diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
commit | 2d37894b1b037cf24231090eda8589bbb44fb6fc (patch) | |
tree | be835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp | |
parent | 718c552901d703c502ccbefdfc3c9028d608b947 (diff) | |
download | ydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp | 1774 |
1 files changed, 887 insertions, 887 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp b/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp index 9066cc5c41..7c5af1a0c5 100644 --- a/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp @@ -1,522 +1,522 @@ -//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based -// register allocator for LLVM. This allocator works by constructing a PBQP -// problem representing the register allocation problem under consideration, -// solving this using a PBQP solver, and mapping the solution back to a -// register assignment. If any variables are selected for spilling then spill -// code is inserted and the process repeated. -// -// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned -// for register allocation. For more information on PBQP for register -// allocation, see the following papers: -// -// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with -// PBQP. In Proceedings of the 7th Joint Modular Languages Conference -// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. -// -// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular -// architectures. In Proceedings of the Joint Conference on Languages, -// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, -// NY, USA, 139-148. -// -//===----------------------------------------------------------------------===// - -#include "llvm/CodeGen/RegAllocPBQP.h" -#include "RegisterCoalescer.h" -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/DenseSet.h" -#include "llvm/ADT/STLExtras.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/StringRef.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/CodeGen/CalcSpillWeights.h" -#include "llvm/CodeGen/LiveInterval.h" -#include "llvm/CodeGen/LiveIntervals.h" -#include "llvm/CodeGen/LiveRangeEdit.h" -#include "llvm/CodeGen/LiveStacks.h" -#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/PBQP/Graph.h" -#include "llvm/CodeGen/PBQP/Math.h" -#include "llvm/CodeGen/PBQP/Solution.h" -#include "llvm/CodeGen/PBQPRAConstraint.h" -#include "llvm/CodeGen/RegAllocRegistry.h" -#include "llvm/CodeGen/SlotIndexes.h" -#include "llvm/CodeGen/Spiller.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/CodeGen/VirtRegMap.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Module.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Pass.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/FileSystem.h" -#include "llvm/Support/Printable.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstddef> -#include <limits> -#include <map> -#include <memory> -#include <queue> -#include <set> -#include <sstream> -#include <string> -#include <system_error> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "regalloc" - -static RegisterRegAlloc -RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", - createDefaultPBQPRegisterAllocator); - -static cl::opt<bool> -PBQPCoalescing("pbqp-coalescing", - cl::desc("Attempt coalescing during PBQP register allocation."), - cl::init(false), cl::Hidden); - -#ifndef NDEBUG -static cl::opt<bool> -PBQPDumpGraphs("pbqp-dump-graphs", - cl::desc("Dump graphs for each function/round in the compilation unit."), - cl::init(false), cl::Hidden); -#endif - -namespace { - -/// -/// PBQP based allocators solve the register allocation problem by mapping -/// register allocation problems to Partitioned Boolean Quadratic -/// Programming problems. -class RegAllocPBQP : public MachineFunctionPass { -public: - static char ID; - - /// Construct a PBQP register allocator. - RegAllocPBQP(char *cPassID = nullptr) - : MachineFunctionPass(ID), customPassID(cPassID) { - initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); - initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); - initializeLiveStacksPass(*PassRegistry::getPassRegistry()); - initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); - } - - /// Return the pass name. - StringRef getPassName() const override { return "PBQP Register Allocator"; } - - /// PBQP analysis usage. - void getAnalysisUsage(AnalysisUsage &au) const override; - - /// Perform register allocation - bool runOnMachineFunction(MachineFunction &MF) override; - - MachineFunctionProperties getRequiredProperties() const override { - return MachineFunctionProperties().set( - MachineFunctionProperties::Property::NoPHIs); - } - +//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based +// register allocator for LLVM. This allocator works by constructing a PBQP +// problem representing the register allocation problem under consideration, +// solving this using a PBQP solver, and mapping the solution back to a +// register assignment. If any variables are selected for spilling then spill +// code is inserted and the process repeated. +// +// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned +// for register allocation. For more information on PBQP for register +// allocation, see the following papers: +// +// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with +// PBQP. In Proceedings of the 7th Joint Modular Languages Conference +// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361. +// +// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular +// architectures. In Proceedings of the Joint Conference on Languages, +// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York, +// NY, USA, 139-148. +// +//===----------------------------------------------------------------------===// + +#include "llvm/CodeGen/RegAllocPBQP.h" +#include "RegisterCoalescer.h" +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/DenseSet.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/StringRef.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/CodeGen/CalcSpillWeights.h" +#include "llvm/CodeGen/LiveInterval.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/LiveRangeEdit.h" +#include "llvm/CodeGen/LiveStacks.h" +#include "llvm/CodeGen/MachineBlockFrequencyInfo.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/PBQP/Graph.h" +#include "llvm/CodeGen/PBQP/Math.h" +#include "llvm/CodeGen/PBQP/Solution.h" +#include "llvm/CodeGen/PBQPRAConstraint.h" +#include "llvm/CodeGen/RegAllocRegistry.h" +#include "llvm/CodeGen/SlotIndexes.h" +#include "llvm/CodeGen/Spiller.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/CodeGen/VirtRegMap.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/FileSystem.h" +#include "llvm/Support/Printable.