diff options
author | orivej <orivej@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:45:01 +0300 |
commit | 2d37894b1b037cf24231090eda8589bbb44fb6fc (patch) | |
tree | be835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp | |
parent | 718c552901d703c502ccbefdfc3c9028d608b947 (diff) | |
download | ydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz |
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp | 6194 |
1 files changed, 3097 insertions, 3097 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp b/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp index e3d81ca2b2..d0fe29f65e 100644 --- a/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp @@ -1,447 +1,447 @@ -//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. -// -// This SMS implementation is a target-independent back-end pass. When enabled, -// the pass runs just prior to the register allocation pass, while the machine -// IR is in SSA form. If software pipelining is successful, then the original -// loop is replaced by the optimized loop. The optimized loop contains one or -// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If -// the instructions cannot be scheduled in a given MII, we increase the MII by -// one and try again. -// -// The SMS implementation is an extension of the ScheduleDAGInstrs class. We -// represent loop carried dependences in the DAG as order edges to the Phi -// nodes. We also perform several passes over the DAG to eliminate unnecessary -// edges that inhibit the ability to pipeline. The implementation uses the -// DFAPacketizer class to compute the minimum initiation interval and the check -// where an instruction may be inserted in the pipelined schedule. -// -// In order for the SMS pass to work, several target specific hooks need to be -// implemented to get information about the loop structure and to rewrite -// instructions. -// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/ArrayRef.h" -#include "llvm/ADT/BitVector.h" -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/MapVector.h" -#include "llvm/ADT/PriorityQueue.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/iterator_range.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/MemoryLocation.h" -#include "llvm/Analysis/ValueTracking.h" -#include "llvm/CodeGen/DFAPacketizer.h" -#include "llvm/CodeGen/LiveIntervals.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineDominators.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineLoopInfo.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/MachinePipeliner.h" -#include "llvm/CodeGen/MachineRegisterInfo.h" -#include "llvm/CodeGen/ModuloSchedule.h" -#include "llvm/CodeGen/RegisterPressure.h" -#include "llvm/CodeGen/ScheduleDAG.h" -#include "llvm/CodeGen/ScheduleDAGMutation.h" -#include "llvm/CodeGen/TargetOpcodes.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/Attributes.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/MC/LaneBitmask.h" -#include "llvm/MC/MCInstrDesc.h" -#include "llvm/MC/MCInstrItineraries.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Pass.h" -#include "llvm/Support/CommandLine.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/MathExtras.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <climits> -#include <cstdint> -#include <deque> -#include <functional> -#include <iterator> -#include <map> -#include <memory> -#include <tuple> -#include <utility> -#include <vector> - -using namespace llvm; - -#define DEBUG_TYPE "pipeliner" - -STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); -STATISTIC(NumPipelined, "Number of loops software pipelined"); -STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); -STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); -STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); -STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); -STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); -STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); -STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); -STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); -STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); - -/// A command line option to turn software pipelining on or off. -static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), - cl::ZeroOrMore, - cl::desc("Enable Software Pipelining")); - -/// A command line option to enable SWP at -Os. -static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", - cl::desc("Enable SWP at Os."), cl::Hidden, - cl::init(false)); - -/// A command line argument to limit minimum initial interval for pipelining. -static cl::opt<int> SwpMaxMii("pipeliner-max-mii", - cl::desc("Size limit for the MII."), - cl::Hidden, cl::init(27)); - -/// A command line argument to limit the number of stages in the pipeline. -static cl::opt<int> - SwpMaxStages("pipeliner-max-stages", - cl::desc("Maximum stages allowed in the generated scheduled."), - cl::Hidden, cl::init(3)); - -/// A command line option to disable the pruning of chain dependences due to -/// an unrelated Phi. -static cl::opt<bool> - SwpPruneDeps("pipeliner-prune-deps", - cl::desc("Prune dependences between unrelated Phi nodes."), - cl::Hidden, cl::init(true)); - -/// A command line option to disable the pruning of loop carried order -/// dependences. -static cl::opt<bool> - SwpPruneLoopCarried("pipeliner-prune-loop-carried", - cl::desc("Prune loop carried order dependences."), - cl::Hidden, cl::init(true)); - -#ifndef NDEBUG -static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); -#endif - -static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", - cl::ReallyHidden, cl::init(false), - cl::ZeroOrMore, cl::desc("Ignore RecMII")); - -static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, - cl::init(false)); -static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, - cl::init(false)); - -static cl::opt<bool> EmitTestAnnotations( - "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), - cl::desc("Instead of emitting the pipelined code, annotate instructions " - "with the generated schedule for feeding into the " - "-modulo-schedule-test pass")); - -static cl::opt<bool> ExperimentalCodeGen( - "pipeliner-experimental-cg", cl::Hidden, cl::init(false), - cl::desc( - "Use the experimental peeling code generator for software pipelining")); - -namespace llvm { - -// A command line option to enable the CopyToPhi DAG mutation. -cl::opt<bool> - SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, - cl::init(true), cl::ZeroOrMore, - cl::desc("Enable CopyToPhi DAG Mutation")); - -} // end namespace llvm - -unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; -char MachinePipeliner::ID = 0; -#ifndef NDEBUG -int MachinePipeliner::NumTries = 0; -#endif -char &llvm::MachinePipelinerID = MachinePipeliner::ID; - -INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, - "Modulo Software Pipelining", false, false) -INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) -INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) -INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) -INITIALIZE_PASS_DEPENDENCY(LiveIntervals) -INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, - "Modulo Software Pipelining", false, false) - -/// The "main" function for implementing Swing Modulo Scheduling. -bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { - if (skipFunction(mf.getFunction())) - return false; - - if (!EnableSWP) - return false; - - if (mf.getFunction().getAttributes().hasAttribute( - AttributeList::FunctionIndex, Attribute::OptimizeForSize) && - !EnableSWPOptSize.getPosition()) - return false; - - if (!mf.getSubtarget().enableMachinePipeliner()) - return false; - - // Cannot pipeline loops without instruction itineraries if we are using - // DFA for the pipeliner. - if (mf.getSubtarget().useDFAforSMS() && - (!mf.getSubtarget().getInstrItineraryData() || - mf.getSubtarget().getInstrItineraryData()->isEmpty())) - return false; - - MF = &mf; - MLI = &getAnalysis<MachineLoopInfo>(); - MDT = &getAnalysis<MachineDominatorTree>(); - ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); - TII = MF->getSubtarget().getInstrInfo(); - RegClassInfo.runOnMachineFunction(*MF); - - for (auto &L : *MLI) - scheduleLoop(*L); - - return false; -} - -/// Attempt to perform the SMS algorithm on the specified loop. This function is -/// the main entry point for the algorithm. The function identifies candidate -/// loops, calculates the minimum initiation interval, and attempts to schedule -/// the loop. -bool MachinePipeliner::scheduleLoop(MachineLoop &L) { - bool Changed = false; - for (auto &InnerLoop : L) - Changed |= scheduleLoop(*InnerLoop); - -#ifndef NDEBUG - // Stop trying after reaching the limit (if any). - int Limit = SwpLoopLimit; - if (Limit >= 0) { - if (NumTries >= SwpLoopLimit) - return Changed; - NumTries++; - } -#endif - - setPragmaPipelineOptions(L); - if (!canPipelineLoop(L)) { - LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); - ORE->emit([&]() { - return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "Failed to pipeline loop"; - }); - - return Changed; - } - - ++NumTrytoPipeline; - - Changed = swingModuloScheduler(L); - - return Changed; -} - -void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { - // Reset the pragma for the next loop in iteration. - disabledByPragma = false; +//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner. +// +// This SMS implementation is a target-independent back-end pass. When enabled, +// the pass runs just prior to the register allocation pass, while the machine +// IR is in SSA form. If software pipelining is successful, then the original +// loop is replaced by the optimized loop. The optimized loop contains one or +// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If +// the instructions cannot be scheduled in a given MII, we increase the MII by +// one and try again. +// +// The SMS implementation is an extension of the ScheduleDAGInstrs class. We +// represent loop carried dependences in the DAG as order edges to the Phi +// nodes. We also perform several passes over the DAG to eliminate unnecessary +// edges that inhibit the ability to pipeline. The implementation uses the +// DFAPacketizer class to compute the minimum initiation interval and the check +// where an instruction may be inserted in the pipelined schedule. +// +// In order for the SMS pass to work, several target specific hooks need to be +// implemented to get information about the loop structure and to rewrite +// instructions. +// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/ArrayRef.h" +#include "llvm/ADT/BitVector.h" +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/MapVector.h" +#include "llvm/ADT/PriorityQueue.h" +#include "llvm/ADT/SetVector.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/iterator_range.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/MemoryLocation.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/CodeGen/DFAPacketizer.h" +#include "llvm/CodeGen/LiveIntervals.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineDominators.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineLoopInfo.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/MachinePipeliner.h" +#include "llvm/CodeGen/MachineRegisterInfo.h" +#include "llvm/CodeGen/ModuloSchedule.h" +#include "llvm/CodeGen/RegisterPressure.h" +#include "llvm/CodeGen/ScheduleDAG.h" +#include "llvm/CodeGen/ScheduleDAGMutation.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/Attributes.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/MC/LaneBitmask.h" +#include "llvm/MC/MCInstrDesc.h" +#include "llvm/MC/MCInstrItineraries.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/MathExtras.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <climits> +#include <cstdint> +#include <deque> +#include <functional> +#include <iterator> +#include <map> +#include <memory> +#include <tuple> +#include <utility> +#include <vector> + +using namespace llvm; + +#define DEBUG_TYPE "pipeliner" + +STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline"); +STATISTIC(NumPipelined, "Number of loops software pipelined"); +STATISTIC(NumNodeOrderIssues, "Number of node order issues found"); +STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch"); +STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop"); +STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader"); +STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large"); +STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII"); +STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found"); +STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage"); +STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages"); + +/// A command line option to turn software pipelining on or off. +static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true), + cl::ZeroOrMore, + cl::desc("Enable Software Pipelining")); + +/// A command line option to enable SWP at -Os. +static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size", + cl::desc("Enable SWP at Os."), cl::Hidden, + cl::init(false)); + +/// A command line argument to limit minimum initial interval for pipelining. +static cl::opt<int> SwpMaxMii("pipeliner-max-mii", + cl::desc("Size limit for the MII."), + cl::Hidden, cl::init(27)); + +/// A command line argument to limit the number of stages in the pipeline. +static cl::opt<int> + SwpMaxStages("pipeliner-max-stages", + cl::desc("Maximum stages allowed in the generated scheduled."), + cl::Hidden, cl::init(3)); + +/// A command line option to disable the pruning of chain dependences due to +/// an unrelated Phi. +static cl::opt<bool> + SwpPruneDeps("pipeliner-prune-deps", + cl::desc("Prune dependences between unrelated Phi nodes."), + cl::Hidden, cl::init(true)); + +/// A command line option to disable the pruning of loop carried order +/// dependences. +static cl::opt<bool> + SwpPruneLoopCarried("pipeliner-prune-loop-carried", + cl::desc("Prune loop carried order dependences."), + cl::Hidden, cl::init(true)); + +#ifndef NDEBUG +static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1)); +#endif + +static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii", + cl::ReallyHidden, cl::init(false), + cl::ZeroOrMore, cl::desc("Ignore RecMII")); + +static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden, + cl::init(false)); +static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden, + cl::init(false)); + +static cl::opt<bool> EmitTestAnnotations( + "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false), + cl::desc("Instead of emitting the pipelined code, annotate instructions " + "with the generated schedule for feeding into the " + "-modulo-schedule-test pass")); + +static cl::opt<bool> ExperimentalCodeGen( + "pipeliner-experimental-cg", cl::Hidden, cl::init(false), + cl::desc( + "Use the experimental peeling code generator for software pipelining")); + +namespace llvm { + +// A command line option to enable the CopyToPhi DAG mutation. +cl::opt<bool> + SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden, + cl::init(true), cl::ZeroOrMore, + cl::desc("Enable CopyToPhi DAG Mutation")); + +} // end namespace llvm + +unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5; +char MachinePipeliner::ID = 0; +#ifndef NDEBUG +int MachinePipeliner::NumTries = 0; +#endif +char &llvm::MachinePipelinerID = MachinePipeliner::ID; + +INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE, + "Modulo Software Pipelining", false, false) +INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) +INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) +INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) +INITIALIZE_PASS_DEPENDENCY(LiveIntervals) +INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE, + "Modulo Software Pipelining", false, false) + +/// The "main" function for implementing Swing Modulo Scheduling. +bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) { + if (skipFunction(mf.getFunction())) + return false; + + if (!EnableSWP) + return false; + + if (mf.getFunction().getAttributes().hasAttribute( + AttributeList::FunctionIndex, Attribute::OptimizeForSize) && + !EnableSWPOptSize.getPosition()) + return false; + + if (!mf.getSubtarget().enableMachinePipeliner()) + return false; + + // Cannot pipeline loops without instruction itineraries if we are using + // DFA for the pipeliner. + if (mf.getSubtarget().useDFAforSMS() && + (!mf.getSubtarget().getInstrItineraryData() || + mf.getSubtarget().getInstrItineraryData()->isEmpty())) + return false; + + MF = &mf; + MLI = &getAnalysis<MachineLoopInfo>(); + MDT = &getAnalysis<MachineDominatorTree>(); + ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE(); + TII = MF->getSubtarget().getInstrInfo(); + RegClassInfo.runOnMachineFunction(*MF); + + for (auto &L : *MLI) + scheduleLoop(*L); + + return false; +} + +/// Attempt to perform the SMS algorithm on the specified loop. This function is +/// the main entry point for the algorithm. The function identifies candidate +/// loops, calculates the minimum initiation interval, and attempts to schedule +/// the loop. +bool MachinePipeliner::scheduleLoop(MachineLoop &L) { + bool Changed = false; + for (auto &InnerLoop : L) + Changed |= scheduleLoop(*InnerLoop); + +#ifndef NDEBUG + // Stop trying after reaching the limit (if any). + int Limit = SwpLoopLimit; + if (Limit >= 0) { + if (NumTries >= SwpLoopLimit) + return Changed; + NumTries++; + } +#endif + + setPragmaPipelineOptions(L); + if (!canPipelineLoop(L)) { + LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n"); + ORE->emit([&]() { + return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "Failed to pipeline loop"; + }); + + return Changed; + } + + ++NumTrytoPipeline; + + Changed = swingModuloScheduler(L); + + return Changed; +} + +void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) { + // Reset the pragma for the next loop in iteration. + disabledByPragma = false; II_setByPragma = 0; - - MachineBasicBlock *LBLK = L.getTopBlock(); - - if (LBLK == nullptr) - return; - - const BasicBlock *BBLK = LBLK->getBasicBlock(); - if (BBLK == nullptr) - return; - - const Instruction *TI = BBLK->getTerminator(); - if (TI == nullptr) - return; - - MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); - if (LoopID == nullptr) - return; - - assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); - assert(LoopID->getOperand(0) == LoopID && "invalid loop"); - - for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { - MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); - - if (MD == nullptr) - continue; - - MDString *S = dyn_cast<MDString>(MD->getOperand(0)); - - if (S == nullptr) - continue; - - if (S->getString() == "llvm.loop.pipeline.initiationinterval") { - assert(MD->getNumOperands() == 2 && - "Pipeline initiation interval hint metadata should have two operands."); - II_setByPragma = - mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); - assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); - } else if (S->getString() == "llvm.loop.pipeline.disable") { - disabledByPragma = true; - } - } -} - -/// Return true if the loop can be software pipelined. The algorithm is -/// restricted to loops with a single basic block. Make sure that the -/// branch in the loop can be analyzed. -bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { - if (L.getNumBlocks() != 1) { - ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "Not a single basic block: " - << ore::NV("NumBlocks", L.getNumBlocks()); - }); - return false; - } - - if (disabledByPragma) { - ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "Disabled by Pragma."; - }); - return false; - } - - // Check if the branch can't be understood because we can't do pipelining - // if that's the case. - LI.TBB = nullptr; - LI.FBB = nullptr; - LI.BrCond.clear(); - if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { - LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); - NumFailBranch++; - ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "The branch can't be understood"; - }); - return false; - } - - LI.LoopInductionVar = nullptr; - LI.LoopCompare = nullptr; - if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { - LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); - NumFailLoop++; - ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "The loop structure is not supported"; - }); - return false; - } - - if (!L.getLoopPreheader()) { - LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); - NumFailPreheader++; - ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", - L.getStartLoc(), L.getHeader()) - << "No loop preheader found"; - }); - return false; - } - - // Remove any subregisters from inputs to phi nodes. - preprocessPhiNodes(*L.getHeader()); - return true; -} - -void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { - MachineRegisterInfo &MRI = MF->getRegInfo(); - SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); - - for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { - MachineOperand &DefOp = PI.getOperand(0); - assert(DefOp.getSubReg() == 0); - auto *RC = MRI.getRegClass(DefOp.getReg()); - - for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { - MachineOperand &RegOp = PI.getOperand(i); - if (RegOp.getSubReg() == 0) - continue; - - // If the operand uses a subregister, replace it with a new register - // without subregisters, and generate a copy to the new register. - Register NewReg = MRI.createVirtualRegister(RC); - MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); - MachineBasicBlock::iterator At = PredB.getFirstTerminator(); - const DebugLoc &DL = PredB.findDebugLoc(At); - auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) - .addReg(RegOp.getReg(), getRegState(RegOp), - RegOp.getSubReg()); - Slots.insertMachineInstrInMaps(*Copy); - RegOp.setReg(NewReg); - RegOp.setSubReg(0); - } - } -} - -/// The SMS algorithm consists of the following main steps: -/// 1. Computation and analysis of the dependence graph. -/// 2. Ordering of the nodes (instructions). -/// 3. Attempt to Schedule the loop. -bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { - assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); - - SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, - II_setByPragma); - - MachineBasicBlock *MBB = L.getHeader(); - // The kernel should not include any terminator instructions. These - // will be added back later. - SMS.startBlock(MBB); - - // Compute the number of 'real' instructions in the basic block by - // ignoring terminators. - unsigned size = MBB->size(); - for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), - E = MBB->instr_end(); - I != E; ++I, --size) - ; - - SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); - SMS.schedule(); - SMS.exitRegion(); - - SMS.finishBlock(); - return SMS.hasNewSchedule(); -} - + + MachineBasicBlock *LBLK = L.getTopBlock(); + + if (LBLK == nullptr) + return; + + const BasicBlock *BBLK = LBLK->getBasicBlock(); + if (BBLK == nullptr) + return; + + const Instruction *TI = BBLK->getTerminator(); + if (TI == nullptr) + return; + + MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop); + if (LoopID == nullptr) + return; + + assert(LoopID->getNumOperands() > 0 && "requires atleast one operand"); + assert(LoopID->getOperand(0) == LoopID && "invalid loop"); + + for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) { + MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i)); + + if (MD == nullptr) + continue; + + MDString *S = dyn_cast<MDString>(MD->getOperand(0)); + + if (S == nullptr) + continue; + + if (S->getString() == "llvm.loop.pipeline.initiationinterval") { + assert(MD->getNumOperands() == 2 && + "Pipeline initiation interval hint metadata should have two operands."); + II_setByPragma = + mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue(); + assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive."); + } else if (S->getString() == "llvm.loop.pipeline.disable") { + disabledByPragma = true; + } + } +} + +/// Return true if the loop can be software pipelined. The algorithm is +/// restricted to loops with a single basic block. Make sure that the +/// branch in the loop can be analyzed. +bool MachinePipeliner::canPipelineLoop(MachineLoop &L) { + if (L.getNumBlocks() != 1) { + ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "Not a single basic block: " + << ore::NV("NumBlocks", L.getNumBlocks()); + }); + return false; + } + + if (disabledByPragma) { + ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "Disabled by Pragma."; + }); + return false; + } + + // Check if the branch can't be understood because we can't do pipelining + // if that's the case. + LI.TBB = nullptr; + LI.FBB = nullptr; + LI.BrCond.clear(); + if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) { + LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n"); + NumFailBranch++; + ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "The branch can't be understood"; + }); + return false; + } + + LI.LoopInductionVar = nullptr; + LI.LoopCompare = nullptr; + if (!TII->analyzeLoopForPipelining(L.getTopBlock())) { + LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n"); + NumFailLoop++; + ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "The loop structure is not supported"; + }); + return false; + } + + if (!L.getLoopPreheader()) { + LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n"); + NumFailPreheader++; + ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop", + L.getStartLoc(), L.getHeader()) + << "No loop preheader found"; + }); + return false; + } + + // Remove any subregisters from inputs to phi nodes. + preprocessPhiNodes(*L.getHeader()); + return true; +} + +void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) { + MachineRegisterInfo &MRI = MF->getRegInfo(); + SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes(); + + for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) { + MachineOperand &DefOp = PI.getOperand(0); + assert(DefOp.getSubReg() == 0); + auto *RC = MRI.getRegClass(DefOp.getReg()); + + for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) { + MachineOperand &RegOp = PI.getOperand(i); + if (RegOp.getSubReg() == 0) + continue; + + // If the operand uses a subregister, replace it with a new register + // without subregisters, and generate a copy to the new register. + Register NewReg = MRI.createVirtualRegister(RC); + MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB(); + MachineBasicBlock::iterator At = PredB.getFirstTerminator(); + const DebugLoc &DL = PredB.findDebugLoc(At); + auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg) + .addReg(RegOp.getReg(), getRegState(RegOp), + RegOp.getSubReg()); + Slots.insertMachineInstrInMaps(*Copy); + RegOp.setReg(NewReg); + RegOp.setSubReg(0); + } + } +} + +/// The SMS algorithm consists of the following main steps: +/// 1. Computation and analysis of the dependence graph. +/// 2. Ordering of the nodes (instructions). +/// 3. Attempt to Schedule the loop. +bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) { + assert(L.getBlocks().size() == 1 && "SMS works on single blocks only."); + + SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo, + II_setByPragma); + + MachineBasicBlock *MBB = L.getHeader(); + // The kernel should not include any terminator instructions. These + // will be added back later. + SMS.startBlock(MBB); + + // Compute the number of 'real' instructions in the basic block by + // ignoring terminators. + unsigned size = MBB->size(); + for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(), + E = MBB->instr_end(); + I != E; ++I, --size) + ; + + SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size); + SMS.schedule(); + SMS.exitRegion(); + + SMS.finishBlock(); + return SMS.hasNewSchedule(); +} + void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<AAResultsWrapperPass>(); AU.addPreserved<AAResultsWrapperPass>(); @@ -452,2676 +452,2676 @@ void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const { MachineFunctionPass::getAnalysisUsage(AU); } -void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { - if (II_setByPragma > 0) - MII = II_setByPragma; - else - MII = std::max(ResMII, RecMII); -} - -void SwingSchedulerDAG::setMAX_II() { - if (II_setByPragma > 0) - MAX_II = II_setByPragma; - else - MAX_II = MII + 10; -} - -/// We override the schedule function in ScheduleDAGInstrs to implement the -/// scheduling part of the Swing Modulo Scheduling algorithm. -void SwingSchedulerDAG::schedule() { - AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); - buildSchedGraph(AA); - addLoopCarriedDependences(AA); - updatePhiDependences(); - Topo.InitDAGTopologicalSorting(); - changeDependences(); - postprocessDAG(); - LLVM_DEBUG(dump()); - - NodeSetType NodeSets; - findCircuits(NodeSets); - NodeSetType Circuits = NodeSets; - - // Calculate the MII. - unsigned ResMII = calculateResMII(); - unsigned RecMII = calculateRecMII(NodeSets); - - fuseRecs(NodeSets); - - // This flag is used for testing and can cause correctness problems. - if (SwpIgnoreRecMII) - RecMII = 0; - - setMII(ResMII, RecMII); - setMAX_II(); - - LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II - << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); - - // Can't schedule a loop without a valid MII. - if (MII == 0) { - LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); - NumFailZeroMII++; - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "Invalid Minimal Initiation Interval: 0"; - }); - return; - } - - // Don't pipeline large loops. - if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { - LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii - << ", we don't pipleline large loops\n"); - NumFailLargeMaxMII++; - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "Minimal Initiation Interval too large: " - << ore::NV("MII", (int)MII) << " > " - << ore::NV("SwpMaxMii", SwpMaxMii) << "." - << "Refer to -pipeliner-max-mii."; - }); - return; - } - - computeNodeFunctions(NodeSets); - - registerPressureFilter(NodeSets); - - colocateNodeSets(NodeSets); - - checkNodeSets(NodeSets); - - LLVM_DEBUG({ - for (auto &I : NodeSets) { - dbgs() << " Rec NodeSet "; - I.dump(); - } - }); - - llvm::stable_sort(NodeSets, std::greater<NodeSet>()); - - groupRemainingNodes(NodeSets); - - removeDuplicateNodes(NodeSets); - - LLVM_DEBUG({ - for (auto &I : NodeSets) { - dbgs() << " NodeSet "; - I.dump(); - } - }); - - computeNodeOrder(NodeSets); - - // check for node order issues - checkValidNodeOrder(Circuits); - - SMSchedule Schedule(Pass.MF); - Scheduled = schedulePipeline(Schedule); - - if (!Scheduled){ - LLVM_DEBUG(dbgs() << "No schedule found, return\n"); - NumFailNoSchedule++; - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "Unable to find schedule"; - }); - return; - } - - unsigned numStages = Schedule.getMaxStageCount(); - // No need to generate pipeline if there are no overlapped iterations. - if (numStages == 0) { - LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); - NumFailZeroStage++; - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "No need to pipeline - no overlapped iterations in schedule."; - }); - return; - } - // Check that the maximum stage count is less than user-defined limit. - if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { - LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages - << " : too many stages, abort\n"); - NumFailLargeMaxStage++; - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "Too many stages in schedule: " - << ore::NV("numStages", (int)numStages) << " > " - << ore::NV("SwpMaxStages", SwpMaxStages) - << ". Refer to -pipeliner-max-stages."; - }); - return; - } - - Pass.ORE->emit([&]() { - return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), - Loop.getHeader()) - << "Pipelined succesfully!"; - }); - - // Generate the schedule as a ModuloSchedule. - DenseMap<MachineInstr *, int> Cycles, Stages; - std::vector<MachineInstr *> OrderedInsts; - for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); - ++Cycle) { - for (SUnit *SU : Schedule.getInstructions(Cycle)) { - OrderedInsts.push_back(SU->getInstr()); - Cycles[SU->getInstr()] = Cycle; - Stages[SU->getInstr()] = Schedule.stageScheduled(SU); - } - } - DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; - for (auto &KV : NewMIs) { - Cycles[KV.first] = Cycles[KV.second]; - Stages[KV.first] = Stages[KV.second]; - NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; - } - - ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), - std::move(Stages)); - if (EmitTestAnnotations) { - assert(NewInstrChanges.empty() && - "Cannot serialize a schedule with InstrChanges!"); - ModuloScheduleTestAnnotater MSTI(MF, MS); - MSTI.annotate(); - return; - } - // The experimental code generator can't work if there are InstChanges. - if (ExperimentalCodeGen && NewInstrChanges.empty()) { - PeelingModuloScheduleExpander MSE(MF, MS, &LIS); - MSE.expand(); - } else { - ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); - MSE.expand(); - MSE.cleanup(); - } - ++NumPipelined; -} - -/// Clean up after the software pipeliner runs. -void SwingSchedulerDAG::finishBlock() { - for (auto &KV : NewMIs) - MF.DeleteMachineInstr(KV.second); - NewMIs.clear(); - - // Call the superclass. - ScheduleDAGInstrs::finishBlock(); -} - -/// Return the register values for the operands of a Phi instruction. -/// This function assume the instruction is a Phi. -static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, - unsigned &InitVal, unsigned &LoopVal) { - assert(Phi.isPHI() && "Expecting a Phi."); - - InitVal = 0; - LoopVal = 0; - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() != Loop) - InitVal = Phi.getOperand(i).getReg(); - else - LoopVal = Phi.getOperand(i).getReg(); - - assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); -} - -/// Return the Phi register value that comes the loop block. -static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { - for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) - if (Phi.getOperand(i + 1).getMBB() == LoopBB) - return Phi.getOperand(i).getReg(); - return 0; -} - -/// Return true if SUb can be reached from SUa following the chain edges. -static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SUnit *, 8> Worklist; - Worklist.push_back(SUa); - while (!Worklist.empty()) { - const SUnit *SU = Worklist.pop_back_val(); - for (auto &SI : SU->Succs) { - SUnit *SuccSU = SI.getSUnit(); - if (SI.getKind() == SDep::Order) { - if (Visited.count(SuccSU)) - continue; - if (SuccSU == SUb) - return true; - Worklist.push_back(SuccSU); - Visited.insert(SuccSU); - } - } - } - return false; -} - -/// Return true if the instruction causes a chain between memory -/// references