aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp1774
1 files changed, 887 insertions, 887 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp b/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp
index 9066cc5c41..7c5af1a0c5 100644
--- a/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp
+++ b/contrib/libs/llvm12/lib/CodeGen/RegAllocPBQP.cpp
@@ -1,522 +1,522 @@
-//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
-// register allocator for LLVM. This allocator works by constructing a PBQP
-// problem representing the register allocation problem under consideration,
-// solving this using a PBQP solver, and mapping the solution back to a
-// register assignment. If any variables are selected for spilling then spill
-// code is inserted and the process repeated.
-//
-// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
-// for register allocation. For more information on PBQP for register
-// allocation, see the following papers:
-//
-// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
-// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
-// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
-//
-// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
-// architectures. In Proceedings of the Joint Conference on Languages,
-// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
-// NY, USA, 139-148.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/CodeGen/RegAllocPBQP.h"
-#include "RegisterCoalescer.h"
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DenseSet.h"
-#include "llvm/ADT/STLExtras.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/StringRef.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/CodeGen/CalcSpillWeights.h"
-#include "llvm/CodeGen/LiveInterval.h"
-#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/LiveRangeEdit.h"
-#include "llvm/CodeGen/LiveStacks.h"
-#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/PBQP/Graph.h"
-#include "llvm/CodeGen/PBQP/Math.h"
-#include "llvm/CodeGen/PBQP/Solution.h"
-#include "llvm/CodeGen/PBQPRAConstraint.h"
-#include "llvm/CodeGen/RegAllocRegistry.h"
-#include "llvm/CodeGen/SlotIndexes.h"
-#include "llvm/CodeGen/Spiller.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/CodeGen/VirtRegMap.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Module.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/FileSystem.h"
-#include "llvm/Support/Printable.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <limits>
-#include <map>
-#include <memory>
-#include <queue>
-#include <set>
-#include <sstream>
-#include <string>
-#include <system_error>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "regalloc"
-
-static RegisterRegAlloc
-RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
- createDefaultPBQPRegisterAllocator);
-
-static cl::opt<bool>
-PBQPCoalescing("pbqp-coalescing",
- cl::desc("Attempt coalescing during PBQP register allocation."),
- cl::init(false), cl::Hidden);
-
-#ifndef NDEBUG
-static cl::opt<bool>
-PBQPDumpGraphs("pbqp-dump-graphs",
- cl::desc("Dump graphs for each function/round in the compilation unit."),
- cl::init(false), cl::Hidden);
-#endif
-
-namespace {
-
-///
-/// PBQP based allocators solve the register allocation problem by mapping
-/// register allocation problems to Partitioned Boolean Quadratic
-/// Programming problems.
-class RegAllocPBQP : public MachineFunctionPass {
-public:
- static char ID;
-
- /// Construct a PBQP register allocator.
- RegAllocPBQP(char *cPassID = nullptr)
- : MachineFunctionPass(ID), customPassID(cPassID) {
- initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
- initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
- initializeLiveStacksPass(*PassRegistry::getPassRegistry());
- initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
- }
-
- /// Return the pass name.
- StringRef getPassName() const override { return "PBQP Register Allocator"; }
-
- /// PBQP analysis usage.
- void getAnalysisUsage(AnalysisUsage &au) const override;
-
- /// Perform register allocation
- bool runOnMachineFunction(MachineFunction &MF) override;
-
- MachineFunctionProperties getRequiredProperties() const override {
- return MachineFunctionProperties().set(
- MachineFunctionProperties::Property::NoPHIs);
- }
-
+//===- RegAllocPBQP.cpp ---- PBQP Register Allocator ----------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
+// register allocator for LLVM. This allocator works by constructing a PBQP
+// problem representing the register allocation problem under consideration,
+// solving this using a PBQP solver, and mapping the solution back to a
+// register assignment. If any variables are selected for spilling then spill
+// code is inserted and the process repeated.
+//
+// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
+// for register allocation. For more information on PBQP for register
+// allocation, see the following papers:
+//
+// (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
+// PBQP. In Proceedings of the 7th Joint Modular Languages Conference
+// (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
+//
+// (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
+// architectures. In Proceedings of the Joint Conference on Languages,
+// Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
+// NY, USA, 139-148.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/CodeGen/RegAllocPBQP.h"
+#include "RegisterCoalescer.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/DenseSet.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/CalcSpillWeights.h"
+#include "llvm/CodeGen/LiveInterval.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/LiveRangeEdit.h"
+#include "llvm/CodeGen/LiveStacks.h"
+#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PBQP/Graph.h"
+#include "llvm/CodeGen/PBQP/Math.h"
+#include "llvm/CodeGen/PBQP/Solution.h"
+#include "llvm/CodeGen/PBQPRAConstraint.h"
+#include "llvm/CodeGen/RegAllocRegistry.h"
+#include "llvm/CodeGen/SlotIndexes.h"
+#include "llvm/CodeGen/Spiller.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/VirtRegMap.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/FileSystem.h"
+#include "llvm/Support/Printable.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <limits>
+#include <map>
+#include <memory>
+#include <queue>
+#include <set>
+#include <sstream>
+#include <string>
+#include <system_error>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "regalloc"
+
+static RegisterRegAlloc
+RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
+ createDefaultPBQPRegisterAllocator);
+
+static cl::opt<bool>
+PBQPCoalescing("pbqp-coalescing",
+ cl::desc("Attempt coalescing during PBQP register allocation."),
+ cl::init(false), cl::Hidden);
+
+#ifndef NDEBUG
+static cl::opt<bool>
+PBQPDumpGraphs("pbqp-dump-graphs",
+ cl::desc("Dump graphs for each function/round in the compilation unit."),
+ cl::init(false), cl::Hidden);
+#endif
+
+namespace {
+
+///
+/// PBQP based allocators solve the register allocation problem by mapping
+/// register allocation problems to Partitioned Boolean Quadratic
+/// Programming problems.
+class RegAllocPBQP : public MachineFunctionPass {
+public:
+ static char ID;
+
+ /// Construct a PBQP register allocator.
+ RegAllocPBQP(char *cPassID = nullptr)
+ : MachineFunctionPass(ID), customPassID(cPassID) {
+ initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+ initializeLiveStacksPass(*PassRegistry::getPassRegistry());
+ initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+ }
+
+ /// Return the pass name.
+ StringRef getPassName() const override { return "PBQP Register Allocator"; }
+
+ /// PBQP analysis usage.
