arg) { + Type *T = arg->getType(); + if (T->isFPOrFPVectorTy()) + return AK_FloatingPoint; + if ((T->isIntegerTy() && T->getPrimitiveSizeInBits() <= 64) + || (T->isPointerTy())) + return AK_GeneralPurpose; + return AK_Memory; + } + + // The instrumentation stores the argument shadow in a non ABI-specific + // format because it does not know which argument is named (since Clang, + // like x86_64 case, lowers the va_args in the frontend and this pass only + // sees the low level code that deals with va_list internals). + // The first seven GR registers are saved in the first 56 bytes of the + // va_arg tls arra, followers by the first 8 FP/SIMD registers, and then + // the remaining arguments. + // Using constant offset within the va_arg TLS array allows fast copy + // in the finalize instrumentation. + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { + unsigned GrOffset = AArch64GrBegOffset; + unsigned VrOffset = AArch64VrBegOffset; + unsigned OverflowOffset = AArch64VAEndOffset; + + const DataLayout &DL = F.getParent()->getDataLayout(); + for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; + ++ArgIt) { + Value *A = *ArgIt; + unsigned ArgNo = CB.getArgOperandNo(ArgIt); + bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); + ArgKind AK = classifyArgument(A); + if (AK == AK_GeneralPurpose && GrOffset >= AArch64GrEndOffset) + AK = AK_Memory; + if (AK == AK_FloatingPoint && VrOffset >= AArch64VrEndOffset) + AK = AK_Memory; + Value *Base; + switch (AK) { + case AK_GeneralPurpose: + Base = getShadowPtrForVAArgument(A->getType(), IRB, GrOffset, 8); + GrOffset += 8; + break; + case AK_FloatingPoint: + Base = getShadowPtrForVAArgument(A->getType(), IRB, VrOffset, 8); + VrOffset += 16; + break; + case AK_Memory: + // Don't count fixed arguments in the overflow area - va_start will + // skip right over them. + if (IsFixed) + continue; + uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); + Base = getShadowPtrForVAArgument(A->getType(), IRB, OverflowOffset, + alignTo(ArgSize, 8)); + OverflowOffset += alignTo(ArgSize, 8); + break; + } + // Count Gp/Vr fixed arguments to their respective offsets, but don't + // bother to actually store a shadow. + if (IsFixed) + continue; + if (!Base) + continue; + IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); + } + Constant *OverflowSize = + ConstantInt::get(IRB.getInt64Ty(), OverflowOffset - AArch64VAEndOffset); + IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); + } + + /// Compute the shadow address for a given va_arg. + Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, + unsigned ArgOffset, unsigned ArgSize) { + // Make sure we don't overflow __msan_va_arg_tls. + if (ArgOffset + ArgSize > kParamTLSSize) + return nullptr; + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), + "_msarg"); + } + + void visitVAStartInst(VAStartInst &I) override { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 32, Alignment, false); + } + + void visitVACopyInst(VACopyInst &I) override { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 32, Alignment, false); + } + + // Retrieve a va_list field of 'void*' size. + Value* getVAField64(IRBuilder<> &IRB, Value *VAListTag, int offset) { + Value *SaveAreaPtrPtr = + IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, offset)), + Type::getInt64PtrTy(*MS.C)); + return IRB.CreateLoad(Type::getInt64Ty(*MS.C), SaveAreaPtrPtr); + } + + // Retrieve a va_list field of 'int' size. + Value* getVAField32(IRBuilder<> &IRB, Value *VAListTag, int offset) { + Value *SaveAreaPtr = + IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, offset)), + Type::getInt32PtrTy(*MS.C)); + Value *SaveArea32 = IRB.CreateLoad(IRB.getInt32Ty(), SaveAreaPtr); + return IRB.CreateSExt(SaveArea32, MS.IntptrTy); + } + + void finalizeInstrumentation() override { + assert(!VAArgOverflowSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. IRBuilder<> IRB(MSV.FnPrologueEnd); - VAArgOverflowSize = - IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = - IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), - VAArgOverflowSize); - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); - } - - Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); - Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); - - // Instrument va_start, copy va_list shadow from the backup copy of - // the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - - Value *VAListTag = OrigInst->getArgOperand(0); - - // The variadic ABI for AArch64 creates two areas to save the incoming - // argument registers (one for 64-bit general register xn-x7 and another - // for 128-bit FP/SIMD vn-v7). - // We need then to propagate the shadow arguments on both regions - // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. - // The remaining arguments are saved on shadow for 'va::stack'. - // One caveat is it requires only to propagate the non-named arguments, - // however on the call site instrumentation 'all' the arguments are - // saved. So to copy the shadow values from the va_arg TLS array - // we need to adjust the offset for both GR and VR fields based on - // the __{gr,vr}_offs value (since they are stores based on incoming - // named arguments). - - // Read the stack pointer from the va_list. - Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); - - // Read both the __gr_top and __gr_off and add them up. - Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); - Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); - - Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); - - // Read both the __vr_top and __vr_off and add them up. - Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); - Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); - - Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); - - // It does not know how many named arguments is being used and, on the - // callsite all the arguments were saved. Since __gr_off is defined as - // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic - // argument by ignoring the bytes of shadow from named arguments. - Value *GrRegSaveAreaShadowPtrOff = - IRB.CreateAdd(GrArgSize, GrOffSaveArea); - - Value *GrRegSaveAreaShadowPtr = - MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Align(8), /*isStore*/ true) - .first; - - Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - GrRegSaveAreaShadowPtrOff); - Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); - - IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), - GrCopySize); - - // Again, but for FP/SIMD values. - Value *VrRegSaveAreaShadowPtrOff = - IRB.CreateAdd(VrArgSize, VrOffSaveArea); - - Value *VrRegSaveAreaShadowPtr = - MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Align(8), /*isStore*/ true) - .first; - - Value *VrSrcPtr = IRB.CreateInBoundsGEP( - IRB.getInt8Ty(), - IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - IRB.getInt32(AArch64VrBegOffset)), - VrRegSaveAreaShadowPtrOff); - Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); - - IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), - VrCopySize); - - // And finally for remaining arguments. - Value *StackSaveAreaShadowPtr = - MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), - Align(16), /*isStore*/ true) - .first; - - Value *StackSrcPtr = - IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, - IRB.getInt32(AArch64VAEndOffset)); - - IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, - Align(16), VAArgOverflowSize); - } - } -}; - -/// PowerPC64-specific implementation of VarArgHelper. -struct VarArgPowerPC64Helper : public VarArgHelper { - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgSize = nullptr; - - SmallVector<CallInst*, 16> VAStartInstrumentationList; - - VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} - - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { - // For PowerPC, we need to deal with alignment of stack arguments - - // they are mostly aligned to 8 bytes, but vectors and i128 arrays - // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, + VAArgOverflowSize = + IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); + Value *CopySize = + IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, AArch64VAEndOffset), + VAArgOverflowSize); + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); + } + + Value *GrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64GrArgSize); + Value *VrArgSize = ConstantInt::get(MS.IntptrTy, kAArch64VrArgSize); + + // Instrument va_start, copy va_list shadow from the backup copy of + // the TLS contents. + for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { + CallInst *OrigInst = VAStartInstrumentationList[i]; + IRBuilder<> IRB(OrigInst->getNextNode()); + + Value *VAListTag = OrigInst->getArgOperand(0); + + // The variadic ABI for AArch64 creates two areas to save the incoming + // argument registers (one for 64-bit general register xn-x7 and another + // for 128-bit FP/SIMD vn-v7). + // We need then to propagate the shadow arguments on both regions + // 'va::__gr_top + va::__gr_offs' and 'va::__vr_top + va::__vr_offs'. + // The remaining arguments are saved on shadow for 'va::stack'. + // One caveat is it requires only to propagate the non-named arguments, + // however on the call site instrumentation 'all' the arguments are + // saved. So to copy the shadow values from the va_arg TLS array + // we need to adjust the offset for both GR and VR fields based on + // the __{gr,vr}_offs value (since they are stores based on incoming + // named arguments). + + // Read the stack pointer from the va_list. + Value *StackSaveAreaPtr = getVAField64(IRB, VAListTag, 0); + + // Read both the __gr_top and __gr_off and add them up. + Value *GrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 8); + Value *GrOffSaveArea = getVAField32(IRB, VAListTag, 24); + + Value *GrRegSaveAreaPtr = IRB.CreateAdd(GrTopSaveAreaPtr, GrOffSaveArea); + + // Read both the __vr_top and __vr_off and add them up. + Value *VrTopSaveAreaPtr = getVAField64(IRB, VAListTag, 16); + Value *VrOffSaveArea = getVAField32(IRB, VAListTag, 28); + + Value *VrRegSaveAreaPtr = IRB.CreateAdd(VrTopSaveAreaPtr, VrOffSaveArea); + + // It does not know how many named arguments is being used and, on the + // callsite all the arguments were saved. Since __gr_off is defined as + // '0 - ((8 - named_gr) * 8)', the idea is to just propagate the variadic + // argument by ignoring the bytes of shadow from named arguments. + Value *GrRegSaveAreaShadowPtrOff = + IRB.CreateAdd(GrArgSize, GrOffSaveArea); + + Value *GrRegSaveAreaShadowPtr = + MSV.getShadowOriginPtr(GrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), + Align(8), /*isStore*/ true) + .first; + + Value *GrSrcPtr = IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, + GrRegSaveAreaShadowPtrOff); + Value *GrCopySize = IRB.CreateSub(GrArgSize, GrRegSaveAreaShadowPtrOff); + + IRB.CreateMemCpy(GrRegSaveAreaShadowPtr, Align(8), GrSrcPtr, Align(8), + GrCopySize); + + // Again, but for FP/SIMD values. + Value *VrRegSaveAreaShadowPtrOff = + IRB.CreateAdd(VrArgSize, VrOffSaveArea); + + Value *VrRegSaveAreaShadowPtr = + MSV.getShadowOriginPtr(VrRegSaveAreaPtr, IRB, IRB.getInt8Ty(), + Align(8), /*isStore*/ true) + .first; + + Value *VrSrcPtr = IRB.CreateInBoundsGEP( + IRB.getInt8Ty(), + IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, + IRB.getInt32(AArch64VrBegOffset)), + VrRegSaveAreaShadowPtrOff); + Value *VrCopySize = IRB.CreateSub(VrArgSize, VrRegSaveAreaShadowPtrOff); + + IRB.CreateMemCpy(VrRegSaveAreaShadowPtr, Align(8), VrSrcPtr, Align(8), + VrCopySize); + + // And finally for remaining arguments. + Value *StackSaveAreaShadowPtr = + MSV.getShadowOriginPtr(StackSaveAreaPtr, IRB, IRB.getInt8Ty(), + Align(16), /*isStore*/ true) + .first; + + Value *StackSrcPtr = + IRB.CreateInBoundsGEP(IRB.getInt8Ty(), VAArgTLSCopy, + IRB.getInt32(AArch64VAEndOffset)); + + IRB.CreateMemCpy(StackSaveAreaShadowPtr, Align(16), StackSrcPtr, + Align(16), VAArgOverflowSize); + } + } +}; + +/// PowerPC64-specific implementation of VarArgHelper. +struct VarArgPowerPC64Helper : public VarArgHelper { + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy = nullptr; + Value *VAArgSize = nullptr; + + SmallVector<CallInst*, 16> VAStartInstrumentationList; + + VarArgPowerPC64Helper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) : F(F), MS(MS), MSV(MSV) {} + + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { + // For PowerPC, we need to deal with alignment of stack arguments - + // they are mostly aligned to 8 bytes, but vectors and i128 arrays + // are aligned to 16 bytes, byvals can be aligned to 8 or 16 bytes, // For that reason, we compute current offset from stack pointer (which is // always properly aligned), and offset for the first vararg, then subtract // them. - unsigned VAArgBase; - Triple TargetTriple(F.getParent()->getTargetTriple()); - // Parameter save area starts at 48 bytes from frame pointer for ABIv1, - // and 32 bytes for ABIv2. This is usually determined by target - // endianness, but in theory could be overridden by function attribute. - if (TargetTriple.getArch() == Triple::ppc64) - VAArgBase = 48; - else - VAArgBase = 32; - unsigned VAArgOffset = VAArgBase; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; - ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CB.getArgOperandNo(ArgIt); - bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); - bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); - if (IsByVal) { - assert(A->getType()->isPointerTy()); - Type *RealTy = CB.getParamByValType(ArgNo); - uint64_t ArgSize = DL.getTypeAllocSize(RealTy); - MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); - if (!ArgAlign || *ArgAlign < Align(8)) - ArgAlign = Align(8); - VAArgOffset = alignTo(VAArgOffset, ArgAlign); - if (!IsFixed) { - Value *Base = getShadowPtrForVAArgument( - RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); - if (Base) { - Value *AShadowPtr, *AOriginPtr; - std::tie(AShadowPtr, AOriginPtr) = - MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), - kShadowTLSAlignment, /*isStore*/ false); - - IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, - kShadowTLSAlignment, ArgSize); - } - } - VAArgOffset += alignTo(ArgSize, 8); - } else { - Value *Base; - uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); - uint64_t ArgAlign = 8; - if (A->getType()->isArrayTy()) { - // Arrays are aligned to element size, except for long double - // arrays, which are aligned to 8 bytes. - Type *ElementTy = A->getType()->getArrayElementType(); - if (!ElementTy->isPPC_FP128Ty()) - ArgAlign = DL.getTypeAllocSize(ElementTy); - } else if (A->getType()->isVectorTy()) { - // Vectors are naturally aligned. - ArgAlign = DL.getTypeAllocSize(A->getType()); - } - if (ArgAlign < 8) - ArgAlign = 8; - VAArgOffset = alignTo(VAArgOffset, ArgAlign); - if (DL.isBigEndian()) { - // Adjusting the shadow for argument with size < 8 to match the placement - // of bits in big endian system - if (ArgSize < 8) - VAArgOffset += (8 - ArgSize); - } - if (!IsFixed) { - Base = getShadowPtrForVAArgument(A->getType(), IRB, - VAArgOffset - VAArgBase, ArgSize); - if (Base) - IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); - } - VAArgOffset += ArgSize; - VAArgOffset = alignTo(VAArgOffset, 8); - } - if (IsFixed) - VAArgBase = VAArgOffset; - } - - Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), - VAArgOffset - VAArgBase); - // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of - // a new class member i.e. it is the total size of all VarArgs. - IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); - } - - /// Compute the shadow address for a given va_arg. - Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, - unsigned ArgOffset, unsigned ArgSize) { - // Make sure we don't overflow __msan_va_arg_tls. - if (ArgOffset + ArgSize > kParamTLSSize) - return nullptr; - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), - "_msarg"); - } - - void visitVAStartInst(VAStartInst &I) override { - IRBuilder<> IRB(&I); - VAStartInstrumentationList.push_back(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void visitVACopyInst(VACopyInst &I) override { - IRBuilder<> IRB(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( - VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); - // Unpoison the whole __va_list_tag. - // FIXME: magic ABI constants. - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - /* size */ 8, Alignment, false); - } - - void finalizeInstrumentation() override { - assert(!VAArgSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); + unsigned VAArgBase; + Triple TargetTriple(F.getParent()->getTargetTriple()); + // Parameter save area starts at 48 bytes from frame pointer for ABIv1, + // and 32 bytes for ABIv2. This is usually determined by target + // endianness, but in theory could be overridden by function attribute. + if (TargetTriple.getArch() == Triple::ppc64) + VAArgBase = 48; + else + VAArgBase = 32; + unsigned VAArgOffset = VAArgBase; + const DataLayout &DL = F.getParent()->getDataLayout(); + for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; + ++ArgIt) { + Value *A = *ArgIt; + unsigned ArgNo = CB.getArgOperandNo(ArgIt); + bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); + bool IsByVal = CB.paramHasAttr(ArgNo, Attribute::ByVal); + if (IsByVal) { + assert(A->getType()->isPointerTy()); + Type *RealTy = CB.getParamByValType(ArgNo); + uint64_t ArgSize = DL.getTypeAllocSize(RealTy); + MaybeAlign ArgAlign = CB.getParamAlign(ArgNo); + if (!ArgAlign || *ArgAlign < Align(8)) + ArgAlign = Align(8); + VAArgOffset = alignTo(VAArgOffset, ArgAlign); + if (!IsFixed) { + Value *Base = getShadowPtrForVAArgument( + RealTy, IRB, VAArgOffset - VAArgBase, ArgSize); + if (Base) { + Value *AShadowPtr, *AOriginPtr; + std::tie(AShadowPtr, AOriginPtr) = + MSV.getShadowOriginPtr(A, IRB, IRB.getInt8Ty(), + kShadowTLSAlignment, /*isStore*/ false); + + IRB.CreateMemCpy(Base, kShadowTLSAlignment, AShadowPtr, + kShadowTLSAlignment, ArgSize); + } + } + VAArgOffset += alignTo(ArgSize, 8); + } else { + Value *Base; + uint64_t ArgSize = DL.getTypeAllocSize(A->getType()); + uint64_t ArgAlign = 8; + if (A->getType()->isArrayTy()) { + // Arrays are aligned to element size, except for long double + // arrays, which are aligned to 8 bytes. + Type *ElementTy = A->getType()->getArrayElementType(); + if (!ElementTy->isPPC_FP128Ty()) + ArgAlign = DL.getTypeAllocSize(ElementTy); + } else if (A->getType()->isVectorTy()) { + // Vectors are naturally aligned. + ArgAlign = DL.getTypeAllocSize(A->getType()); + } + if (ArgAlign < 8) + ArgAlign = 8; + VAArgOffset = alignTo(VAArgOffset, ArgAlign); + if (DL.isBigEndian()) { + // Adjusting the shadow for argument with size < 8 to match the placement + // of bits in big endian system + if (ArgSize < 8) + VAArgOffset += (8 - ArgSize); + } + if (!IsFixed) { + Base = getShadowPtrForVAArgument(A->getType(), IRB, + VAArgOffset - VAArgBase, ArgSize); + if (Base) + IRB.CreateAlignedStore(MSV.getShadow(A), Base, kShadowTLSAlignment); + } + VAArgOffset += ArgSize; + VAArgOffset = alignTo(VAArgOffset, 8); + } + if (IsFixed) + VAArgBase = VAArgOffset; + } + + Constant *TotalVAArgSize = ConstantInt::get(IRB.getInt64Ty(), + VAArgOffset - VAArgBase); + // Here using VAArgOverflowSizeTLS as VAArgSizeTLS to avoid creation of + // a new class member i.e. it is the total size of all VarArgs. + IRB.CreateStore(TotalVAArgSize, MS.VAArgOverflowSizeTLS); + } + + /// Compute the shadow address for a given va_arg. + Value *getShadowPtrForVAArgument(Type *Ty, IRBuilder<> &IRB, + unsigned ArgOffset, unsigned ArgSize) { + // Make sure we don't overflow __msan_va_arg_tls. + if (ArgOffset + ArgSize > kParamTLSSize) + return nullptr; + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MSV.getShadowTy(Ty), 0), + "_msarg"); + } + + void visitVAStartInst(VAStartInst &I) override { + IRBuilder<> IRB(&I); + VAStartInstrumentationList.push_back(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 8, Alignment, false); + } + + void visitVACopyInst(VACopyInst &I) override { + IRBuilder<> IRB(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = MSV.getShadowOriginPtr( + VAListTag, IRB, IRB.getInt8Ty(), Alignment, /*isStore*/ true); + // Unpoison the whole __va_list_tag. + // FIXME: magic ABI constants. + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + /* size */ 8, Alignment, false); + } + + void finalizeInstrumentation() override { + assert(!VAArgSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); IRBuilder<> IRB(MSV.FnPrologueEnd); - VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), - VAArgSize); - - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { - CallInst *OrigInst = VAStartInstrumentationList[i]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = - IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = - IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - const Align Alignment = Align(8); - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - CopySize); - } - } -}; - -/// SystemZ-specific implementation of VarArgHelper. -struct VarArgSystemZHelper : public VarArgHelper { - static const unsigned SystemZGpOffset = 16; - static const unsigned SystemZGpEndOffset = 56; - static const unsigned SystemZFpOffset = 128; - static const unsigned SystemZFpEndOffset = 160; - static const unsigned SystemZMaxVrArgs = 8; - static const unsigned SystemZRegSaveAreaSize = 160; - static const unsigned SystemZOverflowOffset = 160; - static const unsigned SystemZVAListTagSize = 32; - static const unsigned SystemZOverflowArgAreaPtrOffset = 16; - static const unsigned SystemZRegSaveAreaPtrOffset = 24; - - Function &F; - MemorySanitizer &MS; - MemorySanitizerVisitor &MSV; - Value *VAArgTLSCopy = nullptr; - Value *VAArgTLSOriginCopy = nullptr; - Value *VAArgOverflowSize = nullptr; - - SmallVector<CallInst *, 16> VAStartInstrumentationList; - - enum class ArgKind { - GeneralPurpose, - FloatingPoint, - Vector, - Memory, - Indirect, - }; - - enum class ShadowExtension { None, Zero, Sign }; - - VarArgSystemZHelper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) - : F(F), MS(MS), MSV(MSV) {} - - ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { - // T is a SystemZABIInfo::classifyArgumentType() output, and there are - // only a few possibilities of what it can be. In particular, enums, single - // element structs and large types have already been taken care of. - - // Some i128 and fp128 arguments are converted to pointers only in the - // back end. - if (T->isIntegerTy(128) || T->isFP128Ty()) - return ArgKind::Indirect; - if (T->isFloatingPointTy()) - return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; - if (T->isIntegerTy() || T->isPointerTy()) - return ArgKind::GeneralPurpose; - if (T->isVectorTy()) - return ArgKind::Vector; - return ArgKind::Memory; - } - - ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { - // ABI says: "One of the simple integer types no more than 64 bits wide. - // ... If such an argument is shorter than 64 bits, replace it by a full - // 64-bit integer representing the same number, using sign or zero - // extension". Shadow for an integer argument has the same type as the - // argument itself, so it can be sign or zero extended as well. - bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); - bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); - if (ZExt) { - assert(!SExt); - return ShadowExtension::Zero; - } - if (SExt) { - assert(!ZExt); - return ShadowExtension::Sign; - } - return ShadowExtension::None; - } - - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { - bool IsSoftFloatABI = CB.getCalledFunction() - ->getFnAttribute("use-soft-float") - .getValueAsString() == "true"; - unsigned GpOffset = SystemZGpOffset; - unsigned FpOffset = SystemZFpOffset; - unsigned VrIndex = 0; - unsigned OverflowOffset = SystemZOverflowOffset; - const DataLayout &DL = F.getParent()->getDataLayout(); - for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; - ++ArgIt) { - Value *A = *ArgIt; - unsigned ArgNo = CB.getArgOperandNo(ArgIt); - bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); - // SystemZABIInfo does not produce ByVal parameters. - assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); - Type *T = A->getType(); - ArgKind AK = classifyArgument(T, IsSoftFloatABI); - if (AK == ArgKind::Indirect) { - T = PointerType::get(T, 0); - AK = ArgKind::GeneralPurpose; - } - if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) - AK = ArgKind::Memory; - if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) - AK = ArgKind::Memory; - if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) - AK = ArgKind::Memory; - Value *ShadowBase = nullptr; - Value *OriginBase = nullptr; - ShadowExtension SE = ShadowExtension::None; - switch (AK) { - case ArgKind::GeneralPurpose: { - // Always keep track of GpOffset, but store shadow only for varargs. - uint64_t ArgSize = 8; - if (GpOffset + ArgSize <= kParamTLSSize) { - if (!IsFixed) { - SE = getShadowExtension(CB, ArgNo); - uint64_t GapSize = 0; - if (SE == ShadowExtension::None) { - uint64_t ArgAllocSize = DL.getTypeAllocSize(T); - assert(ArgAllocSize <= ArgSize); - GapSize = ArgSize - ArgAllocSize; - } - ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); - if (MS.TrackOrigins) - OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); - } - GpOffset += ArgSize; - } else { - GpOffset = kParamTLSSize; - } - break; - } - case ArgKind::FloatingPoint: { - // Always keep track of FpOffset, but store shadow only for varargs. - uint64_t ArgSize = 8; - if (FpOffset + ArgSize <= kParamTLSSize) { - if (!IsFixed) { - // PoP says: "A short floating-point datum requires only the - // left-most 32 bit positions of a floating-point register". - // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, - // don't extend shadow and don't mind the gap. - ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); - if (MS.TrackOrigins) - OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); - } - FpOffset += ArgSize; - } else { - FpOffset = kParamTLSSize; - } - break; - } - case ArgKind::Vector: { - // Keep track of VrIndex. No need to store shadow, since vector varargs - // go through AK_Memory. - assert(IsFixed); - VrIndex++; - break; - } - case ArgKind::Memory: { - // Keep track of OverflowOffset and store shadow only for varargs. - // Ignore fixed args, since we need to copy only the vararg portion of - // the overflow area shadow. - if (!IsFixed) { - uint64_t ArgAllocSize = DL.getTypeAllocSize(T); - uint64_t ArgSize = alignTo(ArgAllocSize, 8); - if (OverflowOffset + ArgSize <= kParamTLSSize) { - SE = getShadowExtension(CB, ArgNo); - uint64_t GapSize = - SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; - ShadowBase = - getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); - if (MS.TrackOrigins) - OriginBase = - getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); - OverflowOffset += ArgSize; - } else { - OverflowOffset = kParamTLSSize; - } - } - break; - } - case ArgKind::Indirect: - llvm_unreachable("Indirect must be converted to GeneralPurpose"); - } - if (ShadowBase == nullptr) - continue; - Value *Shadow = MSV.getShadow(A); - if (SE != ShadowExtension::None) - Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), - /*Signed*/ SE == ShadowExtension::Sign); - ShadowBase = IRB.CreateIntToPtr( - ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); - IRB.CreateStore(Shadow, ShadowBase); - if (MS.TrackOrigins) { - Value *Origin = MSV.getOrigin(A); - unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); - MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, - kMinOriginAlignment); - } - } - Constant *OverflowSize = ConstantInt::get( - IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); - IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); - } - - Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); - return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - } - - Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { - Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); - Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); - return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), - "_msarg_va_o"); - } - - void unpoisonVAListTagForInst(IntrinsicInst &I) { - IRBuilder<> IRB(&I); - Value *VAListTag = I.getArgOperand(0); - Value *ShadowPtr, *OriginPtr; - const Align Alignment = Align(8); - std::tie(ShadowPtr, OriginPtr) = - MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ true); - IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), - SystemZVAListTagSize, Alignment, false); - } - - void visitVAStartInst(VAStartInst &I) override { - VAStartInstrumentationList.push_back(&I); - unpoisonVAListTagForInst(I); - } - - void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } - - void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { - Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd( - IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), - PointerType::get(RegSaveAreaPtrTy, 0)); - Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); - Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; - const Align Alignment = Align(8); - std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = - MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, - /*isStore*/ true); - // TODO(iii): copy only fragments filled by visitCallBase() - IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, - SystemZRegSaveAreaSize); - if (MS.TrackOrigins) - IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, - Alignment, SystemZRegSaveAreaSize); - } - - void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { - Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); - Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( - IRB.CreateAdd( - IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), - ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), - PointerType::get(OverflowArgAreaPtrTy, 0)); - Value *OverflowArgAreaPtr = - IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); - Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; - const Align Alignment = Align(8); - std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = - MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), - Alignment, /*isStore*/ true); - Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, - SystemZOverflowOffset); - IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - if (MS.TrackOrigins) { - SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, - SystemZOverflowOffset); - IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, - VAArgOverflowSize); - } - } - - void finalizeInstrumentation() override { - assert(!VAArgOverflowSize && !VAArgTLSCopy && - "finalizeInstrumentation called twice"); - if (!VAStartInstrumentationList.empty()) { - // If there is a va_start in this function, make a backup copy of - // va_arg_tls somewhere in the function entry block. + VAArgSize = IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); + Value *CopySize = IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, 0), + VAArgSize); + + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); + } + + // Instrument va_start. + // Copy va_list shadow from the backup copy of the TLS contents. + for (size_t i = 0, n = VAStartInstrumentationList.size(); i < n; i++) { + CallInst *OrigInst = VAStartInstrumentationList[i]; + IRBuilder<> IRB(OrigInst->getNextNode()); + Value *VAListTag = OrigInst->getArgOperand(0); + Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *RegSaveAreaPtrPtr = + IRB.CreateIntToPtr(IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + PointerType::get(RegSaveAreaPtrTy, 0)); + Value *RegSaveAreaPtr = + IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); + Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; + const Align Alignment = Align(8); + std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = + MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), + Alignment, /*isStore*/ true); + IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, + CopySize); + } + } +}; + +/// SystemZ-specific implementation of VarArgHelper. +struct VarArgSystemZHelper : public VarArgHelper { + static const unsigned SystemZGpOffset = 16; + static const unsigned SystemZGpEndOffset = 56; + static const unsigned SystemZFpOffset = 128; + static const unsigned SystemZFpEndOffset = 160; + static const unsigned SystemZMaxVrArgs = 8; + static const unsigned SystemZRegSaveAreaSize = 160; + static const unsigned SystemZOverflowOffset = 160; + static const unsigned SystemZVAListTagSize = 32; + static const unsigned SystemZOverflowArgAreaPtrOffset = 16; + static const unsigned SystemZRegSaveAreaPtrOffset = 24; + + Function &F; + MemorySanitizer &MS; + MemorySanitizerVisitor &MSV; + Value *VAArgTLSCopy = nullptr; + Value *VAArgTLSOriginCopy = nullptr; + Value *VAArgOverflowSize = nullptr; + + SmallVector<CallInst *, 16> VAStartInstrumentationList; + + enum class ArgKind { + GeneralPurpose, + FloatingPoint, + Vector, + Memory, + Indirect, + }; + + enum class ShadowExtension { None, Zero, Sign }; + + VarArgSystemZHelper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) + : F(F), MS(MS), MSV(MSV) {} + + ArgKind classifyArgument(Type *T, bool IsSoftFloatABI) { + // T is a SystemZABIInfo::classifyArgumentType() output, and there are + // only a few possibilities of what it can be. In particular, enums, single + // element structs and large types have already been taken care of. + + // Some i128 and fp128 arguments are converted to pointers only in the + // back end. + if (T->isIntegerTy(128) || T->isFP128Ty()) + return ArgKind::Indirect; + if (T->isFloatingPointTy()) + return IsSoftFloatABI ? ArgKind::GeneralPurpose : ArgKind::FloatingPoint; + if (T->isIntegerTy() || T->isPointerTy()) + return ArgKind::GeneralPurpose; + if (T->isVectorTy()) + return ArgKind::Vector; + return ArgKind::Memory; + } + + ShadowExtension getShadowExtension(const CallBase &CB, unsigned ArgNo) { + // ABI says: "One of the simple integer types no more than 64 bits wide. + // ... If such an argument is shorter than 64 bits, replace it by a full + // 64-bit integer representing the same number, using sign or zero + // extension". Shadow for an integer argument has the same type as the + // argument itself, so it can be sign or zero extended as well. + bool ZExt = CB.paramHasAttr(ArgNo, Attribute::ZExt); + bool SExt = CB.paramHasAttr(ArgNo, Attribute::SExt); + if (ZExt) { + assert(!SExt); + return ShadowExtension::Zero; + } + if (SExt) { + assert(!ZExt); + return ShadowExtension::Sign; + } + return ShadowExtension::None; + } + + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override { + bool IsSoftFloatABI = CB.getCalledFunction() + ->getFnAttribute("use-soft-float") + .getValueAsString() == "true"; + unsigned GpOffset = SystemZGpOffset; + unsigned FpOffset = SystemZFpOffset; + unsigned VrIndex = 0; + unsigned OverflowOffset = SystemZOverflowOffset; + const DataLayout &DL = F.getParent()->getDataLayout(); + for (auto ArgIt = CB.arg_begin(), End = CB.arg_end(); ArgIt != End; + ++ArgIt) { + Value *A = *ArgIt; + unsigned ArgNo = CB.getArgOperandNo(ArgIt); + bool IsFixed = ArgNo < CB.getFunctionType()->getNumParams(); + // SystemZABIInfo does not produce ByVal parameters. + assert(!CB.paramHasAttr(ArgNo, Attribute::ByVal)); + Type *T = A->getType(); + ArgKind AK = classifyArgument(T, IsSoftFloatABI); + if (AK == ArgKind::Indirect) { + T = PointerType::get(T, 0); + AK = ArgKind::GeneralPurpose; + } + if (AK == ArgKind::GeneralPurpose && GpOffset >= SystemZGpEndOffset) + AK = ArgKind::Memory; + if (AK == ArgKind::FloatingPoint && FpOffset >= SystemZFpEndOffset) + AK = ArgKind::Memory; + if (AK == ArgKind::Vector && (VrIndex >= SystemZMaxVrArgs || !IsFixed)) + AK = ArgKind::Memory; + Value *ShadowBase = nullptr; + Value *OriginBase = nullptr; + ShadowExtension SE = ShadowExtension::None; + switch (AK) { + case ArgKind::GeneralPurpose: { + // Always keep track of GpOffset, but store shadow only for varargs. + uint64_t ArgSize = 8; + if (GpOffset + ArgSize <= kParamTLSSize) { + if (!IsFixed) { + SE = getShadowExtension(CB, ArgNo); + uint64_t GapSize = 0; + if (SE == ShadowExtension::None) { + uint64_t ArgAllocSize = DL.getTypeAllocSize(T); + assert(ArgAllocSize <= ArgSize); + GapSize = ArgSize - ArgAllocSize; + } + ShadowBase = getShadowAddrForVAArgument(IRB, GpOffset + GapSize); + if (MS.TrackOrigins) + OriginBase = getOriginPtrForVAArgument(IRB, GpOffset + GapSize); + } + GpOffset += ArgSize; + } else { + GpOffset = kParamTLSSize; + } + break; + } + case ArgKind::FloatingPoint: { + // Always keep track of FpOffset, but store shadow only for varargs. + uint64_t ArgSize = 8; + if (FpOffset + ArgSize <= kParamTLSSize) { + if (!IsFixed) { + // PoP says: "A short floating-point datum requires only the + // left-most 32 bit positions of a floating-point register". + // Therefore, in contrast to AK_GeneralPurpose and AK_Memory, + // don't extend shadow and don't mind the gap. + ShadowBase = getShadowAddrForVAArgument(IRB, FpOffset); + if (MS.TrackOrigins) + OriginBase = getOriginPtrForVAArgument(IRB, FpOffset); + } + FpOffset += ArgSize; + } else { + FpOffset = kParamTLSSize; + } + break; + } + case ArgKind::Vector: { + // Keep track of VrIndex. No need to store shadow, since vector varargs + // go through AK_Memory. + assert(IsFixed); + VrIndex++; + break; + } + case ArgKind::Memory: { + // Keep track of OverflowOffset and store shadow only for varargs. + // Ignore fixed args, since we need to copy only the vararg portion of + // the overflow area shadow. + if (!IsFixed) { + uint64_t ArgAllocSize = DL.getTypeAllocSize(T); + uint64_t ArgSize = alignTo(ArgAllocSize, 8); + if (OverflowOffset + ArgSize <= kParamTLSSize) { + SE = getShadowExtension(CB, ArgNo); + uint64_t GapSize = + SE == ShadowExtension::None ? ArgSize - ArgAllocSize : 0; + ShadowBase = + getShadowAddrForVAArgument(IRB, OverflowOffset + GapSize); + if (MS.TrackOrigins) + OriginBase = + getOriginPtrForVAArgument(IRB, OverflowOffset + GapSize); + OverflowOffset += ArgSize; + } else { + OverflowOffset = kParamTLSSize; + } + } + break; + } + case ArgKind::Indirect: + llvm_unreachable("Indirect must be converted to GeneralPurpose"); + } + if (ShadowBase == nullptr) + continue; + Value *Shadow = MSV.getShadow(A); + if (SE != ShadowExtension::None) + Shadow = MSV.CreateShadowCast(IRB, Shadow, IRB.getInt64Ty(), + /*Signed*/ SE == ShadowExtension::Sign); + ShadowBase = IRB.CreateIntToPtr( + ShadowBase, PointerType::get(Shadow->getType(), 0), "_msarg_va_s"); + IRB.CreateStore(Shadow, ShadowBase); + if (MS.TrackOrigins) { + Value *Origin = MSV.getOrigin(A); + unsigned StoreSize = DL.getTypeStoreSize(Shadow->getType()); + MSV.paintOrigin(IRB, Origin, OriginBase, StoreSize, + kMinOriginAlignment); + } + } + Constant *OverflowSize = ConstantInt::get( + IRB.getInt64Ty(), OverflowOffset - SystemZOverflowOffset); + IRB.CreateStore(OverflowSize, MS.VAArgOverflowSizeTLS); + } + + Value *getShadowAddrForVAArgument(IRBuilder<> &IRB, unsigned ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.VAArgTLS, MS.IntptrTy); + return IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + } + + Value *getOriginPtrForVAArgument(IRBuilder<> &IRB, int ArgOffset) { + Value *Base = IRB.CreatePointerCast(MS.VAArgOriginTLS, MS.IntptrTy); + Base = IRB.CreateAdd(Base, ConstantInt::get(MS.IntptrTy, ArgOffset)); + return IRB.CreateIntToPtr(Base, PointerType::get(MS.OriginTy, 0), + "_msarg_va_o"); + } + + void unpoisonVAListTagForInst(IntrinsicInst &I) { + IRBuilder<> IRB(&I); + Value *VAListTag = I.getArgOperand(0); + Value *ShadowPtr, *OriginPtr; + const Align Alignment = Align(8); + std::tie(ShadowPtr, OriginPtr) = + MSV.getShadowOriginPtr(VAListTag, IRB, IRB.getInt8Ty(), Alignment, + /*isStore*/ true); + IRB.CreateMemSet(ShadowPtr, Constant::getNullValue(IRB.getInt8Ty()), + SystemZVAListTagSize, Alignment, false); + } + + void visitVAStartInst(VAStartInst &I) override { + VAStartInstrumentationList.push_back(&I); + unpoisonVAListTagForInst(I); + } + + void visitVACopyInst(VACopyInst &I) override { unpoisonVAListTagForInst(I); } + + void copyRegSaveArea(IRBuilder<> &IRB, Value *VAListTag) { + Type *RegSaveAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *RegSaveAreaPtrPtr = IRB.CreateIntToPtr( + IRB.CreateAdd( + IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, SystemZRegSaveAreaPtrOffset)), + PointerType::get(RegSaveAreaPtrTy, 0)); + Value *RegSaveAreaPtr = IRB.CreateLoad(RegSaveAreaPtrTy, RegSaveAreaPtrPtr); + Value *RegSaveAreaShadowPtr, *RegSaveAreaOriginPtr; + const Align Alignment = Align(8); + std::tie(RegSaveAreaShadowPtr, RegSaveAreaOriginPtr) = + MSV.getShadowOriginPtr(RegSaveAreaPtr, IRB, IRB.getInt8Ty(), Alignment, + /*isStore*/ true); + // TODO(iii): copy only fragments filled by visitCallBase() + IRB.CreateMemCpy(RegSaveAreaShadowPtr, Alignment, VAArgTLSCopy, Alignment, + SystemZRegSaveAreaSize); + if (MS.TrackOrigins) + IRB.CreateMemCpy(RegSaveAreaOriginPtr, Alignment, VAArgTLSOriginCopy, + Alignment, SystemZRegSaveAreaSize); + } + + void copyOverflowArea(IRBuilder<> &IRB, Value *VAListTag) { + Type *OverflowArgAreaPtrTy = Type::getInt64PtrTy(*MS.C); + Value *OverflowArgAreaPtrPtr = IRB.CreateIntToPtr( + IRB.CreateAdd( + IRB.CreatePtrToInt(VAListTag, MS.IntptrTy), + ConstantInt::get(MS.IntptrTy, SystemZOverflowArgAreaPtrOffset)), + PointerType::get(OverflowArgAreaPtrTy, 0)); + Value *OverflowArgAreaPtr = + IRB.CreateLoad(OverflowArgAreaPtrTy, OverflowArgAreaPtrPtr); + Value *OverflowArgAreaShadowPtr, *OverflowArgAreaOriginPtr; + const Align Alignment = Align(8); + std::tie(OverflowArgAreaShadowPtr, OverflowArgAreaOriginPtr) = + MSV.getShadowOriginPtr(OverflowArgAreaPtr, IRB, IRB.getInt8Ty(), + Alignment, /*isStore*/ true); + Value *SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSCopy, + SystemZOverflowOffset); + IRB.CreateMemCpy(OverflowArgAreaShadowPtr, Alignment, SrcPtr, Alignment, + VAArgOverflowSize); + if (MS.TrackOrigins) { + SrcPtr = IRB.CreateConstGEP1_32(IRB.getInt8Ty(), VAArgTLSOriginCopy, + SystemZOverflowOffset); + IRB.CreateMemCpy(OverflowArgAreaOriginPtr, Alignment, SrcPtr, Alignment, + VAArgOverflowSize); + } + } + + void finalizeInstrumentation() override { + assert(!VAArgOverflowSize && !VAArgTLSCopy && + "finalizeInstrumentation called twice"); + if (!VAStartInstrumentationList.empty()) { + // If there is a va_start in this function, make a backup copy of + // va_arg_tls somewhere in the function entry block. IRBuilder<> IRB(MSV.FnPrologueEnd); - VAArgOverflowSize = - IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); - Value *CopySize = - IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), - VAArgOverflowSize); - VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); - if (MS.TrackOrigins) { - VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); - IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, - Align(8), CopySize); - } - } - - // Instrument va_start. - // Copy va_list shadow from the backup copy of the TLS contents. - for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); - VaStartNo < VaStartNum; VaStartNo++) { - CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; - IRBuilder<> IRB(OrigInst->getNextNode()); - Value *VAListTag = OrigInst->getArgOperand(0); - copyRegSaveArea(IRB, VAListTag); - copyOverflowArea(IRB, VAListTag); - } - } -}; - -/// A no-op implementation of VarArgHelper. -struct VarArgNoOpHelper : public VarArgHelper { - VarArgNoOpHelper(Function &F, MemorySanitizer &MS, - MemorySanitizerVisitor &MSV) {} - - void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} - - void visitVAStartInst(VAStartInst &I) override {} - - void visitVACopyInst(VACopyInst &I) override {} - - void finalizeInstrumentation() override {} -}; - -} // end anonymous namespace - -static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, - MemorySanitizerVisitor &Visitor) { - // VarArg handling is only implemented on AMD64. False positives are possible - // on other platforms. - Triple TargetTriple(Func.getParent()->getTargetTriple()); - if (TargetTriple.getArch() == Triple::x86_64) - return new VarArgAMD64Helper(Func, Msan, Visitor); - else if (TargetTriple.isMIPS64()) - return new VarArgMIPS64Helper(Func, Msan, Visitor); - else if (TargetTriple.getArch() == Triple::aarch64) - return new VarArgAArch64Helper(Func, Msan, Visitor); - else if (TargetTriple.getArch() == Triple::ppc64 || - TargetTriple.getArch() == Triple::ppc64le) - return new VarArgPowerPC64Helper(Func, Msan, Visitor); - else if (TargetTriple.getArch() == Triple::systemz) - return new VarArgSystemZHelper(Func, Msan, Visitor); - else - return new VarArgNoOpHelper(Func, Msan, Visitor); -} - -bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { - if (!CompileKernel && F.getName() == kMsanModuleCtorName) - return false; - - MemorySanitizerVisitor Visitor(F, *this, TLI); - - // Clear out readonly/readnone attributes. - AttrBuilder B; - B.addAttribute(Attribute::ReadOnly) - .addAttribute(Attribute::ReadNone) - .addAttribute(Attribute::WriteOnly) - .addAttribute(Attribute::ArgMemOnly) - .addAttribute(Attribute::Speculatable); - F.removeAttributes(AttributeList::FunctionIndex, B); - - return Visitor.runOnFunction(); -} + VAArgOverflowSize = + IRB.CreateLoad(IRB.getInt64Ty(), MS.VAArgOverflowSizeTLS); + Value *CopySize = + IRB.CreateAdd(ConstantInt::get(MS.IntptrTy, SystemZOverflowOffset), + VAArgOverflowSize); + VAArgTLSCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSCopy, Align(8), MS.VAArgTLS, Align(8), CopySize); + if (MS.TrackOrigins) { + VAArgTLSOriginCopy = IRB.CreateAlloca(Type::getInt8Ty(*MS.C), CopySize); + IRB.CreateMemCpy(VAArgTLSOriginCopy, Align(8), MS.VAArgOriginTLS, + Align(8), CopySize); + } + } + + // Instrument va_start. + // Copy va_list shadow from the backup copy of the TLS contents. + for (size_t VaStartNo = 0, VaStartNum = VAStartInstrumentationList.size(); + VaStartNo < VaStartNum; VaStartNo++) { + CallInst *OrigInst = VAStartInstrumentationList[VaStartNo]; + IRBuilder<> IRB(OrigInst->getNextNode()); + Value *VAListTag = OrigInst->getArgOperand(0); + copyRegSaveArea(IRB, VAListTag); + copyOverflowArea(IRB, VAListTag); + } + } +}; + +/// A no-op implementation of VarArgHelper. +struct VarArgNoOpHelper : public VarArgHelper { + VarArgNoOpHelper(Function &F, MemorySanitizer &MS, + MemorySanitizerVisitor &MSV) {} + + void visitCallBase(CallBase &CB, IRBuilder<> &IRB) override {} + + void visitVAStartInst(VAStartInst &I) override {} + + void visitVACopyInst(VACopyInst &I) override {} + + void finalizeInstrumentation() override {} +}; + +} // end anonymous namespace + +static VarArgHelper *CreateVarArgHelper(Function &Func, MemorySanitizer &Msan, + MemorySanitizerVisitor &Visitor) { + // VarArg handling is only implemented on AMD64. False positives are possible + // on other platforms. + Triple TargetTriple(Func.getParent()->getTargetTriple()); + if (TargetTriple.getArch() == Triple::x86_64) + return new VarArgAMD64Helper(Func, Msan, Visitor); + else if (TargetTriple.isMIPS64()) + return new VarArgMIPS64Helper(Func, Msan, Visitor); + else if (TargetTriple.getArch() == Triple::aarch64) + return new VarArgAArch64Helper(Func, Msan, Visitor); + else if (TargetTriple.getArch() == Triple::ppc64 || + TargetTriple.getArch() == Triple::ppc64le) + return new VarArgPowerPC64Helper(Func, Msan, Visitor); + else if (TargetTriple.getArch() == Triple::systemz) + return new VarArgSystemZHelper(Func, Msan, Visitor); + else + return new VarArgNoOpHelper(Func, Msan, Visitor); +} + +bool MemorySanitizer::sanitizeFunction(Function &F, TargetLibraryInfo &TLI) { + if (!CompileKernel && F.getName() == kMsanModuleCtorName) + return false; + + MemorySanitizerVisitor Visitor(F, *this, TLI); + + // Clear out readonly/readnone attributes. + AttrBuilder B; + B.addAttribute(Attribute::ReadOnly) + .addAttribute(Attribute::ReadNone) + .addAttribute(Attribute::WriteOnly) + .addAttribute(Attribute::ArgMemOnly) + .addAttribute(Attribute::Speculatable); + F.removeAttributes(AttributeList::FunctionIndex, B); + + return Visitor.runOnFunction(); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOInstrumentation.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOInstrumentation.cpp index 002a03afad..be6c8c6310 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOInstrumentation.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOInstrumentation.cpp @@ -1,253 +1,253 @@ -//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements PGO instrumentation using a minimum spanning tree based -// on the following paper: -// [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points -// for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, -// Issue 3, pp 313-322 -// The idea of the algorithm based on the fact that for each node (except for -// the entry and exit), the sum of incoming edge counts equals the sum of -// outgoing edge counts. The count of edge on spanning tree can be derived from -// those edges not on the spanning tree. Knuth proves this method instruments -// the minimum number of edges. -// -// The minimal spanning tree here is actually a maximum weight tree -- on-tree -// edges have higher frequencies (more likely to execute). The idea is to -// instrument those less frequently executed edges to reduce the runtime -// overhead of instrumented binaries. -// -// This file contains two passes: -// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge -// count profile, and generates the instrumentation for indirect call -// profiling. -// (2) Pass PGOInstrumentationUse which reads the edge count profile and -// annotates the branch weights. It also reads the indirect call value -// profiling records and annotate the indirect call instructions. -// -// To get the precise counter information, These two passes need to invoke at -// the same compilation point (so they see the same IR). For pass -// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For -// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and -// the profile is opened in module level and passed to each PGOUseFunc instance. -// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put -// in class FuncPGOInstrumentation. -// -// Class PGOEdge represents a CFG edge and some auxiliary information. Class -// BBInfo contains auxiliary information for each BB. These two classes are used -// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived -// class of PGOEdge and BBInfo, respectively. They contains extra data structure -// used in populating profile counters. -// The MST implementation is in Class CFGMST (CFGMST.h). -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" -#include "CFGMST.h" -#include "ValueProfileCollector.h" -#include "llvm/ADT/APInt.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Triple.h" -#include "llvm/ADT/Twine.h" -#include "llvm/ADT/iterator.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/CFG.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" -#include "llvm/Analysis/ProfileSummaryInfo.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Comdat.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DiagnosticInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalAlias.h" -#include "llvm/IR/GlobalValue.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/ProfileSummary.h" -#include "llvm/IR/Type.h" -#include "llvm/IR/Value.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/ProfileData/InstrProfReader.h" -#include "llvm/Support/BranchProbability.h" -#include "llvm/Support/CRC.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/DOTGraphTraits.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/Error.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/GraphWriter.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <memory> -#include <numeric> -#include <string> -#include <unordered_map> -#include <utility> -#include <vector> - -using namespace llvm; -using ProfileCount = Function::ProfileCount; -using VPCandidateInfo = ValueProfileCollector::CandidateInfo; - -#define DEBUG_TYPE "pgo-instrumentation" - -STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); -STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); -STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); -STATISTIC(NumOfPGOEdge, "Number of edges."); -STATISTIC(NumOfPGOBB, "Number of basic-blocks."); -STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); -STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); -STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); -STATISTIC(NumOfPGOMissing, "Number of functions without profile."); -STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); -STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO."); -STATISTIC(NumOfCSPGOSelectInsts, - "Number of select instruction instrumented in CSPGO."); -STATISTIC(NumOfCSPGOMemIntrinsics, - "Number of mem intrinsics instrumented in CSPGO."); -STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO."); -STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO."); -STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO."); -STATISTIC(NumOfCSPGOFunc, - "Number of functions having valid profile counts in CSPGO."); -STATISTIC(NumOfCSPGOMismatch, - "Number of functions having mismatch profile in CSPGO."); -STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO."); - -// Command line option to specify the file to read profile from. This is -// mainly used for testing. -static cl::opt<std::string> - PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, - cl::value_desc("filename"), - cl::desc("Specify the path of profile data file. This is" - "mainly for test purpose.")); -static cl::opt<std::string> PGOTestProfileRemappingFile( - "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden, - cl::value_desc("filename"), - cl::desc("Specify the path of profile remapping file. This is mainly for " - "test purpose.")); - -// Command line option to disable value profiling. The default is false: -// i.e. value profiling is enabled by default. This is for debug purpose. -static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false), - cl::Hidden, - cl::desc("Disable Value Profiling")); - -// Command line option to set the maximum number of VP annotations to write to -// the metadata for a single indirect call callsite. -static cl::opt<unsigned> MaxNumAnnotations( - "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, - cl::desc("Max number of annotations for a single indirect " - "call callsite")); - -// Command line option to set the maximum number of value annotations -// to write to the metadata for a single memop intrinsic. -static cl::opt<unsigned> MaxNumMemOPAnnotations( - "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore, - cl::desc("Max number of preicise value annotations for a single memop" - "intrinsic")); - -// Command line option to control appending FunctionHash to the name of a COMDAT -// function. This is to avoid the hash mismatch caused by the preinliner. -static cl::opt<bool> DoComdatRenaming( - "do-comdat-renaming", cl::init(false), cl::Hidden, - cl::desc("Append function hash to the name of COMDAT function to avoid " - "function hash mismatch due to the preinliner")); - -// Command line option to enable/disable the warning about missing profile -// information. -static cl::opt<bool> - PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, - cl::desc("Use this option to turn on/off " - "warnings about missing profile data for " - "functions.")); - -// Command line option to enable/disable the warning about a hash mismatch in -// the profile data. -static cl::opt<bool> - NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, - cl::desc("Use this option to turn off/on " - "warnings about profile cfg mismatch.")); - -// Command line option to enable/disable the warning about a hash mismatch in -// the profile data for Comdat functions, which often turns out to be false -// positive due to the pre-instrumentation inline. -static cl::opt<bool> - NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true), - cl::Hidden, - cl::desc("The option is used to turn on/off " - "warnings about hash mismatch for comdat " - "functions.")); - -// Command line option to enable/disable select instruction instrumentation. -static cl::opt<bool> - PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, - cl::desc("Use this option to turn on/off SELECT " - "instruction instrumentation. ")); - -// Command line option to turn on CFG dot or text dump of raw profile counts -static cl::opt<PGOViewCountsType> PGOViewRawCounts( - "pgo-view-raw-counts", cl::Hidden, - cl::desc("A boolean option to show CFG dag or text " - "with raw profile counts from " - "profile data. See also option " - "-pgo-view-counts. To limit graph " - "display to only one function, use " - "filtering option -view-bfi-func-name."), - cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), - clEnumValN(PGOVCT_Graph, "graph", "show a graph."), - clEnumValN(PGOVCT_Text, "text", "show in text."))); - -// Command line option to enable/disable memop intrinsic call.size profiling. -static cl::opt<bool> - PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, - cl::desc("Use this option to turn on/off " - "memory intrinsic size profiling.")); - -// Emit branch probability as optimization remarks. -static cl::opt<bool> - EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, - cl::desc("When this option is on, the annotated " - "branch probability will be emitted as " - "optimization remarks: -{Rpass|" - "pass-remarks}=pgo-instrumentation")); - +//===- PGOInstrumentation.cpp - MST-based PGO Instrumentation -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements PGO instrumentation using a minimum spanning tree based +// on the following paper: +// [1] Donald E. Knuth, Francis R. Stevenson. Optimal measurement of points +// for program frequency counts. BIT Numerical Mathematics 1973, Volume 13, +// Issue 3, pp 313-322 +// The idea of the algorithm based on the fact that for each node (except for +// the entry and exit), the sum of incoming edge counts equals the sum of +// outgoing edge counts. The count of edge on spanning tree can be derived from +// those edges not on the spanning tree. Knuth proves this method instruments +// the minimum number of edges. +// +// The minimal spanning tree here is actually a maximum weight tree -- on-tree +// edges have higher frequencies (more likely to execute). The idea is to +// instrument those less frequently executed edges to reduce the runtime +// overhead of instrumented binaries. +// +// This file contains two passes: +// (1) Pass PGOInstrumentationGen which instruments the IR to generate edge +// count profile, and generates the instrumentation for indirect call +// profiling. +// (2) Pass PGOInstrumentationUse which reads the edge count profile and +// annotates the branch weights. It also reads the indirect call value +// profiling records and annotate the indirect call instructions. +// +// To get the precise counter information, These two passes need to invoke at +// the same compilation point (so they see the same IR). For pass +// PGOInstrumentationGen, the real work is done in instrumentOneFunc(). For +// pass PGOInstrumentationUse, the real work in done in class PGOUseFunc and +// the profile is opened in module level and passed to each PGOUseFunc instance. +// The shared code for PGOInstrumentationGen and PGOInstrumentationUse is put +// in class FuncPGOInstrumentation. +// +// Class PGOEdge represents a CFG edge and some auxiliary information. Class +// BBInfo contains auxiliary information for each BB. These two classes are used +// in pass PGOInstrumentationGen. Class PGOUseEdge and UseBBInfo are the derived +// class of PGOEdge and BBInfo, respectively. They contains extra data structure +// used in populating profile counters. +// The MST implementation is in Class CFGMST (CFGMST.h). +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" +#include "CFGMST.h" +#include "ValueProfileCollector.h" +#include "llvm/ADT/APInt.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Triple.h" +#include "llvm/ADT/Twine.h" +#include "llvm/ADT/iterator.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/BranchProbabilityInfo.h" +#include "llvm/Analysis/CFG.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/LoopInfo.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" +#include "llvm/Analysis/ProfileSummaryInfo.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Comdat.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/DiagnosticInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalAlias.h" +#include "llvm/IR/GlobalValue.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/ProfileSummary.h" +#include "llvm/IR/Type.h" +#include "llvm/IR/Value.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/ProfileData/InstrProfReader.h" +#include "llvm/Support/BranchProbability.h" +#include "llvm/Support/CRC.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/DOTGraphTraits.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/Error.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/GraphWriter.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <memory> +#include <numeric> +#include <string> +#include <unordered_map> +#include <utility> +#include <vector> + +using namespace llvm; +using ProfileCount = Function::ProfileCount; +using VPCandidateInfo = ValueProfileCollector::CandidateInfo; + +#define DEBUG_TYPE "pgo-instrumentation" + +STATISTIC(NumOfPGOInstrument, "Number of edges instrumented."); +STATISTIC(NumOfPGOSelectInsts, "Number of select instruction instrumented."); +STATISTIC(NumOfPGOMemIntrinsics, "Number of mem intrinsics instrumented."); +STATISTIC(NumOfPGOEdge, "Number of edges."); +STATISTIC(NumOfPGOBB, "Number of basic-blocks."); +STATISTIC(NumOfPGOSplit, "Number of critical edge splits."); +STATISTIC(NumOfPGOFunc, "Number of functions having valid profile counts."); +STATISTIC(NumOfPGOMismatch, "Number of functions having mismatch profile."); +STATISTIC(NumOfPGOMissing, "Number of functions without profile."); +STATISTIC(NumOfPGOICall, "Number of indirect call value instrumentations."); +STATISTIC(NumOfCSPGOInstrument, "Number of edges instrumented in CSPGO."); +STATISTIC(NumOfCSPGOSelectInsts, + "Number of select instruction instrumented in CSPGO."); +STATISTIC(NumOfCSPGOMemIntrinsics, + "Number of mem intrinsics instrumented in CSPGO."); +STATISTIC(NumOfCSPGOEdge, "Number of edges in CSPGO."); +STATISTIC(NumOfCSPGOBB, "Number of basic-blocks in CSPGO."); +STATISTIC(NumOfCSPGOSplit, "Number of critical edge splits in CSPGO."); +STATISTIC(NumOfCSPGOFunc, + "Number of functions having valid profile counts in CSPGO."); +STATISTIC(NumOfCSPGOMismatch, + "Number of functions having mismatch profile in CSPGO."); +STATISTIC(NumOfCSPGOMissing, "Number of functions without profile in CSPGO."); + +// Command line option to specify the file to read profile from. This is +// mainly used for testing. +static cl::opt<std::string> + PGOTestProfileFile("pgo-test-profile-file", cl::init(""), cl::Hidden, + cl::value_desc("filename"), + cl::desc("Specify the path of profile data file. This is" + "mainly for test purpose.")); +static cl::opt<std::string> PGOTestProfileRemappingFile( + "pgo-test-profile-remapping-file", cl::init(""), cl::Hidden, + cl::value_desc("filename"), + cl::desc("Specify the path of profile remapping file. This is mainly for " + "test purpose.")); + +// Command line option to disable value profiling. The default is false: +// i.e. value profiling is enabled by default. This is for debug purpose. +static cl::opt<bool> DisableValueProfiling("disable-vp", cl::init(false), + cl::Hidden, + cl::desc("Disable Value Profiling")); + +// Command line option to set the maximum number of VP annotations to write to +// the metadata for a single indirect call callsite. +static cl::opt<unsigned> MaxNumAnnotations( + "icp-max-annotations", cl::init(3), cl::Hidden, cl::ZeroOrMore, + cl::desc("Max number of annotations for a single indirect " + "call callsite")); + +// Command line option to set the maximum number of value annotations +// to write to the metadata for a single memop intrinsic. +static cl::opt<unsigned> MaxNumMemOPAnnotations( + "memop-max-annotations", cl::init(4), cl::Hidden, cl::ZeroOrMore, + cl::desc("Max number of preicise value annotations for a single memop" + "intrinsic")); + +// Command line option to control appending FunctionHash to the name of a COMDAT +// function. This is to avoid the hash mismatch caused by the preinliner. +static cl::opt<bool> DoComdatRenaming( + "do-comdat-renaming", cl::init(false), cl::Hidden, + cl::desc("Append function hash to the name of COMDAT function to avoid " + "function hash mismatch due to the preinliner")); + +// Command line option to enable/disable the warning about missing profile +// information. +static cl::opt<bool> + PGOWarnMissing("pgo-warn-missing-function", cl::init(false), cl::Hidden, + cl::desc("Use this option to turn on/off " + "warnings about missing profile data for " + "functions.")); + +// Command line option to enable/disable the warning about a hash mismatch in +// the profile data. +static cl::opt<bool> + NoPGOWarnMismatch("no-pgo-warn-mismatch", cl::init(false), cl::Hidden, + cl::desc("Use this option to turn off/on " + "warnings about profile cfg mismatch.")); + +// Command line option to enable/disable the warning about a hash mismatch in +// the profile data for Comdat functions, which often turns out to be false +// positive due to the pre-instrumentation inline. +static cl::opt<bool> + NoPGOWarnMismatchComdat("no-pgo-warn-mismatch-comdat", cl::init(true), + cl::Hidden, + cl::desc("The option is used to turn on/off " + "warnings about hash mismatch for comdat " + "functions.")); + +// Command line option to enable/disable select instruction instrumentation. +static cl::opt<bool> + PGOInstrSelect("pgo-instr-select", cl::init(true), cl::Hidden, + cl::desc("Use this option to turn on/off SELECT " + "instruction instrumentation. ")); + +// Command line option to turn on CFG dot or text dump of raw profile counts +static cl::opt<PGOViewCountsType> PGOViewRawCounts( + "pgo-view-raw-counts", cl::Hidden, + cl::desc("A boolean option to show CFG dag or text " + "with raw profile counts from " + "profile data. See also option " + "-pgo-view-counts. To limit graph " + "display to only one function, use " + "filtering option -view-bfi-func-name."), + cl::values(clEnumValN(PGOVCT_None, "none", "do not show."), + clEnumValN(PGOVCT_Graph, "graph", "show a graph."), + clEnumValN(PGOVCT_Text, "text", "show in text."))); + +// Command line option to enable/disable memop intrinsic call.size profiling. +static cl::opt<bool> + PGOInstrMemOP("pgo-instr-memop", cl::init(true), cl::Hidden, + cl::desc("Use this option to turn on/off " + "memory intrinsic size profiling.")); + +// Emit branch probability as optimization remarks. +static cl::opt<bool> + EmitBranchProbability("pgo-emit-branch-prob", cl::init(false), cl::Hidden, + cl::desc("When this option is on, the annotated " + "branch probability will be emitted as " + "optimization remarks: -{Rpass|" + "pass-remarks}=pgo-instrumentation")); + static cl::opt<bool> PGOInstrumentEntry( "pgo-instrument-entry", cl::init(false), cl::Hidden, cl::desc("Force to instrument function entry basicblock.")); @@ -280,394 +280,394 @@ static cl::opt<unsigned> PGOVerifyBFICutoff( cl::desc("Set the threshold for pgo-verify-bfi -- skip the counts whose " "profile count value is below.")); -// Command line option to turn on CFG dot dump after profile annotation. -// Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts -extern cl::opt<PGOViewCountsType> PGOViewCounts; - -// Command line option to specify the name of the function for CFG dump -// Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= -extern cl::opt<std::string> ViewBlockFreqFuncName; - +// Command line option to turn on CFG dot dump after profile annotation. +// Defined in Analysis/BlockFrequencyInfo.cpp: -pgo-view-counts +extern cl::opt<PGOViewCountsType> PGOViewCounts; + +// Command line option to specify the name of the function for CFG dump +// Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name= +extern cl::opt<std::string> ViewBlockFreqFuncName; + static cl::opt<bool> PGOOldCFGHashing("pgo-instr-old-cfg-hashing", cl::init(false), cl::Hidden, cl::desc("Use the old CFG function hashing")); -// Return a string describing the branch condition that can be -// used in static branch probability heuristics: -static std::string getBranchCondString(Instruction *TI) { - BranchInst *BI = dyn_cast<BranchInst>(TI); - if (!BI || !BI->isConditional()) - return std::string(); - - Value *Cond = BI->getCondition(); - ICmpInst *CI = dyn_cast<ICmpInst>(Cond); - if (!CI) - return std::string(); - - std::string result; - raw_string_ostream OS(result); - OS << CmpInst::getPredicateName(CI->getPredicate()) << "_"; - CI->getOperand(0)->getType()->print(OS, true); - - Value *RHS = CI->getOperand(1); - ConstantInt *CV = dyn_cast<ConstantInt>(RHS); - if (CV) { - if (CV->isZero()) - OS << "_Zero"; - else if (CV->isOne()) - OS << "_One"; - else if (CV->isMinusOne()) - OS << "_MinusOne"; - else - OS << "_Const"; - } - OS.flush(); - return result; -} - -static const char *ValueProfKindDescr[] = { -#define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr, -#include "llvm/ProfileData/InstrProfData.inc" -}; - -namespace { - -/// The select instruction visitor plays three roles specified -/// by the mode. In \c VM_counting mode, it simply counts the number of -/// select instructions. In \c VM_instrument mode, it inserts code to count -/// the number times TrueValue of select is taken. In \c VM_annotate mode, -/// it reads the profile data and annotate the select instruction with metadata. -enum VisitMode { VM_counting, VM_instrument, VM_annotate }; -class PGOUseFunc; - -/// Instruction Visitor class to visit select instructions. -struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> { - Function &F; - unsigned NSIs = 0; // Number of select instructions instrumented. - VisitMode Mode = VM_counting; // Visiting mode. - unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. - unsigned TotalNumCtrs = 0; // Total number of counters - GlobalVariable *FuncNameVar = nullptr; - uint64_t FuncHash = 0; - PGOUseFunc *UseFunc = nullptr; - - SelectInstVisitor(Function &Func) : F(Func) {} - - void countSelects(Function &Func) { - NSIs = 0; - Mode = VM_counting; - visit(Func); - } - - // Visit the IR stream and instrument all select instructions. \p - // Ind is a pointer to the counter index variable; \p TotalNC - // is the total number of counters; \p FNV is the pointer to the - // PGO function name var; \p FHash is the function hash. - void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC, - GlobalVariable *FNV, uint64_t FHash) { - Mode = VM_instrument; - CurCtrIdx = Ind; - TotalNumCtrs = TotalNC; - FuncHash = FHash; - FuncNameVar = FNV; - visit(Func); - } - - // Visit the IR stream and annotate all select instructions. - void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) { - Mode = VM_annotate; - UseFunc = UF; - CurCtrIdx = Ind; - visit(Func); - } - - void instrumentOneSelectInst(SelectInst &SI); - void annotateOneSelectInst(SelectInst &SI); - - // Visit \p SI instruction and perform tasks according to visit mode. - void visitSelectInst(SelectInst &SI); - - // Return the number of select instructions. This needs be called after - // countSelects(). - unsigned getNumOfSelectInsts() const { return NSIs; } -}; - - -class PGOInstrumentationGenLegacyPass : public ModulePass { -public: - static char ID; - - PGOInstrumentationGenLegacyPass(bool IsCS = false) - : ModulePass(ID), IsCS(IsCS) { - initializePGOInstrumentationGenLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { return "PGOInstrumentationGenPass"; } - -private: - // Is this is context-sensitive instrumentation. - bool IsCS; - bool runOnModule(Module &M) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } -}; - -class PGOInstrumentationUseLegacyPass : public ModulePass { -public: - static char ID; - - // Provide the profile filename as the parameter. - PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false) - : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) { - if (!PGOTestProfileFile.empty()) - ProfileFileName = PGOTestProfileFile; - initializePGOInstrumentationUseLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { return "PGOInstrumentationUsePass"; } - -private: - std::string ProfileFileName; - // Is this is context-sensitive instrumentation use. - bool IsCS; - - bool runOnModule(Module &M) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<ProfileSummaryInfoWrapperPass>(); - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } -}; - -class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass { -public: - static char ID; - StringRef getPassName() const override { - return "PGOInstrumentationGenCreateVarPass"; - } - PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "") - : ModulePass(ID), InstrProfileOutput(CSInstrName) { - initializePGOInstrumentationGenCreateVarLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - -private: - bool runOnModule(Module &M) override { - createProfileFileNameVar(M, InstrProfileOutput); +// Return a string describing the branch condition that can be +// used in static branch probability heuristics: +static std::string getBranchCondString(Instruction *TI) { + BranchInst *BI = dyn_cast<BranchInst>(TI); + if (!BI || !BI->isConditional()) + return std::string(); + + Value *Cond = BI->getCondition(); + ICmpInst *CI = dyn_cast<ICmpInst>(Cond); + if (!CI) + return std::string(); + + std::string result; + raw_string_ostream OS(result); + OS << CmpInst::getPredicateName(CI->getPredicate()) << "_"; + CI->getOperand(0)->getType()->print(OS, true); + + Value *RHS = CI->getOperand(1); + ConstantInt *CV = dyn_cast<ConstantInt>(RHS); + if (CV) { + if (CV->isZero()) + OS << "_Zero"; + else if (CV->isOne()) + OS << "_One"; + else if (CV->isMinusOne()) + OS << "_MinusOne"; + else + OS << "_Const"; + } + OS.flush(); + return result; +} + +static const char *ValueProfKindDescr[] = { +#define VALUE_PROF_KIND(Enumerator, Value, Descr) Descr, +#include "llvm/ProfileData/InstrProfData.inc" +}; + +namespace { + +/// The select instruction visitor plays three roles specified +/// by the mode. In \c VM_counting mode, it simply counts the number of +/// select instructions. In \c VM_instrument mode, it inserts code to count +/// the number times TrueValue of select is taken. In \c VM_annotate mode, +/// it reads the profile data and annotate the select instruction with metadata. +enum VisitMode { VM_counting, VM_instrument, VM_annotate }; +class PGOUseFunc; + +/// Instruction Visitor class to visit select instructions. +struct SelectInstVisitor : public InstVisitor<SelectInstVisitor> { + Function &F; + unsigned NSIs = 0; // Number of select instructions instrumented. + VisitMode Mode = VM_counting; // Visiting mode. + unsigned *CurCtrIdx = nullptr; // Pointer to current counter index. + unsigned TotalNumCtrs = 0; // Total number of counters + GlobalVariable *FuncNameVar = nullptr; + uint64_t FuncHash = 0; + PGOUseFunc *UseFunc = nullptr; + + SelectInstVisitor(Function &Func) : F(Func) {} + + void countSelects(Function &Func) { + NSIs = 0; + Mode = VM_counting; + visit(Func); + } + + // Visit the IR stream and instrument all select instructions. \p + // Ind is a pointer to the counter index variable; \p TotalNC + // is the total number of counters; \p FNV is the pointer to the + // PGO function name var; \p FHash is the function hash. + void instrumentSelects(Function &Func, unsigned *Ind, unsigned TotalNC, + GlobalVariable *FNV, uint64_t FHash) { + Mode = VM_instrument; + CurCtrIdx = Ind; + TotalNumCtrs = TotalNC; + FuncHash = FHash; + FuncNameVar = FNV; + visit(Func); + } + + // Visit the IR stream and annotate all select instructions. + void annotateSelects(Function &Func, PGOUseFunc *UF, unsigned *Ind) { + Mode = VM_annotate; + UseFunc = UF; + CurCtrIdx = Ind; + visit(Func); + } + + void instrumentOneSelectInst(SelectInst &SI); + void annotateOneSelectInst(SelectInst &SI); + + // Visit \p SI instruction and perform tasks according to visit mode. + void visitSelectInst(SelectInst &SI); + + // Return the number of select instructions. This needs be called after + // countSelects(). + unsigned getNumOfSelectInsts() const { return NSIs; } +}; + + +class PGOInstrumentationGenLegacyPass : public ModulePass { +public: + static char ID; + + PGOInstrumentationGenLegacyPass(bool IsCS = false) + : ModulePass(ID), IsCS(IsCS) { + initializePGOInstrumentationGenLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "PGOInstrumentationGenPass"; } + +private: + // Is this is context-sensitive instrumentation. + bool IsCS; + bool runOnModule(Module &M) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } +}; + +class PGOInstrumentationUseLegacyPass : public ModulePass { +public: + static char ID; + + // Provide the profile filename as the parameter. + PGOInstrumentationUseLegacyPass(std::string Filename = "", bool IsCS = false) + : ModulePass(ID), ProfileFileName(std::move(Filename)), IsCS(IsCS) { + if (!PGOTestProfileFile.empty()) + ProfileFileName = PGOTestProfileFile; + initializePGOInstrumentationUseLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "PGOInstrumentationUsePass"; } + +private: + std::string ProfileFileName; + // Is this is context-sensitive instrumentation use. + bool IsCS; + + bool runOnModule(Module &M) override; + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<ProfileSummaryInfoWrapperPass>(); + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } +}; + +class PGOInstrumentationGenCreateVarLegacyPass : public ModulePass { +public: + static char ID; + StringRef getPassName() const override { + return "PGOInstrumentationGenCreateVarPass"; + } + PGOInstrumentationGenCreateVarLegacyPass(std::string CSInstrName = "") + : ModulePass(ID), InstrProfileOutput(CSInstrName) { + initializePGOInstrumentationGenCreateVarLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + +private: + bool runOnModule(Module &M) override { + createProfileFileNameVar(M, InstrProfileOutput); createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry); - return false; - } - std::string InstrProfileOutput; -}; - -} // end anonymous namespace - -char PGOInstrumentationGenLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", - "PGO instrumentation.", false, false) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", - "PGO instrumentation.", false, false) - -ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) { - return new PGOInstrumentationGenLegacyPass(IsCS); -} - -char PGOInstrumentationUseLegacyPass::ID = 0; - -INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", - "Read PGO instrumentation profile.", false, false) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) -INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", - "Read PGO instrumentation profile.", false, false) - -ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename, - bool IsCS) { - return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS); -} - -char PGOInstrumentationGenCreateVarLegacyPass::ID = 0; - -INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass, - "pgo-instr-gen-create-var", - "Create PGO instrumentation version variable for CSPGO.", false, - false) - -ModulePass * -llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) { - return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName)); -} - -namespace { - -/// An MST based instrumentation for PGO -/// -/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO -/// in the function level. -struct PGOEdge { - // This class implements the CFG edges. Note the CFG can be a multi-graph. - // So there might be multiple edges with same SrcBB and DestBB. - const BasicBlock *SrcBB; - const BasicBlock *DestBB; - uint64_t Weight; - bool InMST = false; - bool Removed = false; - bool IsCritical = false; - - PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) - : SrcBB(Src), DestBB(Dest), Weight(W) {} - - // Return the information string of an edge. - const std::string infoString() const { - return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + - (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); - } -}; - -// This class stores the auxiliary information for each BB. -struct BBInfo { - BBInfo *Group; - uint32_t Index; - uint32_t Rank = 0; - - BBInfo(unsigned IX) : Group(this), Index(IX) {} - - // Return the information string of this object. - const std::string infoString() const { - return (Twine("Index=") + Twine(Index)).str(); - } - - // Empty function -- only applicable to UseBBInfo. - void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} - - // Empty function -- only applicable to UseBBInfo. - void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} -}; - -// This class implements the CFG edges. Note the CFG can be a multi-graph. -template <class Edge, class BBInfo> class FuncPGOInstrumentation { -private: - Function &F; - - // Is this is context-sensitive instrumentation. - bool IsCS; - - // A map that stores the Comdat group in function F. - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers; - - ValueProfileCollector VPC; - - void computeCFGHash(); - void renameComdatFunction(); - -public: - std::vector<std::vector<VPCandidateInfo>> ValueSites; - SelectInstVisitor SIVisitor; - std::string FuncName; - GlobalVariable *FuncNameVar; - - // CFG hash value for this function. - uint64_t FunctionHash = 0; - - // The Minimum Spanning Tree of function CFG. - CFGMST<Edge, BBInfo> MST; - - // Collect all the BBs that will be instrumented, and store them in - // InstrumentBBs. - void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs); - - // Give an edge, find the BB that will be instrumented. - // Return nullptr if there is no BB to be instrumented. - BasicBlock *getInstrBB(Edge *E); - - // Return the auxiliary BB information. - BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } - - // Return the auxiliary BB information if available. - BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } - - // Dump edges and BB information. - void dumpInfo(std::string Str = "") const { - MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + - Twine(FunctionHash) + "\t" + Str); - } - - FuncPGOInstrumentation( - Function &Func, TargetLibraryInfo &TLI, - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, - bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, + return false; + } + std::string InstrProfileOutput; +}; + +} // end anonymous namespace + +char PGOInstrumentationGenLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", + "PGO instrumentation.", false, false) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(PGOInstrumentationGenLegacyPass, "pgo-instr-gen", + "PGO instrumentation.", false, false) + +ModulePass *llvm::createPGOInstrumentationGenLegacyPass(bool IsCS) { + return new PGOInstrumentationGenLegacyPass(IsCS); +} + +char PGOInstrumentationUseLegacyPass::ID = 0; + +INITIALIZE_PASS_BEGIN(PGOInstrumentationUseLegacyPass, "pgo-instr-use", + "Read PGO instrumentation profile.", false, false) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(BranchProbabilityInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) +INITIALIZE_PASS_END(PGOInstrumentationUseLegacyPass, "pgo-instr-use", + "Read PGO instrumentation profile.", false, false) + +ModulePass *llvm::createPGOInstrumentationUseLegacyPass(StringRef Filename, + bool IsCS) { + return new PGOInstrumentationUseLegacyPass(Filename.str(), IsCS); +} + +char PGOInstrumentationGenCreateVarLegacyPass::ID = 0; + +INITIALIZE_PASS(PGOInstrumentationGenCreateVarLegacyPass, + "pgo-instr-gen-create-var", + "Create PGO instrumentation version variable for CSPGO.", false, + false) + +ModulePass * +llvm::createPGOInstrumentationGenCreateVarLegacyPass(StringRef CSInstrName) { + return new PGOInstrumentationGenCreateVarLegacyPass(std::string(CSInstrName)); +} + +namespace { + +/// An MST based instrumentation for PGO +/// +/// Implements a Minimum Spanning Tree (MST) based instrumentation for PGO +/// in the function level. +struct PGOEdge { + // This class implements the CFG edges. Note the CFG can be a multi-graph. + // So there might be multiple edges with same SrcBB and DestBB. + const BasicBlock *SrcBB; + const BasicBlock *DestBB; + uint64_t Weight; + bool InMST = false; + bool Removed = false; + bool IsCritical = false; + + PGOEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) + : SrcBB(Src), DestBB(Dest), Weight(W) {} + + // Return the information string of an edge. + const std::string infoString() const { + return (Twine(Removed ? "-" : " ") + (InMST ? " " : "*") + + (IsCritical ? "c" : " ") + " W=" + Twine(Weight)).str(); + } +}; + +// This class stores the auxiliary information for each BB. +struct BBInfo { + BBInfo *Group; + uint32_t Index; + uint32_t Rank = 0; + + BBInfo(unsigned IX) : Group(this), Index(IX) {} + + // Return the information string of this object. + const std::string infoString() const { + return (Twine("Index=") + Twine(Index)).str(); + } + + // Empty function -- only applicable to UseBBInfo. + void addOutEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} + + // Empty function -- only applicable to UseBBInfo. + void addInEdge(PGOEdge *E LLVM_ATTRIBUTE_UNUSED) {} +}; + +// This class implements the CFG edges. Note the CFG can be a multi-graph. +template <class Edge, class BBInfo> class FuncPGOInstrumentation { +private: + Function &F; + + // Is this is context-sensitive instrumentation. + bool IsCS; + + // A map that stores the Comdat group in function F. + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers; + + ValueProfileCollector VPC; + + void computeCFGHash(); + void renameComdatFunction(); + +public: + std::vector<std::vector<VPCandidateInfo>> ValueSites; + SelectInstVisitor SIVisitor; + std::string FuncName; + GlobalVariable *FuncNameVar; + + // CFG hash value for this function. + uint64_t FunctionHash = 0; + + // The Minimum Spanning Tree of function CFG. + CFGMST<Edge, BBInfo> MST; + + // Collect all the BBs that will be instrumented, and store them in + // InstrumentBBs. + void getInstrumentBBs(std::vector<BasicBlock *> &InstrumentBBs); + + // Give an edge, find the BB that will be instrumented. + // Return nullptr if there is no BB to be instrumented. + BasicBlock *getInstrBB(Edge *E); + + // Return the auxiliary BB information. + BBInfo &getBBInfo(const BasicBlock *BB) const { return MST.getBBInfo(BB); } + + // Return the auxiliary BB information if available. + BBInfo *findBBInfo(const BasicBlock *BB) const { return MST.findBBInfo(BB); } + + // Dump edges and BB information. + void dumpInfo(std::string Str = "") const { + MST.dumpEdges(dbgs(), Twine("Dump Function ") + FuncName + " Hash: " + + Twine(FunctionHash) + "\t" + Str); + } + + FuncPGOInstrumentation( + Function &Func, TargetLibraryInfo &TLI, + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, + bool CreateGlobalVar = false, BranchProbabilityInfo *BPI = nullptr, BlockFrequencyInfo *BFI = nullptr, bool IsCS = false, bool InstrumentFuncEntry = true) - : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI), + : F(Func), IsCS(IsCS), ComdatMembers(ComdatMembers), VPC(Func, TLI), ValueSites(IPVK_Last + 1), SIVisitor(Func), MST(F, InstrumentFuncEntry, BPI, BFI) { - // This should be done before CFG hash computation. - SIVisitor.countSelects(Func); - ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize); - if (!IsCS) { - NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); - NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); - NumOfPGOBB += MST.BBInfos.size(); - ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget); - } else { - NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); - NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); - NumOfCSPGOBB += MST.BBInfos.size(); - } - - FuncName = getPGOFuncName(F); - computeCFGHash(); - if (!ComdatMembers.empty()) - renameComdatFunction(); - LLVM_DEBUG(dumpInfo("after CFGMST")); - - for (auto &E : MST.AllEdges) { - if (E->Removed) - continue; - IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++; - if (!E->InMST) - IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++; - } - - if (CreateGlobalVar) - FuncNameVar = createPGOFuncNameVar(F, FuncName); - } -}; - -} // end anonymous namespace - -// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index + // This should be done before CFG hash computation. + SIVisitor.countSelects(Func); + ValueSites[IPVK_MemOPSize] = VPC.get(IPVK_MemOPSize); + if (!IsCS) { + NumOfPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); + NumOfPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); + NumOfPGOBB += MST.BBInfos.size(); + ValueSites[IPVK_IndirectCallTarget] = VPC.get(IPVK_IndirectCallTarget); + } else { + NumOfCSPGOSelectInsts += SIVisitor.getNumOfSelectInsts(); + NumOfCSPGOMemIntrinsics += ValueSites[IPVK_MemOPSize].size(); + NumOfCSPGOBB += MST.BBInfos.size(); + } + + FuncName = getPGOFuncName(F); + computeCFGHash(); + if (!ComdatMembers.empty()) + renameComdatFunction(); + LLVM_DEBUG(dumpInfo("after CFGMST")); + + for (auto &E : MST.AllEdges) { + if (E->Removed) + continue; + IsCS ? NumOfCSPGOEdge++ : NumOfPGOEdge++; + if (!E->InMST) + IsCS ? NumOfCSPGOInstrument++ : NumOfPGOInstrument++; + } + + if (CreateGlobalVar) + FuncNameVar = createPGOFuncNameVar(F, FuncName); + } +}; + +} // end anonymous namespace + +// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index // value of each BB in the CFG. The higher 32 bits are the CRC32 of the numbers // of selects, indirect calls, mem ops and edges. -template <class Edge, class BBInfo> -void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { - std::vector<uint8_t> Indexes; - JamCRC JC; - for (auto &BB : F) { - const Instruction *TI = BB.getTerminator(); - for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { - BasicBlock *Succ = TI->getSuccessor(I); - auto BI = findBBInfo(Succ); - if (BI == nullptr) - continue; - uint32_t Index = BI->Index; - for (int J = 0; J < 4; J++) - Indexes.push_back((uint8_t)(Index >> (J * 8))); - } - } - JC.update(Indexes); - +template <class Edge, class BBInfo> +void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { + std::vector<uint8_t> Indexes; + JamCRC JC; + for (auto &BB : F) { + const Instruction *TI = BB.getTerminator(); + for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) { + BasicBlock *Succ = TI->getSuccessor(I); + auto BI = findBBInfo(Succ); + if (BI == nullptr) + continue; + uint32_t Index = BI->Index; + for (int J = 0; J < 4; J++) + Indexes.push_back((uint8_t)(Index >> (J * 8))); + } + } + JC.update(Indexes); + JamCRC JCH; if (PGOOldCFGHashing) { // Hash format for context sensitive profile. Reserve 4 bits for other @@ -693,956 +693,956 @@ void FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash() { FunctionHash = (((uint64_t)JCH.getCRC()) << 28) + JC.getCRC(); } - // Reserve bit 60-63 for other information purpose. - FunctionHash &= 0x0FFFFFFFFFFFFFFF; - if (IsCS) - NamedInstrProfRecord::setCSFlagInHash(FunctionHash); - LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" - << " CRC = " << JC.getCRC() - << ", Selects = " << SIVisitor.getNumOfSelectInsts() - << ", Edges = " << MST.AllEdges.size() << ", ICSites = " + // Reserve bit 60-63 for other information purpose. + FunctionHash &= 0x0FFFFFFFFFFFFFFF; + if (IsCS) + NamedInstrProfRecord::setCSFlagInHash(FunctionHash); + LLVM_DEBUG(dbgs() << "Function Hash Computation for " << F.getName() << ":\n" + << " CRC = " << JC.getCRC() + << ", Selects = " << SIVisitor.getNumOfSelectInsts() + << ", Edges = " << MST.AllEdges.size() << ", ICSites = " << ValueSites[IPVK_IndirectCallTarget].size()); if (!PGOOldCFGHashing) { LLVM_DEBUG(dbgs() << ", Memops = " << ValueSites[IPVK_MemOPSize].size() << ", High32 CRC = " << JCH.getCRC()); } LLVM_DEBUG(dbgs() << ", Hash = " << FunctionHash << "\n";); -} - -// Check if we can safely rename this Comdat function. -static bool canRenameComdat( - Function &F, - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { - if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) - return false; - - // FIXME: Current only handle those Comdat groups that only containing one +} + +// Check if we can safely rename this Comdat function. +static bool canRenameComdat( + Function &F, + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { + if (!DoComdatRenaming || !canRenameComdatFunc(F, true)) + return false; + + // FIXME: Current only handle those Comdat groups that only containing one // function. - // (1) For a Comdat group containing multiple functions, we need to have a - // unique postfix based on the hashes for each function. There is a - // non-trivial code refactoring to do this efficiently. - // (2) Variables can not be renamed, so we can not rename Comdat function in a - // group including global vars. - Comdat *C = F.getComdat(); - for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { + // (1) For a Comdat group containing multiple functions, we need to have a + // unique postfix based on the hashes for each function. There is a + // non-trivial code refactoring to do this efficiently. + // (2) Variables can not be renamed, so we can not rename Comdat function in a + // group including global vars. + Comdat *C = F.getComdat(); + for (auto &&CM : make_range(ComdatMembers.equal_range(C))) { assert(!isa<GlobalAlias>(CM.second)); - Function *FM = dyn_cast<Function>(CM.second); - if (FM != &F) - return false; - } - return true; -} - -// Append the CFGHash to the Comdat function name. -template <class Edge, class BBInfo> -void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() { - if (!canRenameComdat(F, ComdatMembers)) - return; - std::string OrigName = F.getName().str(); - std::string NewFuncName = - Twine(F.getName() + "." + Twine(FunctionHash)).str(); - F.setName(Twine(NewFuncName)); - GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); - FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); - Comdat *NewComdat; - Module *M = F.getParent(); - // For AvailableExternallyLinkage functions, change the linkage to - // LinkOnceODR and put them into comdat. This is because after renaming, there - // is no backup external copy available for the function. - if (!F.hasComdat()) { - assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); - NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); - F.setLinkage(GlobalValue::LinkOnceODRLinkage); - F.setComdat(NewComdat); - return; - } - - // This function belongs to a single function Comdat group. - Comdat *OrigComdat = F.getComdat(); - std::string NewComdatName = - Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); - NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); - NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); - - for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { - // Must be a function. + Function *FM = dyn_cast<Function>(CM.second); + if (FM != &F) + return false; + } + return true; +} + +// Append the CFGHash to the Comdat function name. +template <class Edge, class BBInfo> +void FuncPGOInstrumentation<Edge, BBInfo>::renameComdatFunction() { + if (!canRenameComdat(F, ComdatMembers)) + return; + std::string OrigName = F.getName().str(); + std::string NewFuncName = + Twine(F.getName() + "." + Twine(FunctionHash)).str(); + F.setName(Twine(NewFuncName)); + GlobalAlias::create(GlobalValue::WeakAnyLinkage, OrigName, &F); + FuncName = Twine(FuncName + "." + Twine(FunctionHash)).str(); + Comdat *NewComdat; + Module *M = F.getParent(); + // For AvailableExternallyLinkage functions, change the linkage to + // LinkOnceODR and put them into comdat. This is because after renaming, there + // is no backup external copy available for the function. + if (!F.hasComdat()) { + assert(F.getLinkage() == GlobalValue::AvailableExternallyLinkage); + NewComdat = M->getOrInsertComdat(StringRef(NewFuncName)); + F.setLinkage(GlobalValue::LinkOnceODRLinkage); + F.setComdat(NewComdat); + return; + } + + // This function belongs to a single function Comdat group. + Comdat *OrigComdat = F.getComdat(); + std::string NewComdatName = + Twine(OrigComdat->getName() + "." + Twine(FunctionHash)).str(); + NewComdat = M->getOrInsertComdat(StringRef(NewComdatName)); + NewComdat->setSelectionKind(OrigComdat->getSelectionKind()); + + for (auto &&CM : make_range(ComdatMembers.equal_range(OrigComdat))) { + // Must be a function. cast<Function>(CM.second)->setComdat(NewComdat); - } -} - -// Collect all the BBs that will be instruments and return them in -// InstrumentBBs and setup InEdges/OutEdge for UseBBInfo. -template <class Edge, class BBInfo> -void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs( - std::vector<BasicBlock *> &InstrumentBBs) { - // Use a worklist as we will update the vector during the iteration. - std::vector<Edge *> EdgeList; - EdgeList.reserve(MST.AllEdges.size()); - for (auto &E : MST.AllEdges) - EdgeList.push_back(E.get()); - - for (auto &E : EdgeList) { - BasicBlock *InstrBB = getInstrBB(E); - if (InstrBB) - InstrumentBBs.push_back(InstrBB); - } - - // Set up InEdges/OutEdges for all BBs. - for (auto &E : MST.AllEdges) { - if (E->Removed) - continue; - const BasicBlock *SrcBB = E->SrcBB; - const BasicBlock *DestBB = E->DestBB; - BBInfo &SrcInfo = getBBInfo(SrcBB); - BBInfo &DestInfo = getBBInfo(DestBB); - SrcInfo.addOutEdge(E.get()); - DestInfo.addInEdge(E.get()); - } -} - -// Given a CFG E to be instrumented, find which BB to place the instrumented -// code. The function will split the critical edge if necessary. -template <class Edge, class BBInfo> -BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { - if (E->InMST || E->Removed) - return nullptr; - - BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); - BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); - // For a fake edge, instrument the real BB. - if (SrcBB == nullptr) - return DestBB; - if (DestBB == nullptr) - return SrcBB; - - auto canInstrument = [](BasicBlock *BB) -> BasicBlock * { - // There are basic blocks (such as catchswitch) cannot be instrumented. - // If the returned first insertion point is the end of BB, skip this BB. - if (BB->getFirstInsertionPt() == BB->end()) - return nullptr; - return BB; - }; - - // Instrument the SrcBB if it has a single successor, - // otherwise, the DestBB if this is not a critical edge. - Instruction *TI = SrcBB->getTerminator(); - if (TI->getNumSuccessors() <= 1) - return canInstrument(SrcBB); - if (!E->IsCritical) - return canInstrument(DestBB); - + } +} + +// Collect all the BBs that will be instruments and return them in +// InstrumentBBs and setup InEdges/OutEdge for UseBBInfo. +template <class Edge, class BBInfo> +void FuncPGOInstrumentation<Edge, BBInfo>::getInstrumentBBs( + std::vector<BasicBlock *> &InstrumentBBs) { + // Use a worklist as we will update the vector during the iteration. + std::vector<Edge *> EdgeList; + EdgeList.reserve(MST.AllEdges.size()); + for (auto &E : MST.AllEdges) + EdgeList.push_back(E.get()); + + for (auto &E : EdgeList) { + BasicBlock *InstrBB = getInstrBB(E); + if (InstrBB) + InstrumentBBs.push_back(InstrBB); + } + + // Set up InEdges/OutEdges for all BBs. + for (auto &E : MST.AllEdges) { + if (E->Removed) + continue; + const BasicBlock *SrcBB = E->SrcBB; + const BasicBlock *DestBB = E->DestBB; + BBInfo &SrcInfo = getBBInfo(SrcBB); + BBInfo &DestInfo = getBBInfo(DestBB); + SrcInfo.addOutEdge(E.get()); + DestInfo.addInEdge(E.get()); + } +} + +// Given a CFG E to be instrumented, find which BB to place the instrumented +// code. The function will split the critical edge if necessary. +template <class Edge, class BBInfo> +BasicBlock *FuncPGOInstrumentation<Edge, BBInfo>::getInstrBB(Edge *E) { + if (E->InMST || E->Removed) + return nullptr; + + BasicBlock *SrcBB = const_cast<BasicBlock *>(E->SrcBB); + BasicBlock *DestBB = const_cast<BasicBlock *>(E->DestBB); + // For a fake edge, instrument the real BB. + if (SrcBB == nullptr) + return DestBB; + if (DestBB == nullptr) + return SrcBB; + + auto canInstrument = [](BasicBlock *BB) -> BasicBlock * { + // There are basic blocks (such as catchswitch) cannot be instrumented. + // If the returned first insertion point is the end of BB, skip this BB. + if (BB->getFirstInsertionPt() == BB->end()) + return nullptr; + return BB; + }; + + // Instrument the SrcBB if it has a single successor, + // otherwise, the DestBB if this is not a critical edge. + Instruction *TI = SrcBB->getTerminator(); + if (TI->getNumSuccessors() <= 1) + return canInstrument(SrcBB); + if (!E->IsCritical) + return canInstrument(DestBB); + // Some IndirectBr critical edges cannot be split by the previous // SplitIndirectBrCriticalEdges call. Bail out. - unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); + unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); BasicBlock *InstrBB = isa<IndirectBrInst>(TI) ? nullptr : SplitCriticalEdge(TI, SuccNum); - if (!InstrBB) { - LLVM_DEBUG( - dbgs() << "Fail to split critical edge: not instrument this edge.