aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td')
-rw-r--r--contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td3143
1 files changed, 3143 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td b/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td
new file mode 100644
index 0000000000..381ed4dd68
--- /dev/null
+++ b/contrib/libs/llvm12/lib/Target/NVPTX/NVPTXInstrInfo.td
@@ -0,0 +1,3143 @@
+//===- NVPTXInstrInfo.td - NVPTX Instruction defs -------------*- tblgen-*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file describes the PTX instructions in TableGen format.
+//
+//===----------------------------------------------------------------------===//
+
+include "NVPTXInstrFormats.td"
+
+// A NOP instruction
+let hasSideEffects = false in {
+ def NOP : NVPTXInst<(outs), (ins), "", []>;
+}
+
+let OperandType = "OPERAND_IMMEDIATE" in {
+ def f16imm : Operand<f16>;
+}
+
+// List of vector specific properties
+def isVecLD : VecInstTypeEnum<1>;
+def isVecST : VecInstTypeEnum<2>;
+def isVecBuild : VecInstTypeEnum<3>;
+def isVecShuffle : VecInstTypeEnum<4>;
+def isVecExtract : VecInstTypeEnum<5>;
+def isVecInsert : VecInstTypeEnum<6>;
+def isVecDest : VecInstTypeEnum<7>;
+def isVecOther : VecInstTypeEnum<15>;
+
+//===----------------------------------------------------------------------===//
+// NVPTX Operand Definitions.
+//===----------------------------------------------------------------------===//
+
+def brtarget : Operand<OtherVT>;
+
+// CVT conversion modes
+// These must match the enum in NVPTX.h
+def CvtNONE : PatLeaf<(i32 0x0)>;
+def CvtRNI : PatLeaf<(i32 0x1)>;
+def CvtRZI : PatLeaf<(i32 0x2)>;
+def CvtRMI : PatLeaf<(i32 0x3)>;
+def CvtRPI : PatLeaf<(i32 0x4)>;
+def CvtRN : PatLeaf<(i32 0x5)>;
+def CvtRZ : PatLeaf<(i32 0x6)>;
+def CvtRM : PatLeaf<(i32 0x7)>;
+def CvtRP : PatLeaf<(i32 0x8)>;
+
+def CvtNONE_FTZ : PatLeaf<(i32 0x10)>;
+def CvtRNI_FTZ : PatLeaf<(i32 0x11)>;
+def CvtRZI_FTZ : PatLeaf<(i32 0x12)>;
+def CvtRMI_FTZ : PatLeaf<(i32 0x13)>;
+def CvtRPI_FTZ : PatLeaf<(i32 0x14)>;
+def CvtRN_FTZ : PatLeaf<(i32 0x15)>;
+def CvtRZ_FTZ : PatLeaf<(i32 0x16)>;
+def CvtRM_FTZ : PatLeaf<(i32 0x17)>;
+def CvtRP_FTZ : PatLeaf<(i32 0x18)>;
+
+def CvtSAT : PatLeaf<(i32 0x20)>;
+def CvtSAT_FTZ : PatLeaf<(i32 0x30)>;
+
+def CvtMode : Operand<i32> {
+ let PrintMethod = "printCvtMode";
+}
+
+// Compare modes
+// These must match the enum in NVPTX.h
+def CmpEQ : PatLeaf<(i32 0)>;
+def CmpNE : PatLeaf<(i32 1)>;
+def CmpLT : PatLeaf<(i32 2)>;
+def CmpLE : PatLeaf<(i32 3)>;
+def CmpGT : PatLeaf<(i32 4)>;
+def CmpGE : PatLeaf<(i32 5)>;
+def CmpEQU : PatLeaf<(i32 10)>;
+def CmpNEU : PatLeaf<(i32 11)>;
+def CmpLTU : PatLeaf<(i32 12)>;
+def CmpLEU : PatLeaf<(i32 13)>;
+def CmpGTU : PatLeaf<(i32 14)>;
+def CmpGEU : PatLeaf<(i32 15)>;
+def CmpNUM : PatLeaf<(i32 16)>;
+def CmpNAN : PatLeaf<(i32 17)>;
+
+def CmpEQ_FTZ : PatLeaf<(i32 0x100)>;
+def CmpNE_FTZ : PatLeaf<(i32 0x101)>;
+def CmpLT_FTZ : PatLeaf<(i32 0x102)>;
+def CmpLE_FTZ : PatLeaf<(i32 0x103)>;
+def CmpGT_FTZ : PatLeaf<(i32 0x104)>;
+def CmpGE_FTZ : PatLeaf<(i32 0x105)>;
+def CmpEQU_FTZ : PatLeaf<(i32 0x10A)>;
+def CmpNEU_FTZ : PatLeaf<(i32 0x10B)>;
+def CmpLTU_FTZ : PatLeaf<(i32 0x10C)>;
+def CmpLEU_FTZ : PatLeaf<(i32 0x10D)>;
+def CmpGTU_FTZ : PatLeaf<(i32 0x10E)>;
+def CmpGEU_FTZ : PatLeaf<(i32 0x10F)>;
+def CmpNUM_FTZ : PatLeaf<(i32 0x110)>;
+def CmpNAN_FTZ : PatLeaf<(i32 0x111)>;
+
+def CmpMode : Operand<i32> {
+ let PrintMethod = "printCmpMode";
+}
+def VecElement : Operand<i32> {
+ let PrintMethod = "printVecElement";
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX Instruction Predicate Definitions
+//===----------------------------------------------------------------------===//
+
+
+def hasAtomAddF64 : Predicate<"Subtarget->hasAtomAddF64()">;
+def hasAtomScope : Predicate<"Subtarget->hasAtomScope()">;
+def hasAtomBitwise64 : Predicate<"Subtarget->hasAtomBitwise64()">;
+def hasAtomMinMax64 : Predicate<"Subtarget->hasAtomMinMax64()">;
+def hasVote : Predicate<"Subtarget->hasVote()">;
+def hasDouble : Predicate<"Subtarget->hasDouble()">;
+def hasLDG : Predicate<"Subtarget->hasLDG()">;
+def hasLDU : Predicate<"Subtarget->hasLDU()">;
+
+def doF32FTZ : Predicate<"useF32FTZ()">;
+def doNoF32FTZ : Predicate<"!useF32FTZ()">;
+
+def doMulWide : Predicate<"doMulWide">;
+
+def allowFMA : Predicate<"allowFMA()">;
+def noFMA : Predicate<"!allowFMA()">;
+def allowUnsafeFPMath : Predicate<"allowUnsafeFPMath()">;
+
+def do_DIVF32_APPROX : Predicate<"getDivF32Level()==0">;
+def do_DIVF32_FULL : Predicate<"getDivF32Level()==1">;
+
+def do_SQRTF32_APPROX : Predicate<"!usePrecSqrtF32()">;
+def do_SQRTF32_RN : Predicate<"usePrecSqrtF32()">;
+
+def hasHWROT32 : Predicate<"Subtarget->hasHWROT32()">;
+def noHWROT32 : Predicate<"!Subtarget->hasHWROT32()">;
+
+def True : Predicate<"true">;
+
+def hasPTX31 : Predicate<"Subtarget->getPTXVersion() >= 31">;
+def hasPTX60 : Predicate<"Subtarget->getPTXVersion() >= 60">;
+def hasPTX61 : Predicate<"Subtarget->getPTXVersion() >= 61">;
+def hasPTX63 : Predicate<"Subtarget->getPTXVersion() >= 63">;
+def hasPTX64 : Predicate<"Subtarget->getPTXVersion() >= 64">;
+
+def hasSM30 : Predicate<"Subtarget->getSmVersion() >= 30">;
+def hasSM70 : Predicate<"Subtarget->getSmVersion() >= 70">;
+def hasSM72 : Predicate<"Subtarget->getSmVersion() >= 72">;
+def hasSM75 : Predicate<"Subtarget->getSmVersion() >= 75">;
+
+// non-sync shfl instructions are not available on sm_70+ in PTX6.4+
+def hasSHFL : Predicate<"!(Subtarget->getSmVersion() >= 70"
+ "&& Subtarget->getPTXVersion() >= 64)">;
+
+def useShortPtr : Predicate<"useShortPointers()">;
+def useFP16Math: Predicate<"Subtarget->allowFP16Math()">;
+
+//===----------------------------------------------------------------------===//
+// Some Common Instruction Class Templates
+//===----------------------------------------------------------------------===//
+
+// Template for instructions which take three int64, int32, or int16 args.
+// The instructions are named "<OpcStr><Width>" (e.g. "add.s64").
+multiclass I3<string OpcStr, SDNode OpNode> {
+ def i64rr :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
+ def i64ri :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
+ def i32rr :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
+ def i32ri :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+ def i16rr :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
+ def i16ri :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (imm):$b))]>;
+}
+
+// Template for instructions which take 3 int32 args. The instructions are
+// named "<OpcStr>.s32" (e.g. "addc.cc.s32").
+multiclass ADD_SUB_INT_32<string OpcStr, SDNode OpNode> {
+ def i32rr :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
+ def i32ri :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, ".s32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+}
+
+// Template for instructions which take three fp64 or fp32 args. The
+// instructions are named "<OpcStr>.f<Width>" (e.g. "min.f64").
+//
+// Also defines ftz (flush subnormal inputs and results to sign-preserving
+// zero) variants for fp32 functions.
+//
+// This multiclass should be used for nodes that cannot be folded into FMAs.
+// For nodes that can be folded into FMAs (i.e. adds and muls), use
+// F3_fma_component.
+multiclass F3<string OpcStr, SDNode OpNode> {
+ def f64rr :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>;
+ def f64ri :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>;
+ def f32rr_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[doF32FTZ]>;
+ def f32ri_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[doF32FTZ]>;
+ def f32rr :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>;
+ def f32ri :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>;
+}
+
+// Template for instructions which take three FP args. The
+// instructions are named "<OpcStr>.f<Width>" (e.g. "add.f64").
+//
+// Also defines ftz (flush subnormal inputs and results to sign-preserving
+// zero) variants for fp32/fp16 functions.
+//
+// This multiclass should be used for nodes that can be folded to make fma ops.
+// In this case, we use the ".rn" variant when FMA is disabled, as this behaves
+// just like the non ".rn" op, but prevents ptxas from creating FMAs.
+multiclass F3_fma_component<string OpcStr, SDNode OpNode> {
+ def f64rr :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
+ Requires<[allowFMA]>;
+ def f64ri :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ !strconcat(OpcStr, ".f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA]>;
+ def f32rr_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[allowFMA, doF32FTZ]>;
+ def f32ri_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA, doF32FTZ]>;
+ def f32rr :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[allowFMA]>;
+ def f32ri :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[allowFMA]>;
+
+ def f16rr_ftz :
+ NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b),
+ !strconcat(OpcStr, ".ftz.f16 \t$dst, $a, $b;"),
+ [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
+ Requires<[useFP16Math, allowFMA, doF32FTZ]>;
+ def f16rr :
+ NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b),
+ !strconcat(OpcStr, ".f16 \t$dst, $a, $b;"),
+ [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
+ Requires<[useFP16Math, allowFMA]>;
+
+ def f16x2rr_ftz :
+ NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b),
+ !strconcat(OpcStr, ".ftz.f16x2 \t$dst, $a, $b;"),
+ [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
+ Requires<[useFP16Math, allowFMA, doF32FTZ]>;
+ def f16x2rr :
+ NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b),
+ !strconcat(OpcStr, ".f16x2 \t$dst, $a, $b;"),
+ [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
+ Requires<[useFP16Math, allowFMA]>;
+
+ // These have strange names so we don't perturb existing mir tests.
+ def _rnf64rr :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, Float64Regs:$b))]>,
+ Requires<[noFMA]>;
+ def _rnf64ri :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ !strconcat(OpcStr, ".rn.f64 \t$dst, $a, $b;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA]>;
+ def _rnf32rr_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[noFMA, doF32FTZ]>;
+ def _rnf32ri_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".rn.ftz.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA, doF32FTZ]>;
+ def _rnf32rr :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[noFMA]>;
+ def _rnf32ri :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ !strconcat(OpcStr, ".rn.f32 \t$dst, $a, $b;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a, fpimm:$b))]>,
+ Requires<[noFMA]>;
+ def _rnf16rr_ftz :
+ NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b),
+ !strconcat(OpcStr, ".rn.ftz.f16 \t$dst, $a, $b;"),
+ [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
+ Requires<[useFP16Math, noFMA, doF32FTZ]>;
+ def _rnf16rr :
+ NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b),
+ !strconcat(OpcStr, ".rn.f16 \t$dst, $a, $b;"),
+ [(set Float16Regs:$dst, (OpNode Float16Regs:$a, Float16Regs:$b))]>,
+ Requires<[useFP16Math, noFMA]>;
+ def _rnf16x2rr_ftz :
+ NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b),
+ !strconcat(OpcStr, ".rn.ftz.f16x2 \t$dst, $a, $b;"),
+ [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
+ Requires<[useFP16Math, noFMA, doF32FTZ]>;
+ def _rnf16x2rr :
+ NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b),
+ !strconcat(OpcStr, ".rn.f16x2 \t$dst, $a, $b;"),
+ [(set Float16x2Regs:$dst, (OpNode Float16x2Regs:$a, Float16x2Regs:$b))]>,
+ Requires<[useFP16Math, noFMA]>;
+}
+
+// Template for operations which take two f32 or f64 operands. Provides three
+// instructions: <OpcStr>.f64, <OpcStr>.f32, and <OpcStr>.ftz.f32 (flush
+// subnormal inputs and results to zero).
+multiclass F2<string OpcStr, SDNode OpNode> {
+ def f64 : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$a),
+ !strconcat(OpcStr, ".f64 \t$dst, $a;"),
+ [(set Float64Regs:$dst, (OpNode Float64Regs:$a))]>;
+ def f32_ftz : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
+ !strconcat(OpcStr, ".ftz.f32 \t$dst, $a;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>,
+ Requires<[doF32FTZ]>;
+ def f32 : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$a),
+ !strconcat(OpcStr, ".f32 \t$dst, $a;"),
+ [(set Float32Regs:$dst, (OpNode Float32Regs:$a))]>;
+}
+
+//===----------------------------------------------------------------------===//
+// NVPTX Instructions.
+//===----------------------------------------------------------------------===//
+
+//-----------------------------------
+// Type Conversion
+//-----------------------------------
+
+let hasSideEffects = false in {
+ // Generate a cvt to the given type from all possible types. Each instance
+ // takes a CvtMode immediate that defines the conversion mode to use. It can
+ // be CvtNONE to omit a conversion mode.
+ multiclass CVT_FROM_ALL<string FromName, RegisterClass RC> {
+ def _s8 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s8 \t$dst, $src;"), []>;
+ def _u8 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u8 \t$dst, $src;"), []>;
+ def _s16 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s16 \t$dst, $src;"), []>;
+ def _u16 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u16 \t$dst, $src;"), []>;
+ def _s32 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s32 \t$dst, $src;"), []>;
+ def _u32 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u32 \t$dst, $src;"), []>;
+ def _s64 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".s64 \t$dst, $src;"), []>;
+ def _u64 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Int64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".u64 \t$dst, $src;"), []>;
+ def _f16 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Float16Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f16 \t$dst, $src;"), []>;
+ def _f32 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Float32Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f32 \t$dst, $src;"), []>;
+ def _f64 :
+ NVPTXInst<(outs RC:$dst),
+ (ins Float64Regs:$src, CvtMode:$mode),
+ !strconcat("cvt${mode:base}${mode:ftz}${mode:sat}.",
+ FromName, ".f64 \t$dst, $src;"), []>;
+ }
+
+ // Generate cvts from all types to all types.