+ void getAnalysisUsage(AnalysisUsage &au) const override;
+
+ /// Perform register allocation
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ MachineFunctionProperties getRequiredProperties() const override {
+ return MachineFunctionProperties().set(
+ MachineFunctionProperties::Property::NoPHIs);
+ }
+
MachineFunctionProperties getClearedProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::IsSSA);
}
-private:
+private:
using RegSet = std::set<Register>;
-
- char *customPassID;
-
- RegSet VRegsToAlloc, EmptyIntervalVRegs;
-
- /// Inst which is a def of an original reg and whose defs are already all
- /// dead after remat is saved in DeadRemats. The deletion of such inst is
- /// postponed till all the allocations are done, so its remat expr is
- /// always available for the remat of all the siblings of the original reg.
- SmallPtrSet<MachineInstr *, 32> DeadRemats;
-
- /// Finds the initial set of vreg intervals to allocate.
- void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
-
- /// Constructs an initial graph.
- void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
-
- /// Spill the given VReg.
- void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals,
- MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
- Spiller &VRegSpiller);
-
- /// Given a solved PBQP problem maps this solution back to a register
- /// assignment.
- bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
- const PBQP::Solution &Solution,
- VirtRegMap &VRM,
- Spiller &VRegSpiller);
-
- /// Postprocessing before final spilling. Sets basic block "live in"
- /// variables.
- void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
- VirtRegMap &VRM) const;
-
- void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
-};
-
-char RegAllocPBQP::ID = 0;
-
-/// Set spill costs for each node in the PBQP reg-alloc graph.
-class SpillCosts : public PBQPRAConstraint {
-public:
- void apply(PBQPRAGraph &G) override {
- LiveIntervals &LIS = G.getMetadata().LIS;
-
- // A minimum spill costs, so that register constraints can can be set
- // without normalization in the [0.0:MinSpillCost( interval.
- const PBQP::PBQPNum MinSpillCost = 10.0;
-
- for (auto NId : G.nodeIds()) {
- PBQP::PBQPNum SpillCost =
+
+ char *customPassID;
+
+ RegSet VRegsToAlloc, EmptyIntervalVRegs;
+
+ /// Inst which is a def of an original reg and whose defs are already all
+ /// dead after remat is saved in DeadRemats. The deletion of such inst is
+ /// postponed till all the allocations are done, so its remat expr is
+ /// always available for the remat of all the siblings of the original reg.
+ SmallPtrSet<MachineInstr *, 32> DeadRemats;
+
+ /// Finds the initial set of vreg intervals to allocate.
+ void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);
+
+ /// Constructs an initial graph.
+ void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);
+
+ /// Spill the given VReg.
+ void spillVReg(Register VReg, SmallVectorImpl<Register> &NewIntervals,
+ MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
+ Spiller &VRegSpiller);
+
+ /// Given a solved PBQP problem maps this solution back to a register
+ /// assignment.
+ bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller);
+
+ /// Postprocessing before final spilling. Sets basic block "live in"
+ /// variables.
+ void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
+ VirtRegMap &VRM) const;
+
+ void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
+};
+
+char RegAllocPBQP::ID = 0;
+
+/// Set spill costs for each node in the PBQP reg-alloc graph.
+class SpillCosts : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // A minimum spill costs, so that register constraints can can be set
+ // without normalization in the [0.0:MinSpillCost( interval.
+ const PBQP::PBQPNum MinSpillCost = 10.0;
+
+ for (auto NId : G.nodeIds()) {
+ PBQP::PBQPNum SpillCost =
LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight();
- if (SpillCost == 0.0)
- SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
- else
- SpillCost += MinSpillCost;
- PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
- NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
- G.setNodeCosts(NId, std::move(NodeCosts));
- }
- }
-};
-
-/// Add interference edges between overlapping vregs.
-class Interference : public PBQPRAConstraint {
-private:
- using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
- using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
- using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
- using DisjointAllowedRegsCache = DenseSet<IKey>;
- using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
- using IEdgeCache = DenseSet<IEdgeKey>;
-
- bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
- PBQPRAGraph::NodeId MId,
- const DisjointAllowedRegsCache &D) const {
- const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
- const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
-
- if (NRegs == MRegs)
- return false;
-
- if (NRegs < MRegs)
+ if (SpillCost == 0.0)
+ SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
+ else
+ SpillCost += MinSpillCost;
+ PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
+ NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
+ G.setNodeCosts(NId, std::move(NodeCosts));
+ }
+ }
+};
+
+/// Add interference edges between overlapping vregs.
+class Interference : public PBQPRAConstraint {
+private:
+ using AllowedRegVecPtr = const PBQP::RegAlloc::AllowedRegVector *;
+ using IKey = std::pair<AllowedRegVecPtr, AllowedRegVecPtr>;
+ using IMatrixCache = DenseMap<IKey, PBQPRAGraph::MatrixPtr>;
+ using DisjointAllowedRegsCache = DenseSet<IKey>;
+ using IEdgeKey = std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId>;
+ using IEdgeCache = DenseSet<IEdgeKey>;
+
+ bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
+ PBQPRAGraph::NodeId MId,
+ const DisjointAllowedRegsCache &D) const {
+ const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
+ const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
+
+ if (NRegs == MRegs)
+ return false;
+
+ if (NRegs < MRegs)
return D.contains(IKey(NRegs, MRegs));
-
+
return D.contains(IKey(MRegs, NRegs));
- }
-
- void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
- PBQPRAGraph::NodeId MId,
- DisjointAllowedRegsCache &D) {
- const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
- const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
-
- assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
-
- if (NRegs < MRegs)
- D.insert(IKey(NRegs, MRegs));
- else
- D.insert(IKey(MRegs, NRegs));
- }
-
- // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
- // for the fast interference graph construction algorithm. The last is there
- // to save us from looking up node ids via the VRegToNode map in the graph
- // metadata.
- using IntervalInfo =
- std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
-
- static SlotIndex getStartPoint(const IntervalInfo &I) {
- return std::get<0>(I)->segments[std::get<1>(I)].start;
- }
-
- static SlotIndex getEndPoint(const IntervalInfo &I) {
- return std::get<0>(I)->segments[std::get<1>(I)].end;
- }
-
- static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
- return std::get<2>(I);
- }
-
- static bool lowestStartPoint(const IntervalInfo &I1,
- const IntervalInfo &I2) {
- // Condition reversed because priority queue has the *highest* element at
- // the front, rather than the lowest.
- return getStartPoint(I1) > getStartPoint(I2);
- }
-
- static bool lowestEndPoint(const IntervalInfo &I1,
- const IntervalInfo &I2) {
- SlotIndex E1 = getEndPoint(I1);
- SlotIndex E2 = getEndPoint(I2);
-
- if (E1 < E2)
- return true;
-
- if (E1 > E2)
- return false;
-
- // If two intervals end at the same point, we need a way to break the tie or
- // the set will assume they're actually equal and refuse to insert a
- // "duplicate". Just compare the vregs - fast and guaranteed unique.