\n"); - return nullptr; - } - // For a critical edge, we have to split. Instrument the newly - // created BB. - IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++; - LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index - << " --> " << getBBInfo(DestBB).Index << "\n"); - // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB. - MST.addEdge(SrcBB, InstrBB, 0); - // Second one: Add new edge of InstrBB->DestBB. - Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0); - NewEdge1.InMST = true; - E->Removed = true; - - return canInstrument(InstrBB); -} - -// When generating value profiling calls on Windows routines that make use of -// handler funclets for exception processing an operand bundle needs to attached -// to the called function. This routine will set \p OpBundles to contain the -// funclet information, if any is needed, that should be placed on the generated -// value profiling call for the value profile candidate call. -static void -populateEHOperandBundle(VPCandidateInfo &Cand, - DenseMap<BasicBlock *, ColorVector> &BlockColors, - SmallVectorImpl<OperandBundleDef> &OpBundles) { - auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst); - if (OrigCall && !isa<IntrinsicInst>(OrigCall)) { - // The instrumentation call should belong to the same funclet as a - // non-intrinsic call, so just copy the operand bundle, if any exists. - Optional<OperandBundleUse> ParentFunclet = - OrigCall->getOperandBundle(LLVMContext::OB_funclet); - if (ParentFunclet) - OpBundles.emplace_back(OperandBundleDef(*ParentFunclet)); - } else { - // Intrinsics or other instructions do not get funclet information from the - // front-end. Need to use the BlockColors that was computed by the routine - // colorEHFunclets to determine whether a funclet is needed. - if (!BlockColors.empty()) { - const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second; - assert(CV.size() == 1 && "non-unique color for block!"); - Instruction *EHPad = CV.front()->getFirstNonPHI(); - if (EHPad->isEHPad()) - OpBundles.emplace_back("funclet", EHPad); - } - } -} - -// Visit all edge and instrument the edges not in MST, and do value profiling. -// Critical edges will be split. -static void instrumentOneFunc( - Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI, - BlockFrequencyInfo *BFI, - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, - bool IsCS) { - // Split indirectbr critical edges here before computing the MST rather than - // later in getInstrBB() to avoid invalidating it. - SplitIndirectBrCriticalEdges(F, BPI, BFI); - + if (!InstrBB) { + LLVM_DEBUG( + dbgs() << "Fail to split critical edge: not instrument this edge.\n"); + return nullptr; + } + // For a critical edge, we have to split. Instrument the newly + // created BB. + IsCS ? NumOfCSPGOSplit++ : NumOfPGOSplit++; + LLVM_DEBUG(dbgs() << "Split critical edge: " << getBBInfo(SrcBB).Index + << " --> " << getBBInfo(DestBB).Index << "\n"); + // Need to add two new edges. First one: Add new edge of SrcBB->InstrBB. + MST.addEdge(SrcBB, InstrBB, 0); + // Second one: Add new edge of InstrBB->DestBB. + Edge &NewEdge1 = MST.addEdge(InstrBB, DestBB, 0); + NewEdge1.InMST = true; + E->Removed = true; + + return canInstrument(InstrBB); +} + +// When generating value profiling calls on Windows routines that make use of +// handler funclets for exception processing an operand bundle needs to attached +// to the called function. This routine will set \p OpBundles to contain the +// funclet information, if any is needed, that should be placed on the generated +// value profiling call for the value profile candidate call. +static void +populateEHOperandBundle(VPCandidateInfo &Cand, + DenseMap<BasicBlock *, ColorVector> &BlockColors, + SmallVectorImpl<OperandBundleDef> &OpBundles) { + auto *OrigCall = dyn_cast<CallBase>(Cand.AnnotatedInst); + if (OrigCall && !isa<IntrinsicInst>(OrigCall)) { + // The instrumentation call should belong to the same funclet as a + // non-intrinsic call, so just copy the operand bundle, if any exists. + Optional<OperandBundleUse> ParentFunclet = + OrigCall->getOperandBundle(LLVMContext::OB_funclet); + if (ParentFunclet) + OpBundles.emplace_back(OperandBundleDef(*ParentFunclet)); + } else { + // Intrinsics or other instructions do not get funclet information from the + // front-end. Need to use the BlockColors that was computed by the routine + // colorEHFunclets to determine whether a funclet is needed. + if (!BlockColors.empty()) { + const ColorVector &CV = BlockColors.find(OrigCall->getParent())->second; + assert(CV.size() == 1 && "non-unique color for block!"); + Instruction *EHPad = CV.front()->getFirstNonPHI(); + if (EHPad->isEHPad()) + OpBundles.emplace_back("funclet", EHPad); + } + } +} + +// Visit all edge and instrument the edges not in MST, and do value profiling. +// Critical edges will be split. +static void instrumentOneFunc( + Function &F, Module *M, TargetLibraryInfo &TLI, BranchProbabilityInfo *BPI, + BlockFrequencyInfo *BFI, + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, + bool IsCS) { + // Split indirectbr critical edges here before computing the MST rather than + // later in getInstrBB() to avoid invalidating it. + SplitIndirectBrCriticalEdges(F, BPI, BFI); + FuncPGOInstrumentation<PGOEdge, BBInfo> FuncInfo( F, TLI, ComdatMembers, true, BPI, BFI, IsCS, PGOInstrumentEntry); - std::vector<BasicBlock *> InstrumentBBs; - FuncInfo.getInstrumentBBs(InstrumentBBs); - unsigned NumCounters = - InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); - - uint32_t I = 0; - Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); - for (auto *InstrBB : InstrumentBBs) { - IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); - assert(Builder.GetInsertPoint() != InstrBB->end() && - "Cannot get the Instrumentation point"); - Builder.CreateCall( - Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), - {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), - Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), - Builder.getInt32(I++)}); - } - - // Now instrument select instructions: - FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar, - FuncInfo.FunctionHash); - assert(I == NumCounters); - - if (DisableValueProfiling) - return; - - NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size(); - - // Intrinsic function calls do not have funclet operand bundles needed for - // Windows exception handling attached to them. However, if value profiling is - // inserted for one of these calls, then a funclet value will need to be set - // on the instrumentation call based on the funclet coloring. - DenseMap<BasicBlock *, ColorVector> BlockColors; - if (F.hasPersonalityFn() && - isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) - BlockColors = colorEHFunclets(F); - - // For each VP Kind, walk the VP candidates and instrument each one. - for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { - unsigned SiteIndex = 0; - if (Kind == IPVK_MemOPSize && !PGOInstrMemOP) - continue; - - for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) { - LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind] - << " site: CallSite Index = " << SiteIndex << "\n"); - - IRBuilder<> Builder(Cand.InsertPt); - assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() && - "Cannot get the Instrumentation point"); - - Value *ToProfile = nullptr; - if (Cand.V->getType()->isIntegerTy()) - ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty()); - else if (Cand.V->getType()->isPointerTy()) - ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty()); - assert(ToProfile && "value profiling Value is of unexpected type"); - - SmallVector<OperandBundleDef, 1> OpBundles; - populateEHOperandBundle(Cand, BlockColors, OpBundles); - Builder.CreateCall( - Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), - {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), - Builder.getInt64(FuncInfo.FunctionHash), ToProfile, - Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)}, - OpBundles); - } - } // IPVK_First <= Kind <= IPVK_Last -} - -namespace { - -// This class represents a CFG edge in profile use compilation. -struct PGOUseEdge : public PGOEdge { - bool CountValid = false; - uint64_t CountValue = 0; - - PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) - : PGOEdge(Src, Dest, W) {} - - // Set edge count value - void setEdgeCount(uint64_t Value) { - CountValue = Value; - CountValid = true; - } - - // Return the information string for this object. - const std::string infoString() const { - if (!CountValid) - return PGOEdge::infoString(); - return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) - .str(); - } -}; - -using DirectEdges = SmallVector<PGOUseEdge *, 2>; - -// This class stores the auxiliary information for each BB. -struct UseBBInfo : public BBInfo { - uint64_t CountValue = 0; - bool CountValid; - int32_t UnknownCountInEdge = 0; - int32_t UnknownCountOutEdge = 0; - DirectEdges InEdges; - DirectEdges OutEdges; - - UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {} - - UseBBInfo(unsigned IX, uint64_t C) - : BBInfo(IX), CountValue(C), CountValid(true) {} - - // Set the profile count value for this BB. - void setBBInfoCount(uint64_t Value) { - CountValue = Value; - CountValid = true; - } - - // Return the information string of this object. - const std::string infoString() const { - if (!CountValid) - return BBInfo::infoString(); - return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); - } - - // Add an OutEdge and update the edge count. - void addOutEdge(PGOUseEdge *E) { - OutEdges.push_back(E); - UnknownCountOutEdge++; - } - - // Add an InEdge and update the edge count. - void addInEdge(PGOUseEdge *E) { - InEdges.push_back(E); - UnknownCountInEdge++; - } -}; - -} // end anonymous namespace - -// Sum up the count values for all the edges. -static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { - uint64_t Total = 0; - for (auto &E : Edges) { - if (E->Removed) - continue; - Total += E->CountValue; - } - return Total; -} - -namespace { - -class PGOUseFunc { -public: - PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI, - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, - BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin, + std::vector<BasicBlock *> InstrumentBBs; + FuncInfo.getInstrumentBBs(InstrumentBBs); + unsigned NumCounters = + InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); + + uint32_t I = 0; + Type *I8PtrTy = Type::getInt8PtrTy(M->getContext()); + for (auto *InstrBB : InstrumentBBs) { + IRBuilder<> Builder(InstrBB, InstrBB->getFirstInsertionPt()); + assert(Builder.GetInsertPoint() != InstrBB->end() && + "Cannot get the Instrumentation point"); + Builder.CreateCall( + Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment), + {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), + Builder.getInt64(FuncInfo.FunctionHash), Builder.getInt32(NumCounters), + Builder.getInt32(I++)}); + } + + // Now instrument select instructions: + FuncInfo.SIVisitor.instrumentSelects(F, &I, NumCounters, FuncInfo.FuncNameVar, + FuncInfo.FunctionHash); + assert(I == NumCounters); + + if (DisableValueProfiling) + return; + + NumOfPGOICall += FuncInfo.ValueSites[IPVK_IndirectCallTarget].size(); + + // Intrinsic function calls do not have funclet operand bundles needed for + // Windows exception handling attached to them. However, if value profiling is + // inserted for one of these calls, then a funclet value will need to be set + // on the instrumentation call based on the funclet coloring. + DenseMap<BasicBlock *, ColorVector> BlockColors; + if (F.hasPersonalityFn() && + isFuncletEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) + BlockColors = colorEHFunclets(F); + + // For each VP Kind, walk the VP candidates and instrument each one. + for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) { + unsigned SiteIndex = 0; + if (Kind == IPVK_MemOPSize && !PGOInstrMemOP) + continue; + + for (VPCandidateInfo Cand : FuncInfo.ValueSites[Kind]) { + LLVM_DEBUG(dbgs() << "Instrument one VP " << ValueProfKindDescr[Kind] + << " site: CallSite Index = " << SiteIndex << "\n"); + + IRBuilder<> Builder(Cand.InsertPt); + assert(Builder.GetInsertPoint() != Cand.InsertPt->getParent()->end() && + "Cannot get the Instrumentation point"); + + Value *ToProfile = nullptr; + if (Cand.V->getType()->isIntegerTy()) + ToProfile = Builder.CreateZExtOrTrunc(Cand.V, Builder.getInt64Ty()); + else if (Cand.V->getType()->isPointerTy()) + ToProfile = Builder.CreatePtrToInt(Cand.V, Builder.getInt64Ty()); + assert(ToProfile && "value profiling Value is of unexpected type"); + + SmallVector<OperandBundleDef, 1> OpBundles; + populateEHOperandBundle(Cand, BlockColors, OpBundles); + Builder.CreateCall( + Intrinsic::getDeclaration(M, Intrinsic::instrprof_value_profile), + {ConstantExpr::getBitCast(FuncInfo.FuncNameVar, I8PtrTy), + Builder.getInt64(FuncInfo.FunctionHash), ToProfile, + Builder.getInt32(Kind), Builder.getInt32(SiteIndex++)}, + OpBundles); + } + } // IPVK_First <= Kind <= IPVK_Last +} + +namespace { + +// This class represents a CFG edge in profile use compilation. +struct PGOUseEdge : public PGOEdge { + bool CountValid = false; + uint64_t CountValue = 0; + + PGOUseEdge(const BasicBlock *Src, const BasicBlock *Dest, uint64_t W = 1) + : PGOEdge(Src, Dest, W) {} + + // Set edge count value + void setEdgeCount(uint64_t Value) { + CountValue = Value; + CountValid = true; + } + + // Return the information string for this object. + const std::string infoString() const { + if (!CountValid) + return PGOEdge::infoString(); + return (Twine(PGOEdge::infoString()) + " Count=" + Twine(CountValue)) + .str(); + } +}; + +using DirectEdges = SmallVector<PGOUseEdge *, 2>; + +// This class stores the auxiliary information for each BB. +struct UseBBInfo : public BBInfo { + uint64_t CountValue = 0; + bool CountValid; + int32_t UnknownCountInEdge = 0; + int32_t UnknownCountOutEdge = 0; + DirectEdges InEdges; + DirectEdges OutEdges; + + UseBBInfo(unsigned IX) : BBInfo(IX), CountValid(false) {} + + UseBBInfo(unsigned IX, uint64_t C) + : BBInfo(IX), CountValue(C), CountValid(true) {} + + // Set the profile count value for this BB. + void setBBInfoCount(uint64_t Value) { + CountValue = Value; + CountValid = true; + } + + // Return the information string of this object. + const std::string infoString() const { + if (!CountValid) + return BBInfo::infoString(); + return (Twine(BBInfo::infoString()) + " Count=" + Twine(CountValue)).str(); + } + + // Add an OutEdge and update the edge count. + void addOutEdge(PGOUseEdge *E) { + OutEdges.push_back(E); + UnknownCountOutEdge++; + } + + // Add an InEdge and update the edge count. + void addInEdge(PGOUseEdge *E) { + InEdges.push_back(E); + UnknownCountInEdge++; + } +}; + +} // end anonymous namespace + +// Sum up the count values for all the edges. +static uint64_t sumEdgeCount(const ArrayRef<PGOUseEdge *> Edges) { + uint64_t Total = 0; + for (auto &E : Edges) { + if (E->Removed) + continue; + Total += E->CountValue; + } + return Total; +} + +namespace { + +class PGOUseFunc { +public: + PGOUseFunc(Function &Func, Module *Modu, TargetLibraryInfo &TLI, + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers, + BranchProbabilityInfo *BPI, BlockFrequencyInfo *BFIin, ProfileSummaryInfo *PSI, bool IsCS, bool InstrumentFuncEntry) - : F(Func), M(Modu), BFI(BFIin), PSI(PSI), + : F(Func), M(Modu), BFI(BFIin), PSI(PSI), FuncInfo(Func, TLI, ComdatMembers, false, BPI, BFIin, IsCS, InstrumentFuncEntry), - FreqAttr(FFA_Normal), IsCS(IsCS) {} - - // Read counts for the instrumented BB from profile. + FreqAttr(FFA_Normal), IsCS(IsCS) {} + + // Read counts for the instrumented BB from profile. bool readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, bool &AllMinusOnes); - - // Populate the counts for all BBs. - void populateCounters(); - - // Set the branch weights based on the count values. - void setBranchWeights(); - - // Annotate the value profile call sites for all value kind. - void annotateValueSites(); - - // Annotate the value profile call sites for one value kind. - void annotateValueSites(uint32_t Kind); - - // Annotate the irreducible loop header weights. - void annotateIrrLoopHeaderWeights(); - - // The hotness of the function from the profile count. - enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; - - // Return the function hotness from the profile. - FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } - - // Return the function hash. - uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } - - // Return the profile record for this function; - InstrProfRecord &getProfileRecord() { return ProfileRecord; } - - // Return the auxiliary BB information. - UseBBInfo &getBBInfo(const BasicBlock *BB) const { - return FuncInfo.getBBInfo(BB); - } - - // Return the auxiliary BB information if available. - UseBBInfo *findBBInfo(const BasicBlock *BB) const { - return FuncInfo.findBBInfo(BB); - } - - Function &getFunc() const { return F; } - - void dumpInfo(std::string Str = "") const { - FuncInfo.dumpInfo(Str); - } - - uint64_t getProgramMaxCount() const { return ProgramMaxCount; } -private: - Function &F; - Module *M; - BlockFrequencyInfo *BFI; - ProfileSummaryInfo *PSI; - - // This member stores the shared information with class PGOGenFunc. - FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; - - // The maximum count value in the profile. This is only used in PGO use - // compilation. - uint64_t ProgramMaxCount; - - // Position of counter that remains to be read. - uint32_t CountPosition = 0; - - // Total size of the profile count for this function. - uint32_t ProfileCountSize = 0; - - // ProfileRecord for this function. - InstrProfRecord ProfileRecord; - - // Function hotness info derived from profile. - FuncFreqAttr FreqAttr; - - // Is to use the context sensitive profile. - bool IsCS; - - // Find the Instrumented BB and set the value. Return false on error. - bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); - - // Set the edge counter value for the unknown edge -- there should be only - // one unknown edge. - void setEdgeCount(DirectEdges &Edges, uint64_t Value); - - // Return FuncName string; - const std::string getFuncName() const { return FuncInfo.FuncName; } - - // Set the hot/cold inline hints based on the count values. - // FIXME: This function should be removed once the functionality in - // the inliner is implemented. - void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { - if (PSI->isHotCount(EntryCount)) - FreqAttr = FFA_Hot; - else if (PSI->isColdCount(MaxCount)) - FreqAttr = FFA_Cold; - } -}; - -} // end anonymous namespace - -// Visit all the edges and assign the count value for the instrumented -// edges and the BB. Return false on error. -bool PGOUseFunc::setInstrumentedCounts( - const std::vector<uint64_t> &CountFromProfile) { - - std::vector<BasicBlock *> InstrumentBBs; - FuncInfo.getInstrumentBBs(InstrumentBBs); - unsigned NumCounters = - InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); - // The number of counters here should match the number of counters - // in profile. Return if they mismatch. - if (NumCounters != CountFromProfile.size()) { - return false; - } + + // Populate the counts for all BBs. + void populateCounters(); + + // Set the branch weights based on the count values. + void setBranchWeights(); + + // Annotate the value profile call sites for all value kind. + void annotateValueSites(); + + // Annotate the value profile call sites for one value kind. + void annotateValueSites(uint32_t Kind); + + // Annotate the irreducible loop header weights. + void annotateIrrLoopHeaderWeights(); + + // The hotness of the function from the profile count. + enum FuncFreqAttr { FFA_Normal, FFA_Cold, FFA_Hot }; + + // Return the function hotness from the profile. + FuncFreqAttr getFuncFreqAttr() const { return FreqAttr; } + + // Return the function hash. + uint64_t getFuncHash() const { return FuncInfo.FunctionHash; } + + // Return the profile record for this function; + InstrProfRecord &getProfileRecord() { return ProfileRecord; } + + // Return the auxiliary BB information. + UseBBInfo &getBBInfo(const BasicBlock *BB) const { + return FuncInfo.getBBInfo(BB); + } + + // Return the auxiliary BB information if available. + UseBBInfo *findBBInfo(const BasicBlock *BB) const { + return FuncInfo.findBBInfo(BB); + } + + Function &getFunc() const { return F; } + + void dumpInfo(std::string Str = "") const { + FuncInfo.dumpInfo(Str); + } + + uint64_t getProgramMaxCount() const { return ProgramMaxCount; } +private: + Function &F; + Module *M; + BlockFrequencyInfo *BFI; + ProfileSummaryInfo *PSI; + + // This member stores the shared information with class PGOGenFunc. + FuncPGOInstrumentation<PGOUseEdge, UseBBInfo> FuncInfo; + + // The maximum count value in the profile. This is only used in PGO use + // compilation. + uint64_t ProgramMaxCount; + + // Position of counter that remains to be read. + uint32_t CountPosition = 0; + + // Total size of the profile count for this function. + uint32_t ProfileCountSize = 0; + + // ProfileRecord for this function. + InstrProfRecord ProfileRecord; + + // Function hotness info derived from profile. + FuncFreqAttr FreqAttr; + + // Is to use the context sensitive profile. + bool IsCS; + + // Find the Instrumented BB and set the value. Return false on error. + bool setInstrumentedCounts(const std::vector<uint64_t> &CountFromProfile); + + // Set the edge counter value for the unknown edge -- there should be only + // one unknown edge. + void setEdgeCount(DirectEdges &Edges, uint64_t Value); + + // Return FuncName string; + const std::string getFuncName() const { return FuncInfo.FuncName; } + + // Set the hot/cold inline hints based on the count values. + // FIXME: This function should be removed once the functionality in + // the inliner is implemented. + void markFunctionAttributes(uint64_t EntryCount, uint64_t MaxCount) { + if (PSI->isHotCount(EntryCount)) + FreqAttr = FFA_Hot; + else if (PSI->isColdCount(MaxCount)) + FreqAttr = FFA_Cold; + } +}; + +} // end anonymous namespace + +// Visit all the edges and assign the count value for the instrumented +// edges and the BB. Return false on error. +bool PGOUseFunc::setInstrumentedCounts( + const std::vector<uint64_t> &CountFromProfile) { + + std::vector<BasicBlock *> InstrumentBBs; + FuncInfo.getInstrumentBBs(InstrumentBBs); + unsigned NumCounters = + InstrumentBBs.size() + FuncInfo.SIVisitor.getNumOfSelectInsts(); + // The number of counters here should match the number of counters + // in profile. Return if they mismatch. + if (NumCounters != CountFromProfile.size()) { + return false; + } auto *FuncEntry = &*F.begin(); - // Set the profile count to the Instrumented BBs. - uint32_t I = 0; - for (BasicBlock *InstrBB : InstrumentBBs) { - uint64_t CountValue = CountFromProfile[I++]; - UseBBInfo &Info = getBBInfo(InstrBB); + // Set the profile count to the Instrumented BBs. + uint32_t I = 0; + for (BasicBlock *InstrBB : InstrumentBBs) { + uint64_t CountValue = CountFromProfile[I++]; + UseBBInfo &Info = getBBInfo(InstrBB); // If we reach here, we know that we have some nonzero count // values in this function. The entry count should not be 0. // Fix it if necessary. if (InstrBB == FuncEntry && CountValue == 0) CountValue = 1; - Info.setBBInfoCount(CountValue); - } - ProfileCountSize = CountFromProfile.size(); - CountPosition = I; - - // Set the edge count and update the count of unknown edges for BBs. - auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void { - E->setEdgeCount(Value); - this->getBBInfo(E->SrcBB).UnknownCountOutEdge--; - this->getBBInfo(E->DestBB).UnknownCountInEdge--; - }; - - // Set the profile count the Instrumented edges. There are BBs that not in - // MST but not instrumented. Need to set the edge count value so that we can - // populate the profile counts later. - for (auto &E : FuncInfo.MST.AllEdges) { - if (E->Removed || E->InMST) - continue; - const BasicBlock *SrcBB = E->SrcBB; - UseBBInfo &SrcInfo = getBBInfo(SrcBB); - - // If only one out-edge, the edge profile count should be the same as BB - // profile count. - if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1) - setEdgeCount(E.get(), SrcInfo.CountValue); - else { - const BasicBlock *DestBB = E->DestBB; - UseBBInfo &DestInfo = getBBInfo(DestBB); - // If only one in-edge, the edge profile count should be the same as BB - // profile count. - if (DestInfo.CountValid && DestInfo.InEdges.size() == 1) - setEdgeCount(E.get(), DestInfo.CountValue); - } - if (E->CountValid) - continue; - // E's count should have been set from profile. If not, this meenas E skips - // the instrumentation. We set the count to 0. - setEdgeCount(E.get(), 0); - } - return true; -} - -// Set the count value for the unknown edge. There should be one and only one -// unknown edge in Edges vector. -void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { - for (auto &E : Edges) { - if (E->CountValid) - continue; - E->setEdgeCount(Value); - - getBBInfo(E->SrcBB).UnknownCountOutEdge--; - getBBInfo(E->DestBB).UnknownCountInEdge--; - return; - } - llvm_unreachable("Cannot find the unknown count edge"); -} - -// Read the profile from ProfileFileName and assign the value to the -// instrumented BB and the edges. This function also updates ProgramMaxCount. -// Return true if the profile are successfully read, and false on errors. + Info.setBBInfoCount(CountValue); + } + ProfileCountSize = CountFromProfile.size(); + CountPosition = I; + + // Set the edge count and update the count of unknown edges for BBs. + auto setEdgeCount = [this](PGOUseEdge *E, uint64_t Value) -> void { + E->setEdgeCount(Value); + this->getBBInfo(E->SrcBB).UnknownCountOutEdge--; + this->getBBInfo(E->DestBB).UnknownCountInEdge--; + }; + + // Set the profile count the Instrumented edges. There are BBs that not in + // MST but not instrumented. Need to set the edge count value so that we can + // populate the profile counts later. + for (auto &E : FuncInfo.MST.AllEdges) { + if (E->Removed || E->InMST) + continue; + const BasicBlock *SrcBB = E->SrcBB; + UseBBInfo &SrcInfo = getBBInfo(SrcBB); + + // If only one out-edge, the edge profile count should be the same as BB + // profile count. + if (SrcInfo.CountValid && SrcInfo.OutEdges.size() == 1) + setEdgeCount(E.get(), SrcInfo.CountValue); + else { + const BasicBlock *DestBB = E->DestBB; + UseBBInfo &DestInfo = getBBInfo(DestBB); + // If only one in-edge, the edge profile count should be the same as BB + // profile count. + if (DestInfo.CountValid && DestInfo.InEdges.size() == 1) + setEdgeCount(E.get(), DestInfo.CountValue); + } + if (E->CountValid) + continue; + // E's count should have been set from profile. If not, this meenas E skips + // the instrumentation. We set the count to 0. + setEdgeCount(E.get(), 0); + } + return true; +} + +// Set the count value for the unknown edge. There should be one and only one +// unknown edge in Edges vector. +void PGOUseFunc::setEdgeCount(DirectEdges &Edges, uint64_t Value) { + for (auto &E : Edges) { + if (E->CountValid) + continue; + E->setEdgeCount(Value); + + getBBInfo(E->SrcBB).UnknownCountOutEdge--; + getBBInfo(E->DestBB).UnknownCountInEdge--; + return; + } + llvm_unreachable("Cannot find the unknown count edge"); +} + +// Read the profile from ProfileFileName and assign the value to the +// instrumented BB and the edges. This function also updates ProgramMaxCount. +// Return true if the profile are successfully read, and false on errors. bool PGOUseFunc::readCounters(IndexedInstrProfReader *PGOReader, bool &AllZeros, bool &AllMinusOnes) { - auto &Ctx = M->getContext(); - Expected<InstrProfRecord> Result = - PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); - if (Error E = Result.takeError()) { - handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { - auto Err = IPE.get(); - bool SkipWarning = false; - LLVM_DEBUG(dbgs() << "Error in reading profile for Func " - << FuncInfo.FuncName << ": "); - if (Err == instrprof_error::unknown_function) { - IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++; - SkipWarning = !PGOWarnMissing; - LLVM_DEBUG(dbgs() << "unknown function"); - } else if (Err == instrprof_error::hash_mismatch || - Err == instrprof_error::malformed) { - IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++; - SkipWarning = - NoPGOWarnMismatch || - (NoPGOWarnMismatchComdat && - (F.hasComdat() || - F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); - LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")"); - } - - LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n"); - if (SkipWarning) - return; - - std::string Msg = IPE.message() + std::string(" ") + F.getName().str() + - std::string(" Hash = ") + - std::to_string(FuncInfo.FunctionHash); - - Ctx.diagnose( - DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); - }); - return false; - } - ProfileRecord = std::move(Result.get()); - std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts; - - IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++; - LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); + auto &Ctx = M->getContext(); + Expected<InstrProfRecord> Result = + PGOReader->getInstrProfRecord(FuncInfo.FuncName, FuncInfo.FunctionHash); + if (Error E = Result.takeError()) { + handleAllErrors(std::move(E), [&](const InstrProfError &IPE) { + auto Err = IPE.get(); + bool SkipWarning = false; + LLVM_DEBUG(dbgs() << "Error in reading profile for Func " + << FuncInfo.FuncName << ": "); + if (Err == instrprof_error::unknown_function) { + IsCS ? NumOfCSPGOMissing++ : NumOfPGOMissing++; + SkipWarning = !PGOWarnMissing; + LLVM_DEBUG(dbgs() << "unknown function"); + } else if (Err == instrprof_error::hash_mismatch || + Err == instrprof_error::malformed) { + IsCS ? NumOfCSPGOMismatch++ : NumOfPGOMismatch++; + SkipWarning = + NoPGOWarnMismatch || + (NoPGOWarnMismatchComdat && + (F.hasComdat() || + F.getLinkage() == GlobalValue::AvailableExternallyLinkage)); + LLVM_DEBUG(dbgs() << "hash mismatch (skip=" << SkipWarning << ")"); + } + + LLVM_DEBUG(dbgs() << " IsCS=" << IsCS << "\n"); + if (SkipWarning) + return; + + std::string Msg = IPE.message() + std::string(" ") + F.getName().str() + + std::string(" Hash = ") + + std::to_string(FuncInfo.FunctionHash); + + Ctx.diagnose( + DiagnosticInfoPGOProfile(M->getName().data(), Msg, DS_Warning)); + }); + return false; + } + ProfileRecord = std::move(Result.get()); + std::vector<uint64_t> &CountFromProfile = ProfileRecord.Counts; + + IsCS ? NumOfCSPGOFunc++ : NumOfPGOFunc++; + LLVM_DEBUG(dbgs() << CountFromProfile.size() << " counts\n"); AllMinusOnes = (CountFromProfile.size() > 0); - uint64_t ValueSum = 0; - for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { - LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); - ValueSum += CountFromProfile[I]; + uint64_t ValueSum = 0; + for (unsigned I = 0, S = CountFromProfile.size(); I < S; I++) { + LLVM_DEBUG(dbgs() << " " << I << ": " << CountFromProfile[I] << "\n"); + ValueSum += CountFromProfile[I]; if (CountFromProfile[I] != (uint64_t)-1) AllMinusOnes = false; - } - AllZeros = (ValueSum == 0); - - LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); - - getBBInfo(nullptr).UnknownCountOutEdge = 2; - getBBInfo(nullptr).UnknownCountInEdge = 2; - - if (!setInstrumentedCounts(CountFromProfile)) { - LLVM_DEBUG( - dbgs() << "Inconsistent number of counts, skipping this function"); - Ctx.diagnose(DiagnosticInfoPGOProfile( - M->getName().data(), - Twine("Inconsistent number of counts in ") + F.getName().str() - + Twine(": the profile may be stale or there is a function name collision."), - DS_Warning)); - return false; - } - ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS); - return true; -} - -// Populate the counters from instrumented BBs to all BBs. -// In the end of this operation, all BBs should have a valid count value. -void PGOUseFunc::populateCounters() { - bool Changes = true; - unsigned NumPasses = 0; - while (Changes) { - NumPasses++; - Changes = false; - - // For efficient traversal, it's better to start from the end as most - // of the instrumented edges are at the end. - for (auto &BB : reverse(F)) { - UseBBInfo *Count = findBBInfo(&BB); - if (Count == nullptr) - continue; - if (!Count->CountValid) { - if (Count->UnknownCountOutEdge == 0) { - Count->CountValue = sumEdgeCount(Count->OutEdges); - Count->CountValid = true; - Changes = true; - } else if (Count->UnknownCountInEdge == 0) { - Count->CountValue = sumEdgeCount(Count->InEdges); - Count->CountValid = true; - Changes = true; - } - } - if (Count->CountValid) { - if (Count->UnknownCountOutEdge == 1) { - uint64_t Total = 0; - uint64_t OutSum = sumEdgeCount(Count->OutEdges); - // If the one of the successor block can early terminate (no-return), - // we can end up with situation where out edge sum count is larger as - // the source BB's count is collected by a post-dominated block. - if (Count->CountValue > OutSum) - Total = Count->CountValue - OutSum; - setEdgeCount(Count->OutEdges, Total); - Changes = true; - } - if (Count->UnknownCountInEdge == 1) { - uint64_t Total = 0; - uint64_t InSum = sumEdgeCount(Count->InEdges); - if (Count->CountValue > InSum) - Total = Count->CountValue - InSum; - setEdgeCount(Count->InEdges, Total); - Changes = true; - } - } - } - } - - LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); -#ifndef NDEBUG - // Assert every BB has a valid counter. - for (auto &BB : F) { - auto BI = findBBInfo(&BB); - if (BI == nullptr) - continue; - assert(BI->CountValid && "BB count is not valid"); - } -#endif - uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; - uint64_t FuncMaxCount = FuncEntryCount; - for (auto &BB : F) { - auto BI = findBBInfo(&BB); - if (BI == nullptr) - continue; - FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); - } + } + AllZeros = (ValueSum == 0); + + LLVM_DEBUG(dbgs() << "SUM = " << ValueSum << "\n"); + + getBBInfo(nullptr).UnknownCountOutEdge = 2; + getBBInfo(nullptr).UnknownCountInEdge = 2; + + if (!setInstrumentedCounts(CountFromProfile)) { + LLVM_DEBUG( + dbgs() << "Inconsistent number of counts, skipping this function"); + Ctx.diagnose(DiagnosticInfoPGOProfile( + M->getName().data(), + Twine("Inconsistent number of counts in ") + F.getName().str() + + Twine(": the profile may be stale or there is a function name collision."), + DS_Warning)); + return false; + } + ProgramMaxCount = PGOReader->getMaximumFunctionCount(IsCS); + return true; +} + +// Populate the counters from instrumented BBs to all BBs. +// In the end of this operation, all BBs should have a valid count value. +void PGOUseFunc::populateCounters() { + bool Changes = true; + unsigned NumPasses = 0; + while (Changes) { + NumPasses++; + Changes = false; + + // For efficient traversal, it's better to start from the end as most + // of the instrumented edges are at the end. + for (auto &BB : reverse(F)) { + UseBBInfo *Count = findBBInfo(&BB); + if (Count == nullptr) + continue; + if (!Count->CountValid) { + if (Count->UnknownCountOutEdge == 0) { + Count->CountValue = sumEdgeCount(Count->OutEdges); + Count->CountValid = true; + Changes = true; + } else if (Count->UnknownCountInEdge == 0) { + Count->CountValue = sumEdgeCount(Count->InEdges); + Count->CountValid = true; + Changes = true; + } + } + if (Count->CountValid) { + if (Count->UnknownCountOutEdge == 1) { + uint64_t Total = 0; + uint64_t OutSum = sumEdgeCount(Count->OutEdges); + // If the one of the successor block can early terminate (no-return), + // we can end up with situation where out edge sum count is larger as + // the source BB's count is collected by a post-dominated block. + if (Count->CountValue > OutSum) + Total = Count->CountValue - OutSum; + setEdgeCount(Count->OutEdges, Total); + Changes = true; + } + if (Count->UnknownCountInEdge == 1) { + uint64_t Total = 0; + uint64_t InSum = sumEdgeCount(Count->InEdges); + if (Count->CountValue > InSum) + Total = Count->CountValue - InSum; + setEdgeCount(Count->InEdges, Total); + Changes = true; + } + } + } + } + + LLVM_DEBUG(dbgs() << "Populate counts in " << NumPasses << " passes.