+ defm CVT_s8 : CVT_FROM_ALL<"s8", Int16Regs>;
+ defm CVT_u8 : CVT_FROM_ALL<"u8", Int16Regs>;
+ defm CVT_s16 : CVT_FROM_ALL<"s16", Int16Regs>;
+ defm CVT_u16 : CVT_FROM_ALL<"u16", Int16Regs>;
+ defm CVT_s32 : CVT_FROM_ALL<"s32", Int32Regs>;
+ defm CVT_u32 : CVT_FROM_ALL<"u32", Int32Regs>;
+ defm CVT_s64 : CVT_FROM_ALL<"s64", Int64Regs>;
+ defm CVT_u64 : CVT_FROM_ALL<"u64", Int64Regs>;
+ defm CVT_f16 : CVT_FROM_ALL<"f16", Float16Regs>;
+ defm CVT_f32 : CVT_FROM_ALL<"f32", Float32Regs>;
+ defm CVT_f64 : CVT_FROM_ALL<"f64", Float64Regs>;
+
+ // These cvts are different from those above: The source and dest registers
+ // are of the same type.
+ def CVT_INREG_s16_s8 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "cvt.s16.s8 \t$dst, $src;", []>;
+ def CVT_INREG_s32_s8 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "cvt.s32.s8 \t$dst, $src;", []>;
+ def CVT_INREG_s32_s16 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "cvt.s32.s16 \t$dst, $src;", []>;
+ def CVT_INREG_s64_s8 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s8 \t$dst, $src;", []>;
+ def CVT_INREG_s64_s16 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s16 \t$dst, $src;", []>;
+ def CVT_INREG_s64_s32 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "cvt.s64.s32 \t$dst, $src;", []>;
+}
+
+//-----------------------------------
+// Integer Arithmetic
+//-----------------------------------
+
+// Template for xor masquerading as int1 arithmetic.
+multiclass ADD_SUB_i1<SDNode OpNode> {
+ def _rr: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
+ "xor.pred \t$dst, $a, $b;",
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
+ def _ri: NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
+ "xor.pred \t$dst, $a, $b;",
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, (imm):$b))]>;
+}
+
+// int1 addition and subtraction are both just xor.
+defm ADD_i1 : ADD_SUB_i1<add>;
+defm SUB_i1 : ADD_SUB_i1<sub>;
+
+// int16, int32, and int64 signed addition. Since nvptx is 2's complement, we
+// also use these for unsigned arithmetic.
+defm ADD : I3<"add.s", add>;
+defm SUB : I3<"sub.s", sub>;
+
+// int32 addition and subtraction with carry-out.
+// FIXME: PTX 4.3 adds a 64-bit add.cc (and maybe also 64-bit addc.cc?).
+defm ADDCC : ADD_SUB_INT_32<"add.cc", addc>;
+defm SUBCC : ADD_SUB_INT_32<"sub.cc", subc>;
+
+// int32 addition and subtraction with carry-in and carry-out.
+defm ADDCCC : ADD_SUB_INT_32<"addc.cc", adde>;
+defm SUBCCC : ADD_SUB_INT_32<"subc.cc", sube>;
+
+defm MULT : I3<"mul.lo.s", mul>;
+
+defm MULTHS : I3<"mul.hi.s", mulhs>;
+defm MULTHU : I3<"mul.hi.u", mulhu>;
+
+defm SDIV : I3<"div.s", sdiv>;
+defm UDIV : I3<"div.u", udiv>;
+
+// The ri versions of rem.s and rem.u won't be selected; DAGCombiner::visitSREM
+// will lower it.
+defm SREM : I3<"rem.s", srem>;
+defm UREM : I3<"rem.u", urem>;
+
+// Integer absolute value. NumBits should be one minus the bit width of RC.
+// This idiom implements the algorithm at
+// http://graphics.stanford.edu/~seander/bithacks.html#IntegerAbs.
+multiclass ABS<RegisterClass RC, string SizeName> {
+ def : NVPTXInst<(outs RC:$dst), (ins RC:$a),
+ !strconcat("abs", SizeName, " \t$dst, $a;"),
+ [(set RC:$dst, (abs RC:$a))]>;
+}
+defm ABS_16 : ABS<Int16Regs, ".s16">;
+defm ABS_32 : ABS<Int32Regs, ".s32">;
+defm ABS_64 : ABS<Int64Regs, ".s64">;
+
+// Integer min/max.
+defm SMAX : I3<"max.s", smax>;
+defm UMAX : I3<"max.u", umax>;
+defm SMIN : I3<"min.s", smin>;
+defm UMIN : I3<"min.u", umin>;
+
+//
+// Wide multiplication
+//
+def MULWIDES64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+def MULWIDES64Imm :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+def MULWIDES64Imm64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
+ "mul.wide.s32 \t$dst, $a, $b;", []>;
+
+def MULWIDEU64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+def MULWIDEU64Imm :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+def MULWIDEU64Imm64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int32Regs:$a, i64imm:$b),
+ "mul.wide.u32 \t$dst, $a, $b;", []>;
+
+def MULWIDES32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+def MULWIDES32Imm :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+def MULWIDES32Imm32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ "mul.wide.s16 \t$dst, $a, $b;", []>;
+
+def MULWIDEU32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+def MULWIDEU32Imm :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+def MULWIDEU32Imm32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ "mul.wide.u16 \t$dst, $a, $b;", []>;
+
+def SDTMulWide : SDTypeProfile<1, 2, [SDTCisSameAs<1, 2>]>;
+def mul_wide_signed : SDNode<"NVPTXISD::MUL_WIDE_SIGNED", SDTMulWide>;
+def mul_wide_unsigned : SDNode<"NVPTXISD::MUL_WIDE_UNSIGNED", SDTMulWide>;
+
+// Matchers for signed, unsigned mul.wide ISD nodes.
+def : Pat<(i32 (mul_wide_signed Int16Regs:$a, Int16Regs:$b)),
+ (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_signed Int16Regs:$a, imm:$b)),
+ (MULWIDES32Imm Int16Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, Int16Regs:$b)),
+ (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i32 (mul_wide_unsigned Int16Regs:$a, imm:$b)),
+ (MULWIDEU32Imm Int16Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+
+def : Pat<(i64 (mul_wide_signed Int32Regs:$a, Int32Regs:$b)),
+ (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_signed Int32Regs:$a, imm:$b)),
+ (MULWIDES64Imm Int32Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, Int32Regs:$b)),
+ (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(i64 (mul_wide_unsigned Int32Regs:$a, imm:$b)),
+ (MULWIDEU64Imm Int32Regs:$a, imm:$b)>,
+ Requires<[doMulWide]>;
+
+// Predicates used for converting some patterns to mul.wide.
+def SInt32Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ return v.isSignedIntN(32);
+}]>;
+
+def UInt32Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ return v.isIntN(32);
+}]>;
+
+def SInt16Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ return v.isSignedIntN(16);
+}]>;
+
+def UInt16Const : PatLeaf<(imm), [{
+ const APInt &v = N->getAPIntValue();
+ return v.isIntN(16);
+}]>;
+
+def Int5Const : PatLeaf<(imm), [{
+ // Check if 0 <= v < 32; only then will the result of (x << v) be an int32.
+ const APInt &v = N->getAPIntValue();
+ return v.sge(0) && v.slt(32);
+}]>;
+
+def Int4Const : PatLeaf<(imm), [{
+ // Check if 0 <= v < 16; only then will the result of (x << v) be an int16.
+ const APInt &v = N->getAPIntValue();
+ return v.sge(0) && v.slt(16);
+}]>;
+
+def SHL2MUL32 : SDNodeXForm<imm, [{
+ const APInt &v = N->getAPIntValue();
+ APInt temp(32, 1);
+ return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i32);
+}]>;
+
+def SHL2MUL16 : SDNodeXForm<imm, [{
+ const APInt &v = N->getAPIntValue();
+ APInt temp(16, 1);
+ return CurDAG->getTargetConstant(temp.shl(v), SDLoc(N), MVT::i16);
+}]>;
+
+// Convert "sign/zero-extend, then shift left by an immediate" to mul.wide.
+def : Pat<(shl (sext Int32Regs:$a), (i32 Int5Const:$b)),
+ (MULWIDES64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
+ Requires<[doMulWide]>;
+def : Pat<(shl (zext Int32Regs:$a), (i32 Int5Const:$b)),
+ (MULWIDEU64Imm Int32Regs:$a, (SHL2MUL32 node:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(shl (sext Int16Regs:$a), (i16 Int4Const:$b)),
+ (MULWIDES32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
+ Requires<[doMulWide]>;
+def : Pat<(shl (zext Int16Regs:$a), (i16 Int4Const:$b)),
+ (MULWIDEU32Imm Int16Regs:$a, (SHL2MUL16 node:$b))>,
+ Requires<[doMulWide]>;
+
+// Convert "sign/zero-extend then multiply" to mul.wide.
+def : Pat<(mul (sext Int32Regs:$a), (sext Int32Regs:$b)),
+ (MULWIDES64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (sext Int32Regs:$a), (i64 SInt32Const:$b)),
+ (MULWIDES64Imm64 Int32Regs:$a, (i64 SInt32Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (zext Int32Regs:$a), (zext Int32Regs:$b)),
+ (MULWIDEU64 Int32Regs:$a, Int32Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (zext Int32Regs:$a), (i64 UInt32Const:$b)),
+ (MULWIDEU64Imm64 Int32Regs:$a, (i64 UInt32Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (sext Int16Regs:$a), (sext Int16Regs:$b)),
+ (MULWIDES32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (sext Int16Regs:$a), (i32 SInt16Const:$b)),
+ (MULWIDES32Imm32 Int16Regs:$a, (i32 SInt16Const:$b))>,
+ Requires<[doMulWide]>;
+
+def : Pat<(mul (zext Int16Regs:$a), (zext Int16Regs:$b)),
+ (MULWIDEU32 Int16Regs:$a, Int16Regs:$b)>,
+ Requires<[doMulWide]>;
+def : Pat<(mul (zext Int16Regs:$a), (i32 UInt16Const:$b)),
+ (MULWIDEU32Imm32 Int16Regs:$a, (i32 UInt16Const:$b))>,
+ Requires<[doMulWide]>;
+
+//
+// Integer multiply-add
+//
+def SDTIMAD :
+ SDTypeProfile<1, 3, [SDTCisSameAs<0, 1>, SDTCisInt<0>, SDTCisInt<2>,
+ SDTCisSameAs<0, 2>, SDTCisSameAs<0, 3>]>;
+def imad : SDNode<"NVPTXISD::IMAD", SDTIMAD>;
+
+def MAD16rrr :
+ NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, Int16Regs:$b, Int16Regs:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, Int16Regs:$c))]>;
+def MAD16rri :
+ NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, Int16Regs:$b, i16imm:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst, (imad Int16Regs:$a, Int16Regs:$b, imm:$c))]>;
+def MAD16rir :
+ NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, i16imm:$b, Int16Regs:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, Int16Regs:$c))]>;
+def MAD16rii :
+ NVPTXInst<(outs Int16Regs:$dst),
+ (ins Int16Regs:$a, i16imm:$b, i16imm:$c),
+ "mad.lo.s16 \t$dst, $a, $b, $c;",
+ [(set Int16Regs:$dst, (imad Int16Regs:$a, imm:$b, imm:$c))]>;
+
+def MAD32rrr :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, Int32Regs:$b, Int32Regs:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, Int32Regs:$c))]>;
+def MAD32rri :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, Int32Regs:$b, i32imm:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst, (imad Int32Regs:$a, Int32Regs:$b, imm:$c))]>;
+def MAD32rir :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, i32imm:$b, Int32Regs:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, Int32Regs:$c))]>;
+def MAD32rii :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$a, i32imm:$b, i32imm:$c),
+ "mad.lo.s32 \t$dst, $a, $b, $c;",
+ [(set Int32Regs:$dst, (imad Int32Regs:$a, imm:$b, imm:$c))]>;
+
+def MAD64rrr :
+ NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, Int64Regs:$b, Int64Regs:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, Int64Regs:$c))]>;
+def MAD64rri :
+ NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, Int64Regs:$b, i64imm:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst, (imad Int64Regs:$a, Int64Regs:$b, imm:$c))]>;
+def MAD64rir :
+ NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, i64imm:$b, Int64Regs:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, Int64Regs:$c))]>;
+def MAD64rii :
+ NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$a, i64imm:$b, i64imm:$c),
+ "mad.lo.s64 \t$dst, $a, $b, $c;",
+ [(set Int64Regs:$dst, (imad Int64Regs:$a, imm:$b, imm:$c))]>;
+
+def INEG16 :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "neg.s16 \t$dst, $src;",
+ [(set Int16Regs:$dst, (ineg Int16Regs:$src))]>;
+def INEG32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "neg.s32 \t$dst, $src;",
+ [(set Int32Regs:$dst, (ineg Int32Regs:$src))]>;
+def INEG64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "neg.s64 \t$dst, $src;",
+ [(set Int64Regs:$dst, (ineg Int64Regs:$src))]>;
+
+//-----------------------------------
+// Floating Point Arithmetic
+//-----------------------------------
+
+// Constant 1.0f
+def FloatConst1 : PatLeaf<(fpimm), [{
+ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEsingle() &&
+ N->getValueAPF().convertToFloat() == 1.0f;
+}]>;
+// Constant 1.0 (double)
+def DoubleConst1 : PatLeaf<(fpimm), [{
+ return &N->getValueAPF().getSemantics() == &llvm::APFloat::IEEEdouble() &&
+ N->getValueAPF().convertToDouble() == 1.0;
+}]>;
+
+// Loads FP16 constant into a register.
+//
+// ptxas does not have hex representation for fp16, so we can't use
+// fp16 immediate values in .f16 instructions. Instead we have to load
+// the constant into a register using mov.b16.
+def LOAD_CONST_F16 :
+ NVPTXInst<(outs Float16Regs:$dst), (ins f16imm:$a),
+ "mov.b16 \t$dst, $a;", []>;
+
+defm FADD : F3_fma_component<"add", fadd>;
+defm FSUB : F3_fma_component<"sub", fsub>;
+defm FMUL : F3_fma_component<"mul", fmul>;
+
+defm FMIN : F3<"min", fminnum>;
+defm FMAX : F3<"max", fmaxnum>;
+
+defm FABS : F2<"abs", fabs>;
+defm FNEG : F2<"neg", fneg>;
+defm FSQRT : F2<"sqrt.rn", fsqrt>;
+
+//
+// F64 division
+//
+def FDIV641r :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins f64imm:$a, Float64Regs:$b),
+ "rcp.rn.f64 \t$dst, $b;",
+ [(set Float64Regs:$dst, (fdiv DoubleConst1:$a, Float64Regs:$b))]>;
+def FDIV64rr :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, Float64Regs:$b),
+ "div.rn.f64 \t$dst, $a, $b;",
+ [(set Float64Regs:$dst, (fdiv Float64Regs:$a, Float64Regs:$b))]>;
+def FDIV64ri :
+ NVPTXInst<(outs Float64Regs:$dst),
+ (ins Float64Regs:$a, f64imm:$b),
+ "div.rn.f64 \t$dst, $a, $b;",
+ [(set Float64Regs:$dst, (fdiv Float64Regs:$a, fpimm:$b))]>;
+
+//
+// F32 Approximate reciprocal
+//
+def FDIV321r_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV321r :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+//
+// F32 Approximate division
+//
+def FDIV32approxrr_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.approx.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV32approxri_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.approx.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_APPROX, doF32FTZ]>;
+def FDIV32approxrr :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.approx.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+def FDIV32approxri :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.approx.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_APPROX]>;
+//
+// F32 Semi-accurate reciprocal
+//
+// rcp.approx gives the same result as div.full(1.0f, a) and is faster.