+ }
+
+ void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
+ PBQPRAGraph::NodeId MId,
+ DisjointAllowedRegsCache &D) {
+ const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
+ const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();
+
+ assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");
+
+ if (NRegs < MRegs)
+ D.insert(IKey(NRegs, MRegs));
+ else
+ D.insert(IKey(MRegs, NRegs));
+ }
+
+ // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
+ // for the fast interference graph construction algorithm. The last is there
+ // to save us from looking up node ids via the VRegToNode map in the graph
+ // metadata.
+ using IntervalInfo =
+ std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>;
+
+ static SlotIndex getStartPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].start;
+ }
+
+ static SlotIndex getEndPoint(const IntervalInfo &I) {
+ return std::get<0>(I)->segments[std::get<1>(I)].end;
+ }
+
+ static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
+ return std::get<2>(I);
+ }
+
+ static bool lowestStartPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ // Condition reversed because priority queue has the *highest* element at
+ // the front, rather than the lowest.
+ return getStartPoint(I1) > getStartPoint(I2);
+ }
+
+ static bool lowestEndPoint(const IntervalInfo &I1,
+ const IntervalInfo &I2) {
+ SlotIndex E1 = getEndPoint(I1);
+ SlotIndex E2 = getEndPoint(I2);
+
+ if (E1 < E2)
+ return true;
+
+ if (E1 > E2)
+ return false;
+
+ // If two intervals end at the same point, we need a way to break the tie or
+ // the set will assume they're actually equal and refuse to insert a
+ // "duplicate". Just compare the vregs - fast and guaranteed unique.
return std::get<0>(I1)->reg() < std::get<0>(I2)->reg();
- }
-
- static bool isAtLastSegment(const IntervalInfo &I) {
- return std::get<1>(I) == std::get<0>(I)->size() - 1;
- }
-
- static IntervalInfo nextSegment(const IntervalInfo &I) {
- return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
- }
-
-public:
- void apply(PBQPRAGraph &G) override {
- // The following is loosely based on the linear scan algorithm introduced in
- // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
- // isn't linear, because the size of the active set isn't bound by the
- // number of registers, but rather the size of the largest clique in the
- // graph. Still, we expect this to be better than N^2.
- LiveIntervals &LIS = G.getMetadata().LIS;
-
- // Interferenc matrices are incredibly regular - they're only a function of
- // the allowed sets, so we cache them to avoid the overhead of constructing
- // and uniquing them.
- IMatrixCache C;
-
- // Finding an edge is expensive in the worst case (O(max_clique(G))). So
- // cache locally edges we have already seen.
- IEdgeCache EC;
-
- // Cache known disjoint allowed registers pairs
- DisjointAllowedRegsCache D;
-
- using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
- using IntervalQueue =
- std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
- decltype(&lowestStartPoint)>;
- IntervalSet Active(lowestEndPoint);
- IntervalQueue Inactive(lowestStartPoint);
-
- // Start by building the inactive set.
- for (auto NId : G.nodeIds()) {
+ }
+
+ static bool isAtLastSegment(const IntervalInfo &I) {
+ return std::get<1>(I) == std::get<0>(I)->size() - 1;
+ }
+
+ static IntervalInfo nextSegment(const IntervalInfo &I) {
+ return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
+ }
+
+public:
+ void apply(PBQPRAGraph &G) override {
+ // The following is loosely based on the linear scan algorithm introduced in
+ // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
+ // isn't linear, because the size of the active set isn't bound by the
+ // number of registers, but rather the size of the largest clique in the
+ // graph. Still, we expect this to be better than N^2.
+ LiveIntervals &LIS = G.getMetadata().LIS;
+
+ // Interferenc matrices are incredibly regular - they're only a function of
+ // the allowed sets, so we cache them to avoid the overhead of constructing
+ // and uniquing them.
+ IMatrixCache C;
+
+ // Finding an edge is expensive in the worst case (O(max_clique(G))). So
+ // cache locally edges we have already seen.
+ IEdgeCache EC;
+
+ // Cache known disjoint allowed registers pairs
+ DisjointAllowedRegsCache D;
+
+ using IntervalSet = std::set<IntervalInfo, decltype(&lowestEndPoint)>;
+ using IntervalQueue =
+ std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
+ decltype(&lowestStartPoint)>;
+ IntervalSet Active(lowestEndPoint);
+ IntervalQueue Inactive(lowestStartPoint);
+
+ // Start by building the inactive set.
+ for (auto NId : G.nodeIds()) {
Register VReg = G.getNodeMetadata(NId).getVReg();
- LiveInterval &LI = LIS.getInterval(VReg);
- assert(!LI.empty() && "PBQP graph contains node for empty interval");
- Inactive.push(std::make_tuple(&LI, 0, NId));
- }
-
- while (!Inactive.empty()) {
- // Tentatively grab the "next" interval - this choice may be overriden
- // below.
- IntervalInfo Cur = Inactive.top();
-
- // Retire any active intervals that end before Cur starts.
- IntervalSet::iterator RetireItr = Active.begin();
- while (RetireItr != Active.end() &&
- (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
- // If this interval has subsequent segments, add the next one to the
- // inactive list.
- if (!isAtLastSegment(*RetireItr))
- Inactive.push(nextSegment(*RetireItr));
-
- ++RetireItr;
- }
- Active.erase(Active.begin(), RetireItr);
-
- // One of the newly retired segments may actually start before the
- // Cur segment, so re-grab the front of the inactive list.
- Cur = Inactive.top();
- Inactive.pop();
-
- // At this point we know that Cur overlaps all active intervals. Add the
- // interference edges.
- PBQP::GraphBase::NodeId NId = getNodeId(Cur);
- for (const auto &A : Active) {
- PBQP::GraphBase::NodeId MId = getNodeId(A);
-
- // Do not add an edge when the nodes' allowed registers do not
- // intersect: there is obviously no interference.
- if (haveDisjointAllowedRegs(G, NId, MId, D))
- continue;
-
- // Check that we haven't already added this edge
- IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
- if (EC.count(EK))
- continue;
-
- // This is a new edge - add it to the graph.
- if (!createInterferenceEdge(G, NId, MId, C))
- setDisjointAllowedRegs(G, NId, MId, D);
- else
- EC.insert(EK);
- }
-
- // Finally, add Cur to the Active set.
- Active.insert(Cur);
- }
- }
-
-private:
- // Create an Interference edge and add it to the graph, unless it is
- // a null matrix, meaning the nodes' allowed registers do not have any
- // interference. This case occurs frequently between integer and floating
- // point registers for example.
- // return true iff both nodes interferes.
- bool createInterferenceEdge(PBQPRAGraph &G,
- PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
- IMatrixCache &C) {
- const TargetRegisterInfo &TRI =
- *G.getMetadata().MF.getSubtarget().getRegisterInfo();
- const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
- const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
-
- // Try looking the edge costs up in the IMatrixCache first.