\n"); +#ifndef NDEBUG + // Assert every BB has a valid counter. + for (auto &BB : F) { + auto BI = findBBInfo(&BB); + if (BI == nullptr) + continue; + assert(BI->CountValid && "BB count is not valid"); + } +#endif + uint64_t FuncEntryCount = getBBInfo(&*F.begin()).CountValue; + uint64_t FuncMaxCount = FuncEntryCount; + for (auto &BB : F) { + auto BI = findBBInfo(&BB); + if (BI == nullptr) + continue; + FuncMaxCount = std::max(FuncMaxCount, BI->CountValue); + } // Fix the obviously inconsistent entry count. if (FuncMaxCount > 0 && FuncEntryCount == 0) FuncEntryCount = 1; F.setEntryCount(ProfileCount(FuncEntryCount, Function::PCT_Real)); - markFunctionAttributes(FuncEntryCount, FuncMaxCount); - - // Now annotate select instructions - FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition); - assert(CountPosition == ProfileCountSize); - - LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile.")); -} - -// Assign the scaled count values to the BB with multiple out edges. -void PGOUseFunc::setBranchWeights() { - // Generate MD_prof metadata for every branch instruction. - LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName() - << " IsCS=" << IsCS << "\n"); - for (auto &BB : F) { - Instruction *TI = BB.getTerminator(); - if (TI->getNumSuccessors() < 2) - continue; - if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || - isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI))) - continue; - - if (getBBInfo(&BB).CountValue == 0) - continue; - - // We have a non-zero Branch BB. - const UseBBInfo &BBCountInfo = getBBInfo(&BB); - unsigned Size = BBCountInfo.OutEdges.size(); - SmallVector<uint64_t, 2> EdgeCounts(Size, 0); - uint64_t MaxCount = 0; - for (unsigned s = 0; s < Size; s++) { - const PGOUseEdge *E = BBCountInfo.OutEdges[s]; - const BasicBlock *SrcBB = E->SrcBB; - const BasicBlock *DestBB = E->DestBB; - if (DestBB == nullptr) - continue; - unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); - uint64_t EdgeCount = E->CountValue; - if (EdgeCount > MaxCount) - MaxCount = EdgeCount; - EdgeCounts[SuccNum] = EdgeCount; - } - setProfMetadata(M, TI, EdgeCounts, MaxCount); - } -} - -static bool isIndirectBrTarget(BasicBlock *BB) { - for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { - if (isa<IndirectBrInst>((*PI)->getTerminator())) - return true; - } - return false; -} - -void PGOUseFunc::annotateIrrLoopHeaderWeights() { - LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); - // Find irr loop headers - for (auto &BB : F) { - // As a heuristic also annotate indrectbr targets as they have a high chance - // to become an irreducible loop header after the indirectbr tail - // duplication. - if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { - Instruction *TI = BB.getTerminator(); - const UseBBInfo &BBCountInfo = getBBInfo(&BB); - setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); - } - } -} - -void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { - Module *M = F.getParent(); - IRBuilder<> Builder(&SI); - Type *Int64Ty = Builder.getInt64Ty(); - Type *I8PtrTy = Builder.getInt8PtrTy(); - auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); - Builder.CreateCall( - Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), - {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), - Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), - Builder.getInt32(*CurCtrIdx), Step}); - ++(*CurCtrIdx); -} - -void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { - std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts; - assert(*CurCtrIdx < CountFromProfile.size() && - "Out of bound access of counters"); - uint64_t SCounts[2]; - SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count - ++(*CurCtrIdx); - uint64_t TotalCount = 0; - auto BI = UseFunc->findBBInfo(SI.getParent()); - if (BI != nullptr) - TotalCount = BI->CountValue; - // False Count - SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); - uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); - if (MaxCount) - setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); -} - -void SelectInstVisitor::visitSelectInst(SelectInst &SI) { - if (!PGOInstrSelect) - return; - // FIXME: do not handle this yet. - if (SI.getCondition()->getType()->isVectorTy()) - return; - - switch (Mode) { - case VM_counting: - NSIs++; - return; - case VM_instrument: - instrumentOneSelectInst(SI); - return; - case VM_annotate: - annotateOneSelectInst(SI); - return; - } - - llvm_unreachable("Unknown visiting mode"); -} - -// Traverse all valuesites and annotate the instructions for all value kind. -void PGOUseFunc::annotateValueSites() { - if (DisableValueProfiling) - return; - - // Create the PGOFuncName meta data. - createPGOFuncNameMetadata(F, FuncInfo.FuncName); - - for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) - annotateValueSites(Kind); -} - -// Annotate the instructions for a specific value kind. -void PGOUseFunc::annotateValueSites(uint32_t Kind) { - assert(Kind <= IPVK_Last); - unsigned ValueSiteIndex = 0; - auto &ValueSites = FuncInfo.ValueSites[Kind]; - unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); - if (NumValueSites != ValueSites.size()) { - auto &Ctx = M->getContext(); - Ctx.diagnose(DiagnosticInfoPGOProfile( - M->getName().data(), - Twine("Inconsistent number of value sites for ") + - Twine(ValueProfKindDescr[Kind]) + - Twine(" profiling in \"") + F.getName().str() + - Twine("\", possibly due to the use of a stale profile."), - DS_Warning)); - return; - } - - for (VPCandidateInfo &I : ValueSites) { - LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind - << "): Index = " << ValueSiteIndex << " out of " - << NumValueSites << "\n"); - annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord, - static_cast<InstrProfValueKind>(Kind), ValueSiteIndex, - Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations - : MaxNumAnnotations); - ValueSiteIndex++; - } -} - -// Collect the set of members for each Comdat in module M and store -// in ComdatMembers. -static void collectComdatMembers( - Module &M, - std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { - if (!DoComdatRenaming) - return; - for (Function &F : M) - if (Comdat *C = F.getComdat()) - ComdatMembers.insert(std::make_pair(C, &F)); - for (GlobalVariable &GV : M.globals()) - if (Comdat *C = GV.getComdat()) - ComdatMembers.insert(std::make_pair(C, &GV)); - for (GlobalAlias &GA : M.aliases()) - if (Comdat *C = GA.getComdat()) - ComdatMembers.insert(std::make_pair(C, &GA)); -} - -static bool InstrumentAllFunctions( - Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI, - function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, - function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) { - // For the context-sensitve instrumentation, we should have a separated pass - // (before LTO/ThinLTO linking) to create these variables. - if (!IsCS) + markFunctionAttributes(FuncEntryCount, FuncMaxCount); + + // Now annotate select instructions + FuncInfo.SIVisitor.annotateSelects(F, this, &CountPosition); + assert(CountPosition == ProfileCountSize); + + LLVM_DEBUG(FuncInfo.dumpInfo("after reading profile.")); +} + +// Assign the scaled count values to the BB with multiple out edges. +void PGOUseFunc::setBranchWeights() { + // Generate MD_prof metadata for every branch instruction. + LLVM_DEBUG(dbgs() << "\nSetting branch weights for func " << F.getName() + << " IsCS=" << IsCS << "\n"); + for (auto &BB : F) { + Instruction *TI = BB.getTerminator(); + if (TI->getNumSuccessors() < 2) + continue; + if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || + isa<IndirectBrInst>(TI) || isa<InvokeInst>(TI))) + continue; + + if (getBBInfo(&BB).CountValue == 0) + continue; + + // We have a non-zero Branch BB. + const UseBBInfo &BBCountInfo = getBBInfo(&BB); + unsigned Size = BBCountInfo.OutEdges.size(); + SmallVector<uint64_t, 2> EdgeCounts(Size, 0); + uint64_t MaxCount = 0; + for (unsigned s = 0; s < Size; s++) { + const PGOUseEdge *E = BBCountInfo.OutEdges[s]; + const BasicBlock *SrcBB = E->SrcBB; + const BasicBlock *DestBB = E->DestBB; + if (DestBB == nullptr) + continue; + unsigned SuccNum = GetSuccessorNumber(SrcBB, DestBB); + uint64_t EdgeCount = E->CountValue; + if (EdgeCount > MaxCount) + MaxCount = EdgeCount; + EdgeCounts[SuccNum] = EdgeCount; + } + setProfMetadata(M, TI, EdgeCounts, MaxCount); + } +} + +static bool isIndirectBrTarget(BasicBlock *BB) { + for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) { + if (isa<IndirectBrInst>((*PI)->getTerminator())) + return true; + } + return false; +} + +void PGOUseFunc::annotateIrrLoopHeaderWeights() { + LLVM_DEBUG(dbgs() << "\nAnnotating irreducible loop header weights.\n"); + // Find irr loop headers + for (auto &BB : F) { + // As a heuristic also annotate indrectbr targets as they have a high chance + // to become an irreducible loop header after the indirectbr tail + // duplication. + if (BFI->isIrrLoopHeader(&BB) || isIndirectBrTarget(&BB)) { + Instruction *TI = BB.getTerminator(); + const UseBBInfo &BBCountInfo = getBBInfo(&BB); + setIrrLoopHeaderMetadata(M, TI, BBCountInfo.CountValue); + } + } +} + +void SelectInstVisitor::instrumentOneSelectInst(SelectInst &SI) { + Module *M = F.getParent(); + IRBuilder<> Builder(&SI); + Type *Int64Ty = Builder.getInt64Ty(); + Type *I8PtrTy = Builder.getInt8PtrTy(); + auto *Step = Builder.CreateZExt(SI.getCondition(), Int64Ty); + Builder.CreateCall( + Intrinsic::getDeclaration(M, Intrinsic::instrprof_increment_step), + {ConstantExpr::getBitCast(FuncNameVar, I8PtrTy), + Builder.getInt64(FuncHash), Builder.getInt32(TotalNumCtrs), + Builder.getInt32(*CurCtrIdx), Step}); + ++(*CurCtrIdx); +} + +void SelectInstVisitor::annotateOneSelectInst(SelectInst &SI) { + std::vector<uint64_t> &CountFromProfile = UseFunc->getProfileRecord().Counts; + assert(*CurCtrIdx < CountFromProfile.size() && + "Out of bound access of counters"); + uint64_t SCounts[2]; + SCounts[0] = CountFromProfile[*CurCtrIdx]; // True count + ++(*CurCtrIdx); + uint64_t TotalCount = 0; + auto BI = UseFunc->findBBInfo(SI.getParent()); + if (BI != nullptr) + TotalCount = BI->CountValue; + // False Count + SCounts[1] = (TotalCount > SCounts[0] ? TotalCount - SCounts[0] : 0); + uint64_t MaxCount = std::max(SCounts[0], SCounts[1]); + if (MaxCount) + setProfMetadata(F.getParent(), &SI, SCounts, MaxCount); +} + +void SelectInstVisitor::visitSelectInst(SelectInst &SI) { + if (!PGOInstrSelect) + return; + // FIXME: do not handle this yet. + if (SI.getCondition()->getType()->isVectorTy()) + return; + + switch (Mode) { + case VM_counting: + NSIs++; + return; + case VM_instrument: + instrumentOneSelectInst(SI); + return; + case VM_annotate: + annotateOneSelectInst(SI); + return; + } + + llvm_unreachable("Unknown visiting mode"); +} + +// Traverse all valuesites and annotate the instructions for all value kind. +void PGOUseFunc::annotateValueSites() { + if (DisableValueProfiling) + return; + + // Create the PGOFuncName meta data. + createPGOFuncNameMetadata(F, FuncInfo.FuncName); + + for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind) + annotateValueSites(Kind); +} + +// Annotate the instructions for a specific value kind. +void PGOUseFunc::annotateValueSites(uint32_t Kind) { + assert(Kind <= IPVK_Last); + unsigned ValueSiteIndex = 0; + auto &ValueSites = FuncInfo.ValueSites[Kind]; + unsigned NumValueSites = ProfileRecord.getNumValueSites(Kind); + if (NumValueSites != ValueSites.size()) { + auto &Ctx = M->getContext(); + Ctx.diagnose(DiagnosticInfoPGOProfile( + M->getName().data(), + Twine("Inconsistent number of value sites for ") + + Twine(ValueProfKindDescr[Kind]) + + Twine(" profiling in \"") + F.getName().str() + + Twine("\", possibly due to the use of a stale profile."), + DS_Warning)); + return; + } + + for (VPCandidateInfo &I : ValueSites) { + LLVM_DEBUG(dbgs() << "Read one value site profile (kind = " << Kind + << "): Index = " << ValueSiteIndex << " out of " + << NumValueSites << "\n"); + annotateValueSite(*M, *I.AnnotatedInst, ProfileRecord, + static_cast<InstrProfValueKind>(Kind), ValueSiteIndex, + Kind == IPVK_MemOPSize ? MaxNumMemOPAnnotations + : MaxNumAnnotations); + ValueSiteIndex++; + } +} + +// Collect the set of members for each Comdat in module M and store +// in ComdatMembers. +static void collectComdatMembers( + Module &M, + std::unordered_multimap<Comdat *, GlobalValue *> &ComdatMembers) { + if (!DoComdatRenaming) + return; + for (Function &F : M) + if (Comdat *C = F.getComdat()) + ComdatMembers.insert(std::make_pair(C, &F)); + for (GlobalVariable &GV : M.globals()) + if (Comdat *C = GV.getComdat()) + ComdatMembers.insert(std::make_pair(C, &GV)); + for (GlobalAlias &GA : M.aliases()) + if (Comdat *C = GA.getComdat()) + ComdatMembers.insert(std::make_pair(C, &GA)); +} + +static bool InstrumentAllFunctions( + Module &M, function_ref<TargetLibraryInfo &(Function &)> LookupTLI, + function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, + function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, bool IsCS) { + // For the context-sensitve instrumentation, we should have a separated pass + // (before LTO/ThinLTO linking) to create these variables. + if (!IsCS) createIRLevelProfileFlagVar(M, /* IsCS */ false, PGOInstrumentEntry); - std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; - collectComdatMembers(M, ComdatMembers); - - for (auto &F : M) { - if (F.isDeclaration()) - continue; + std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; + collectComdatMembers(M, ComdatMembers); + + for (auto &F : M) { + if (F.isDeclaration()) + continue; if (F.hasFnAttribute(llvm::Attribute::NoProfile)) continue; - auto &TLI = LookupTLI(F); - auto *BPI = LookupBPI(F); - auto *BFI = LookupBFI(F); - instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS); - } - return true; -} - -PreservedAnalyses -PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) { - createProfileFileNameVar(M, CSInstrName); + auto &TLI = LookupTLI(F); + auto *BPI = LookupBPI(F); + auto *BFI = LookupBFI(F); + instrumentOneFunc(F, &M, TLI, BPI, BFI, ComdatMembers, IsCS); + } + return true; +} + +PreservedAnalyses +PGOInstrumentationGenCreateVar::run(Module &M, ModuleAnalysisManager &AM) { + createProfileFileNameVar(M, CSInstrName); createIRLevelProfileFlagVar(M, /* IsCS */ true, PGOInstrumentEntry); - return PreservedAnalyses::all(); -} - -bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { - if (skipModule(M)) - return false; - - auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { - return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - }; - auto LookupBPI = [this](Function &F) { - return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); - }; - auto LookupBFI = [this](Function &F) { - return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); - }; - return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS); -} - -PreservedAnalyses PGOInstrumentationGen::run(Module &M, - ModuleAnalysisManager &AM) { - auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { - return FAM.getResult<TargetLibraryAnalysis>(F); - }; - auto LookupBPI = [&FAM](Function &F) { - return &FAM.getResult<BranchProbabilityAnalysis>(F); - }; - auto LookupBFI = [&FAM](Function &F) { - return &FAM.getResult<BlockFrequencyAnalysis>(F); - }; - - if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} - + return PreservedAnalyses::all(); +} + +bool PGOInstrumentationGenLegacyPass::runOnModule(Module &M) { + if (skipModule(M)) + return false; + + auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { + return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + }; + auto LookupBPI = [this](Function &F) { + return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); + }; + auto LookupBFI = [this](Function &F) { + return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); + }; + return InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS); +} + +PreservedAnalyses PGOInstrumentationGen::run(Module &M, + ModuleAnalysisManager &AM) { + auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { + return FAM.getResult<TargetLibraryAnalysis>(F); + }; + auto LookupBPI = [&FAM](Function &F) { + return &FAM.getResult<BranchProbabilityAnalysis>(F); + }; + auto LookupBFI = [&FAM](Function &F) { + return &FAM.getResult<BlockFrequencyAnalysis>(F); + }; + + if (!InstrumentAllFunctions(M, LookupTLI, LookupBPI, LookupBFI, IsCS)) + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} + // Using the ratio b/w sums of profile count values and BFI count values to // adjust the func entry count. static void fixFuncEntryCount(PGOUseFunc &Func, LoopInfo &LI, @@ -1766,69 +1766,69 @@ static void verifyFuncBFI(PGOUseFunc &Func, LoopInfo &LI, }); } -static bool annotateAllFunctions( - Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName, - function_ref<TargetLibraryInfo &(Function &)> LookupTLI, - function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, - function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, - ProfileSummaryInfo *PSI, bool IsCS) { - LLVM_DEBUG(dbgs() << "Read in profile counters: "); - auto &Ctx = M.getContext(); - // Read the counter array from file. - auto ReaderOrErr = - IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName); - if (Error E = ReaderOrErr.takeError()) { - handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { - Ctx.diagnose( - DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); - }); - return false; - } - - std::unique_ptr<IndexedInstrProfReader> PGOReader = - std::move(ReaderOrErr.get()); - if (!PGOReader) { - Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), - StringRef("Cannot get PGOReader"))); - return false; - } - if (!PGOReader->hasCSIRLevelProfile() && IsCS) - return false; - - // TODO: might need to change the warning once the clang option is finalized. - if (!PGOReader->isIRLevelProfile()) { - Ctx.diagnose(DiagnosticInfoPGOProfile( - ProfileFileName.data(), "Not an IR level instrumentation profile")); - return false; - } - - // Add the profile summary (read from the header of the indexed summary) here - // so that we can use it below when reading counters (which checks if the - // function should be marked with a cold or inlinehint attribute). - M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()), - IsCS ? ProfileSummary::PSK_CSInstr - : ProfileSummary::PSK_Instr); - PSI->refresh(); - - std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; - collectComdatMembers(M, ComdatMembers); - std::vector<Function *> HotFunctions; - std::vector<Function *> ColdFunctions; +static bool annotateAllFunctions( + Module &M, StringRef ProfileFileName, StringRef ProfileRemappingFileName, + function_ref<TargetLibraryInfo &(Function &)> LookupTLI, + function_ref<BranchProbabilityInfo *(Function &)> LookupBPI, + function_ref<BlockFrequencyInfo *(Function &)> LookupBFI, + ProfileSummaryInfo *PSI, bool IsCS) { + LLVM_DEBUG(dbgs() << "Read in profile counters: "); + auto &Ctx = M.getContext(); + // Read the counter array from file. + auto ReaderOrErr = + IndexedInstrProfReader::create(ProfileFileName, ProfileRemappingFileName); + if (Error E = ReaderOrErr.takeError()) { + handleAllErrors(std::move(E), [&](const ErrorInfoBase &EI) { + Ctx.diagnose( + DiagnosticInfoPGOProfile(ProfileFileName.data(), EI.message())); + }); + return false; + } + + std::unique_ptr<IndexedInstrProfReader> PGOReader = + std::move(ReaderOrErr.get()); + if (!PGOReader) { + Ctx.diagnose(DiagnosticInfoPGOProfile(ProfileFileName.data(), + StringRef("Cannot get PGOReader"))); + return false; + } + if (!PGOReader->hasCSIRLevelProfile() && IsCS) + return false; + + // TODO: might need to change the warning once the clang option is finalized. + if (!PGOReader->isIRLevelProfile()) { + Ctx.diagnose(DiagnosticInfoPGOProfile( + ProfileFileName.data(), "Not an IR level instrumentation profile")); + return false; + } + + // Add the profile summary (read from the header of the indexed summary) here + // so that we can use it below when reading counters (which checks if the + // function should be marked with a cold or inlinehint attribute). + M.setProfileSummary(PGOReader->getSummary(IsCS).getMD(M.getContext()), + IsCS ? ProfileSummary::PSK_CSInstr + : ProfileSummary::PSK_Instr); + PSI->refresh(); + + std::unordered_multimap<Comdat *, GlobalValue *> ComdatMembers; + collectComdatMembers(M, ComdatMembers); + std::vector<Function *> HotFunctions; + std::vector<Function *> ColdFunctions; // If the profile marked as always instrument the entry BB, do the // same. Note this can be overwritten by the internal option in CFGMST.h bool InstrumentFuncEntry = PGOReader->instrEntryBBEnabled(); if (PGOInstrumentEntry.getNumOccurrences() > 0) InstrumentFuncEntry = PGOInstrumentEntry; - for (auto &F : M) { - if (F.isDeclaration()) - continue; - auto &TLI = LookupTLI(F); - auto *BPI = LookupBPI(F); - auto *BFI = LookupBFI(F); - // Split indirectbr critical edges here before computing the MST rather than - // later in getInstrBB() to avoid invalidating it. - SplitIndirectBrCriticalEdges(F, BPI, BFI); + for (auto &F : M) { + if (F.isDeclaration()) + continue; + auto &TLI = LookupTLI(F); + auto *BPI = LookupBPI(F); + auto *BFI = LookupBFI(F); + // Split indirectbr critical edges here before computing the MST rather than + // later in getInstrBB() to avoid invalidating it. + SplitIndirectBrCriticalEdges(F, BPI, BFI); PGOUseFunc Func(F, &M, TLI, ComdatMembers, BPI, BFI, PSI, IsCS, InstrumentFuncEntry); // When AllMinusOnes is true, it means the profile for the function @@ -1836,15 +1836,15 @@ static bool annotateAllFunctions( // entry count of the function to be multiple times of hot threshold // and drop all its internal counters. bool AllMinusOnes = false; - bool AllZeros = false; + bool AllZeros = false; if (!Func.readCounters(PGOReader.get(), AllZeros, AllMinusOnes)) - continue; - if (AllZeros) { - F.setEntryCount(ProfileCount(0, Function::PCT_Real)); - if (Func.getProgramMaxCount() != 0) - ColdFunctions.push_back(&F); - continue; - } + continue; + if (AllZeros) { + F.setEntryCount(ProfileCount(0, Function::PCT_Real)); + if (Func.getProgramMaxCount() != 0) + ColdFunctions.push_back(&F); + continue; + } const unsigned MultiplyFactor = 3; if (AllMinusOnes) { uint64_t HotThreshold = PSI->getHotCountThreshold(); @@ -1854,43 +1854,43 @@ static bool annotateAllFunctions( HotFunctions.push_back(&F); continue; } - Func.populateCounters(); - Func.setBranchWeights(); - Func.annotateValueSites(); - Func.annotateIrrLoopHeaderWeights(); - PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); - if (FreqAttr == PGOUseFunc::FFA_Cold) - ColdFunctions.push_back(&F); - else if (FreqAttr == PGOUseFunc::FFA_Hot) - HotFunctions.push_back(&F); - if (PGOViewCounts != PGOVCT_None && - (ViewBlockFreqFuncName.empty() || - F.getName().equals(ViewBlockFreqFuncName))) { - LoopInfo LI{DominatorTree(F)}; - std::unique_ptr<BranchProbabilityInfo> NewBPI = - std::make_unique<BranchProbabilityInfo>(F, LI); - std::unique_ptr<BlockFrequencyInfo> NewBFI = - std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI); - if (PGOViewCounts == PGOVCT_Graph) - NewBFI->view(); - else if (PGOViewCounts == PGOVCT_Text) { - dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; - NewBFI->print(dbgs()); - } - } - if (PGOViewRawCounts != PGOVCT_None && - (ViewBlockFreqFuncName.empty() || - F.getName().equals(ViewBlockFreqFuncName))) { - if (PGOViewRawCounts == PGOVCT_Graph) - if (ViewBlockFreqFuncName.empty()) - WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); - else - ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); - else if (PGOViewRawCounts == PGOVCT_Text) { - dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; - Func.dumpInfo(); - } - } + Func.populateCounters(); + Func.setBranchWeights(); + Func.annotateValueSites(); + Func.annotateIrrLoopHeaderWeights(); + PGOUseFunc::FuncFreqAttr FreqAttr = Func.getFuncFreqAttr(); + if (FreqAttr == PGOUseFunc::FFA_Cold) + ColdFunctions.push_back(&F); + else if (FreqAttr == PGOUseFunc::FFA_Hot) + HotFunctions.push_back(&F); + if (PGOViewCounts != PGOVCT_None && + (ViewBlockFreqFuncName.empty() || + F.getName().equals(ViewBlockFreqFuncName))) { + LoopInfo LI{DominatorTree(F)}; + std::unique_ptr<BranchProbabilityInfo> NewBPI = + std::make_unique<BranchProbabilityInfo>(F, LI); + std::unique_ptr<BlockFrequencyInfo> NewBFI = + std::make_unique<BlockFrequencyInfo>(F, *NewBPI, LI); + if (PGOViewCounts == PGOVCT_Graph) + NewBFI->view(); + else if (PGOViewCounts == PGOVCT_Text) { + dbgs() << "pgo-view-counts: " << Func.getFunc().getName() << "\n"; + NewBFI->print(dbgs()); + } + } + if (PGOViewRawCounts != PGOVCT_None && + (ViewBlockFreqFuncName.empty() || + F.getName().equals(ViewBlockFreqFuncName))) { + if (PGOViewRawCounts == PGOVCT_Graph) + if (ViewBlockFreqFuncName.empty()) + WriteGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); + else + ViewGraph(&Func, Twine("PGORawCounts_") + Func.getFunc().getName()); + else if (PGOViewRawCounts == PGOVCT_Text) { + dbgs() << "pgo-view-raw-counts: " << Func.getFunc().getName() << "\n"; + Func.dumpInfo(); + } + } if (PGOVerifyBFI || PGOVerifyHotBFI || PGOFixEntryCount) { LoopInfo LI{DominatorTree(F)}; @@ -1908,18 +1908,18 @@ static bool annotateAllFunctions( } verifyFuncBFI(Func, LI, NBPI, HotCountThreshold, ColdCountThreshold); } - } - - // Set function hotness attribute from the profile. - // We have to apply these attributes at the end because their presence - // can affect the BranchProbabilityInfo of any callers, resulting in an - // inconsistent MST between prof-gen and prof-use. - for (auto &F : HotFunctions) { - F->addFnAttr(Attribute::InlineHint); - LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() - << "\n"); - } - for (auto &F : ColdFunctions) { + } + + // Set function hotness attribute from the profile. + // We have to apply these attributes at the end because their presence + // can affect the BranchProbabilityInfo of any callers, resulting in an + // inconsistent MST between prof-gen and prof-use. + for (auto &F : HotFunctions) { + F->addFnAttr(Attribute::InlineHint); + LLVM_DEBUG(dbgs() << "Set inline attribute to function: " << F->getName() + << "\n"); + } + for (auto &F : ColdFunctions) { // Only set when there is no Attribute::Hot set by the user. For Hot // attribute, user's annotation has the precedence over the profile. if (F->hasFnAttribute(Attribute::Hot)) { @@ -1931,190 +1931,190 @@ static bool annotateAllFunctions( DiagnosticInfoPGOProfile(M.getName().data(), Msg, DS_Warning)); continue; } - F->addFnAttr(Attribute::Cold); - LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() - << "\n"); - } - return true; -} - -PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename, - std::string RemappingFilename, - bool IsCS) - : ProfileFileName(std::move(Filename)), - ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) { - if (!PGOTestProfileFile.empty()) - ProfileFileName = PGOTestProfileFile; - if (!PGOTestProfileRemappingFile.empty()) - ProfileRemappingFileName = PGOTestProfileRemappingFile; -} - -PreservedAnalyses PGOInstrumentationUse::run(Module &M, - ModuleAnalysisManager &AM) { - - auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { - return FAM.getResult<TargetLibraryAnalysis>(F); - }; - auto LookupBPI = [&FAM](Function &F) { - return &FAM.getResult<BranchProbabilityAnalysis>(F); - }; - auto LookupBFI = [&FAM](Function &F) { - return &FAM.getResult<BlockFrequencyAnalysis>(F); - }; - - auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); - - if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, - LookupTLI, LookupBPI, LookupBFI, PSI, IsCS)) - return PreservedAnalyses::all(); - - return PreservedAnalyses::none(); -} - -bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { - if (skipModule(M)) - return false; - - auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { - return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - }; - auto LookupBPI = [this](Function &F) { - return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); - }; - auto LookupBFI = [this](Function &F) { - return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); - }; - - auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); - return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI, - LookupBFI, PSI, IsCS); -} - -static std::string getSimpleNodeName(const BasicBlock *Node) { - if (!Node->getName().empty()) - return std::string(Node->getName()); - - std::string SimpleNodeName; - raw_string_ostream OS(SimpleNodeName); - Node->printAsOperand(OS, false); - return OS.str(); -} - -void llvm::setProfMetadata(Module *M, Instruction *TI, - ArrayRef<uint64_t> EdgeCounts, - uint64_t MaxCount) { - MDBuilder MDB(M->getContext()); - assert(MaxCount > 0 && "Bad max count"); - uint64_t Scale = calculateCountScale(MaxCount); - SmallVector<unsigned, 4> Weights; - for (const auto &ECI : EdgeCounts) - Weights.push_back(scaleBranchCount(ECI, Scale)); - - LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W - : Weights) { - dbgs() << W << " "; - } dbgs() << "\n";); - - TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); - if (EmitBranchProbability) { - std::string BrCondStr = getBranchCondString(TI); - if (BrCondStr.empty()) - return; - - uint64_t WSum = - std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0, - [](uint64_t w1, uint64_t w2) { return w1 + w2; }); - uint64_t TotalCount = - std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0, - [](uint64_t c1, uint64_t c2) { return c1 + c2; }); - Scale = calculateCountScale(WSum); - BranchProbability BP(scaleBranchCount(Weights[0], Scale), - scaleBranchCount(WSum, Scale)); - std::string BranchProbStr; - raw_string_ostream OS(BranchProbStr); - OS << BP; - OS << " (total count : " << TotalCount << ")"; - OS.flush(); - Function *F = TI->getParent()->getParent(); - OptimizationRemarkEmitter ORE(F); - ORE.emit([&]() { - return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) - << BrCondStr << " is true with probability : " << BranchProbStr; - }); - } -} - -namespace llvm { - -void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { - MDBuilder MDB(M->getContext()); - TI->setMetadata(llvm::LLVMContext::MD_irr_loop, - MDB.createIrrLoopHeaderWeight(Count)); -} - -template <> struct GraphTraits<PGOUseFunc *> { - using NodeRef = const BasicBlock *; - using ChildIteratorType = const_succ_iterator; - using nodes_iterator = pointer_iterator<Function::const_iterator>; - - static NodeRef getEntryNode(const PGOUseFunc *G) { - return &G->getFunc().front(); - } - - static ChildIteratorType child_begin(const NodeRef N) { - return succ_begin(N); - } - - static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } - - static nodes_iterator nodes_begin(const PGOUseFunc *G) { - return nodes_iterator(G->getFunc().begin()); - } - - static nodes_iterator nodes_end(const PGOUseFunc *G) { - return nodes_iterator(G->getFunc().end()); - } -}; - -template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits { - explicit DOTGraphTraits(bool isSimple = false) - : DefaultDOTGraphTraits(isSimple) {} - - static std::string getGraphName(const PGOUseFunc *G) { - return std::string(G->getFunc().getName()); - } - - std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { - std::string Result; - raw_string_ostream OS(Result); - - OS << getSimpleNodeName(Node) << ":\\l"; - UseBBInfo *BI = Graph->findBBInfo(Node); - OS << "Count : "; - if (BI && BI->CountValid) - OS << BI->CountValue << "\\l"; - else - OS << "Unknown\\l"; - - if (!PGOInstrSelect) - return Result; - - for (auto BI = Node->begin(); BI != Node->end(); ++BI) { - auto *I = &*BI; - if (!isa<SelectInst>(I)) - continue; - // Display scaled counts for SELECT instruction: - OS << "SELECT : { T = "; - uint64_t TC, FC; - bool HasProf = I->extractProfMetadata(TC, FC); - if (!HasProf) - OS << "Unknown, F = Unknown }\\l"; - else - OS << TC << ", F = " << FC << " }\\l"; - } - return Result; - } -}; - -} // end namespace llvm + F->addFnAttr(Attribute::Cold); + LLVM_DEBUG(dbgs() << "Set cold attribute to function: " << F->getName() + << "\n"); + } + return true; +} + +PGOInstrumentationUse::PGOInstrumentationUse(std::string Filename, + std::string RemappingFilename, + bool IsCS) + : ProfileFileName(std::move(Filename)), + ProfileRemappingFileName(std::move(RemappingFilename)), IsCS(IsCS) { + if (!PGOTestProfileFile.empty()) + ProfileFileName = PGOTestProfileFile; + if (!PGOTestProfileRemappingFile.empty()) + ProfileRemappingFileName = PGOTestProfileRemappingFile; +} + +PreservedAnalyses PGOInstrumentationUse::run(Module &M, + ModuleAnalysisManager &AM) { + + auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto LookupTLI = [&FAM](Function &F) -> TargetLibraryInfo & { + return FAM.getResult<TargetLibraryAnalysis>(F); + }; + auto LookupBPI = [&FAM](Function &F) { + return &FAM.getResult<BranchProbabilityAnalysis>(F); + }; + auto LookupBFI = [&FAM](Function &F) { + return &FAM.getResult<BlockFrequencyAnalysis>(F); + }; + + auto *PSI = &AM.getResult<ProfileSummaryAnalysis>(M); + + if (!annotateAllFunctions(M, ProfileFileName, ProfileRemappingFileName, + LookupTLI, LookupBPI, LookupBFI, PSI, IsCS)) + return PreservedAnalyses::all(); + + return PreservedAnalyses::none(); +} + +bool PGOInstrumentationUseLegacyPass::runOnModule(Module &M) { + if (skipModule(M)) + return false; + + auto LookupTLI = [this](Function &F) -> TargetLibraryInfo & { + return this->getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + }; + auto LookupBPI = [this](Function &F) { + return &this->getAnalysis<BranchProbabilityInfoWrapperPass>(F).getBPI(); + }; + auto LookupBFI = [this](Function &F) { + return &this->getAnalysis<BlockFrequencyInfoWrapperPass>(F).getBFI(); + }; + + auto *PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); + return annotateAllFunctions(M, ProfileFileName, "", LookupTLI, LookupBPI, + LookupBFI, PSI, IsCS); +} + +static std::string getSimpleNodeName(const BasicBlock *Node) { + if (!Node->getName().empty()) + return std::string(Node->getName()); + + std::string SimpleNodeName; + raw_string_ostream OS(SimpleNodeName); + Node->printAsOperand(OS, false); + return OS.str(); +} + +void llvm::setProfMetadata(Module *M, Instruction *TI, + ArrayRef<uint64_t> EdgeCounts, + uint64_t MaxCount) { + MDBuilder MDB(M->getContext()); + assert(MaxCount > 0 && "Bad max count"); + uint64_t Scale = calculateCountScale(MaxCount); + SmallVector<unsigned, 4> Weights; + for (const auto &ECI : EdgeCounts) + Weights.push_back(scaleBranchCount(ECI, Scale)); + + LLVM_DEBUG(dbgs() << "Weight is: "; for (const auto &W + : Weights) { + dbgs() << W << " "; + } dbgs() << "\n";); + + TI->setMetadata(LLVMContext::MD_prof, MDB.createBranchWeights(Weights)); + if (EmitBranchProbability) { + std::string BrCondStr = getBranchCondString(TI); + if (BrCondStr.empty()) + return; + + uint64_t WSum = + std::accumulate(Weights.begin(), Weights.end(), (uint64_t)0, + [](uint64_t w1, uint64_t w2) { return w1 + w2; }); + uint64_t TotalCount = + std::accumulate(EdgeCounts.begin(), EdgeCounts.end(), (uint64_t)0, + [](uint64_t c1, uint64_t c2) { return c1 + c2; }); + Scale = calculateCountScale(WSum); + BranchProbability BP(scaleBranchCount(Weights[0], Scale), + scaleBranchCount(WSum, Scale)); + std::string BranchProbStr; + raw_string_ostream OS(BranchProbStr); + OS << BP; + OS << " (total count : " << TotalCount << ")"; + OS.flush(); + Function *F = TI->getParent()->getParent(); + OptimizationRemarkEmitter ORE(F); + ORE.emit([&]() { + return OptimizationRemark(DEBUG_TYPE, "pgo-instrumentation", TI) + << BrCondStr << " is true with probability : " << BranchProbStr; + }); + } +} + +namespace llvm { + +void setIrrLoopHeaderMetadata(Module *M, Instruction *TI, uint64_t Count) { + MDBuilder MDB(M->getContext()); + TI->setMetadata(llvm::LLVMContext::MD_irr_loop, + MDB.createIrrLoopHeaderWeight(Count)); +} + +template <> struct GraphTraits<PGOUseFunc *> { + using NodeRef = const BasicBlock *; + using ChildIteratorType = const_succ_iterator; + using nodes_iterator = pointer_iterator<Function::const_iterator>; + + static NodeRef getEntryNode(const PGOUseFunc *G) { + return &G->getFunc().front(); + } + + static ChildIteratorType child_begin(const NodeRef N) { + return succ_begin(N); + } + + static ChildIteratorType child_end(const NodeRef N) { return succ_end(N); } + + static nodes_iterator nodes_begin(const PGOUseFunc *G) { + return nodes_iterator(G->getFunc().begin()); + } + + static nodes_iterator nodes_end(const PGOUseFunc *G) { + return nodes_iterator(G->getFunc().end()); + } +}; + +template <> struct DOTGraphTraits<PGOUseFunc *> : DefaultDOTGraphTraits { + explicit DOTGraphTraits(bool isSimple = false) + : DefaultDOTGraphTraits(isSimple) {} + + static std::string getGraphName(const PGOUseFunc *G) { + return std::string(G->getFunc().getName()); + } + + std::string getNodeLabel(const BasicBlock *Node, const PGOUseFunc *Graph) { + std::string Result; + raw_string_ostream OS(Result); + + OS << getSimpleNodeName(Node) << ":\\l"; + UseBBInfo *BI = Graph->findBBInfo(Node); + OS << "Count : "; + if (BI && BI->CountValid) + OS << BI->CountValue << "\\l"; + else + OS << "Unknown\\l"; + + if (!PGOInstrSelect) + return Result; + + for (auto BI = Node->begin(); BI != Node->end(); ++BI) { + auto *I = &*BI; + if (!isa<SelectInst>(I)) + continue; + // Display scaled counts for SELECT instruction: + OS << "SELECT : { T = "; + uint64_t TC, FC; + bool HasProf = I->extractProfMetadata(TC, FC); + if (!HasProf) + OS << "Unknown, F = Unknown }\\l"; + else + OS << TC << ", F = " << FC << " }\\l"; + } + return Result; + } +}; + +} // end namespace llvm diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOMemOPSizeOpt.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOMemOPSizeOpt.cpp index edc72d79eb..55a93b6152 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOMemOPSizeOpt.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PGOMemOPSizeOpt.cpp @@ -1,527 +1,527 @@ -//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file implements the transformation that optimizes memory intrinsics -// such as memcpy using the size value profile. When memory intrinsic size -// value profile metadata is available, a single memory intrinsic is expanded -// to a sequence of guarded specialized versions that are called with the -// hottest size(s), for later expansion into more optimal inline sequences. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/ADT/Twine.h" -#include "llvm/Analysis/BlockFrequencyInfo.h" -#include "llvm/Analysis/DomTreeUpdater.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/OptimizationRemarkEmitter.h" +//===-- PGOMemOPSizeOpt.cpp - Optimizations based on value profiling ===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file implements the transformation that optimizes memory intrinsics +// such as memcpy using the size value profile. When memory intrinsic size +// value profile metadata is available, a single memory intrinsic is expanded +// to a sequence of guarded specialized versions that are called with the +// hottest size(s), for later expansion into more optimal inline sequences. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/ADT/Twine.h" +#include "llvm/Analysis/BlockFrequencyInfo.h" +#include "llvm/Analysis/DomTreeUpdater.h" +#include "llvm/Analysis/GlobalsModRef.h" +#include "llvm/Analysis/OptimizationRemarkEmitter.h" #include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/IR/BasicBlock.h" -#include "llvm/IR/DerivedTypes.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/InstrTypes.h" -#include "llvm/IR/Instruction.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/PassManager.h" -#include "llvm/IR/Type.h" -#include "llvm/InitializePasses.h" -#include "llvm/Pass.h" -#include "llvm/PassRegistry.h" -#include "llvm/ProfileData/InstrProf.h" +#include "llvm/IR/BasicBlock.h" +#include "llvm/IR/DerivedTypes.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/InstrTypes.h" +#include "llvm/IR/Instruction.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/PassManager.h" +#include "llvm/IR/Type.h" +#include "llvm/InitializePasses.h" +#include "llvm/Pass.h" +#include "llvm/PassRegistry.h" +#include "llvm/ProfileData/InstrProf.h" #define INSTR_PROF_VALUE_PROF_MEMOP_API #include "llvm/ProfileData/InstrProfData.inc" -#include "llvm/Support/Casting.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/ErrorHandling.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include <cassert> -#include <cstdint> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "pgo-memop-opt" - -STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized."); -STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated."); - -// The minimum call count to optimize memory intrinsic calls. -static cl::opt<unsigned> - MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore, - cl::init(1000), - cl::desc("The minimum count to optimize memory " - "intrinsic calls")); - -// Command line option to disable memory intrinsic optimization. The default is -// false. This is for debug purpose. -static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false), - cl::Hidden, cl::desc("Disable optimize")); - -// The percent threshold to optimize memory intrinsic calls. -static cl::opt<unsigned> - MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40), - cl::Hidden, cl::ZeroOrMore, - cl::desc("The percentage threshold for the " - "memory intrinsic calls optimization")); - -// Maximum number of versions for optimizing memory intrinsic call. -static cl::opt<unsigned> - MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden, - cl::ZeroOrMore, - cl::desc("The max version for the optimized memory " - " intrinsic calls")); - -// Scale the counts from the annotation using the BB count value. -static cl::opt<bool> - MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden, - cl::desc("Scale the memop size counts using the basic " - " block count value")); - -cl::opt<bool> - MemOPOptMemcmpBcmp("pgo-memop-optimize-memcmp-bcmp", cl::init(true), - cl::Hidden, - cl::desc("Size-specialize memcmp and bcmp calls")); - +#include "llvm/Support/Casting.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/ErrorHandling.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Instrumentation/PGOInstrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include <cassert> +#include <cstdint> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "pgo-memop-opt" + +STATISTIC(NumOfPGOMemOPOpt, "Number of memop intrinsics optimized."); +STATISTIC(NumOfPGOMemOPAnnotate, "Number of memop intrinsics annotated."); + +// The minimum call count to optimize memory intrinsic calls. +static cl::opt<unsigned> + MemOPCountThreshold("pgo-memop-count-threshold", cl::Hidden, cl::ZeroOrMore, + cl::init(1000), + cl::desc("The minimum count to optimize memory " + "intrinsic calls")); + +// Command line option to disable memory intrinsic optimization. The default is +// false. This is for debug purpose. +static cl::opt<bool> DisableMemOPOPT("disable-memop-opt", cl::init(false), + cl::Hidden, cl::desc("Disable optimize")); + +// The percent threshold to optimize memory intrinsic calls. +static cl::opt<unsigned> + MemOPPercentThreshold("pgo-memop-percent-threshold", cl::init(40), + cl::Hidden, cl::ZeroOrMore, + cl::desc("The percentage threshold for the " + "memory intrinsic calls optimization")); + +// Maximum number of versions for optimizing memory intrinsic call. +static cl::opt<unsigned> + MemOPMaxVersion("pgo-memop-max-version", cl::init(3), cl::Hidden, + cl::ZeroOrMore, + cl::desc("The max version for the optimized memory " + " intrinsic calls")); + +// Scale the counts from the annotation using the BB count value. +static cl::opt<bool> + MemOPScaleCount("pgo-memop-scale-count", cl::init(true), cl::Hidden, + cl::desc("Scale the memop size counts using the basic " + " block count value")); + +cl::opt<bool> + MemOPOptMemcmpBcmp("pgo-memop-optimize-memcmp-bcmp", cl::init(true), + cl::Hidden, + cl::desc("Size-specialize memcmp and bcmp calls")); + static cl::opt<unsigned> MemOpMaxOptSize("memop-value-prof-max-opt-size", cl::Hidden, cl::init(128), cl::desc("Optimize the memop size <= this value")); -namespace { -class PGOMemOPSizeOptLegacyPass : public FunctionPass { -public: - static char ID; - - PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) { - initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry()); - } - - StringRef getPassName() const override { return "PGOMemOPSize"; } - -private: - bool runOnFunction(Function &F) override; - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<BlockFrequencyInfoWrapperPass>(); - AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - AU.addRequired<TargetLibraryInfoWrapperPass>(); - } -}; -} // end anonymous namespace - -char PGOMemOPSizeOptLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", - "Optimize memory intrinsic using its size value profile", - false, false) -INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", - "Optimize memory intrinsic using its size value profile", - false, false) - -FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() { - return new PGOMemOPSizeOptLegacyPass(); -} - -namespace { - -static const char *getMIName(const MemIntrinsic *MI) { - switch (MI->getIntrinsicID()) { - case Intrinsic::memcpy: - return "memcpy"; - case Intrinsic::memmove: - return "memmove"; - case Intrinsic::memset: - return "memset"; - default: - return "unknown"; - } -} - -// A class that abstracts a memop (memcpy, memmove, memset, memcmp and bcmp). -struct MemOp { - Instruction *I; - MemOp(MemIntrinsic *MI) : I(MI) {} - MemOp(CallInst *CI) : I(CI) {} - MemIntrinsic *asMI() { return dyn_cast<MemIntrinsic>(I); } - CallInst *asCI() { return cast<CallInst>(I); } - MemOp clone() { - if (auto MI = asMI()) - return MemOp(cast<MemIntrinsic>(MI->clone())); - return MemOp(cast<CallInst>(asCI()->clone())); - } - Value *getLength() { - if (auto MI = asMI()) - return MI->getLength(); - return asCI()->getArgOperand(2); - } - void setLength(Value *Length) { - if (auto MI = asMI()) - return MI->setLength(Length); - asCI()->setArgOperand(2, Length); - } - StringRef getFuncName() { - if (auto MI = asMI()) - return MI->getCalledFunction()->getName(); - return asCI()->getCalledFunction()->getName(); - } - bool isMemmove() { - if (auto MI = asMI()) - if (MI->getIntrinsicID() == Intrinsic::memmove) - return true; - return false; - } - bool isMemcmp(TargetLibraryInfo &TLI) { - LibFunc Func; - if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) && - Func == LibFunc_memcmp) { - return true; - } - return false; - } - bool isBcmp(TargetLibraryInfo &TLI) { - LibFunc Func; - if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) && - Func == LibFunc_bcmp) { - return true; - } - return false; - } - const char *getName(TargetLibraryInfo &TLI) { - if (auto MI = asMI()) - return getMIName(MI); - LibFunc Func; - if (TLI.getLibFunc(*asCI(), Func)) { - if (Func == LibFunc_memcmp) - return "memcmp"; - if (Func == LibFunc_bcmp) - return "bcmp"; - } - llvm_unreachable("Must be MemIntrinsic or memcmp/bcmp CallInst"); - return nullptr; - } -}; - -class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> { -public: - MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI, - OptimizationRemarkEmitter &ORE, DominatorTree *DT, - TargetLibraryInfo &TLI) - : Func(Func), BFI(BFI), ORE(ORE), DT(DT), TLI(TLI), Changed(false) { - ValueDataArray = - std::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2); - } - bool isChanged() const { return Changed; } - void perform() { - WorkList.clear(); - visit(Func); - - for (auto &MO : WorkList) { - ++NumOfPGOMemOPAnnotate; - if (perform(MO)) { - Changed = true; - ++NumOfPGOMemOPOpt; - LLVM_DEBUG(dbgs() << "MemOP call: " << MO.getFuncName() - << "is Transformed.\n"); - } - } - } - - void visitMemIntrinsic(MemIntrinsic &MI) { - Value *Length = MI.getLength(); - // Not perform on constant length calls. - if (dyn_cast<ConstantInt>(Length)) - return; - WorkList.push_back(MemOp(&MI)); - } - - void visitCallInst(CallInst &CI) { - LibFunc Func; - if (TLI.getLibFunc(CI, Func) && - (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && +namespace { +class PGOMemOPSizeOptLegacyPass : public FunctionPass { +public: + static char ID; + + PGOMemOPSizeOptLegacyPass() : FunctionPass(ID) { + initializePGOMemOPSizeOptLegacyPassPass(*PassRegistry::getPassRegistry()); + } + + StringRef getPassName() const override { return "PGOMemOPSize"; } + +private: + bool runOnFunction(Function &F) override; + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<BlockFrequencyInfoWrapperPass>(); + AU.addRequired<OptimizationRemarkEmitterWrapperPass>(); + AU.addPreserved<GlobalsAAWrapperPass>(); + AU.addPreserved<DominatorTreeWrapperPass>(); + AU.addRequired<TargetLibraryInfoWrapperPass>(); + } +}; +} // end anonymous namespace + +char PGOMemOPSizeOptLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", + "Optimize memory intrinsic using its size value profile", + false, false) +INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(PGOMemOPSizeOptLegacyPass, "pgo-memop-opt", + "Optimize memory intrinsic using its size value profile", + false, false) + +FunctionPass *llvm::createPGOMemOPSizeOptLegacyPass() { + return new PGOMemOPSizeOptLegacyPass(); +} + +namespace { + +static const char *getMIName(const MemIntrinsic *MI) { + switch (MI->getIntrinsicID()) { + case Intrinsic::memcpy: + return "memcpy"; + case Intrinsic::memmove: + return "memmove"; + case Intrinsic::memset: + return "memset"; + default: + return "unknown"; + } +} + +// A class that abstracts a memop (memcpy, memmove, memset, memcmp and bcmp). +struct MemOp { + Instruction *I; + MemOp(MemIntrinsic *MI) : I(MI) {} + MemOp(CallInst *CI) : I(CI) {} + MemIntrinsic *asMI() { return dyn_cast<MemIntrinsic>(I); } + CallInst *asCI() { return cast<CallInst>(I); } + MemOp clone() { + if (auto MI = asMI()) + return MemOp(cast<MemIntrinsic>(MI->clone())); + return MemOp(cast<CallInst>(asCI()->clone())); + } + Value *getLength() { + if (auto MI = asMI()) + return MI->getLength(); + return asCI()->getArgOperand(2); + } + void setLength(Value *Length) { + if (auto MI = asMI()) + return MI->setLength(Length); + asCI()->setArgOperand(2, Length); + } + StringRef getFuncName() { + if (auto MI = asMI()) + return MI->getCalledFunction()->getName(); + return asCI()->getCalledFunction()->getName(); + } + bool isMemmove() { + if (auto MI = asMI()) + if (MI->getIntrinsicID() == Intrinsic::memmove) + return true; + return false; + } + bool isMemcmp(TargetLibraryInfo &TLI) { + LibFunc Func; + if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) && + Func == LibFunc_memcmp) { + return true; + } + return false; + } + bool isBcmp(TargetLibraryInfo &TLI) { + LibFunc Func; + if (asMI() == nullptr && TLI.getLibFunc(*asCI(), Func) && + Func == LibFunc_bcmp) { + return true; + } + return false; + } + const char *getName(TargetLibraryInfo &TLI) { + if (auto MI = asMI()) + return getMIName(MI); + LibFunc Func; + if (TLI.getLibFunc(*asCI(), Func)) { + if (Func == LibFunc_memcmp) + return "memcmp"; + if (Func == LibFunc_bcmp) + return "bcmp"; + } + llvm_unreachable("Must be MemIntrinsic or memcmp/bcmp CallInst"); + return nullptr; + } +}; + +class MemOPSizeOpt : public InstVisitor<MemOPSizeOpt> { +public: + MemOPSizeOpt(Function &Func, BlockFrequencyInfo &BFI, + OptimizationRemarkEmitter &ORE, DominatorTree *DT, + TargetLibraryInfo &TLI) + : Func(Func), BFI(BFI), ORE(ORE), DT(DT), TLI(TLI), Changed(false) { + ValueDataArray = + std::make_unique<InstrProfValueData[]>(MemOPMaxVersion + 2); + } + bool isChanged() const { return Changed; } + void perform() { + WorkList.clear(); + visit(Func); + + for (auto &MO : WorkList) { + ++NumOfPGOMemOPAnnotate; + if (perform(MO)) { + Changed = true; + ++NumOfPGOMemOPOpt; + LLVM_DEBUG(dbgs() << "MemOP call: " << MO.getFuncName() + << "is Transformed.