+//
+def FDIV321r_approx_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV321r_approx :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.approx.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+//
+// F32 Semi-accurate division
+//
+def FDIV32rr_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.full.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV32ri_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.full.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_FULL, doF32FTZ]>;
+def FDIV32rr :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.full.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+def FDIV32ri :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.full.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[do_DIVF32_FULL]>;
+//
+// F32 Accurate reciprocal
+//
+def FDIV321r_prec_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.rn.ftz.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>,
+ Requires<[doF32FTZ]>;
+def FDIV321r_prec :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins f32imm:$a, Float32Regs:$b),
+ "rcp.rn.f32 \t$dst, $b;",
+ [(set Float32Regs:$dst, (fdiv FloatConst1:$a, Float32Regs:$b))]>;
+//
+// F32 Accurate division
+//
+def FDIV32rr_prec_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.rn.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>,
+ Requires<[doF32FTZ]>;
+def FDIV32ri_prec_ftz :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.rn.ftz.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>,
+ Requires<[doF32FTZ]>;
+def FDIV32rr_prec :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, Float32Regs:$b),
+ "div.rn.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, Float32Regs:$b))]>;
+def FDIV32ri_prec :
+ NVPTXInst<(outs Float32Regs:$dst),
+ (ins Float32Regs:$a, f32imm:$b),
+ "div.rn.f32 \t$dst, $a, $b;",
+ [(set Float32Regs:$dst, (fdiv Float32Regs:$a, fpimm:$b))]>;
+
+//
+// FMA
+//
+
+multiclass FMA<string OpcStr, RegisterClass RC, Operand ImmCls, Predicate Pred> {
+ def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
+ Requires<[Pred]>;
+ def rri : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, RC:$b, ImmCls:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set RC:$dst, (fma RC:$a, RC:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+ def rir : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, RC:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set RC:$dst, (fma RC:$a, fpimm:$b, RC:$c))]>,
+ Requires<[Pred]>;
+ def rii : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, ImmCls:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set RC:$dst, (fma RC:$a, fpimm:$b, fpimm:$c))]>,
+ Requires<[Pred]>;
+}
+
+multiclass FMA_F16<string OpcStr, RegisterClass RC, Predicate Pred> {
+ def rrr : NVPTXInst<(outs RC:$dst), (ins RC:$a, RC:$b, RC:$c),
+ !strconcat(OpcStr, " \t$dst, $a, $b, $c;"),
+ [(set RC:$dst, (fma RC:$a, RC:$b, RC:$c))]>,
+ Requires<[useFP16Math, Pred]>;
+}
+
+defm FMA16_ftz : FMA_F16<"fma.rn.ftz.f16", Float16Regs, doF32FTZ>;
+defm FMA16 : FMA_F16<"fma.rn.f16", Float16Regs, True>;
+defm FMA16x2_ftz : FMA_F16<"fma.rn.ftz.f16x2", Float16x2Regs, doF32FTZ>;
+defm FMA16x2 : FMA_F16<"fma.rn.f16x2", Float16x2Regs, True>;
+defm FMA32_ftz : FMA<"fma.rn.ftz.f32", Float32Regs, f32imm, doF32FTZ>;
+defm FMA32 : FMA<"fma.rn.f32", Float32Regs, f32imm, True>;
+defm FMA64 : FMA<"fma.rn.f64", Float64Regs, f64imm, True>;
+
+// sin/cos
+def SINF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "sin.approx.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, (fsin Float32Regs:$src))]>,
+ Requires<[allowUnsafeFPMath]>;
+def COSF: NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "cos.approx.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, (fcos Float32Regs:$src))]>,
+ Requires<[allowUnsafeFPMath]>;
+
+// Lower (frem x, y) into (sub x, (mul (floor (div x, y)) y)),
+// i.e. "poor man's fmod()"
+
+// frem - f32 FTZ
+def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
+ (FSUBf32rr_ftz Float32Regs:$x, (FMULf32rr_ftz (CVT_f32_f32
+ (FDIV32rr_prec_ftz Float32Regs:$x, Float32Regs:$y), CvtRMI_FTZ),
+ Float32Regs:$y))>,
+ Requires<[doF32FTZ]>;
+def : Pat<(frem Float32Regs:$x, fpimm:$y),
+ (FSUBf32rr_ftz Float32Regs:$x, (FMULf32ri_ftz (CVT_f32_f32
+ (FDIV32ri_prec_ftz Float32Regs:$x, fpimm:$y), CvtRMI_FTZ),
+ fpimm:$y))>,
+ Requires<[doF32FTZ]>;
+
+// frem - f32
+def : Pat<(frem Float32Regs:$x, Float32Regs:$y),
+ (FSUBf32rr Float32Regs:$x, (FMULf32rr (CVT_f32_f32
+ (FDIV32rr_prec Float32Regs:$x, Float32Regs:$y), CvtRMI),
+ Float32Regs:$y))>;
+def : Pat<(frem Float32Regs:$x, fpimm:$y),
+ (FSUBf32rr Float32Regs:$x, (FMULf32ri (CVT_f32_f32
+ (FDIV32ri_prec Float32Regs:$x, fpimm:$y), CvtRMI),
+ fpimm:$y))>;
+
+// frem - f64
+def : Pat<(frem Float64Regs:$x, Float64Regs:$y),
+ (FSUBf64rr Float64Regs:$x, (FMULf64rr (CVT_f64_f64
+ (FDIV64rr Float64Regs:$x, Float64Regs:$y), CvtRMI),
+ Float64Regs:$y))>;
+def : Pat<(frem Float64Regs:$x, fpimm:$y),
+ (FSUBf64rr Float64Regs:$x, (FMULf64ri (CVT_f64_f64
+ (FDIV64ri Float64Regs:$x, fpimm:$y), CvtRMI),
+ fpimm:$y))>;
+
+//-----------------------------------
+// Bitwise operations
+//-----------------------------------
+
+// Template for three-arg bitwise operations. Takes three args, Creates .b16,
+// .b32, .b64, and .pred (predicate registers -- i.e., i1) versions of OpcStr.
+multiclass BITWISE<string OpcStr, SDNode OpNode> {
+ def b1rr :
+ NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, Int1Regs:$b),
+ !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, Int1Regs:$b))]>;
+ def b1ri :
+ NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$a, i1imm:$b),
+ !strconcat(OpcStr, ".pred \t$dst, $a, $b;"),
+ [(set Int1Regs:$dst, (OpNode Int1Regs:$a, imm:$b))]>;
+ def b16rr :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int16Regs:$b),
+ !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int16Regs:$b))]>;
+ def b16ri :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i16imm:$b),
+ !strconcat(OpcStr, ".b16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, imm:$b))]>;
+ def b32rr :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
+ def b32ri :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, ".b32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, imm:$b))]>;
+ def b64rr :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int64Regs:$b),
+ !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int64Regs:$b))]>;
+ def b64ri :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i64imm:$b),
+ !strconcat(OpcStr, ".b64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, imm:$b))]>;
+}
+
+defm OR : BITWISE<"or", or>;
+defm AND : BITWISE<"and", and>;
+defm XOR : BITWISE<"xor", xor>;
+
+def NOT1 : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$src),
+ "not.pred \t$dst, $src;",
+ [(set Int1Regs:$dst, (not Int1Regs:$src))]>;
+def NOT16 : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "not.b16 \t$dst, $src;",
+ [(set Int16Regs:$dst, (not Int16Regs:$src))]>;
+def NOT32 : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src),
+ "not.b32 \t$dst, $src;",
+ [(set Int32Regs:$dst, (not Int32Regs:$src))]>;
+def NOT64 : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src),
+ "not.b64 \t$dst, $src;",
+ [(set Int64Regs:$dst, (not Int64Regs:$src))]>;
+
+// Template for left/right shifts. Takes three operands,
+// [dest (reg), src (reg), shift (reg or imm)].
+// dest and src may be int64, int32, or int16, but shift is always int32.
+//
+// This template also defines a 32-bit shift (imm, imm) instruction.
+multiclass SHIFT<string OpcStr, SDNode OpNode> {
+ def i64rr :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, Int32Regs:$b))]>;
+ def i64ri :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "64 \t$dst, $a, $b;"),
+ [(set Int64Regs:$dst, (OpNode Int64Regs:$a, (i32 imm:$b)))]>;
+ def i32rr :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, Int32Regs:$b))]>;
+ def i32ri :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode Int32Regs:$a, (i32 imm:$b)))]>;
+ def i32ii :
+ NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$a, i32imm:$b),
+ !strconcat(OpcStr, "32 \t$dst, $a, $b;"),
+ [(set Int32Regs:$dst, (OpNode (i32 imm:$a), (i32 imm:$b)))]>;
+ def i16rr :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, Int32Regs:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, Int32Regs:$b))]>;
+ def i16ri :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$a, i32imm:$b),
+ !strconcat(OpcStr, "16 \t$dst, $a, $b;"),
+ [(set Int16Regs:$dst, (OpNode Int16Regs:$a, (i32 imm:$b)))]>;
+}
+
+defm SHL : SHIFT<"shl.b", shl>;
+defm SRA : SHIFT<"shr.s", sra>;
+defm SRL : SHIFT<"shr.u", srl>;
+
+// Bit-reverse
+def BREV32 :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$a),
+ "brev.b32 \t$dst, $a;",
+ [(set Int32Regs:$dst, (bitreverse Int32Regs:$a))]>;
+def BREV64 :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$a),
+ "brev.b64 \t$dst, $a;",
+ [(set Int64Regs:$dst, (bitreverse Int64Regs:$a))]>;
+
+//
+// Rotate: Use ptx shf instruction if available.
+//
+
+// 32 bit r2 = rotl r1, n
+// =>
+// r2 = shf.l r1, r1, n
+def ROTL32imm_hw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, (i32 imm:$amt)))]>,
+ Requires<[hasHWROT32]>;
+
+def ROTL32reg_hw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
+ "shf.l.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[hasHWROT32]>;
+
+// 32 bit r2 = rotr r1, n
+// =>
+// r2 = shf.r r1, r1, n
+def ROTR32imm_hw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, i32imm:$amt),
+ "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, (i32 imm:$amt)))]>,
+ Requires<[hasHWROT32]>;
+
+def ROTR32reg_hw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
+ "shf.r.wrap.b32 \t$dst, $src, $src, $amt;",
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[hasHWROT32]>;
+
+// 32-bit software rotate by immediate. $amt2 should equal 32 - $amt1.
+def ROT32imm_sw :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$src, i32imm:$amt1, i32imm:$amt2),
+ "{{\n\t"
+ ".reg .b32 %lhs;\n\t"
+ ".reg .b32 %rhs;\n\t"
+ "shl.b32 \t%lhs, $src, $amt1;\n\t"
+ "shr.b32 \t%rhs, $src, $amt2;\n\t"
+ "add.u32 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ []>;
+
+def SUB_FRM_32 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(32 - N->getZExtValue(), SDLoc(N), MVT::i32);
+}]>;
+
+def : Pat<(rotl Int32Regs:$src, (i32 imm:$amt)),
+ (ROT32imm_sw Int32Regs:$src, imm:$amt, (SUB_FRM_32 node:$amt))>,
+ Requires<[noHWROT32]>;
+def : Pat<(rotr Int32Regs:$src, (i32 imm:$amt)),
+ (ROT32imm_sw Int32Regs:$src, (SUB_FRM_32 node:$amt), imm:$amt)>,
+ Requires<[noHWROT32]>;
+
+// 32-bit software rotate left by register.
+def ROTL32reg_sw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
+ "{{\n\t"
+ ".reg .b32 %lhs;\n\t"
+ ".reg .b32 %rhs;\n\t"
+ ".reg .b32 %amt2;\n\t"
+ "shl.b32 \t%lhs, $src, $amt;\n\t"
+ "sub.s32 \t%amt2, 32, $amt;\n\t"
+ "shr.b32 \t%rhs, $src, %amt2;\n\t"
+ "add.u32 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ [(set Int32Regs:$dst, (rotl Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[noHWROT32]>;
+
+// 32-bit software rotate right by register.
+def ROTR32reg_sw :
+ NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$src, Int32Regs:$amt),
+ "{{\n\t"
+ ".reg .b32 %lhs;\n\t"
+ ".reg .b32 %rhs;\n\t"
+ ".reg .b32 %amt2;\n\t"
+ "shr.b32 \t%lhs, $src, $amt;\n\t"
+ "sub.s32 \t%amt2, 32, $amt;\n\t"
+ "shl.b32 \t%rhs, $src, %amt2;\n\t"
+ "add.u32 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ [(set Int32Regs:$dst, (rotr Int32Regs:$src, Int32Regs:$amt))]>,
+ Requires<[noHWROT32]>;
+
+// 64-bit software rotate by immediate. $amt2 should equal 64 - $amt1.
+def ROT64imm_sw :
+ NVPTXInst<(outs Int64Regs:$dst),
+ (ins Int64Regs:$src, i32imm:$amt1, i32imm:$amt2),
+ "{{\n\t"
+ ".reg .b64 %lhs;\n\t"
+ ".reg .b64 %rhs;\n\t"
+ "shl.b64 \t%lhs, $src, $amt1;\n\t"
+ "shr.b64 \t%rhs, $src, $amt2;\n\t"
+ "add.u64 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ []>;
+
+def SUB_FRM_64 : SDNodeXForm<imm, [{
+ return CurDAG->getTargetConstant(64-N->getZExtValue(), SDLoc(N), MVT::i32);
+}]>;
+
+def : Pat<(rotl Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, imm:$amt, (SUB_FRM_64 node:$amt))>;
+def : Pat<(rotr Int64Regs:$src, (i32 imm:$amt)),
+ (ROT64imm_sw Int64Regs:$src, (SUB_FRM_64 node:$amt), imm:$amt)>;
+
+// 64-bit software rotate left by register.
+def ROTL64reg_sw :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
+ "{{\n\t"
+ ".reg .b64 %lhs;\n\t"
+ ".reg .b64 %rhs;\n\t"
+ ".reg .u32 %amt2;\n\t"
+ "shl.b64 \t%lhs, $src, $amt;\n\t"
+ "sub.u32 \t%amt2, 64, $amt;\n\t"
+ "shr.b64 \t%rhs, $src, %amt2;\n\t"
+ "add.u64 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ [(set Int64Regs:$dst, (rotl Int64Regs:$src, Int32Regs:$amt))]>;
+
+def ROTR64reg_sw :
+ NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$src, Int32Regs:$amt),
+ "{{\n\t"
+ ".reg .b64 %lhs;\n\t"
+ ".reg .b64 %rhs;\n\t"
+ ".reg .u32 %amt2;\n\t"
+ "shr.b64 \t%lhs, $src, $amt;\n\t"
+ "sub.u32 \t%amt2, 64, $amt;\n\t"
+ "shl.b64 \t%rhs, $src, %amt2;\n\t"
+ "add.u64 \t$dst, %lhs, %rhs;\n\t"
+ "}}",
+ [(set Int64Regs:$dst, (rotr Int64Regs:$src, Int32Regs:$amt))]>;
+
+//
+// Funnnel shift in clamp mode
+//
+
+// Create SDNodes so they can be used in the DAG code, e.g.
+// NVPTXISelLowering (LowerShiftLeftParts and LowerShiftRightParts)
+def FUN_SHFL_CLAMP : SDNode<"NVPTXISD::FUN_SHFL_CLAMP", SDTIntShiftDOp, []>;
+def FUN_SHFR_CLAMP : SDNode<"NVPTXISD::FUN_SHFR_CLAMP", SDTIntShiftDOp, []>;
+
+def FUNSHFLCLAMP :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.l.clamp.b32 \t$dst, $lo, $hi, $amt;",
+ [(set Int32Regs:$dst,
+ (FUN_SHFL_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
+
+def FUNSHFRCLAMP :
+ NVPTXInst<(outs Int32Regs:$dst),
+ (ins Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt),
+ "shf.r.clamp.b32 \t$dst, $lo, $hi, $amt;",
+ [(set Int32Regs:$dst,
+ (FUN_SHFR_CLAMP Int32Regs:$lo, Int32Regs:$hi, Int32Regs:$amt))]>;
+
+//
+// BFE - bit-field extract
+//
+
+// Template for BFE instructions. Takes four args,
+// [dest (reg), src (reg), start (reg or imm), end (reg or imm)].
+// Start may be an imm only if end is also an imm. FIXME: Is this a
+// restriction in PTX?
+//
+// dest and src may be int32 or int64, but start and end are always int32.
