diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td')
-rw-r--r-- | contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td | 3143 |
1 files changed, 3143 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td b/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td new file mode 100644 index 0000000000..381ed4dd68 --- /dev/null +++ b/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td @@ -0,0 +1,3143 @@ +//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file describes the PTX instructions in TableGen format. +// +//===----------------------------------------------------------------------===// + +include "NVPTXInstrFormats.td" + +// A NOP instruction +let hasSideEffects = false in { + def NOP : NVPTXInst<(outs), (ins), "", []>; +} + +let OperandType = "OPERAND_IMMEDIATE" in { + def f16imm : Operand<f16>; +} + +// List of vector specific properties +def isVecLD : VecInstTypeEnum<1>; +def isVecST : VecInstTypeEnum<2>; +def isVecBuild : VecInstTypeEnum<3>; +def isVecShuffle : VecInstTypeEnum<4>; +def isVecExtract : VecInstTypeEnum<5>; +def isVecInsert : VecInstTypeEnum<6>; +def isVecDest : VecInstTypeEnum<7>; +def isVecOther : VecInstTypeEnum<15>; + +//===----------------------------------------------------------------------===// +// NVPTX Operand Definitions. +//===----------------------------------------------------------------------===// + +def brtarget : Operand<OtherVT>; + +// CVT conversion modes +// These must match the enum in NVPTX.h +def CvtNONE : PatLeaf<(i32 0x0)>; +def CvtRNI : PatLeaf<(i32 0x1)>; +def CvtRZI : PatLeaf<(i32 0x2)>; +def CvtRMI : PatLeaf<(i32 0x3)>; +def CvtRPI : PatLeaf<(i32 0x4)>; +def CvtRN : PatLeaf<(i32 0x5)>; +def CvtRZ : PatLeaf<(i32 0x6)>; +def CvtRM : PatLeaf<(i32 0x7)>; +def CvtRP : PatLeaf<(i32 0x8)>; + +def CvtNONE_FTZ : PatLeaf<(i32 0x10)>; +def CvtRNI_FTZ : PatLeaf<(i32 0x11)>; +def CvtRZI_FTZ : PatLeaf<(i32 0x12)>; +def CvtRMI_FTZ : PatLeaf<(i32 0x13)>; +def CvtRPI_FTZ : PatLeaf<(i32 0x14)>; +def CvtRN_FTZ : PatLeaf<(i32 0x15)>; +def CvtRZ_FTZ : PatLeaf<(i32 0x16)>; +def CvtRM_FTZ : PatLeaf<(i32 0x17)>; +def CvtRP_FTZ : PatLeaf<(i32 0x18)>; + +def CvtSAT : PatLeaf<(i32 0x20)>; +def CvtSAT_FTZ : PatLeaf<(i32 0x30)>; + +def CvtMode : Operand<i32> { + let PrintMethod = "printCvtMode"; +} + +// Compare modes +// These must match the enum in NVPTX.h +def CmpEQ : PatLeaf<(i32 0)>; +def CmpNE : PatLeaf<(i32 1)>; +def CmpLT : PatLeaf<(i32 2)>; +def CmpLE : PatLeaf<(i32 3)>; +def CmpGT : PatLeaf<(i32 4)>; +def CmpGE : PatLeaf<(i32 5)>; +def CmpEQU : PatLeaf<(i32 10)>; +def CmpNEU : PatLeaf<(i32 11)>; +def CmpLTU : PatLeaf<(i32 12)>; +def CmpLEU : PatLeaf<(i32 13)>; +def CmpGTU : PatLeaf<(i32 14)>; +def CmpGEU : PatLeaf<(i32 15)>; +def CmpNUM : PatLeaf<(i32 16)>; +def CmpNAN : PatLeaf<(i32 17)>; + +def CmpEQ_FTZ : PatLeaf<(i32 0x100)>; +def CmpNE_FTZ : PatLeaf<(i32 0x101)>; +def CmpLT_FTZ : PatLeaf<(i32 0x102)>; +def CmpLE_FTZ : PatLeaf<(i32 0x103)>; +def CmpGT_FTZ : PatLeaf<(i32 0x104)>; +def CmpGE_FTZ : PatLeaf<(i32 0x105)>; +def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>; +def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>; +def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>; +def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>; +def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>; +def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>; +def CmpNUM_FTZ : PatLeaf<(i32 0x110)>; +def CmpNAN_FTZ : PatLeaf<(i32 0x111)>; + +def CmpMode : Operand<i32> { + let PrintMethod = "printCmpMode"; +} +def VecElement : Operand<i32> { + let PrintMethod = "printVecElement"; +} + +//===----------------------------------------------------------------------===// +// NVPTX Instruction Predicate Definitions +//===----------------------------------------------------------------------===// + + +def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">; +def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">; +def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">; +def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">; +def hasVote : Predicate<"Subtarget->hasVote()">; +def hasDouble : Predicate<"Subtarget->hasDouble()">; +def hasLDG : Predicate<"Subtarget->hasLDG()">; +def hasLDU : Predicate<"Subtarget->hasLDU()">; + +def doF32FTZ : Predicate<"useF32FTZ()">; +def doNoF32FTZ : Predicate<"!useF32FTZ()">; + +def doMulWide : Predicate<"doMulWide">; + +def allowFMA : Predicate<"allowFMA()">; +def noFMA : Predicate<"!allowFMA()">; +def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">; + +def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">; +def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">; + +def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">; +def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">; + +def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">; +def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">; + +def True : Predicate<"true">; + +def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">; +def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">; +def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">; +def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">; +def hasPTX64 : Predicate<"Subtarget->getPTXVersion() >= 64">; + +def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">; +def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">; +def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">; +def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">; + +// non-sync shfl instructions are not available on sm_70+ in PTX6.4+ +def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70" + "&& Subtarget->getPTXVersion() >= 64)">; + +def useShortPtr : Predicate<"useShortPointers()">; +def useFP16Math: Predicate<"Subtarget->allowFP16Math()">; + +//===----------------------------------------------------------------------===// +// Some Common Instruction Class Templates +//===----------------------------------------------------------------------===// + +// Template for instructions which take three int64, int32, or int16 args. +// The instructions are named "<OpcStr><Width>" (e.g. "add.s64"). +multiclass I3<string OpcStr, SDNode OpNode> { + def i64rr : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), + !strconcat(OpcStr, "64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; + def i64ri : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), + !strconcat(OpcStr, "64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; + def i32rr : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, "32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; + def i32ri : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + !strconcat(OpcStr, "32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; + def i16rr : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), + !strconcat(OpcStr, "16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; + def i16ri : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), + !strconcat(OpcStr, "16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>; +} + +// Template for instructions which take 3 int32 args. The instructions are +// named "<OpcStr>.s32" (e.g. "addc.cc.s32"). +multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> { + def i32rr : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; + def i32ri : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; +} + +// Template for instructions which take three fp64 or fp32 args. The +// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64"). +// +// Also defines ftz (flush subnormal inputs and results to sign-preserving +// zero) variants for fp32 functions. +// +// This multiclass should be used for nodes that cannot be folded into FMAs. +// For nodes that can be folded into FMAs (i.e. adds and muls), use +// F3_fma_component. +multiclass F3<string OpcStr, SDNode OpNode> { + def f64rr : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, Float64Regs:$b), + !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>; + def f64ri : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, f64imm:$b), + !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>; + def f32rr_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, + Requires<[doF32FTZ]>; + def f32ri_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, + Requires<[doF32FTZ]>; + def f32rr : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>; + def f32ri : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>; +} + +// Template for instructions which take three FP args. The +// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64"). +// +// Also defines ftz (flush subnormal inputs and results to sign-preserving +// zero) variants for fp32/fp16 functions. +// +// This multiclass should be used for nodes that can be folded to make fma ops. +// In this case, we use the ".rn" variant when FMA is disabled, as this behaves +// just like the non ".rn" op, but prevents ptxas from creating FMAs. +multiclass F3_fma_component<string OpcStr, SDNode OpNode> { + def f64rr : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, Float64Regs:$b), + !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, + Requires<[allowFMA]>; + def f64ri : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, f64imm:$b), + !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, + Requires<[allowFMA]>; + def f32rr_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, + Requires<[allowFMA, doF32FTZ]>; + def f32ri_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, + Requires<[allowFMA, doF32FTZ]>; + def f32rr : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, + Requires<[allowFMA]>; + def f32ri : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, + Requires<[allowFMA]>; + + def f16rr_ftz : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, allowFMA, doF32FTZ]>; + def f16rr : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, allowFMA]>; + + def f16x2rr_ftz : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, allowFMA, doF32FTZ]>; + def f16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, allowFMA]>; + + // These have strange names so we don't perturb existing mir tests. + def _rnf64rr : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, Float64Regs:$b), + !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>, + Requires<[noFMA]>; + def _rnf64ri : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, f64imm:$b), + !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>, + Requires<[noFMA]>; + def _rnf32rr_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, + Requires<[noFMA, doF32FTZ]>; + def _rnf32ri_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, + Requires<[noFMA, doF32FTZ]>; + def _rnf32rr : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>, + Requires<[noFMA]>; + def _rnf32ri : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>, + Requires<[noFMA]>; + def _rnf16rr_ftz : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, noFMA, doF32FTZ]>; + def _rnf16rr : + NVPTXInst<(outs Float16Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"), + [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>, + Requires<[useFP16Math, noFMA]>; + def _rnf16x2rr_ftz : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, noFMA, doF32FTZ]>; + def _rnf16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b), + !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"), + [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>, + Requires<[useFP16Math, noFMA]>; +} + +// Template for operations which take two f32 or f64 operands. Provides three +// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush +// subnormal inputs and results to zero). +multiclass F2<string OpcStr, SDNode OpNode> { + def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a), + !strconcat(OpcStr, ".f64 \t$dst, $a;"), + [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>; + def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), + !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>, + Requires<[doF32FTZ]>; + def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a), + !strconcat(OpcStr, ".f32 \t$dst, $a;"), + [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>; +} + +//===----------------------------------------------------------------------===// +// NVPTX Instructions. +//===----------------------------------------------------------------------===// + +//----------------------------------- +// Type Conversion +//----------------------------------- + +let hasSideEffects = false in { + // Generate a cvt to the given type from all possible types. Each instance + // takes a CvtMode immediate that defines the conversion mode to use. It can + // be CvtNONE to omit a conversion mode. + multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> { + def _s8 : + NVPTXInst<(outs RC:$dst), + (ins Int16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".s8 \t$dst, $src;"), []>; + def _u8 : + NVPTXInst<(outs RC:$dst), + (ins Int16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".u8 \t$dst, $src;"), []>; + def _s16 : + NVPTXInst<(outs RC:$dst), + (ins Int16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".s16 \t$dst, $src;"), []>; + def _u16 : + NVPTXInst<(outs RC:$dst), + (ins Int16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".u16 \t$dst, $src;"), []>; + def _s32 : + NVPTXInst<(outs RC:$dst), + (ins Int32Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".s32 \t$dst, $src;"), []>; + def _u32 : + NVPTXInst<(outs RC:$dst), + (ins Int32Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".u32 \t$dst, $src;"), []>; + def _s64 : + NVPTXInst<(outs RC:$dst), + (ins Int64Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".s64 \t$dst, $src;"), []>; + def _u64 : + NVPTXInst<(outs RC:$dst), + (ins Int64Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".u64 \t$dst, $src;"), []>; + def _f16 : + NVPTXInst<(outs RC:$dst), + (ins Float16Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".f16 \t$dst, $src;"), []>; + def _f32 : + NVPTXInst<(outs RC:$dst), + (ins Float32Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".f32 \t$dst, $src;"), []>; + def _f64 : + NVPTXInst<(outs RC:$dst), + (ins Float64Regs:$src, CvtMode:$mode), + !