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <limits> +#include <map> +#include <memory> +#include <queue> +#include <set> +#include <sstream> +#include <string> +#include <system_error> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "regalloc" + +static RegisterRegAlloc +RegisterPBQPRepAlloc("pbqp", "PBQP register allocator", + createDefaultPBQPRegisterAllocator); + +static cl::opt<bool> +PBQPCoalescing("pbqp-coalescing", + cl::desc("Attempt coalescing during PBQP register allocation."), + cl::init(false), cl::Hidden); + +#ifndef NDEBUG +static cl::opt<bool> +PBQPDumpGraphs("pbqp-dump-graphs", + cl::desc("Dump graphs for each function/round in the compilation unit."), + cl::init(false), cl::Hidden); +#endif + +namespace { + +/// +/// PBQP based allocators solve the register allocation problem by mapping +/// register allocation problems to Partitioned Boolean Quadratic +/// Programming problems. +class RegAllocPBQP : public MachineFunctionPass { +public: + static char ID; + + /// Construct a PBQP register allocator. + RegAllocPBQP(char *cPassID = nullptr) + : MachineFunctionPass(ID), customPassID(cPassID) { + initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); + initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); + initializeLiveStacksPass(*PassRegistry::getPassRegistry()); + initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); + } + + /// Return the pass name. + StringRef getPassName() const override { return "PBQP Register Allocator"; } + + /// PBQP analysis usage. + void getAnalysisUsage(AnalysisUsage &au) const override; + + /// Perform register allocation + bool runOnMachineFunction(MachineFunction &MF) override; + + MachineFunctionProperties getRequiredProperties() const override { + return MachineFunctionProperties().set( + MachineFunctionProperties::Property::NoPHIs); + } + MachineFunctionProperties getClearedProperties() const override { return MachineFunctionProperties().set( MachineFunctionProperties::Property::IsSSA); } -private: +private: using RegSet = std::set<Register>; - - char *customPassID; - - RegSet VRegsToAlloc, EmptyIntervalVRegs; - - /// Inst which is a def of an original reg and whose defs are already all - /// dead after remat is saved in DeadRemats. The deletion of such inst is - /// postponed till all the allocations are done, so its remat expr is - /// always available for the remat of all the siblings of the original reg. - SmallPtrSet<MachineInstr *, 32> DeadRemats; - - /// Finds the initial set of vreg intervals to allocate. - void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); - - /// Constructs an initial graph. - void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); - - /// Spill the given VReg. - void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals, - MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, - Spiller &VRegSpiller); - - /// Given a solved PBQP problem maps this solution back to a register - /// assignment. - bool mapPBQPToRegAlloc(const PBQPRAGraph &G, - const PBQP::Solution &Solution, - VirtRegMap &VRM, - Spiller &VRegSpiller); - - /// Postprocessing before final spilling. Sets basic block "live in" - /// variables. - void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, - VirtRegMap &VRM) const; - - void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); -}; - -char RegAllocPBQP::ID = 0; - -/// Set spill costs for each node in the PBQP reg-alloc graph. -class SpillCosts : public PBQPRAConstraint { -public: - void apply(PBQPRAGraph &G) override { - LiveIntervals &LIS = G.getMetadata().LIS; - - // A minimum spill costs, so that register constraints can can be set - // without normalization in the [0.0:MinSpillCost( interval. - const PBQP::PBQPNum MinSpillCost = 10.0; - - for (auto NId : G.nodeIds()) { - PBQP::PBQPNum SpillCost = + + char *customPassID; + + RegSet VRegsToAlloc, EmptyIntervalVRegs; + + /// Inst which is a def of an original reg and whose defs are already all + /// dead after remat is saved in DeadRemats. The deletion of such inst is + /// postponed till all the allocations are done, so its remat expr is + /// always available for the remat of all the siblings of the original reg. + SmallPtrSet<MachineInstr *, 32> DeadRemats; + + /// Finds the initial set of vreg intervals to allocate. + void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS); + + /// Constructs an initial graph. + void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller); + + /// Spill the given VReg. + void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals, + MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM, + Spiller &VRegSpiller); + + /// Given a solved PBQP problem maps this solution back to a register + /// assignment. + bool mapPBQPToRegAlloc(const PBQPRAGraph &G, + const PBQP::Solution &Solution, + VirtRegMap &VRM, + Spiller &VRegSpiller); + + /// Postprocessing before final spilling. Sets basic block "live in" + /// variables. + void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS, + VirtRegMap &VRM) const; + + void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS); +}; + +char RegAllocPBQP::ID = 0; + +/// Set spill costs for each node in the PBQP reg-alloc graph. +class SpillCosts : public PBQPRAConstraint { +public: + void apply(PBQPRAGraph &G) override { + LiveIntervals &LIS = G.getMetadata().LIS; + + // A minimum spill costs, so that register constraints can can be set + // without normalization in the [0.0:MinSpillCost( interval. + const PBQP::PBQPNum MinSpillCost = 10.0; + + for (auto NId : G.nodeIds()) { + PBQP::PBQPNum SpillCost = LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight(); - if (SpillCost == 0.0) - SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); - else - SpillCost += MinSpillCost; - PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); - NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; - G.setNodeCosts(NId, std::move(NodeCosts)); - } - } -}; - -/// Add interference edges between overlapping vregs. -class Interference : public PBQPRAConstraint { -private: - using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; - using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; - using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; - using DisjointAllowedRegsCache = DenseSet<IKey>; - using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; - using IEdgeCache = DenseSet<IEdgeKey>; - - bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, - PBQPRAGraph::NodeId MId, - const DisjointAllowedRegsCache &D) const { - const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); - const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); - - if (NRegs == MRegs) - return false; - - if (NRegs < MRegs) + if (SpillCost == 0.0) + SpillCost = std::numeric_limits<PBQP::PBQPNum>::min(); + else + SpillCost += MinSpillCost; + PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId)); + NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost; + G.setNodeCosts(NId, std::move(NodeCosts)); + } + } +}; + +/// Add interference edges between overlapping vregs. +class Interference : public PBQPRAConstraint { +private: + using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *; + using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>; + using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>; + using DisjointAllowedRegsCache = DenseSet<IKey>; + using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>; + using IEdgeCache = DenseSet<IEdgeKey>; + + bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, + PBQPRAGraph::NodeId MId, + const DisjointAllowedRegsCache &D) const { + const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); + const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); + + if (NRegs == MRegs) + return false; + + if (NRegs < MRegs) return D.contains(IKey(NRegs, MRegs)); - + return D.contains(IKey(MRegs, NRegs)); - } - - void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, - PBQPRAGraph::NodeId MId, - DisjointAllowedRegsCache &D) { - const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); - const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); - - assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); - - if (NRegs < MRegs) - D.insert(IKey(NRegs, MRegs)); - else - D.insert(IKey(MRegs, NRegs)); - } - - // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required - // for the fast interference graph construction algorithm. The last is there - // to save us from looking up node ids via the VRegToNode map in the graph - // metadata. - using IntervalInfo = - std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; - - static SlotIndex getStartPoint(const IntervalInfo &I) { - return std::get<0>(I)->segments[std::get<1>(I)].start; - } - - static SlotIndex getEndPoint(const IntervalInfo &I) { - return std::get<0>(I)->segments[std::get<1>(I)].end; - } - - static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { - return std::get<2>(I); - } - - static bool lowestStartPoint(const IntervalInfo &I1, - const IntervalInfo &I2) { - // Condition reversed because priority queue has the *highest* element at - // the front, rather than the lowest. - return getStartPoint(I1) > getStartPoint(I2); - } - - static bool lowestEndPoint(const IntervalInfo &I1, - const IntervalInfo &I2) { - SlotIndex E1 = getEndPoint(I1); - SlotIndex E2 = getEndPoint(I2); - - if (E1 < E2) - return true; - - if (E1 > E2) - return false; - - // If two intervals end at the same point, we need a way to break the tie or - // the set will assume they're actually equal and refuse to insert a - // "duplicate". Just compare the vregs - fast and guaranteed unique. + } + + void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId, + PBQPRAGraph::NodeId MId, + DisjointAllowedRegsCache &D) { + const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs(); + const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs(); + + assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself"); + + if (NRegs < MRegs) + D.insert(IKey(NRegs, MRegs)); + else + D.insert(IKey(MRegs, NRegs)); + } + + // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required + // for the fast interference graph construction algorithm. The last is there + // to save us from looking up node ids via the VRegToNode map in the graph + // metadata. + using IntervalInfo = + std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>; + + static SlotIndex getStartPoint(const IntervalInfo &I) { + return std::get<0>(I)->segments[std::get<1>(I)].start; + } + + static SlotIndex getEndPoint(const IntervalInfo &I) { + return std::get<0>(I)->segments[std::get<1>(I)].end; + } + + static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) { + return std::get<2>(I); + } + + static bool lowestStartPoint(const IntervalInfo &I1, + const IntervalInfo &I2) { + // Condition reversed because priority queue has the *highest* element at + // the front, rather than the lowest. + return getStartPoint(I1) > getStartPoint(I2); + } + + static bool lowestEndPoint(const IntervalInfo &I1, + const IntervalInfo &I2) { + SlotIndex E1 = getEndPoint(I1); + SlotIndex E2 = getEndPoint(I2); + + if (E1 < E2) + return true; + + if (E1 > E2) + return false; + + // If two intervals end at the same point, we need a way to break the tie or + // the set will assume they're actually equal and refuse to insert a + // "duplicate". Just compare the vregs - fast and guaranteed unique. return std::get<0>(I1)->reg() < std::get<0>(I2)->reg(); - } - - static bool isAtLastSegment(const IntervalInfo &I) { - return std::get<1>(I) == std::get<0>(I)->size() - 1; - } - - static IntervalInfo nextSegment(const IntervalInfo &I) { - return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); - } - -public: - void apply(PBQPRAGraph &G) override { - // The following is loosely based on the linear scan algorithm introduced in - // "Linear Scan Register Allocation" by Poletto and Sarkar. This version - // isn't linear, because the size of the active set isn't bound by the - // number of registers, but rather the size of the largest clique in the - // graph. Still, we expect this to be better than N^2. - LiveIntervals &LIS = G.getMetadata().LIS; - - // Interferenc matrices are incredibly regular - they're only a function of - // the allowed sets, so we cache them to avoid the overhead of constructing - // and uniquing them. - IMatrixCache C; - - // Finding an edge is expensive in the worst case (O(max_clique(G))). So - // cache locally edges we have already seen. - IEdgeCache EC; - - // Cache known disjoint allowed registers pairs - DisjointAllowedRegsCache D; - - using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; - using IntervalQueue = - std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, - decltype(&lowestStartPoint)>; - IntervalSet Active(lowestEndPoint); - IntervalQueue Inactive(lowestStartPoint); - - // Start by building the inactive set. - for (auto NId : G.nodeIds()) { + } + + static bool isAtLastSegment(const IntervalInfo &I) { + return std::get<1>(I) == std::get<0>(I)->size() - 1; + } + + static IntervalInfo nextSegment(const IntervalInfo &I) { + return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I)); + } + +public: + void apply(PBQPRAGraph &G) override { + // The following is loosely based on the linear scan algorithm introduced in + // "Linear Scan Register Allocation" by Poletto and Sarkar. This version + // isn't linear, because the size of the active set isn't bound by the + // number of registers, but rather the size of the largest clique in the + // graph. Still, we expect this to be better than N^2. + LiveIntervals &LIS = G.getMetadata().LIS; + + // Interferenc matrices are incredibly regular - they're only a function of + // the allowed sets, so we cache them to avoid the overhead of constructing + // and uniquing them. + IMatrixCache C; + + // Finding an edge is expensive in the worst case (O(max_clique(G))). So + // cache locally edges we have already seen. + IEdgeCache EC; + + // Cache known disjoint allowed registers pairs + DisjointAllowedRegsCache D; + + using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>; + using IntervalQueue = + std::priority_queue<IntervalInfo, std::vector<IntervalInfo>, + decltype(&lowestStartPoint)>; + IntervalSet Active(lowestEndPoint); + IntervalQueue Inactive(lowestStartPoint); + + // Start by building the inactive set. + for (auto NId : G.nodeIds()) { Register VReg = G.getNodeMetadata(NId).getVReg(); - LiveInterval &LI = LIS.getInterval(VReg); - assert(!LI.empty() && "PBQP graph contains node for empty interval"); - Inactive.push(std::make_tuple(&LI, 0, NId)); - } - - while (!Inactive.empty()) { - // Tentatively grab the "next" interval - this choice may be overriden - // below. - IntervalInfo Cur = Inactive.top(); - - // Retire