+multiclass BFE<string TyStr, RegisterClass RC> {
+ def rrr
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, Int32Regs:$b, Int32Regs:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+ def rri
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, Int32Regs:$b, i32imm:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+ def rii
+ : NVPTXInst<(outs RC:$d),
+ (ins RC:$a, i32imm:$b, i32imm:$c),
+ !strconcat("bfe.", TyStr, " \t$d, $a, $b, $c;"), []>;
+}
+
+let hasSideEffects = false in {
+ defm BFE_S32 : BFE<"s32", Int32Regs>;
+ defm BFE_U32 : BFE<"u32", Int32Regs>;
+ defm BFE_S64 : BFE<"s64", Int64Regs>;
+ defm BFE_U64 : BFE<"u64", Int64Regs>;
+}
+
+//-----------------------------------
+// Comparison instructions (setp, set)
+//-----------------------------------
+
+// FIXME: This doesn't cover versions of set and setp that combine with a
+// boolean predicate, e.g. setp.eq.and.b16.
+
+let hasSideEffects = false in {
+ multiclass SETP<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr :
+ NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
+ " \t$dst, $a, $b;"), []>;
+ def ri :
+ NVPTXInst<(outs Int1Regs:$dst), (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
+ " \t$dst, $a, $b;"), []>;
+ def ir :
+ NVPTXInst<(outs Int1Regs:$dst), (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("setp${cmp:base}${cmp:ftz}.", TypeStr,
+ " \t$dst, $a, $b;"), []>;
+ }
+}
+
+defm SETP_b16 : SETP<"b16", Int16Regs, i16imm>;
+defm SETP_s16 : SETP<"s16", Int16Regs, i16imm>;
+defm SETP_u16 : SETP<"u16", Int16Regs, i16imm>;
+defm SETP_b32 : SETP<"b32", Int32Regs, i32imm>;
+defm SETP_s32 : SETP<"s32", Int32Regs, i32imm>;
+defm SETP_u32 : SETP<"u32", Int32Regs, i32imm>;
+defm SETP_b64 : SETP<"b64", Int64Regs, i64imm>;
+defm SETP_s64 : SETP<"s64", Int64Regs, i64imm>;
+defm SETP_u64 : SETP<"u64", Int64Regs, i64imm>;
+defm SETP_f32 : SETP<"f32", Float32Regs, f32imm>;
+defm SETP_f64 : SETP<"f64", Float64Regs, f64imm>;
+def SETP_f16rr :
+ NVPTXInst<(outs Int1Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b, CmpMode:$cmp),
+ "setp${cmp:base}${cmp:ftz}.f16 \t$dst, $a, $b;",
+ []>, Requires<[useFP16Math]>;
+
+def SETP_f16x2rr :
+ NVPTXInst<(outs Int1Regs:$p, Int1Regs:$q),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b, CmpMode:$cmp),
+ "setp${cmp:base}${cmp:ftz}.f16x2 \t$p|$q, $a, $b;",
+ []>,
+ Requires<[useFP16Math]>;
+
+
+// FIXME: This doesn't appear to be correct. The "set" mnemonic has the form
+// "set.CmpOp{.ftz}.dtype.stype", where dtype is the type of the destination
+// reg, either u32, s32, or f32. Anyway these aren't used at the moment.
+
+let hasSideEffects = false in {
+ multiclass SET<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr : NVPTXInst<(outs Int32Regs:$dst),
+ (ins RC:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
+ def ri : NVPTXInst<(outs Int32Regs:$dst),
+ (ins RC:$a, ImmCls:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
+ def ir : NVPTXInst<(outs Int32Regs:$dst),
+ (ins ImmCls:$a, RC:$b, CmpMode:$cmp),
+ !strconcat("set$cmp.", TypeStr, " \t$dst, $a, $b;"), []>;
+ }
+}
+
+defm SET_b16 : SET<"b16", Int16Regs, i16imm>;
+defm SET_s16 : SET<"s16", Int16Regs, i16imm>;
+defm SET_u16 : SET<"u16", Int16Regs, i16imm>;
+defm SET_b32 : SET<"b32", Int32Regs, i32imm>;
+defm SET_s32 : SET<"s32", Int32Regs, i32imm>;
+defm SET_u32 : SET<"u32", Int32Regs, i32imm>;
+defm SET_b64 : SET<"b64", Int64Regs, i64imm>;
+defm SET_s64 : SET<"s64", Int64Regs, i64imm>;
+defm SET_u64 : SET<"u64", Int64Regs, i64imm>;
+defm SET_f16 : SET<"f16", Float16Regs, f16imm>;
+defm SET_f32 : SET<"f32", Float32Regs, f32imm>;
+defm SET_f64 : SET<"f64", Float64Regs, f64imm>;
+
+//-----------------------------------
+// Selection instructions (selp)
+//-----------------------------------
+
+// FIXME: Missing slct
+
+// selp instructions that don't have any pattern matches; we explicitly use
+// them within this file.
+let hasSideEffects = false in {
+ multiclass SELP<string TypeStr, RegisterClass RC, Operand ImmCls> {
+ def rr : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
+ def ri : NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
+ def ir : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
+ def ii : NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"), []>;
+ }
+
+ multiclass SELP_PATTERN<string TypeStr, RegisterClass RC, Operand ImmCls,
+ SDNode ImmNode> {
+ def rr :
+ NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, RC:$a, RC:$b))]>;
+ def ri :
+ NVPTXInst<(outs RC:$dst),
+ (ins RC:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, RC:$a, ImmNode:$b))]>;
+ def ir :
+ NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, RC:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, RC:$b))]>;
+ def ii :
+ NVPTXInst<(outs RC:$dst),
+ (ins ImmCls:$a, ImmCls:$b, Int1Regs:$p),
+ !strconcat("selp.", TypeStr, " \t$dst, $a, $b, $p;"),
+ [(set RC:$dst, (select Int1Regs:$p, ImmNode:$a, ImmNode:$b))]>;
+ }
+}
+
+// Don't pattern match on selp.{s,u}{16,32,64} -- selp.b{16,32,64} is just as
+// good.
+defm SELP_b16 : SELP_PATTERN<"b16", Int16Regs, i16imm, imm>;
+defm SELP_s16 : SELP<"s16", Int16Regs, i16imm>;
+defm SELP_u16 : SELP<"u16", Int16Regs, i16imm>;
+defm SELP_b32 : SELP_PATTERN<"b32", Int32Regs, i32imm, imm>;
+defm SELP_s32 : SELP<"s32", Int32Regs, i32imm>;
+defm SELP_u32 : SELP<"u32", Int32Regs, i32imm>;
+defm SELP_b64 : SELP_PATTERN<"b64", Int64Regs, i64imm, imm>;
+defm SELP_s64 : SELP<"s64", Int64Regs, i64imm>;
+defm SELP_u64 : SELP<"u64", Int64Regs, i64imm>;
+defm SELP_f16 : SELP_PATTERN<"b16", Float16Regs, f16imm, fpimm>;
+defm SELP_f32 : SELP_PATTERN<"f32", Float32Regs, f32imm, fpimm>;
+defm SELP_f64 : SELP_PATTERN<"f64", Float64Regs, f64imm, fpimm>;
+
+def SELP_f16x2rr :
+ NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16x2Regs:$a, Float16x2Regs:$b, Int1Regs:$p),
+ "selp.b32 \t$dst, $a, $b, $p;",
+ [(set Float16x2Regs:$dst,
+ (select Int1Regs:$p, Float16x2Regs:$a, Float16x2Regs:$b))]>;
+
+//-----------------------------------
+// Data Movement (Load / Store, Move)
+//-----------------------------------
+
+def ADDRri : ComplexPattern<i32, 2, "SelectADDRri", [frameindex],
+ [SDNPWantRoot]>;
+def ADDRri64 : ComplexPattern<i64, 2, "SelectADDRri64", [frameindex],
+ [SDNPWantRoot]>;
+def ADDRvar : ComplexPattern<iPTR, 1, "SelectDirectAddr", [], []>;
+
+def MEMri : Operand<i32> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops Int32Regs, i32imm);
+}
+def MEMri64 : Operand<i64> {
+ let PrintMethod = "printMemOperand";
+ let MIOperandInfo = (ops Int64Regs, i64imm);
+}
+
+def imem : Operand<iPTR> {
+ let PrintMethod = "printOperand";
+}
+
+def imemAny : Operand<iPTRAny> {
+ let PrintMethod = "printOperand";
+}
+
+def LdStCode : Operand<i32> {
+ let PrintMethod = "printLdStCode";
+}
+
+def MmaCode : Operand<i32> {
+ let PrintMethod = "printMmaCode";
+}
+
+def SDTWrapper : SDTypeProfile<1, 1, [SDTCisSameAs<0, 1>, SDTCisPtrTy<0>]>;
+def Wrapper : SDNode<"NVPTXISD::Wrapper", SDTWrapper>;
+
+// Load a memory address into a u32 or u64 register.
+def MOV_ADDR : NVPTXInst<(outs Int32Regs:$dst), (ins imem:$a),
+ "mov.u32 \t$dst, $a;",
+ [(set Int32Regs:$dst, (Wrapper tglobaladdr:$a))]>;
+def MOV_ADDR64 : NVPTXInst<(outs Int64Regs:$dst), (ins imem:$a),
+ "mov.u64 \t$dst, $a;",
+ [(set Int64Regs:$dst, (Wrapper tglobaladdr:$a))]>;
+
+// Get pointer to local stack.
+let hasSideEffects = false in {
+ def MOV_DEPOT_ADDR : NVPTXInst<(outs Int32Regs:$d), (ins i32imm:$num),
+ "mov.u32 \t$d, __local_depot$num;", []>;
+ def MOV_DEPOT_ADDR_64 : NVPTXInst<(outs Int64Regs:$d), (ins i32imm:$num),
+ "mov.u64 \t$d, __local_depot$num;", []>;
+}
+
+
+// copyPhysreg is hard-coded in NVPTXInstrInfo.cpp
+let IsSimpleMove=1, hasSideEffects=0 in {
+ def IMOV1rr : NVPTXInst<(outs Int1Regs:$dst), (ins Int1Regs:$sss),
+ "mov.pred \t$dst, $sss;", []>;
+ def IMOV16rr : NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$sss),
+ "mov.u16 \t$dst, $sss;", []>;
+ def IMOV32rr : NVPTXInst<(outs Int32Regs:$dst), (ins Int32Regs:$sss),
+ "mov.u32 \t$dst, $sss;", []>;
+ def IMOV64rr : NVPTXInst<(outs Int64Regs:$dst), (ins Int64Regs:$sss),
+ "mov.u64 \t$dst, $sss;", []>;
+
+ def FMOV16rr : NVPTXInst<(outs Float16Regs:$dst), (ins Float16Regs:$src),
+ // We have to use .b16 here as there's no mov.f16.
+ "mov.b16 \t$dst, $src;", []>;
+ def FMOV32rr : NVPTXInst<(outs Float32Regs:$dst), (ins Float32Regs:$src),
+ "mov.f32 \t$dst, $src;", []>;
+ def FMOV64rr : NVPTXInst<(outs Float64Regs:$dst), (ins Float64Regs:$src),
+ "mov.f64 \t$dst, $src;", []>;
+}
+
+def IMOV1ri : NVPTXInst<(outs Int1Regs:$dst), (ins i1imm:$src),
+ "mov.pred \t$dst, $src;",
+ [(set Int1Regs:$dst, imm:$src)]>;
+def IMOV16ri : NVPTXInst<(outs Int16Regs:$dst), (ins i16imm:$src),
+ "mov.u16 \t$dst, $src;",
+ [(set Int16Regs:$dst, imm:$src)]>;
+def IMOV32ri : NVPTXInst<(outs Int32Regs:$dst), (ins i32imm:$src),
+ "mov.u32 \t$dst, $src;",
+ [(set Int32Regs:$dst, imm:$src)]>;
+def IMOV64i : NVPTXInst<(outs Int64Regs:$dst), (ins i64imm:$src),
+ "mov.u64 \t$dst, $src;",
+ [(set Int64Regs:$dst, imm:$src)]>;
+
+def FMOV32ri : NVPTXInst<(outs Float32Regs:$dst), (ins f32imm:$src),
+ "mov.f32 \t$dst, $src;",
+ [(set Float32Regs:$dst, fpimm:$src)]>;
+def FMOV64ri : NVPTXInst<(outs Float64Regs:$dst), (ins f64imm:$src),
+ "mov.f64 \t$dst, $src;",
+ [(set Float64Regs:$dst, fpimm:$src)]>;
+
+def : Pat<(i32 (Wrapper texternalsym:$dst)), (IMOV32ri texternalsym:$dst)>;
+
+//---- Copy Frame Index ----
+def LEA_ADDRi : NVPTXInst<(outs Int32Regs:$dst), (ins MEMri:$addr),
+ "add.u32 \t$dst, ${addr:add};",
+ [(set Int32Regs:$dst, ADDRri:$addr)]>;
+def LEA_ADDRi64 : NVPTXInst<(outs Int64Regs:$dst), (ins MEMri64:$addr),
+ "add.u64 \t$dst, ${addr:add};",
+ [(set Int64Regs:$dst, ADDRri64:$addr)]>;
+
+//-----------------------------------
+// Comparison and Selection
+//-----------------------------------
+
+multiclass ISET_FORMAT<PatFrag OpNode, PatLeaf Mode,
+ Instruction setp_16rr,
+ Instruction setp_16ri,
+ Instruction setp_16ir,
+ Instruction setp_32rr,
+ Instruction setp_32ri,
+ Instruction setp_32ir,
+ Instruction setp_64rr,
+ Instruction setp_64ri,
+ Instruction setp_64ir,
+ Instruction set_16rr,
+ Instruction set_16ri,
+ Instruction set_16ir,
+ Instruction set_32rr,
+ Instruction set_32ri,
+ Instruction set_32ir,
+ Instruction set_64rr,
+ Instruction set_64ri,
+ Instruction set_64ir> {
+ // i16 -> pred
+ def : Pat<(i1 (OpNode Int16Regs:$a, Int16Regs:$b)),
+ (setp_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int16Regs:$a, imm:$b)),
+ (setp_16ri Int16Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int16Regs:$b)),
+ (setp_16ir imm:$a, Int16Regs:$b, Mode)>;
+ // i32 -> pred
+ def : Pat<(i1 (OpNode Int32Regs:$a, Int32Regs:$b)),
+ (setp_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int32Regs:$a, imm:$b)),
+ (setp_32ri Int32Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int32Regs:$b)),
+ (setp_32ir imm:$a, Int32Regs:$b, Mode)>;
+ // i64 -> pred
+ def : Pat<(i1 (OpNode Int64Regs:$a, Int64Regs:$b)),
+ (setp_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Int64Regs:$a, imm:$b)),
+ (setp_64ri Int64Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i1 (OpNode imm:$a, Int64Regs:$b)),
+ (setp_64ir imm:$a, Int64Regs:$b, Mode)>;
+
+ // i16 -> i32
+ def : Pat<(i32 (OpNode Int16Regs:$a, Int16Regs:$b)),
+ (set_16rr Int16Regs:$a, Int16Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int16Regs:$a, imm:$b)),
+ (set_16ri Int16Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int16Regs:$b)),
+ (set_16ir imm:$a, Int16Regs:$b, Mode)>;
+ // i32 -> i32
+ def : Pat<(i32 (OpNode Int32Regs:$a, Int32Regs:$b)),
+ (set_32rr Int32Regs:$a, Int32Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int32Regs:$a, imm:$b)),
+ (set_32ri Int32Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int32Regs:$b)),
+ (set_32ir imm:$a, Int32Regs:$b, Mode)>;
+ // i64 -> i32
+ def : Pat<(i32 (OpNode Int64Regs:$a, Int64Regs:$b)),
+ (set_64rr Int64Regs:$a, Int64Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Int64Regs:$a, imm:$b)),
+ (set_64ri Int64Regs:$a, imm:$b, Mode)>;
+ def : Pat<(i32 (OpNode imm:$a, Int64Regs:$b)),
+ (set_64ir imm:$a, Int64Regs:$b, Mode)>;
+}
+
+multiclass ISET_FORMAT_SIGNED<PatFrag OpNode, PatLeaf Mode>
+ : ISET_FORMAT<OpNode, Mode,
+ SETP_s16rr, SETP_s16ri, SETP_s16ir,
+ SETP_s32rr, SETP_s32ri, SETP_s32ir,
+ SETP_s64rr, SETP_s64ri, SETP_s64ir,
+ SET_s16rr, SET_s16ri, SET_s16ir,
+ SET_s32rr, SET_s32ri, SET_s32ir,
+ SET_s64rr, SET_s64ri, SET_s64ir> {
+ // TableGen doesn't like empty multiclasses.