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.", + FromName, ".f64 \t$dst, $src;"), []>; + } + + // Generate cvts from all types to all types. + defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>; + defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>; + defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>; + defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>; + defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>; + defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>; + defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>; + defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>; + defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>; + defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>; + defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>; + + // These cvts are different from those above: The source and dest registers + // are of the same type. + def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), + "cvt.s16.s8 \t$dst, $src;", []>; + def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), + "cvt.s32.s8 \t$dst, $src;", []>; + def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), + "cvt.s32.s16 \t$dst, $src;", []>; + def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), + "cvt.s64.s8 \t$dst, $src;", []>; + def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), + "cvt.s64.s16 \t$dst, $src;", []>; + def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), + "cvt.s64.s32 \t$dst, $src;", []>; +} + +//----------------------------------- +// Integer Arithmetic +//----------------------------------- + +// Template for xor masquerading as int1 arithmetic. +multiclass ADD_SUB_i1<SDNode OpNode> { + def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), + "xor.pred \t$dst, $a, $b;", + [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; + def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), + "xor.pred \t$dst, $a, $b;", + [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>; +} + +// int1 addition and subtraction are both just xor. +defm ADD_i1 : ADD_SUB_i1<add>; +defm SUB_i1 : ADD_SUB_i1<sub>; + +// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we +// also use these for unsigned arithmetic. +defm ADD : I3<"add.s", add>; +defm SUB : I3<"sub.s", sub>; + +// int32 addition and subtraction with carry-out. +// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?). +defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>; +defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>; + +// int32 addition and subtraction with carry-in and carry-out. +defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>; +defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>; + +defm MULT : I3<"mul.lo.s", mul>; + +defm MULTHS : I3<"mul.hi.s", mulhs>; +defm MULTHU : I3<"mul.hi.u", mulhu>; + +defm SDIV : I3<"div.s", sdiv>; +defm UDIV : I3<"div.u", udiv>; + +// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM +// will lower it. +defm SREM : I3<"rem.s", srem>; +defm UREM : I3<"rem.u", urem>; + +// Integer absolute value. NumBits should be one minus the bit width of RC. +// This idiom implements the algorithm at +// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs. +multiclass ABS<RegisterClass RC, string SizeName> { + def : NVPTXInst<(outs RC:$dst), (ins RC:$a), + !strconcat("abs", SizeName, " \t$dst, $a;"), + [(set RC:$dst, (abs RC:$a))]>; +} +defm ABS_16 : ABS<Int16Regs, ".s16">; +defm ABS_32 : ABS<Int32Regs, ".s32">; +defm ABS_64 : ABS<Int64Regs, ".s64">; + +// Integer min/max. +defm SMAX : I3<"max.s", smax>; +defm UMAX : I3<"max.u", umax>; +defm SMIN : I3<"min.s", smin>; +defm UMIN : I3<"min.u", umin>; + +// +// Wide multiplication +// +def MULWIDES64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + "mul.wide.s32 \t$dst, $a, $b;", []>; +def MULWIDES64Imm : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + "mul.wide.s32 \t$dst, $a, $b;", []>; +def MULWIDES64Imm64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), + "mul.wide.s32 \t$dst, $a, $b;", []>; + +def MULWIDEU64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + "mul.wide.u32 \t$dst, $a, $b;", []>; +def MULWIDEU64Imm : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + "mul.wide.u32 \t$dst, $a, $b;", []>; +def MULWIDEU64Imm64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b), + "mul.wide.u32 \t$dst, $a, $b;", []>; + +def MULWIDES32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), + "mul.wide.s16 \t$dst, $a, $b;", []>; +def MULWIDES32Imm : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), + "mul.wide.s16 \t$dst, $a, $b;", []>; +def MULWIDES32Imm32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), + "mul.wide.s16 \t$dst, $a, $b;", []>; + +def MULWIDEU32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), + "mul.wide.u16 \t$dst, $a, $b;", []>; +def MULWIDEU32Imm : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b), + "mul.wide.u16 \t$dst, $a, $b;", []>; +def MULWIDEU32Imm32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b), + "mul.wide.u16 \t$dst, $a, $b;", []>; + +def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>; +def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>; +def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>; + +// Matchers for signed, unsigned mul.wide ISD nodes. +def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)), + (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)), + (MULWIDES32Imm Int16Regs:$a, imm:$b)>, + Requires<[doMulWide]>; +def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)), + (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)), + (MULWIDEU32Imm Int16Regs:$a, imm:$b)>, + Requires<[doMulWide]>; + +def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)), + (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)), + (MULWIDES64Imm Int32Regs:$a, imm:$b)>, + Requires<[doMulWide]>; +def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)), + (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)), + (MULWIDEU64Imm Int32Regs:$a, imm:$b)>, + Requires<[doMulWide]>; + +// Predicates used for converting some patterns to mul.wide. +def SInt32Const : PatLeaf<(imm), [{ + const APInt &v = N->getAPIntValue(); + return v.isSignedIntN(32); +}]>; + +def UInt32Const : PatLeaf<(imm), [{ + const APInt &v = N->getAPIntValue(); + return v.isIntN(32); +}]>; + +def SInt16Const : PatLeaf<(imm), [{ + const APInt &v = N->getAPIntValue(); + return v.isSignedIntN(16); +}]>; + +def UInt16Const : PatLeaf<(imm), [{ + const APInt &v = N->getAPIntValue(); + return v.isIntN(16); +}]>; + +def Int5Const : PatLeaf<(imm), [{ + // Check if 0 <= v < 32; only then will the result of (x << v) be an int32. + const APInt &v = N->getAPIntValue(); + return v.sge(0) && v.slt(32); +}]>; + +def Int4Const : PatLeaf<(imm), [{ + // Check if 0 <= v < 16; only then will the result of (x << v) be an int16. + const APInt &v = N->getAPIntValue(); + return v.sge(0) && v.slt(16); +}]>; + +def SHL2MUL32 : SDNodeXForm<imm, [{ + const APInt &v = N->getAPIntValue(); + APInt temp(32, 1); + return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32); +}]>; + +def SHL2MUL16 : SDNodeXForm<imm, [{ + const APInt &v = N->getAPIntValue(); + APInt temp(16, 1); + return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16); +}]>; + +// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide. +def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)), + (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, + Requires<[doMulWide]>; +def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)), + (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>, + Requires<[doMulWide]>; + +def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)), + (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, + Requires<[doMulWide]>; +def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)), + (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>, + Requires<[doMulWide]>; + +// Convert "sign/zero-extend then multiply" to mul.wide. +def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)), + (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)), + (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>, + Requires<[doMulWide]>; + +def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)), + (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)), + (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>, + Requires<[doMulWide]>; + +def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)), + (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)), + (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>, + Requires<[doMulWide]>; + +def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)), + (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>, + Requires<[doMulWide]>; +def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)), + (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>, + Requires<[doMulWide]>; + +// +// Integer multiply-add +// +def SDTIMAD : + SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>, + SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>; +def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>; + +def MAD16rrr : + NVPTXInst<(outs Int16Regs:$dst), + (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c), + "mad.lo.s16 \t$dst, $a, $b, $c;", + [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>; +def MAD16rri : + NVPTXInst<(outs Int16Regs:$dst), + (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c), + "mad.lo.s16 \t$dst, $a, $b, $c;", + [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>; +def MAD16rir : + NVPTXInst<(outs Int16Regs:$dst), + (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c), + "mad.lo.s16 \t$dst, $a, $b, $c;", + [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>; +def MAD16rii : + NVPTXInst<(outs Int16Regs:$dst), + (ins Int16Regs:$a, i16imm:$b, i16imm:$c), + "mad.lo.s16 \t$dst, $a, $b, $c;", + [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>; + +def MAD32rrr : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c), + "mad.lo.s32 \t$dst, $a, $b, $c;", + [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>; +def MAD32rri : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c), + "mad.lo.s32 \t$dst, $a, $b, $c;", + [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>; +def MAD32rir : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c), + "mad.lo.s32 \t$dst, $a, $b, $c;", + [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>; +def MAD32rii : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$a, i32imm:$b, i32imm:$c), + "mad.lo.s32 \t$dst, $a, $b, $c;", + [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>; + +def MAD64rrr : + NVPTXInst<(outs Int64Regs:$dst), + (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c), + "mad.lo.s64 \t$dst, $a, $b, $c;", + [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>; +def MAD64rri : + NVPTXInst<(outs Int64Regs:$dst), + (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c), + "mad.lo.s64 \t$dst, $a, $b, $c;", + [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>; +def MAD64rir : + NVPTXInst<(outs Int64Regs:$dst), + (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c), + "mad.lo.s64 \t$dst, $a, $b, $c;", + [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>; +def MAD64rii : + NVPTXInst<(outs Int64Regs:$dst), + (ins Int64Regs:$a, i64imm:$b, i64imm:$c), + "mad.lo.s64 \t$dst, $a, $b, $c;", + [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>; + +def INEG16 : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), + "neg.s16 \t$dst, $src;", + [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>; +def INEG32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), + "neg.s32 \t$dst, $src;", + [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>; +def INEG64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), + "neg.s64 \t$dst, $src;", + [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>; + +//----------------------------------- +// Floating Point Arithmetic +//----------------------------------- + +// Constant 1.0f +def FloatConst1 : PatLeaf<(fpimm), [{ + return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() && + N->getValueAPF().convertToFloat() == 1.0f; +}]>; +// Constant 1.0 (double) +def DoubleConst1 : PatLeaf<(fpimm), [{ + return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() && + N->getValueAPF().convertToDouble() == 1.0; +}]>; + +// Loads FP16 constant into a register. +// +// ptxas does not have hex representation for fp16, so we can't use +// fp16 immediate values in .f16 instructions. Instead we have to load +// the constant into a register using mov.b16. +def LOAD_CONST_F16 : + NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a), + "mov.b16 \t$dst, $a;", []>; + +defm FADD : F3_fma_component<"add", fadd>; +defm FSUB : F3_fma_component<"sub", fsub>; +defm FMUL : F3_fma_component<"mul", fmul>; + +defm FMIN : F3<"min", fminnum>; +defm FMAX : F3<"max", fmaxnum>; + +defm FABS : F2<"abs", fabs>; +defm FNEG : F2<"neg", fneg>; +defm FSQRT : F2<"sqrt.rn", fsqrt>; + +// +// F64 division +// +def FDIV641r : + NVPTXInst<(outs Float64Regs:$dst), + (ins f64imm:$a, Float64Regs:$b), + "rcp.rn.f64 \t$dst, $b;", + [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>; +def FDIV64rr : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, Float64Regs:$b), + "div.rn.f64 \t$dst, $a, $b;", + [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>; +def FDIV64ri : + NVPTXInst<(outs Float64Regs:$dst), + (ins Float64Regs:$a, f64imm:$b), + "div.rn.f64 \t$dst, $a, $b;", + [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>; + +// +// F32 Approximate reciprocal +// +def FDIV321r_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.approx.ftz.