any active intervals that end before Cur starts. - IntervalSet::iterator RetireItr = Active.begin(); - while (RetireItr != Active.end() && - (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { - // If this interval has subsequent segments, add the next one to the - // inactive list. - if (!isAtLastSegment(*RetireItr)) - Inactive.push(nextSegment(*RetireItr)); - - ++RetireItr; - } - Active.erase(Active.begin(), RetireItr); - - // One of the newly retired segments may actually start before the - // Cur segment, so re-grab the front of the inactive list. - Cur = Inactive.top(); - Inactive.pop(); - - // At this point we know that Cur overlaps all active intervals. Add the - // interference edges. - PBQP::GraphBase::NodeId NId = getNodeId(Cur); - for (const auto &A : Active) { - PBQP::GraphBase::NodeId MId = getNodeId(A); - - // Do not add an edge when the nodes' allowed registers do not - // intersect: there is obviously no interference. - if (haveDisjointAllowedRegs(G, NId, MId, D)) - continue; - - // Check that we haven't already added this edge - IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); - if (EC.count(EK)) - continue; - - // This is a new edge - add it to the graph. - if (!createInterferenceEdge(G, NId, MId, C)) - setDisjointAllowedRegs(G, NId, MId, D); - else - EC.insert(EK); - } - - // Finally, add Cur to the Active set. - Active.insert(Cur); - } - } - -private: - // Create an Interference edge and add it to the graph, unless it is - // a null matrix, meaning the nodes' allowed registers do not have any - // interference. This case occurs frequently between integer and floating - // point registers for example. - // return true iff both nodes interferes. - bool createInterferenceEdge(PBQPRAGraph &G, - PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, - IMatrixCache &C) { - const TargetRegisterInfo &TRI = - *G.getMetadata().MF.getSubtarget().getRegisterInfo(); - const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); - const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); - - // Try looking the edge costs up in the IMatrixCache first. - IKey K(&NRegs, &MRegs); - IMatrixCache::iterator I = C.find(K); - if (I != C.end()) { - G.addEdgeBypassingCostAllocator(NId, MId, I->second); - return true; - } - - PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); - bool NodesInterfere = false; - for (unsigned I = 0; I != NRegs.size(); ++I) { + LiveInterval &LI = LIS.getInterval(VReg); + assert(!LI.empty() && "PBQP graph contains node for empty interval"); + Inactive.push(std::make_tuple(&LI, 0, NId)); + } + + while (!Inactive.empty()) { + // Tentatively grab the "next" interval - this choice may be overriden + // below. + IntervalInfo Cur = Inactive.top(); + + // Retire any active intervals that end before Cur starts. + IntervalSet::iterator RetireItr = Active.begin(); + while (RetireItr != Active.end() && + (getEndPoint(*RetireItr) <= getStartPoint(Cur))) { + // If this interval has subsequent segments, add the next one to the + // inactive list. + if (!isAtLastSegment(*RetireItr)) + Inactive.push(nextSegment(*RetireItr)); + + ++RetireItr; + } + Active.erase(Active.begin(), RetireItr); + + // One of the newly retired segments may actually start before the + // Cur segment, so re-grab the front of the inactive list. + Cur = Inactive.top(); + Inactive.pop(); + + // At this point we know that Cur overlaps all active intervals. Add the + // interference edges. + PBQP::GraphBase::NodeId NId = getNodeId(Cur); + for (const auto &A : Active) { + PBQP::GraphBase::NodeId MId = getNodeId(A); + + // Do not add an edge when the nodes' allowed registers do not + // intersect: there is obviously no interference. + if (haveDisjointAllowedRegs(G, NId, MId, D)) + continue; + + // Check that we haven't already added this edge + IEdgeKey EK(std::min(NId, MId), std::max(NId, MId)); + if (EC.count(EK)) + continue; + + // This is a new edge - add it to the graph. + if (!createInterferenceEdge(G, NId, MId, C)) + setDisjointAllowedRegs(G, NId, MId, D); + else + EC.insert(EK); + } + + // Finally, add Cur to the Active set. + Active.insert(Cur); + } + } + +private: + // Create an Interference edge and add it to the graph, unless it is + // a null matrix, meaning the nodes' allowed registers do not have any + // interference. This case occurs frequently between integer and floating + // point registers for example. + // return true iff both nodes interferes. + bool createInterferenceEdge(PBQPRAGraph &G, + PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId, + IMatrixCache &C) { + const TargetRegisterInfo &TRI = + *G.getMetadata().MF.getSubtarget().getRegisterInfo(); + const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs(); + const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs(); + + // Try looking the edge costs up in the IMatrixCache first. + IKey K(&NRegs, &MRegs); + IMatrixCache::iterator I = C.find(K); + if (I != C.end()) { + G.addEdgeBypassingCostAllocator(NId, MId, I->second); + return true; + } + + PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0); + bool NodesInterfere = false; + for (unsigned I = 0; I != NRegs.size(); ++I) { MCRegister PRegN = NRegs[I]; - for (unsigned J = 0; J != MRegs.size(); ++J) { + for (unsigned J = 0; J != MRegs.size(); ++J) { MCRegister PRegM = MRegs[J]; - if (TRI.regsOverlap(PRegN, PRegM)) { - M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); - NodesInterfere = true; - } - } - } - - if (!NodesInterfere) - return false; - - PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); - C[K] = G.getEdgeCostsPtr(EId); - - return true; - } -}; - -class Coalescing : public PBQPRAConstraint { -public: - void apply(PBQPRAGraph &G) override { - MachineFunction &MF = G.getMetadata().MF; - MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; - CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); - - // Scan the machine function and add a coalescing cost whenever CoalescerPair - // gives the Ok. - for (const auto &MBB : MF) { - for (const auto &MI : MBB) { - // Skip not-coalescable or already coalesced copies. - if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) - continue; - + if (TRI.regsOverlap(PRegN, PRegM)) { + M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity(); + NodesInterfere = true; + } + } + } + + if (!NodesInterfere) + return false; + + PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M)); + C[K] = G.getEdgeCostsPtr(EId); + + return true; + } +}; + +class Coalescing : public PBQPRAConstraint { +public: + void apply(PBQPRAGraph &G) override { + MachineFunction &MF = G.getMetadata().MF; + MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI; + CoalescerPair CP(*MF.getSubtarget().getRegisterInfo()); + + // Scan the machine function and add a coalescing cost whenever CoalescerPair + // gives the Ok. + for (const auto &MBB : MF) { + for (const auto &MI : MBB) { + // Skip not-coalescable or already coalesced copies. + if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg()) + continue; + Register DstReg = CP.getDstReg(); Register SrcReg = CP.getSrcReg(); - + PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB); - - if (CP.isPhys()) { - if (!MF.getRegInfo().isAllocatable(DstReg)) - continue; - - PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); - - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = - G.getNodeMetadata(NId).getAllowedRegs(); - - unsigned PRegOpt = 0; + + if (CP.isPhys()) { + if (!MF.getRegInfo().isAllocatable(DstReg)) + continue; + + PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg); + + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed = + G.getNodeMetadata(NId).getAllowedRegs(); + + unsigned PRegOpt = 0; while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg) - ++PRegOpt; - - if (PRegOpt < Allowed.size()) { - PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); - NewCosts[PRegOpt + 1] -= CBenefit; - G.setNodeCosts(NId, std::move(NewCosts)); - } - } else { - PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); - PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); - const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = - &G.getNodeMetadata(N1Id).getAllowedRegs(); - const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = - &G.getNodeMetadata(N2Id).getAllowedRegs(); - - PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); - if (EId == G.invalidEdgeId()) { - PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, - Allowed2->size() + 1, 0); - addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); - G.addEdge(N1Id, N2Id, std::move(Costs)); - } else { - if (G.getEdgeNode1Id(EId) == N2Id) { - std::swap(N1Id, N2Id); - std::swap(Allowed1, Allowed2); - } - PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); - addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); - G.updateEdgeCosts(EId, std::move(Costs)); - } - } - } - } - } - -private: - void addVirtRegCoalesce( - PBQPRAGraph::RawMatrix &CostMat, - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, - const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, - PBQP::PBQPNum Benefit) { - assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); - assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); - for (unsigned I = 0; I != Allowed1.size(); ++I) { + ++PRegOpt; + + if (PRegOpt < Allowed.size()) { + PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId)); + NewCosts[PRegOpt + 1] -= CBenefit; + G.setNodeCosts(NId, std::move(NewCosts)); + } + } else { + PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg); + PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg); + const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 = + &G.getNodeMetadata(N1Id).getAllowedRegs(); + const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 = + &G.getNodeMetadata(N2Id).getAllowedRegs(); + + PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id); + if (EId == G.invalidEdgeId()) { + PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1, + Allowed2->size() + 1, 0); + addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); + G.addEdge(N1Id, N2Id, std::move(Costs)); + } else { + if (G.getEdgeNode1Id(EId) == N2Id) { + std::swap(N1Id, N2Id); + std::swap(Allowed1, Allowed2); + } + PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId)); + addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit); + G.updateEdgeCosts(EId, std::move(Costs)); + } + } + } + } + } + +private: + void addVirtRegCoalesce( + PBQPRAGraph::RawMatrix &CostMat, + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1, + const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2, + PBQP::PBQPNum Benefit) { + assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch."); + assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch."); + for (unsigned I = 0; I != Allowed1.size(); ++I) { MCRegister PReg1 = Allowed1[I]; - for (unsigned J = 0; J != Allowed2.size(); ++J) { + for (unsigned J = 0; J != Allowed2.size(); ++J) { MCRegister PReg2 = Allowed2[J]; - if (PReg1 == PReg2) - CostMat[I + 1][J + 1] -= Benefit; - } - } - } -}; - + if (PReg1 == PReg2) + CostMat[I + 1][J + 1] -= Benefit; + } + } + } +}; + /// PBQP-specific implementation of weight normalization. class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo { float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override { @@ -531,419 +531,419 @@ public: const MachineBlockFrequencyInfo &MBFI) : VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {} }; -} // end anonymous namespace - -// Out-of-line destructor/anchor for PBQPRAConstraint. -PBQPRAConstraint::~PBQPRAConstraint() = default; - -void PBQPRAConstraint::anchor() {} - -void PBQPRAConstraintList::anchor() {} - -void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { - au.setPreservesCFG(); - au.addRequired<AAResultsWrapperPass>(); - au.addPreserved<AAResultsWrapperPass>(); - au.addRequired<SlotIndexes>(); - au.addPreserved<SlotIndexes>(); - au.addRequired<LiveIntervals>(); - au.addPreserved<LiveIntervals>(); - //au.addRequiredID(SplitCriticalEdgesID); - if (customPassID) - au.addRequiredID(*customPassID); - au.addRequired<LiveStacks>(); - au.addPreserved<LiveStacks>(); - au.addRequired<MachineBlockFrequencyInfo>(); - au.addPreserved<MachineBlockFrequencyInfo>(); - au.addRequired<MachineLoopInfo>(); - au.addPreserved<MachineLoopInfo>(); - au.addRequired<MachineDominatorTree>(); - au.addPreserved<MachineDominatorTree>(); - au.addRequired<VirtRegMap>(); - au.addPreserved<VirtRegMap>(); - MachineFunctionPass::getAnalysisUsage(au); -} - -void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, - LiveIntervals &LIS) { - const MachineRegisterInfo &MRI = MF.getRegInfo(); - - // Iterate over all live ranges. - for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { +} // end anonymous namespace + +// Out-of-line destructor/anchor for PBQPRAConstraint. +PBQPRAConstraint::~PBQPRAConstraint() = default; + +void PBQPRAConstraint::anchor() {} + +void PBQPRAConstraintList::anchor() {} + +void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const { + au.setPreservesCFG(); + au.addRequired<AAResultsWrapperPass>(); + au.addPreserved<AAResultsWrapperPass>(); + au.addRequired<SlotIndexes>(); + au.addPreserved<SlotIndexes>(); + au.addRequired<LiveIntervals>(); + au.addPreserved<LiveIntervals>(); + //au.addRequiredID(SplitCriticalEdgesID); + if (customPassID) + au.addRequiredID(*customPassID); + au.addRequired<LiveStacks>(); + au.addPreserved<LiveStacks>(); + au.addRequired<MachineBlockFrequencyInfo>(); + au.addPreserved<MachineBlockFrequencyInfo>(); + au.addRequired<MachineLoopInfo>(); + au.addPreserved<MachineLoopInfo>(); + au.addRequired<MachineDominatorTree>(); + au.addPreserved<MachineDominatorTree>(); + au.addRequired<VirtRegMap>(); + au.addPreserved<VirtRegMap>(); + MachineFunctionPass::getAnalysisUsage(au); +} + +void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF, + LiveIntervals &LIS) { + const MachineRegisterInfo &MRI = MF.getRegInfo(); + + // Iterate over all live ranges. + for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) { Register Reg = Register::index2VirtReg(I); - if (MRI.reg_nodbg_empty(Reg)) - continue; - VRegsToAlloc.insert(Reg); - } -} - + if (MRI.reg_nodbg_empty(Reg)) + continue; + VRegsToAlloc.insert(Reg); + } +} + static bool isACalleeSavedRegister(MCRegister Reg, const