+ def : PatLeaf<(i32 0)>;
+}
+
+multiclass ISET_FORMAT_UNSIGNED<PatFrag OpNode, PatLeaf Mode>
+ : ISET_FORMAT<OpNode, Mode,
+ SETP_u16rr, SETP_u16ri, SETP_u16ir,
+ SETP_u32rr, SETP_u32ri, SETP_u32ir,
+ SETP_u64rr, SETP_u64ri, SETP_u64ir,
+ SET_u16rr, SET_u16ri, SET_u16ir,
+ SET_u32rr, SET_u32ri, SET_u32ir,
+ SET_u64rr, SET_u64ri, SET_u64ir> {
+ // TableGen doesn't like empty multiclasses.
+ def : PatLeaf<(i32 0)>;
+}
+
+defm : ISET_FORMAT_SIGNED<setgt, CmpGT>;
+defm : ISET_FORMAT_SIGNED<setlt, CmpLT>;
+defm : ISET_FORMAT_SIGNED<setge, CmpGE>;
+defm : ISET_FORMAT_SIGNED<setle, CmpLE>;
+defm : ISET_FORMAT_SIGNED<seteq, CmpEQ>;
+defm : ISET_FORMAT_SIGNED<setne, CmpNE>;
+defm : ISET_FORMAT_UNSIGNED<setugt, CmpGT>;
+defm : ISET_FORMAT_UNSIGNED<setult, CmpLT>;
+defm : ISET_FORMAT_UNSIGNED<setuge, CmpGE>;
+defm : ISET_FORMAT_UNSIGNED<setule, CmpLE>;
+defm : ISET_FORMAT_UNSIGNED<setueq, CmpEQ>;
+defm : ISET_FORMAT_UNSIGNED<setune, CmpNE>;
+
+// i1 compares
+def : Pat<(setne Int1Regs:$a, Int1Regs:$b),
+ (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
+def : Pat<(setune Int1Regs:$a, Int1Regs:$b),
+ (XORb1rr Int1Regs:$a, Int1Regs:$b)>;
+
+def : Pat<(seteq Int1Regs:$a, Int1Regs:$b),
+ (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+def : Pat<(setueq Int1Regs:$a, Int1Regs:$b),
+ (NOT1 (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+
+// i1 compare -> i32
+def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
+ (SELP_u32ii -1, 0, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+def : Pat<(i32 (setne Int1Regs:$a, Int1Regs:$b)),
+ (SELP_u32ii 0, -1, (XORb1rr Int1Regs:$a, Int1Regs:$b))>;
+
+
+
+multiclass FSET_FORMAT<PatFrag OpNode, PatLeaf Mode, PatLeaf ModeFTZ> {
+ // f16 -> pred
+ def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
+ (SETP_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
+ Requires<[useFP16Math,doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float16Regs:$a, Float16Regs:$b)),
+ (SETP_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
+ Requires<[useFP16Math]>;
+ def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
+ (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
+ Requires<[useFP16Math,doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float16Regs:$a, fpimm:$b)),
+ (SETP_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
+ Requires<[useFP16Math]>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
+ (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
+ Requires<[useFP16Math,doF32FTZ]>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float16Regs:$b)),
+ (SETP_f16rr (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
+ Requires<[useFP16Math]>;
+
+ // f32 -> pred
+ def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SETP_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SETP_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SETP_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SETP_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SETP_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SETP_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
+
+ // f64 -> pred
+ def : Pat<(i1 (OpNode Float64Regs:$a, Float64Regs:$b)),
+ (SETP_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
+ def : Pat<(i1 (OpNode Float64Regs:$a, fpimm:$b)),
+ (SETP_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i1 (OpNode fpimm:$a, Float64Regs:$b)),
+ (SETP_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
+
+ // f16 -> i32
+ def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
+ (SET_f16rr Float16Regs:$a, Float16Regs:$b, ModeFTZ)>,
+ Requires<[useFP16Math, doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float16Regs:$a, Float16Regs:$b)),
+ (SET_f16rr Float16Regs:$a, Float16Regs:$b, Mode)>,
+ Requires<[useFP16Math]>;
+ def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
+ (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), ModeFTZ)>,
+ Requires<[useFP16Math, doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float16Regs:$a, fpimm:$b)),
+ (SET_f16rr Float16Regs:$a, (LOAD_CONST_F16 fpimm:$b), Mode)>,
+ Requires<[useFP16Math]>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
+ (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, ModeFTZ)>,
+ Requires<[useFP16Math, doF32FTZ]>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float16Regs:$b)),
+ (SET_f16ir (LOAD_CONST_F16 fpimm:$a), Float16Regs:$b, Mode)>,
+ Requires<[useFP16Math]>;
+
+ // f32 -> i32
+ def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SET_f32rr Float32Regs:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, Float32Regs:$b)),
+ (SET_f32rr Float32Regs:$a, Float32Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SET_f32ri Float32Regs:$a, fpimm:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode Float32Regs:$a, fpimm:$b)),
+ (SET_f32ri Float32Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SET_f32ir fpimm:$a, Float32Regs:$b, ModeFTZ)>,
+ Requires<[doF32FTZ]>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float32Regs:$b)),
+ (SET_f32ir fpimm:$a, Float32Regs:$b, Mode)>;
+
+ // f64 -> i32
+ def : Pat<(i32 (OpNode Float64Regs:$a, Float64Regs:$b)),
+ (SET_f64rr Float64Regs:$a, Float64Regs:$b, Mode)>;
+ def : Pat<(i32 (OpNode Float64Regs:$a, fpimm:$b)),
+ (SET_f64ri Float64Regs:$a, fpimm:$b, Mode)>;
+ def : Pat<(i32 (OpNode fpimm:$a, Float64Regs:$b)),
+ (SET_f64ir fpimm:$a, Float64Regs:$b, Mode)>;
+}
+
+defm FSetOGT : FSET_FORMAT<setogt, CmpGT, CmpGT_FTZ>;
+defm FSetOLT : FSET_FORMAT<setolt, CmpLT, CmpLT_FTZ>;
+defm FSetOGE : FSET_FORMAT<setoge, CmpGE, CmpGE_FTZ>;
+defm FSetOLE : FSET_FORMAT<setole, CmpLE, CmpLE_FTZ>;
+defm FSetOEQ : FSET_FORMAT<setoeq, CmpEQ, CmpEQ_FTZ>;
+defm FSetONE : FSET_FORMAT<setone, CmpNE, CmpNE_FTZ>;
+
+defm FSetUGT : FSET_FORMAT<setugt, CmpGTU, CmpGTU_FTZ>;
+defm FSetULT : FSET_FORMAT<setult, CmpLTU, CmpLTU_FTZ>;
+defm FSetUGE : FSET_FORMAT<setuge, CmpGEU, CmpGEU_FTZ>;
+defm FSetULE : FSET_FORMAT<setule, CmpLEU, CmpLEU_FTZ>;
+defm FSetUEQ : FSET_FORMAT<setueq, CmpEQU, CmpEQU_FTZ>;
+defm FSetUNE : FSET_FORMAT<setune, CmpNEU, CmpNEU_FTZ>;
+
+defm FSetGT : FSET_FORMAT<setgt, CmpGT, CmpGT_FTZ>;
+defm FSetLT : FSET_FORMAT<setlt, CmpLT, CmpLT_FTZ>;
+defm FSetGE : FSET_FORMAT<setge, CmpGE, CmpGE_FTZ>;
+defm FSetLE : FSET_FORMAT<setle, CmpLE, CmpLE_FTZ>;
+defm FSetEQ : FSET_FORMAT<seteq, CmpEQ, CmpEQ_FTZ>;
+defm FSetNE : FSET_FORMAT<setne, CmpNE, CmpNE_FTZ>;
+
+defm FSetNUM : FSET_FORMAT<seto, CmpNUM, CmpNUM_FTZ>;
+defm FSetNAN : FSET_FORMAT<setuo, CmpNAN, CmpNAN_FTZ>;
+
+// FIXME: What is this doing here? Can it be deleted?
+// def ld_param : SDNode<"NVPTXISD::LOAD_PARAM", SDTLoad,
+// [SDNPHasChain, SDNPMayLoad, SDNPMemOperand]>;
+
+def SDTDeclareParamProfile :
+ SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
+def SDTDeclareScalarParamProfile :
+ SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>, SDTCisInt<2>]>;
+def SDTLoadParamProfile : SDTypeProfile<1, 2, [SDTCisInt<1>, SDTCisInt<2>]>;
+def SDTLoadParamV2Profile : SDTypeProfile<2, 2, [SDTCisSameAs<0, 1>, SDTCisInt<2>, SDTCisInt<3>]>;
+def SDTLoadParamV4Profile : SDTypeProfile<4, 2, [SDTCisInt<4>, SDTCisInt<5>]>;
+def SDTPrintCallProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def SDTPrintCallUniProfile : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def SDTStoreParamProfile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParamV2Profile : SDTypeProfile<0, 4, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParamV4Profile : SDTypeProfile<0, 6, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTStoreParam32Profile : SDTypeProfile<0, 3, [SDTCisInt<0>, SDTCisInt<1>]>;
+def SDTCallArgProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
+def SDTCallArgMarkProfile : SDTypeProfile<0, 0, []>;
+def SDTCallVoidProfile : SDTypeProfile<0, 1, []>;
+def SDTCallValProfile : SDTypeProfile<1, 0, []>;
+def SDTMoveParamProfile : SDTypeProfile<1, 1, []>;
+def SDTStoreRetvalProfile : SDTypeProfile<0, 2, [SDTCisInt<0>]>;
+def SDTStoreRetvalV2Profile : SDTypeProfile<0, 3, [SDTCisInt<0>]>;
+def SDTStoreRetvalV4Profile : SDTypeProfile<0, 5, [SDTCisInt<0>]>;
+def SDTPseudoUseParamProfile : SDTypeProfile<0, 1, []>;
+def SDTProxyRegProfile : SDTypeProfile<1, 1, []>;
+
+def DeclareParam :
+ SDNode<"NVPTXISD::DeclareParam", SDTDeclareParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareScalarParam :
+ SDNode<"NVPTXISD::DeclareScalarParam", SDTDeclareScalarParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareRetParam :
+ SDNode<"NVPTXISD::DeclareRetParam", SDTDeclareParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def DeclareRet :
+ SDNode<"NVPTXISD::DeclareRet", SDTDeclareScalarParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def LoadParam :
+ SDNode<"NVPTXISD::LoadParam", SDTLoadParamProfile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def LoadParamV2 :
+ SDNode<"NVPTXISD::LoadParamV2", SDTLoadParamV2Profile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def LoadParamV4 :
+ SDNode<"NVPTXISD::LoadParamV4", SDTLoadParamV4Profile,
+ [SDNPHasChain, SDNPMayLoad, SDNPOutGlue, SDNPInGlue]>;
+def PrintCall :
+ SDNode<"NVPTXISD::PrintCall", SDTPrintCallProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def PrintConvergentCall :
+ SDNode<"NVPTXISD::PrintConvergentCall", SDTPrintCallProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def PrintCallUni :
+ SDNode<"NVPTXISD::PrintCallUni", SDTPrintCallUniProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def PrintConvergentCallUni :
+ SDNode<"NVPTXISD::PrintConvergentCallUni", SDTPrintCallUniProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParam :
+ SDNode<"NVPTXISD::StoreParam", SDTStoreParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamV2 :
+ SDNode<"NVPTXISD::StoreParamV2", SDTStoreParamV2Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamV4 :
+ SDNode<"NVPTXISD::StoreParamV4", SDTStoreParamV4Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamU32 :
+ SDNode<"NVPTXISD::StoreParamU32", SDTStoreParam32Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def StoreParamS32 :
+ SDNode<"NVPTXISD::StoreParamS32", SDTStoreParam32Profile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArgBegin :
+ SDNode<"NVPTXISD::CallArgBegin", SDTCallArgMarkProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArg :
+ SDNode<"NVPTXISD::CallArg", SDTCallArgProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def LastCallArg :
+ SDNode<"NVPTXISD::LastCallArg", SDTCallArgProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallArgEnd :
+ SDNode<"NVPTXISD::CallArgEnd", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallVoid :
+ SDNode<"NVPTXISD::CallVoid", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def Prototype :
+ SDNode<"NVPTXISD::Prototype", SDTCallVoidProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def CallVal :
+ SDNode<"NVPTXISD::CallVal", SDTCallValProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def MoveParam :
+ SDNode<"NVPTXISD::MoveParam", SDTMoveParamProfile, []>;
+def StoreRetval :
+ SDNode<"NVPTXISD::StoreRetval", SDTStoreRetvalProfile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def StoreRetvalV2 :
+ SDNode<"NVPTXISD::StoreRetvalV2", SDTStoreRetvalV2Profile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def StoreRetvalV4 :
+ SDNode<"NVPTXISD::StoreRetvalV4", SDTStoreRetvalV4Profile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def PseudoUseParam :
+ SDNode<"NVPTXISD::PseudoUseParam", SDTPseudoUseParamProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def RETURNNode :
+ SDNode<"NVPTXISD::RETURN", SDTCallArgMarkProfile,
+ [SDNPHasChain, SDNPSideEffect]>;
+def ProxyReg :
+ SDNode<"NVPTXISD::ProxyReg", SDTProxyRegProfile,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+
+let mayLoad = true in {
+ class LoadParamMemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
+ !strconcat("ld.param", opstr, " \t$dst, [retval0+$b];"),
+ []>;
+
+ class LoadParamV2MemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst, regclass:$dst2), (ins i32imm:$b),
+ !strconcat("ld.param.v2", opstr,
+ " \t{{$dst, $dst2}}, [retval0+$b];"), []>;
+
+ class LoadParamV4MemInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst, regclass:$dst2, regclass:$dst3,
+ regclass:$dst4),
+ (ins i32imm:$b),
+ !strconcat("ld.param.v4", opstr,
+ " \t{{$dst, $dst2, $dst3, $dst4}}, [retval0+$b];"),
+ []>;
+}
+
+class LoadParamRegInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs regclass:$dst), (ins i32imm:$b),
+ !strconcat("mov", opstr, " \t$dst, retval$b;"),
+ [(set regclass:$dst, (LoadParam (i32 0), (i32 imm:$b)))]>;
+
+let mayStore = true in {
+ class StoreParamInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, i32imm:$a, i32imm:$b),
+ !strconcat("st.param", opstr, " \t[param$a+$b], $val;"),
+ []>;
+
+ class StoreParamV2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val2,
+ i32imm:$a, i32imm:$b),
+ !strconcat("st.param.v2", opstr,
+ " \t[param$a+$b], {{$val, $val2}};"),
+ []>;
+
+ class StoreParamV4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, regclass:$val3,
+ regclass:$val4, i32imm:$a,
+ i32imm:$b),
+ !strconcat("st.param.v4", opstr,
+ " \t[param$a+$b], {{$val, $val2, $val3, $val4}};"),
+ []>;
+
+ class StoreRetvalInst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, i32imm:$a),
+ !strconcat("st.param", opstr, " \t[func_retval0+$a], $val;"),
+ []>;
+
+ class StoreRetvalV2Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs), (ins regclass:$val, regclass:$val2, i32imm:$a),
+ !strconcat("st.param.v2", opstr,
+ " \t[func_retval0+$a], {{$val, $val2}};"),
+ []>;
+
+ class StoreRetvalV4Inst<NVPTXRegClass regclass, string opstr> :
+ NVPTXInst<(outs),
+ (ins regclass:$val, regclass:$val2, regclass:$val3,
+ regclass:$val4, i32imm:$a),
+ !strconcat("st.param.v4", opstr,
+ " \t[func_retval0+$a], {{$val, $val2, $val3, $val4}};"),
+ []>;
+}
+
+let isCall=1 in {
+ multiclass CALL<string OpcStr, SDNode OpNode> {
+ def PrintCallNoRetInst : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " "), [(OpNode (i32 0))]>;
+ def PrintCallRetInst1 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0), "), [(OpNode (i32 1))]>;
+ def PrintCallRetInst2 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1), "), [(OpNode (i32 2))]>;
+ def PrintCallRetInst3 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2), "), [(OpNode (i32 3))]>;
+ def PrintCallRetInst4 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2, retval3), "),
+ [(OpNode (i32 4))]>;
+ def PrintCallRetInst5 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4), "),
+ [(OpNode (i32 5))]>;
+ def PrintCallRetInst6 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
+ "retval5), "),
+ [(OpNode (i32 6))]>;
+ def PrintCallRetInst7 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
+ "retval5, retval6), "),
+ [(OpNode (i32 7))]>;
+ def PrintCallRetInst8 : NVPTXInst<(outs), (ins),
+ !strconcat(OpcStr, " (retval0, retval1, retval2, retval3, retval4, "
+ "retval5, retval6, retval7), "),
+ [(OpNode (i32 8))]>;
+ }
+}
+
+defm Call : CALL<"call", PrintCall>;
+defm CallUni : CALL<"call.uni", PrintCallUni>;
+
+// Convergent call instructions. These are identical to regular calls, except
+// they have the isConvergent bit set.