- IKey K(&NRegs, &MRegs);
- IMatrixCache::iterator I = C.find(K);
- if (I != C.end()) {
- G.addEdgeBypassingCostAllocator(NId, MId, I->second);
- return true;
- }
-
- PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
- bool NodesInterfere = false;
- for (unsigned I = 0; I != NRegs.size(); ++I) {
+ LiveInterval &LI = LIS.getInterval(VReg);
+ assert(!LI.empty() && "PBQP graph contains node for empty interval");
+ Inactive.push(std::make_tuple(&LI, 0, NId));
+ }
+
+ while (!Inactive.empty()) {
+ // Tentatively grab the "next" interval - this choice may be overriden
+ // below.
+ IntervalInfo Cur = Inactive.top();
+
+ // Retire any active intervals that end before Cur starts.
+ IntervalSet::iterator RetireItr = Active.begin();
+ while (RetireItr != Active.end() &&
+ (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
+ // If this interval has subsequent segments, add the next one to the
+ // inactive list.
+ if (!isAtLastSegment(*RetireItr))
+ Inactive.push(nextSegment(*RetireItr));
+
+ ++RetireItr;
+ }
+ Active.erase(Active.begin(), RetireItr);
+
+ // One of the newly retired segments may actually start before the
+ // Cur segment, so re-grab the front of the inactive list.
+ Cur = Inactive.top();
+ Inactive.pop();
+
+ // At this point we know that Cur overlaps all active intervals. Add the
+ // interference edges.
+ PBQP::GraphBase::NodeId NId = getNodeId(Cur);
+ for (const auto &A : Active) {
+ PBQP::GraphBase::NodeId MId = getNodeId(A);
+
+ // Do not add an edge when the nodes' allowed registers do not
+ // intersect: there is obviously no interference.
+ if (haveDisjointAllowedRegs(G, NId, MId, D))
+ continue;
+
+ // Check that we haven't already added this edge
+ IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
+ if (EC.count(EK))
+ continue;
+
+ // This is a new edge - add it to the graph.
+ if (!createInterferenceEdge(G, NId, MId, C))
+ setDisjointAllowedRegs(G, NId, MId, D);
+ else
+ EC.insert(EK);
+ }
+
+ // Finally, add Cur to the Active set.
+ Active.insert(Cur);
+ }
+ }
+
+private:
+ // Create an Interference edge and add it to the graph, unless it is
+ // a null matrix, meaning the nodes' allowed registers do not have any
+ // interference. This case occurs frequently between integer and floating
+ // point registers for example.
+ // return true iff both nodes interferes.
+ bool createInterferenceEdge(PBQPRAGraph &G,
+ PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
+ IMatrixCache &C) {
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getSubtarget().getRegisterInfo();
+ const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
+ const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();
+
+ // Try looking the edge costs up in the IMatrixCache first.
+ IKey K(&NRegs, &MRegs);
+ IMatrixCache::iterator I = C.find(K);
+ if (I != C.end()) {
+ G.addEdgeBypassingCostAllocator(NId, MId, I->second);
+ return true;
+ }
+
+ PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
+ bool NodesInterfere = false;
+ for (unsigned I = 0; I != NRegs.size(); ++I) {
MCRegister PRegN = NRegs[I];
- for (unsigned J = 0; J != MRegs.size(); ++J) {
+ for (unsigned J = 0; J != MRegs.size(); ++J) {
MCRegister PRegM = MRegs[J];
- if (TRI.regsOverlap(PRegN, PRegM)) {
- M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
- NodesInterfere = true;
- }
- }
- }
-
- if (!NodesInterfere)
- return false;
-
- PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
- C[K] = G.getEdgeCostsPtr(EId);
-
- return true;
- }
-};
-
-class Coalescing : public PBQPRAConstraint {
-public:
- void apply(PBQPRAGraph &G) override {
- MachineFunction &MF = G.getMetadata().MF;
- MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
- CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
-
- // Scan the machine function and add a coalescing cost whenever CoalescerPair
- // gives the Ok.
- for (const auto &MBB : MF) {
- for (const auto &MI : MBB) {
- // Skip not-coalescable or already coalesced copies.
- if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
- continue;
-
+ if (TRI.regsOverlap(PRegN, PRegM)) {
+ M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ NodesInterfere = true;
+ }
+ }
+ }
+
+ if (!NodesInterfere)
+ return false;
+
+ PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
+ C[K] = G.getEdgeCostsPtr(EId);
+
+ return true;
+ }
+};
+
+class Coalescing : public PBQPRAConstraint {
+public:
+ void apply(PBQPRAGraph &G) override {
+ MachineFunction &MF = G.getMetadata().MF;
+ MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
+ CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());
+
+ // Scan the machine function and add a coalescing cost whenever CoalescerPair
+ // gives the Ok.
+ for (const auto &MBB : MF) {
+ for (const auto &MI : MBB) {
+ // Skip not-coalescable or already coalesced copies.