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_APPROX, doF32FTZ]>; +def FDIV321r : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.approx.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_APPROX]>; +// +// F32 Approximate division +// +def FDIV32approxrr_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.approx.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_APPROX, doF32FTZ]>; +def FDIV32approxri_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.approx.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, + Requires<[do_DIVF32_APPROX, doF32FTZ]>; +def FDIV32approxrr : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.approx.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_APPROX]>; +def FDIV32approxri : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.approx.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, + Requires<[do_DIVF32_APPROX]>; +// +// F32 Semi-accurate reciprocal +// +// rcp.approx gives the same result as div.full(1.0f, a) and is faster. +// +def FDIV321r_approx_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.approx.ftz.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_FULL, doF32FTZ]>; +def FDIV321r_approx : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.approx.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_FULL]>; +// +// F32 Semi-accurate division +// +def FDIV32rr_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.full.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_FULL, doF32FTZ]>; +def FDIV32ri_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.full.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, + Requires<[do_DIVF32_FULL, doF32FTZ]>; +def FDIV32rr : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.full.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, + Requires<[do_DIVF32_FULL]>; +def FDIV32ri : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.full.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, + Requires<[do_DIVF32_FULL]>; +// +// F32 Accurate reciprocal +// +def FDIV321r_prec_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.rn.ftz.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>, + Requires<[doF32FTZ]>; +def FDIV321r_prec : + NVPTXInst<(outs Float32Regs:$dst), + (ins f32imm:$a, Float32Regs:$b), + "rcp.rn.f32 \t$dst, $b;", + [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>; +// +// F32 Accurate division +// +def FDIV32rr_prec_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.rn.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>, + Requires<[doF32FTZ]>; +def FDIV32ri_prec_ftz : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.rn.ftz.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>, + Requires<[doF32FTZ]>; +def FDIV32rr_prec : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, Float32Regs:$b), + "div.rn.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>; +def FDIV32ri_prec : + NVPTXInst<(outs Float32Regs:$dst), + (ins Float32Regs:$a, f32imm:$b), + "div.rn.f32 \t$dst, $a, $b;", + [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>; + +// +// FMA +// + +multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> { + def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, + Requires<[Pred]>; + def rri : NVPTXInst<(outs RC:$dst), + (ins RC:$a, RC:$b, ImmCls:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>, + Requires<[Pred]>; + def rir : NVPTXInst<(outs RC:$dst), + (ins RC:$a, ImmCls:$b, RC:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>, + Requires<[Pred]>; + def rii : NVPTXInst<(outs RC:$dst), + (ins RC:$a, ImmCls:$b, ImmCls:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>, + Requires<[Pred]>; +} + +multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> { + def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c), + !strconcat(OpcStr, " \t$dst, $a, $b, $c;"), + [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>, + Requires<[useFP16Math, Pred]>; +} + +defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>; +defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, True>; +defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>; +defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, True>; +defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>; +defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, True>; +defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, True>; + +// sin/cos +def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), + "sin.approx.f32 \t$dst, $src;", + [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>, + Requires<[allowUnsafeFPMath]>; +def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), + "cos.approx.f32 \t$dst, $src;", + [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>, + Requires<[allowUnsafeFPMath]>; + +// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)), +// i.e. "poor man's fmod()" + +// frem - f32 FTZ +def : Pat<(frem Float32Regs:$x, Float32Regs:$y), + (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32 + (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ), + Float32Regs:$y))>, + Requires<[doF32FTZ]>; +def : Pat<(frem Float32Regs:$x, fpimm:$y), + (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32 + (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ), + fpimm:$y))>, + Requires<[doF32FTZ]>; + +// frem - f32 +def : Pat<(frem Float32Regs:$x, Float32Regs:$y), + (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32 + (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI), + Float32Regs:$y))>; +def : Pat<(frem Float32Regs:$x, fpimm:$y), + (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32 + (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI), + fpimm:$y))>; + +// frem - f64 +def : Pat<(frem Float64Regs:$x, Float64Regs:$y), + (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64 + (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI), + Float64Regs:$y))>; +def : Pat<(frem Float64Regs:$x, fpimm:$y), + (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64 + (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI), + fpimm:$y))>; + +//----------------------------------- +// Bitwise operations +//----------------------------------- + +// Template for three-arg bitwise operations. Takes three args, Creates .b16, +// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr. +multiclass BITWISE<string OpcStr, SDNode OpNode> { + def b1rr : + NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b), + !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), + [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>; + def b1ri : + NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b), + !strconcat(OpcStr, ".pred \t$dst, $a, $b;"), + [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>; + def b16rr : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b), + !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>; + def b16ri : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b), + !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>; + def b32rr : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; + def b32ri : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>; + def b64rr : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b), + !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>; + def b64ri : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b), + !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>; +} + +defm OR : BITWISE<"or", or>; +defm AND : BITWISE<"and", and>; +defm XOR : BITWISE<"xor", xor>; + +def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src), + "not.pred \t$dst, $src;", + [(set Int1Regs:$dst, (not Int1Regs:$src))]>; +def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), + "not.b16 \t$dst, $src;", + [(set Int16Regs:$dst, (not Int16Regs:$src))]>; +def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src), + "not.b32 \t$dst, $src;", + [(set Int32Regs:$dst, (not Int32Regs:$src))]>; +def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src), + "not.b64 \t$dst, $src;", + [(set Int64Regs:$dst, (not Int64Regs:$src))]>; + +// Template for left/right shifts. Takes three operands, +// [dest (reg), src (reg), shift (reg or imm)]. +// dest and src may be int64, int32, or int16, but shift is always int32. +// +// This template also defines a 32-bit shift (imm, imm) instruction. +multiclass SHIFT<string OpcStr, SDNode OpNode> { + def i64rr : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, "64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>; + def i64ri : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b), + !strconcat(OpcStr, "64 \t$dst, $a, $b;"), + [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>; + def i32rr : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, "32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>; + def i32ri : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b), + !strconcat(OpcStr, "32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>; + def i32ii : + NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b), + !strconcat(OpcStr, "32 \t$dst, $a, $b;"), + [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>; + def i16rr : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b), + !strconcat(OpcStr, "16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>; + def i16ri : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b), + !strconcat(OpcStr, "16 \t$dst, $a, $b;"), + [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>; +} + +defm SHL : SHIFT<"shl.b", shl>; +defm SRA : SHIFT<"shr.s", sra>; +defm SRL : SHIFT<"shr.u", srl>; + +// Bit-reverse +def BREV32 : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a), + "brev.b32 \t$dst, $a;", + [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>; +def BREV64 : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a), + "brev.b64 \t$dst, $a;", + [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>; + +// +// Rotate: Use ptx shf instruction if available. +// + +// 32 bit r2 = rotl r1, n +// => +// r2 = shf.l r1, r1, n +def ROTL32imm_hw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), + "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", + [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>, + Requires<[hasHWROT32]>; + +def ROTL32reg_hw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), + "shf.l.wrap.b32 \t$dst, $src, $src, $amt;", + [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, + Requires<[hasHWROT32]>; + +// 32 bit r2 = rotr r1, n +// => +// r2 = shf.r r1, r1, n +def ROTR32imm_hw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt), + "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", + [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>, + Requires<[hasHWROT32]>; + +def ROTR32reg_hw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), + "shf.r.wrap.b32 \t$dst, $src, $src, $amt;", + [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, + Requires<[hasHWROT32]>; + +// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1. +def ROT32imm_sw : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2), + "{{\n\t" + ".reg .b32 %lhs;\n\t" + ".reg .b32 %rhs;\n\t" + "shl.b32 \t%lhs, $src, $amt1;\n\t" + "shr.b32 \t%rhs, $src, $amt2;\n\t" + "add.u32 \t$dst, %lhs, %rhs;\n\t" + "}}", + []>; + +def SUB_FRM_32 