+let isConvergent=1 in {
+ defm ConvergentCall : CALL<"call", PrintConvergentCall>;
+ defm ConvergentCallUni : CALL<"call.uni", PrintConvergentCallUni>;
+}
+
+def LoadParamMemI64 : LoadParamMemInst<Int64Regs, ".b64">;
+def LoadParamMemI32 : LoadParamMemInst<Int32Regs, ".b32">;
+def LoadParamMemI16 : LoadParamMemInst<Int16Regs, ".b16">;
+def LoadParamMemI8 : LoadParamMemInst<Int16Regs, ".b8">;
+def LoadParamMemV2I64 : LoadParamV2MemInst<Int64Regs, ".b64">;
+def LoadParamMemV2I32 : LoadParamV2MemInst<Int32Regs, ".b32">;
+def LoadParamMemV2I16 : LoadParamV2MemInst<Int16Regs, ".b16">;
+def LoadParamMemV2I8 : LoadParamV2MemInst<Int16Regs, ".b8">;
+def LoadParamMemV4I32 : LoadParamV4MemInst<Int32Regs, ".b32">;
+def LoadParamMemV4I16 : LoadParamV4MemInst<Int16Regs, ".b16">;
+def LoadParamMemV4I8 : LoadParamV4MemInst<Int16Regs, ".b8">;
+def LoadParamMemF16 : LoadParamMemInst<Float16Regs, ".b16">;
+def LoadParamMemF16x2 : LoadParamMemInst<Float16x2Regs, ".b32">;
+def LoadParamMemF32 : LoadParamMemInst<Float32Regs, ".f32">;
+def LoadParamMemF64 : LoadParamMemInst<Float64Regs, ".f64">;
+def LoadParamMemV2F16 : LoadParamV2MemInst<Float16Regs, ".b16">;
+def LoadParamMemV2F16x2: LoadParamV2MemInst<Float16x2Regs, ".b32">;
+def LoadParamMemV2F32 : LoadParamV2MemInst<Float32Regs, ".f32">;
+def LoadParamMemV2F64 : LoadParamV2MemInst<Float64Regs, ".f64">;
+def LoadParamMemV4F16 : LoadParamV4MemInst<Float16Regs, ".b16">;
+def LoadParamMemV4F16x2: LoadParamV4MemInst<Float16x2Regs, ".b32">;
+def LoadParamMemV4F32 : LoadParamV4MemInst<Float32Regs, ".f32">;
+
+def StoreParamI64 : StoreParamInst<Int64Regs, ".b64">;
+def StoreParamI32 : StoreParamInst<Int32Regs, ".b32">;
+
+def StoreParamI16 : StoreParamInst<Int16Regs, ".b16">;
+def StoreParamI8 : StoreParamInst<Int16Regs, ".b8">;
+def StoreParamV2I64 : StoreParamV2Inst<Int64Regs, ".b64">;
+def StoreParamV2I32 : StoreParamV2Inst<Int32Regs, ".b32">;
+def StoreParamV2I16 : StoreParamV2Inst<Int16Regs, ".b16">;
+def StoreParamV2I8 : StoreParamV2Inst<Int16Regs, ".b8">;
+
+def StoreParamV4I32 : StoreParamV4Inst<Int32Regs, ".b32">;
+def StoreParamV4I16 : StoreParamV4Inst<Int16Regs, ".b16">;
+def StoreParamV4I8 : StoreParamV4Inst<Int16Regs, ".b8">;
+
+def StoreParamF16 : StoreParamInst<Float16Regs, ".b16">;
+def StoreParamF16x2 : StoreParamInst<Float16x2Regs, ".b32">;
+def StoreParamF32 : StoreParamInst<Float32Regs, ".f32">;
+def StoreParamF64 : StoreParamInst<Float64Regs, ".f64">;
+def StoreParamV2F16 : StoreParamV2Inst<Float16Regs, ".b16">;
+def StoreParamV2F16x2 : StoreParamV2Inst<Float16x2Regs, ".b32">;
+def StoreParamV2F32 : StoreParamV2Inst<Float32Regs, ".f32">;
+def StoreParamV2F64 : StoreParamV2Inst<Float64Regs, ".f64">;
+def StoreParamV4F16 : StoreParamV4Inst<Float16Regs, ".b16">;
+def StoreParamV4F16x2 : StoreParamV4Inst<Float16x2Regs, ".b32">;
+def StoreParamV4F32 : StoreParamV4Inst<Float32Regs, ".f32">;
+
+def StoreRetvalI64 : StoreRetvalInst<Int64Regs, ".b64">;
+def StoreRetvalI32 : StoreRetvalInst<Int32Regs, ".b32">;
+def StoreRetvalI16 : StoreRetvalInst<Int16Regs, ".b16">;
+def StoreRetvalI8 : StoreRetvalInst<Int16Regs, ".b8">;
+def StoreRetvalV2I64 : StoreRetvalV2Inst<Int64Regs, ".b64">;
+def StoreRetvalV2I32 : StoreRetvalV2Inst<Int32Regs, ".b32">;
+def StoreRetvalV2I16 : StoreRetvalV2Inst<Int16Regs, ".b16">;
+def StoreRetvalV2I8 : StoreRetvalV2Inst<Int16Regs, ".b8">;
+def StoreRetvalV4I32 : StoreRetvalV4Inst<Int32Regs, ".b32">;
+def StoreRetvalV4I16 : StoreRetvalV4Inst<Int16Regs, ".b16">;
+def StoreRetvalV4I8 : StoreRetvalV4Inst<Int16Regs, ".b8">;
+
+def StoreRetvalF64 : StoreRetvalInst<Float64Regs, ".f64">;
+def StoreRetvalF32 : StoreRetvalInst<Float32Regs, ".f32">;
+def StoreRetvalF16 : StoreRetvalInst<Float16Regs, ".b16">;
+def StoreRetvalF16x2 : StoreRetvalInst<Float16x2Regs, ".b32">;
+def StoreRetvalV2F64 : StoreRetvalV2Inst<Float64Regs, ".f64">;
+def StoreRetvalV2F32 : StoreRetvalV2Inst<Float32Regs, ".f32">;
+def StoreRetvalV2F16 : StoreRetvalV2Inst<Float16Regs, ".b16">;
+def StoreRetvalV2F16x2: StoreRetvalV2Inst<Float16x2Regs, ".b32">;
+def StoreRetvalV4F32 : StoreRetvalV4Inst<Float32Regs, ".f32">;
+def StoreRetvalV4F16 : StoreRetvalV4Inst<Float16Regs, ".b16">;
+def StoreRetvalV4F16x2: StoreRetvalV4Inst<Float16x2Regs, ".b32">;
+
+def CallArgBeginInst : NVPTXInst<(outs), (ins), "(", [(CallArgBegin)]>;
+def CallArgEndInst1 : NVPTXInst<(outs), (ins), ");", [(CallArgEnd (i32 1))]>;
+def CallArgEndInst0 : NVPTXInst<(outs), (ins), ")", [(CallArgEnd (i32 0))]>;
+def RETURNInst : NVPTXInst<(outs), (ins), "ret;", [(RETURNNode)]>;
+
+class CallArgInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$a), "$a, ",
+ [(CallArg (i32 0), regclass:$a)]>;
+
+class LastCallArgInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$a), "$a",
+ [(LastCallArg (i32 0), regclass:$a)]>;
+
+def CallArgI64 : CallArgInst<Int64Regs>;
+def CallArgI32 : CallArgInst<Int32Regs>;
+def CallArgI16 : CallArgInst<Int16Regs>;
+def CallArgF64 : CallArgInst<Float64Regs>;
+def CallArgF32 : CallArgInst<Float32Regs>;
+
+def LastCallArgI64 : LastCallArgInst<Int64Regs>;
+def LastCallArgI32 : LastCallArgInst<Int32Regs>;
+def LastCallArgI16 : LastCallArgInst<Int16Regs>;
+def LastCallArgF64 : LastCallArgInst<Float64Regs>;
+def LastCallArgF32 : LastCallArgInst<Float32Regs>;
+
+def CallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a, ",
+ [(CallArg (i32 0), (i32 imm:$a))]>;
+def LastCallArgI32imm : NVPTXInst<(outs), (ins i32imm:$a), "$a",
+ [(LastCallArg (i32 0), (i32 imm:$a))]>;
+
+def CallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a, ",
+ [(CallArg (i32 1), (i32 imm:$a))]>;
+def LastCallArgParam : NVPTXInst<(outs), (ins i32imm:$a), "param$a",
+ [(LastCallArg (i32 1), (i32 imm:$a))]>;
+
+def CallVoidInst : NVPTXInst<(outs), (ins imem:$addr), "$addr, ",
+ [(CallVoid (Wrapper tglobaladdr:$addr))]>;
+def CallVoidInstReg : NVPTXInst<(outs), (ins Int32Regs:$addr), "$addr, ",
+ [(CallVoid Int32Regs:$addr)]>;
+def CallVoidInstReg64 : NVPTXInst<(outs), (ins Int64Regs:$addr), "$addr, ",
+ [(CallVoid Int64Regs:$addr)]>;
+def PrototypeInst : NVPTXInst<(outs), (ins i32imm:$val), ", prototype_$val;",
+ [(Prototype (i32 imm:$val))]>;
+
+def DeclareRetMemInst :
+ NVPTXInst<(outs), (ins i32imm:$align, i32imm:$size, i32imm:$num),
+ ".param .align $align .b8 retval$num[$size];",
+ [(DeclareRetParam (i32 imm:$align), (i32 imm:$size), (i32 imm:$num))]>;
+def DeclareRetScalarInst :
+ NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
+ ".param .b$size retval$num;",
+ [(DeclareRet (i32 1), (i32 imm:$size), (i32 imm:$num))]>;
+def DeclareRetRegInst :
+ NVPTXInst<(outs), (ins i32imm:$size, i32imm:$num),
+ ".reg .b$size retval$num;",
+ [(DeclareRet (i32 2), (i32 imm:$size), (i32 imm:$num))]>;
+
+def DeclareParamInst :
+ NVPTXInst<(outs), (ins i32imm:$align, i32imm:$a, i32imm:$size),
+ ".param .align $align .b8 param$a[$size];",
+ [(DeclareParam (i32 imm:$align), (i32 imm:$a), (i32 imm:$size))]>;
+def DeclareScalarParamInst :
+ NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
+ ".param .b$size param$a;",
+ [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 0))]>;
+def DeclareScalarRegInst :
+ NVPTXInst<(outs), (ins i32imm:$a, i32imm:$size),
+ ".reg .b$size param$a;",
+ [(DeclareScalarParam (i32 imm:$a), (i32 imm:$size), (i32 1))]>;
+
+class MoveParamInst<NVPTXRegClass regclass, string asmstr> :
+ NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
+ !strconcat("mov", asmstr, " \t$dst, $src;"),
+ [(set regclass:$dst, (MoveParam regclass:$src))]>;
+
+def MoveParamI64 : MoveParamInst<Int64Regs, ".b64">;
+def MoveParamI32 : MoveParamInst<Int32Regs, ".b32">;
+def MoveParamI16 :
+ NVPTXInst<(outs Int16Regs:$dst), (ins Int16Regs:$src),
+ "cvt.u16.u32 \t$dst, $src;",
+ [(set Int16Regs:$dst, (MoveParam Int16Regs:$src))]>;
+def MoveParamF64 : MoveParamInst<Float64Regs, ".f64">;
+def MoveParamF32 : MoveParamInst<Float32Regs, ".f32">;
+def MoveParamF16 : MoveParamInst<Float16Regs, ".f16">;
+
+class PseudoUseParamInst<NVPTXRegClass regclass> :
+ NVPTXInst<(outs), (ins regclass:$src),
+ "// Pseudo use of $src",
+ [(PseudoUseParam regclass:$src)]>;
+
+def PseudoUseParamI64 : PseudoUseParamInst<Int64Regs>;
+def PseudoUseParamI32 : PseudoUseParamInst<Int32Regs>;
+def PseudoUseParamI16 : PseudoUseParamInst<Int16Regs>;
+def PseudoUseParamF64 : PseudoUseParamInst<Float64Regs>;
+def PseudoUseParamF32 : PseudoUseParamInst<Float32Regs>;
+
+class ProxyRegInst<string SzStr, NVPTXRegClass regclass> :
+ NVPTXInst<(outs regclass:$dst), (ins regclass:$src),
+ !strconcat("mov.", SzStr, " \t$dst, $src;"),
+ [(set regclass:$dst, (ProxyReg regclass:$src))]>;
+
+let isCodeGenOnly=1, isPseudo=1 in {
+ def ProxyRegI1 : ProxyRegInst<"pred", Int1Regs>;
+ def ProxyRegI16 : ProxyRegInst<"b16", Int16Regs>;
+ def ProxyRegI32 : ProxyRegInst<"b32", Int32Regs>;
+ def ProxyRegI64 : ProxyRegInst<"b64", Int64Regs>;
+ def ProxyRegF16 : ProxyRegInst<"b16", Float16Regs>;
+ def ProxyRegF32 : ProxyRegInst<"f32", Float32Regs>;
+ def ProxyRegF64 : ProxyRegInst<"f64", Float64Regs>;
+ def ProxyRegF16x2 : ProxyRegInst<"b32", Float16x2Regs>;
+}
+
+//
+// Load / Store Handling
+//
+multiclass LD<NVPTXRegClass regclass> {
+ def _avar : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr];", []>;
+ def _areg : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr];", []>;
+ def _areg_64 : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr];", []>;
+ def _ari : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr+$offset];", []>;
+ def _ari_64 : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr+$offset];", []>;
+ def _asi : NVPTXInst<
+ (outs regclass:$dst),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t$dst, [$addr+$offset];", []>;
+}
+
+let mayLoad=1, hasSideEffects=0 in {
+ defm LD_i8 : LD<Int16Regs>;
+ defm LD_i16 : LD<Int16Regs>;
+ defm LD_i32 : LD<Int32Regs>;
+ defm LD_i64 : LD<Int64Regs>;
+ defm LD_f16 : LD<Float16Regs>;
+ defm LD_f16x2 : LD<Float16x2Regs>;
+ defm LD_f32 : LD<Float32Regs>;
+ defm LD_f64 : LD<Float64Regs>;
+}
+
+multiclass ST<NVPTXRegClass regclass> {
+ def _avar : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, imem:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr], $src;", []>;
+ def _areg : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr], $src;", []>;
+ def _areg_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr], $src;", []>;
+ def _ari : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int32Regs:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr+$offset], $src;", []>;
+ def _ari_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, Int64Regs:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr+$offset], $src;", []>;
+ def _asi : NVPTXInst<
+ (outs),
+ (ins regclass:$src, LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec,
+ LdStCode:$Sign, i32imm:$toWidth, imem:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$toWidth"
+ " \t[$addr+$offset], $src;", []>;
+}
+
+let mayStore=1, hasSideEffects=0 in {
+ defm ST_i8 : ST<Int16Regs>;
+ defm ST_i16 : ST<Int16Regs>;
+ defm ST_i32 : ST<Int32Regs>;
+ defm ST_i64 : ST<Int64Regs>;
+ defm ST_f16 : ST<Float16Regs>;
+ defm ST_f16x2 : ST<Float16x2Regs>;
+ defm ST_f32 : ST<Float32Regs>;
+ defm ST_f64 : ST<Float64Regs>;
+}
+
+// The following is used only in and after vector elementizations. Vector
+// elementization happens at the machine instruction level, so the following
+// instructions never appear in the DAG.