+ if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
+ continue;
+
Register DstReg = CP.getDstReg();
Register SrcReg = CP.getSrcReg();
-
+
PBQP::PBQPNum CBenefit = MBFI.getBlockFreqRelativeToEntryBlock(&MBB);
-
- if (CP.isPhys()) {
- if (!MF.getRegInfo().isAllocatable(DstReg))
- continue;
-
- PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
-
- const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
- G.getNodeMetadata(NId).getAllowedRegs();
-
- unsigned PRegOpt = 0;
+
+ if (CP.isPhys()) {
+ if (!MF.getRegInfo().isAllocatable(DstReg))
+ continue;
+
+ PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);
+
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
+ G.getNodeMetadata(NId).getAllowedRegs();
+
+ unsigned PRegOpt = 0;
while (PRegOpt < Allowed.size() && Allowed[PRegOpt].id() != DstReg)
- ++PRegOpt;
-
- if (PRegOpt < Allowed.size()) {
- PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
- NewCosts[PRegOpt + 1] -= CBenefit;
- G.setNodeCosts(NId, std::move(NewCosts));
- }
- } else {
- PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
- PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
- const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
- &G.getNodeMetadata(N1Id).getAllowedRegs();
- const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
- &G.getNodeMetadata(N2Id).getAllowedRegs();
-
- PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
- if (EId == G.invalidEdgeId()) {
- PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
- Allowed2->size() + 1, 0);
- addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
- G.addEdge(N1Id, N2Id, std::move(Costs));
- } else {
- if (G.getEdgeNode1Id(EId) == N2Id) {
- std::swap(N1Id, N2Id);
- std::swap(Allowed1, Allowed2);
- }
- PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
- addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
- G.updateEdgeCosts(EId, std::move(Costs));
- }
- }
- }
- }
- }
-
-private:
- void addVirtRegCoalesce(
- PBQPRAGraph::RawMatrix &CostMat,
- const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
- const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
- PBQP::PBQPNum Benefit) {
- assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
- assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
- for (unsigned I = 0; I != Allowed1.size(); ++I) {
+ ++PRegOpt;
+
+ if (PRegOpt < Allowed.size()) {
+ PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
+ NewCosts[PRegOpt + 1] -= CBenefit;
+ G.setNodeCosts(NId, std::move(NewCosts));
+ }
+ } else {
+ PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
+ PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
+ &G.getNodeMetadata(N1Id).getAllowedRegs();
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
+ &G.getNodeMetadata(N2Id).getAllowedRegs();
+
+ PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
+ if (EId == G.invalidEdgeId()) {
+ PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
+ Allowed2->size() + 1, 0);
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.addEdge(N1Id, N2Id, std::move(Costs));
+ } else {
+ if (G.getEdgeNode1Id(EId) == N2Id) {
+ std::swap(N1Id, N2Id);
+ std::swap(Allowed1, Allowed2);
+ }
+ PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
+ addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
+ G.updateEdgeCosts(EId, std::move(Costs));
+ }
+ }
+ }
+ }
+ }
+
+private:
+ void addVirtRegCoalesce(
+ PBQPRAGraph::RawMatrix &CostMat,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
+ const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
+ PBQP::PBQPNum Benefit) {
+ assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
+ assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
+ for (unsigned I = 0; I != Allowed1.size(); ++I) {
MCRegister PReg1 = Allowed1[I];
- for (unsigned J = 0; J != Allowed2.size(); ++J) {
+ for (unsigned J = 0; J != Allowed2.size(); ++J) {
MCRegister PReg2 = Allowed2[J];
- if (PReg1 == PReg2)
- CostMat[I + 1][J + 1] -= Benefit;
- }
- }
- }
-};
-
+ if (PReg1 == PReg2)
+ CostMat[I + 1][J + 1] -= Benefit;
+ }
+ }
+ }
+};
+
/// PBQP-specific implementation of weight normalization.
class PBQPVirtRegAuxInfo final : public VirtRegAuxInfo {
float normalize(float UseDefFreq, unsigned Size, unsigned NumInstr) override {
@@ -531,419 +531,419 @@ public:
const MachineBlockFrequencyInfo &MBFI)
: VirtRegAuxInfo(MF, LIS, VRM, Loops, MBFI) {}
};
-} // end anonymous namespace
-
-// Out-of-line destructor/anchor for PBQPRAConstraint.
-PBQPRAConstraint::~PBQPRAConstraint() = default;
-
-void PBQPRAConstraint::anchor() {}
-
-void PBQPRAConstraintList::anchor() {}
-
-void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
- au.setPreservesCFG();
- au.addRequired<AAResultsWrapperPass>();
- au.addPreserved<AAResultsWrapperPass>();
- au.addRequired<SlotIndexes>();
- au.addPreserved<SlotIndexes>();
- au.addRequired<LiveIntervals>();
- au.addPreserved<LiveIntervals>();
- //au.addRequiredID(SplitCriticalEdgesID);
- if (customPassID)
- au.addRequiredID(*customPassID);
- au.addRequired<LiveStacks>();
- au.addPreserved<LiveStacks>();
- au.addRequired<MachineBlockFrequencyInfo>();
- au.addPreserved<MachineBlockFrequencyInfo>();
- au.addRequired<MachineLoopInfo>();
- au.addPreserved<MachineLoopInfo>();
- au.addRequired<MachineDominatorTree>();
- au.addPreserved<MachineDominatorTree>();
- au.addRequired<VirtRegMap>();
- au.addPreserved<VirtRegMap>();
- MachineFunctionPass::getAnalysisUsage(au);
-}
-
-void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
- LiveIntervals &LIS) {
- const MachineRegisterInfo &MRI = MF.getRegInfo();
-
- // Iterate over all live ranges.
- for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
+} // end anonymous namespace
+
+// Out-of-line destructor/anchor for PBQPRAConstraint.
+PBQPRAConstraint::~PBQPRAConstraint() = default;
+
+void PBQPRAConstraint::anchor() {}
+
+void PBQPRAConstraintList::anchor() {}
+
+void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
+ au.setPreservesCFG();
+ au.addRequired<AAResultsWrapperPass>();
+ au.addPreserved<AAResultsWrapperPass>();
+ au.addRequired<SlotIndexes>();
+ au.addPreserved<SlotIndexes>();
+ au.addRequired<LiveIntervals>();
+ au.addPreserved<LiveIntervals>();
+ //au.addRequiredID(SplitCriticalEdgesID);
+ if (customPassID)
+ au.addRequiredID(*customPassID);
+ au.addRequired<LiveStacks>();
+ au.addPreserved<LiveStacks>();
+ au.addRequired<MachineBlockFrequencyInfo>();
+ au.addPreserved<MachineBlockFrequencyInfo>();
+ au.addRequired<MachineLoopInfo>();
+ au.addPreserved<MachineLoopInfo>();
+ au.addRequired<MachineDominatorTree>();
+ au.addPreserved<MachineDominatorTree>();
+ au.addRequired<VirtRegMap>();
+ au.addPreserved<VirtRegMap>();
+ MachineFunctionPass::getAnalysisUsage(au);
+}
+
+void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
+ LiveIntervals &LIS) {
+ const MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // Iterate over all live ranges.
+ for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
Register Reg = Register::index2VirtReg(I);
- if (MRI.reg_nodbg_empty(Reg))
- continue;
- VRegsToAlloc.insert(Reg);
- }
-}
-
+ if (MRI.reg_nodbg_empty(Reg))
+ continue;
+ VRegsToAlloc.insert(Reg);
+ }
+}
+
static bool isACalleeSavedRegister(MCRegister Reg,
const TargetRegisterInfo &TRI,
- const MachineFunction &MF) {
- const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
- for (unsigned i = 0; CSR[i] != 0; ++i)
+ const MachineFunction &MF) {
+ const MCPhysReg *CSR = MF.getRegInfo().getCalleeSavedRegs();
+ for (unsigned i = 0; CSR[i] != 0; ++i)
if (TRI.regsOverlap(Reg, CSR[i]))
- return true;
- return false;
-}
-
-void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
- Spiller &VRegSpiller) {
- MachineFunction &MF = G.getMetadata().MF;
-
- LiveIntervals &LIS = G.getMetadata().LIS;
- const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
- const TargetRegisterInfo &TRI =
- *G.getMetadata().MF.getSubtarget().getRegisterInfo();
-
+ return true;
+ return false;
+}
+
+void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
+ Spiller &VRegSpiller) {
+ MachineFunction &MF = G.getMetadata().MF;
+
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
+ const TargetRegisterInfo &TRI =
+ *G.getMetadata().MF.getSubtarget().getRegisterInfo();
+
std::vector<Register> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());
-
+
std::map<Register, std::vector<MCRegister>> VRegAllowedMap;
-
- while (!Worklist.empty()) {
+
+ while (!Worklist.empty()) {
Register VReg = Worklist.back();
- Worklist.pop_back();
-
- LiveInterval &VRegLI = LIS.getInterval(VReg);
-
- // If this is an empty interval move it to the EmptyIntervalVRegs set then
- // continue.