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32); +}]>; + +def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)), + (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>, + Requires<[noHWROT32]>; +def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)), + (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>, + Requires<[noHWROT32]>; + +// 32-bit software rotate left by register. +def ROTL32reg_sw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), + "{{\n\t" + ".reg .b32 %lhs;\n\t" + ".reg .b32 %rhs;\n\t" + ".reg .b32 %amt2;\n\t" + "shl.b32 \t%lhs, $src, $amt;\n\t" + "sub.s32 \t%amt2, 32, $amt;\n\t" + "shr.b32 \t%rhs, $src, %amt2;\n\t" + "add.u32 \t$dst, %lhs, %rhs;\n\t" + "}}", + [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>, + Requires<[noHWROT32]>; + +// 32-bit software rotate right by register. +def ROTR32reg_sw : + NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt), + "{{\n\t" + ".reg .b32 %lhs;\n\t" + ".reg .b32 %rhs;\n\t" + ".reg .b32 %amt2;\n\t" + "shr.b32 \t%lhs, $src, $amt;\n\t" + "sub.s32 \t%amt2, 32, $amt;\n\t" + "shl.b32 \t%rhs, $src, %amt2;\n\t" + "add.u32 \t$dst, %lhs, %rhs;\n\t" + "}}", + [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>, + Requires<[noHWROT32]>; + +// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1. +def ROT64imm_sw : + NVPTXInst<(outs Int64Regs:$dst), + (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2), + "{{\n\t" + ".reg .b64 %lhs;\n\t" + ".reg .b64 %rhs;\n\t" + "shl.b64 \t%lhs, $src, $amt1;\n\t" + "shr.b64 \t%rhs, $src, $amt2;\n\t" + "add.u64 \t$dst, %lhs, %rhs;\n\t" + "}}", + []>; + +def SUB_FRM_64 : SDNodeXForm<imm, [{ + return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32); +}]>; + +def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)), + (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>; +def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)), + (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>; + +// 64-bit software rotate left by register. +def ROTL64reg_sw : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), + "{{\n\t" + ".reg .b64 %lhs;\n\t" + ".reg .b64 %rhs;\n\t" + ".reg .u32 %amt2;\n\t" + "shl.b64 \t%lhs, $src, $amt;\n\t" + "sub.u32 \t%amt2, 64, $amt;\n\t" + "shr.b64 \t%rhs, $src, %amt2;\n\t" + "add.u64 \t$dst, %lhs, %rhs;\n\t" + "}}", + [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>; + +def ROTR64reg_sw : + NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt), + "{{\n\t" + ".reg .b64 %lhs;\n\t" + ".reg .b64 %rhs;\n\t" + ".reg .u32 %amt2;\n\t" + "shr.b64 \t%lhs, $src, $amt;\n\t" + "sub.u32 \t%amt2, 64, $amt;\n\t" + "shl.b64 \t%rhs, $src, %amt2;\n\t" + "add.u64 \t$dst, %lhs, %rhs;\n\t" + "}}", + [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>; + +// +// Funnnel shift in clamp mode +// + +// Create SDNodes so they can be used in the DAG code, e.g. +// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts) +def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>; +def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>; + +def FUNSHFLCLAMP : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), + "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;", + [(set Int32Regs:$dst, + (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; + +def FUNSHFRCLAMP : + NVPTXInst<(outs Int32Regs:$dst), + (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt), + "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;", + [(set Int32Regs:$dst, + (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>; + +// +// BFE - bit-field extract +// + +// Template for BFE instructions. Takes four args, +// [dest (reg), src (reg), start (reg or imm), end (reg or imm)]. +// Start may be an imm only if end is also an imm. FIXME: Is this a +// restriction in PTX? +// +// dest and src may be int32 or int64, but start and end are always int32. +multiclass BFE<string TyStr, RegisterClass RC> { + def rrr + : NVPTXInst<(outs RC:$d), + (ins RC:$a, Int32Regs:$b, Int32Regs:$c), + !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; + def rri + : NVPTXInst<(outs RC:$d), + (ins RC:$a, Int32Regs:$b, i32imm:$c), + !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; + def rii + : NVPTXInst<(outs RC:$d), + (ins RC:$a, i32imm:$b, i32imm:$c), + !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>; +} + +let hasSideEffects = false in { + defm BFE_S32 : BFE<"s32", Int32Regs>; + defm BFE_U32 : BFE<"u32", Int32Regs>; + defm BFE_S64 : BFE<"s64", Int64Regs>; + defm BFE_U64 : BFE<"u64", Int64Regs>; +} + +//----------------------------------- +// Comparison instructions (setp, set) +//----------------------------------- + +// FIXME: This doesn't cover versions of set and setp that combine with a +// boolean predicate, e.g. setp.eq.and.b16. + +let hasSideEffects = false in { + multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> { + def rr : + NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp), + !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, + " \t$dst, $a, $b;"), []>; + def ri : + NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp), + !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, + " \t$dst, $a, $b;"), []>; + def ir : + NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp), + !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr, + " \t$dst, $a, $b;"), []>; + } +} + +defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>; +defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>; +defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>; +defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>; +defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>; +defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>; +defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>; +defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>; +defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>; +defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>; +defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>; +def SETP_f16rr : + NVPTXInst<(outs Int1Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp), + "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;", + []>, Requires<[useFP16Math]>; + +def SETP_f16x2rr : + NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q), + (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp), + "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;", + []>, + Requires<[useFP16Math]>; + + +// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form +// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination +// reg, either u32, s32, or f32. Anyway these aren't used at the moment. + +let hasSideEffects = false in { + multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> { + def rr : NVPTXInst<(outs Int32Regs:$dst), + (ins RC:$a, RC:$b, CmpMode:$cmp), + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; + def ri : NVPTXInst<(outs Int32Regs:$dst), + (ins RC:$a, ImmCls:$b, CmpMode:$cmp), + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; + def ir : NVPTXInst<(outs Int32Regs:$dst), + (ins ImmCls:$a, RC:$b, CmpMode:$cmp), + !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>; + } +} + +defm SET_b16 : SET<"b16", Int16Regs, i16imm>; +defm SET_s16 : SET<"s16", Int16Regs, i16imm>; +defm SET_u16 : SET<"u16", Int16Regs, i16imm>; +defm SET_b32 : SET<"b32", Int32Regs, i32imm>; +defm SET_s32 : SET<"s32", Int32Regs, i32imm>; +defm SET_u32 : SET<"u32", Int32Regs, i32imm>; +defm SET_b64 : SET<"b64", Int64Regs, i64imm>; +defm SET_s64 : SET<"s64", Int64Regs, i64imm>; +defm SET_u64 : SET<"u64", Int64Regs, i64imm>; +defm SET_f16 : SET<"f16", Float16Regs, f16imm>; +defm SET_f32 : SET<"f32", Float32Regs, f32imm>; +defm SET_f64 : SET<"f64", Float64Regs, f64imm>; + +//----------------------------------- +// Selection instructions (selp) +//----------------------------------- + +// FIXME: Missing slct + +// selp instructions that don't have any pattern matches; we explicitly use +// them within this file. +let hasSideEffects = false in { + multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> { + def rr : NVPTXInst<(outs RC:$dst), + (ins RC:$a, RC:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; + def ri : NVPTXInst<(outs RC:$dst), + (ins RC:$a, ImmCls:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; + def ir : NVPTXInst<(outs RC:$dst), + (ins ImmCls:$a, RC:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; + def ii : NVPTXInst<(outs RC:$dst), + (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>; + } + + multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls, + SDNode ImmNode> { + def rr : + NVPTXInst<(outs RC:$dst), + (ins RC:$a, RC:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), + [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>; + def ri : + NVPTXInst<(outs RC:$dst), + (ins RC:$a, ImmCls:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), + [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>; + def ir : + NVPTXInst<(outs RC:$dst), + (ins ImmCls:$a, RC:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), + [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>; + def ii : + NVPTXInst<(outs RC:$dst), + (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p), + !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), + [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>; + } +} + +// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as +// good. +defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>; +defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>; +defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>; +defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>; +defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>; +defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>; +defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>; +defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>; +defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>; +defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>; +defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>; +defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>; + +def SELP_f16x2rr : + NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p), + "selp.b32 \t$dst, $a, $b, $p;", + [(set Float16x2Regs:$dst, + (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>; + +//----------------------------------- +// Data Movement (Load / Store, Move) +//----------------------------------- + +def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex], + [SDNPWantRoot]>; +def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex], + [SDNPWantRoot]>; +def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>; + +def MEMri : Operand<i32> { + let PrintMethod = "printMemOperand"; + let MIOperandInfo = (ops Int32Regs, i32imm); +} +def MEMri64 : Operand<i64> { + let PrintMethod = "printMemOperand"; + let MIOperandInfo = (ops Int64Regs, i64imm); +} + +def imem : Operand<iPTR> { + let PrintMethod = "printOperand"; +} + +def imemAny : Operand<iPTRAny> { + let PrintMethod = "printOperand"; +} + +def LdStCode : Operand<i32> { + let PrintMethod = "printLdStCode"; +} + +def MmaCode : Operand<i32> { + let PrintMethod = "printMmaCode"; +} + +def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>; +def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>; + +// Load a memory address into a u32 or u64 register. +def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a), + "mov.u32 \t$dst, $a;", + [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>; +def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a), + "mov.u64 \t$dst, $a;", + [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>; + +// Get pointer to local stack. +let hasSideEffects = false in { + def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num), + "mov.u32 \t$d, __local_depot$num;", []>; + def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num), + "mov.u64 \t$d, __local_depot$num;", []>; +} + + +// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp +let IsSimpleMove=1, hasSideEffects=0 in { + def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss), + "mov.pred \t$dst, $sss;", []>; + def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss), + "mov.u16 \t$dst, $sss;", []>; + def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss), + "mov.u32 \t$dst, $sss;", []>; + def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss), + "mov.u64 \t$dst, $sss;", []>; + + def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src), + // We have to use .b16 here as there's no mov.f16. + "mov.b16 \t$dst, $src;", []>; + def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src), + "mov.f32 \t$dst, $src;", []>; + def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src), + "mov.f64 \t$dst, $src;", []>; +} + +def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src), + "mov.pred \t$dst, $src;", + [(set Int1Regs:$dst, imm:$src)]>; +def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src), + "mov.u16 \t$dst, $src;", + [(set Int16Regs:$dst, imm:$src)]>; +def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src), + "mov.u32 \t$dst, $src;", + [(set Int32Regs:$dst, imm:$src)]>; +def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src), + "mov.u64 \t$dst, $src;", + [(set Int64Regs:$dst, imm:$src)]>; + +def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src), + "mov.f32 \t$dst, $src;", + [(set Float32Regs:$dst, fpimm:$src)]>; +def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src), + "mov.f64 \t$dst, $src;", + [(set Float64Regs:$dst, fpimm:$src)]>; + +def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>; + +//---- Copy Frame Index ---- +def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr), + "add.u32 \t$dst, ${addr:add};", + [(set Int32Regs:$dst, ADDRri:$addr)]>; +def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr), + "add.u64 \t$dst, ${addr:add};", + [(set Int64Regs:$dst, ADDRri64:$addr)]>; + +//----------------------------------- +// Comparison and Selection +//----------------------------------- + +multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode, + Instruction setp_16rr, + Instruction setp_16ri, + Instruction setp_16ir, + Instruction setp_32rr, + Instruction setp_32ri, + Instruction setp_32ir, + Instruction setp_64rr, + Instruction setp_64ri, + Instruction setp_64ir, + Instruction set_16rr, + Instruction set_16ri, + Instruction set_16ir, + Instruction set_32rr, + Instruction set_32ri, + Instruction set_32ir, + Instruction set_64rr, + Instruction set_64ri, + Instruction set_64ir> { + // i16 -> pred + def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)), + (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; + def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)), + (setp_16ri Int16Regs:$a, imm:$b, Mode)>; + def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)), + (setp_16ir imm:$a, Int16Regs:$b, Mode)>; + // i32 -> pred + def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)), + (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; + def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)), + (setp_32ri Int32Regs:$a, imm:$b, Mode)>; + def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)), + (setp_32ir imm:$a, Int32Regs:$b, Mode)>; + // i64 -> pred + def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)), + (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; + def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)), + (setp_64ri Int64Regs:$a, imm:$b, Mode)>; + def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)), + (setp_64ir imm:$a, Int64Regs:$b, Mode)>; + + // i16 -> i32 + def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)), + (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>; + def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)), + (set_16ri Int16Regs:$a, imm:$b, Mode)>; + def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)), + (set_16ir imm:$a, Int16Regs:$b, Mode)>; + // i32 -> i32 + def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)), + (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>; + def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)), + (set_32ri Int32Regs:$a, imm:$b, Mode)>; + def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)), + (set_32ir imm:$a, Int32Regs:$b, Mode)>; + // i64 -> i32 + def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)), + (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>; + def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)), + (set_64ri Int64Regs:$a, imm:$b, Mode)>; + def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)), + (set_64ir imm:$a, Int64Regs:$b, Mode)>; +} + +multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode> + : ISET_FORMAT<OpNode, Mode, + SETP_s16rr, SETP_s16ri, SETP_s16ir, + SETP_s32rr, SETP_s32ri, SETP_s32ir, + SETP_s64rr, SETP_s64ri, SETP_s64ir, + SET_s16rr, SET_s16ri, SET_s16ir, + SET_s32rr, SET_s32ri, SET_s32ir, + SET_s64rr, SET_s64ri, SET_s64ir> { + // TableGen doesn't like empty multiclasses. + def : PatLeaf<(i32 0)>; +} + +multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode> + : ISET_FORMAT<OpNode, Mode, + SETP_u16rr, SETP_u16ri, SETP_u16ir, + SETP_u32rr, SETP_u32ri, SETP_u32ir, + SETP_u64rr, SETP_u64ri, SETP_u64ir, + SET_u16rr, SET_u16ri, SET_u16ir, + SET_u32rr, SET_u32ri, SET_u32ir, + SET_u64rr, SET_u64ri, SET_u64ir> { + // TableGen doesn't like empty multiclasses. + def : PatLeaf<(i32 0)>; +} + +defm : ISET_FORMAT_SIGNED<setgt, CmpGT>; +defm : ISET_FORMAT_SIGNED<setlt, CmpLT>; +defm : ISET_FORMAT_SIGNED<setge, CmpGE>; +defm : ISET_FORMAT_SIGNED<setle, CmpLE>; +defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>; +defm : ISET_FORMAT_SIGNED<setne, CmpNE>; +defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>; +defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>; +defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>; +defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>; +defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>; +defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>; + +// i1 compares +def : Pat<(setne Int1Regs:$a, Int1Regs:$b), + (XORb1rr Int1Regs:$a, Int1Regs:$b)>; +def : Pat<(setune Int1Regs:$a, Int1Regs:$b), + (XORb1rr Int1Regs:$a, Int1Regs:$b)>; + +def : Pat<(seteq Int1Regs:$a, Int1Regs:$b), + (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; +def : Pat<(setueq Int1Regs:$a, Int1Regs:$b), + (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>; + +// i1 compare -> i32 +def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), + (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; +def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)), + (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>; + + + +multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> { + // f16 -> pred + def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), + (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)), + (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), + (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math,doF32FTZ]>; + def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)), + (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + + // f32 -> pred + def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), + (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)), + (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; + def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), + (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)), + (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>; + def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), + (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)), + (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>; + + // f64 -> pred + def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)), + (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; + def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)), + (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>; + def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)), + (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>; + + // f16 -> i32 + def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)), + (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), + (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)), + (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>, + Requires<[useFP16Math]>; + def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), + (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>, + Requires<[useFP16Math, doF32FTZ]>; + def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)), + (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>, + Requires<[useFP16Math]>; + + // f32 -> i32 + def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), + (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)), + (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>; + def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), + (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)), + (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>; + def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), + (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>, + Requires<[doF32FTZ]>; + def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)), + (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>; + + // f64 -> i32 + def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)), + (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>; + def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)), + (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>; + def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)), + (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>; +} + +defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>; +defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>; +defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>; +defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>; +defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>; +defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>; + +defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>; +defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>; +defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>; +defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>; +defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>; +defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>; + +defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>; +defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>; +defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>; +defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>; +defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>; +defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>; + +defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>; +defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>; + +// FIXME: What is this doing here? Can it be deleted? +// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad, +// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>; + +def SDTDeclareParamProfile : + SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; +def SDTDeclareScalarParamProfile : + SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>; +def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>; +def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>; +def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>; +def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; +def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>; +def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; +def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>; +def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>; +def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>; +def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; +def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>; +def SDTCallVoidProfile : SDTypeProfile<0, 1, []>; +def SDTCallValProfile : SDTypeProfile<1, 0, []>; +def SDTMoveParamProfile : SDTypeProfile<1, 1, []>; +def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>; +def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>; +def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>; +def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>; +def SDTProxyRegProfile : SDTypeProfile<1, 1, []>; + +def DeclareParam : + SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def DeclareScalarParam : + SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def DeclareRetParam : + SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def DeclareRet : + SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def LoadParam : + SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile, + [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; +def LoadParamV2 : + SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile, + [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; +def LoadParamV4 : + SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile, + [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>; +def PrintCall : + SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def PrintConvergentCall : + SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def PrintCallUni : + SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def PrintConvergentCallUni : + SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def StoreParam : + SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def StoreParamV2 : + SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def StoreParamV4 : + SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def StoreParamU32 : + SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def StoreParamS32 : + SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def CallArgBegin : + SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def CallArg : + SDNode<"NVPTXISD::CallArg", SDTCallArgProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def LastCallArg : + SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def CallArgEnd : + SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def CallVoid : + SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def Prototype : + SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def CallVal : + SDNode<"NVPTXISD::CallVal", SDTCallValProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def MoveParam : + SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>; +def StoreRetval : + SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile, + [SDNPHasChain, SDNPSideEffect]>; +def StoreRetvalV2 : + SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile, + [SDNPHasChain, SDNPSideEffect]>; +def StoreRetvalV4 : + SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile, + [SDNPHasChain, SDNPSideEffect]>; +def PseudoUseParam : + SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def RETURNNode : + SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile, + [SDNPHasChain, SDNPSideEffect]>; +def ProxyReg : + SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; + +let mayLoad = true in { + class LoadParamMemInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), + !