+multiclass LD_VEC<NVPTXRegClass regclass> {
+ def _v2_avar : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr];", []>;
+ def _v2_areg : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr];", []>;
+ def _v2_areg_64 : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr];", []>;
+ def _v2_ari : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
+ def _v2_ari_64 : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
+ def _v2_asi : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2}}, [$addr+$offset];", []>;
+ def _v4_avar : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
+ def _v4_areg : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
+ def _v4_areg_64 : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr];", []>;
+ def _v4_ari : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
+ def _v4_ari_64 : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
+ def _v4_asi : NVPTXInst<
+ (outs regclass:$dst1, regclass:$dst2, regclass:$dst3, regclass:$dst4),
+ (ins LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ "ld${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t{{$dst1, $dst2, $dst3, $dst4}}, [$addr+$offset];", []>;
+}
+let mayLoad=1, hasSideEffects=0 in {
+ defm LDV_i8 : LD_VEC<Int16Regs>;
+ defm LDV_i16 : LD_VEC<Int16Regs>;
+ defm LDV_i32 : LD_VEC<Int32Regs>;
+ defm LDV_i64 : LD_VEC<Int64Regs>;
+ defm LDV_f16 : LD_VEC<Float16Regs>;
+ defm LDV_f16x2 : LD_VEC<Float16x2Regs>;
+ defm LDV_f32 : LD_VEC<Float32Regs>;
+ defm LDV_f64 : LD_VEC<Float64Regs>;
+}
+
+multiclass ST_VEC<NVPTXRegClass regclass> {
+ def _v2_avar : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2}};", []>;
+ def _v2_areg : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2}};", []>;
+ def _v2_areg_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2}};", []>;
+ def _v2_ari : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int32Regs:$addr,
+ i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr+$offset], {{$src1, $src2}};", []>;
+ def _v2_ari_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, Int64Regs:$addr,
+ i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr+$offset], {{$src1, $src2}};", []>;
+ def _v2_asi : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, LdStCode:$isVol, LdStCode:$addsp,
+ LdStCode:$Vec, LdStCode:$Sign, i32imm:$fromWidth, imem:$addr,
+ i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr+$offset], {{$src1, $src2}};", []>;
+ def _v4_avar : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
+ def _v4_areg : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
+ def _v4_areg_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr], {{$src1, $src2, $src3, $src4}};", []>;
+ def _v4_ari : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int32Regs:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
+ def _v4_ari_64 : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, Int64Regs:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}$fromWidth "
+ "\t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
+ def _v4_asi : NVPTXInst<
+ (outs),
+ (ins regclass:$src1, regclass:$src2, regclass:$src3, regclass:$src4,
+ LdStCode:$isVol, LdStCode:$addsp, LdStCode:$Vec, LdStCode:$Sign,
+ i32imm:$fromWidth, imem:$addr, i32imm:$offset),
+ "st${isVol:volatile}${addsp:addsp}${Vec:vec}.${Sign:sign}"
+ "$fromWidth \t[$addr+$offset], {{$src1, $src2, $src3, $src4}};", []>;
+}
+
+let mayStore=1, hasSideEffects=0 in {
+ defm STV_i8 : ST_VEC<Int16Regs>;
+ defm STV_i16 : ST_VEC<Int16Regs>;
+ defm STV_i32 : ST_VEC<Int32Regs>;
+ defm STV_i64 : ST_VEC<Int64Regs>;
+ defm STV_f16 : ST_VEC<Float16Regs>;
+ defm STV_f16x2 : ST_VEC<Float16x2Regs>;
+ defm STV_f32 : ST_VEC<Float32Regs>;
+ defm STV_f64 : ST_VEC<Float64Regs>;
+}
+
+//---- Conversion ----
+
+class F_BITCONVERT<string SzStr, NVPTXRegClass regclassIn,
+ NVPTXRegClass regclassOut> :
+ NVPTXInst<(outs regclassOut:$d), (ins regclassIn:$a),
+ !strconcat("mov.b", SzStr, " \t$d, $a;"),
+ [(set regclassOut:$d, (bitconvert regclassIn:$a))]>;
+
+def BITCONVERT_16_I2F : F_BITCONVERT<"16", Int16Regs, Float16Regs>;
+def BITCONVERT_16_F2I : F_BITCONVERT<"16", Float16Regs, Int16Regs>;
+def BITCONVERT_32_I2F : F_BITCONVERT<"32", Int32Regs, Float32Regs>;
+def BITCONVERT_32_F2I : F_BITCONVERT<"32", Float32Regs, Int32Regs>;
+def BITCONVERT_64_I2F : F_BITCONVERT<"64", Int64Regs, Float64Regs>;
+def BITCONVERT_64_F2I : F_BITCONVERT<"64", Float64Regs, Int64Regs>;
+def BITCONVERT_32_I2F16x2 : F_BITCONVERT<"32", Int32Regs, Float16x2Regs>;
+def BITCONVERT_32_F16x22I : F_BITCONVERT<"32", Float16x2Regs, Int32Regs>;
+
+// NOTE: pred->fp are currently sub-optimal due to an issue in TableGen where
+// we cannot specify floating-point literals in isel patterns. Therefore, we
+// use an integer selp to select either 1 or 0 and then cvt to floating-point.
+
+// sint -> f16
+def : Pat<(f16 (sint_to_fp Int1Regs:$a)),
+ (CVT_f16_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f16 (sint_to_fp Int16Regs:$a)),
+ (CVT_f16_s16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f16 (sint_to_fp Int32Regs:$a)),
+ (CVT_f16_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f16 (sint_to_fp Int64Regs:$a)),
+ (CVT_f16_s64 Int64Regs:$a, CvtRN)>;
+
+// uint -> f16
+def : Pat<(f16 (uint_to_fp Int1Regs:$a)),
+ (CVT_f16_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f16 (uint_to_fp Int16Regs:$a)),
+ (CVT_f16_u16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f16 (uint_to_fp Int32Regs:$a)),
+ (CVT_f16_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f16 (uint_to_fp Int64Regs:$a)),
+ (CVT_f16_u64 Int64Regs:$a, CvtRN)>;
+
+// sint -> f32
+def : Pat<(f32 (sint_to_fp Int1Regs:$a)),
+ (CVT_f32_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int16Regs:$a)),
+ (CVT_f32_s16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int32Regs:$a)),
+ (CVT_f32_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f32 (sint_to_fp Int64Regs:$a)),
+ (CVT_f32_s64 Int64Regs:$a, CvtRN)>;
+
+// uint -> f32
+def : Pat<(f32 (uint_to_fp Int1Regs:$a)),
+ (CVT_f32_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int16Regs:$a)),
+ (CVT_f32_u16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int32Regs:$a)),
+ (CVT_f32_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f32 (uint_to_fp Int64Regs:$a)),
+ (CVT_f32_u64 Int64Regs:$a, CvtRN)>;
+
+// sint -> f64
+def : Pat<(f64 (sint_to_fp Int1Regs:$a)),
+ (CVT_f64_s32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int16Regs:$a)),
+ (CVT_f64_s16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int32Regs:$a)),
+ (CVT_f64_s32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f64 (sint_to_fp Int64Regs:$a)),
+ (CVT_f64_s64 Int64Regs:$a, CvtRN)>;
+
+// uint -> f64
+def : Pat<(f64 (uint_to_fp Int1Regs:$a)),
+ (CVT_f64_u32 (SELP_u32ii 1, 0, Int1Regs:$a), CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int16Regs:$a)),
+ (CVT_f64_u16 Int16Regs:$a, CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int32Regs:$a)),
+ (CVT_f64_u32 Int32Regs:$a, CvtRN)>;
+def : Pat<(f64 (uint_to_fp Int64Regs:$a)),
+ (CVT_f64_u64 Int64Regs:$a, CvtRN)>;
+
+
+// f16 -> sint
+def : Pat<(i1 (fp_to_sint Float16Regs:$a)),
+ (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_sint Float16Regs:$a)),
+ (CVT_s16_f16 Float16Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_sint Float16Regs:$a)),
+ (CVT_s32_f16 Float16Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_sint Float16Regs:$a)),
+ (CVT_s64_f16 Float16Regs:$a, CvtRZI)>;
+
+// f16 -> uint
+def : Pat<(i1 (fp_to_uint Float16Regs:$a)),
+ (SETP_b16ri (BITCONVERT_16_F2I Float16Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_uint Float16Regs:$a)),
+ (CVT_u16_f16 Float16Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_uint Float16Regs:$a)),
+ (CVT_u32_f16 Float16Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_uint Float16Regs:$a)),
+ (CVT_u64_f16 Float16Regs:$a, CvtRZI)>;
+
+// f32 -> sint
+def : Pat<(i1 (fp_to_sint Float32Regs:$a)),
+ (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
+ (CVT_s16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i16 (fp_to_sint Float32Regs:$a)),
+ (CVT_s16_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i32 (fp_to_sint Float32Regs:$a)),
+ (CVT_s32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i64 (fp_to_sint Float32Regs:$a)),
+ (CVT_s64_f32 Float32Regs:$a, CvtRZI)>;
+
+// f32 -> uint
+def : Pat<(i1 (fp_to_uint Float32Regs:$a)),
+ (SETP_b32ri (BITCONVERT_32_F2I Float32Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
+ (CVT_u16_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i16 (fp_to_uint Float32Regs:$a)),
+ (CVT_u16_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i32 (fp_to_uint Float32Regs:$a)),
+ (CVT_u32_f32 Float32Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(i64 (fp_to_uint Float32Regs:$a)),
+ (CVT_u64_f32 Float32Regs:$a, CvtRZI)>;
+
+// f64 -> sint
+def : Pat<(i1 (fp_to_sint Float64Regs:$a)),
+ (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_sint Float64Regs:$a)),
+ (CVT_s16_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_sint Float64Regs:$a)),
+ (CVT_s32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_sint Float64Regs:$a)),
+ (CVT_s64_f64 Float64Regs:$a, CvtRZI)>;
+
+// f64 -> uint
+def : Pat<(i1 (fp_to_uint Float64Regs:$a)),
+ (SETP_b64ri (BITCONVERT_64_F2I Float64Regs:$a), 0, CmpEQ)>;
+def : Pat<(i16 (fp_to_uint Float64Regs:$a)),
+ (CVT_u16_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i32 (fp_to_uint Float64Regs:$a)),
+ (CVT_u32_f64 Float64Regs:$a, CvtRZI)>;
+def : Pat<(i64 (fp_to_uint Float64Regs:$a)),
+ (CVT_u64_f64 Float64Regs:$a, CvtRZI)>;
+
+// sext i1
+def : Pat<(i16 (sext Int1Regs:$a)),
+ (SELP_s16ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (sext Int1Regs:$a)),
+ (SELP_s32ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (sext Int1Regs:$a)),
+ (SELP_s64ii -1, 0, Int1Regs:$a)>;
+
+// zext i1
+def : Pat<(i16 (zext Int1Regs:$a)),
+ (SELP_u16ii 1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (zext Int1Regs:$a)),
+ (SELP_u32ii 1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (zext Int1Regs:$a)),
+ (SELP_u64ii 1, 0, Int1Regs:$a)>;
+
+// anyext i1
+def : Pat<(i16 (anyext Int1Regs:$a)),
+ (SELP_u16ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i32 (anyext Int1Regs:$a)),
+ (SELP_u32ii -1, 0, Int1Regs:$a)>;
+def : Pat<(i64 (anyext Int1Regs:$a)),
+ (SELP_u64ii -1, 0, Int1Regs:$a)>;
+
+// sext i16
+def : Pat<(i32 (sext Int16Regs:$a)),
+ (CVT_s32_s16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (sext Int16Regs:$a)),
+ (CVT_s64_s16 Int16Regs:$a, CvtNONE)>;
+
+// zext i16
+def : Pat<(i32 (zext Int16Regs:$a)),
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (zext Int16Regs:$a)),
+ (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
+
+// anyext i16
+def : Pat<(i32 (anyext Int16Regs:$a)),
+ (CVT_u32_u16 Int16Regs:$a, CvtNONE)>;
+def : Pat<(i64 (anyext Int16Regs:$a)),
+ (CVT_u64_u16 Int16Regs:$a, CvtNONE)>;
+
+// sext i32
+def : Pat<(i64 (sext Int32Regs:$a)),
+ (CVT_s64_s32 Int32Regs:$a, CvtNONE)>;
+
+// zext i32
+def : Pat<(i64 (zext Int32Regs:$a)),
+ (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
+
+// anyext i32
+def : Pat<(i64 (anyext Int32Regs:$a)),
+ (CVT_u64_u32 Int32Regs:$a, CvtNONE)>;
+
+
+// truncate i64
+def : Pat<(i32 (trunc Int64Regs:$a)),
+ (CVT_u32_u64 Int64Regs:$a, CvtNONE)>;
+def : Pat<(i16 (trunc Int64Regs:$a)),
+ (CVT_u16_u64 Int64Regs:$a, CvtNONE)>;
+def : Pat<(i1 (trunc Int64Regs:$a)),
+ (SETP_b64ri (ANDb64ri Int64Regs:$a, 1), 1, CmpEQ)>;
+
+// truncate i32
+def : Pat<(i16 (trunc Int32Regs:$a)),
+ (CVT_u16_u32 Int32Regs:$a, CvtNONE)>;
+def : Pat<(i1 (trunc Int32Regs:$a)),
+ (SETP_b32ri (ANDb32ri Int32Regs:$a, 1), 1, CmpEQ)>;
+
+// truncate i16
+def : Pat<(i1 (trunc Int16Regs:$a)),
+ (SETP_b16ri (ANDb16ri Int16Regs:$a, 1), 1, CmpEQ)>;
+
+// sext_inreg
+def : Pat<(sext_inreg Int16Regs:$a, i8), (CVT_INREG_s16_s8 Int16Regs:$a)>;
+def : Pat<(sext_inreg Int32Regs:$a, i8), (CVT_INREG_s32_s8 Int32Regs:$a)>;
+def : Pat<(sext_inreg Int32Regs:$a, i16), (CVT_INREG_s32_s16 Int32Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i8), (CVT_INREG_s64_s8 Int64Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i16), (CVT_INREG_s64_s16 Int64Regs:$a)>;
+def : Pat<(sext_inreg Int64Regs:$a, i32), (CVT_INREG_s64_s32 Int64Regs:$a)>;
+
+
+// Select instructions with 32-bit predicates
+def : Pat<(select Int32Regs:$pred, Int16Regs:$a, Int16Regs:$b),
+ (SELP_b16rr Int16Regs:$a, Int16Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Int32Regs:$a, Int32Regs:$b),
+ (SELP_b32rr Int32Regs:$a, Int32Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Int64Regs:$a, Int64Regs:$b),
+ (SELP_b64rr Int64Regs:$a, Int64Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Float16Regs:$a, Float16Regs:$b),
+ (SELP_f16rr Float16Regs:$a, Float16Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Float32Regs:$a, Float32Regs:$b),
+ (SELP_f32rr Float32Regs:$a, Float32Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+def : Pat<(select Int32Regs:$pred, Float64Regs:$a, Float64Regs:$b),
+ (SELP_f64rr Float64Regs:$a, Float64Regs:$b,
+ (SETP_b32ri (ANDb32ri Int32Regs:$pred, 1), 1, CmpEQ))>;
+
+
+let hasSideEffects = false in {
+ // pack a set of smaller int registers to a larger int register
+ def V4I16toI64 : NVPTXInst<(outs Int64Regs:$d),
+ (ins Int16Regs:$s1, Int16Regs:$s2,
+ Int16Regs:$s3, Int16Regs:$s4),
+ "mov.b64 \t$d, {{$s1, $s2, $s3, $s4}};", []>;
+ def V2I16toI32 : NVPTXInst<(outs Int32Regs:$d),
+ (ins Int16Regs:$s1, Int16Regs:$s2),
+ "mov.b32 \t$d, {{$s1, $s2}};", []>;
+ def V2I32toI64 : NVPTXInst<(outs Int64Regs:$d),
+ (ins Int32Regs:$s1, Int32Regs:$s2),
+ "mov.b64 \t$d, {{$s1, $s2}};", []>;
+ def V2F32toF64 : NVPTXInst<(outs Float64Regs:$d),
+ (ins Float32Regs:$s1, Float32Regs:$s2),
+ "mov.b64 \t$d, {{$s1, $s2}};", []>;
+
+ // unpack a larger int register to a set of smaller int registers
+ def I64toV4I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2,
+ Int16Regs:$d3, Int16Regs:$d4),
+ (ins Int64Regs:$s),
+ "mov.b64 \t{{$d1, $d2, $d3, $d4}}, $s;", []>;
+ def I32toV2I16 : NVPTXInst<(outs Int16Regs:$d1, Int16Regs:$d2),
+ (ins Int32Regs:$s),
+ "mov.b32 \t{{$d1, $d2}}, $s;", []>;
+ def I64toV2I32 : NVPTXInst<(outs Int32Regs:$d1, Int32Regs:$d2),
+ (ins Int64Regs:$s),
+ "mov.b64 \t{{$d1, $d2}}, $s;", []>;
+ def F64toV2F32 : NVPTXInst<(outs Float32Regs:$d1, Float32Regs:$d2),
+ (ins Float64Regs:$s),
+ "mov.b64 \t{{$d1, $d2}}, $s;", []>;
+
+}
+
+let hasSideEffects = false in {
+ // Extract element of f16x2 register. PTX does not provide any way
+ // to access elements of f16x2 vector directly, so we need to
+ // extract it using a temporary register.