\n"); + } + } + } + + void visitMemIntrinsic(MemIntrinsic &MI) { + Value *Length = MI.getLength(); + // Not perform on constant length calls. + if (dyn_cast<ConstantInt>(Length)) + return; + WorkList.push_back(MemOp(&MI)); + } + + void visitCallInst(CallInst &CI) { + LibFunc Func; + if (TLI.getLibFunc(CI, Func) && + (Func == LibFunc_memcmp || Func == LibFunc_bcmp) && !isa<ConstantInt>(CI.getArgOperand(2))) { - WorkList.push_back(MemOp(&CI)); - } - } - -private: - Function &Func; - BlockFrequencyInfo &BFI; - OptimizationRemarkEmitter &ORE; - DominatorTree *DT; - TargetLibraryInfo &TLI; - bool Changed; - std::vector<MemOp> WorkList; - // The space to read the profile annotation. - std::unique_ptr<InstrProfValueData[]> ValueDataArray; - bool perform(MemOp MO); -}; - -static bool isProfitable(uint64_t Count, uint64_t TotalCount) { - assert(Count <= TotalCount); - if (Count < MemOPCountThreshold) - return false; - if (Count < TotalCount * MemOPPercentThreshold / 100) - return false; - return true; -} - -static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num, - uint64_t Denom) { - if (!MemOPScaleCount) - return Count; - bool Overflowed; - uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed); - return ScaleCount / Denom; -} - -bool MemOPSizeOpt::perform(MemOp MO) { - assert(MO.I); - if (MO.isMemmove()) - return false; - if (!MemOPOptMemcmpBcmp && (MO.isMemcmp(TLI) || MO.isBcmp(TLI))) - return false; - - uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2; - uint64_t TotalCount; - if (!getValueProfDataFromInst(*MO.I, IPVK_MemOPSize, MaxNumPromotions, - ValueDataArray.get(), NumVals, TotalCount)) - return false; - - uint64_t ActualCount = TotalCount; - uint64_t SavedTotalCount = TotalCount; - if (MemOPScaleCount) { - auto BBEdgeCount = BFI.getBlockProfileCount(MO.I->getParent()); - if (!BBEdgeCount) - return false; - ActualCount = *BBEdgeCount; - } - - ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals); - LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count " - << ActualCount << "\n"); - LLVM_DEBUG( - for (auto &VD - : VDs) { dbgs() << " (" << VD.Value << "," << VD.Count << ")\n"; }); - - if (ActualCount < MemOPCountThreshold) - return false; - // Skip if the total value profiled count is 0, in which case we can't - // scale up the counts properly (and there is no profitable transformation). - if (TotalCount == 0) - return false; - - TotalCount = ActualCount; - if (MemOPScaleCount) - LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount - << " denominator = " << SavedTotalCount << "\n"); - - // Keeping track of the count of the default case: - uint64_t RemainCount = TotalCount; - uint64_t SavedRemainCount = SavedTotalCount; - SmallVector<uint64_t, 16> SizeIds; - SmallVector<uint64_t, 16> CaseCounts; - uint64_t MaxCount = 0; - unsigned Version = 0; - // Default case is in the front -- save the slot here. - CaseCounts.push_back(0); - for (auto &VD : VDs) { - int64_t V = VD.Value; - uint64_t C = VD.Count; - if (MemOPScaleCount) - C = getScaledCount(C, ActualCount, SavedTotalCount); - + WorkList.push_back(MemOp(&CI)); + } + } + +private: + Function &Func; + BlockFrequencyInfo &BFI; + OptimizationRemarkEmitter &ORE; + DominatorTree *DT; + TargetLibraryInfo &TLI; + bool Changed; + std::vector<MemOp> WorkList; + // The space to read the profile annotation. + std::unique_ptr<InstrProfValueData[]> ValueDataArray; + bool perform(MemOp MO); +}; + +static bool isProfitable(uint64_t Count, uint64_t TotalCount) { + assert(Count <= TotalCount); + if (Count < MemOPCountThreshold) + return false; + if (Count < TotalCount * MemOPPercentThreshold / 100) + return false; + return true; +} + +static inline uint64_t getScaledCount(uint64_t Count, uint64_t Num, + uint64_t Denom) { + if (!MemOPScaleCount) + return Count; + bool Overflowed; + uint64_t ScaleCount = SaturatingMultiply(Count, Num, &Overflowed); + return ScaleCount / Denom; +} + +bool MemOPSizeOpt::perform(MemOp MO) { + assert(MO.I); + if (MO.isMemmove()) + return false; + if (!MemOPOptMemcmpBcmp && (MO.isMemcmp(TLI) || MO.isBcmp(TLI))) + return false; + + uint32_t NumVals, MaxNumPromotions = MemOPMaxVersion + 2; + uint64_t TotalCount; + if (!getValueProfDataFromInst(*MO.I, IPVK_MemOPSize, MaxNumPromotions, + ValueDataArray.get(), NumVals, TotalCount)) + return false; + + uint64_t ActualCount = TotalCount; + uint64_t SavedTotalCount = TotalCount; + if (MemOPScaleCount) { + auto BBEdgeCount = BFI.getBlockProfileCount(MO.I->getParent()); + if (!BBEdgeCount) + return false; + ActualCount = *BBEdgeCount; + } + + ArrayRef<InstrProfValueData> VDs(ValueDataArray.get(), NumVals); + LLVM_DEBUG(dbgs() << "Read one memory intrinsic profile with count " + << ActualCount << "\n"); + LLVM_DEBUG( + for (auto &VD + : VDs) { dbgs() << " (" << VD.Value << "," << VD.Count << ")\n"; }); + + if (ActualCount < MemOPCountThreshold) + return false; + // Skip if the total value profiled count is 0, in which case we can't + // scale up the counts properly (and there is no profitable transformation). + if (TotalCount == 0) + return false; + + TotalCount = ActualCount; + if (MemOPScaleCount) + LLVM_DEBUG(dbgs() << "Scale counts: numerator = " << ActualCount + << " denominator = " << SavedTotalCount << "\n"); + + // Keeping track of the count of the default case: + uint64_t RemainCount = TotalCount; + uint64_t SavedRemainCount = SavedTotalCount; + SmallVector<uint64_t, 16> SizeIds; + SmallVector<uint64_t, 16> CaseCounts; + uint64_t MaxCount = 0; + unsigned Version = 0; + // Default case is in the front -- save the slot here. + CaseCounts.push_back(0); + for (auto &VD : VDs) { + int64_t V = VD.Value; + uint64_t C = VD.Count; + if (MemOPScaleCount) + C = getScaledCount(C, ActualCount, SavedTotalCount); + if (!InstrProfIsSingleValRange(V) || V > MemOpMaxOptSize) - continue; - - // ValueCounts are sorted on the count. Break at the first un-profitable - // value. - if (!isProfitable(C, RemainCount)) - break; - - SizeIds.push_back(V); - CaseCounts.push_back(C); - if (C > MaxCount) - MaxCount = C; - - assert(RemainCount >= C); - RemainCount -= C; - assert(SavedRemainCount >= VD.Count); - SavedRemainCount -= VD.Count; - - if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0) - break; - } - - if (Version == 0) - return false; - - CaseCounts[0] = RemainCount; - if (RemainCount > MaxCount) - MaxCount = RemainCount; - - uint64_t SumForOpt = TotalCount - RemainCount; - - LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version - << " Versions (covering " << SumForOpt << " out of " - << TotalCount << ")\n"); - - // mem_op(..., size) - // ==> - // switch (size) { - // case s1: - // mem_op(..., s1); - // goto merge_bb; - // case s2: - // mem_op(..., s2); - // goto merge_bb; - // ... - // default: - // mem_op(..., size); - // goto merge_bb; - // } - // merge_bb: - - BasicBlock *BB = MO.I->getParent(); - LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n"); - LLVM_DEBUG(dbgs() << *BB << "\n"); - auto OrigBBFreq = BFI.getBlockFreq(BB); - - BasicBlock *DefaultBB = SplitBlock(BB, MO.I, DT); - BasicBlock::iterator It(*MO.I); - ++It; - assert(It != DefaultBB->end()); - BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT); - MergeBB->setName("MemOP.Merge"); - BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency()); - DefaultBB->setName("MemOP.Default"); - - DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); - auto &Ctx = Func.getContext(); - IRBuilder<> IRB(BB); - BB->getTerminator()->eraseFromParent(); - Value *SizeVar = MO.getLength(); - SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size()); - Type *MemOpTy = MO.I->getType(); - PHINode *PHI = nullptr; - if (!MemOpTy->isVoidTy()) { - // Insert a phi for the return values at the merge block. - IRBuilder<> IRBM(MergeBB->getFirstNonPHI()); - PHI = IRBM.CreatePHI(MemOpTy, SizeIds.size() + 1, "MemOP.RVMerge"); - MO.I->replaceAllUsesWith(PHI); - PHI->addIncoming(MO.I, DefaultBB); - } - - // Clear the value profile data. - MO.I->setMetadata(LLVMContext::MD_prof, nullptr); - // If all promoted, we don't need the MD.prof metadata. - if (SavedRemainCount > 0 || Version != NumVals) - // Otherwise we need update with the un-promoted records back. - annotateValueSite(*Func.getParent(), *MO.I, VDs.slice(Version), - SavedRemainCount, IPVK_MemOPSize, NumVals); - - LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n"); - - std::vector<DominatorTree::UpdateType> Updates; - if (DT) - Updates.reserve(2 * SizeIds.size()); - - for (uint64_t SizeId : SizeIds) { - BasicBlock *CaseBB = BasicBlock::Create( - Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB); - MemOp NewMO = MO.clone(); - // Fix the argument. - auto *SizeType = dyn_cast<IntegerType>(NewMO.getLength()->getType()); - assert(SizeType && "Expected integer type size argument."); - ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId); - NewMO.setLength(CaseSizeId); - CaseBB->getInstList().push_back(NewMO.I); - IRBuilder<> IRBCase(CaseBB); - IRBCase.CreateBr(MergeBB); - SI->addCase(CaseSizeId, CaseBB); - if (!MemOpTy->isVoidTy()) - PHI->addIncoming(NewMO.I, CaseBB); - if (DT) { - Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB}); - Updates.push_back({DominatorTree::Insert, BB, CaseBB}); - } - LLVM_DEBUG(dbgs() << *CaseBB << "\n"); - } - DTU.applyUpdates(Updates); - Updates.clear(); - - setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount); - - LLVM_DEBUG(dbgs() << *BB << "\n"); - LLVM_DEBUG(dbgs() << *DefaultBB << "\n"); - LLVM_DEBUG(dbgs() << *MergeBB << "\n"); - - ORE.emit([&]() { - using namespace ore; - return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MO.I) - << "optimized " << NV("Memop", MO.getName(TLI)) << " with count " - << NV("Count", SumForOpt) << " out of " << NV("Total", TotalCount) - << " for " << NV("Versions", Version) << " versions"; - }); - - return true; -} -} // namespace - -static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI, - OptimizationRemarkEmitter &ORE, - DominatorTree *DT, TargetLibraryInfo &TLI) { - if (DisableMemOPOPT) - return false; - - if (F.hasFnAttribute(Attribute::OptimizeForSize)) - return false; - MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT, TLI); - MemOPSizeOpt.perform(); - return MemOPSizeOpt.isChanged(); -} - -bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) { - BlockFrequencyInfo &BFI = - getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); - auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); - auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); - DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; - TargetLibraryInfo &TLI = - getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - return PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI); -} - -namespace llvm { -char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID; - -PreservedAnalyses PGOMemOPSizeOpt::run(Function &F, - FunctionAnalysisManager &FAM) { - auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); - auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); - auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); - auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); - bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI); - if (!Changed) - return PreservedAnalyses::all(); - auto PA = PreservedAnalyses(); - PA.preserve<GlobalsAA>(); - PA.preserve<DominatorTreeAnalysis>(); - return PA; -} -} // namespace llvm + continue; + + // ValueCounts are sorted on the count. Break at the first un-profitable + // value. + if (!isProfitable(C, RemainCount)) + break; + + SizeIds.push_back(V); + CaseCounts.push_back(C); + if (C > MaxCount) + MaxCount = C; + + assert(RemainCount >= C); + RemainCount -= C; + assert(SavedRemainCount >= VD.Count); + SavedRemainCount -= VD.Count; + + if (++Version > MemOPMaxVersion && MemOPMaxVersion != 0) + break; + } + + if (Version == 0) + return false; + + CaseCounts[0] = RemainCount; + if (RemainCount > MaxCount) + MaxCount = RemainCount; + + uint64_t SumForOpt = TotalCount - RemainCount; + + LLVM_DEBUG(dbgs() << "Optimize one memory intrinsic call to " << Version + << " Versions (covering " << SumForOpt << " out of " + << TotalCount << ")\n"); + + // mem_op(..., size) + // ==> + // switch (size) { + // case s1: + // mem_op(..., s1); + // goto merge_bb; + // case s2: + // mem_op(..., s2); + // goto merge_bb; + // ... + // default: + // mem_op(..., size); + // goto merge_bb; + // } + // merge_bb: + + BasicBlock *BB = MO.I->getParent(); + LLVM_DEBUG(dbgs() << "\n\n== Basic Block Before ==\n"); + LLVM_DEBUG(dbgs() << *BB << "\n"); + auto OrigBBFreq = BFI.getBlockFreq(BB); + + BasicBlock *DefaultBB = SplitBlock(BB, MO.I, DT); + BasicBlock::iterator It(*MO.I); + ++It; + assert(It != DefaultBB->end()); + BasicBlock *MergeBB = SplitBlock(DefaultBB, &(*It), DT); + MergeBB->setName("MemOP.Merge"); + BFI.setBlockFreq(MergeBB, OrigBBFreq.getFrequency()); + DefaultBB->setName("MemOP.Default"); + + DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager); + auto &Ctx = Func.getContext(); + IRBuilder<> IRB(BB); + BB->getTerminator()->eraseFromParent(); + Value *SizeVar = MO.getLength(); + SwitchInst *SI = IRB.CreateSwitch(SizeVar, DefaultBB, SizeIds.size()); + Type *MemOpTy = MO.I->getType(); + PHINode *PHI = nullptr; + if (!MemOpTy->isVoidTy()) { + // Insert a phi for the return values at the merge block. + IRBuilder<> IRBM(MergeBB->getFirstNonPHI()); + PHI = IRBM.CreatePHI(MemOpTy, SizeIds.size() + 1, "MemOP.RVMerge"); + MO.I->replaceAllUsesWith(PHI); + PHI->addIncoming(MO.I, DefaultBB); + } + + // Clear the value profile data. + MO.I->setMetadata(LLVMContext::MD_prof, nullptr); + // If all promoted, we don't need the MD.prof metadata. + if (SavedRemainCount > 0 || Version != NumVals) + // Otherwise we need update with the un-promoted records back. + annotateValueSite(*Func.getParent(), *MO.I, VDs.slice(Version), + SavedRemainCount, IPVK_MemOPSize, NumVals); + + LLVM_DEBUG(dbgs() << "\n\n== Basic Block After==\n"); + + std::vector<DominatorTree::UpdateType> Updates; + if (DT) + Updates.reserve(2 * SizeIds.size()); + + for (uint64_t SizeId : SizeIds) { + BasicBlock *CaseBB = BasicBlock::Create( + Ctx, Twine("MemOP.Case.") + Twine(SizeId), &Func, DefaultBB); + MemOp NewMO = MO.clone(); + // Fix the argument. + auto *SizeType = dyn_cast<IntegerType>(NewMO.getLength()->getType()); + assert(SizeType && "Expected integer type size argument."); + ConstantInt *CaseSizeId = ConstantInt::get(SizeType, SizeId); + NewMO.setLength(CaseSizeId); + CaseBB->getInstList().push_back(NewMO.I); + IRBuilder<> IRBCase(CaseBB); + IRBCase.CreateBr(MergeBB); + SI->addCase(CaseSizeId, CaseBB); + if (!MemOpTy->isVoidTy()) + PHI->addIncoming(NewMO.I, CaseBB); + if (DT) { + Updates.push_back({DominatorTree::Insert, CaseBB, MergeBB}); + Updates.push_back({DominatorTree::Insert, BB, CaseBB}); + } + LLVM_DEBUG(dbgs() << *CaseBB << "\n"); + } + DTU.applyUpdates(Updates); + Updates.clear(); + + setProfMetadata(Func.getParent(), SI, CaseCounts, MaxCount); + + LLVM_DEBUG(dbgs() << *BB << "\n"); + LLVM_DEBUG(dbgs() << *DefaultBB << "\n"); + LLVM_DEBUG(dbgs() << *MergeBB << "\n"); + + ORE.emit([&]() { + using namespace ore; + return OptimizationRemark(DEBUG_TYPE, "memopt-opt", MO.I) + << "optimized " << NV("Memop", MO.getName(TLI)) << " with count " + << NV("Count", SumForOpt) << " out of " << NV("Total", TotalCount) + << " for " << NV("Versions", Version) << " versions"; + }); + + return true; +} +} // namespace + +static bool PGOMemOPSizeOptImpl(Function &F, BlockFrequencyInfo &BFI, + OptimizationRemarkEmitter &ORE, + DominatorTree *DT, TargetLibraryInfo &TLI) { + if (DisableMemOPOPT) + return false; + + if (F.hasFnAttribute(Attribute::OptimizeForSize)) + return false; + MemOPSizeOpt MemOPSizeOpt(F, BFI, ORE, DT, TLI); + MemOPSizeOpt.perform(); + return MemOPSizeOpt.isChanged(); +} + +bool PGOMemOPSizeOptLegacyPass::runOnFunction(Function &F) { + BlockFrequencyInfo &BFI = + getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI(); + auto &ORE = getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE(); + auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>(); + DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr; + TargetLibraryInfo &TLI = + getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + return PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI); +} + +namespace llvm { +char &PGOMemOPSizeOptID = PGOMemOPSizeOptLegacyPass::ID; + +PreservedAnalyses PGOMemOPSizeOpt::run(Function &F, + FunctionAnalysisManager &FAM) { + auto &BFI = FAM.getResult<BlockFrequencyAnalysis>(F); + auto &ORE = FAM.getResult<OptimizationRemarkEmitterAnalysis>(F); + auto *DT = FAM.getCachedResult<DominatorTreeAnalysis>(F); + auto &TLI = FAM.getResult<TargetLibraryAnalysis>(F); + bool Changed = PGOMemOPSizeOptImpl(F, BFI, ORE, DT, TLI); + if (!Changed) + return PreservedAnalyses::all(); + auto PA = PreservedAnalyses(); + PA.preserve<GlobalsAA>(); + PA.preserve<DominatorTreeAnalysis>(); + return PA; +} +} // namespace llvm diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PoisonChecking.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PoisonChecking.cpp index bb822f7b27..fc52672618 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/PoisonChecking.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/PoisonChecking.cpp @@ -1,359 +1,359 @@ -//===- PoisonChecking.cpp - -----------------------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Implements a transform pass which instruments IR such that poison semantics -// are made explicit. That is, it provides a (possibly partial) executable -// semantics for every instruction w.r.t. poison as specified in the LLVM -// LangRef. There are obvious parallels to the sanitizer tools, but this pass -// is focused purely on the semantics of LLVM IR, not any particular source -// language. If you're looking for something to see if your C/C++ contains -// UB, this is not it. -// -// The rewritten semantics of each instruction will include the following -// components: -// -// 1) The original instruction, unmodified. -// 2) A propagation rule which translates dynamic information about the poison -// state of each input to whether the dynamic output of the instruction -// produces poison. -// 3) A creation rule which validates any poison producing flags on the -// instruction itself (e.g. checks for overflow on nsw). -// 4) A check rule which traps (to a handler function) if this instruction must -// execute undefined behavior given the poison state of it's inputs. -// -// This is a must analysis based transform; that is, the resulting code may -// produce a false negative result (not report UB when actually exists -// according to the LangRef spec), but should never produce a false positive -// (report UB where it doesn't exist). -// -// Use cases for this pass include: -// - Understanding (and testing!) the implications of the definition of poison -// from the LangRef. -// - Validating the output of a IR fuzzer to ensure that all programs produced -// are well defined on the specific input used. -// - Finding/confirming poison specific miscompiles by checking the poison -// status of an input/IR pair is the same before and after an optimization -// transform. -// - Checking that a bugpoint reduction does not introduce UB which didn't -// exist in the original program being reduced. -// -// The major sources of inaccuracy are currently: -// - Most validation rules not yet implemented for instructions with poison -// relavant flags. At the moment, only nsw/nuw on add/sub are supported. -// - UB which is control dependent on a branch on poison is not yet -// reported. Currently, only data flow dependence is modeled. -// - Poison which is propagated through memory is not modeled. As such, -// storing poison to memory and then reloading it will cause a false negative -// as we consider the reloaded value to not be poisoned. -// - Poison propagation across function boundaries is not modeled. At the -// moment, all arguments and return values are assumed not to be poison. -// - Undef is not modeled. In particular, the optimizer's freedom to pick -// concrete values for undef bits so as to maximize potential for producing -// poison is not modeled. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/PoisonChecking.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/MemoryBuiltins.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InstVisitor.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/PatternMatch.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" - -using namespace llvm; - -#define DEBUG_TYPE "poison-checking" - -static cl::opt<bool> -LocalCheck("poison-checking-function-local", - cl::init(false), - cl::desc("Check that returns are non-poison (for testing)")); - - -static bool isConstantFalse(Value* V) { - assert(V->getType()->isIntegerTy(1)); - if (auto *CI = dyn_cast<ConstantInt>(V)) - return CI->isZero(); - return false; -} - -static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) { - if (Ops.size() == 0) - return B.getFalse(); - unsigned i = 0; - for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {} - if (i == Ops.size()) - return B.getFalse(); - Value *Accum = Ops[i++]; - for (; i < Ops.size(); i++) - if (!isConstantFalse(Ops[i])) - Accum = B.CreateOr(Accum, Ops[i]); - return Accum; -} - -static void generateCreationChecksForBinOp(Instruction &I, - SmallVectorImpl<Value*> &Checks) { - assert(isa<BinaryOperator>(I)); - - IRBuilder<> B(&I); - Value *LHS = I.getOperand(0); - Value *RHS = I.getOperand(1); - switch (I.getOpcode()) { - default: - return; - case Instruction::Add: { - if (I.hasNoSignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - if (I.hasNoUnsignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - break; - } - case Instruction::Sub: { - if (I.hasNoSignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - if (I.hasNoUnsignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - break; - } - case Instruction::Mul: { - if (I.hasNoSignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - if (I.hasNoUnsignedWrap()) { - auto *OverflowOp = - B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS); - Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); - } - break; - } - case Instruction::UDiv: { - if (I.isExact()) { - auto *Check = - B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS), - ConstantInt::get(LHS->getType(), 0)); - Checks.push_back(Check); - } - break; - } - case Instruction::SDiv: { - if (I.isExact()) { - auto *Check = - B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS), - ConstantInt::get(LHS->getType(), 0)); - Checks.push_back(Check); - } - break; - } - case Instruction::AShr: - case Instruction::LShr: - case Instruction::Shl: { - Value *ShiftCheck = - B.CreateICmp(ICmpInst::ICMP_UGE, RHS, - ConstantInt::get(RHS->getType(), - LHS->getType()->getScalarSizeInBits())); - Checks.push_back(ShiftCheck); - break; - } - }; -} - -/// Given an instruction which can produce poison on non-poison inputs -/// (i.e. canCreatePoison returns true), generate runtime checks to produce -/// boolean indicators of when poison would result. -static void generateCreationChecks(Instruction &I, - SmallVectorImpl<Value*> &Checks) { - IRBuilder<> B(&I); - if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy()) - generateCreationChecksForBinOp(I, Checks); - - // Handle non-binops separately - switch (I.getOpcode()) { - default: - // Note there are a couple of missing cases here, once implemented, this - // should become an llvm_unreachable. - break; - case Instruction::ExtractElement: { - Value *Vec = I.getOperand(0); - auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType()); - if (!VecVTy) - break; - Value *Idx = I.getOperand(1); - unsigned NumElts = VecVTy->getNumElements(); - Value *Check = - B.CreateICmp(ICmpInst::ICMP_UGE, Idx, - ConstantInt::get(Idx->getType(), NumElts)); - Checks.push_back(Check); - break; - } - case Instruction::InsertElement: { - Value *Vec = I.getOperand(0); - auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType()); - if (!VecVTy) - break; - Value *Idx = I.getOperand(2); - unsigned NumElts = VecVTy->getNumElements(); - Value *Check = - B.CreateICmp(ICmpInst::ICMP_UGE, Idx, - ConstantInt::get(Idx->getType(), NumElts)); - Checks.push_back(Check); - break; - } - }; -} - -static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) { - auto Itr = ValToPoison.find(V); - if (Itr != ValToPoison.end()) - return Itr->second; - if (isa<Constant>(V)) { - return ConstantInt::getFalse(V->getContext()); - } - // Return false for unknwon values - this implements a non-strict mode where - // unhandled IR constructs are simply considered to never produce poison. At - // some point in the future, we probably want a "strict mode" for testing if - // nothing else. - return ConstantInt::getFalse(V->getContext()); -} - -static void CreateAssert(IRBuilder<> &B, Value *Cond) { - assert(Cond->getType()->isIntegerTy(1)); - if (auto *CI = dyn_cast<ConstantInt>(Cond)) - if (CI->isAllOnesValue()) - return; - - Module *M = B.GetInsertBlock()->getModule(); - M->getOrInsertFunction("__poison_checker_assert", - Type::getVoidTy(M->getContext()), - Type::getInt1Ty(M->getContext())); - Function *TrapFunc = M->getFunction("__poison_checker_assert"); - B.CreateCall(TrapFunc, Cond); -} - -static void CreateAssertNot(IRBuilder<> &B, Value *Cond) { - assert(Cond->getType()->isIntegerTy(1)); - CreateAssert(B, B.CreateNot(Cond)); -} - -static bool rewrite(Function &F) { - auto * const Int1Ty = Type::getInt1Ty(F.getContext()); - - DenseMap<Value *, Value *> ValToPoison; - - for (BasicBlock &BB : F) - for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { - auto *OldPHI = cast<PHINode>(&*I); - auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues()); - for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) - NewPHI->addIncoming(UndefValue::get(Int1Ty), - OldPHI->getIncomingBlock(i)); - NewPHI->insertBefore(OldPHI); - ValToPoison[OldPHI] = NewPHI; - } - - for (BasicBlock &BB : F) - for (Instruction &I : BB) { - if (isa<PHINode>(I)) continue; - - IRBuilder<> B(cast<Instruction>(&I)); - - // Note: There are many more sources of documented UB, but this pass only - // attempts to find UB triggered by propagation of poison. +//===- PoisonChecking.cpp - -----------------------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Implements a transform pass which instruments IR such that poison semantics +// are made explicit. That is, it provides a (possibly partial) executable +// semantics for every instruction w.r.t. poison as specified in the LLVM +// LangRef. There are obvious parallels to the sanitizer tools, but this pass +// is focused purely on the semantics of LLVM IR, not any particular source +// language. If you're looking for something to see if your C/C++ contains +// UB, this is not it. +// +// The rewritten semantics of each instruction will include the following +// components: +// +// 1) The original instruction, unmodified. +// 2) A propagation rule which translates dynamic information about the poison +// state of each input to whether the dynamic output of the instruction +// produces poison. +// 3) A creation rule which validates any poison producing flags on the +// instruction itself (e.g. checks for overflow on nsw). +// 4) A check rule which traps (to a handler function) if this instruction must +// execute undefined behavior given the poison state of it's inputs. +// +// This is a must analysis based transform; that is, the resulting code may +// produce a false negative result (not report UB when actually exists +// according to the LangRef spec), but should never produce a false positive +// (report UB where it doesn't exist). +// +// Use cases for this pass include: +// - Understanding (and testing!) the implications of the definition of poison +// from the LangRef. +// - Validating the output of a IR fuzzer to ensure that all programs produced +// are well defined on the specific input used. +// - Finding/confirming poison specific miscompiles by checking the poison +// status of an input/IR pair is the same before and after an optimization +// transform. +// - Checking that a bugpoint reduction does not introduce UB which didn't +// exist in the original program being reduced. +// +// The major sources of inaccuracy are currently: +// - Most validation rules not yet implemented for instructions with poison +// relavant flags. At the moment, only nsw/nuw on add/sub are supported. +// - UB which is control dependent on a branch on poison is not yet +// reported. Currently, only data flow dependence is modeled. +// - Poison which is propagated through memory is not modeled. As such, +// storing poison to memory and then reloading it will cause a false negative +// as we consider the reloaded value to not be poisoned. +// - Poison propagation across function boundaries is not modeled. At the +// moment, all arguments and return values are assumed not to be poison. +// - Undef is not modeled. In particular, the optimizer's freedom to pick +// concrete values for undef bits so as to maximize potential for producing +// poison is not modeled. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/PoisonChecking.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/Analysis/MemoryBuiltins.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InstVisitor.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/PatternMatch.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" + +using namespace llvm; + +#define DEBUG_TYPE "poison-checking" + +static cl::opt<bool> +LocalCheck("poison-checking-function-local", + cl::init(false), + cl::desc("Check that returns are non-poison (for testing)")); + + +static bool isConstantFalse(Value* V) { + assert(V->getType()->isIntegerTy(1)); + if (auto *CI = dyn_cast<ConstantInt>(V)) + return CI->isZero(); + return false; +} + +static Value *buildOrChain(IRBuilder<> &B, ArrayRef<Value*> Ops) { + if (Ops.size() == 0) + return B.getFalse(); + unsigned i = 0; + for (; i < Ops.size() && isConstantFalse(Ops[i]); i++) {} + if (i == Ops.size()) + return B.getFalse(); + Value *Accum = Ops[i++]; + for (; i < Ops.size(); i++) + if (!isConstantFalse(Ops[i])) + Accum = B.CreateOr(Accum, Ops[i]); + return Accum; +} + +static void generateCreationChecksForBinOp(Instruction &I, + SmallVectorImpl<Value*> &Checks) { + assert(isa<BinaryOperator>(I)); + + IRBuilder<> B(&I); + Value *LHS = I.getOperand(0); + Value *RHS = I.getOperand(1); + switch (I.getOpcode()) { + default: + return; + case Instruction::Add: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::sadd_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::uadd_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::Sub: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::ssub_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::usub_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::Mul: { + if (I.hasNoSignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::smul_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + if (I.hasNoUnsignedWrap()) { + auto *OverflowOp = + B.CreateBinaryIntrinsic(Intrinsic::umul_with_overflow, LHS, RHS); + Checks.push_back(B.CreateExtractValue(OverflowOp, 1)); + } + break; + } + case Instruction::UDiv: { + if (I.isExact()) { + auto *Check = + B.CreateICmp(ICmpInst::ICMP_NE, B.CreateURem(LHS, RHS), + ConstantInt::get(LHS->getType(), 0)); + Checks.push_back(Check); + } + break; + } + case Instruction::SDiv: { + if (I.isExact()) { + auto *Check = + B.CreateICmp(ICmpInst::ICMP_NE, B.CreateSRem(LHS, RHS), + ConstantInt::get(LHS->getType(), 0)); + Checks.push_back(Check); + } + break; + } + case Instruction::AShr: + case Instruction::LShr: + case Instruction::Shl: { + Value *ShiftCheck = + B.CreateICmp(ICmpInst::ICMP_UGE, RHS, + ConstantInt::get(RHS->getType(), + LHS->getType()->getScalarSizeInBits())); + Checks.push_back(ShiftCheck); + break; + } + }; +} + +/// Given an instruction which can produce poison on non-poison inputs +/// (i.e. canCreatePoison returns true), generate runtime checks to produce +/// boolean indicators of when poison would result. +static void generateCreationChecks(Instruction &I, + SmallVectorImpl<Value*> &Checks) { + IRBuilder<> B(&I); + if (isa<BinaryOperator>(I) && !I.getType()->isVectorTy()) + generateCreationChecksForBinOp(I, Checks); + + // Handle non-binops separately + switch (I.getOpcode()) { + default: + // Note there are a couple of missing cases here, once implemented, this + // should become an llvm_unreachable. + break; + case Instruction::ExtractElement: { + Value *Vec = I.getOperand(0); + auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType()); + if (!VecVTy) + break; + Value *Idx = I.getOperand(1); + unsigned NumElts = VecVTy->getNumElements(); + Value *Check = + B.CreateICmp(ICmpInst::ICMP_UGE, Idx, + ConstantInt::get(Idx->getType(), NumElts)); + Checks.push_back(Check); + break; + } + case Instruction::InsertElement: { + Value *Vec = I.getOperand(0); + auto *VecVTy = dyn_cast<FixedVectorType>(Vec->getType()); + if (!VecVTy) + break; + Value *Idx = I.getOperand(2); + unsigned NumElts = VecVTy->getNumElements(); + Value *Check = + B.CreateICmp(ICmpInst::ICMP_UGE, Idx, + ConstantInt::get(Idx->getType(), NumElts)); + Checks.push_back(Check); + break; + } + }; +} + +static Value *getPoisonFor(DenseMap<Value *, Value *> &ValToPoison, Value *V) { + auto Itr = ValToPoison.find(V); + if (Itr != ValToPoison.end()) + return Itr->second; + if (isa<Constant>(V)) { + return ConstantInt::getFalse(V->getContext()); + } + // Return false for unknwon values - this implements a non-strict mode where + // unhandled IR constructs are simply considered to never produce poison. At + // some point in the future, we probably want a "strict mode" for testing if + // nothing else. + return ConstantInt::getFalse(V->getContext()); +} + +static void CreateAssert(IRBuilder<> &B, Value *Cond) { + assert(Cond->getType()->isIntegerTy(1)); + if (auto *CI = dyn_cast<ConstantInt>(Cond)) + if (CI->isAllOnesValue()) + return; + + Module *M = B.GetInsertBlock()->getModule(); + M->getOrInsertFunction("__poison_checker_assert", + Type::getVoidTy(M->getContext()), + Type::getInt1Ty(M->getContext())); + Function *TrapFunc = M->getFunction("__poison_checker_assert"); + B.CreateCall(TrapFunc, Cond); +} + +static void CreateAssertNot(IRBuilder<> &B, Value *Cond) { + assert(Cond->getType()->isIntegerTy(1)); + CreateAssert(B, B.CreateNot(Cond)); +} + +static bool rewrite(Function &F) { + auto * const Int1Ty = Type::getInt1Ty(F.getContext()); + + DenseMap<Value *, Value *> ValToPoison; + + for (BasicBlock &BB : F) + for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { + auto *OldPHI = cast<PHINode>(&*I); + auto *NewPHI = PHINode::Create(Int1Ty, OldPHI->getNumIncomingValues()); + for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) + NewPHI->addIncoming(UndefValue::get(Int1Ty), + OldPHI->getIncomingBlock(i)); + NewPHI->insertBefore(OldPHI); + ValToPoison[OldPHI] = NewPHI; + } + + for (BasicBlock &BB : F) + for (Instruction &I : BB) { + if (isa<PHINode>(I)) continue; + + IRBuilder<> B(cast<Instruction>(&I)); + + // Note: There are many more sources of documented UB, but this pass only + // attempts to find UB triggered by propagation of poison. SmallPtrSet<const Value *, 4> NonPoisonOps; getGuaranteedNonPoisonOps(&I, NonPoisonOps); for (const Value *Op : NonPoisonOps) CreateAssertNot(B, getPoisonFor(ValToPoison, const_cast<Value *>(Op))); - - if (LocalCheck) - if (auto *RI = dyn_cast<ReturnInst>(&I)) - if (RI->getNumOperands() != 0) { - Value *Op = RI->getOperand(0); - CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); - } - - SmallVector<Value*, 4> Checks; + + if (LocalCheck) + if (auto *RI = dyn_cast<ReturnInst>(&I)) + if (RI->getNumOperands() != 0) { + Value *Op = RI->getOperand(0); + CreateAssertNot(B, getPoisonFor(ValToPoison, Op)); + } + + SmallVector<Value*, 4> Checks; if (propagatesPoison(cast<Operator>(&I))) - for (Value *V : I.operands()) - Checks.push_back(getPoisonFor(ValToPoison, V)); - + for (Value *V : I.operands()) + Checks.push_back(getPoisonFor(ValToPoison, V)); + if (canCreatePoison(cast<Operator>(&I))) - generateCreationChecks(I, Checks); - ValToPoison[&I] = buildOrChain(B, Checks); - } - - for (BasicBlock &BB : F) - for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { - auto *OldPHI = cast<PHINode>(&*I); - if (!ValToPoison.count(OldPHI)) - continue; // skip the newly inserted phis - auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]); - for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) { - auto *OldVal = OldPHI->getIncomingValue(i); - NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal)); - } - } - return true; -} - - -PreservedAnalyses PoisonCheckingPass::run(Module &M, - ModuleAnalysisManager &AM) { - bool Changed = false; - for (auto &F : M) - Changed |= rewrite(F); - - return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); -} - -PreservedAnalyses PoisonCheckingPass::run(Function &F, - FunctionAnalysisManager &AM) { - return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all(); -} - -/* Major TODO Items: - - Control dependent poison UB - - Strict mode - (i.e. must analyze every operand) - - Poison through memory - - Function ABIs - - Full coverage of intrinsics, etc.. (ouch) - - Instructions w/Unclear Semantics: - - shufflevector - It would seem reasonable for an out of bounds mask element - to produce poison, but the LangRef does not state. - - all binary ops w/vector operands - The likely interpretation would be that - any element overflowing should produce poison for the entire result, but - the LangRef does not state. - - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems - strange that only certian flags should be documented as producing poison. - - Cases of clear poison semantics not yet implemented: - - Exact flags on ashr/lshr produce poison - - NSW/NUW flags on shl produce poison - - Inbounds flag on getelementptr produce poison - - fptosi/fptoui (out of bounds input) produce poison - - Scalable vector types for insertelement/extractelement - - Floating point binary ops w/fmf nnan/noinfs flags produce poison - */ + generateCreationChecks(I, Checks); + ValToPoison[&I] = buildOrChain(B, Checks); + } + + for (BasicBlock &BB : F) + for (auto I = BB.begin(); isa<PHINode>(&*I); I++) { + auto *OldPHI = cast<PHINode>(&*I); + if (!ValToPoison.count(OldPHI)) + continue; // skip the newly inserted phis + auto *NewPHI = cast<PHINode>(ValToPoison[OldPHI]); + for (unsigned i = 0; i < OldPHI->getNumIncomingValues(); i++) { + auto *OldVal = OldPHI->getIncomingValue(i); + NewPHI->setIncomingValue(i, getPoisonFor(ValToPoison, OldVal)); + } + } + return true; +} + + +PreservedAnalyses PoisonCheckingPass::run(Module &M, + ModuleAnalysisManager &AM) { + bool Changed = false; + for (auto &F : M) + Changed |= rewrite(F); + + return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all(); +} + +PreservedAnalyses PoisonCheckingPass::run(Function &F, + FunctionAnalysisManager &AM) { + return rewrite(F) ? PreservedAnalyses::none() : PreservedAnalyses::all(); +} + +/* Major TODO Items: + - Control dependent poison UB + - Strict mode - (i.e. must analyze every operand) + - Poison through memory + - Function ABIs + - Full coverage of intrinsics, etc.. (ouch) + + Instructions w/Unclear Semantics: + - shufflevector - It would seem reasonable for an out of bounds mask element + to produce poison, but the LangRef does not state. + - all binary ops w/vector operands - The likely interpretation would be that + any element overflowing should produce poison for the entire result, but + the LangRef does not state. + - Floating point binary ops w/fmf flags other than (nnan, noinfs). It seems + strange that only certian flags should be documented as producing poison. + + Cases of clear poison semantics not yet implemented: + - Exact flags on ashr/lshr produce poison + - NSW/NUW flags on shl produce poison + - Inbounds flag on getelementptr produce poison + - fptosi/fptoui (out of bounds input) produce poison + - Scalable vector types for insertelement/extractelement + - Floating point binary ops w/fmf nnan/noinfs flags produce poison + */ diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/SanitizerCoverage.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/SanitizerCoverage.cpp index 656cf6267b..2d4b079394 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/SanitizerCoverage.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/SanitizerCoverage.cpp @@ -1,50 +1,50 @@ -//===-- SanitizerCoverage.cpp - coverage instrumentation for sanitizers ---===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// Coverage instrumentation done on LLVM IR level, works with Sanitizers. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/Analysis/EHPersonalities.h" -#include "llvm/Analysis/PostDominators.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constant.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/DebugInfo.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/GlobalVariable.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/InlineAsm.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/MDBuilder.h" -#include "llvm/IR/Mangler.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/InitializePasses.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/SpecialCaseList.h" -#include "llvm/Support/VirtualFileSystem.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" - -using namespace llvm; - -#define DEBUG_TYPE "sancov" - +//===-- SanitizerCoverage.cpp - coverage instrumentation for sanitizers ---===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// Coverage instrumentation done on LLVM IR level, works with Sanitizers. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/SanitizerCoverage.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/Analysis/EHPersonalities.h" +#include "llvm/Analysis/PostDominators.h" +#include "llvm/IR/CFG.h" +#include "llvm/IR/Constant.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/DebugInfo.h" +#include "llvm/IR/Dominators.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/InlineAsm.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/MDBuilder.h" +#include "llvm/IR/Mangler.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/InitializePasses.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/SpecialCaseList.h" +#include "llvm/Support/VirtualFileSystem.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" + +using namespace llvm; + +#define DEBUG_TYPE "sancov" + const char SanCovTracePCIndirName[] = "__sanitizer_cov_trace_pc_indir"; const char SanCovTracePCName[] = "__sanitizer_cov_trace_pc"; const char SanCovTraceCmp1[] = "__sanitizer_cov_trace_cmp1"; @@ -60,935 +60,935 @@ const char SanCovTraceDiv8[] = "__sanitizer_cov_trace_div8"; const char SanCovTraceGep[] = "__sanitizer_cov_trace_gep"; const char SanCovTraceSwitchName[] = "__sanitizer_cov_trace_switch"; const char SanCovModuleCtorTracePcGuardName[] = - "sancov.module_ctor_trace_pc_guard"; + "sancov.module_ctor_trace_pc_guard"; const char SanCovModuleCtor8bitCountersName[] = - "sancov.module_ctor_8bit_counters"; + "sancov.module_ctor_8bit_counters"; const char SanCovModuleCtorBoolFlagName[] = "sancov.module_ctor_bool_flag"; -static const uint64_t SanCtorAndDtorPriority = 2; - +static const uint64_t SanCtorAndDtorPriority = 2; + const char SanCovTracePCGuardName[] = "__sanitizer_cov_trace_pc_guard"; const char SanCovTracePCGuardInitName[] = "__sanitizer_cov_trace_pc_guard_init"; const char SanCov8bitCountersInitName[] = "__sanitizer_cov_8bit_counters_init"; const char SanCovBoolFlagInitName[] = "__sanitizer_cov_bool_flag_init"; const char SanCovPCsInitName[] = "__sanitizer_cov_pcs_init"; - + const char SanCovGuardsSectionName[] = "sancov_guards"; const char SanCovCountersSectionName[] = "sancov_cntrs"; const char SanCovBoolFlagSectionName[] = "sancov_bools"; const char SanCovPCsSectionName[] = "sancov_pcs"; - + const char SanCovLowestStackName[] = "__sancov_lowest_stack"; - -static cl::opt<int> ClCoverageLevel( - "sanitizer-coverage-level", - cl::desc("Sanitizer Coverage. 