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"), + []>; + + class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b), + !strconcat("ld.param.v2", opstr, + " \t{{$dst, $dst2}}, [retval0+$b];"), []>; + + class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3, + regclass:$dst4), + (ins i32imm:$b), + !strconcat("ld.param.v4", opstr, + " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"), + []>; +} + +class LoadParamRegInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs regclass:$dst), (ins i32imm:$b), + !strconcat("mov", opstr, " \t$dst, retval$b;"), + [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>; + +let mayStore = true in { + class StoreParamInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b), + !strconcat("st.param", opstr, " \t[param$a+$b], $val;"), + []>; + + class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, + i32imm:$a, i32imm:$b), + !strconcat("st.param.v2", opstr, + " \t[param$a+$b], {{$val, $val2}};"), + []>; + + class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3, + regclass:$val4, i32imm:$a, + i32imm:$b), + !strconcat("st.param.v4", opstr, + " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"), + []>; + + class StoreRetvalInst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), (ins regclass:$val, i32imm:$a), + !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"), + []>; + + class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a), + !strconcat("st.param.v2", opstr, + " \t[func_retval0+$a], {{$val, $val2}};"), + []>; + + class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> : + NVPTXInst<(outs), + (ins regclass:$val, regclass:$val2, regclass:$val3, + regclass:$val4, i32imm:$a), + !strconcat("st.param.v4", opstr, + " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"), + []>; +} + +let isCall=1 in { + multiclass CALL<string OpcStr, SDNode OpNode> { + def PrintCallNoRetInst : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " "), [(OpNode (i32 0))]>; + def PrintCallRetInst1 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>; + def PrintCallRetInst2 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>; + def PrintCallRetInst3 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>; + def PrintCallRetInst4 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "), + [(OpNode (i32 4))]>; + def PrintCallRetInst5 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "), + [(OpNode (i32 5))]>; + def PrintCallRetInst6 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " + "retval5), "), + [(OpNode (i32 6))]>; + def PrintCallRetInst7 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " + "retval5, retval6), "), + [(OpNode (i32 7))]>; + def PrintCallRetInst8 : NVPTXInst<(outs), (ins), + !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, " + "retval5, retval6, retval7), "), + [(OpNode (i32 8))]>; + } +} + +defm Call : CALL<"call", PrintCall>; +defm CallUni : CALL<"call.uni", PrintCallUni>; + +// Convergent call instructions. These are identical to regular calls, except +// they have the isConvergent bit set. +let isConvergent=1 in { + defm ConvergentCall : CALL<"call", PrintConvergentCall>; + defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>; +} + +def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">; +def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">; +def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">; +def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">; +def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">; +def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">; +def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">; +def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">; +def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">; +def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">; +def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">; +def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">; +def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">; +def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">; +def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">; +def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">; +def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">; +def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">; +def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">; +def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">; +def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">; +def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">; + +def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">; +def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">; + +def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">; +def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">; +def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">; +def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">; +def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">; +def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">; + +def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">; +def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">; +def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">; + +def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">; +def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">; +def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">; +def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">; +def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">; +def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">; +def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">; +def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">; +def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">; +def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">; +def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">; + +def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">; +def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">; +def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">; +def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">; +def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">; +def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">; +def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">; +def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">; +def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">; +def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">; +def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">; + +def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">; +def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">; +def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">; +def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">; +def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">; +def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">; +def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">; +def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">; +def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">; +def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">; +def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">; + +def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>; +def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>; +def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>; +def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>; + +class CallArgInst<NVPTXRegClass regclass> : + NVPTXInst<(outs), (ins regclass:$a), "$a, ", + [(CallArg (i32 0), regclass:$a)]>; + +class LastCallArgInst<NVPTXRegClass regclass> : + NVPTXInst<(outs), (ins regclass:$a), "$a", + [(LastCallArg (i32 0), regclass:$a)]>; + +def CallArgI64 : CallArgInst<Int64Regs>; +def CallArgI32 : CallArgInst<Int32Regs>; +def CallArgI16 : CallArgInst<Int16Regs>; +def CallArgF64 : CallArgInst<Float64Regs>; +def CallArgF32 : CallArgInst<Float32Regs>; + +def LastCallArgI64 : LastCallArgInst<Int64Regs>; +def LastCallArgI32 : LastCallArgInst<Int32Regs>; +def LastCallArgI16 : LastCallArgInst<Int16Regs>; +def LastCallArgF64 : LastCallArgInst<Float64Regs>; +def LastCallArgF32 : LastCallArgInst<Float32Regs>; + +def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ", + [(CallArg (i32 0), (i32 imm:$a))]>; +def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a", + [(LastCallArg (i32 0), (i32 imm:$a))]>; + +def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ", + [(CallArg (i32 1), (i32 imm:$a))]>; +def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a", + [(LastCallArg (i32 1), (i32 imm:$a))]>; + +def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ", + [(CallVoid (Wrapper tglobaladdr:$addr))]>; +def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ", + [(CallVoid Int32Regs:$addr)]>; +def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ", + [(CallVoid Int64Regs:$addr)]>; +def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;", + [(Prototype (i32 imm:$val))]>; + +def DeclareRetMemInst : + NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num), + ".param .align $align .b8 retval$num[$size];", + [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>; +def DeclareRetScalarInst : + NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), + ".param .b$size retval$num;", + [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>; +def DeclareRetRegInst : + NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num), + ".reg .b$size retval$num;", + [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>; + +def DeclareParamInst : + NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size), + ".param .align $align .b8 param$a[$size];", + [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>; +def DeclareScalarParamInst : + NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), + ".param .b$size param$a;", + [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>; +def DeclareScalarRegInst : + NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size), + ".reg .b$size param$a;", + [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>; + +class MoveParamInst<NVPTXRegClass regclass, string asmstr> : + NVPTXInst<(outs regclass:$dst), (ins regclass:$src), + !strconcat("mov", asmstr, " \t$dst, $src;"), + [(set regclass:$dst, (MoveParam regclass:$src))]>; + +def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">; +def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">; +def MoveParamI16 : + NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src), + "cvt.u16.u32 \t$dst, $src;", + [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>; +def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">; +def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">; +def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">; + +class PseudoUseParamInst<NVPTXRegClass regclass> : + NVPTXInst<(outs), (ins regclass:$src), + "// Pseudo use of $src", + [(PseudoUseParam regclass:$src)]>; + +def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>; +def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>; +def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>; +def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>; +def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>; + +class ProxyRegInst<string SzStr, NVPTXRegClass regclass> : + NVPTXInst<(outs regclass:$dst), (ins regclass:$src), + !strconcat("mov.", SzStr, " \t$dst, $src;"), + [(set regclass:$dst, (ProxyReg regclass:$src))]>; + +let isCodeGenOnly=1, isPseudo=1 in { + def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>; + def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>; + def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>; + def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>; + def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>; + def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>; + def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>; + def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>; +} + +// +// Load / Store Handling +// +multiclass LD<NVPTXRegClass regclass> { + def _avar : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr];", []>; + def _areg : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr];", []>; + def _areg_64 : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr];", []>; + def _ari : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr+$offset];", []>; + def _ari_64 : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr+$offset];", []>; + def _asi : NVPTXInst< + (outs regclass:$dst), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t$dst, [$addr+$offset];", []>; +} + +let mayLoad=1, hasSideEffects=0 in { + defm LD_i8 : LD<Int16Regs>; + defm LD_i16 : LD<Int16Regs>; + defm LD_i32 : LD<Int32Regs>; + defm LD_i64 : LD<Int64Regs>; + defm LD_f16 : LD<Float16Regs>; + defm LD_f16x2 : LD<Float16x2Regs>; + defm LD_f32 : LD<Float32Regs>; + defm LD_f64 : LD<Float64Regs>; +} + +multiclass ST<NVPTXRegClass regclass> { + def _avar : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$toWidth, imem:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr], $src;", []>; + def _areg : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr], $src;", []>; + def _areg_64 : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr], $src;", []>; + def _ari : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr+$offset], $src;", []>; + def _ari_64 : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr+$offset], $src;", []>; + def _asi : NVPTXInst< + (outs), + (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, + LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth" + " \t[$addr+$offset], $src;", []>; +} + +let mayStore=1, hasSideEffects=0 in { + defm ST_i8 : ST<Int16Regs>; + defm ST_i16 : ST<Int16Regs>; + defm ST_i32 : ST<Int32Regs>; + defm ST_i64 : ST<Int64Regs>; + defm ST_f16 : ST<Float16Regs>; + defm ST_f16x2 : ST<Float16x2Regs>; + defm ST_f32 : ST<Float32Regs>; + defm ST_f64 : ST<Float64Regs>; +} + +// The following is used only in and after vector elementizations. Vector +// elementization happens at the machine instruction level, so the following +// instructions never appear in the DAG. +multiclass LD_VEC<NVPTXRegClass regclass> { + def _v2_avar : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr];", []>; + def _v2_areg : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr];", []>; + def _v2_areg_64 : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr];", []>; + def _v2_ari : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; + def _v2_ari_64 : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; + def _v2_asi : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2}}, [$addr+$offset];", []>; + def _v4_avar : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; + def _v4_areg : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; + def _v4_areg_64 : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>; + def _v4_ari : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; + def _v4_ari_64 : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; + def _v4_asi : NVPTXInst< + (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4), + (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr, i32imm:$offset), + "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>; +} +let mayLoad=1, hasSideEffects=0 in { + defm LDV_i8 : LD_VEC<Int16Regs>; + defm LDV_i16 : LD_VEC<Int16Regs>; + defm LDV_i32 : LD_VEC<Int32Regs>; + defm LDV_i64 : LD_VEC<Int64Regs>; + defm LDV_f16 : LD_VEC<Float16Regs>; + defm LDV_f16x2 : LD_VEC<Float16x2Regs>; + defm LDV_f32 : LD_VEC<Float32Regs>; + defm LDV_f64 : LD_VEC<Float64Regs>; +} + +multiclass ST_VEC<NVPTXRegClass regclass> { + def _v2_avar : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2}};", []>; + def _v2_areg : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2}};", []>; + def _v2_areg_64 : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2}};", []>; + def _v2_ari : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr, + i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr+$offset], {{$src1, $src2}};", []>; + def _v2_ari_64 : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, + i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr+$offset], {{$src1, $src2}};", []>; + def _v2_asi : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp, + LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, + i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr+$offset], {{$src1, $src2}};", []>; + def _v4_avar : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; + def _v4_areg : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; + def _v4_areg_64 : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>; + def _v4_ari : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; + def _v4_ari_64 : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth " + "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; + def _v4_asi : NVPTXInst< + (outs), + (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4, + LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign, + i32imm:$fromWidth, imem:$addr, i32imm:$offset), + "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}" + "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>; +} + +let mayStore=1, hasSideEffects=0 in { + defm STV_i8 : ST_VEC<Int16Regs>; + defm STV_i16 : ST_VEC<Int16Regs>; + defm STV_i32 : ST_VEC<Int32Regs>; + defm STV_i64 : ST_VEC<Int64Regs>; + defm STV_f16 : ST_VEC<Float16Regs>; + defm STV_f16x2 : ST_VEC<Float16x2Regs>; + defm STV_f32 : ST_VEC<Float32Regs>; + defm STV_f64 : ST_VEC<Float64Regs>; +} + +//---- Conversion ---- + +class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn, + NVPTXRegClass regclassOut> : + NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a), + !strconcat("mov.b", SzStr, " \t$d, $a;"), + [(set regclassOut:$d, (bitconvert regclassIn:$a))]>; + +def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>; +def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>; +def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>; +def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>; +def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>; +def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>; +def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>; +def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>; + +// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where +// we cannot specify floating-point literals in isel patterns. Therefore, we +// use an integer selp to select either 1 or 0 and then cvt to floating-point. + +// sint -> f16 +def : Pat<(f16 (sint_to_fp Int1Regs:$a)), + (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f16 (sint_to_fp Int16Regs:$a)), + (CVT_f16_s16 Int16Regs:$a, CvtRN)>; +def : Pat<(f16 (sint_to_fp Int32Regs:$a)), + (CVT_f16_s32 Int32Regs:$a, CvtRN)>; +def : Pat<(f16 (sint_to_fp Int64Regs:$a)), + (CVT_f16_s64 Int64Regs:$a, CvtRN)>; + +// uint -> f16 +def : Pat<(f16 (uint_to_fp Int1Regs:$a)), + (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f16 (uint_to_fp Int16Regs:$a)), + (CVT_f16_u16 Int16Regs:$a, CvtRN)>; +def : Pat<(f16 (uint_to_fp Int32Regs:$a)), + (CVT_f16_u32 Int32Regs:$a, CvtRN)>; +def : Pat<(f16 (uint_to_fp Int64Regs:$a)), + (CVT_f16_u64 Int64Regs:$a, CvtRN)>; + +// sint -> f32 +def : Pat<(f32 (sint_to_fp Int1Regs:$a)), + (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f32 (sint_to_fp Int16Regs:$a)), + (CVT_f32_s16 Int16Regs:$a, CvtRN)>; +def : Pat<(f32 (sint_to_fp Int32Regs:$a)), + (CVT_f32_s32 Int32Regs:$a, CvtRN)>; +def : Pat<(f32 (sint_to_fp Int64Regs:$a)), + (CVT_f32_s64 Int64Regs:$a, CvtRN)>; + +// uint -> f32 +def : Pat<(f32 (uint_to_fp Int1Regs:$a)), + (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f32 (uint_to_fp Int16Regs:$a)), + (CVT_f32_u16 Int16Regs:$a, CvtRN)>; +def : Pat<(f32 (uint_to_fp Int32Regs:$a)), + (CVT_f32_u32 Int32Regs:$a, CvtRN)>; +def : Pat<(f32 (uint_to_fp Int64Regs:$a)), + (CVT_f32_u64 Int64Regs:$a, CvtRN)>; + +// sint -> f64 +def : Pat<(f64 (sint_to_fp Int1Regs:$a)), + (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f64 (sint_to_fp Int16Regs:$a)), + (CVT_f64_s16 Int16Regs:$a, CvtRN)>; +def : Pat<(f64 (sint_to_fp Int32Regs:$a)), + (CVT_f64_s32 Int32Regs:$a, CvtRN)>; +def : Pat<(f64 (sint_to_fp Int64Regs:$a)), + (CVT_f64_s64 Int64Regs:$a, CvtRN)>; + +// uint -> f64 +def : Pat<(f64 (uint_to_fp Int1Regs:$a)), + (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>; +def : Pat<(f64 (uint_to_fp Int16Regs:$a)), + (CVT_f64_u16 Int16Regs:$a, CvtRN)>; +def : Pat<(f64 (uint_to_fp Int32Regs:$a)), + (CVT_f64_u32 Int32Regs:$a, CvtRN)>; +def : Pat<(f64 (uint_to_fp Int64Regs:$a)), + (CVT_f64_u64 Int64Regs:$a, CvtRN)>; + + +// f16 -> sint +def : Pat<(i1 (fp_to_sint Float16Regs:$a)), + (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_sint Float16Regs:$a)), + (CVT_s16_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_sint Float16Regs:$a)), + (CVT_s32_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_sint Float16Regs:$a)), + (CVT_s64_f16 Float16Regs:$a, CvtRZI)>; + +// f16 -> uint +def : Pat<(i1 (fp_to_uint Float16Regs:$a)), + (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_uint Float16Regs:$a)), + (CVT_u16_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_uint Float16Regs:$a)), + (CVT_u32_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_uint Float16Regs:$a)), + (CVT_u64_f16 Float16Regs:$a, CvtRZI)>; + +// f32 -> sint +def : Pat<(i1 (fp_to_sint Float32Regs:$a)), + (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_sint Float32Regs:$a)), + (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i16 (fp_to_sint Float32Regs:$a)), + (CVT_s16_f32 Float32Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_sint Float32Regs:$a)), + (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i32 (fp_to_sint Float32Regs:$a)), + (CVT_s32_f32 Float32Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_sint Float32Regs:$a)), + (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i64 (fp_to_sint Float32Regs:$a)), + (CVT_s64_f32 Float32Regs:$a, CvtRZI)>; + +// f32 -> uint +def : Pat<(i1 (fp_to_uint Float32Regs:$a)), + (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_uint Float32Regs:$a)), + (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i16 (fp_to_uint Float32Regs:$a)), + (CVT_u16_f32 Float32Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_uint Float32Regs:$a)), + (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i32 (fp_to_uint Float32Regs:$a)), + (CVT_u32_f32 Float32Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_uint Float32Regs:$a)), + (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(i64 (fp_to_uint Float32Regs:$a)), + (CVT_u64_f32 Float32Regs:$a, CvtRZI)>; + +// f64 -> sint +def : Pat<(i1 (fp_to_sint Float64Regs:$a)), + (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_sint Float64Regs:$a)), + (CVT_s16_f64 Float64Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_sint Float64Regs:$a)), + (CVT_s32_f64 Float64Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_sint Float64Regs:$a)), + (CVT_s64_f64 Float64Regs:$a, CvtRZI)>; + +// f64 -> uint +def : Pat<(i1 (fp_to_uint Float64Regs:$a)), + (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>; +def : Pat<(i16 (fp_to_uint Float64Regs:$a)), + (CVT_u16_f64 Float64Regs:$a, CvtRZI)>; +def : Pat<(i32 (fp_to_uint Float64Regs:$a)), + (CVT_u32_f64 Float64Regs:$a, CvtRZI)>; +def : Pat<(i64 (fp_to_uint Float64Regs:$a)), + (CVT_u64_f64 Float64Regs:$a, CvtRZI)>; + +// sext i1 +def : Pat<(i16 (sext Int1Regs:$a)), + (SELP_s16ii -1, 0, Int1Regs:$a)>; +def : Pat<(i32 (sext Int1Regs:$a)), + (SELP_s32ii -1, 0, Int1Regs:$a)>; +def : Pat<(i64 (sext Int1Regs:$a)), + (SELP_s64ii -1, 0, Int1Regs:$a)>; + +// zext i1 +def : Pat<(i16 (zext Int1Regs:$a)), + (SELP_u16ii 1, 0, Int1Regs:$a)>; +def : Pat<(i32 (zext Int1Regs:$a)), + (SELP_u32ii 1, 0, Int1Regs:$a)>; +def : Pat<(i64 (zext Int1Regs:$a)), + (SELP_u64ii 1, 0, Int1Regs:$a)>; + +// anyext i1 +def : Pat<(i16 (anyext Int1Regs:$a)), + (SELP_u16ii -1, 0, Int1Regs:$a)>; +def : Pat<(i32 (anyext Int1Regs:$a)), + (SELP_u32ii -1, 0, Int1Regs:$a)>; +def : Pat<(i64 (anyext Int1Regs:$a)), + (SELP_u64ii -1, 0, Int1Regs:$a)>; + +// sext i16 +def : Pat<(i32 (sext Int16Regs:$a)), + (CVT_s32_s16 Int16Regs:$a, CvtNONE)>; +def : Pat<(i64 (sext Int16Regs:$a)), + (CVT_s64_s16 Int16Regs:$a, CvtNONE)>; + +// zext i16 +def : Pat<(i32 (zext Int16Regs:$a)), + (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; +def : Pat<(i64 (zext Int16Regs:$a)), + (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; + +// anyext i16 +def : Pat<(i32 (anyext Int16Regs:$a)), + (CVT_u32_u16 Int16Regs:$a, CvtNONE)>; +def : Pat<(i64 (anyext Int16Regs:$a)), + (CVT_u64_u16 Int16Regs:$a, CvtNONE)>; + +// sext i32 +def : Pat<(i64 (sext Int32Regs:$a)), + (CVT_s64_s32 Int32Regs:$a, CvtNONE)>; + +// zext i32 +def : Pat<(i64 (zext Int32Regs:$a)), + (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; + +// anyext i32 +def : Pat<(i64 (anyext Int32Regs:$a)), + (CVT_u64_u32 Int32Regs:$a, CvtNONE)>; + + +// truncate i64 +def : Pat<(i32 (trunc Int64Regs:$a)), + (CVT_u32_u64 Int64Regs:$a, CvtNONE)>; +def : Pat<(i16 (trunc Int64Regs:$a)), + (CVT_u16_u64 Int64Regs:$a, CvtNONE)>; +def : Pat<(i1 (trunc Int64Regs:$a)), + (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>; + +// truncate