before and after it. -static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { - return MI.isCall() || MI.mayRaiseFPException() || - MI.hasUnmodeledSideEffects() || - (MI.hasOrderedMemoryRef() && - (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); -} - -/// Return the underlying objects for the memory references of an instruction. -/// This function calls the code in ValueTracking, but first checks that the -/// instruction has a memory operand. -static void getUnderlyingObjects(const MachineInstr *MI, +void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) { + if (II_setByPragma > 0) + MII = II_setByPragma; + else + MII = std::max(ResMII, RecMII); +} + +void SwingSchedulerDAG::setMAX_II() { + if (II_setByPragma > 0) + MAX_II = II_setByPragma; + else + MAX_II = MII + 10; +} + +/// We override the schedule function in ScheduleDAGInstrs to implement the +/// scheduling part of the Swing Modulo Scheduling algorithm. +void SwingSchedulerDAG::schedule() { + AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults(); + buildSchedGraph(AA); + addLoopCarriedDependences(AA); + updatePhiDependences(); + Topo.InitDAGTopologicalSorting(); + changeDependences(); + postprocessDAG(); + LLVM_DEBUG(dump()); + + NodeSetType NodeSets; + findCircuits(NodeSets); + NodeSetType Circuits = NodeSets; + + // Calculate the MII. + unsigned ResMII = calculateResMII(); + unsigned RecMII = calculateRecMII(NodeSets); + + fuseRecs(NodeSets); + + // This flag is used for testing and can cause correctness problems. + if (SwpIgnoreRecMII) + RecMII = 0; + + setMII(ResMII, RecMII); + setMAX_II(); + + LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II + << " (rec=" << RecMII << ", res=" << ResMII << ")\n"); + + // Can't schedule a loop without a valid MII. + if (MII == 0) { + LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n"); + NumFailZeroMII++; + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "Invalid Minimal Initiation Interval: 0"; + }); + return; + } + + // Don't pipeline large loops. + if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) { + LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii + << ", we don't pipleline large loops\n"); + NumFailLargeMaxMII++; + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "Minimal Initiation Interval too large: " + << ore::NV("MII", (int)MII) << " > " + << ore::NV("SwpMaxMii", SwpMaxMii) << "." + << "Refer to -pipeliner-max-mii."; + }); + return; + } + + computeNodeFunctions(NodeSets); + + registerPressureFilter(NodeSets); + + colocateNodeSets(NodeSets); + + checkNodeSets(NodeSets); + + LLVM_DEBUG({ + for (auto &I : NodeSets) { + dbgs() << " Rec NodeSet "; + I.dump(); + } + }); + + llvm::stable_sort(NodeSets, std::greater<NodeSet>()); + + groupRemainingNodes(NodeSets); + + removeDuplicateNodes(NodeSets); + + LLVM_DEBUG({ + for (auto &I : NodeSets) { + dbgs() << " NodeSet "; + I.dump(); + } + }); + + computeNodeOrder(NodeSets); + + // check for node order issues + checkValidNodeOrder(Circuits); + + SMSchedule Schedule(Pass.MF); + Scheduled = schedulePipeline(Schedule); + + if (!Scheduled){ + LLVM_DEBUG(dbgs() << "No schedule found, return\n"); + NumFailNoSchedule++; + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "Unable to find schedule"; + }); + return; + } + + unsigned numStages = Schedule.getMaxStageCount(); + // No need to generate pipeline if there are no overlapped iterations. + if (numStages == 0) { + LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n"); + NumFailZeroStage++; + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "No need to pipeline - no overlapped iterations in schedule."; + }); + return; + } + // Check that the maximum stage count is less than user-defined limit. + if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) { + LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages + << " : too many stages, abort\n"); + NumFailLargeMaxStage++; + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "Too many stages in schedule: " + << ore::NV("numStages", (int)numStages) << " > " + << ore::NV("SwpMaxStages", SwpMaxStages) + << ". Refer to -pipeliner-max-stages."; + }); + return; + } + + Pass.ORE->emit([&]() { + return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(), + Loop.getHeader()) + << "Pipelined succesfully!"; + }); + + // Generate the schedule as a ModuloSchedule. + DenseMap<MachineInstr *, int> Cycles, Stages; + std::vector<MachineInstr *> OrderedInsts; + for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle(); + ++Cycle) { + for (SUnit *SU : Schedule.getInstructions(Cycle)) { + OrderedInsts.push_back(SU->getInstr()); + Cycles[SU->getInstr()] = Cycle; + Stages[SU->getInstr()] = Schedule.stageScheduled(SU); + } + } + DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges; + for (auto &KV : NewMIs) { + Cycles[KV.first] = Cycles[KV.second]; + Stages[KV.first] = Stages[KV.second]; + NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)]; + } + + ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles), + std::move(Stages)); + if (EmitTestAnnotations) { + assert(NewInstrChanges.empty() && + "Cannot serialize a schedule with InstrChanges!"); + ModuloScheduleTestAnnotater MSTI(MF, MS); + MSTI.annotate(); + return; + } + // The experimental code generator can't work if there are InstChanges. + if (ExperimentalCodeGen && NewInstrChanges.empty()) { + PeelingModuloScheduleExpander MSE(MF, MS, &LIS); + MSE.expand(); + } else { + ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges)); + MSE.expand(); + MSE.cleanup(); + } + ++NumPipelined; +} + +/// Clean up after the software pipeliner runs. +void SwingSchedulerDAG::finishBlock() { + for (auto &KV : NewMIs) + MF.DeleteMachineInstr(KV.second); + NewMIs.clear(); + + // Call the superclass. + ScheduleDAGInstrs::finishBlock(); +} + +/// Return the register values for the operands of a Phi instruction. +/// This function assume the instruction is a Phi. +static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop, + unsigned &InitVal, unsigned &LoopVal) { + assert(Phi.isPHI() && "Expecting a Phi."); + + InitVal = 0; + LoopVal = 0; + for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) + if (Phi.getOperand(i + 1).getMBB() != Loop) + InitVal = Phi.getOperand(i).getReg(); + else + LoopVal = Phi.getOperand(i).getReg(); + + assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure."); +} + +/// Return the Phi register value that comes the loop block. +static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) { + for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2) + if (Phi.getOperand(i + 1).getMBB() == LoopBB) + return Phi.getOperand(i).getReg(); + return 0; +} + +/// Return true if SUb can be reached from SUa following the chain edges. +static bool isSuccOrder(SUnit *SUa, SUnit *SUb) { + SmallPtrSet<SUnit *, 8> Visited; + SmallVector<SUnit *, 8> Worklist; + Worklist.push_back(SUa); + while (!Worklist.empty()) { + const SUnit *SU = Worklist.pop_back_val(); + for (auto &SI : SU->Succs) { + SUnit *SuccSU = SI.getSUnit(); + if (SI.getKind() == SDep::Order) { + if (Visited.count(SuccSU)) + continue; + if (SuccSU == SUb) + return true; + Worklist.push_back(SuccSU); + Visited.insert(SuccSU); + } + } + } + return false; +} + +/// Return true if the instruction causes a chain between memory +/// references before and after it. +static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) { + return MI.isCall() || MI.mayRaiseFPException() || + MI.hasUnmodeledSideEffects() || + (MI.hasOrderedMemoryRef() && + (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA))); +} + +/// Return the underlying objects for the memory references of an instruction. +/// This function calls the code in ValueTracking, but first checks that the +/// instruction has a memory operand. +static void getUnderlyingObjects(const MachineInstr *MI, SmallVectorImpl<const Value *> &Objs) { - if (!MI->hasOneMemOperand()) - return; - MachineMemOperand *MM = *MI->memoperands_begin(); - if (!MM->getValue()) - return; + if (!MI->hasOneMemOperand()) + return; + MachineMemOperand *MM = *MI->memoperands_begin(); + if (!MM->getValue()) + return; getUnderlyingObjects(MM->getValue(), Objs); - for (const Value *V : Objs) { - if (!isIdentifiedObject(V)) { - Objs.clear(); - return; - } - Objs.push_back(V); - } -} - -/// Add a chain edge between a load and store if the store can be an -/// alias of the load on a subsequent iteration, i.e., a loop carried -/// dependence. This code is very similar to the code in ScheduleDAGInstrs -/// but that code doesn't create loop carried dependences. -void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { - MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; - Value *UnknownValue = - UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); - for (auto &SU : SUnits) { - MachineInstr &MI = *SU.getInstr(); - if (isDependenceBarrier(MI, AA)) - PendingLoads.clear(); - else if (MI.mayLoad()) { - SmallVector<const Value *, 4> Objs; + for (const Value *V : Objs) { + if (!isIdentifiedObject(V)) { + Objs.clear(); + return; + } + Objs.push_back(V); + } +} + +/// Add a chain edge between a load and store if the store can be an +/// alias of the load on a subsequent iteration, i.e., a loop carried +/// dependence. This code is very similar to the code in ScheduleDAGInstrs +/// but that code doesn't create loop carried dependences. +void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) { + MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads; + Value *UnknownValue = + UndefValue::get(Type::getVoidTy(MF.getFunction().getContext())); + for (auto &SU : SUnits) { + MachineInstr &MI = *SU.getInstr(); + if (isDependenceBarrier(MI, AA)) + PendingLoads.clear(); + else if (MI.mayLoad()) { + SmallVector<const Value *, 4> Objs; ::getUnderlyingObjects(&MI, Objs); - if (Objs.empty()) - Objs.push_back(UnknownValue); - for (auto V : Objs) { - SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; - SUs.push_back(&SU); - } - } else if (MI.mayStore()) { - SmallVector<const Value *, 4> Objs; + if (Objs.empty()) + Objs.push_back(UnknownValue); + for (auto V : Objs) { + SmallVector<SUnit *, 4> &SUs = PendingLoads[V]; + SUs.push_back(&SU); + } + } else if (MI.mayStore()) { + SmallVector<const Value *, 4> Objs; ::getUnderlyingObjects(&MI, Objs); - if (Objs.empty()) - Objs.push_back(UnknownValue); - for (auto V : Objs) { - MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = - PendingLoads.find(V); - if (I == PendingLoads.end()) - continue; - for (auto Load : I->second) { - if (isSuccOrder(Load, &SU)) - continue; - MachineInstr &LdMI = *Load->getInstr(); - // First, perform the cheaper check that compares the base register. - // If they are the same and the load offset is less than the store - // offset, then mark the dependence as loop carried potentially. - const MachineOperand *BaseOp1, *BaseOp2; - int64_t Offset1, Offset2; - bool Offset1IsScalable, Offset2IsScalable; - if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, - Offset1IsScalable, TRI) && - TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, - Offset2IsScalable, TRI)) { - if (BaseOp1->isIdenticalTo(*BaseOp2) && - Offset1IsScalable == Offset2IsScalable && - (int)Offset1 < (int)Offset2) { - assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && - "What happened to the chain edge?"); - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - } - // Second, the more expensive check that uses alias analysis on the - // base registers. If they alias, and the load offset is less than - // the store offset, the mark the dependence as loop carried. - if (!AA) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); - MachineMemOperand *MMO2 = *MI.memoperands_begin(); - if (!MMO1->getValue() || !MMO2->getValue()) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - if (MMO1->getValue() == MMO2->getValue() && - MMO1->getOffset() <= MMO2->getOffset()) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - continue; - } - AliasResult AAResult = AA->alias( + if (Objs.empty()) + Objs.push_back(UnknownValue); + for (auto V : Objs) { + MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I = + PendingLoads.find(V); + if (I == PendingLoads.end()) + continue; + for (auto Load : I->second) { + if (isSuccOrder(Load, &SU)) + continue; + MachineInstr &LdMI = *Load->getInstr(); + // First, perform the cheaper check that compares the base register. + // If they are the same and the load offset is less than the store + // offset, then mark the dependence as loop carried potentially. + const MachineOperand *BaseOp1, *BaseOp2; + int64_t Offset1, Offset2; + bool Offset1IsScalable, Offset2IsScalable; + if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1, + Offset1IsScalable, TRI) && + TII->getMemOperandWithOffset(MI, BaseOp2, Offset2, + Offset2IsScalable, TRI)) { + if (BaseOp1->isIdenticalTo(*BaseOp2) && + Offset1IsScalable == Offset2IsScalable && + (int)Offset1 < (int)Offset2) { + assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) && + "What happened to the chain edge?"); + SDep Dep(Load, SDep::Barrier); + Dep.setLatency(1); + SU.addPred(Dep); + continue; + } + } + // Second, the more expensive check that uses alias analysis on the + // base registers. If they alias, and the load offset is less than + // the store offset, the mark the dependence as loop carried. + if (!AA) { + SDep Dep(Load, SDep::Barrier); + Dep.setLatency(1); + SU.addPred(Dep); + continue; + } + MachineMemOperand *MMO1 = *LdMI.memoperands_begin(); + MachineMemOperand *MMO2 = *MI.memoperands_begin(); + if (!MMO1->getValue() || !MMO2->getValue()) { + SDep Dep(Load, SDep::Barrier); + Dep.setLatency(1); + SU.addPred(Dep); + continue; + } + if (MMO1->getValue() == MMO2->getValue() && + MMO1->getOffset() <= MMO2->getOffset()) { + SDep Dep(Load, SDep::Barrier); + Dep.setLatency(1); + SU.addPred(Dep); + continue; + } + AliasResult AAResult = AA->alias( MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()), MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo())); - - if (AAResult != NoAlias) { - SDep Dep(Load, SDep::Barrier); - Dep.setLatency(1); - SU.addPred(Dep); - } - } - } - } - } -} - -/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer -/// processes dependences for PHIs. This function adds true dependences -/// from a PHI to a use, and a loop carried dependence from the use to the -/// PHI. The loop carried dependence is represented as an anti dependence -/// edge. This function also removes chain dependences between unrelated -/// PHIs. -void SwingSchedulerDAG::updatePhiDependences() { - SmallVector<SDep, 4> RemoveDeps; - const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); - - // Iterate over each DAG node. - for (SUnit &I : SUnits) { - RemoveDeps.clear(); - // Set to true if the instruction has an operand defined by a Phi. - unsigned HasPhiUse = 0; - unsigned HasPhiDef = 0; - MachineInstr *MI = I.getInstr(); - // Iterate over each operand, and we process the definitions. - for (MachineInstr::mop_iterator MOI = MI->operands_begin(), - MOE = MI->operands_end(); - MOI != MOE; ++MOI) { - if (!MOI->isReg()) - continue; - Register Reg = MOI->getReg(); - if (MOI->isDef()) { - // If the register is used by a Phi, then create an anti dependence. - for (MachineRegisterInfo::use_instr_iterator - UI = MRI.use_instr_begin(Reg), - UE = MRI.use_instr_end(); - UI != UE; ++UI) { - MachineInstr *UseMI = &*UI; - SUnit *SU = getSUnit(UseMI); - if (SU != nullptr && UseMI->isPHI()) { - if (!MI->isPHI()) { - SDep Dep(SU, SDep::Anti, Reg); - Dep.setLatency(1); - I.addPred(Dep); - } else { - HasPhiDef = Reg; - // Add a chain edge to a dependent Phi that isn't an existing - // predecessor. - if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) - I.addPred(SDep(SU, SDep::Barrier)); - } - } - } - } else if (MOI->isUse()) { - // If the register is defined by a Phi, then create a true dependence. - MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); - if (DefMI == nullptr) - continue; - SUnit *SU = getSUnit(DefMI); - if (SU != nullptr && DefMI->isPHI()) { - if (!MI->isPHI()) { - SDep Dep(SU, SDep::Data, Reg); - Dep.setLatency(0); - ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); - I.addPred(Dep); - } else { - HasPhiUse = Reg; - // Add a chain edge to a dependent Phi that isn't an existing - // predecessor. - if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) - I.addPred(SDep(SU, SDep::Barrier)); - } - } - } - } - // Remove order dependences from an unrelated Phi. - if (!SwpPruneDeps) - continue; - for (auto &PI : I.Preds) { - MachineInstr *PMI = PI.getSUnit()->getInstr(); - if (PMI->isPHI() && PI.getKind() == SDep::Order) { - if (I.getInstr()->isPHI()) { - if (PMI->getOperand(0).getReg() == HasPhiUse) - continue; - if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) - continue; - } - RemoveDeps.push_back(PI); - } - } - for (int i = 0, e = RemoveDeps.size(); i != e; ++i) - I.removePred(RemoveDeps[i]); - } -} - -/// Iterate over each DAG node and see if we can change any dependences -/// in order to reduce the recurrence MII. -void SwingSchedulerDAG::changeDependences() { - // See if an instruction can use a value from the previous iteration. - // If so, we update the base and offset of the instruction and change - // the dependences. - for (SUnit &I : SUnits) { - unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; - int64_t NewOffset = 0; - if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, - NewOffset)) - continue; - - // Get the MI and SUnit for the instruction that defines the original base. - Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); - MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); - if (!DefMI) - continue; - SUnit *DefSU = getSUnit(DefMI); - if (!DefSU) - continue; - // Get the MI and SUnit for the instruction that defins the new base. - MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); - if (!LastMI) - continue; - SUnit *LastSU = getSUnit(LastMI); - if (!LastSU) - continue; - - if (Topo.IsReachable(&I, LastSU)) - continue; - - // Remove the dependence. The value now depends on a prior iteration. - SmallVector<SDep, 4> Deps; - for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; - ++P) - if (P->getSUnit() == DefSU) - Deps.push_back(*P); - for (int i = 0, e = Deps.size(); i != e; i++) { - Topo.RemovePred(&I, Deps[i].getSUnit()); - I.removePred(Deps[i]); - } - // Remove the chain dependence between the instructions. - Deps.clear(); - for (auto &P : LastSU->Preds) - if (P.getSUnit() == &I && P.getKind() == SDep::Order) - Deps.push_back(P); - for (int i = 0, e = Deps.size(); i != e; i++) { - Topo.RemovePred(LastSU, Deps[i].getSUnit()); - LastSU->removePred(Deps[i]); - } - - // Add a dependence between the new instruction and the instruction - // that defines the new base. - SDep Dep(&I, SDep::Anti, NewBase); - Topo.AddPred(LastSU, &I); - LastSU->addPred(Dep); - - // Remember the base and offset information so that we can update the - // instruction during code generation. - InstrChanges[&I] = std::make_pair(NewBase, NewOffset); - } -} - -namespace { - -// FuncUnitSorter - Comparison operator used to sort instructions by -// the number of functional unit choices. -struct FuncUnitSorter { - const InstrItineraryData *InstrItins; - const MCSubtargetInfo *STI; - DenseMap<InstrStage::FuncUnits, unsigned> Resources; - - FuncUnitSorter(const TargetSubtargetInfo &TSI) - : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} - - // Compute the number of functional unit alternatives needed - // at each stage, and take the minimum value. We prioritize the - // instructions by the least number of choices first. - unsigned minFuncUnits(const MachineInstr *Inst, - InstrStage::FuncUnits &F) const { - unsigned SchedClass = Inst->getDesc().getSchedClass(); - unsigned min = UINT_MAX; - if (InstrItins && !InstrItins->isEmpty()) { - for (const InstrStage &IS : - make_range(InstrItins->beginStage(SchedClass), - InstrItins->endStage(SchedClass))) { - InstrStage::FuncUnits funcUnits = IS.getUnits(); - unsigned numAlternatives = countPopulation(funcUnits); - if (numAlternatives < min) { - min = numAlternatives; - F = funcUnits; - } - } - return min; - } - if (STI && STI->getSchedModel().hasInstrSchedModel()) { - const MCSchedClassDesc *SCDesc = - STI->getSchedModel().getSchedClassDesc(SchedClass); - if (!SCDesc->isValid()) - // No valid Schedule Class Desc for schedClass, should be - // Pseudo/PostRAPseudo - return min; - - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - const MCProcResourceDesc *ProcResource = - STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); - unsigned NumUnits = ProcResource->NumUnits; - if (NumUnits < min) { - min = NumUnits; - F = PRE.ProcResourceIdx; - } - } - return min; - } - llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); - } - - // Compute the critical resources needed by the instruction. This - // function records the functional units needed by instructions that - // must use only one functional unit. We use this as a tie breaker - // for computing the resource MII. The instrutions that require - // the same, highly used, functional unit have high priority. - void calcCriticalResources(MachineInstr &MI) { - unsigned SchedClass = MI.getDesc().getSchedClass(); - if (InstrItins && !InstrItins->isEmpty()) { - for (const InstrStage &IS : - make_range(InstrItins->beginStage(SchedClass), - InstrItins->endStage(SchedClass))) { - InstrStage::FuncUnits FuncUnits = IS.getUnits(); - if (countPopulation(FuncUnits) == 1) - Resources[FuncUnits]++; - } - return; - } - if (STI && STI->getSchedModel().hasInstrSchedModel()) { - const MCSchedClassDesc *SCDesc = - STI->getSchedModel().getSchedClassDesc(SchedClass); - if (!SCDesc->isValid()) - // No valid Schedule Class Desc for schedClass, should be - // Pseudo/PostRAPseudo - return; - - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - Resources[PRE.ProcResourceIdx]++; - } - return; - } - llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); - } - - /// Return true if IS1 has less priority than IS2. - bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { - InstrStage::FuncUnits F1 = 0, F2 = 0; - unsigned MFUs1 = minFuncUnits(IS1, F1); - unsigned MFUs2 = minFuncUnits(IS2, F2); - if (MFUs1 == MFUs2) - return Resources.lookup(F1) < Resources.lookup(F2); - return MFUs1 > MFUs2; - } -}; - -} // end anonymous namespace - -/// Calculate the resource constrained minimum initiation interval for the -/// specified loop. We use the DFA to model the resources needed for -/// each instruction, and we ignore dependences. A different DFA is created -/// for each cycle that is required. When adding a new instruction, we attempt -/// to add it to each existing DFA, until a legal space is found. If the -/// instruction cannot be reserved in an existing DFA, we create a new one. -unsigned SwingSchedulerDAG::calculateResMII() { - - LLVM_DEBUG(dbgs() << "calculateResMII:\n"); - SmallVector<ResourceManager*, 8> Resources; - MachineBasicBlock *MBB = Loop.getHeader(); - Resources.push_back(new ResourceManager(&MF.getSubtarget())); - - // Sort the instructions by the number of available choices for scheduling, - // least to most. Use the number of critical resources as the tie breaker. - FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); - for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), - E = MBB->getFirstTerminator(); - I != E; ++I) - FUS.calcCriticalResources(*I); - PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> - FuncUnitOrder(FUS); - - for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), - E = MBB->getFirstTerminator(); - I != E; ++I) - FuncUnitOrder.push(&*I); - - while (!FuncUnitOrder.empty()) { - MachineInstr *MI = FuncUnitOrder.top(); - FuncUnitOrder.pop(); - if (TII->isZeroCost(MI->getOpcode())) - continue; - // Attempt to reserve the instruction in an existing DFA. At least one - // DFA is needed for each cycle. - unsigned NumCycles = getSUnit(MI)->Latency; - unsigned ReservedCycles = 0; - SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); - SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); - LLVM_DEBUG({ - dbgs() << "Trying to reserve resource for " << NumCycles - << " cycles for \n"; - MI->dump(); - }); - for (unsigned C = 0; C < NumCycles; ++C) - while (RI != RE) { - if ((*RI)->canReserveResources(*MI)) { - (*RI)->reserveResources(*MI); - ++ReservedCycles; - break; - } - RI++; - } - LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles - << ", NumCycles:" << NumCycles << "\n"); - // Add new DFAs, if needed, to reserve resources. - for (unsigned C = ReservedCycles; C < NumCycles; ++C) { - LLVM_DEBUG(if (SwpDebugResource) dbgs() - << "NewResource created to reserve resources" - << "\n"); - ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); - assert(NewResource->canReserveResources(*MI) && "Reserve error."); - NewResource->reserveResources(*MI); - Resources.push_back(NewResource); - } - } - int Resmii = Resources.size(); - LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); - // Delete the memory for each of the DFAs that were created earlier. - for (ResourceManager *RI : Resources) { - ResourceManager *D = RI; - delete D; - } - Resources.clear(); - return Resmii; -} - -/// Calculate the recurrence-constrainted minimum initiation interval. -/// Iterate over each circuit. Compute the delay(c) and distance(c) -/// for each circuit. The II needs to satisfy the inequality -/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest -/// II that satisfies the inequality, and the RecMII is the maximum -/// of those values. -unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { - unsigned RecMII = 0; - - for (NodeSet &Nodes : NodeSets) { - if (Nodes.empty()) - continue; - - unsigned Delay = Nodes.getLatency(); - unsigned Distance = 1; - - // ii = ceil(delay / distance) - unsigned CurMII = (Delay + Distance - 1) / Distance; - Nodes.setRecMII(CurMII); - if (CurMII > RecMII) - RecMII = CurMII; - } - - return RecMII; -} - -/// Swap all the anti dependences in the DAG. That means it is no longer