0: none, 1: entry block, 2: all blocks, " - "3: all blocks and critical edges"), - cl::Hidden, cl::init(0)); - -static cl::opt<bool> ClTracePC("sanitizer-coverage-trace-pc", - cl::desc("Experimental pc tracing"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> ClTracePCGuard("sanitizer-coverage-trace-pc-guard", - cl::desc("pc tracing with a guard"), - cl::Hidden, cl::init(false)); - -// If true, we create a global variable that contains PCs of all instrumented -// BBs, put this global into a named section, and pass this section's bounds -// to __sanitizer_cov_pcs_init. -// This way the coverage instrumentation does not need to acquire the PCs -// at run-time. Works with trace-pc-guard, inline-8bit-counters, and -// inline-bool-flag. -static cl::opt<bool> ClCreatePCTable("sanitizer-coverage-pc-table", - cl::desc("create a static PC table"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClInline8bitCounters("sanitizer-coverage-inline-8bit-counters", - cl::desc("increments 8-bit counter for every edge"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClInlineBoolFlag("sanitizer-coverage-inline-bool-flag", - cl::desc("sets a boolean flag for every edge"), cl::Hidden, - cl::init(false)); - -static cl::opt<bool> - ClCMPTracing("sanitizer-coverage-trace-compares", - cl::desc("Tracing of CMP and similar instructions"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClDIVTracing("sanitizer-coverage-trace-divs", - cl::desc("Tracing of DIV instructions"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> ClGEPTracing("sanitizer-coverage-trace-geps", - cl::desc("Tracing of GEP instructions"), - cl::Hidden, cl::init(false)); - -static cl::opt<bool> - ClPruneBlocks("sanitizer-coverage-prune-blocks", - cl::desc("Reduce the number of instrumented blocks"), - cl::Hidden, cl::init(true)); - -static cl::opt<bool> ClStackDepth("sanitizer-coverage-stack-depth", - cl::desc("max stack depth tracing"), - cl::Hidden, cl::init(false)); - -namespace { - -SanitizerCoverageOptions getOptions(int LegacyCoverageLevel) { - SanitizerCoverageOptions Res; - switch (LegacyCoverageLevel) { - case 0: - Res.CoverageType = SanitizerCoverageOptions::SCK_None; - break; - case 1: - Res.CoverageType = SanitizerCoverageOptions::SCK_Function; - break; - case 2: - Res.CoverageType = SanitizerCoverageOptions::SCK_BB; - break; - case 3: - Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; - break; - case 4: - Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; - Res.IndirectCalls = true; - break; - } - return Res; -} - -SanitizerCoverageOptions OverrideFromCL(SanitizerCoverageOptions Options) { - // Sets CoverageType and IndirectCalls. - SanitizerCoverageOptions CLOpts = getOptions(ClCoverageLevel); - Options.CoverageType = std::max(Options.CoverageType, CLOpts.CoverageType); - Options.IndirectCalls |= CLOpts.IndirectCalls; - Options.TraceCmp |= ClCMPTracing; - Options.TraceDiv |= ClDIVTracing; - Options.TraceGep |= ClGEPTracing; - Options.TracePC |= ClTracePC; - Options.TracePCGuard |= ClTracePCGuard; - Options.Inline8bitCounters |= ClInline8bitCounters; - Options.InlineBoolFlag |= ClInlineBoolFlag; - Options.PCTable |= ClCreatePCTable; - Options.NoPrune |= !ClPruneBlocks; - Options.StackDepth |= ClStackDepth; - if (!Options.TracePCGuard && !Options.TracePC && - !Options.Inline8bitCounters && !Options.StackDepth && - !Options.InlineBoolFlag) - Options.TracePCGuard = true; // TracePCGuard is default. - return Options; -} - -using DomTreeCallback = function_ref<const DominatorTree *(Function &F)>; -using PostDomTreeCallback = - function_ref<const PostDominatorTree *(Function &F)>; - -class ModuleSanitizerCoverage { -public: - ModuleSanitizerCoverage( - const SanitizerCoverageOptions &Options = SanitizerCoverageOptions(), - const SpecialCaseList *Allowlist = nullptr, - const SpecialCaseList *Blocklist = nullptr) - : Options(OverrideFromCL(Options)), Allowlist(Allowlist), - Blocklist(Blocklist) {} - bool instrumentModule(Module &M, DomTreeCallback DTCallback, - PostDomTreeCallback PDTCallback); - -private: - void instrumentFunction(Function &F, DomTreeCallback DTCallback, - PostDomTreeCallback PDTCallback); - void InjectCoverageForIndirectCalls(Function &F, - ArrayRef<Instruction *> IndirCalls); - void InjectTraceForCmp(Function &F, ArrayRef<Instruction *> CmpTraceTargets); - void InjectTraceForDiv(Function &F, - ArrayRef<BinaryOperator *> DivTraceTargets); - void InjectTraceForGep(Function &F, - ArrayRef<GetElementPtrInst *> GepTraceTargets); - void InjectTraceForSwitch(Function &F, - ArrayRef<Instruction *> SwitchTraceTargets); - bool InjectCoverage(Function &F, ArrayRef<BasicBlock *> AllBlocks, - bool IsLeafFunc = true); - GlobalVariable *CreateFunctionLocalArrayInSection(size_t NumElements, - Function &F, Type *Ty, - const char *Section); - GlobalVariable *CreatePCArray(Function &F, ArrayRef<BasicBlock *> AllBlocks); - void CreateFunctionLocalArrays(Function &F, ArrayRef<BasicBlock *> AllBlocks); - void InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx, - bool IsLeafFunc = true); - Function *CreateInitCallsForSections(Module &M, const char *CtorName, - const char *InitFunctionName, Type *Ty, - const char *Section); - std::pair<Value *, Value *> CreateSecStartEnd(Module &M, const char *Section, - Type *Ty); - - void SetNoSanitizeMetadata(Instruction *I) { - I->setMetadata(I->getModule()->getMDKindID("nosanitize"), - MDNode::get(*C, None)); - } - - std::string getSectionName(const std::string &Section) const; - std::string getSectionStart(const std::string &Section) const; - std::string getSectionEnd(const std::string &Section) const; - FunctionCallee SanCovTracePCIndir; - FunctionCallee SanCovTracePC, SanCovTracePCGuard; - FunctionCallee SanCovTraceCmpFunction[4]; - FunctionCallee SanCovTraceConstCmpFunction[4]; - FunctionCallee SanCovTraceDivFunction[2]; - FunctionCallee SanCovTraceGepFunction; - FunctionCallee SanCovTraceSwitchFunction; - GlobalVariable *SanCovLowestStack; - Type *IntptrTy, *IntptrPtrTy, *Int64Ty, *Int64PtrTy, *Int32Ty, *Int32PtrTy, - *Int16Ty, *Int8Ty, *Int8PtrTy, *Int1Ty, *Int1PtrTy; - Module *CurModule; - std::string CurModuleUniqueId; - Triple TargetTriple; - LLVMContext *C; - const DataLayout *DL; - - GlobalVariable *FunctionGuardArray; // for trace-pc-guard. - GlobalVariable *Function8bitCounterArray; // for inline-8bit-counters. - GlobalVariable *FunctionBoolArray; // for inline-bool-flag. - GlobalVariable *FunctionPCsArray; // for pc-table. - SmallVector<GlobalValue *, 20> GlobalsToAppendToUsed; - SmallVector<GlobalValue *, 20> GlobalsToAppendToCompilerUsed; - - SanitizerCoverageOptions Options; - - const SpecialCaseList *Allowlist; - const SpecialCaseList *Blocklist; -}; - -class ModuleSanitizerCoverageLegacyPass : public ModulePass { -public: - ModuleSanitizerCoverageLegacyPass( - const SanitizerCoverageOptions &Options = SanitizerCoverageOptions(), - const std::vector<std::string> &AllowlistFiles = - std::vector<std::string>(), - const std::vector<std::string> &BlocklistFiles = - std::vector<std::string>()) - : ModulePass(ID), Options(Options) { - if (AllowlistFiles.size() > 0) - Allowlist = SpecialCaseList::createOrDie(AllowlistFiles, - *vfs::getRealFileSystem()); - if (BlocklistFiles.size() > 0) - Blocklist = SpecialCaseList::createOrDie(BlocklistFiles, - *vfs::getRealFileSystem()); - initializeModuleSanitizerCoverageLegacyPassPass( - *PassRegistry::getPassRegistry()); - } - bool runOnModule(Module &M) override { - ModuleSanitizerCoverage ModuleSancov(Options, Allowlist.get(), - Blocklist.get()); - auto DTCallback = [this](Function &F) -> const DominatorTree * { - return &this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); - }; - auto PDTCallback = [this](Function &F) -> const PostDominatorTree * { - return &this->getAnalysis<PostDominatorTreeWrapperPass>(F) - .getPostDomTree(); - }; - return ModuleSancov.instrumentModule(M, DTCallback, PDTCallback); - } - - static char ID; // Pass identification, replacement for typeid - StringRef getPassName() const override { return "ModuleSanitizerCoverage"; } - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addRequired<PostDominatorTreeWrapperPass>(); - } - -private: - SanitizerCoverageOptions Options; - - std::unique_ptr<SpecialCaseList> Allowlist; - std::unique_ptr<SpecialCaseList> Blocklist; -}; - -} // namespace - -PreservedAnalyses ModuleSanitizerCoveragePass::run(Module &M, - ModuleAnalysisManager &MAM) { - ModuleSanitizerCoverage ModuleSancov(Options, Allowlist.get(), - Blocklist.get()); - auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); - auto DTCallback = [&FAM](Function &F) -> const DominatorTree * { - return &FAM.getResult<DominatorTreeAnalysis>(F); - }; - auto PDTCallback = [&FAM](Function &F) -> const PostDominatorTree * { - return &FAM.getResult<PostDominatorTreeAnalysis>(F); - }; - if (ModuleSancov.instrumentModule(M, DTCallback, PDTCallback)) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -std::pair<Value *, Value *> -ModuleSanitizerCoverage::CreateSecStartEnd(Module &M, const char *Section, - Type *Ty) { + +static cl::opt<int> ClCoverageLevel( + "sanitizer-coverage-level", + cl::desc("Sanitizer Coverage. 0: none, 1: entry block, 2: all blocks, " + "3: all blocks and critical edges"), + cl::Hidden, cl::init(0)); + +static cl::opt<bool> ClTracePC("sanitizer-coverage-trace-pc", + cl::desc("Experimental pc tracing"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> ClTracePCGuard("sanitizer-coverage-trace-pc-guard", + cl::desc("pc tracing with a guard"), + cl::Hidden, cl::init(false)); + +// If true, we create a global variable that contains PCs of all instrumented +// BBs, put this global into a named section, and pass this section's bounds +// to __sanitizer_cov_pcs_init. +// This way the coverage instrumentation does not need to acquire the PCs +// at run-time. Works with trace-pc-guard, inline-8bit-counters, and +// inline-bool-flag. +static cl::opt<bool> ClCreatePCTable("sanitizer-coverage-pc-table", + cl::desc("create a static PC table"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClInline8bitCounters("sanitizer-coverage-inline-8bit-counters", + cl::desc("increments 8-bit counter for every edge"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClInlineBoolFlag("sanitizer-coverage-inline-bool-flag", + cl::desc("sets a boolean flag for every edge"), cl::Hidden, + cl::init(false)); + +static cl::opt<bool> + ClCMPTracing("sanitizer-coverage-trace-compares", + cl::desc("Tracing of CMP and similar instructions"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClDIVTracing("sanitizer-coverage-trace-divs", + cl::desc("Tracing of DIV instructions"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> ClGEPTracing("sanitizer-coverage-trace-geps", + cl::desc("Tracing of GEP instructions"), + cl::Hidden, cl::init(false)); + +static cl::opt<bool> + ClPruneBlocks("sanitizer-coverage-prune-blocks", + cl::desc("Reduce the number of instrumented blocks"), + cl::Hidden, cl::init(true)); + +static cl::opt<bool> ClStackDepth("sanitizer-coverage-stack-depth", + cl::desc("max stack depth tracing"), + cl::Hidden, cl::init(false)); + +namespace { + +SanitizerCoverageOptions getOptions(int LegacyCoverageLevel) { + SanitizerCoverageOptions Res; + switch (LegacyCoverageLevel) { + case 0: + Res.CoverageType = SanitizerCoverageOptions::SCK_None; + break; + case 1: + Res.CoverageType = SanitizerCoverageOptions::SCK_Function; + break; + case 2: + Res.CoverageType = SanitizerCoverageOptions::SCK_BB; + break; + case 3: + Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; + break; + case 4: + Res.CoverageType = SanitizerCoverageOptions::SCK_Edge; + Res.IndirectCalls = true; + break; + } + return Res; +} + +SanitizerCoverageOptions OverrideFromCL(SanitizerCoverageOptions Options) { + // Sets CoverageType and IndirectCalls. + SanitizerCoverageOptions CLOpts = getOptions(ClCoverageLevel); + Options.CoverageType = std::max(Options.CoverageType, CLOpts.CoverageType); + Options.IndirectCalls |= CLOpts.IndirectCalls; + Options.TraceCmp |= ClCMPTracing; + Options.TraceDiv |= ClDIVTracing; + Options.TraceGep |= ClGEPTracing; + Options.TracePC |= ClTracePC; + Options.TracePCGuard |= ClTracePCGuard; + Options.Inline8bitCounters |= ClInline8bitCounters; + Options.InlineBoolFlag |= ClInlineBoolFlag; + Options.PCTable |= ClCreatePCTable; + Options.NoPrune |= !ClPruneBlocks; + Options.StackDepth |= ClStackDepth; + if (!Options.TracePCGuard && !Options.TracePC && + !Options.Inline8bitCounters && !Options.StackDepth && + !Options.InlineBoolFlag) + Options.TracePCGuard = true; // TracePCGuard is default. + return Options; +} + +using DomTreeCallback = function_ref<const DominatorTree *(Function &F)>; +using PostDomTreeCallback = + function_ref<const PostDominatorTree *(Function &F)>; + +class ModuleSanitizerCoverage { +public: + ModuleSanitizerCoverage( + const SanitizerCoverageOptions &Options = SanitizerCoverageOptions(), + const SpecialCaseList *Allowlist = nullptr, + const SpecialCaseList *Blocklist = nullptr) + : Options(OverrideFromCL(Options)), Allowlist(Allowlist), + Blocklist(Blocklist) {} + bool instrumentModule(Module &M, DomTreeCallback DTCallback, + PostDomTreeCallback PDTCallback); + +private: + void instrumentFunction(Function &F, DomTreeCallback DTCallback, + PostDomTreeCallback PDTCallback); + void InjectCoverageForIndirectCalls(Function &F, + ArrayRef<Instruction *> IndirCalls); + void InjectTraceForCmp(Function &F, ArrayRef<Instruction *> CmpTraceTargets); + void InjectTraceForDiv(Function &F, + ArrayRef<BinaryOperator *> DivTraceTargets); + void InjectTraceForGep(Function &F, + ArrayRef<GetElementPtrInst *> GepTraceTargets); + void InjectTraceForSwitch(Function &F, + ArrayRef<Instruction *> SwitchTraceTargets); + bool InjectCoverage(Function &F, ArrayRef<BasicBlock *> AllBlocks, + bool IsLeafFunc = true); + GlobalVariable *CreateFunctionLocalArrayInSection(size_t NumElements, + Function &F, Type *Ty, + const char *Section); + GlobalVariable *CreatePCArray(Function &F, ArrayRef<BasicBlock *> AllBlocks); + void CreateFunctionLocalArrays(Function &F, ArrayRef<BasicBlock *> AllBlocks); + void InjectCoverageAtBlock(Function &F, BasicBlock &BB, size_t Idx, + bool IsLeafFunc = true); + Function *CreateInitCallsForSections(Module &M, const char *CtorName, + const char *InitFunctionName, Type *Ty, + const char *Section); + std::pair<Value *, Value *> CreateSecStartEnd(Module &M, const char *Section, + Type *Ty); + + void SetNoSanitizeMetadata(Instruction *I) { + I->setMetadata(I->getModule()->getMDKindID("nosanitize"), + MDNode::get(*C, None)); + } + + std::string getSectionName(const std::string &Section) const; + std::string getSectionStart(const std::string &Section) const; + std::string getSectionEnd(const std::string &Section) const; + FunctionCallee SanCovTracePCIndir; + FunctionCallee SanCovTracePC, SanCovTracePCGuard; + FunctionCallee SanCovTraceCmpFunction[4]; + FunctionCallee SanCovTraceConstCmpFunction[4]; + FunctionCallee SanCovTraceDivFunction[2]; + FunctionCallee SanCovTraceGepFunction; + FunctionCallee SanCovTraceSwitchFunction; + GlobalVariable *SanCovLowestStack; + Type *IntptrTy, *IntptrPtrTy, *Int64Ty, *Int64PtrTy, *Int32Ty, *Int32PtrTy, + *Int16Ty, *Int8Ty, *Int8PtrTy, *Int1Ty, *Int1PtrTy; + Module *CurModule; + std::string CurModuleUniqueId; + Triple TargetTriple; + LLVMContext *C; + const DataLayout *DL; + + GlobalVariable *FunctionGuardArray; // for trace-pc-guard. + GlobalVariable *Function8bitCounterArray; // for inline-8bit-counters. + GlobalVariable *FunctionBoolArray; // for inline-bool-flag. + GlobalVariable *FunctionPCsArray; // for pc-table. + SmallVector<GlobalValue *, 20> GlobalsToAppendToUsed; + SmallVector<GlobalValue *, 20> GlobalsToAppendToCompilerUsed; + + SanitizerCoverageOptions Options; + + const SpecialCaseList *Allowlist; + const SpecialCaseList *Blocklist; +}; + +class ModuleSanitizerCoverageLegacyPass : public ModulePass { +public: + ModuleSanitizerCoverageLegacyPass( + const SanitizerCoverageOptions &Options = SanitizerCoverageOptions(), + const std::vector<std::string> &AllowlistFiles = + std::vector<std::string>(), + const std::vector<std::string> &BlocklistFiles = + std::vector<std::string>()) + : ModulePass(ID), Options(Options) { + if (AllowlistFiles.size() > 0) + Allowlist = SpecialCaseList::createOrDie(AllowlistFiles, + *vfs::getRealFileSystem()); + if (BlocklistFiles.size() > 0) + Blocklist = SpecialCaseList::createOrDie(BlocklistFiles, + *vfs::getRealFileSystem()); + initializeModuleSanitizerCoverageLegacyPassPass( + *PassRegistry::getPassRegistry()); + } + bool runOnModule(Module &M) override { + ModuleSanitizerCoverage ModuleSancov(Options, Allowlist.get(), + Blocklist.get()); + auto DTCallback = [this](Function &F) -> const DominatorTree * { + return &this->getAnalysis<DominatorTreeWrapperPass>(F).getDomTree(); + }; + auto PDTCallback = [this](Function &F) -> const PostDominatorTree * { + return &this->getAnalysis<PostDominatorTreeWrapperPass>(F) + .getPostDomTree(); + }; + return ModuleSancov.instrumentModule(M, DTCallback, PDTCallback); + } + + static char ID; // Pass identification, replacement for typeid + StringRef getPassName() const override { return "ModuleSanitizerCoverage"; } + + void getAnalysisUsage(AnalysisUsage &AU) const override { + AU.addRequired<DominatorTreeWrapperPass>(); + AU.addRequired<PostDominatorTreeWrapperPass>(); + } + +private: + SanitizerCoverageOptions Options; + + std::unique_ptr<SpecialCaseList> Allowlist; + std::unique_ptr<SpecialCaseList> Blocklist; +}; + +} // namespace + +PreservedAnalyses ModuleSanitizerCoveragePass::run(Module &M, + ModuleAnalysisManager &MAM) { + ModuleSanitizerCoverage ModuleSancov(Options, Allowlist.get(), + Blocklist.get()); + auto &FAM = MAM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager(); + auto DTCallback = [&FAM](Function &F) -> const DominatorTree * { + return &FAM.getResult<DominatorTreeAnalysis>(F); + }; + auto PDTCallback = [&FAM](Function &F) -> const PostDominatorTree * { + return &FAM.getResult<PostDominatorTreeAnalysis>(F); + }; + if (ModuleSancov.instrumentModule(M, DTCallback, PDTCallback)) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +std::pair<Value *, Value *> +ModuleSanitizerCoverage::CreateSecStartEnd(Module &M, const char *Section, + Type *Ty) { GlobalVariable *SecStart = new GlobalVariable( M, Ty->getPointerElementType(), false, GlobalVariable::ExternalLinkage, nullptr, getSectionStart(Section)); - SecStart->setVisibility(GlobalValue::HiddenVisibility); + SecStart->setVisibility(GlobalValue::HiddenVisibility); GlobalVariable *SecEnd = new GlobalVariable( M, Ty->getPointerElementType(), false, GlobalVariable::ExternalLinkage, nullptr, getSectionEnd(Section)); - SecEnd->setVisibility(GlobalValue::HiddenVisibility); - IRBuilder<> IRB(M.getContext()); - if (!TargetTriple.isOSBinFormatCOFF()) + SecEnd->setVisibility(GlobalValue::HiddenVisibility); + IRBuilder<> IRB(M.getContext()); + if (!TargetTriple.isOSBinFormatCOFF()) return std::make_pair(SecStart, SecEnd); - - // Account for the fact that on windows-msvc __start_* symbols actually - // point to a uint64_t before the start of the array. - auto SecStartI8Ptr = IRB.CreatePointerCast(SecStart, Int8PtrTy); - auto GEP = IRB.CreateGEP(Int8Ty, SecStartI8Ptr, - ConstantInt::get(IntptrTy, sizeof(uint64_t))); + + // Account for the fact that on windows-msvc __start_* symbols actually + // point to a uint64_t before the start of the array. + auto SecStartI8Ptr = IRB.CreatePointerCast(SecStart, Int8PtrTy); + auto GEP = IRB.CreateGEP(Int8Ty, SecStartI8Ptr, + ConstantInt::get(IntptrTy, sizeof(uint64_t))); return std::make_pair(IRB.CreatePointerCast(GEP, Ty), SecEnd); -} - -Function *ModuleSanitizerCoverage::CreateInitCallsForSections( - Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, - const char *Section) { - auto SecStartEnd = CreateSecStartEnd(M, Section, Ty); - auto SecStart = SecStartEnd.first; - auto SecEnd = SecStartEnd.second; - Function *CtorFunc; - std::tie(CtorFunc, std::ignore) = createSanitizerCtorAndInitFunctions( - M, CtorName, InitFunctionName, {Ty, Ty}, {SecStart, SecEnd}); - assert(CtorFunc->getName() == CtorName); - - if (TargetTriple.supportsCOMDAT()) { - // Use comdat to dedup CtorFunc. - CtorFunc->setComdat(M.getOrInsertComdat(CtorName)); - appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority, CtorFunc); - } else { - appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority); - } - - if (TargetTriple.isOSBinFormatCOFF()) { - // In COFF files, if the contructors are set as COMDAT (they are because - // COFF supports COMDAT) and the linker flag /OPT:REF (strip unreferenced - // functions and data) is used, the constructors get stripped. To prevent - // this, give the constructors weak ODR linkage and ensure the linker knows - // to include the sancov constructor. This way the linker can deduplicate - // the constructors but always leave one copy. - CtorFunc->setLinkage(GlobalValue::WeakODRLinkage); - appendToUsed(M, CtorFunc); - } - return CtorFunc; -} - -bool ModuleSanitizerCoverage::instrumentModule( - Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { - if (Options.CoverageType == SanitizerCoverageOptions::SCK_None) - return false; - if (Allowlist && - !Allowlist->inSection("coverage", "src", M.getSourceFileName())) - return false; - if (Blocklist && - Blocklist->inSection("coverage", "src", M.getSourceFileName())) - return false; - C = &(M.getContext()); - DL = &M.getDataLayout(); - CurModule = &M; - CurModuleUniqueId = getUniqueModuleId(CurModule); - TargetTriple = Triple(M.getTargetTriple()); - FunctionGuardArray = nullptr; - Function8bitCounterArray = nullptr; - FunctionBoolArray = nullptr; - FunctionPCsArray = nullptr; - IntptrTy = Type::getIntNTy(*C, DL->getPointerSizeInBits()); - IntptrPtrTy = PointerType::getUnqual(IntptrTy); - Type *VoidTy = Type::getVoidTy(*C); - IRBuilder<> IRB(*C); - Int64PtrTy = PointerType::getUnqual(IRB.getInt64Ty()); - Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty()); - Int8PtrTy = PointerType::getUnqual(IRB.getInt8Ty()); - Int1PtrTy = PointerType::getUnqual(IRB.getInt1Ty()); - Int64Ty = IRB.getInt64Ty(); - Int32Ty = IRB.getInt32Ty(); - Int16Ty = IRB.getInt16Ty(); - Int8Ty = IRB.getInt8Ty(); - Int1Ty = IRB.getInt1Ty(); - - SanCovTracePCIndir = - M.getOrInsertFunction(SanCovTracePCIndirName, VoidTy, IntptrTy); +} + +Function *ModuleSanitizerCoverage::CreateInitCallsForSections( + Module &M, const char *CtorName, const char *InitFunctionName, Type *Ty, + const char *Section) { + auto SecStartEnd = CreateSecStartEnd(M, Section, Ty); + auto SecStart = SecStartEnd.first; + auto SecEnd = SecStartEnd.second; + Function *CtorFunc; + std::tie(CtorFunc, std::ignore) = createSanitizerCtorAndInitFunctions( + M, CtorName, InitFunctionName, {Ty, Ty}, {SecStart, SecEnd}); + assert(CtorFunc->getName() == CtorName); + + if (TargetTriple.supportsCOMDAT()) { + // Use comdat to dedup CtorFunc. + CtorFunc->setComdat(M.getOrInsertComdat(CtorName)); + appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority, CtorFunc); + } else { + appendToGlobalCtors(M, CtorFunc, SanCtorAndDtorPriority); + } + + if (TargetTriple.isOSBinFormatCOFF()) { + // In COFF files, if the contructors are set as COMDAT (they are because + // COFF supports COMDAT) and the linker flag /OPT:REF (strip unreferenced + // functions and data) is used, the constructors get stripped. To prevent + // this, give the constructors weak ODR linkage and ensure the linker knows + // to include the sancov constructor. This way the linker can deduplicate + // the constructors but always leave one copy. + CtorFunc->setLinkage(GlobalValue::WeakODRLinkage); + appendToUsed(M, CtorFunc); + } + return CtorFunc; +} + +bool ModuleSanitizerCoverage::instrumentModule( + Module &M, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { + if (Options.CoverageType == SanitizerCoverageOptions::SCK_None) + return false; + if (Allowlist && + !Allowlist->inSection("coverage", "src", M.getSourceFileName())) + return false; + if (Blocklist && + Blocklist->inSection("coverage", "src", M.getSourceFileName())) + return false; + C = &(M.getContext()); + DL = &M.getDataLayout(); + CurModule = &M; + CurModuleUniqueId = getUniqueModuleId(CurModule); + TargetTriple = Triple(M.getTargetTriple()); + FunctionGuardArray = nullptr; + Function8bitCounterArray = nullptr; + FunctionBoolArray = nullptr; + FunctionPCsArray = nullptr; + IntptrTy = Type::getIntNTy(*C, DL->getPointerSizeInBits()); + IntptrPtrTy = PointerType::getUnqual(IntptrTy); + Type *VoidTy = Type::getVoidTy(*C); + IRBuilder<> IRB(*C); + Int64PtrTy = PointerType::getUnqual(IRB.getInt64Ty()); + Int32PtrTy = PointerType::getUnqual(IRB.getInt32Ty()); + Int8PtrTy = PointerType::getUnqual(IRB.getInt8Ty()); + Int1PtrTy = PointerType::getUnqual(IRB.getInt1Ty()); + Int64Ty = IRB.getInt64Ty(); + Int32Ty = IRB.getInt32Ty(); + Int16Ty = IRB.getInt16Ty(); + Int8Ty = IRB.getInt8Ty(); + Int1Ty = IRB.getInt1Ty(); + + SanCovTracePCIndir = + M.getOrInsertFunction(SanCovTracePCIndirName, VoidTy, IntptrTy); // Make sure smaller parameters are zero-extended to i64 if required by the // target ABI. - AttributeList SanCovTraceCmpZeroExtAL; + AttributeList SanCovTraceCmpZeroExtAL; SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 0, Attribute::ZExt); SanCovTraceCmpZeroExtAL = SanCovTraceCmpZeroExtAL.addParamAttribute(*C, 1, Attribute::ZExt); - - SanCovTraceCmpFunction[0] = - M.getOrInsertFunction(SanCovTraceCmp1, SanCovTraceCmpZeroExtAL, VoidTy, - IRB.getInt8Ty(), IRB.getInt8Ty()); - SanCovTraceCmpFunction[1] = - M.getOrInsertFunction(SanCovTraceCmp2, SanCovTraceCmpZeroExtAL, VoidTy, - IRB.getInt16Ty(), IRB.getInt16Ty()); - SanCovTraceCmpFunction[2] = - M.getOrInsertFunction(SanCovTraceCmp4, SanCovTraceCmpZeroExtAL, VoidTy, - IRB.getInt32Ty(), IRB.getInt32Ty()); - SanCovTraceCmpFunction[3] = - M.getOrInsertFunction(SanCovTraceCmp8, VoidTy, Int64Ty, Int64Ty); - - SanCovTraceConstCmpFunction[0] = M.getOrInsertFunction( - SanCovTraceConstCmp1, SanCovTraceCmpZeroExtAL, VoidTy, Int8Ty, Int8Ty); - SanCovTraceConstCmpFunction[1] = M.getOrInsertFunction( - SanCovTraceConstCmp2, SanCovTraceCmpZeroExtAL, VoidTy, Int16Ty, Int16Ty); - SanCovTraceConstCmpFunction[2] = M.getOrInsertFunction( - SanCovTraceConstCmp4, SanCovTraceCmpZeroExtAL, VoidTy, Int32Ty, Int32Ty); - SanCovTraceConstCmpFunction[3] = - M.getOrInsertFunction(SanCovTraceConstCmp8, VoidTy, Int64Ty, Int64Ty); - - { - AttributeList AL; + + SanCovTraceCmpFunction[0] = + M.getOrInsertFunction(SanCovTraceCmp1, SanCovTraceCmpZeroExtAL, VoidTy, + IRB.getInt8Ty(), IRB.getInt8Ty()); + SanCovTraceCmpFunction[1] = + M.getOrInsertFunction(SanCovTraceCmp2, SanCovTraceCmpZeroExtAL, VoidTy, + IRB.getInt16Ty(), IRB.getInt16Ty()); + SanCovTraceCmpFunction[2] = + M.getOrInsertFunction(SanCovTraceCmp4, SanCovTraceCmpZeroExtAL, VoidTy, + IRB.getInt32Ty(), IRB.getInt32Ty()); + SanCovTraceCmpFunction[3] = + M.getOrInsertFunction(SanCovTraceCmp8, VoidTy, Int64Ty, Int64Ty); + + SanCovTraceConstCmpFunction[0] = M.getOrInsertFunction( + SanCovTraceConstCmp1, SanCovTraceCmpZeroExtAL, VoidTy, Int8Ty, Int8Ty); + SanCovTraceConstCmpFunction[1] = M.getOrInsertFunction( + SanCovTraceConstCmp2, SanCovTraceCmpZeroExtAL, VoidTy, Int16Ty, Int16Ty); + SanCovTraceConstCmpFunction[2] = M.getOrInsertFunction( + SanCovTraceConstCmp4, SanCovTraceCmpZeroExtAL, VoidTy, Int32Ty, Int32Ty); + SanCovTraceConstCmpFunction[3] = + M.getOrInsertFunction(SanCovTraceConstCmp8, VoidTy, Int64Ty, Int64Ty); + + { + AttributeList AL; AL = AL.addParamAttribute(*C, 0, Attribute::ZExt); - SanCovTraceDivFunction[0] = - M.getOrInsertFunction(SanCovTraceDiv4, AL, VoidTy, IRB.getInt32Ty()); - } - SanCovTraceDivFunction[1] = - M.getOrInsertFunction(SanCovTraceDiv8, VoidTy, Int64Ty); - SanCovTraceGepFunction = - M.getOrInsertFunction(SanCovTraceGep, VoidTy, IntptrTy); - SanCovTraceSwitchFunction = - M.getOrInsertFunction(SanCovTraceSwitchName, VoidTy, Int64Ty, Int64PtrTy); - - Constant *SanCovLowestStackConstant = - M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy); - SanCovLowestStack = dyn_cast<GlobalVariable>(SanCovLowestStackConstant); - if (!SanCovLowestStack) { - C->emitError(StringRef("'") + SanCovLowestStackName + - "' should not be declared by the user"); - return true; - } - SanCovLowestStack->setThreadLocalMode( - GlobalValue::ThreadLocalMode::InitialExecTLSModel); - if (Options.StackDepth && !SanCovLowestStack->isDeclaration()) - SanCovLowestStack->setInitializer(Constant::getAllOnesValue(IntptrTy)); - - SanCovTracePC = M.getOrInsertFunction(SanCovTracePCName, VoidTy); - SanCovTracePCGuard = - M.getOrInsertFunction(SanCovTracePCGuardName, VoidTy, Int32PtrTy); - - for (auto &F : M) - instrumentFunction(F, DTCallback, PDTCallback); - - Function *Ctor = nullptr; - - if (FunctionGuardArray) - Ctor = CreateInitCallsForSections(M, SanCovModuleCtorTracePcGuardName, - SanCovTracePCGuardInitName, Int32PtrTy, - SanCovGuardsSectionName); - if (Function8bitCounterArray) - Ctor = CreateInitCallsForSections(M, SanCovModuleCtor8bitCountersName, - SanCov8bitCountersInitName, Int8PtrTy, - SanCovCountersSectionName); - if (FunctionBoolArray) { - Ctor = CreateInitCallsForSections(M, SanCovModuleCtorBoolFlagName, - SanCovBoolFlagInitName, Int1PtrTy, - SanCovBoolFlagSectionName); - } - if (Ctor && Options.PCTable) { - auto SecStartEnd = CreateSecStartEnd(M, SanCovPCsSectionName, IntptrPtrTy); - FunctionCallee InitFunction = declareSanitizerInitFunction( - M, SanCovPCsInitName, {IntptrPtrTy, IntptrPtrTy}); - IRBuilder<> IRBCtor(Ctor->getEntryBlock().getTerminator()); - IRBCtor.CreateCall(InitFunction, {SecStartEnd.first, SecStartEnd.second}); - } - // We don't reference these arrays directly in any of our runtime functions, - // so we need to prevent them from being dead stripped. - if (TargetTriple.isOSBinFormatMachO()) - appendToUsed(M, GlobalsToAppendToUsed); - appendToCompilerUsed(M, GlobalsToAppendToCompilerUsed); - return true; -} - -// True if block has successors and it dominates all of them. -static bool isFullDominator(const BasicBlock *BB, const DominatorTree *DT) { + SanCovTraceDivFunction[0] = + M.getOrInsertFunction(SanCovTraceDiv4, AL, VoidTy, IRB.getInt32Ty()); + } + SanCovTraceDivFunction[1] = + M.getOrInsertFunction(SanCovTraceDiv8, VoidTy, Int64Ty); + SanCovTraceGepFunction = + M.getOrInsertFunction(SanCovTraceGep, VoidTy, IntptrTy); + SanCovTraceSwitchFunction = + M.getOrInsertFunction(SanCovTraceSwitchName, VoidTy, Int64Ty, Int64PtrTy); + + Constant *SanCovLowestStackConstant = + M.getOrInsertGlobal(SanCovLowestStackName, IntptrTy); + SanCovLowestStack = dyn_cast<GlobalVariable>(SanCovLowestStackConstant); + if (!SanCovLowestStack) { + C->emitError(StringRef("'") + SanCovLowestStackName + + "' should not be declared by the user"); + return true; + } + SanCovLowestStack->setThreadLocalMode( + GlobalValue::ThreadLocalMode::InitialExecTLSModel); + if (Options.StackDepth && !SanCovLowestStack->isDeclaration()) + SanCovLowestStack->setInitializer(Constant::getAllOnesValue(IntptrTy)); + + SanCovTracePC = M.getOrInsertFunction(SanCovTracePCName, VoidTy); + SanCovTracePCGuard = + M.getOrInsertFunction(SanCovTracePCGuardName, VoidTy, Int32PtrTy); + + for (auto &F : M) + instrumentFunction(F, DTCallback, PDTCallback); + + Function *Ctor = nullptr; + + if (FunctionGuardArray) + Ctor = CreateInitCallsForSections(M, SanCovModuleCtorTracePcGuardName, + SanCovTracePCGuardInitName, Int32PtrTy, + SanCovGuardsSectionName); + if (Function8bitCounterArray) + Ctor = CreateInitCallsForSections(M, SanCovModuleCtor8bitCountersName, + SanCov8bitCountersInitName, Int8PtrTy, + SanCovCountersSectionName); + if (FunctionBoolArray) { + Ctor = CreateInitCallsForSections(M, SanCovModuleCtorBoolFlagName, + SanCovBoolFlagInitName, Int1PtrTy, + SanCovBoolFlagSectionName); + } + if (Ctor && Options.PCTable) { + auto SecStartEnd = CreateSecStartEnd(M, SanCovPCsSectionName, IntptrPtrTy); + FunctionCallee InitFunction = declareSanitizerInitFunction( + M, SanCovPCsInitName, {IntptrPtrTy, IntptrPtrTy}); + IRBuilder<> IRBCtor(Ctor->getEntryBlock().getTerminator()); + IRBCtor.CreateCall(InitFunction, {SecStartEnd.first, SecStartEnd.second}); + } + // We don't reference these arrays directly in any of our runtime functions, + // so we need to prevent them from being dead stripped. + if (TargetTriple.isOSBinFormatMachO()) + appendToUsed(M, GlobalsToAppendToUsed); + appendToCompilerUsed(M, GlobalsToAppendToCompilerUsed); + return true; +} + +// True if block has successors and it dominates all of them. +static bool isFullDominator(const BasicBlock *BB, const DominatorTree *DT) { if (succ_empty(BB)) - return false; - + return false; + return llvm::all_of(successors(BB), [&](const BasicBlock *SUCC) { return DT->dominates(BB, SUCC); }); -} - -// True if block has predecessors and it postdominates all of them. -static bool isFullPostDominator(const BasicBlock *BB, - const PostDominatorTree *PDT) { +} + +// True if block has predecessors and it postdominates all of them. +static bool isFullPostDominator(const BasicBlock *BB, + const PostDominatorTree *PDT) { if (pred_empty(BB)) - return false; - + return false; + return llvm::all_of(predecessors(BB), [&](const BasicBlock *PRED) { return PDT->dominates(BB, PRED); }); -} - -static bool shouldInstrumentBlock(const Function &F, const BasicBlock *BB, - const DominatorTree *DT, - const PostDominatorTree *PDT, - const SanitizerCoverageOptions &Options) { - // Don't insert coverage for blocks containing nothing but unreachable: we - // will never call __sanitizer_cov() for them, so counting them in - // NumberOfInstrumentedBlocks() might complicate calculation of code coverage - // percentage. Also, unreachable instructions frequently have no debug - // locations. - if (isa<UnreachableInst>(BB->getFirstNonPHIOrDbgOrLifetime())) - return false; - - // Don't insert coverage into blocks without a valid insertion point - // (catchswitch blocks). - if (BB->getFirstInsertionPt() == BB->end()) - return false; - - if (Options.NoPrune || &F.getEntryBlock() == BB) - return true; - - if (Options.CoverageType == SanitizerCoverageOptions::SCK_Function && - &F.getEntryBlock() != BB) - return false; - - // Do not instrument full dominators, or full post-dominators with multiple - // predecessors. - return !isFullDominator(BB, DT) - && !(isFullPostDominator(BB, PDT) && !BB->getSinglePredecessor()); -} - - -// Returns true iff From->To is a backedge. -// A twist here is that we treat From->To as a backedge if -// * To dominates From or -// * To->UniqueSuccessor dominates From -static bool IsBackEdge(BasicBlock *From, BasicBlock *To, - const DominatorTree *DT) { - if (DT->dominates(To, From)) - return true; - if (auto Next = To->getUniqueSuccessor()) - if (DT->dominates(Next, From)) - return true; - return false; -} - -// Prunes uninteresting Cmp instrumentation: -// * CMP instructions that feed into loop backedge branch. -// -// Note that Cmp pruning is controlled by the same flag as the -// BB pruning. -static bool IsInterestingCmp(ICmpInst *CMP, const DominatorTree *DT, - const SanitizerCoverageOptions &Options) { - if (!Options.NoPrune) - if (CMP->hasOneUse()) - if (auto BR = dyn_cast<BranchInst>(CMP->user_back())) - for (BasicBlock *B : BR->successors()) - if (IsBackEdge(BR->getParent(), B, DT)) - return false; - return true; -} - -void ModuleSanitizerCoverage::instrumentFunction( - Function &F, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { - if (F.empty()) - return; - if (F.getName().find(".module_ctor") != std::string::npos) - return; // Should not instrument sanitizer init functions. - if (F.getName().startswith("__sanitizer_")) - return; // Don't instrument __sanitizer_* callbacks. - // Don't touch available_externally functions, their actual body is elewhere. - if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) - return; - // Don't instrument MSVC CRT configuration helpers. They may run before normal - // initialization. - if (F.getName() == "__local_stdio_printf_options" || - F.getName() == "__local_stdio_scanf_options") - return; - if (isa<UnreachableInst>(F.getEntryBlock().getTerminator())) - return; - // Don't instrument functions using SEH for now. Splitting basic blocks like - // we do for coverage breaks WinEHPrepare. - // FIXME: Remove this when SEH no longer uses landingpad pattern matching. - if (F.hasPersonalityFn() && - isAsynchronousEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) - return; - if (Allowlist && !Allowlist->inSection("coverage", "fun", F.getName())) - return; - if (Blocklist && Blocklist->inSection("coverage", "fun", F.getName())) - return; - if (Options.CoverageType >= SanitizerCoverageOptions::SCK_Edge) - SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions().setIgnoreUnreachableDests()); - SmallVector<Instruction *, 8> IndirCalls; - SmallVector<BasicBlock *, 16> BlocksToInstrument; - SmallVector<Instruction *, 8> CmpTraceTargets; - SmallVector<Instruction *, 8> SwitchTraceTargets; - SmallVector<BinaryOperator *, 8> DivTraceTargets; - SmallVector<GetElementPtrInst *, 8> GepTraceTargets; - - const DominatorTree *DT = DTCallback(F); - const PostDominatorTree *PDT = PDTCallback(F); - bool IsLeafFunc = true; - - for (auto &BB : F) { - if (shouldInstrumentBlock(F, &BB, DT, PDT, Options)) - BlocksToInstrument.push_back(&BB); - for (auto &Inst : BB) { - if (Options.IndirectCalls) { - CallBase *CB = dyn_cast<CallBase>(&Inst); - if (CB && !CB->getCalledFunction()) - IndirCalls.push_back(&Inst); - } - if (Options.TraceCmp) { - if (ICmpInst *CMP = dyn_cast<ICmpInst>(&Inst)) - if (IsInterestingCmp(CMP, DT, Options)) - CmpTraceTargets.push_back(&Inst); - if (isa<SwitchInst>(&Inst)) - SwitchTraceTargets.push_back(&Inst); - } - if (Options.TraceDiv) - if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&Inst)) - if (BO->getOpcode() == Instruction::SDiv || - BO->getOpcode() == Instruction::UDiv) - DivTraceTargets.push_back(BO); - if (Options.TraceGep) - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Inst)) - GepTraceTargets.push_back(GEP); - if (Options.StackDepth) - if (isa<InvokeInst>(Inst) || - (isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))) - IsLeafFunc = false; - } - } - - InjectCoverage(F, BlocksToInstrument, IsLeafFunc); - InjectCoverageForIndirectCalls(F, IndirCalls); - InjectTraceForCmp(F, CmpTraceTargets); - InjectTraceForSwitch(F, SwitchTraceTargets); - InjectTraceForDiv(F, DivTraceTargets); - InjectTraceForGep(F, GepTraceTargets); -} - -GlobalVariable *ModuleSanitizerCoverage::CreateFunctionLocalArrayInSection( - size_t NumElements, Function &F, Type *Ty, const char *Section) { - ArrayType *ArrayTy = ArrayType::get(Ty, NumElements); - auto Array = new GlobalVariable( - *CurModule, ArrayTy, false, GlobalVariable::PrivateLinkage, - Constant::getNullValue(ArrayTy), "__sancov_gen_"); - - if (TargetTriple.supportsCOMDAT() && !F.isInterposable()) - if (auto Comdat = - GetOrCreateFunctionComdat(F, TargetTriple, CurModuleUniqueId)) - Array->setComdat(Comdat); - Array->setSection(getSectionName(Section)); - Array->setAlignment(Align(DL->getTypeStoreSize(Ty).getFixedSize())); - GlobalsToAppendToUsed.push_back(Array); - GlobalsToAppendToCompilerUsed.push_back(Array); - MDNode *MD = MDNode::get(F.getContext(), ValueAsMetadata::get(&F)); - Array->addMetadata(LLVMContext::MD_associated, *MD); - - return Array; -} - -GlobalVariable * -ModuleSanitizerCoverage::CreatePCArray(Function &F, - ArrayRef<BasicBlock *> AllBlocks) { - size_t N = AllBlocks.size(); - assert(N); - SmallVector<Constant *, 32> PCs; - IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt()); - for (size_t i = 0; i < N; i++) { - if (&F.getEntryBlock() == AllBlocks[i]) { - PCs.push_back((Constant *)IRB.CreatePointerCast(&F, IntptrPtrTy)); - PCs.push_back((Constant *)IRB.CreateIntToPtr( - ConstantInt::get(IntptrTy, 1), IntptrPtrTy)); - } else { - PCs.push_back((Constant *)IRB.CreatePointerCast( - BlockAddress::get(AllBlocks[i]), IntptrPtrTy)); - PCs.push_back((Constant *)IRB.CreateIntToPtr( - ConstantInt::get(IntptrTy, 0), IntptrPtrTy)); - } - } - auto *PCArray = CreateFunctionLocalArrayInSection(N * 2, F, IntptrPtrTy, - SanCovPCsSectionName); - PCArray->setInitializer( - ConstantArray::get(ArrayType::get(IntptrPtrTy, N * 2), PCs)); - PCArray->setConstant(true); - - return PCArray; -} - -void ModuleSanitizerCoverage::CreateFunctionLocalArrays( - Function &F, ArrayRef<BasicBlock *> AllBlocks) { - if (Options.TracePCGuard) - FunctionGuardArray = CreateFunctionLocalArrayInSection( - AllBlocks.size(), F, Int32Ty, SanCovGuardsSectionName); - - if (Options.Inline8bitCounters) - Function8bitCounterArray = CreateFunctionLocalArrayInSection( - AllBlocks.size(), F, Int8Ty, SanCovCountersSectionName); - if (Options.InlineBoolFlag) - FunctionBoolArray = CreateFunctionLocalArrayInSection( - AllBlocks.size(), F, Int1Ty, SanCovBoolFlagSectionName); - - if (Options.PCTable) - FunctionPCsArray = CreatePCArray(F, AllBlocks); -} - -bool ModuleSanitizerCoverage::InjectCoverage(Function &F, - ArrayRef<BasicBlock *> AllBlocks, - bool IsLeafFunc) { - if (AllBlocks.empty()) return false; - CreateFunctionLocalArrays(F, AllBlocks); - for (size_t i = 0, N = AllBlocks.size(); i < N; i++) - InjectCoverageAtBlock(F, *AllBlocks[i], i, IsLeafFunc); - return true; -} - -// On every indirect call we call a run-time function -// __sanitizer_cov_indir_call* with two parameters: -// - callee address, -// - global cache array that contains CacheSize pointers (zero-initialized). -// The cache is used to speed up recording the caller-callee pairs. -// The address of the caller is passed implicitly via caller PC. -// CacheSize is encoded in the name of the run-time function. -void ModuleSanitizerCoverage::InjectCoverageForIndirectCalls( - Function &F, ArrayRef<Instruction *> IndirCalls) { - if (IndirCalls.empty()) - return; - assert(Options.TracePC || Options.TracePCGuard || - Options.Inline8bitCounters || Options.InlineBoolFlag); - for (auto I : IndirCalls) { - IRBuilder<> IRB(I); - CallBase &CB = cast<CallBase>(*I); - Value *Callee = CB.getCalledOperand(); - if (isa<InlineAsm>(Callee)) - continue; - IRB.CreateCall(SanCovTracePCIndir, IRB.CreatePointerCast(Callee, IntptrTy)); - } -} - -// For every switch statement we insert a call: -// __sanitizer_cov_trace_switch(CondValue, -// {NumCases, ValueSizeInBits, Case0Value, Case1Value, Case2Value, ... }) - -void ModuleSanitizerCoverage::InjectTraceForSwitch( - Function &, ArrayRef<Instruction *> SwitchTraceTargets) { - for (auto I : SwitchTraceTargets) { - if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { - IRBuilder<> IRB(I); - SmallVector<Constant *, 16> Initializers; - Value *Cond = SI->getCondition(); - if (Cond->getType()->getScalarSizeInBits() > - Int64Ty->getScalarSizeInBits()) - continue; - Initializers.push_back(ConstantInt::get(Int64Ty, SI->getNumCases())); - Initializers.push_back( - ConstantInt::get(Int64Ty, Cond->getType()->getScalarSizeInBits())); - if (Cond->getType()->getScalarSizeInBits() < - Int64Ty->getScalarSizeInBits()) - Cond = IRB.CreateIntCast(Cond, Int64Ty, false); - for (auto It : SI->cases()) { - Constant *C = It.getCaseValue(); - if (C->getType()->getScalarSizeInBits() < - Int64Ty->getScalarSizeInBits()) - C = ConstantExpr::getCast(CastInst::ZExt, It.getCaseValue(), Int64Ty); - Initializers.push_back(C); - } +} + +static bool shouldInstrumentBlock(const Function &F, const BasicBlock *BB, + const DominatorTree *DT, + const PostDominatorTree *PDT, + const SanitizerCoverageOptions &Options) { + // Don't insert coverage for blocks containing nothing but unreachable: we + // will never call __sanitizer_cov() for them, so counting them in + // NumberOfInstrumentedBlocks() might complicate calculation of code coverage + // percentage. Also, unreachable instructions frequently have no debug + // locations. + if (isa<UnreachableInst>(BB->getFirstNonPHIOrDbgOrLifetime())) + return false; + + // Don't insert coverage into blocks without a valid insertion point + // (catchswitch blocks). + if (BB->getFirstInsertionPt() == BB->end()) + return false; + + if (Options.NoPrune || &F.getEntryBlock() == BB) + return true; + + if (Options.CoverageType == SanitizerCoverageOptions::SCK_Function && + &F.getEntryBlock() != BB) + return false; + + // Do not instrument full dominators, or full post-dominators with multiple + // predecessors. + return !isFullDominator(BB, DT) + && !