i32 +def : Pat<(i16 (trunc Int32Regs:$a)), + (CVT_u16_u32 Int32Regs:$a, CvtNONE)>; +def : Pat<(i1 (trunc Int32Regs:$a)), + (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>; + +// truncate i16 +def : Pat<(i1 (trunc Int16Regs:$a)), + (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>; + +// sext_inreg +def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>; +def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>; +def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>; +def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>; +def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>; +def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>; + + +// Select instructions with 32-bit predicates +def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b), + (SELP_b16rr Int16Regs:$a, Int16Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b), + (SELP_b32rr Int32Regs:$a, Int32Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b), + (SELP_b64rr Int64Regs:$a, Int64Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b), + (SELP_f16rr Float16Regs:$a, Float16Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b), + (SELP_f32rr Float32Regs:$a, Float32Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; +def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b), + (SELP_f64rr Float64Regs:$a, Float64Regs:$b, + (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>; + + +let hasSideEffects = false in { + // pack a set of smaller int registers to a larger int register + def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d), + (ins Int16Regs:$s1, Int16Regs:$s2, + Int16Regs:$s3, Int16Regs:$s4), + "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>; + def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d), + (ins Int16Regs:$s1, Int16Regs:$s2), + "mov.b32 \t$d, {{$s1, $s2}};", []>; + def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d), + (ins Int32Regs:$s1, Int32Regs:$s2), + "mov.b64 \t$d, {{$s1, $s2}};", []>; + def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d), + (ins Float32Regs:$s1, Float32Regs:$s2), + "mov.b64 \t$d, {{$s1, $s2}};", []>; + + // unpack a larger int register to a set of smaller int registers + def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2, + Int16Regs:$d3, Int16Regs:$d4), + (ins Int64Regs:$s), + "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>; + def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2), + (ins Int32Regs:$s), + "mov.b32 \t{{$d1, $d2}}, $s;", []>; + def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2), + (ins Int64Regs:$s), + "mov.b64 \t{{$d1, $d2}}, $s;", []>; + def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2), + (ins Float64Regs:$s), + "mov.b64 \t{{$d1, $d2}}, $s;", []>; + +} + +let hasSideEffects = false in { + // Extract element of f16x2 register. PTX does not provide any way + // to access elements of f16x2 vector directly, so we need to + // extract it using a temporary register. + def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst), + (ins Float16x2Regs:$src), + "{{ .reg .b16 \t%tmp_hi;\n\t" + " mov.b32 \t{$dst, %tmp_hi}, $src; }}", + [(set Float16Regs:$dst, + (extractelt (v2f16 Float16x2Regs:$src), 0))]>; + def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst), + (ins Float16x2Regs:$src), + "{{ .reg .b16 \t%tmp_lo;\n\t" + " mov.b32 \t{%tmp_lo, $dst}, $src; }}", + [(set Float16Regs:$dst, + (extractelt (v2f16 Float16x2Regs:$src), 1))]>; + + // Coalesce two f16 registers into f16x2 + def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst), + (ins Float16Regs:$a, Float16Regs:$b), + "mov.b32 \t$dst, {{$a, $b}};", + [(set Float16x2Regs:$dst, + (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>; + + // Directly initializing underlying the b32 register is one less SASS + // instruction than than vector-packing move. + def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src), + "mov.b32 \t$dst, $src;", + []>; + + // Split f16x2 into two f16 registers. + def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), + (ins Float16x2Regs:$src), + "mov.b32 \t{{$lo, $hi}}, $src;", + []>; + // Split an i32 into two f16 + def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi), + (ins Int32Regs:$src), + "mov.b32 \t{{$lo, $hi}}, $src;", + []>; +} + +// Count leading zeros +let hasSideEffects = false in { + def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), + "clz.b32 \t$d, $a;", []>; + def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), + "clz.b64 \t$d, $a;", []>; +} + +// 32-bit has a direct PTX instruction +def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>; + +// The return type of the ctlz ISD node is the same as its input, but the PTX +// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the +// ptx value to 64 bits to match the ISD node's semantics, unless we know we're +// truncating back down to 32 bits. +def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>; +def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>; + +// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the +// result back to 16-bits if necessary. We also need to subtract 16 because +// the high-order 16 zeros were counted. +// +// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could +// use to save one SASS instruction (on sm_35 anyway): +// +// mov.b32 $tmp, {0xffff, $a} +// ctlz.b32 $result, $tmp +// +// That is, instead of zero-extending the input to 32 bits, we'd "one-extend" +// and then ctlz that value. This way we don't have to subtract 16 from the +// result. Unfortunately today we don't have a way to generate +// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization. +def : Pat<(i16 (ctlz Int16Regs:$a)), + (SUBi16ri (CVT_u16_u32 + (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>; +def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))), + (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>; + +// Population count +let hasSideEffects = false in { + def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a), + "popc.b32 \t$d, $a;", []>; + def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a), + "popc.b64 \t$d, $a;", []>; +} + +// 32-bit has a direct PTX instruction +def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>; + +// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit +// to match the LLVM semantics. Just as with ctlz.i64, we provide a second +// pattern that avoids the type conversion if we're truncating the result to +// i32 anyway. +def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>; +def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>; + +// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits. +// If we know that we're storing into an i32, we can avoid the final trunc. +def : Pat<(ctpop Int16Regs:$a), + (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>; +def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))), + (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>; + +// fpround f32 -> f16 +def : Pat<(f16 (fpround Float32Regs:$a)), + (CVT_f16_f32 Float32Regs:$a, CvtRN)>; + +// fpround f64 -> f16 +def : Pat<(f16 (fpround Float64Regs:$a)), + (CVT_f16_f64 Float64Regs:$a, CvtRN)>; + +// fpround f64 -> f32 +def : Pat<(f32 (fpround Float64Regs:$a)), + (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f32 (fpround Float64Regs:$a)), + (CVT_f32_f64 Float64Regs:$a, CvtRN)>; + +// fpextend f16 -> f32 +def : Pat<(f32 (fpextend Float16Regs:$a)), + (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f32 (fpextend Float16Regs:$a)), + (CVT_f32_f16 Float16Regs:$a, CvtNONE)>; + +// fpextend f16 -> f64 +def : Pat<(f64 (fpextend Float16Regs:$a)), + (CVT_f64_f16 Float16Regs:$a, CvtNONE)>; + +// fpextend f32 -> f64 +def : Pat<(f64 (fpextend Float32Regs:$a)), + (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(f64 (fpextend Float32Regs:$a)), + (CVT_f64_f32 Float32Regs:$a, CvtNONE)>; + +def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone, + [SDNPHasChain, SDNPOptInGlue]>; + +// fceil, ffloor, fround, ftrunc. + +def : Pat<(fceil Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRPI)>; +def : Pat<(fceil Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(fceil Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>; +def : Pat<(fceil Float64Regs:$a), + (CVT_f64_f64 Float64Regs:$a, CvtRPI)>; + +def : Pat<(ffloor Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRMI)>; +def : Pat<(ffloor Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(ffloor Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>; +def : Pat<(ffloor Float64Regs:$a), + (CVT_f64_f64 Float64Regs:$a, CvtRMI)>; + +def : Pat<(ftrunc Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRZI)>; +def : Pat<(ftrunc Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(ftrunc Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>; +def : Pat<(ftrunc Float64Regs:$a), + (CVT_f64_f64 Float64Regs:$a, CvtRZI)>; + +// nearbyint and rint are implemented as rounding to nearest even. This isn't +// strictly correct, because it causes us to ignore the rounding mode. But it +// matches what CUDA's "libm" does. + +def : Pat<(fnearbyint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; +def : Pat<(fnearbyint Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(fnearbyint Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; +def : Pat<(fnearbyint Float64Regs:$a), + (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; + +def : Pat<(frint Float16Regs:$a), + (CVT_f16_f16 Float16Regs:$a, CvtRNI)>; +def : Pat<(frint Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>; +def : Pat<(frint Float32Regs:$a), + (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>; +def : Pat<(frint Float64Regs:$a), + (CVT_f64_f64 Float64Regs:$a, CvtRNI)>; + + +//----------------------------------- +// Control-flow +//----------------------------------- + +let isTerminator=1 in { + let isReturn=1, isBarrier=1 in + def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>; + + let isBranch=1 in + def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), + "@$a bra \t$target;", + [(brcond Int1Regs:$a, bb:$target)]>; + let isBranch=1 in + def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target), + "@!$a bra \t$target;", []>; + + let isBranch=1, isBarrier=1 in + def GOTO : NVPTXInst<(outs), (ins brtarget:$target), + "bra.uni \t$target;", [(br bb:$target)]>; +} + +def : Pat<(brcond Int32Regs:$a, bb:$target), + (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>; + +// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a +// conditional branch if the target block is the next block so that the code +// can fall through to the target block. The invertion is done by 'xor +// condition, 1', which will be translated to (setne condition, -1). Since ptx +// supports '@!pred bra target', we should use it. +def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target), + (CBranchOther Int1Regs:$a, bb:$target)>; + +// Call +def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>, + SDTCisVT<1, i32>]>; +def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>; + +def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart, + [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>; +def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue, + SDNPSideEffect]>; + +def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>; +def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall, + [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>; +def calltarget : Operand<i32>; +let isCall=1 in { + def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>; +} + +def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>; +def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>; + +// Pseudo instructions. +class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern> + : NVPTXInst<outs, ins, asmstr, pattern>; + +def Callseq_Start : + NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), + "\\{ // callseq $amt1, $amt2\n" + "\t.reg .b32 temp_param_reg;", + [(callseq_start timm:$amt1, timm:$amt2)]>; +def Callseq_End : + NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2), + "\\} // callseq $amt1", + [(callseq_end timm:$amt1, timm:$amt2)]>; + +// trap instruction +def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>; + +// Call prototype wrapper +def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>; +def CallPrototype : + SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype, + [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>; +def ProtoIdent : Operand<i32> { + let PrintMethod = "printProtoIdent"; +} +def CALL_PROTOTYPE : + NVPTXInst<(outs), (ins ProtoIdent:$ident), + "$ident", [(CallPrototype (i32 texternalsym:$ident))]>; + + +include "NVPTXIntrinsics.td" + + +//----------------------------------- +// Notes +//----------------------------------- +// BSWAP is currently expanded. The following is a more efficient +// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register +// - for sm_20, use pmpt (use vector scalar mov to get the pack and +// unpack). sm_20 supports native 32-bit register, but not native 16-bit +// register. |