- if (VRegLI.empty()) {
+ Worklist.pop_back();
+
+ LiveInterval &VRegLI = LIS.getInterval(VReg);
+
+ // If this is an empty interval move it to the EmptyIntervalVRegs set then
+ // continue.
+ if (VRegLI.empty()) {
EmptyIntervalVRegs.insert(VRegLI.reg());
VRegsToAlloc.erase(VRegLI.reg());
- continue;
- }
-
- const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
-
- // Record any overlaps with regmask operands.
- BitVector RegMaskOverlaps;
- LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
-
- // Compute an initial allowed set for the current vreg.
+ continue;
+ }
+
+ const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
+
+ // Record any overlaps with regmask operands.
+ BitVector RegMaskOverlaps;
+ LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);
+
+ // Compute an initial allowed set for the current vreg.
std::vector<MCRegister> VRegAllowed;
- ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
- for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
+ ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
+ for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
MCRegister PReg(RawPRegOrder[I]);
- if (MRI.isReserved(PReg))
- continue;
-
- // vregLI crosses a regmask operand that clobbers preg.
- if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
- continue;
-
- // vregLI overlaps fixed regunit interference.
- bool Interference = false;
- for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
- if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
- Interference = true;
- break;
- }
- }
- if (Interference)
- continue;
-
- // preg is usable for this virtual register.
- VRegAllowed.push_back(PReg);
- }
-
- // Check for vregs that have no allowed registers. These should be
- // pre-spilled and the new vregs added to the worklist.
- if (VRegAllowed.empty()) {
- SmallVector<Register, 8> NewVRegs;
- spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
+ if (MRI.isReserved(PReg))
+ continue;
+
+ // vregLI crosses a regmask operand that clobbers preg.
+ if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
+ continue;
+
+ // vregLI overlaps fixed regunit interference.
+ bool Interference = false;
+ for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
+ if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
+ Interference = true;
+ break;
+ }
+ }
+ if (Interference)
+ continue;
+
+ // preg is usable for this virtual register.
+ VRegAllowed.push_back(PReg);
+ }
+
+ // Check for vregs that have no allowed registers. These should be
+ // pre-spilled and the new vregs added to the worklist.
+ if (VRegAllowed.empty()) {
+ SmallVector<Register, 8> NewVRegs;
+ spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
llvm::append_range(Worklist, NewVRegs);
- continue;
+ continue;
}
VRegAllowedMap[VReg.id()] = std::move(VRegAllowed);
- }
-
- for (auto &KV : VRegAllowedMap) {
- auto VReg = KV.first;
-
- // Move empty intervals to the EmptyIntervalVReg set.
- if (LIS.getInterval(VReg).empty()) {
- EmptyIntervalVRegs.insert(VReg);
- VRegsToAlloc.erase(VReg);
- continue;
- }
-
- auto &VRegAllowed = KV.second;
-
- PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
-
- // Tweak cost of callee saved registers, as using then force spilling and
- // restoring them. This would only happen in the prologue / epilogue though.
- for (unsigned i = 0; i != VRegAllowed.size(); ++i)
- if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
- NodeCosts[1 + i] += 1.0;
-
- PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
- G.getNodeMetadata(NId).setVReg(VReg);
- G.getNodeMetadata(NId).setAllowedRegs(
- G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
- G.getMetadata().setNodeIdForVReg(VReg, NId);
- }
-}
-
-void RegAllocPBQP::spillVReg(Register VReg,
- SmallVectorImpl<Register> &NewIntervals,
- MachineFunction &MF, LiveIntervals &LIS,
- VirtRegMap &VRM, Spiller &VRegSpiller) {
- VRegsToAlloc.erase(VReg);
- LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
- nullptr, &DeadRemats);
- VRegSpiller.spill(LRE);
-
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- (void)TRI;
- LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
+ }
+
+ for (auto &KV : VRegAllowedMap) {
+ auto VReg = KV.first;
+
+ // Move empty intervals to the EmptyIntervalVReg set.
+ if (LIS.getInterval(VReg).empty()) {
+ EmptyIntervalVRegs.insert(VReg);
+ VRegsToAlloc.erase(VReg);
+ continue;
+ }
+
+ auto &VRegAllowed = KV.second;
+
+ PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);
+
+ // Tweak cost of callee saved registers, as using then force spilling and
+ // restoring them. This would only happen in the prologue / epilogue though.
+ for (unsigned i = 0; i != VRegAllowed.size(); ++i)
+ if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
+ NodeCosts[1 + i] += 1.0;
+
+ PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
+ G.getNodeMetadata(NId).setVReg(VReg);
+ G.getNodeMetadata(NId).setAllowedRegs(
+ G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
+ G.getMetadata().setNodeIdForVReg(VReg, NId);
+ }
+}
+
+void RegAllocPBQP::spillVReg(Register VReg,
+ SmallVectorImpl<Register> &NewIntervals,
+ MachineFunction &MF, LiveIntervals &LIS,
+ VirtRegMap &VRM, Spiller &VRegSpiller) {
+ VRegsToAlloc.erase(VReg);
+ LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
+ nullptr, &DeadRemats);
+ VRegSpiller.spill(LRE);
+
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+ (void)TRI;
+ LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> SPILLED (Cost: "
<< LRE.getParent().weight() << ", New vregs: ");
-
- // Copy any newly inserted live intervals into the list of regs to
- // allocate.
- for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
- I != E; ++I) {
- const LiveInterval &LI = LIS.getInterval(*I);
- assert(!LI.empty() && "Empty spill range.");
+
+ // Copy any newly inserted live intervals into the list of regs to
+ // allocate.
+ for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
+ I != E; ++I) {
+ const LiveInterval &LI = LIS.getInterval(*I);
+ assert(!LI.empty() && "Empty spill range.");
LLVM_DEBUG(dbgs() << printReg(LI.reg(), &TRI) << " ");
VRegsToAlloc.insert(LI.reg());
- }
-
- LLVM_DEBUG(dbgs() << ")\n");
-}
-
-bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
- const PBQP::Solution &Solution,
- VirtRegMap &VRM,
- Spiller &VRegSpiller) {
- MachineFunction &MF = G.getMetadata().MF;
- LiveIntervals &LIS = G.getMetadata().LIS;
- const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
- (void)TRI;
-
- // Set to true if we have any spills
- bool AnotherRoundNeeded = false;
-
- // Clear the existing allocation.