TargetRegisterInfo &TRI, - const MachineFunction &MF) { - const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); - for (unsigned i = 0; CSR[i] != 0; ++i) + const MachineFunction &MF) { + const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs(); + for (unsigned i = 0; CSR[i] != 0; ++i) if (TRI.regsOverlap(Reg, CSR[i])) - return true; - return false; -} - -void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, - Spiller &VRegSpiller) { - MachineFunction &MF = G.getMetadata().MF; - - LiveIntervals &LIS = G.getMetadata().LIS; - const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); - const TargetRegisterInfo &TRI = - *G.getMetadata().MF.getSubtarget().getRegisterInfo(); - + return true; + return false; +} + +void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, + Spiller &VRegSpiller) { + MachineFunction &MF = G.getMetadata().MF; + + LiveIntervals &LIS = G.getMetadata().LIS; + const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); + const TargetRegisterInfo &TRI = + *G.getMetadata().MF.getSubtarget().getRegisterInfo(); + std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end()); - + std::map<Register, std::vector<MCRegister>> VRegAllowedMap; - - while (!Worklist.empty()) { + + while (!Worklist.empty()) { Register VReg = Worklist.back(); - Worklist.pop_back(); - - LiveInterval &VRegLI = LIS.getInterval(VReg); - - // If this is an empty interval move it to the EmptyIntervalVRegs set then - // continue. - if (VRegLI.empty()) { + Worklist.pop_back(); + + LiveInterval &VRegLI = LIS.getInterval(VReg); + + // If this is an empty interval move it to the EmptyIntervalVRegs set then + // continue. + if (VRegLI.empty()) { EmptyIntervalVRegs.insert(VRegLI.reg()); VRegsToAlloc.erase(VRegLI.reg()); - continue; - } - - const TargetRegisterClass *TRC = MRI.getRegClass(VReg); - - // Record any overlaps with regmask operands. - BitVector RegMaskOverlaps; - LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); - - // Compute an initial allowed set for the current vreg. + continue; + } + + const TargetRegisterClass *TRC = MRI.getRegClass(VReg); + + // Record any overlaps with regmask operands. + BitVector RegMaskOverlaps; + LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps); + + // Compute an initial allowed set for the current vreg. std::vector<MCRegister> VRegAllowed; - ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); - for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { + ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF); + for (unsigned I = 0; I != RawPRegOrder.size(); ++I) { MCRegister PReg(RawPRegOrder[I]); - if (MRI.isReserved(PReg)) - continue; - - // vregLI crosses a regmask operand that clobbers preg. - if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) - continue; - - // vregLI overlaps fixed regunit interference. - bool Interference = false; - for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { - if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { - Interference = true; - break; - } - } - if (Interference) - continue; - - // preg is usable for this virtual register. - VRegAllowed.push_back(PReg); - } - - // Check for vregs that have no allowed registers. These should be - // pre-spilled and the new vregs added to the worklist. - if (VRegAllowed.empty()) { - SmallVector<Register, 8> NewVRegs; - spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); + if (MRI.isReserved(PReg)) + continue; + + // vregLI crosses a regmask operand that clobbers preg. + if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg)) + continue; + + // vregLI overlaps fixed regunit interference. + bool Interference = false; + for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) { + if (VRegLI.overlaps(LIS.getRegUnit(*Units))) { + Interference = true; + break; + } + } + if (Interference) + continue; + + // preg is usable for this virtual register. + VRegAllowed.push_back(PReg); + } + + // Check for vregs that have no allowed registers. These should be + // pre-spilled and the new vregs added to the worklist. + if (VRegAllowed.empty()) { + SmallVector<Register, 8> NewVRegs; + spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); llvm::append_range(Worklist, NewVRegs); - continue; + continue; } VRegAllowedMap[VReg.id()] = std::move(VRegAllowed); - } - - for (auto &KV : VRegAllowedMap) { - auto VReg = KV.first; - - // Move empty intervals to the EmptyIntervalVReg set. - if (LIS.getInterval(VReg).empty()) { - EmptyIntervalVRegs.insert(VReg); - VRegsToAlloc.erase(VReg); - continue; - } - - auto &VRegAllowed = KV.second; - - PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); - - // Tweak cost of callee saved registers, as using then force spilling and - // restoring them. This would only happen in the prologue / epilogue though. - for (unsigned i = 0; i != VRegAllowed.size(); ++i) - if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) - NodeCosts[1 + i] += 1.0; - - PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); - G.getNodeMetadata(NId).setVReg(VReg); - G.getNodeMetadata(NId).setAllowedRegs( - G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); - G.getMetadata().setNodeIdForVReg(VReg, NId); - } -} - -void RegAllocPBQP::spillVReg(Register VReg, - SmallVectorImpl<Register> &NewIntervals, - MachineFunction &MF, LiveIntervals &LIS, - VirtRegMap &VRM, Spiller &VRegSpiller) { - VRegsToAlloc.erase(VReg); - LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, - nullptr, &DeadRemats); - VRegSpiller.spill(LRE); - - const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); - (void)TRI; - LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " + } + + for (auto &KV : VRegAllowedMap) { + auto VReg = KV.first; + + // Move empty intervals to the EmptyIntervalVReg set. + if (LIS.getInterval(VReg).empty()) { + EmptyIntervalVRegs.insert(VReg); + VRegsToAlloc.erase(VReg); + continue; + } + + auto &VRegAllowed = KV.second; + + PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0); + + // Tweak cost of callee saved registers, as using then force spilling and + // restoring them. This would only happen in the prologue / epilogue though. + for (unsigned i = 0; i != VRegAllowed.size(); ++i) + if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF)) + NodeCosts[1 + i] += 1.0; + + PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts)); + G.getNodeMetadata(NId).setVReg(VReg); + G.getNodeMetadata(NId).setAllowedRegs( + G.getMetadata().getAllowedRegs(std::move(VRegAllowed))); + G.getMetadata().setNodeIdForVReg(VReg, NId); + } +} + +void RegAllocPBQP::spillVReg(Register VReg, + SmallVectorImpl<Register> &NewIntervals, + MachineFunction &MF, LiveIntervals &LIS, + VirtRegMap &VRM, Spiller &VRegSpiller) { + VRegsToAlloc.erase(VReg); + LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM, + nullptr, &DeadRemats); + VRegSpiller.spill(LRE); + + const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); + (void)TRI; + LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: " << LRE.getParent().weight() << ", New vregs: "); - - // Copy any newly inserted live intervals into the list of regs to - // allocate. - for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); - I != E; ++I) { - const LiveInterval &LI = LIS.getInterval(*I); - assert(!LI.empty() && "Empty spill range."); + + // Copy any newly inserted live intervals into the list of regs to + // allocate. + for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end(); + I != E; ++I) { + const LiveInterval &LI = LIS.getInterval(*I); + assert(!LI.empty() && "Empty spill range."); LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " "); VRegsToAlloc.insert(LI.reg()); - } - - LLVM_DEBUG(dbgs() << ")\n"); -} - -bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, - const PBQP::Solution &Solution, - VirtRegMap &VRM, - Spiller &VRegSpiller) { - MachineFunction &MF = G.getMetadata().MF; - LiveIntervals &LIS = G.getMetadata().LIS; - const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); - (void)TRI; - - // Set to true if we have any spills - bool AnotherRoundNeeded = false; - - // Clear the existing allocation. - VRM.clearAllVirt(); - - // Iterate over the nodes mapping the PBQP solution to a register - // assignment. - for (auto NId : G.nodeIds()) { + } + + LLVM_DEBUG(dbgs() << ")\n"); +} + +bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G, + const PBQP::Solution &Solution, + VirtRegMap &VRM, + Spiller &VRegSpiller) { + MachineFunction &MF = G.getMetadata().MF; + LiveIntervals &LIS = G.getMetadata().LIS; + const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo(); + (void)TRI; + + // Set to true if we have any spills + bool AnotherRoundNeeded = false; + + // Clear the existing allocation. + VRM.clearAllVirt(); + + // Iterate over the nodes mapping the PBQP solution to a register + // assignment. + for (auto NId : G.nodeIds()) { Register VReg = G.getNodeMetadata(NId).getVReg(); unsigned AllocOpt = Solution.getSelection(NId); - + if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) { MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1]; - LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " - << TRI.getName(PReg) << "\n"); - assert(PReg != 0 && "Invalid preg selected."); - VRM.assignVirt2Phys(VReg, PReg); - } else { - // Spill VReg. If this introduces new intervals we'll need another round - // of allocation. - SmallVector<Register, 8> NewVRegs; - spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); - AnotherRoundNeeded |= !NewVRegs.empty(); - } - } - - return !AnotherRoundNeeded; -} - -void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, - LiveIntervals &LIS, - VirtRegMap &VRM) const { - MachineRegisterInfo &MRI = MF.getRegInfo(); - - // First allocate registers for the empty intervals. - for (RegSet::const_iterator - I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); - I != E; ++I) { - LiveInterval &LI = LIS.getInterval(*I); - + LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> " + << TRI.getName(PReg) << "\n"); + assert(PReg != 0 && "Invalid preg selected."); + VRM.assignVirt2Phys(VReg, PReg); + } else { + // Spill VReg. If this introduces new intervals we'll need another round + // of allocation. + SmallVector<Register, 8> NewVRegs; + spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller); + AnotherRoundNeeded |= !NewVRegs.empty(); + } + } + + return !AnotherRoundNeeded; +} + +void RegAllocPBQP::finalizeAlloc(MachineFunction &MF, + LiveIntervals &LIS, + VirtRegMap &VRM) const { + MachineRegisterInfo &MRI = MF.getRegInfo(); + + // First allocate registers for the empty intervals. + for (RegSet::const_iterator + I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end(); + I != E; ++I) { + LiveInterval &LI = LIS.getInterval(*I); + Register PReg = MRI.getSimpleHint(LI.reg()); - - if (PReg == 0) { + + if (PReg == 0) { const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg()); - const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); + const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF); for (MCRegister CandidateReg : RawPRegOrder) { - if (!VRM.getRegInfo().isReserved(CandidateReg)) { - PReg = CandidateReg; - break; - } - } - assert(PReg && - "No un-reserved physical registers in this register class"); - } - + if (!VRM.getRegInfo().isReserved(CandidateReg)) { + PReg = CandidateReg; + break; + } + } + assert(PReg && + "No un-reserved physical registers in this register class"); + } + VRM.assignVirt2Phys(LI.reg(), PReg); - } -} - -void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { - VRegSpiller.postOptimization(); - /// Remove dead defs because of rematerialization. - for (auto DeadInst : DeadRemats) { - LIS.RemoveMachineInstrFromMaps(*DeadInst); - DeadInst->eraseFromParent(); - } - DeadRemats.clear(); -} - -bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { - LiveIntervals &LIS = getAnalysis<LiveIntervals>(); - MachineBlockFrequencyInfo &MBFI = - getAnalysis<MachineBlockFrequencyInfo>(); - - VirtRegMap &VRM = getAnalysis<VirtRegMap>(); - + } +} + +void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) { + VRegSpiller.postOptimization(); + /// Remove dead defs because of rematerialization. + for (auto DeadInst : DeadRemats) { + LIS.RemoveMachineInstrFromMaps(*DeadInst); + DeadInst->eraseFromParent(); + } + DeadRemats.clear(); +} + +bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) { + LiveIntervals &LIS = getAnalysis<LiveIntervals>(); + MachineBlockFrequencyInfo &MBFI = + getAnalysis<MachineBlockFrequencyInfo>(); + + VirtRegMap &VRM = getAnalysis<VirtRegMap>(); + PBQPVirtRegAuxInfo VRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(), MBFI); VRAI.calculateSpillWeightsAndHints(); - - std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); - - MF.getRegInfo().freezeReservedRegs(MF); - - LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); - - // Allocator main loop: - // - // * Map current regalloc problem to a PBQP problem - // * Solve the PBQP problem - // * Map the solution back to a register allocation - // * Spill if necessary - // - // This process is continued till no more spills are generated. - - // Find the vreg intervals in need of allocation. - findVRegIntervalsToAlloc(MF, LIS); - -#ifndef NDEBUG - const Function &F = MF.getFunction(); - std::string FullyQualifiedName = - F.getParent()->getModuleIdentifier() + "." + F.getName().str(); -#endif - - // If there are non-empty intervals allocate them using pbqp. - if (!VRegsToAlloc.empty()) { - const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); - std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = - std::make_unique<PBQPRAConstraintList>(); - ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>()); - ConstraintsRoot->addConstraint(std::make_unique<Interference>()); - if (PBQPCoalescing) - ConstraintsRoot->addConstraint(std::make_unique<Coalescing>()); - ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); - - bool PBQPAllocComplete = false; - unsigned Round = 0; - - while (!PBQPAllocComplete) { - LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); - - PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); - initializeGraph(G, VRM, *VRegSpiller); - ConstraintsRoot->apply(G); - -#ifndef NDEBUG - if (PBQPDumpGraphs) { - std::ostringstream RS; - RS << Round; - std::string GraphFileName = FullyQualifiedName + "." + RS.str() + - ".pbqpgraph"; - std::error_code