(isFullPostDominator(BB, PDT) && !BB->getSinglePredecessor()); +} + + +// Returns true iff From->To is a backedge. +// A twist here is that we treat From->To as a backedge if +// * To dominates From or +// * To->UniqueSuccessor dominates From +static bool IsBackEdge(BasicBlock *From, BasicBlock *To, + const DominatorTree *DT) { + if (DT->dominates(To, From)) + return true; + if (auto Next = To->getUniqueSuccessor()) + if (DT->dominates(Next, From)) + return true; + return false; +} + +// Prunes uninteresting Cmp instrumentation: +// * CMP instructions that feed into loop backedge branch. +// +// Note that Cmp pruning is controlled by the same flag as the +// BB pruning. +static bool IsInterestingCmp(ICmpInst *CMP, const DominatorTree *DT, + const SanitizerCoverageOptions &Options) { + if (!Options.NoPrune) + if (CMP->hasOneUse()) + if (auto BR = dyn_cast<BranchInst>(CMP->user_back())) + for (BasicBlock *B : BR->successors()) + if (IsBackEdge(BR->getParent(), B, DT)) + return false; + return true; +} + +void ModuleSanitizerCoverage::instrumentFunction( + Function &F, DomTreeCallback DTCallback, PostDomTreeCallback PDTCallback) { + if (F.empty()) + return; + if (F.getName().find(".module_ctor") != std::string::npos) + return; // Should not instrument sanitizer init functions. + if (F.getName().startswith("__sanitizer_")) + return; // Don't instrument __sanitizer_* callbacks. + // Don't touch available_externally functions, their actual body is elewhere. + if (F.getLinkage() == GlobalValue::AvailableExternallyLinkage) + return; + // Don't instrument MSVC CRT configuration helpers. They may run before normal + // initialization. + if (F.getName() == "__local_stdio_printf_options" || + F.getName() == "__local_stdio_scanf_options") + return; + if (isa<UnreachableInst>(F.getEntryBlock().getTerminator())) + return; + // Don't instrument functions using SEH for now. Splitting basic blocks like + // we do for coverage breaks WinEHPrepare. + // FIXME: Remove this when SEH no longer uses landingpad pattern matching. + if (F.hasPersonalityFn() && + isAsynchronousEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) + return; + if (Allowlist && !Allowlist->inSection("coverage", "fun", F.getName())) + return; + if (Blocklist && Blocklist->inSection("coverage", "fun", F.getName())) + return; + if (Options.CoverageType >= SanitizerCoverageOptions::SCK_Edge) + SplitAllCriticalEdges(F, CriticalEdgeSplittingOptions().setIgnoreUnreachableDests()); + SmallVector<Instruction *, 8> IndirCalls; + SmallVector<BasicBlock *, 16> BlocksToInstrument; + SmallVector<Instruction *, 8> CmpTraceTargets; + SmallVector<Instruction *, 8> SwitchTraceTargets; + SmallVector<BinaryOperator *, 8> DivTraceTargets; + SmallVector<GetElementPtrInst *, 8> GepTraceTargets; + + const DominatorTree *DT = DTCallback(F); + const PostDominatorTree *PDT = PDTCallback(F); + bool IsLeafFunc = true; + + for (auto &BB : F) { + if (shouldInstrumentBlock(F, &BB, DT, PDT, Options)) + BlocksToInstrument.push_back(&BB); + for (auto &Inst : BB) { + if (Options.IndirectCalls) { + CallBase *CB = dyn_cast<CallBase>(&Inst); + if (CB && !CB->getCalledFunction()) + IndirCalls.push_back(&Inst); + } + if (Options.TraceCmp) { + if (ICmpInst *CMP = dyn_cast<ICmpInst>(&Inst)) + if (IsInterestingCmp(CMP, DT, Options)) + CmpTraceTargets.push_back(&Inst); + if (isa<SwitchInst>(&Inst)) + SwitchTraceTargets.push_back(&Inst); + } + if (Options.TraceDiv) + if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&Inst)) + if (BO->getOpcode() == Instruction::SDiv || + BO->getOpcode() == Instruction::UDiv) + DivTraceTargets.push_back(BO); + if (Options.TraceGep) + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Inst)) + GepTraceTargets.push_back(GEP); + if (Options.StackDepth) + if (isa<InvokeInst>(Inst) || + (isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))) + IsLeafFunc = false; + } + } + + InjectCoverage(F, BlocksToInstrument, IsLeafFunc); + InjectCoverageForIndirectCalls(F, IndirCalls); + InjectTraceForCmp(F, CmpTraceTargets); + InjectTraceForSwitch(F, SwitchTraceTargets); + InjectTraceForDiv(F, DivTraceTargets); + InjectTraceForGep(F, GepTraceTargets); +} + +GlobalVariable *ModuleSanitizerCoverage::CreateFunctionLocalArrayInSection( + size_t NumElements, Function &F, Type *Ty, const char *Section) { + ArrayType *ArrayTy = ArrayType::get(Ty, NumElements); + auto Array = new GlobalVariable( + *CurModule, ArrayTy, false, GlobalVariable::PrivateLinkage, + Constant::getNullValue(ArrayTy), "__sancov_gen_"); + + if (TargetTriple.supportsCOMDAT() && !F.isInterposable()) + if (auto Comdat = + GetOrCreateFunctionComdat(F, TargetTriple, CurModuleUniqueId)) + Array->setComdat(Comdat); + Array->setSection(getSectionName(Section)); + Array->setAlignment(Align(DL->getTypeStoreSize(Ty).getFixedSize())); + GlobalsToAppendToUsed.push_back(Array); + GlobalsToAppendToCompilerUsed.push_back(Array); + MDNode *MD = MDNode::get(F.getContext(), ValueAsMetadata::get(&F)); + Array->addMetadata(LLVMContext::MD_associated, *MD); + + return Array; +} + +GlobalVariable * +ModuleSanitizerCoverage::CreatePCArray(Function &F, + ArrayRef<BasicBlock *> AllBlocks) { + size_t N = AllBlocks.size(); + assert(N); + SmallVector<Constant *, 32> PCs; + IRBuilder<> IRB(&*F.getEntryBlock().getFirstInsertionPt()); + for (size_t i = 0; i < N; i++) { + if (&F.getEntryBlock() == AllBlocks[i]) { + PCs.push_back((Constant *)IRB.CreatePointerCast(&F, IntptrPtrTy)); + PCs.push_back((Constant *)IRB.CreateIntToPtr( + ConstantInt::get(IntptrTy, 1), IntptrPtrTy)); + } else { + PCs.push_back((Constant *)IRB.CreatePointerCast( + BlockAddress::get(AllBlocks[i]), IntptrPtrTy)); + PCs.push_back((Constant *)IRB.CreateIntToPtr( + ConstantInt::get(IntptrTy, 0), IntptrPtrTy)); + } + } + auto *PCArray = CreateFunctionLocalArrayInSection(N * 2, F, IntptrPtrTy, + SanCovPCsSectionName); + PCArray->setInitializer( + ConstantArray::get(ArrayType::get(IntptrPtrTy, N * 2), PCs)); + PCArray->setConstant(true); + + return PCArray; +} + +void ModuleSanitizerCoverage::CreateFunctionLocalArrays( + Function &F, ArrayRef<BasicBlock *> AllBlocks) { + if (Options.TracePCGuard) + FunctionGuardArray = CreateFunctionLocalArrayInSection( + AllBlocks.size(), F, Int32Ty, SanCovGuardsSectionName); + + if (Options.Inline8bitCounters) + Function8bitCounterArray = CreateFunctionLocalArrayInSection( + AllBlocks.size(), F, Int8Ty, SanCovCountersSectionName); + if (Options.InlineBoolFlag) + FunctionBoolArray = CreateFunctionLocalArrayInSection( + AllBlocks.size(), F, Int1Ty, SanCovBoolFlagSectionName); + + if (Options.PCTable) + FunctionPCsArray = CreatePCArray(F, AllBlocks); +} + +bool ModuleSanitizerCoverage::InjectCoverage(Function &F, + ArrayRef<BasicBlock *> AllBlocks, + bool IsLeafFunc) { + if (AllBlocks.empty()) return false; + CreateFunctionLocalArrays(F, AllBlocks); + for (size_t i = 0, N = AllBlocks.size(); i < N; i++) + InjectCoverageAtBlock(F, *AllBlocks[i], i, IsLeafFunc); + return true; +} + +// On every indirect call we call a run-time function +// __sanitizer_cov_indir_call* with two parameters: +// - callee address, +// - global cache array that contains CacheSize pointers (zero-initialized). +// The cache is used to speed up recording the caller-callee pairs. +// The address of the caller is passed implicitly via caller PC. +// CacheSize is encoded in the name of the run-time function. +void ModuleSanitizerCoverage::InjectCoverageForIndirectCalls( + Function &F, ArrayRef<Instruction *> IndirCalls) { + if (IndirCalls.empty()) + return; + assert(Options.TracePC || Options.TracePCGuard || + Options.Inline8bitCounters || Options.InlineBoolFlag); + for (auto I : IndirCalls) { + IRBuilder<> IRB(I); + CallBase &CB = cast<CallBase>(*I); + Value *Callee = CB.getCalledOperand(); + if (isa<InlineAsm>(Callee)) + continue; + IRB.CreateCall(SanCovTracePCIndir, IRB.CreatePointerCast(Callee, IntptrTy)); + } +} + +// For every switch statement we insert a call: +// __sanitizer_cov_trace_switch(CondValue, +// {NumCases, ValueSizeInBits, Case0Value, Case1Value, Case2Value, ... }) + +void ModuleSanitizerCoverage::InjectTraceForSwitch( + Function &, ArrayRef<Instruction *> SwitchTraceTargets) { + for (auto I : SwitchTraceTargets) { + if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) { + IRBuilder<> IRB(I); + SmallVector<Constant *, 16> Initializers; + Value *Cond = SI->getCondition(); + if (Cond->getType()->getScalarSizeInBits() > + Int64Ty->getScalarSizeInBits()) + continue; + Initializers.push_back(ConstantInt::get(Int64Ty, SI->getNumCases())); + Initializers.push_back( + ConstantInt::get(Int64Ty, Cond->getType()->getScalarSizeInBits())); + if (Cond->getType()->getScalarSizeInBits() < + Int64Ty->getScalarSizeInBits()) + Cond = IRB.CreateIntCast(Cond, Int64Ty, false); + for (auto It : SI->cases()) { + Constant *C = It.getCaseValue(); + if (C->getType()->getScalarSizeInBits() < + Int64Ty->getScalarSizeInBits()) + C = ConstantExpr::getCast(CastInst::ZExt, It.getCaseValue(), Int64Ty); + Initializers.push_back(C); + } llvm::sort(drop_begin(Initializers, 2), - [](const Constant *A, const Constant *B) { - return cast<ConstantInt>(A)->getLimitedValue() < - cast<ConstantInt>(B)->getLimitedValue(); - }); - ArrayType *ArrayOfInt64Ty = ArrayType::get(Int64Ty, Initializers.size()); - GlobalVariable *GV = new GlobalVariable( - *CurModule, ArrayOfInt64Ty, false, GlobalVariable::InternalLinkage, - ConstantArray::get(ArrayOfInt64Ty, Initializers), - "__sancov_gen_cov_switch_values"); - IRB.CreateCall(SanCovTraceSwitchFunction, - {Cond, IRB.CreatePointerCast(GV, Int64PtrTy)}); - } - } -} - -void ModuleSanitizerCoverage::InjectTraceForDiv( - Function &, ArrayRef<BinaryOperator *> DivTraceTargets) { - for (auto BO : DivTraceTargets) { - IRBuilder<> IRB(BO); - Value *A1 = BO->getOperand(1); - if (isa<ConstantInt>(A1)) continue; - if (!A1->getType()->isIntegerTy()) - continue; - uint64_t TypeSize = DL->getTypeStoreSizeInBits(A1->getType()); - int CallbackIdx = TypeSize == 32 ? 0 : - TypeSize == 64 ? 1 : -1; - if (CallbackIdx < 0) continue; - auto Ty = Type::getIntNTy(*C, TypeSize); - IRB.CreateCall(SanCovTraceDivFunction[CallbackIdx], - {IRB.CreateIntCast(A1, Ty, true)}); - } -} - -void ModuleSanitizerCoverage::InjectTraceForGep( - Function &, ArrayRef<GetElementPtrInst *> GepTraceTargets) { - for (auto GEP : GepTraceTargets) { - IRBuilder<> IRB(GEP); - for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) - if (!isa<ConstantInt>(*I) && (*I)->getType()->isIntegerTy()) - IRB.CreateCall(SanCovTraceGepFunction, - {IRB.CreateIntCast(*I, IntptrTy, true)}); - } -} - -void ModuleSanitizerCoverage::InjectTraceForCmp( - Function &, ArrayRef<Instruction *> CmpTraceTargets) { - for (auto I : CmpTraceTargets) { - if (ICmpInst *ICMP = dyn_cast<ICmpInst>(I)) { - IRBuilder<> IRB(ICMP); - Value *A0 = ICMP->getOperand(0); - Value *A1 = ICMP->getOperand(1); - if (!A0->getType()->isIntegerTy()) - continue; - uint64_t TypeSize = DL->getTypeStoreSizeInBits(A0->getType()); - int CallbackIdx = TypeSize == 8 ? 0 : - TypeSize == 16 ? 1 : - TypeSize == 32 ? 2 : - TypeSize == 64 ? 3 : -1; - if (CallbackIdx < 0) continue; - // __sanitizer_cov_trace_cmp((type_size << 32) | predicate, A0, A1); - auto CallbackFunc = SanCovTraceCmpFunction[CallbackIdx]; - bool FirstIsConst = isa<ConstantInt>(A0); - bool SecondIsConst = isa<ConstantInt>(A1); - // If both are const, then we don't need such a comparison. - if (FirstIsConst && SecondIsConst) continue; - // If only one is const, then make it the first callback argument. - if (FirstIsConst || SecondIsConst) { - CallbackFunc = SanCovTraceConstCmpFunction[CallbackIdx]; - if (SecondIsConst) - std::swap(A0, A1); - } - - auto Ty = Type::getIntNTy(*C, TypeSize); - IRB.CreateCall(CallbackFunc, {IRB.CreateIntCast(A0, Ty, true), - IRB.CreateIntCast(A1, Ty, true)}); - } - } -} - -void ModuleSanitizerCoverage::InjectCoverageAtBlock(Function &F, BasicBlock &BB, - size_t Idx, - bool IsLeafFunc) { - BasicBlock::iterator IP = BB.getFirstInsertionPt(); - bool IsEntryBB = &BB == &F.getEntryBlock(); - DebugLoc EntryLoc; - if (IsEntryBB) { - if (auto SP = F.getSubprogram()) + [](const Constant *A, const Constant *B) { + return cast<ConstantInt>(A)->getLimitedValue() < + cast<ConstantInt>(B)->getLimitedValue(); + }); + ArrayType *ArrayOfInt64Ty = ArrayType::get(Int64Ty, Initializers.size()); + GlobalVariable *GV = new GlobalVariable( + *CurModule, ArrayOfInt64Ty, false, GlobalVariable::InternalLinkage, + ConstantArray::get(ArrayOfInt64Ty, Initializers), + "__sancov_gen_cov_switch_values"); + IRB.CreateCall(SanCovTraceSwitchFunction, + {Cond, IRB.CreatePointerCast(GV, Int64PtrTy)}); + } + } +} + +void ModuleSanitizerCoverage::InjectTraceForDiv( + Function &, ArrayRef<BinaryOperator *> DivTraceTargets) { + for (auto BO : DivTraceTargets) { + IRBuilder<> IRB(BO); + Value *A1 = BO->getOperand(1); + if (isa<ConstantInt>(A1)) continue; + if (!A1->getType()->isIntegerTy()) + continue; + uint64_t TypeSize = DL->getTypeStoreSizeInBits(A1->getType()); + int CallbackIdx = TypeSize == 32 ? 0 : + TypeSize == 64 ? 1 : -1; + if (CallbackIdx < 0) continue; + auto Ty = Type::getIntNTy(*C, TypeSize); + IRB.CreateCall(SanCovTraceDivFunction[CallbackIdx], + {IRB.CreateIntCast(A1, Ty, true)}); + } +} + +void ModuleSanitizerCoverage::InjectTraceForGep( + Function &, ArrayRef<GetElementPtrInst *> GepTraceTargets) { + for (auto GEP : GepTraceTargets) { + IRBuilder<> IRB(GEP); + for (auto I = GEP->idx_begin(); I != GEP->idx_end(); ++I) + if (!isa<ConstantInt>(*I) && (*I)->getType()->isIntegerTy()) + IRB.CreateCall(SanCovTraceGepFunction, + {IRB.CreateIntCast(*I, IntptrTy, true)}); + } +} + +void ModuleSanitizerCoverage::InjectTraceForCmp( + Function &, ArrayRef<Instruction *> CmpTraceTargets) { + for (auto I : CmpTraceTargets) { + if (ICmpInst *ICMP = dyn_cast<ICmpInst>(I)) { + IRBuilder<> IRB(ICMP); + Value *A0 = ICMP->getOperand(0); + Value *A1 = ICMP->getOperand(1); + if (!A0->getType()->isIntegerTy()) + continue; + uint64_t TypeSize = DL->getTypeStoreSizeInBits(A0->getType()); + int CallbackIdx = TypeSize == 8 ? 0 : + TypeSize == 16 ? 1 : + TypeSize == 32 ? 2 : + TypeSize == 64 ? 3 : -1; + if (CallbackIdx < 0) continue; + // __sanitizer_cov_trace_cmp((type_size << 32) | predicate, A0, A1); + auto CallbackFunc = SanCovTraceCmpFunction[CallbackIdx]; + bool FirstIsConst = isa<ConstantInt>(A0); + bool SecondIsConst = isa<ConstantInt>(A1); + // If both are const, then we don't need such a comparison. + if (FirstIsConst && SecondIsConst) continue; + // If only one is const, then make it the first callback argument. + if (FirstIsConst || SecondIsConst) { + CallbackFunc = SanCovTraceConstCmpFunction[CallbackIdx]; + if (SecondIsConst) + std::swap(A0, A1); + } + + auto Ty = Type::getIntNTy(*C, TypeSize); + IRB.CreateCall(CallbackFunc, {IRB.CreateIntCast(A0, Ty, true), + IRB.CreateIntCast(A1, Ty, true)}); + } + } +} + +void ModuleSanitizerCoverage::InjectCoverageAtBlock(Function &F, BasicBlock &BB, + size_t Idx, + bool IsLeafFunc) { + BasicBlock::iterator IP = BB.getFirstInsertionPt(); + bool IsEntryBB = &BB == &F.getEntryBlock(); + DebugLoc EntryLoc; + if (IsEntryBB) { + if (auto SP = F.getSubprogram()) EntryLoc = DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP); - // Keep static allocas and llvm.localescape calls in the entry block. Even - // if we aren't splitting the block, it's nice for allocas to be before - // calls. - IP = PrepareToSplitEntryBlock(BB, IP); - } else { - EntryLoc = IP->getDebugLoc(); - } - - IRBuilder<> IRB(&*IP); - IRB.SetCurrentDebugLocation(EntryLoc); - if (Options.TracePC) { - IRB.CreateCall(SanCovTracePC) - ->setCannotMerge(); // gets the PC using GET_CALLER_PC. - } - if (Options.TracePCGuard) { - auto GuardPtr = IRB.CreateIntToPtr( - IRB.CreateAdd(IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), - ConstantInt::get(IntptrTy, Idx * 4)), - Int32PtrTy); - IRB.CreateCall(SanCovTracePCGuard, GuardPtr)->setCannotMerge(); - } - if (Options.Inline8bitCounters) { - auto CounterPtr = IRB.CreateGEP( - Function8bitCounterArray->getValueType(), Function8bitCounterArray, - {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); - auto Load = IRB.CreateLoad(Int8Ty, CounterPtr); - auto Inc = IRB.CreateAdd(Load, ConstantInt::get(Int8Ty, 1)); - auto Store = IRB.CreateStore(Inc, CounterPtr); - SetNoSanitizeMetadata(Load); - SetNoSanitizeMetadata(Store); - } - if (Options.InlineBoolFlag) { - auto FlagPtr = IRB.CreateGEP( - FunctionBoolArray->getValueType(), FunctionBoolArray, - {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); - auto Load = IRB.CreateLoad(Int1Ty, FlagPtr); - auto ThenTerm = - SplitBlockAndInsertIfThen(IRB.CreateIsNull(Load), &*IP, false); - IRBuilder<> ThenIRB(ThenTerm); - auto Store = ThenIRB.CreateStore(ConstantInt::getTrue(Int1Ty), FlagPtr); - SetNoSanitizeMetadata(Load); - SetNoSanitizeMetadata(Store); - } - if (Options.StackDepth && IsEntryBB && !IsLeafFunc) { - // Check stack depth. If it's the deepest so far, record it. - Module *M = F.getParent(); - Function *GetFrameAddr = Intrinsic::getDeclaration( - M, Intrinsic::frameaddress, - IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); - auto FrameAddrPtr = - IRB.CreateCall(GetFrameAddr, {Constant::getNullValue(Int32Ty)}); - auto FrameAddrInt = IRB.CreatePtrToInt(FrameAddrPtr, IntptrTy); - auto LowestStack = IRB.CreateLoad(IntptrTy, SanCovLowestStack); - auto IsStackLower = IRB.CreateICmpULT(FrameAddrInt, LowestStack); - auto ThenTerm = SplitBlockAndInsertIfThen(IsStackLower, &*IP, false); - IRBuilder<> ThenIRB(ThenTerm); - auto Store = ThenIRB.CreateStore(FrameAddrInt, SanCovLowestStack); - SetNoSanitizeMetadata(LowestStack); - SetNoSanitizeMetadata(Store); - } -} - -std::string -ModuleSanitizerCoverage::getSectionName(const std::string &Section) const { - if (TargetTriple.isOSBinFormatCOFF()) { - if (Section == SanCovCountersSectionName) - return ".SCOV$CM"; - if (Section == SanCovBoolFlagSectionName) - return ".SCOV$BM"; - if (Section == SanCovPCsSectionName) - return ".SCOVP$M"; - return ".SCOV$GM"; // For SanCovGuardsSectionName. - } - if (TargetTriple.isOSBinFormatMachO()) - return "__DATA,__" + Section; - return "__" + Section; -} - -std::string -ModuleSanitizerCoverage::getSectionStart(const std::string &Section) const { - if (TargetTriple.isOSBinFormatMachO()) - return "\1section$start$__DATA$__" + Section; - return "__start___" + Section; -} - -std::string -ModuleSanitizerCoverage::getSectionEnd(const std::string &Section) const { - if (TargetTriple.isOSBinFormatMachO()) - return "\1section$end$__DATA$__" + Section; - return "__stop___" + Section; -} - -char ModuleSanitizerCoverageLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(ModuleSanitizerCoverageLegacyPass, "sancov", - "Pass for instrumenting coverage on functions", false, - false) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) -INITIALIZE_PASS_END(ModuleSanitizerCoverageLegacyPass, "sancov", - "Pass for instrumenting coverage on functions", false, - false) -ModulePass *llvm::createModuleSanitizerCoverageLegacyPassPass( - const SanitizerCoverageOptions &Options, - const std::vector<std::string> &AllowlistFiles, - const std::vector<std::string> &BlocklistFiles) { - return new ModuleSanitizerCoverageLegacyPass(Options, AllowlistFiles, - BlocklistFiles); -} + // Keep static allocas and llvm.localescape calls in the entry block. Even + // if we aren't splitting the block, it's nice for allocas to be before + // calls. + IP = PrepareToSplitEntryBlock(BB, IP); + } else { + EntryLoc = IP->getDebugLoc(); + } + + IRBuilder<> IRB(&*IP); + IRB.SetCurrentDebugLocation(EntryLoc); + if (Options.TracePC) { + IRB.CreateCall(SanCovTracePC) + ->setCannotMerge(); // gets the PC using GET_CALLER_PC. + } + if (Options.TracePCGuard) { + auto GuardPtr = IRB.CreateIntToPtr( + IRB.CreateAdd(IRB.CreatePointerCast(FunctionGuardArray, IntptrTy), + ConstantInt::get(IntptrTy, Idx * 4)), + Int32PtrTy); + IRB.CreateCall(SanCovTracePCGuard, GuardPtr)->setCannotMerge(); + } + if (Options.Inline8bitCounters) { + auto CounterPtr = IRB.CreateGEP( + Function8bitCounterArray->getValueType(), Function8bitCounterArray, + {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); + auto Load = IRB.CreateLoad(Int8Ty, CounterPtr); + auto Inc = IRB.CreateAdd(Load, ConstantInt::get(Int8Ty, 1)); + auto Store = IRB.CreateStore(Inc, CounterPtr); + SetNoSanitizeMetadata(Load); + SetNoSanitizeMetadata(Store); + } + if (Options.InlineBoolFlag) { + auto FlagPtr = IRB.CreateGEP( + FunctionBoolArray->getValueType(), FunctionBoolArray, + {ConstantInt::get(IntptrTy, 0), ConstantInt::get(IntptrTy, Idx)}); + auto Load = IRB.CreateLoad(Int1Ty, FlagPtr); + auto ThenTerm = + SplitBlockAndInsertIfThen(IRB.CreateIsNull(Load), &*IP, false); + IRBuilder<> ThenIRB(ThenTerm); + auto Store = ThenIRB.CreateStore(ConstantInt::getTrue(Int1Ty), FlagPtr); + SetNoSanitizeMetadata(Load); + SetNoSanitizeMetadata(Store); + } + if (Options.StackDepth && IsEntryBB && !IsLeafFunc) { + // Check stack depth. If it's the deepest so far, record it. + Module *M = F.getParent(); + Function *GetFrameAddr = Intrinsic::getDeclaration( + M, Intrinsic::frameaddress, + IRB.getInt8PtrTy(M->getDataLayout().getAllocaAddrSpace())); + auto FrameAddrPtr = + IRB.CreateCall(GetFrameAddr, {Constant::getNullValue(Int32Ty)}); + auto FrameAddrInt = IRB.CreatePtrToInt(FrameAddrPtr, IntptrTy); + auto LowestStack = IRB.CreateLoad(IntptrTy, SanCovLowestStack); + auto IsStackLower = IRB.CreateICmpULT(FrameAddrInt, LowestStack); + auto ThenTerm = SplitBlockAndInsertIfThen(IsStackLower, &*IP, false); + IRBuilder<> ThenIRB(ThenTerm); + auto Store = ThenIRB.CreateStore(FrameAddrInt, SanCovLowestStack); + SetNoSanitizeMetadata(LowestStack); + SetNoSanitizeMetadata(Store); + } +} + +std::string +ModuleSanitizerCoverage::getSectionName(const std::string &Section) const { + if (TargetTriple.isOSBinFormatCOFF()) { + if (Section == SanCovCountersSectionName) + return ".SCOV$CM"; + if (Section == SanCovBoolFlagSectionName) + return ".SCOV$BM"; + if (Section == SanCovPCsSectionName) + return ".SCOVP$M"; + return ".SCOV$GM"; // For SanCovGuardsSectionName. + } + if (TargetTriple.isOSBinFormatMachO()) + return "__DATA,__" + Section; + return "__" + Section; +} + +std::string +ModuleSanitizerCoverage::getSectionStart(const std::string &Section) const { + if (TargetTriple.isOSBinFormatMachO()) + return "\1section$start$__DATA$__" + Section; + return "__start___" + Section; +} + +std::string +ModuleSanitizerCoverage::getSectionEnd(const std::string &Section) const { + if (TargetTriple.isOSBinFormatMachO()) + return "\1section$end$__DATA$__" + Section; + return "__stop___" + Section; +} + +char ModuleSanitizerCoverageLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(ModuleSanitizerCoverageLegacyPass, "sancov", + "Pass for instrumenting coverage on functions", false, + false) +INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) +INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass) +INITIALIZE_PASS_END(ModuleSanitizerCoverageLegacyPass, "sancov", + "Pass for instrumenting coverage on functions", false, + false) +ModulePass *llvm::createModuleSanitizerCoverageLegacyPassPass( + const SanitizerCoverageOptions &Options, + const std::vector<std::string> &AllowlistFiles, + const std::vector<std::string> &BlocklistFiles) { + return new ModuleSanitizerCoverageLegacyPass(Options, AllowlistFiles, + BlocklistFiles); +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ThreadSanitizer.cpp index 0b53ff8a83..783878cf1e 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ThreadSanitizer.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ThreadSanitizer.cpp @@ -1,113 +1,113 @@ -//===-- ThreadSanitizer.cpp - race detector -------------------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file is a part of ThreadSanitizer, a race detector. -// -// The tool is under development, for the details about previous versions see -// http://code.google.com/p/data-race-test -// -// The instrumentation phase is quite simple: -// - Insert calls to run-time library before every memory access. -// - Optimizations may apply to avoid instrumenting some of the accesses. -// - Insert calls at function entry/exit. -// The rest is handled by the run-time library. -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" +//===-- ThreadSanitizer.cpp - race detector -------------------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file is a part of ThreadSanitizer, a race detector. +// +// The tool is under development, for the details about previous versions see +// http://code.google.com/p/data-race-test +// +// The instrumentation phase is quite simple: +// - Insert calls to run-time library before every memory access. +// - Optimizations may apply to avoid instrumenting some of the accesses. +// - Insert calls at function entry/exit. +// The rest is handled by the run-time library. +//===----------------------------------------------------------------------===// + +#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/Optional.h" -#include "llvm/ADT/SmallString.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/StringExtras.h" -#include "llvm/Analysis/CaptureTracking.h" -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/IRBuilder.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/Intrinsics.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Metadata.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/InitializePasses.h" -#include "llvm/ProfileData/InstrProf.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Instrumentation.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/EscapeEnumerator.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/ModuleUtils.h" - -using namespace llvm; - -#define DEBUG_TYPE "tsan" - +#include "llvm/ADT/SmallString.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/StringExtras.h" +#include "llvm/Analysis/CaptureTracking.h" +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/IRBuilder.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Metadata.h" +#include "llvm/IR/Module.h" +#include "llvm/IR/Type.h" +#include "llvm/InitializePasses.h" +#include "llvm/ProfileData/InstrProf.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/Transforms/Instrumentation.h" +#include "llvm/Transforms/Utils/BasicBlockUtils.h" +#include "llvm/Transforms/Utils/EscapeEnumerator.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Transforms/Utils/ModuleUtils.h" + +using namespace llvm; + +#define DEBUG_TYPE "tsan" + static cl::opt<bool> ClInstrumentMemoryAccesses( - "tsan-instrument-memory-accesses", cl::init(true), - cl::desc("Instrument memory accesses"), cl::Hidden); + "tsan-instrument-memory-accesses", cl::init(true), + cl::desc("Instrument memory accesses"), cl::Hidden); static cl::opt<bool> ClInstrumentFuncEntryExit("tsan-instrument-func-entry-exit", cl::init(true), cl::desc("Instrument function entry and exit"), cl::Hidden); static cl::opt<bool> ClHandleCxxExceptions( - "tsan-handle-cxx-exceptions", cl::init(true), - cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), - cl::Hidden); + "tsan-handle-cxx-exceptions", cl::init(true), + cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"), + cl::Hidden); static cl::opt<bool> ClInstrumentAtomics("tsan-instrument-atomics", cl::init(true), cl::desc("Instrument atomics"), cl::Hidden); static cl::opt<bool> ClInstrumentMemIntrinsics( - "tsan-instrument-memintrinsics", cl::init(true), - cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); + "tsan-instrument-memintrinsics", cl::init(true), + cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden); static cl::opt<bool> ClDistinguishVolatile( - "tsan-distinguish-volatile", cl::init(false), - cl::desc("Emit special instrumentation for accesses to volatiles"), - cl::Hidden); + "tsan-distinguish-volatile", cl::init(false), + cl::desc("Emit special instrumentation for accesses to volatiles"), + cl::Hidden); static cl::opt<bool> ClInstrumentReadBeforeWrite( - "tsan-instrument-read-before-write", cl::init(false), - cl::desc("Do not eliminate read instrumentation for read-before-writes"), - cl::Hidden); + "tsan-instrument-read-before-write", cl::init(false), + cl::desc("Do not eliminate read instrumentation for read-before-writes"), + cl::Hidden); static cl::opt<bool> ClCompoundReadBeforeWrite( "tsan-compound-read-before-write", cl::init(false), cl::desc("Emit special compound instrumentation for reads-before-writes"), cl::Hidden); - -STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); -STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); -STATISTIC(NumOmittedReadsBeforeWrite, - "Number of reads ignored due to following writes"); -STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); -STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); -STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); -STATISTIC(NumOmittedReadsFromConstantGlobals, - "Number of reads from constant globals"); -STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); -STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); - + +STATISTIC(NumInstrumentedReads, "Number of instrumented reads"); +STATISTIC(NumInstrumentedWrites, "Number of instrumented writes"); +STATISTIC(NumOmittedReadsBeforeWrite, + "Number of reads ignored due to following writes"); +STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size"); +STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes"); +STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads"); +STATISTIC(NumOmittedReadsFromConstantGlobals, + "Number of reads from constant globals"); +STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads"); +STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing"); + const char kTsanModuleCtorName[] = "tsan.module_ctor"; const char kTsanInitName[] = "__tsan_init"; - -namespace { - -/// ThreadSanitizer: instrument the code in module to find races. -/// -/// Instantiating ThreadSanitizer inserts the tsan runtime library API function -/// declarations into the module if they don't exist already. Instantiating -/// ensures the __tsan_init function is in the list of global constructors for -/// the module. -struct ThreadSanitizer { + +namespace { + +/// ThreadSanitizer: instrument the code in module to find races. +/// +/// Instantiating ThreadSanitizer inserts the tsan runtime library API function +/// declarations into the module if they don't exist already. Instantiating +/// ensures the __tsan_init function is in the list of global constructors for +/// the module. +struct ThreadSanitizer { ThreadSanitizer() { // Sanity check options and warn user. if (ClInstrumentReadBeforeWrite && ClCompoundReadBeforeWrite) { @@ -117,9 +117,9 @@ struct ThreadSanitizer { } } - bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); - -private: + bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI); + +private: // Internal Instruction wrapper that contains more information about the // Instruction from prior analysis. struct InstructionInfo { @@ -133,172 +133,172 @@ private: unsigned Flags = 0; }; - void initialize(Module &M); + void initialize(Module &M); bool instrumentLoadOrStore(const InstructionInfo &II, const DataLayout &DL); - bool instrumentAtomic(Instruction *I, const DataLayout &DL); - bool instrumentMemIntrinsic(Instruction *I); - void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, + bool instrumentAtomic(Instruction *I, const DataLayout &DL); + bool instrumentMemIntrinsic(Instruction *I); + void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<InstructionInfo> &All, - const DataLayout &DL); - bool addrPointsToConstantData(Value *Addr); - int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); - void InsertRuntimeIgnores(Function &F); - - Type *IntptrTy; - FunctionCallee TsanFuncEntry; - FunctionCallee TsanFuncExit; - FunctionCallee TsanIgnoreBegin; - FunctionCallee TsanIgnoreEnd; - // Accesses sizes are powers of two: 1, 2, 4, 8, 16. - static const size_t kNumberOfAccessSizes = 5; - FunctionCallee TsanRead[kNumberOfAccessSizes]; - FunctionCallee TsanWrite[kNumberOfAccessSizes]; - FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; - FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; - FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; - FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; - FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; - FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; + const DataLayout &DL); + bool addrPointsToConstantData(Value *Addr); + int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL); + void InsertRuntimeIgnores(Function &F); + + Type *IntptrTy; + FunctionCallee TsanFuncEntry; + FunctionCallee TsanFuncExit; + FunctionCallee TsanIgnoreBegin; + FunctionCallee TsanIgnoreEnd; + // Accesses sizes are powers of two: 1, 2, 4, 8, 16. + static const size_t kNumberOfAccessSizes = 5; + FunctionCallee TsanRead[kNumberOfAccessSizes]; + FunctionCallee TsanWrite[kNumberOfAccessSizes]; + FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes]; + FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes]; + FunctionCallee TsanVolatileRead[kNumberOfAccessSizes]; + FunctionCallee TsanVolatileWrite[kNumberOfAccessSizes]; + FunctionCallee TsanUnalignedVolatileRead[kNumberOfAccessSizes]; + FunctionCallee TsanUnalignedVolatileWrite[kNumberOfAccessSizes]; FunctionCallee TsanCompoundRW[kNumberOfAccessSizes]; FunctionCallee TsanUnalignedCompoundRW[kNumberOfAccessSizes]; - FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; - FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; - FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] - [kNumberOfAccessSizes]; - FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; - FunctionCallee TsanAtomicThreadFence; - FunctionCallee TsanAtomicSignalFence; - FunctionCallee TsanVptrUpdate; - FunctionCallee TsanVptrLoad; - FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; -}; - -struct ThreadSanitizerLegacyPass : FunctionPass { - ThreadSanitizerLegacyPass() : FunctionPass(ID) { - initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); - } - StringRef getPassName() const override; - void getAnalysisUsage(AnalysisUsage &AU) const override; - bool runOnFunction(Function &F) override; - bool doInitialization(Module &M) override; - static char ID; // Pass identification, replacement for typeid. -private: - Optional<ThreadSanitizer> TSan; -}; - -void insertModuleCtor(Module &M) { - getOrCreateSanitizerCtorAndInitFunctions( - M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, - /*InitArgs=*/{}, - // This callback is invoked when the functions are created the first - // time. Hook them into the global ctors list in that case: - [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); -} - -} // namespace - -PreservedAnalyses ThreadSanitizerPass::run(Function &F, - FunctionAnalysisManager &FAM) { - ThreadSanitizer TSan; - if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) - return PreservedAnalyses::none(); - return PreservedAnalyses::all(); -} - -PreservedAnalyses ThreadSanitizerPass::run(Module &M, - ModuleAnalysisManager &MAM) { - insertModuleCtor(M); - return PreservedAnalyses::none(); -} - -char ThreadSanitizerLegacyPass::ID = 0; -INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan", - "ThreadSanitizer: detects data races.", false, false) -INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) -INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan", - "ThreadSanitizer: detects data races.", false, false) - -StringRef ThreadSanitizerLegacyPass::getPassName() const { - return "ThreadSanitizerLegacyPass"; -} - -void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { - AU.addRequired<TargetLibraryInfoWrapperPass>(); -} - -bool ThreadSanitizerLegacyPass::doInitialization(Module &M) { - insertModuleCtor(M); - TSan.emplace(); - return true; -} - -bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) { - auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); - TSan->sanitizeFunction(F, TLI); - return true; -} - -FunctionPass *llvm::createThreadSanitizerLegacyPassPass() { - return new ThreadSanitizerLegacyPass(); -} - -void ThreadSanitizer::initialize(Module &M) { - const DataLayout &DL = M.getDataLayout(); - IntptrTy = DL.getIntPtrType(M.getContext()); - - IRBuilder<> IRB(M.getContext()); - AttributeList Attr; - Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, - Attribute::NoUnwind); - // Initialize the callbacks. - TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, - IRB.getVoidTy(), IRB.getInt8PtrTy()); - TsanFuncExit = - M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); - TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, - IRB.getVoidTy()); - TsanIgnoreEnd = - M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); - IntegerType *OrdTy = IRB.getInt32Ty(); - for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { - const unsigned ByteSize = 1U << i; - const unsigned BitSize = ByteSize * 8; - std::string ByteSizeStr = utostr(ByteSize); - std::string BitSizeStr = utostr(BitSize); - SmallString<32> ReadName("__tsan_read" + ByteSizeStr); - TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), - IRB.getInt8PtrTy()); - - SmallString<32> WriteName("__tsan_write" + ByteSizeStr); - TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), - IRB.getInt8PtrTy()); - - SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); - TsanUnalignedRead[i] = M.getOrInsertFunction( - UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - - SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); - TsanUnalignedWrite[i] = M.getOrInsertFunction( - UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - - SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); - TsanVolatileRead[i] = M.getOrInsertFunction( - VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - - SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); - TsanVolatileWrite[i] = M.getOrInsertFunction( - VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - - SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + - ByteSizeStr); - TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( - UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - - SmallString<64> UnalignedVolatileWriteName( - "__tsan_unaligned_volatile_write" + ByteSizeStr); - TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( - UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - + FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes]; + FunctionCallee TsanAtomicStore[kNumberOfAccessSizes]; + FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1] + [kNumberOfAccessSizes]; + FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes]; + FunctionCallee TsanAtomicThreadFence; + FunctionCallee TsanAtomicSignalFence; + FunctionCallee TsanVptrUpdate; + FunctionCallee TsanVptrLoad; + FunctionCallee MemmoveFn, MemcpyFn, MemsetFn; +}; + +struct ThreadSanitizerLegacyPass : FunctionPass { + ThreadSanitizerLegacyPass() : FunctionPass(ID) { + initializeThreadSanitizerLegacyPassPass(*PassRegistry::getPassRegistry()); + } + StringRef getPassName() const override; + void getAnalysisUsage(AnalysisUsage &AU) const override; + bool runOnFunction(Function &F) override; + bool doInitialization(Module &M) override; + static char ID; // Pass identification, replacement for typeid. +private: + Optional<ThreadSanitizer> TSan; +}; + +void insertModuleCtor(Module &M) { + getOrCreateSanitizerCtorAndInitFunctions( + M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{}, + /*InitArgs=*/{}, + // This callback is invoked when the functions are created the first + // time. Hook them into the global ctors list in that case: + [&](Function *Ctor, FunctionCallee) { appendToGlobalCtors(M, Ctor, 0); }); +} + +} // namespace + +PreservedAnalyses ThreadSanitizerPass::run(Function &F, + FunctionAnalysisManager &FAM) { + ThreadSanitizer TSan; + if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F))) + return PreservedAnalyses::none(); + return PreservedAnalyses::all(); +} + +PreservedAnalyses ThreadSanitizerPass::run(Module &M, + ModuleAnalysisManager &MAM) { + insertModuleCtor(M); + return PreservedAnalyses::none(); +} + +char ThreadSanitizerLegacyPass::ID = 0; +INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan", + "ThreadSanitizer: detects data races.", false, false) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass) +INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan", + "ThreadSanitizer: detects data races.", false, false) + +StringRef ThreadSanitizerLegacyPass::getPassName() const { + return "ThreadSanitizerLegacyPass"; +} + +void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<TargetLibraryInfoWrapperPass>(); +} + +bool ThreadSanitizerLegacyPass::doInitialization(Module &M) { + insertModuleCtor(M); + TSan.emplace(); + return true; +} + +bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) { + auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F); + TSan->sanitizeFunction(F, TLI); + return true; +} + +FunctionPass *llvm::createThreadSanitizerLegacyPassPass() { + return new ThreadSanitizerLegacyPass(); +} + +void ThreadSanitizer::initialize(Module &M) { + const DataLayout &DL = M.getDataLayout(); + IntptrTy = DL.getIntPtrType(M.getContext()); + + IRBuilder<> IRB(M.getContext()); + AttributeList Attr; + Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex, + Attribute::NoUnwind); + // Initialize the callbacks. + TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr, + IRB.getVoidTy(), IRB.getInt8PtrTy()); + TsanFuncExit = + M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy()); + TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr, + IRB.getVoidTy()); + TsanIgnoreEnd = + M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy()); + IntegerType *OrdTy = IRB.getInt32Ty(); + for (size_t i = 0; i < kNumberOfAccessSizes; ++i) { + const unsigned ByteSize = 1U << i; + const unsigned BitSize = ByteSize * 8; + std::string ByteSizeStr = utostr(ByteSize); + std::string BitSizeStr = utostr(BitSize); + SmallString<32> ReadName("__tsan_read" + ByteSizeStr); + TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(), + IRB.getInt8PtrTy()); + + SmallString<32> WriteName("__tsan_write" + ByteSizeStr); + TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(), + IRB.getInt8PtrTy()); + + SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr); + TsanUnalignedRead[i] = M.getOrInsertFunction( + UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + + SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr); + TsanUnalignedWrite[i] = M.getOrInsertFunction( + UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + + SmallString<64> VolatileReadName("__tsan_volatile_read" + ByteSizeStr); + TsanVolatileRead[i] = M.getOrInsertFunction( + VolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + + SmallString<64> VolatileWriteName("__tsan_volatile_write" + ByteSizeStr); + TsanVolatileWrite[i] = M.getOrInsertFunction( + VolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + + SmallString<64> UnalignedVolatileReadName("__tsan_unaligned_volatile_read" + + ByteSizeStr); + TsanUnalignedVolatileRead[i] = M.getOrInsertFunction( + UnalignedVolatileReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + + SmallString<64> UnalignedVolatileWriteName( + "__tsan_unaligned_volatile_write" + ByteSizeStr); + TsanUnalignedVolatileWrite[i] = M.getOrInsertFunction( + UnalignedVolatileWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); + SmallString<64> CompoundRWName("__tsan_read_write" + ByteSizeStr); TsanCompoundRW[i] = M.getOrInsertFunction( CompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); @@ -308,145 +308,145 @@ void ThreadSanitizer::initialize(Module &M) { TsanUnalignedCompoundRW[i] = M.getOrInsertFunction( UnalignedCompoundRWName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy()); - Type *Ty = Type::getIntNTy(M.getContext(), BitSize); - Type *PtrTy = Ty->getPointerTo(); - SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); - TsanAtomicLoad[i] = - M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy); - - SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); - TsanAtomicStore[i] = M.getOrInsertFunction( - AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy); - - for (unsigned Op = AtomicRMWInst::FIRST_BINOP; - Op <= AtomicRMWInst::LAST_BINOP; ++Op) { - TsanAtomicRMW[Op][i] = nullptr; - const char *NamePart = nullptr; - if (Op == AtomicRMWInst::Xchg) - NamePart = "_exchange"; - else if (Op == AtomicRMWInst::Add) - NamePart = "_fetch_add"; - else if (Op == AtomicRMWInst::Sub) - NamePart = "_fetch_sub"; - else if (Op == AtomicRMWInst::And) - NamePart = "_fetch_and"; - else if (Op == AtomicRMWInst::Or) - NamePart = "_fetch_or"; - else if (Op == AtomicRMWInst::Xor) - NamePart = "_fetch_xor"; - else if (Op == AtomicRMWInst::Nand) - NamePart = "_fetch_nand"; - else - continue; - SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); - TsanAtomicRMW[Op][i] = - M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy); - } - - SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + - "_compare_exchange_val"); - TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty, - Ty, OrdTy, OrdTy); - } - TsanVptrUpdate = - M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), - IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); - TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, - IRB.getVoidTy(), IRB.getInt8PtrTy()); - TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", - Attr, IRB.getVoidTy(), OrdTy); - TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", - Attr, IRB.getVoidTy(), OrdTy); - - MemmoveFn = - M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); - MemcpyFn = - M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); - MemsetFn = - M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), - IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); -} - -static bool isVtableAccess(Instruction *I) { - if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) - return Tag->isTBAAVtableAccess(); - return false; -} - -// Do not instrument known races/"benign races" that come from compiler -// instrumentatin. The user has no way of suppressing them. -static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { - // Peel off GEPs and BitCasts. - Addr = Addr->stripInBoundsOffsets(); - - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { - if (GV->hasSection()) { - StringRef SectionName = GV->getSection(); - // Check if the global is in the PGO counters section. - auto OF = Triple(M->getTargetTriple()).getObjectFormat(); - if (SectionName.endswith( - getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) - return false; - } - - // Check if the global is private gcov data. - if (GV->getName().startswith("__llvm_gcov") || - GV->getName().startswith("__llvm_gcda")) - return false; - } - - // Do not instrument acesses from different address spaces; we cannot deal - // with them. - if (Addr) { - Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); - if (PtrTy->getPointerAddressSpace() != 0) - return false; - } - - return true; -} - -bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { - // If this is a GEP, just analyze its pointer operand. - if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) - Addr = GEP->getPointerOperand(); - - if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { - if (GV->isConstant()) { - // Reads from constant globals can not race with any writes. - NumOmittedReadsFromConstantGlobals++; - return true; - } - } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { - if (isVtableAccess(L)) { - // Reads from a vtable pointer can not race with any writes. - NumOmittedReadsFromVtable++; - return true; - } - } - return false; -} - -// Instrumenting some of the accesses may be proven redundant. -// Currently handled: -// - read-before-write (within same BB, no calls between) -// - not captured variables -// -// We do not handle some of the patterns that should not survive -// after the classic compiler optimizations. -// E.g. two reads from the same temp should be eliminated by CSE, -// two writes should be eliminated by DSE, etc. -// -// 'Local' is a vector of insns within the same BB (no calls between). -// 'All' is a vector of insns that will be instrumented. -void ThreadSanitizer::chooseInstructionsToInstrument( + Type *Ty = Type::getIntNTy(M.getContext(), BitSize); + Type *PtrTy = Ty->getPointerTo(); + SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load"); + TsanAtomicLoad[i] = + M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy); + + SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store"); + TsanAtomicStore[i] = M.getOrInsertFunction( + AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy); + + for (unsigned Op = AtomicRMWInst::FIRST_BINOP; + Op <= AtomicRMWInst::LAST_BINOP; ++Op) { + TsanAtomicRMW[Op][i] = nullptr; + const char *NamePart = nullptr; + if (Op == AtomicRMWInst::Xchg) + NamePart = "_exchange"; + else if (Op == AtomicRMWInst::Add) + NamePart = "_fetch_add"; + else if (Op == AtomicRMWInst::Sub) + NamePart = "_fetch_sub"; + else if (Op == AtomicRMWInst::And) + NamePart = "_fetch_and"; + else if (Op == AtomicRMWInst::Or) + NamePart = "_fetch_or"; + else if (Op == AtomicRMWInst::Xor) + NamePart = "_fetch_xor"; + else if (Op == AtomicRMWInst::Nand) + NamePart = "_fetch_nand"; + else + continue; + SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart); + TsanAtomicRMW[Op][i] = + M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy); + } + + SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr + + "_compare_exchange_val"); + TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty, + Ty, OrdTy, OrdTy); + } + TsanVptrUpdate = + M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(), + IRB.getInt8PtrTy(), IRB.getInt8PtrTy()); + TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr, + IRB.getVoidTy(), IRB.getInt8PtrTy()); + TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence", + Attr, IRB.getVoidTy(), OrdTy); + TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence", + Attr, IRB.getVoidTy(), OrdTy); + + MemmoveFn = + M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); + MemcpyFn = + M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy); + MemsetFn = + M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(), + IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy); +} + +static bool isVtableAccess(Instruction *I) { + if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa)) + return Tag->isTBAAVtableAccess(); + return false; +} + +// Do not instrument known races/"benign races" that come from compiler +// instrumentatin. The user has no way of suppressing them. +static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) { + // Peel off GEPs and BitCasts. + Addr = Addr->stripInBoundsOffsets(); + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { + if (GV->hasSection()) { + StringRef SectionName = GV->getSection(); + // Check if the global is in the PGO counters section. + auto OF = Triple(M->getTargetTriple()).getObjectFormat(); + if (SectionName.endswith( + getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false))) + return false; + } + + // Check if the global is private gcov data. + if (GV->getName().startswith("__llvm_gcov") || + GV->getName().startswith("__llvm_gcda")) + return false; + } + + // Do not instrument acesses from different address spaces; we cannot deal + // with them. + if (Addr) { + Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType()); + if (PtrTy->getPointerAddressSpace() != 0) + return false; + } + + return true; +} + +bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) { + // If this is a GEP, just analyze its pointer operand. + if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr)) + Addr = GEP->getPointerOperand(); + + if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) { + if (GV->isConstant()) { + // Reads from constant globals can not race with any writes. + NumOmittedReadsFromConstantGlobals++; + return true; + } + } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) { + if (isVtableAccess(L)) { + // Reads