- VRM.clearAllVirt();
-
- // Iterate over the nodes mapping the PBQP solution to a register
- // assignment.
- for (auto NId : G.nodeIds()) {
+ }
+
+ LLVM_DEBUG(dbgs() << ")\n");
+}
+
+bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
+ const PBQP::Solution &Solution,
+ VirtRegMap &VRM,
+ Spiller &VRegSpiller) {
+ MachineFunction &MF = G.getMetadata().MF;
+ LiveIntervals &LIS = G.getMetadata().LIS;
+ const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
+ (void)TRI;
+
+ // Set to true if we have any spills
+ bool AnotherRoundNeeded = false;
+
+ // Clear the existing allocation.
+ VRM.clearAllVirt();
+
+ // Iterate over the nodes mapping the PBQP solution to a register
+ // assignment.
+ for (auto NId : G.nodeIds()) {
Register VReg = G.getNodeMetadata(NId).getVReg();
unsigned AllocOpt = Solution.getSelection(NId);
-
+
if (AllocOpt != PBQP::RegAlloc::getSpillOptionIdx()) {
MCRegister PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOpt - 1];
- LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
- << TRI.getName(PReg) << "\n");
- assert(PReg != 0 && "Invalid preg selected.");
- VRM.assignVirt2Phys(VReg, PReg);
- } else {
- // Spill VReg. If this introduces new intervals we'll need another round
- // of allocation.
- SmallVector<Register, 8> NewVRegs;
- spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
- AnotherRoundNeeded |= !NewVRegs.empty();
- }
- }
-
- return !AnotherRoundNeeded;
-}
-
-void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
- LiveIntervals &LIS,
- VirtRegMap &VRM) const {
- MachineRegisterInfo &MRI = MF.getRegInfo();
-
- // First allocate registers for the empty intervals.
- for (RegSet::const_iterator
- I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
- I != E; ++I) {
- LiveInterval &LI = LIS.getInterval(*I);
-
+ LLVM_DEBUG(dbgs() << "VREG " << printReg(VReg, &TRI) << " -> "
+ << TRI.getName(PReg) << "\n");
+ assert(PReg != 0 && "Invalid preg selected.");
+ VRM.assignVirt2Phys(VReg, PReg);
+ } else {
+ // Spill VReg. If this introduces new intervals we'll need another round
+ // of allocation.
+ SmallVector<Register, 8> NewVRegs;
+ spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
+ AnotherRoundNeeded |= !NewVRegs.empty();
+ }
+ }
+
+ return !AnotherRoundNeeded;
+}
+
+void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
+ LiveIntervals &LIS,
+ VirtRegMap &VRM) const {
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+
+ // First allocate registers for the empty intervals.
+ for (RegSet::const_iterator
+ I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
+ I != E; ++I) {
+ LiveInterval &LI = LIS.getInterval(*I);
+
Register PReg = MRI.getSimpleHint(LI.reg());
-
- if (PReg == 0) {
+
+ if (PReg == 0) {
const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg());
- const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
+ const ArrayRef<MCPhysReg> RawPRegOrder = RC.getRawAllocationOrder(MF);
for (MCRegister CandidateReg : RawPRegOrder) {
- if (!VRM.getRegInfo().isReserved(CandidateReg)) {
- PReg = CandidateReg;
- break;
- }
- }
- assert(PReg &&
- "No un-reserved physical registers in this register class");
- }
-
+ if (!VRM.getRegInfo().isReserved(CandidateReg)) {
+ PReg = CandidateReg;
+ break;
+ }
+ }
+ assert(PReg &&
+ "No un-reserved physical registers in this register class");
+ }
+
VRM.assignVirt2Phys(LI.reg(), PReg);
- }
-}
-
-void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
- VRegSpiller.postOptimization();
- /// Remove dead defs because of rematerialization.
- for (auto DeadInst : DeadRemats) {
- LIS.RemoveMachineInstrFromMaps(*DeadInst);
- DeadInst->eraseFromParent();
- }
- DeadRemats.clear();
-}
-
-bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
- LiveIntervals &LIS = getAnalysis<LiveIntervals>();
- MachineBlockFrequencyInfo &MBFI =
- getAnalysis<MachineBlockFrequencyInfo>();
-
- VirtRegMap &VRM = getAnalysis<VirtRegMap>();
-
+ }
+}
+
+void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
+ VRegSpiller.postOptimization();
+ /// Remove dead defs because of rematerialization.
+ for (auto DeadInst : DeadRemats) {
+ LIS.RemoveMachineInstrFromMaps(*DeadInst);
+ DeadInst->eraseFromParent();
+ }
+ DeadRemats.clear();
+}
+
+bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
+ LiveIntervals &LIS = getAnalysis<LiveIntervals>();
+ MachineBlockFrequencyInfo &MBFI =
+ getAnalysis<MachineBlockFrequencyInfo>();
+
+ VirtRegMap &VRM = getAnalysis<VirtRegMap>();
+
PBQPVirtRegAuxInfo VRAI(MF, LIS, VRM, getAnalysis<MachineLoopInfo>(), MBFI);
VRAI.calculateSpillWeightsAndHints();
-
- std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
-
- MF.getRegInfo().freezeReservedRegs(MF);
-
- LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
-
- // Allocator main loop:
- //
- // * Map current regalloc problem to a PBQP problem
- // * Solve the PBQP problem
- // * Map the solution back to a register allocation
- // * Spill if necessary
- //
- // This process is continued till no more spills are generated.
-
- // Find the vreg intervals in need of allocation.
- findVRegIntervalsToAlloc(MF, LIS);
-
-#ifndef NDEBUG
- const Function &F = MF.getFunction();
- std::string FullyQualifiedName =
- F.getParent()->getModuleIdentifier() + "." + F.getName().str();
-#endif
-
- // If there are non-empty intervals allocate them using pbqp.
- if (!VRegsToAlloc.empty()) {
- const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
- std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
- std::make_unique<PBQPRAConstraintList>();
- ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
- ConstraintsRoot->addConstraint(std::make_unique<Interference>());
- if (PBQPCoalescing)
- ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
- ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
-
- bool PBQPAllocComplete = false;
- unsigned Round = 0;
-
- while (!PBQPAllocComplete) {
- LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
-
- PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
- initializeGraph(G, VRM, *VRegSpiller);
- ConstraintsRoot->apply(G);
-
-#ifndef NDEBUG
- if (PBQPDumpGraphs) {
- std::ostringstream RS;
- RS << Round;
- std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
- ".pbqpgraph";
- std::error_code EC;
- raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text);
- LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
- << GraphFileName << "\"\n");
- G.dump(OS);
- }
-#endif
-
- PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
- PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
- ++Round;
- }
- }
-
- // Finalise allocation, allocate empty ranges.