EC; - raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text); - LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" - << GraphFileName << "\"\n"); - G.dump(OS); - } -#endif - - PBQP::Solution Solution = PBQP::RegAlloc::solve(G); - PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); - ++Round; - } - } - - // Finalise allocation, allocate empty ranges. - finalizeAlloc(MF, LIS, VRM); - postOptimization(*VRegSpiller, LIS); - VRegsToAlloc.clear(); - EmptyIntervalVRegs.clear(); - - LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); - - return true; -} - -/// Create Printable object for node and register info. -static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, - const PBQP::RegAlloc::PBQPRAGraph &G) { - return Printable([NId, &G](raw_ostream &OS) { - const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); - const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); + + std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM)); + + MF.getRegInfo().freezeReservedRegs(MF); + + LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n"); + + // Allocator main loop: + // + // * Map current regalloc problem to a PBQP problem + // * Solve the PBQP problem + // * Map the solution back to a register allocation + // * Spill if necessary + // + // This process is continued till no more spills are generated. + + // Find the vreg intervals in need of allocation. + findVRegIntervalsToAlloc(MF, LIS); + +#ifndef NDEBUG + const Function &F = MF.getFunction(); + std::string FullyQualifiedName = + F.getParent()->getModuleIdentifier() + "." + F.getName().str(); +#endif + + // If there are non-empty intervals allocate them using pbqp. + if (!VRegsToAlloc.empty()) { + const TargetSubtargetInfo &Subtarget = MF.getSubtarget(); + std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot = + std::make_unique<PBQPRAConstraintList>(); + ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>()); + ConstraintsRoot->addConstraint(std::make_unique<Interference>()); + if (PBQPCoalescing) + ConstraintsRoot->addConstraint(std::make_unique<Coalescing>()); + ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints()); + + bool PBQPAllocComplete = false; + unsigned Round = 0; + + while (!PBQPAllocComplete) { + LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n"); + + PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI)); + initializeGraph(G, VRM, *VRegSpiller); + ConstraintsRoot->apply(G); + +#ifndef NDEBUG + if (PBQPDumpGraphs) { + std::ostringstream RS; + RS << Round; + std::string GraphFileName = FullyQualifiedName + "." + RS.str() + + ".pbqpgraph"; + std::error_code EC; + raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text); + LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \"" + << GraphFileName << "\"\n"); + G.dump(OS); + } +#endif + + PBQP::Solution Solution = PBQP::RegAlloc::solve(G); + PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller); + ++Round; + } + } + + // Finalise allocation, allocate empty ranges. + finalizeAlloc(MF, LIS, VRM); + postOptimization(*VRegSpiller, LIS); + VRegsToAlloc.clear(); + EmptyIntervalVRegs.clear(); + + LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n"); + + return true; +} + +/// Create Printable object for node and register info. +static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId, + const PBQP::RegAlloc::PBQPRAGraph &G) { + return Printable([NId, &G](raw_ostream &OS) { + const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo(); + const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo(); Register VReg = G.getNodeMetadata(NId).getVReg(); - const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); - OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; - }); -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { - for (auto NId : nodeIds()) { - const Vector &Costs = getNodeCosts(NId); - assert(Costs.getLength() != 0 && "Empty vector in graph."); - OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; - } - OS << '\n'; - - for (auto EId : edgeIds()) { - NodeId N1Id = getEdgeNode1Id(EId); - NodeId N2Id = getEdgeNode2Id(EId); - assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); - const Matrix &M = getEdgeCosts(EId); - assert(M.getRows() != 0 && "No rows in matrix."); - assert(M.getCols() != 0 && "No cols in matrix."); - OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; - OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; - OS << M << '\n'; - } -} - -LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { - dump(dbgs()); -} -#endif - -void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { - OS << "graph {\n"; - for (auto NId : nodeIds()) { - OS << " node" << NId << " [ label=\"" - << PrintNodeInfo(NId, *this) << "\\n" - << getNodeCosts(NId) << "\" ]\n"; - } - - OS << " edge [ len=" << nodeIds().size() << " ]\n"; - for (auto EId : edgeIds()) { - OS << " node" << getEdgeNode1Id(EId) - << " -- node" << getEdgeNode2Id(EId) - << " [ label=\""; - const Matrix &EdgeCosts = getEdgeCosts(EId); - for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { - OS << EdgeCosts.getRowAsVector(i) << "\\n"; - } - OS << "\" ]\n"; - } - OS << "}\n"; -} - -FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { - return new RegAllocPBQP(customPassID); -} - -FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { - return createPBQPRegisterAllocator(); -} + const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg)); + OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')'; + }); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const { + for (auto NId : nodeIds()) { + const Vector &Costs = getNodeCosts(NId); + assert(Costs.getLength() != 0 && "Empty vector in graph."); + OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n'; + } + OS << '\n'; + + for (auto EId : edgeIds()) { + NodeId N1Id = getEdgeNode1Id(EId); + NodeId N2Id = getEdgeNode2Id(EId); + assert(N1Id != N2Id && "PBQP graphs should not have self-edges."); + const Matrix &M = getEdgeCosts(EId); + assert(M.getRows() != 0 && "No rows in matrix."); + assert(M.getCols() != 0 && "No cols in matrix."); + OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / "; + OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n"; + OS << M << '\n'; + } +} + +LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { + dump(dbgs()); +} +#endif + +void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const { + OS << "graph {\n"; + for (auto NId : nodeIds()) { + OS << " node" << NId << " [ label=\"" + << PrintNodeInfo(NId, *this) << "\\n" + << getNodeCosts(NId) << "\" ]\n"; + } + + OS << " edge [ len=" << nodeIds().size() << " ]\n"; + for (auto EId : edgeIds()) { + OS << " node" << getEdgeNode1Id(EId) + << " -- node" << getEdgeNode2Id(EId) + << " [ label=\""; + const Matrix &EdgeCosts = getEdgeCosts(EId); + for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) { + OS << EdgeCosts.getRowAsVector(i) << "\\n"; + } + OS << "\" ]\n"; + } + OS << "}\n"; +} + +FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) { + return new RegAllocPBQP(customPassID); +} + +FunctionPass* llvm::createDefaultPBQPRegisterAllocator() { + return createPBQPRegisterAllocator(); +} |