from a vtable pointer can not race with any writes. + NumOmittedReadsFromVtable++; + return true; + } + } + return false; +} + +// Instrumenting some of the accesses may be proven redundant. +// Currently handled: +// - read-before-write (within same BB, no calls between) +// - not captured variables +// +// We do not handle some of the patterns that should not survive +// after the classic compiler optimizations. +// E.g. two reads from the same temp should be eliminated by CSE, +// two writes should be eliminated by DSE, etc. +// +// 'Local' is a vector of insns within the same BB (no calls between). +// 'All' is a vector of insns that will be instrumented. +void ThreadSanitizer::chooseInstructionsToInstrument( SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<InstructionInfo> &All, const DataLayout &DL) { DenseMap<Value *, size_t> WriteTargets; // Map of addresses to index in All - // Iterate from the end. - for (Instruction *I : reverse(Local)) { + // Iterate from the end. + for (Instruction *I : reverse(Local)) { const bool IsWrite = isa<StoreInst>(*I); Value *Addr = IsWrite ? cast<StoreInst>(I)->getPointerOperand() : cast<LoadInst>(I)->getPointerOperand(); @@ -470,22 +470,22 @@ void ThreadSanitizer::chooseInstructionsToInstrument( NumOmittedReadsBeforeWrite++; continue; } - } + } - if (addrPointsToConstantData(Addr)) { - // Addr points to some constant data -- it can not race with any writes. - continue; - } - } + if (addrPointsToConstantData(Addr)) { + // Addr points to some constant data -- it can not race with any writes. + continue; + } + } if (isa<AllocaInst>(getUnderlyingObject(Addr)) && - !PointerMayBeCaptured(Addr, true, true)) { - // The variable is addressable but not captured, so it cannot be - // referenced from a different thread and participate in a data race - // (see llvm/Analysis/CaptureTracking.h for details). - NumOmittedNonCaptured++; - continue; - } + !PointerMayBeCaptured(Addr, true, true)) { + // The variable is addressable but not captured, so it cannot be + // referenced from a different thread and participate in a data race + // (see llvm/Analysis/CaptureTracking.h for details). + NumOmittedNonCaptured++; + continue; + } // Instrument this instruction. All.emplace_back(I); @@ -494,160 +494,160 @@ void ThreadSanitizer::chooseInstructionsToInstrument( // write target, and we can override any previous entry if it exists. WriteTargets[Addr] = All.size() - 1; } - } - Local.clear(); -} - -static bool isAtomic(Instruction *I) { - // TODO: Ask TTI whether synchronization scope is between threads. - if (LoadInst *LI = dyn_cast<LoadInst>(I)) - return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; - if (StoreInst *SI = dyn_cast<StoreInst>(I)) - return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; - if (isa<AtomicRMWInst>(I)) - return true; - if (isa<AtomicCmpXchgInst>(I)) - return true; - if (isa<FenceInst>(I)) - return true; - return false; -} - -void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { - IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); - IRB.CreateCall(TsanIgnoreBegin); - EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); - while (IRBuilder<> *AtExit = EE.Next()) { - AtExit->CreateCall(TsanIgnoreEnd); - } -} - -bool ThreadSanitizer::sanitizeFunction(Function &F, - const TargetLibraryInfo &TLI) { - // This is required to prevent instrumenting call to __tsan_init from within - // the module constructor. - if (F.getName() == kTsanModuleCtorName) - return false; - // Naked functions can not have prologue/epilogue - // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at - // all. - if (F.hasFnAttribute(Attribute::Naked)) - return false; - initialize(*F.getParent()); + } + Local.clear(); +} + +static bool isAtomic(Instruction *I) { + // TODO: Ask TTI whether synchronization scope is between threads. + if (LoadInst *LI = dyn_cast<LoadInst>(I)) + return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread; + if (StoreInst *SI = dyn_cast<StoreInst>(I)) + return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread; + if (isa<AtomicRMWInst>(I)) + return true; + if (isa<AtomicCmpXchgInst>(I)) + return true; + if (isa<FenceInst>(I)) + return true; + return false; +} + +void ThreadSanitizer::InsertRuntimeIgnores(Function &F) { + IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); + IRB.CreateCall(TsanIgnoreBegin); + EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions); + while (IRBuilder<> *AtExit = EE.Next()) { + AtExit->CreateCall(TsanIgnoreEnd); + } +} + +bool ThreadSanitizer::sanitizeFunction(Function &F, + const TargetLibraryInfo &TLI) { + // This is required to prevent instrumenting call to __tsan_init from within + // the module constructor. + if (F.getName() == kTsanModuleCtorName) + return false; + // Naked functions can not have prologue/epilogue + // (__tsan_func_entry/__tsan_func_exit) generated, so don't instrument them at + // all. + if (F.hasFnAttribute(Attribute::Naked)) + return false; + initialize(*F.getParent()); SmallVector<InstructionInfo, 8> AllLoadsAndStores; - SmallVector<Instruction*, 8> LocalLoadsAndStores; - SmallVector<Instruction*, 8> AtomicAccesses; - SmallVector<Instruction*, 8> MemIntrinCalls; - bool Res = false; - bool HasCalls = false; - bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); - const DataLayout &DL = F.getParent()->getDataLayout(); - - // Traverse all instructions, collect loads/stores/returns, check for calls. - for (auto &BB : F) { - for (auto &Inst : BB) { - if (isAtomic(&Inst)) - AtomicAccesses.push_back(&Inst); - else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) - LocalLoadsAndStores.push_back(&Inst); - else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { - if (CallInst *CI = dyn_cast<CallInst>(&Inst)) - maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); - if (isa<MemIntrinsic>(Inst)) - MemIntrinCalls.push_back(&Inst); - HasCalls = true; - chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, - DL); - } - } - chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); - } - - // We have collected all loads and stores. - // FIXME: many of these accesses do not need to be checked for races - // (e.g. variables that do not escape, etc). - - // Instrument memory accesses only if we want to report bugs in the function. - if (ClInstrumentMemoryAccesses && SanitizeFunction) + SmallVector<Instruction*, 8> LocalLoadsAndStores; + SmallVector<Instruction*, 8> AtomicAccesses; + SmallVector<Instruction*, 8> MemIntrinCalls; + bool Res = false; + bool HasCalls = false; + bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread); + const DataLayout &DL = F.getParent()->getDataLayout(); + + // Traverse all instructions, collect loads/stores/returns, check for calls. + for (auto &BB : F) { + for (auto &Inst : BB) { + if (isAtomic(&Inst)) + AtomicAccesses.push_back(&Inst); + else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst)) + LocalLoadsAndStores.push_back(&Inst); + else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) { + if (CallInst *CI = dyn_cast<CallInst>(&Inst)) + maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI); + if (isa<MemIntrinsic>(Inst)) + MemIntrinCalls.push_back(&Inst); + HasCalls = true; + chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, + DL); + } + } + chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL); + } + + // We have collected all loads and stores. + // FIXME: many of these accesses do not need to be checked for races + // (e.g. variables that do not escape, etc). + + // Instrument memory accesses only if we want to report bugs in the function. + if (ClInstrumentMemoryAccesses && SanitizeFunction) for (const auto &II : AllLoadsAndStores) { Res |= instrumentLoadOrStore(II, DL); - } - - // Instrument atomic memory accesses in any case (they can be used to - // implement synchronization). - if (ClInstrumentAtomics) - for (auto Inst : AtomicAccesses) { - Res |= instrumentAtomic(Inst, DL); - } - - if (ClInstrumentMemIntrinsics && SanitizeFunction) - for (auto Inst : MemIntrinCalls) { - Res |= instrumentMemIntrinsic(Inst); - } - - if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { - assert(!F.hasFnAttribute(Attribute::SanitizeThread)); - if (HasCalls) - InsertRuntimeIgnores(F); - } - - // Instrument function entry/exit points if there were instrumented accesses. - if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { - IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); - Value *ReturnAddress = IRB.CreateCall( - Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), - IRB.getInt32(0)); - IRB.CreateCall(TsanFuncEntry, ReturnAddress); - - EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); - while (IRBuilder<> *AtExit = EE.Next()) { - AtExit->CreateCall(TsanFuncExit, {}); - } - Res = true; - } - return Res; -} - + } + + // Instrument atomic memory accesses in any case (they can be used to + // implement synchronization). + if (ClInstrumentAtomics) + for (auto Inst : AtomicAccesses) { + Res |= instrumentAtomic(Inst, DL); + } + + if (ClInstrumentMemIntrinsics && SanitizeFunction) + for (auto Inst : MemIntrinCalls) { + Res |= instrumentMemIntrinsic(Inst); + } + + if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) { + assert(!F.hasFnAttribute(Attribute::SanitizeThread)); + if (HasCalls) + InsertRuntimeIgnores(F); + } + + // Instrument function entry/exit points if there were instrumented accesses. + if ((Res || HasCalls) && ClInstrumentFuncEntryExit) { + IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI()); + Value *ReturnAddress = IRB.CreateCall( + Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress), + IRB.getInt32(0)); + IRB.CreateCall(TsanFuncEntry, ReturnAddress); + + EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions); + while (IRBuilder<> *AtExit = EE.Next()) { + AtExit->CreateCall(TsanFuncExit, {}); + } + Res = true; + } + return Res; +} + bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, - const DataLayout &DL) { + const DataLayout &DL) { IRBuilder<> IRB(II.Inst); const bool IsWrite = isa<StoreInst>(*II.Inst); Value *Addr = IsWrite ? cast<StoreInst>(II.Inst)->getPointerOperand() : cast<LoadInst>(II.Inst)->getPointerOperand(); - - // swifterror memory addresses are mem2reg promoted by instruction selection. - // As such they cannot have regular uses like an instrumentation function and - // it makes no sense to track them as memory. - if (Addr->isSwiftError()) - return false; - - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) - return false; + + // swifterror memory addresses are mem2reg promoted by instruction selection. + // As such they cannot have regular uses like an instrumentation function and + // it makes no sense to track them as memory. + if (Addr->isSwiftError()) + return false; + + int Idx = getMemoryAccessFuncIndex(Addr, DL); + if (Idx < 0) + return false; if (IsWrite && isVtableAccess(II.Inst)) { LLVM_DEBUG(dbgs() << " VPTR : " << *II.Inst << "\n"); Value *StoredValue = cast<StoreInst>(II.Inst)->getValueOperand(); - // StoredValue may be a vector type if we are storing several vptrs at once. - // In this case, just take the first element of the vector since this is - // enough to find vptr races. - if (isa<VectorType>(StoredValue->getType())) - StoredValue = IRB.CreateExtractElement( - StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); - if (StoredValue->getType()->isIntegerTy()) - StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); - // Call TsanVptrUpdate. - IRB.CreateCall(TsanVptrUpdate, - {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), - IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); - NumInstrumentedVtableWrites++; - return true; - } + // StoredValue may be a vector type if we are storing several vptrs at once. + // In this case, just take the first element of the vector since this is + // enough to find vptr races. + if (isa<VectorType>(StoredValue->getType())) + StoredValue = IRB.CreateExtractElement( + StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0)); + if (StoredValue->getType()->isIntegerTy()) + StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy()); + // Call TsanVptrUpdate. + IRB.CreateCall(TsanVptrUpdate, + {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()), + IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())}); + NumInstrumentedVtableWrites++; + return true; + } if (!IsWrite && isVtableAccess(II.Inst)) { - IRB.CreateCall(TsanVptrLoad, - IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); - NumInstrumentedVtableReads++; - return true; - } + IRB.CreateCall(TsanVptrLoad, + IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); + NumInstrumentedVtableReads++; + return true; + } const unsigned Alignment = IsWrite ? cast<StoreInst>(II.Inst)->getAlignment() : cast<LoadInst>(II.Inst)->getAlignment(); @@ -658,191 +658,191 @@ bool ThreadSanitizer::instrumentLoadOrStore(const InstructionInfo &II, : cast<LoadInst>(II.Inst)->isVolatile()); assert((!IsVolatile || !IsCompoundRW) && "Compound volatile invalid!"); - Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); - const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); - FunctionCallee OnAccessFunc = nullptr; - if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) { + Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); + const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); + FunctionCallee OnAccessFunc = nullptr; + if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0) { if (IsCompoundRW) OnAccessFunc = TsanCompoundRW[Idx]; else if (IsVolatile) - OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; - else - OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; - } else { + OnAccessFunc = IsWrite ? TsanVolatileWrite[Idx] : TsanVolatileRead[Idx]; + else + OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx]; + } else { if (IsCompoundRW) OnAccessFunc = TsanUnalignedCompoundRW[Idx]; else if (IsVolatile) - OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] - : TsanUnalignedVolatileRead[Idx]; - else - OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; - } - IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); + OnAccessFunc = IsWrite ? TsanUnalignedVolatileWrite[Idx] + : TsanUnalignedVolatileRead[Idx]; + else + OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx]; + } + IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy())); if (IsCompoundRW || IsWrite) NumInstrumentedWrites++; if (IsCompoundRW || !IsWrite) NumInstrumentedReads++; - return true; -} - -static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { - uint32_t v = 0; - switch (ord) { - case AtomicOrdering::NotAtomic: - llvm_unreachable("unexpected atomic ordering!"); - case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; - case AtomicOrdering::Monotonic: v = 0; break; - // Not specified yet: - // case AtomicOrdering::Consume: v = 1; break; - case AtomicOrdering::Acquire: v = 2; break; - case AtomicOrdering::Release: v = 3; break; - case AtomicOrdering::AcquireRelease: v = 4; break; - case AtomicOrdering::SequentiallyConsistent: v = 5; break; - } - return IRB->getInt32(v); -} - -// If a memset intrinsic gets inlined by the code gen, we will miss races on it. -// So, we either need to ensure the intrinsic is not inlined, or instrument it. -// We do not instrument memset/memmove/memcpy intrinsics (too complicated), -// instead we simply replace them with regular function calls, which are then -// intercepted by the run-time. -// Since tsan is running after everyone else, the calls should not be -// replaced back with intrinsics. If that becomes wrong at some point, -// we will need to call e.g. __tsan_memset to avoid the intrinsics. -bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { - IRBuilder<> IRB(I); - if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { - IRB.CreateCall( - MemsetFn, - {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), - IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); - I->eraseFromParent(); - } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { - IRB.CreateCall( - isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, - {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), - IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), - IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); - I->eraseFromParent(); - } - return false; -} - -// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x -// standards. For background see C++11 standard. A slightly older, publicly -// available draft of the standard (not entirely up-to-date, but close enough -// for casual browsing) is available here: -// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf -// The following page contains more background information: -// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ - -bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { - IRBuilder<> IRB(I); - if (LoadInst *LI = dyn_cast<LoadInst>(I)) { - Value *Addr = LI->getPointerOperand(); - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) - return false; - const unsigned ByteSize = 1U << Idx; - const unsigned BitSize = ByteSize * 8; - Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); - Type *PtrTy = Ty->getPointerTo(); - Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), - createOrdering(&IRB, LI->getOrdering())}; - Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); - Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); - Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); - I->replaceAllUsesWith(Cast); - } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { - Value *Addr = SI->getPointerOperand(); - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) - return false; - const unsigned ByteSize = 1U << Idx; - const unsigned BitSize = ByteSize * 8; - Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); - Type *PtrTy = Ty->getPointerTo(); - Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), - IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), - createOrdering(&IRB, SI->getOrdering())}; - CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); - ReplaceInstWithInst(I, C); - } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { - Value *Addr = RMWI->getPointerOperand(); - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) - return false; - FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; - if (!F) - return false; - const unsigned ByteSize = 1U << Idx; - const unsigned BitSize = ByteSize * 8; - Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); - Type *PtrTy = Ty->getPointerTo(); - Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), - IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), - createOrdering(&IRB, RMWI->getOrdering())}; - CallInst *C = CallInst::Create(F, Args); - ReplaceInstWithInst(I, C); - } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { - Value *Addr = CASI->getPointerOperand(); - int Idx = getMemoryAccessFuncIndex(Addr, DL); - if (Idx < 0) - return false; - const unsigned ByteSize = 1U << Idx; - const unsigned BitSize = ByteSize * 8; - Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); - Type *PtrTy = Ty->getPointerTo(); - Value *CmpOperand = - IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); - Value *NewOperand = - IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); - Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), - CmpOperand, - NewOperand, - createOrdering(&IRB, CASI->getSuccessOrdering()), - createOrdering(&IRB, CASI->getFailureOrdering())}; - CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); - Value *Success = IRB.CreateICmpEQ(C, CmpOperand); - Value *OldVal = C; - Type *OrigOldValTy = CASI->getNewValOperand()->getType(); - if (Ty != OrigOldValTy) { - // The value is a pointer, so we need to cast the return value. - OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); - } - - Value *Res = - IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); - Res = IRB.CreateInsertValue(Res, Success, 1); - - I->replaceAllUsesWith(Res); - I->eraseFromParent(); - } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { - Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; - FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread - ? TsanAtomicSignalFence - : TsanAtomicThreadFence; - CallInst *C = CallInst::Create(F, Args); - ReplaceInstWithInst(I, C); - } - return true; -} - -int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, - const DataLayout &DL) { - Type *OrigPtrTy = Addr->getType(); - Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); - assert(OrigTy->isSized()); - uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); - if (TypeSize != 8 && TypeSize != 16 && - TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { - NumAccessesWithBadSize++; - // Ignore all unusual sizes. - return -1; - } - size_t Idx = countTrailingZeros(TypeSize / 8); - assert(Idx < kNumberOfAccessSizes); - return Idx; -} + return true; +} + +static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) { + uint32_t v = 0; + switch (ord) { + case AtomicOrdering::NotAtomic: + llvm_unreachable("unexpected atomic ordering!"); + case AtomicOrdering::Unordered: LLVM_FALLTHROUGH; + case AtomicOrdering::Monotonic: v = 0; break; + // Not specified yet: + // case AtomicOrdering::Consume: v = 1; break; + case AtomicOrdering::Acquire: v = 2; break; + case AtomicOrdering::Release: v = 3; break; + case AtomicOrdering::AcquireRelease: v = 4; break; + case AtomicOrdering::SequentiallyConsistent: v = 5; break; + } + return IRB->getInt32(v); +} + +// If a memset intrinsic gets inlined by the code gen, we will miss races on it. +// So, we either need to ensure the intrinsic is not inlined, or instrument it. +// We do not instrument memset/memmove/memcpy intrinsics (too complicated), +// instead we simply replace them with regular function calls, which are then +// intercepted by the run-time. +// Since tsan is running after everyone else, the calls should not be +// replaced back with intrinsics. If that becomes wrong at some point, +// we will need to call e.g. __tsan_memset to avoid the intrinsics. +bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) { + IRBuilder<> IRB(I); + if (MemSetInst *M = dyn_cast<MemSetInst>(I)) { + IRB.CreateCall( + MemsetFn, + {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false), + IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); + I->eraseFromParent(); + } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) { + IRB.CreateCall( + isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn, + {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()), + IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()), + IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)}); + I->eraseFromParent(); + } + return false; +} + +// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x +// standards. For background see C++11 standard. A slightly older, publicly +// available draft of the standard (not entirely up-to-date, but close enough +// for casual browsing) is available here: +// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf +// The following page contains more background information: +// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/ + +bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) { + IRBuilder<> IRB(I); + if (LoadInst *LI = dyn_cast<LoadInst>(I)) { + Value *Addr = LI->getPointerOperand(); + int Idx = getMemoryAccessFuncIndex(Addr, DL); + if (Idx < 0) + return false; + const unsigned ByteSize = 1U << Idx; + const unsigned BitSize = ByteSize * 8; + Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); + Type *PtrTy = Ty->getPointerTo(); + Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), + createOrdering(&IRB, LI->getOrdering())}; + Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType(); + Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args); + Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy); + I->replaceAllUsesWith(Cast); + } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) { + Value *Addr = SI->getPointerOperand(); + int Idx = getMemoryAccessFuncIndex(Addr, DL); + if (Idx < 0) + return false; + const unsigned ByteSize = 1U << Idx; + const unsigned BitSize = ByteSize * 8; + Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); + Type *PtrTy = Ty->getPointerTo(); + Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), + IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty), + createOrdering(&IRB, SI->getOrdering())}; + CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args); + ReplaceInstWithInst(I, C); + } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) { + Value *Addr = RMWI->getPointerOperand(); + int Idx = getMemoryAccessFuncIndex(Addr, DL); + if (Idx < 0) + return false; + FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx]; + if (!F) + return false; + const unsigned ByteSize = 1U << Idx; + const unsigned BitSize = ByteSize * 8; + Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); + Type *PtrTy = Ty->getPointerTo(); + Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), + IRB.CreateIntCast(RMWI->getValOperand(), Ty, false), + createOrdering(&IRB, RMWI->getOrdering())}; + CallInst *C = CallInst::Create(F, Args); + ReplaceInstWithInst(I, C); + } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) { + Value *Addr = CASI->getPointerOperand(); + int Idx = getMemoryAccessFuncIndex(Addr, DL); + if (Idx < 0) + return false; + const unsigned ByteSize = 1U << Idx; + const unsigned BitSize = ByteSize * 8; + Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize); + Type *PtrTy = Ty->getPointerTo(); + Value *CmpOperand = + IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty); + Value *NewOperand = + IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty); + Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy), + CmpOperand, + NewOperand, + createOrdering(&IRB, CASI->getSuccessOrdering()), + createOrdering(&IRB, CASI->getFailureOrdering())}; + CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args); + Value *Success = IRB.CreateICmpEQ(C, CmpOperand); + Value *OldVal = C; + Type *OrigOldValTy = CASI->getNewValOperand()->getType(); + if (Ty != OrigOldValTy) { + // The value is a pointer, so we need to cast the return value. + OldVal = IRB.CreateIntToPtr(C, OrigOldValTy); + } + + Value *Res = + IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0); + Res = IRB.CreateInsertValue(Res, Success, 1); + + I->replaceAllUsesWith(Res); + I->eraseFromParent(); + } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) { + Value *Args[] = {createOrdering(&IRB, FI->getOrdering())}; + FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread + ? TsanAtomicSignalFence + : TsanAtomicThreadFence; + CallInst *C = CallInst::Create(F, Args); + ReplaceInstWithInst(I, C); + } + return true; +} + +int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr, + const DataLayout &DL) { + Type *OrigPtrTy = Addr->getType(); + Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType(); + assert(OrigTy->isSized()); + uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy); + if (TypeSize != 8 && TypeSize != 16 && + TypeSize != 32 && TypeSize != 64 && TypeSize != 128) { + NumAccessesWithBadSize++; + // Ignore all unusual sizes. + return -1; + } + size_t Idx = countTrailingZeros(TypeSize / 8); + assert(Idx < kNumberOfAccessSizes); + return Idx; +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.cpp b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.cpp index d7d10fb5d5..fb6216bb21 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.cpp +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.cpp @@ -1,80 +1,80 @@ -//===- ValueProfileCollector.cpp - determine what to value profile --------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// The implementation of the ValueProfileCollector via ValueProfileCollectorImpl -// -//===----------------------------------------------------------------------===// - -#include "ValueProfilePlugins.inc" +//===- ValueProfileCollector.cpp - determine what to value profile --------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// The implementation of the ValueProfileCollector via ValueProfileCollectorImpl +// +//===----------------------------------------------------------------------===// + +#include "ValueProfilePlugins.inc" #include "llvm/IR/Function.h" -#include "llvm/IR/InstIterator.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/InitializePasses.h" -#include <cassert> - -using namespace llvm; - -namespace { - -/// A plugin-based class that takes an arbitrary number of Plugin types. -/// Each plugin type must satisfy the following API: -/// 1) the constructor must take a `Function &f`. Typically, the plugin would -/// scan the function looking for candidates. -/// 2) contain a member function with the following signature and name: -/// void run(std::vector<CandidateInfo> &Candidates); -/// such that the plugin would append its result into the vector parameter. -/// -/// Plugins are defined in ValueProfilePlugins.inc -template <class... Ts> class PluginChain; - -/// The type PluginChainFinal is the final chain of plugins that will be used by -/// ValueProfileCollectorImpl. -using PluginChainFinal = PluginChain<VP_PLUGIN_LIST>; - -template <> class PluginChain<> { -public: - PluginChain(Function &F, TargetLibraryInfo &TLI) {} - void get(InstrProfValueKind K, std::vector<CandidateInfo> &Candidates) {} -}; - -template <class PluginT, class... Ts> -class PluginChain<PluginT, Ts...> : public PluginChain<Ts...> { - PluginT Plugin; - using Base = PluginChain<Ts...>; - -public: - PluginChain(Function &F, TargetLibraryInfo &TLI) - : PluginChain<Ts...>(F, TLI), Plugin(F, TLI) {} - - void get(InstrProfValueKind K, std::vector<CandidateInfo> &Candidates) { - if (K == PluginT::Kind) - Plugin.run(Candidates); - Base::get(K, Candidates); - } -}; - -} // end anonymous namespace - -/// ValueProfileCollectorImpl inherits the API of PluginChainFinal. -class ValueProfileCollector::ValueProfileCollectorImpl : public PluginChainFinal { -public: - using PluginChainFinal::PluginChainFinal; -}; - -ValueProfileCollector::ValueProfileCollector(Function &F, - TargetLibraryInfo &TLI) - : PImpl(new ValueProfileCollectorImpl(F, TLI)) {} - -ValueProfileCollector::~ValueProfileCollector() = default; - -std::vector<CandidateInfo> -ValueProfileCollector::get(InstrProfValueKind Kind) const { - std::vector<CandidateInfo> Result; - PImpl->get(Kind, Result); - return Result; -} +#include "llvm/IR/InstIterator.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/InitializePasses.h" +#include <cassert> + +using namespace llvm; + +namespace { + +/// A plugin-based class that takes an arbitrary number of Plugin types. +/// Each plugin type must satisfy the following API: +/// 1) the constructor must take a `Function &f`. Typically, the plugin would +/// scan the function looking for candidates. +/// 2) contain a member function with the following signature and name: +/// void run(std::vector<CandidateInfo> &Candidates); +/// such that the plugin would append its result into the vector parameter. +/// +/// Plugins are defined in ValueProfilePlugins.inc +template <class... Ts> class PluginChain; + +/// The type PluginChainFinal is the final chain of plugins that will be used by +/// ValueProfileCollectorImpl. +using PluginChainFinal = PluginChain<VP_PLUGIN_LIST>; + +template <> class PluginChain<> { +public: + PluginChain(Function &F, TargetLibraryInfo &TLI) {} + void get(InstrProfValueKind K, std::vector<CandidateInfo> &Candidates) {} +}; + +template <class PluginT, class... Ts> +class PluginChain<PluginT, Ts...> : public PluginChain<Ts...> { + PluginT Plugin; + using Base = PluginChain<Ts...>; + +public: + PluginChain(Function &F, TargetLibraryInfo &TLI) + : PluginChain<Ts...>(F, TLI), Plugin(F, TLI) {} + + void get(InstrProfValueKind K, std::vector<CandidateInfo> &Candidates) { + if (K == PluginT::Kind) + Plugin.run(Candidates); + Base::get(K, Candidates); + } +}; + +} // end anonymous namespace + +/// ValueProfileCollectorImpl inherits the API of PluginChainFinal. +class ValueProfileCollector::ValueProfileCollectorImpl : public PluginChainFinal { +public: + using PluginChainFinal::PluginChainFinal; +}; + +ValueProfileCollector::ValueProfileCollector(Function &F, + TargetLibraryInfo &TLI) + : PImpl(new ValueProfileCollectorImpl(F, TLI)) {} + +ValueProfileCollector::~ValueProfileCollector() = default; + +std::vector<CandidateInfo> +ValueProfileCollector::get(InstrProfValueKind Kind) const { + std::vector<CandidateInfo> Result; + PImpl->get(Kind, Result); + return Result; +} diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.h b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.h index 40f5006007..584a60ab45 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.h +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfileCollector.h @@ -1,83 +1,83 @@ -//===- ValueProfileCollector.h - determine what to value profile ----------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file contains a utility class, ValueProfileCollector, that is used to -// determine what kind of llvm::Value's are worth value-profiling, at which -// point in the program, and which instruction holds the Value Profile metadata. -// Currently, the only users of this utility is the PGOInstrumentation[Gen|Use] -// passes. -//===----------------------------------------------------------------------===// - -#ifndef LLVM_ANALYSIS_PROFILE_GEN_ANALYSIS_H -#define LLVM_ANALYSIS_PROFILE_GEN_ANALYSIS_H - -#include "llvm/Analysis/TargetLibraryInfo.h" -#include "llvm/ProfileData/InstrProf.h" +//===- ValueProfileCollector.h - determine what to value profile ----------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains a utility class, ValueProfileCollector, that is used to +// determine what kind of llvm::Value's are worth value-profiling, at which +// point in the program, and which instruction holds the Value Profile metadata. +// Currently, the only users of this utility is the PGOInstrumentation[Gen|Use] +// passes. +//===----------------------------------------------------------------------===// + +#ifndef LLVM_ANALYSIS_PROFILE_GEN_ANALYSIS_H +#define LLVM_ANALYSIS_PROFILE_GEN_ANALYSIS_H + +#include "llvm/Analysis/TargetLibraryInfo.h" +#include "llvm/ProfileData/InstrProf.h" #include <memory> #include <vector> - -namespace llvm { - + +namespace llvm { + class Function; class Instruction; class Value; -/// Utility analysis that determines what values are worth profiling. -/// The actual logic is inside the ValueProfileCollectorImpl, whose job is to -/// populate the Candidates vector. -/// -/// Value profiling an expression means to track the values that this expression -/// takes at runtime and the frequency of each value. -/// It is important to distinguish between two sets of value profiles for a -/// particular expression: -/// 1) The set of values at the point of evaluation. -/// 2) The set of values at the point of use. -/// In some cases, the two sets are identical, but it's not unusual for the two -/// to differ. -/// -/// To elaborate more, consider this C code, and focus on the expression `nn`: -/// void foo(int nn, bool b) { -/// if (b) memcpy(x, y, nn); -/// } -/// The point of evaluation can be as early as the start of the function, and -/// let's say the value profile for `nn` is: -/// total=100; (value,freq) set = {(8,10), (32,50)} -/// The point of use is right before we call memcpy, and since we execute the -/// memcpy conditionally, the value profile of `nn` can be: -/// total=15; (value,freq) set = {(8,10), (4,5)} -/// -/// For this reason, a plugin is responsible for computing the insertion point -/// for each value to be profiled. The `CandidateInfo` structure encapsulates -/// all the information needed for each value profile site. -class ValueProfileCollector { -public: - struct CandidateInfo { - Value *V; // The value to profile. - Instruction *InsertPt; // Insert the VP lib call before this instr. - Instruction *AnnotatedInst; // Where metadata is attached. - }; - - ValueProfileCollector(Function &Fn, TargetLibraryInfo &TLI); - ValueProfileCollector(ValueProfileCollector &&) = delete; - ValueProfileCollector &operator=(ValueProfileCollector &&) = delete; - - ValueProfileCollector(const ValueProfileCollector &) = delete; - ValueProfileCollector &operator=(const ValueProfileCollector &) = delete; - ~ValueProfileCollector(); - - /// returns a list of value profiling candidates of the given kind - std::vector<CandidateInfo> get(InstrProfValueKind Kind) const; - -private: - class ValueProfileCollectorImpl; - std::unique_ptr<ValueProfileCollectorImpl> PImpl; -}; - -} // namespace llvm - -#endif +/// Utility analysis that determines what values are worth profiling. +/// The actual logic is inside the ValueProfileCollectorImpl, whose job is to +/// populate the Candidates vector. +/// +/// Value profiling an expression means to track the values that this expression +/// takes at runtime and the frequency of each value. +/// It is important to distinguish between two sets of value profiles for a +/// particular expression: +/// 1) The set of values at the point of evaluation. +/// 2) The set of values at the point of use. +/// In some cases, the two sets are identical, but it's not unusual for the two +/// to differ. +/// +/// To elaborate more, consider this C code, and focus on the expression `nn`: +/// void foo(int nn, bool b) { +/// if (b) memcpy(x, y, nn); +/// } +/// The point of evaluation can be as early as the start of the function, and +/// let's say the value profile for `nn` is: +/// total=100; (value,freq) set = {(8,10), (32,50)} +/// The point of use is right before we call memcpy, and since we execute the +/// memcpy conditionally, the value profile of `nn` can be: +/// total=15; (value,freq) set = {(8,10), (4,5)} +/// +/// For this reason, a plugin is responsible for computing the insertion point +/// for each value to be profiled. The `CandidateInfo` structure encapsulates +/// all the information needed for each value profile site. +class ValueProfileCollector { +public: + struct CandidateInfo { + Value *V; // The value to profile. + Instruction *InsertPt; // Insert the VP lib call before this instr. + Instruction *AnnotatedInst; // Where metadata is attached. + }; + + ValueProfileCollector(Function &Fn, TargetLibraryInfo &TLI); + ValueProfileCollector(ValueProfileCollector &&) = delete; + ValueProfileCollector &operator=(ValueProfileCollector &&) = delete; + + ValueProfileCollector(const ValueProfileCollector &) = delete; + ValueProfileCollector &operator=(const ValueProfileCollector &) = delete; + ~ValueProfileCollector(); + + /// returns a list of value profiling candidates of the given kind + std::vector<CandidateInfo> get(InstrProfValueKind Kind) const; + +private: + class ValueProfileCollectorImpl; + std::unique_ptr<ValueProfileCollectorImpl> PImpl; +}; + +} // namespace llvm + +#endif diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfilePlugins.inc b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfilePlugins.inc index 0277494895..8d0cf5843e 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfilePlugins.inc +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ValueProfilePlugins.inc @@ -1,97 +1,97 @@ -//=== ValueProfilePlugins.inc - set of plugins used by ValueProfileCollector =// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file contains a set of plugin classes used in ValueProfileCollectorImpl. -// Each plugin is responsible for collecting Value Profiling candidates for a -// particular optimization. -// Each plugin must satisfy the interface described in ValueProfileCollector.cpp -// -//===----------------------------------------------------------------------===// - -#include "ValueProfileCollector.h" -#include "llvm/Analysis/IndirectCallVisitor.h" -#include "llvm/IR/InstVisitor.h" - -using namespace llvm; -using CandidateInfo = ValueProfileCollector::CandidateInfo; - -extern cl::opt<bool> MemOPOptMemcmpBcmp; - -///--------------------------- MemIntrinsicPlugin ------------------------------ -class MemIntrinsicPlugin : public InstVisitor<MemIntrinsicPlugin> { - Function &F; - TargetLibraryInfo &TLI; - std::vector<CandidateInfo> *Candidates; - -public: - static constexpr InstrProfValueKind Kind = IPVK_MemOPSize; - - MemIntrinsicPlugin(Function &Fn, TargetLibraryInfo &TLI) - : F(Fn), TLI(TLI), Candidates(nullptr) {} - - void run(std::vector<CandidateInfo> &Cs) { - Candidates = &Cs; - visit(F); - Candidates = nullptr; - } - void visitMemIntrinsic(MemIntrinsic &MI) { - Value *Length = MI.getLength(); - // Not instrument constant length calls. - if (dyn_cast<ConstantInt>(Length)) - return; - - Instruction *InsertPt = &MI; - Instruction *AnnotatedInst = &MI; - Candidates->emplace_back(CandidateInfo{Length, InsertPt, AnnotatedInst}); - } - void visitCallInst(CallInst &CI) { - if (!MemOPOptMemcmpBcmp) - return; - auto *F = CI.getCalledFunction(); - if (!F) - return; - LibFunc Func; - if (TLI.getLibFunc(CI, Func) && - (Func == LibFunc_memcmp || Func == LibFunc_bcmp)) { - Value *Length = CI.getArgOperand(2); - // Not instrument constant length calls. - if (dyn_cast<ConstantInt>(Length)) - return; - Instruction *InsertPt = &CI; - Instruction *AnnotatedInst = &CI; - Candidates->emplace_back(CandidateInfo{Length, InsertPt, AnnotatedInst}); - } - } -}; - -///------------------------ IndirectCallPromotionPlugin ------------------------ -class IndirectCallPromotionPlugin { - Function &F; - -public: - static constexpr InstrProfValueKind Kind = IPVK_IndirectCallTarget; - - IndirectCallPromotionPlugin(Function &Fn, TargetLibraryInfo &TLI) : F(Fn) {} - - void run(std::vector<CandidateInfo> &Candidates) { - std::vector<CallBase *> Result = findIndirectCalls(F); - for (Instruction *I : Result) { - Value *Callee = cast<CallBase>(I)->getCalledOperand(); - Instruction *InsertPt = I; - Instruction *AnnotatedInst = I; - Candidates.emplace_back(CandidateInfo{Callee, InsertPt, AnnotatedInst}); - } - } -}; - -///----------------------- Registration of the plugins ------------------------- -/// For now, registering a plugin with the ValueProfileCollector is done by -/// adding the plugin type to the VP_PLUGIN_LIST macro. -#define VP_PLUGIN_LIST \ - MemIntrinsicPlugin, \ - IndirectCallPromotionPlugin +//=== ValueProfilePlugins.inc - set of plugins used by ValueProfileCollector =// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains a set of plugin classes used in ValueProfileCollectorImpl. +// Each plugin is responsible for collecting Value Profiling candidates for a +// particular optimization. +// Each plugin must satisfy the interface described in ValueProfileCollector.cpp +// +//===----------------------------------------------------------------------===// + +#include "ValueProfileCollector.h" +#include "llvm/Analysis/IndirectCallVisitor.h" +#include "llvm/IR/InstVisitor.h" + +using namespace llvm; +using CandidateInfo = ValueProfileCollector::CandidateInfo; + +extern cl::opt<bool> MemOPOptMemcmpBcmp; + +///--------------------------- MemIntrinsicPlugin ------------------------------ +class MemIntrinsicPlugin : public InstVisitor<MemIntrinsicPlugin> { + Function &F; + TargetLibraryInfo &TLI; + std::vector<CandidateInfo> *Candidates; + +public: + static constexpr InstrProfValueKind Kind = IPVK_MemOPSize; + + MemIntrinsicPlugin(Function &Fn, TargetLibraryInfo &TLI) + : F(Fn), TLI(TLI), Candidates(nullptr) {} + + void run(std::vector<CandidateInfo> &Cs) { + Candidates = &Cs; + visit(F); + Candidates = nullptr; + } + void visitMemIntrinsic(MemIntrinsic &MI) { + Value *Length = MI.getLength(); + // Not instrument constant length calls. + if (dyn_cast<ConstantInt>(Length)) + return; + + Instruction *InsertPt = &MI; + Instruction *AnnotatedInst = &MI; + Candidates->emplace_back(CandidateInfo{Length, InsertPt, AnnotatedInst}); + } + void visitCallInst(CallInst &CI) { + if (!MemOPOptMemcmpBcmp) + return; + auto *F = CI.getCalledFunction(); + if (!F) + return; + LibFunc Func; + if (TLI.getLibFunc(CI, Func) && + (Func == LibFunc_memcmp || Func == LibFunc_bcmp)) { + Value *Length = CI.getArgOperand(2); + // Not instrument constant length calls. + if (dyn_cast<ConstantInt>(Length)) + return; + Instruction *InsertPt = &CI; + Instruction *AnnotatedInst = &CI; + Candidates->emplace_back(CandidateInfo{Length, InsertPt, AnnotatedInst}); + } + } +}; + +///------------------------ IndirectCallPromotionPlugin ------------------------ +class IndirectCallPromotionPlugin { + Function &F; + +public: + static constexpr InstrProfValueKind Kind = IPVK_IndirectCallTarget; + + IndirectCallPromotionPlugin(Function &Fn, TargetLibraryInfo &TLI) : F(Fn) {} + + void run(std::vector<CandidateInfo> &Candidates) { + std::vector<CallBase *> Result = findIndirectCalls(F); + for (Instruction *I : Result) { + Value *Callee = cast<CallBase>(I)->getCalledOperand(); + Instruction *InsertPt = I; + Instruction *AnnotatedInst = I; + Candidates.emplace_back(CandidateInfo{Callee, InsertPt, AnnotatedInst}); + } + } +}; + +///----------------------- Registration of the plugins ------------------------- +/// For now, registering a plugin with the ValueProfileCollector is done by +/// adding the plugin type to the VP_PLUGIN_LIST macro. +#define VP_PLUGIN_LIST \ + MemIntrinsicPlugin, \ + IndirectCallPromotionPlugin diff --git a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ya.make b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ya.make index 10b7425404..39dab1eb7d 100644 --- a/contrib/libs/llvm12/lib/Transforms/Instrumentation/ya.make +++ b/contrib/libs/llvm12/lib/Transforms/Instrumentation/ya.make @@ -1,12 +1,12 @@ -# Generated by devtools/yamaker. - -LIBRARY() - +# Generated by devtools/yamaker. + +LIBRARY() + OWNER( orivej g:cpp-contrib ) - + LICENSE( Apache-2.0 WITH LLVM-exception AND NCSA @@ -14,7 +14,7 @@ LICENSE( LICENSE_TEXTS(.yandex_meta/licenses.list.txt) -PEERDIR( +PEERDIR( contrib/libs/llvm12 contrib/libs/llvm12/include contrib/libs/llvm12/lib/Analysis @@ -23,36 +23,36 @@ PEERDIR( contrib/libs/llvm12/lib/ProfileData contrib/libs/llvm12/lib/Support contrib/libs/llvm12/lib/Transforms/Utils -) - +) + ADDINCL( contrib/libs/llvm12/lib/Transforms/Instrumentation ) - -NO_COMPILER_WARNINGS() - -NO_UTIL() - -SRCS( - AddressSanitizer.cpp - BoundsChecking.cpp - CGProfile.cpp - ControlHeightReduction.cpp - DataFlowSanitizer.cpp - GCOVProfiling.cpp - HWAddressSanitizer.cpp - IndirectCallPromotion.cpp - InstrOrderFile.cpp - InstrProfiling.cpp - Instrumentation.cpp + +NO_COMPILER_WARNINGS() + +NO_UTIL() + +SRCS( + AddressSanitizer.cpp + BoundsChecking.cpp + CGProfile.cpp + ControlHeightReduction.cpp + DataFlowSanitizer.cpp + GCOVProfiling.cpp + HWAddressSanitizer.cpp + IndirectCallPromotion.cpp + InstrOrderFile.cpp + InstrProfiling.cpp + Instrumentation.cpp MemProfiler.cpp - MemorySanitizer.cpp - PGOInstrumentation.cpp - PGOMemOPSizeOpt.cpp - PoisonChecking.cpp - SanitizerCoverage.cpp - ThreadSanitizer.cpp - ValueProfileCollector.cpp -) - -END() + MemorySanitizer.cpp + PGOInstrumentation.cpp + PGOMemOPSizeOpt.cpp + PoisonChecking.cpp + SanitizerCoverage.cpp + ThreadSanitizer.cpp + ValueProfileCollector.cpp +) + +END() |