- finalizeAlloc(MF, LIS, VRM);
- postOptimization(*VRegSpiller, LIS);
- VRegsToAlloc.clear();
- EmptyIntervalVRegs.clear();
-
- LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
-
- return true;
-}
-
-/// Create Printable object for node and register info.
-static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
- const PBQP::RegAlloc::PBQPRAGraph &G) {
- return Printable([NId, &G](raw_ostream &OS) {
- const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
- const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
+
+ std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));
+
+ MF.getRegInfo().freezeReservedRegs(MF);
+
+ LLVM_DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");
+
+ // Allocator main loop:
+ //
+ // * Map current regalloc problem to a PBQP problem
+ // * Solve the PBQP problem
+ // * Map the solution back to a register allocation
+ // * Spill if necessary
+ //
+ // This process is continued till no more spills are generated.
+
+ // Find the vreg intervals in need of allocation.
+ findVRegIntervalsToAlloc(MF, LIS);
+
+#ifndef NDEBUG
+ const Function &F = MF.getFunction();
+ std::string FullyQualifiedName =
+ F.getParent()->getModuleIdentifier() + "." + F.getName().str();
+#endif
+
+ // If there are non-empty intervals allocate them using pbqp.
+ if (!VRegsToAlloc.empty()) {
+ const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
+ std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
+ std::make_unique<PBQPRAConstraintList>();
+ ConstraintsRoot->addConstraint(std::make_unique<SpillCosts>());
+ ConstraintsRoot->addConstraint(std::make_unique<Interference>());
+ if (PBQPCoalescing)
+ ConstraintsRoot->addConstraint(std::make_unique<Coalescing>());
+ ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());
+
+ bool PBQPAllocComplete = false;
+ unsigned Round = 0;
+
+ while (!PBQPAllocComplete) {
+ LLVM_DEBUG(dbgs() << " PBQP Regalloc round " << Round << ":\n");
+
+ PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
+ initializeGraph(G, VRM, *VRegSpiller);
+ ConstraintsRoot->apply(G);
+
+#ifndef NDEBUG
+ if (PBQPDumpGraphs) {
+ std::ostringstream RS;
+ RS << Round;
+ std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
+ ".pbqpgraph";
+ std::error_code EC;
+ raw_fd_ostream OS(GraphFileName, EC, sys::fs::OF_Text);
+ LLVM_DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
+ << GraphFileName << "\"\n");
+ G.dump(OS);
+ }
+#endif
+
+ PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
+ PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
+ ++Round;
+ }
+ }
+
+ // Finalise allocation, allocate empty ranges.
+ finalizeAlloc(MF, LIS, VRM);
+ postOptimization(*VRegSpiller, LIS);
+ VRegsToAlloc.clear();
+ EmptyIntervalVRegs.clear();
+
+ LLVM_DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");
+
+ return true;
+}
+
+/// Create Printable object for node and register info.
+static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
+ const PBQP::RegAlloc::PBQPRAGraph &G) {
+ return Printable([NId, &G](raw_ostream &OS) {
+ const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
+ const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
Register VReg = G.getNodeMetadata(NId).getVReg();
- const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
- OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
- });
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
- for (auto NId : nodeIds()) {
- const Vector &Costs = getNodeCosts(NId);
- assert(Costs.getLength() != 0 && "Empty vector in graph.");
- OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
- }
- OS << '\n';
-
- for (auto EId : edgeIds()) {
- NodeId N1Id = getEdgeNode1Id(EId);
- NodeId N2Id = getEdgeNode2Id(EId);
- assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
- const Matrix &M = getEdgeCosts(EId);
- assert(M.getRows() != 0 && "No rows in matrix.");
- assert(M.getCols() != 0 && "No cols in matrix.");
- OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
- OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
- OS << M << '\n';
- }
-}
-
-LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
- dump(dbgs());
-}
-#endif
-
-void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
- OS << "graph {\n";
- for (auto NId : nodeIds()) {
- OS << " node" << NId << " [ label=\""
- << PrintNodeInfo(NId, *this) << "\\n"
- << getNodeCosts(NId) << "\" ]\n";
- }
-
- OS << " edge [ len=" << nodeIds().size() << " ]\n";
- for (auto EId : edgeIds()) {
- OS << " node" << getEdgeNode1Id(EId)
- << " -- node" << getEdgeNode2Id(EId)
- << " [ label=\"";
- const Matrix &EdgeCosts = getEdgeCosts(EId);
- for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
- OS << EdgeCosts.getRowAsVector(i) << "\\n";
- }
- OS << "\" ]\n";
- }
- OS << "}\n";
-}
-
-FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
- return new RegAllocPBQP(customPassID);
-}
-
-FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
- return createPBQPRegisterAllocator();
-}
+ const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
+ OS << NId << " (" << RegClassName << ':' << printReg(VReg, TRI) << ')';
+ });
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
+ for (auto NId : nodeIds()) {
+ const Vector &Costs = getNodeCosts(NId);
+ assert(Costs.getLength() != 0 && "Empty vector in graph.");
+ OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
+ }
+ OS << '\n';
+
+ for (auto EId : edgeIds()) {
+ NodeId N1Id = getEdgeNode1Id(EId);
+ NodeId N2Id = getEdgeNode2Id(EId);
+ assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
+ const Matrix &M = getEdgeCosts(EId);
+ assert(M.getRows() != 0 && "No rows in matrix.");
+ assert(M.getCols() != 0 && "No cols in matrix.");
+ OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
+ OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
+ OS << M << '\n';
+ }
+}
+
+LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const {
+ dump(dbgs());
+}
+#endif
+
+void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
+ OS << "graph {\n";
+ for (auto NId : nodeIds()) {
+ OS << " node" << NId << " [ label=\""
+ << PrintNodeInfo(NId, *this) << "\\n"
+ << getNodeCosts(NId) << "\" ]\n";
+ }
+
+ OS << " edge [ len=" << nodeIds().size() << " ]\n";
+ for (auto EId : edgeIds()) {
+ OS << " node" << getEdgeNode1Id(EId)
+ << " -- node" << getEdgeNode2Id(EId)
+ << " [ label=\"";
+ const Matrix &EdgeCosts = getEdgeCosts(EId);
+ for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
+ OS << EdgeCosts.getRowAsVector(i) << "\\n";
+ }
+ OS << "\" ]\n";
+ }
+ OS << "}\n";
+}
+
+FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
+ return new RegAllocPBQP(customPassID);
+}
+
+FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
+ return createPBQPRegisterAllocator();
+}