+ def F16x2toF16_0 : NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16x2Regs:$src),
+ "{{ .reg .b16 \t%tmp_hi;\n\t"
+ " mov.b32 \t{$dst, %tmp_hi}, $src; }}",
+ [(set Float16Regs:$dst,
+ (extractelt (v2f16 Float16x2Regs:$src), 0))]>;
+ def F16x2toF16_1 : NVPTXInst<(outs Float16Regs:$dst),
+ (ins Float16x2Regs:$src),
+ "{{ .reg .b16 \t%tmp_lo;\n\t"
+ " mov.b32 \t{%tmp_lo, $dst}, $src; }}",
+ [(set Float16Regs:$dst,
+ (extractelt (v2f16 Float16x2Regs:$src), 1))]>;
+
+ // Coalesce two f16 registers into f16x2
+ def BuildF16x2 : NVPTXInst<(outs Float16x2Regs:$dst),
+ (ins Float16Regs:$a, Float16Regs:$b),
+ "mov.b32 \t$dst, {{$a, $b}};",
+ [(set Float16x2Regs:$dst,
+ (build_vector (f16 Float16Regs:$a), (f16 Float16Regs:$b)))]>;
+
+ // Directly initializing underlying the b32 register is one less SASS
+ // instruction than than vector-packing move.
+ def BuildF16x2i : NVPTXInst<(outs Float16x2Regs:$dst), (ins i32imm:$src),
+ "mov.b32 \t$dst, $src;",
+ []>;
+
+ // Split f16x2 into two f16 registers.
+ def SplitF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
+ (ins Float16x2Regs:$src),
+ "mov.b32 \t{{$lo, $hi}}, $src;",
+ []>;
+ // Split an i32 into two f16
+ def SplitI32toF16x2 : NVPTXInst<(outs Float16Regs:$lo, Float16Regs:$hi),
+ (ins Int32Regs:$src),
+ "mov.b32 \t{{$lo, $hi}}, $src;",
+ []>;
+}
+
+// Count leading zeros
+let hasSideEffects = false in {
+ def CLZr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
+ "clz.b32 \t$d, $a;", []>;
+ def CLZr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "clz.b64 \t$d, $a;", []>;
+}
+
+// 32-bit has a direct PTX instruction
+def : Pat<(ctlz Int32Regs:$a), (CLZr32 Int32Regs:$a)>;
+
+// The return type of the ctlz ISD node is the same as its input, but the PTX
+// ctz instruction always returns a 32-bit value. For ctlz.i64, convert the
+// ptx value to 64 bits to match the ISD node's semantics, unless we know we're
+// truncating back down to 32 bits.
+def : Pat<(i64 (ctlz Int64Regs:$a)), (CVT_u64_u32 (CLZr64 Int64Regs:$a), CvtNONE)>;
+def : Pat<(i32 (trunc (ctlz Int64Regs:$a))), (CLZr64 Int64Regs:$a)>;
+
+// For 16-bit ctlz, we zero-extend to 32-bit, perform the count, then trunc the
+// result back to 16-bits if necessary. We also need to subtract 16 because
+// the high-order 16 zeros were counted.
+//
+// TODO: NVPTX has a mov.b32 b32reg, {imm, b16reg} instruction, which we could
+// use to save one SASS instruction (on sm_35 anyway):
+//
+// mov.b32 $tmp, {0xffff, $a}
+// ctlz.b32 $result, $tmp
+//
+// That is, instead of zero-extending the input to 32 bits, we'd "one-extend"
+// and then ctlz that value. This way we don't have to subtract 16 from the
+// result. Unfortunately today we don't have a way to generate
+// "mov b32reg, {b16imm, b16reg}", so we don't do this optimization.
+def : Pat<(i16 (ctlz Int16Regs:$a)),
+ (SUBi16ri (CVT_u16_u32
+ (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE), 16)>;
+def : Pat<(i32 (zext (i16 (ctlz Int16Regs:$a)))),
+ (SUBi32ri (CLZr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), 16)>;
+
+// Population count
+let hasSideEffects = false in {
+ def POPCr32 : NVPTXInst<(outs Int32Regs:$d), (ins Int32Regs:$a),
+ "popc.b32 \t$d, $a;", []>;
+ def POPCr64 : NVPTXInst<(outs Int32Regs:$d), (ins Int64Regs:$a),
+ "popc.b64 \t$d, $a;", []>;
+}
+
+// 32-bit has a direct PTX instruction
+def : Pat<(ctpop Int32Regs:$a), (POPCr32 Int32Regs:$a)>;
+
+// For 64-bit, the result in PTX is actually 32-bit so we zero-extend to 64-bit
+// to match the LLVM semantics. Just as with ctlz.i64, we provide a second
+// pattern that avoids the type conversion if we're truncating the result to
+// i32 anyway.
+def : Pat<(ctpop Int64Regs:$a), (CVT_u64_u32 (POPCr64 Int64Regs:$a), CvtNONE)>;
+def : Pat<(i32 (trunc (ctpop Int64Regs:$a))), (POPCr64 Int64Regs:$a)>;
+
+// For 16-bit, we zero-extend to 32-bit, then trunc the result back to 16-bits.
+// If we know that we're storing into an i32, we can avoid the final trunc.
+def : Pat<(ctpop Int16Regs:$a),
+ (CVT_u16_u32 (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE)), CvtNONE)>;
+def : Pat<(i32 (zext (i16 (ctpop Int16Regs:$a)))),
+ (POPCr32 (CVT_u32_u16 Int16Regs:$a, CvtNONE))>;
+
+// fpround f32 -> f16
+def : Pat<(f16 (fpround Float32Regs:$a)),
+ (CVT_f16_f32 Float32Regs:$a, CvtRN)>;
+
+// fpround f64 -> f16
+def : Pat<(f16 (fpround Float64Regs:$a)),
+ (CVT_f16_f64 Float64Regs:$a, CvtRN)>;
+
+// fpround f64 -> f32
+def : Pat<(f32 (fpround Float64Regs:$a)),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(f32 (fpround Float64Regs:$a)),
+ (CVT_f32_f64 Float64Regs:$a, CvtRN)>;
+
+// fpextend f16 -> f32
+def : Pat<(f32 (fpextend Float16Regs:$a)),
+ (CVT_f32_f16 Float16Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(f32 (fpextend Float16Regs:$a)),
+ (CVT_f32_f16 Float16Regs:$a, CvtNONE)>;
+
+// fpextend f16 -> f64
+def : Pat<(f64 (fpextend Float16Regs:$a)),
+ (CVT_f64_f16 Float16Regs:$a, CvtNONE)>;
+
+// fpextend f32 -> f64
+def : Pat<(f64 (fpextend Float32Regs:$a)),
+ (CVT_f64_f32 Float32Regs:$a, CvtNONE_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(f64 (fpextend Float32Regs:$a)),
+ (CVT_f64_f32 Float32Regs:$a, CvtNONE)>;
+
+def retflag : SDNode<"NVPTXISD::RET_FLAG", SDTNone,
+ [SDNPHasChain, SDNPOptInGlue]>;
+
+// fceil, ffloor, fround, ftrunc.
+
+def : Pat<(fceil Float16Regs:$a),
+ (CVT_f16_f16 Float16Regs:$a, CvtRPI)>;
+def : Pat<(fceil Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRPI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(fceil Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRPI)>, Requires<[doNoF32FTZ]>;
+def : Pat<(fceil Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRPI)>;
+
+def : Pat<(ffloor Float16Regs:$a),
+ (CVT_f16_f16 Float16Regs:$a, CvtRMI)>;
+def : Pat<(ffloor Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRMI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(ffloor Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRMI)>, Requires<[doNoF32FTZ]>;
+def : Pat<(ffloor Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRMI)>;
+
+def : Pat<(ftrunc Float16Regs:$a),
+ (CVT_f16_f16 Float16Regs:$a, CvtRZI)>;
+def : Pat<(ftrunc Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRZI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(ftrunc Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRZI)>, Requires<[doNoF32FTZ]>;
+def : Pat<(ftrunc Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRZI)>;
+
+// nearbyint and rint are implemented as rounding to nearest even. This isn't
+// strictly correct, because it causes us to ignore the rounding mode. But it
+// matches what CUDA's "libm" does.
+
+def : Pat<(fnearbyint Float16Regs:$a),
+ (CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
+def : Pat<(fnearbyint Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(fnearbyint Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
+def : Pat<(fnearbyint Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
+
+def : Pat<(frint Float16Regs:$a),
+ (CVT_f16_f16 Float16Regs:$a, CvtRNI)>;
+def : Pat<(frint Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI_FTZ)>, Requires<[doF32FTZ]>;
+def : Pat<(frint Float32Regs:$a),
+ (CVT_f32_f32 Float32Regs:$a, CvtRNI)>, Requires<[doNoF32FTZ]>;
+def : Pat<(frint Float64Regs:$a),
+ (CVT_f64_f64 Float64Regs:$a, CvtRNI)>;
+
+
+//-----------------------------------
+// Control-flow
+//-----------------------------------
+
+let isTerminator=1 in {
+ let isReturn=1, isBarrier=1 in
+ def Return : NVPTXInst<(outs), (ins), "ret;", [(retflag)]>;
+
+ let isBranch=1 in
+ def CBranch : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
+ "@$a bra \t$target;",
+ [(brcond Int1Regs:$a, bb:$target)]>;
+ let isBranch=1 in
+ def CBranchOther : NVPTXInst<(outs), (ins Int1Regs:$a, brtarget:$target),
+ "@!$a bra \t$target;", []>;
+
+ let isBranch=1, isBarrier=1 in
+ def GOTO : NVPTXInst<(outs), (ins brtarget:$target),
+ "bra.uni \t$target;", [(br bb:$target)]>;
+}
+
+def : Pat<(brcond Int32Regs:$a, bb:$target),
+ (CBranch (SETP_u32ri Int32Regs:$a, 0, CmpNE), bb:$target)>;
+
+// SelectionDAGBuilder::visitSWitchCase() will invert the condition of a
+// conditional branch if the target block is the next block so that the code
+// can fall through to the target block. The invertion is done by 'xor
+// condition, 1', which will be translated to (setne condition, -1). Since ptx
+// supports '@!pred bra target', we should use it.
+def : Pat<(brcond (i1 (setne Int1Regs:$a, -1)), bb:$target),
+ (CBranchOther Int1Regs:$a, bb:$target)>;
+
+// Call
+def SDT_NVPTXCallSeqStart : SDCallSeqStart<[SDTCisVT<0, i32>,
+ SDTCisVT<1, i32>]>;
+def SDT_NVPTXCallSeqEnd : SDCallSeqEnd<[SDTCisVT<0, i32>, SDTCisVT<1, i32>]>;
+
+def callseq_start : SDNode<"ISD::CALLSEQ_START", SDT_NVPTXCallSeqStart,
+ [SDNPHasChain, SDNPOutGlue, SDNPSideEffect]>;
+def callseq_end : SDNode<"ISD::CALLSEQ_END", SDT_NVPTXCallSeqEnd,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue,
+ SDNPSideEffect]>;
+
+def SDT_NVPTXCall : SDTypeProfile<0, 1, [SDTCisVT<0, i32>]>;
+def call : SDNode<"NVPTXISD::CALL", SDT_NVPTXCall,
+ [SDNPHasChain, SDNPOptInGlue, SDNPOutGlue]>;
+def calltarget : Operand<i32>;
+let isCall=1 in {
+ def CALL : NVPTXInst<(outs), (ins calltarget:$dst), "call \t$dst, (1);", []>;
+}
+
+def : Pat<(call tglobaladdr:$dst), (CALL tglobaladdr:$dst)>;
+def : Pat<(call texternalsym:$dst), (CALL texternalsym:$dst)>;
+
+// Pseudo instructions.
+class Pseudo<dag outs, dag ins, string asmstr, list<dag> pattern>
+ : NVPTXInst<outs, ins, asmstr, pattern>;
+
+def Callseq_Start :
+ NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "\\{ // callseq $amt1, $amt2\n"
+ "\t.reg .b32 temp_param_reg;",
+ [(callseq_start timm:$amt1, timm:$amt2)]>;
+def Callseq_End :
+ NVPTXInst<(outs), (ins i32imm:$amt1, i32imm:$amt2),
+ "\\} // callseq $amt1",
+ [(callseq_end timm:$amt1, timm:$amt2)]>;
+
+// trap instruction
+def trapinst : NVPTXInst<(outs), (ins), "trap;", [(trap)]>;
+
+// Call prototype wrapper
+def SDTCallPrototype : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+def CallPrototype :
+ SDNode<"NVPTXISD::CallPrototype", SDTCallPrototype,
+ [SDNPHasChain, SDNPOutGlue, SDNPInGlue, SDNPSideEffect]>;
+def ProtoIdent : Operand<i32> {
+ let PrintMethod = "printProtoIdent";
+}
+def CALL_PROTOTYPE :
+ NVPTXInst<(outs), (ins ProtoIdent:$ident),
+ "$ident", [(CallPrototype (i32 texternalsym:$ident))]>;
+
+
+include "NVPTXIntrinsics.td"
+
+
+//-----------------------------------
+// Notes
+//-----------------------------------
+// BSWAP is currently expanded. The following is a more efficient
+// - for < sm_20, use vector scalar mov, as tesla support native 16-bit register
+// - for sm_20, use pmpt (use vector scalar mov to get the pack and
+// unpack). sm_20 supports native 32-bit register, but not native 16-bit
+// register.