a DAG, -/// but we do this to find the circuits, and then change them back. -static void swapAntiDependences(std::vector<SUnit> &SUnits) { - SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; - for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { - SUnit *SU = &SUnits[i]; - for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); - IP != EP; ++IP) { - if (IP->getKind() != SDep::Anti) - continue; - DepsAdded.push_back(std::make_pair(SU, *IP)); - } - } - for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), - E = DepsAdded.end(); - I != E; ++I) { - // Remove this anti dependency and add one in the reverse direction. - SUnit *SU = I->first; - SDep &D = I->second; - SUnit *TargetSU = D.getSUnit(); - unsigned Reg = D.getReg(); - unsigned Lat = D.getLatency(); - SU->removePred(D); - SDep Dep(SU, SDep::Anti, Reg); - Dep.setLatency(Lat); - TargetSU->addPred(Dep); - } -} - -/// Create the adjacency structure of the nodes in the graph. -void SwingSchedulerDAG::Circuits::createAdjacencyStructure( - SwingSchedulerDAG *DAG) { - BitVector Added(SUnits.size()); - DenseMap<int, int> OutputDeps; - for (int i = 0, e = SUnits.size(); i != e; ++i) { - Added.reset(); - // Add any successor to the adjacency matrix and exclude duplicates. - for (auto &SI : SUnits[i].Succs) { - // Only create a back-edge on the first and last nodes of a dependence - // chain. This records any chains and adds them later. - if (SI.getKind() == SDep::Output) { - int N = SI.getSUnit()->NodeNum; - int BackEdge = i; - auto Dep = OutputDeps.find(BackEdge); - if (Dep != OutputDeps.end()) { - BackEdge = Dep->second; - OutputDeps.erase(Dep); - } - OutputDeps[N] = BackEdge; - } - // Do not process a boundary node, an artificial node. - // A back-edge is processed only if it goes to a Phi. - if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || - (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) - continue; - int N = SI.getSUnit()->NodeNum; - if (!Added.test(N)) { - AdjK[i].push_back(N); - Added.set(N); - } - } - // A chain edge between a store and a load is treated as a back-edge in the - // adjacency matrix. - for (auto &PI : SUnits[i].Preds) { - if (!SUnits[i].getInstr()->mayStore() || - !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) - continue; - if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { - int N = PI.getSUnit()->NodeNum; - if (!Added.test(N)) { - AdjK[i].push_back(N); - Added.set(N); - } - } - } - } - // Add back-edges in the adjacency matrix for the output dependences. - for (auto &OD : OutputDeps) - if (!Added.test(OD.second)) { - AdjK[OD.first].push_back(OD.second); - Added.set(OD.second); - } -} - -/// Identify an elementary circuit in the dependence graph starting at the -/// specified node. -bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, - bool HasBackedge) { - SUnit *SV = &SUnits[V]; - bool F = false; - Stack.insert(SV); - Blocked.set(V); - - for (auto W : AdjK[V]) { - if (NumPaths > MaxPaths) - break; - if (W < S) - continue; - if (W == S) { - if (!HasBackedge) - NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); - F = true; - ++NumPaths; - break; - } else if (!Blocked.test(W)) { - if (circuit(W, S, NodeSets, - Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) - F = true; - } - } - - if (F) - unblock(V); - else { - for (auto W : AdjK[V]) { - if (W < S) - continue; - if (B[W].count(SV) == 0) - B[W].insert(SV); - } - } - Stack.pop_back(); - return F; -} - -/// Unblock a node in the circuit finding algorithm. -void SwingSchedulerDAG::Circuits::unblock(int U) { - Blocked.reset(U); - SmallPtrSet<SUnit *, 4> &BU = B[U]; - while (!BU.empty()) { - SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); - assert(SI != BU.end() && "Invalid B set."); - SUnit *W = *SI; - BU.erase(W); - if (Blocked.test(W->NodeNum)) - unblock(W->NodeNum); - } -} - -/// Identify all the elementary circuits in the dependence graph using -/// Johnson's circuit algorithm. -void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { - // Swap all the anti dependences in the DAG. That means it is no longer a DAG, - // but we do this to find the circuits, and then change them back. - swapAntiDependences(SUnits); - - Circuits Cir(SUnits, Topo); - // Create the adjacency structure. - Cir.createAdjacencyStructure(this); - for (int i = 0, e = SUnits.size(); i != e; ++i) { - Cir.reset(); - Cir.circuit(i, i, NodeSets); - } - - // Change the dependences back so that we've created a DAG again. - swapAntiDependences(SUnits); -} - -// Create artificial dependencies between the source of COPY/REG_SEQUENCE that -// is loop-carried to the USE in next iteration. This will help pipeliner avoid -// additional copies that are needed across iterations. An artificial dependence -// edge is added from USE to SOURCE of COPY/REG_SEQUENCE. - -// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) -// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE -// PHI-------True-Dep------> USEOfPhi - -// The mutation creates -// USEOfPHI -------Artificial-Dep---> SRCOfCopy - -// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy -// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled -// late to avoid additional copies across iterations. The possible scheduling -// order would be -// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. - -void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { - for (SUnit &SU : DAG->SUnits) { - // Find the COPY/REG_SEQUENCE instruction. - if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) - continue; - - // Record the loop carried PHIs. - SmallVector<SUnit *, 4> PHISUs; - // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. - SmallVector<SUnit *, 4> SrcSUs; - - for (auto &Dep : SU.Preds) { - SUnit *TmpSU = Dep.getSUnit(); - MachineInstr *TmpMI = TmpSU->getInstr(); - SDep::Kind DepKind = Dep.getKind(); - // Save the loop carried PHI. - if (DepKind == SDep::Anti && TmpMI->isPHI()) - PHISUs.push_back(TmpSU); - // Save the source of COPY/REG_SEQUENCE. - // If the source has no pre-decessors, we will end up creating cycles. - else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) - SrcSUs.push_back(TmpSU); - } - - if (PHISUs.size() == 0 || SrcSUs.size() == 0) - continue; - - // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this - // SUnit to the container. - SmallVector<SUnit *, 8> UseSUs; - // Do not use iterator based loop here as we are updating the container. - for (size_t Index = 0; Index < PHISUs.size(); ++Index) { - for (auto &Dep : PHISUs[Index]->Succs) { - if (Dep.getKind() != SDep::Data) - continue; - - SUnit *TmpSU = Dep.getSUnit(); - MachineInstr *TmpMI = TmpSU->getInstr(); - if (TmpMI->isPHI() || TmpMI->isRegSequence()) { - PHISUs.push_back(TmpSU); - continue; - } - UseSUs.push_back(TmpSU); - } - } - - if (UseSUs.size() == 0) - continue; - - SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); - // Add the artificial dependencies if it does not form a cycle. - for (auto I : UseSUs) { - for (auto Src : SrcSUs) { - if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { - Src->addPred(SDep(I, SDep::Artificial)); - SDAG->Topo.AddPred(Src, I); - } - } - } - } -} - -/// Return true for DAG nodes that we ignore when computing the cost functions. -/// We ignore the back-edge recurrence in order to avoid unbounded recursion -/// in the calculation of the ASAP, ALAP, etc functions. -static bool ignoreDependence(const SDep &D, bool isPred) { - if (D.isArtificial()) - return true; - return D.getKind() == SDep::Anti && isPred; -} - -/// Compute several functions need to order the nodes for scheduling. -/// ASAP - Earliest time to schedule a node. -/// ALAP - Latest time to schedule a node. -/// MOV - Mobility function, difference between ALAP and ASAP. -/// D - Depth of each node. -/// H - Height of each node. -void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { - ScheduleInfo.resize(SUnits.size()); - - LLVM_DEBUG({ - for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), - E = Topo.end(); - I != E; ++I) { - const SUnit &SU = SUnits[*I]; - dumpNode(SU); - } - }); - - int maxASAP = 0; - // Compute ASAP and ZeroLatencyDepth. - for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), - E = Topo.end(); - I != E; ++I) { - int asap = 0; - int zeroLatencyDepth = 0; - SUnit *SU = &SUnits[*I]; - for (SUnit::const_pred_iterator IP = SU->Preds.begin(), - EP = SU->Preds.end(); - IP != EP; ++IP) { - SUnit *pred = IP->getSUnit(); - if (IP->getLatency() == 0) - zeroLatencyDepth = - std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); - if (ignoreDependence(*IP, true)) - continue; - asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - - getDistance(pred, SU, *IP) * MII)); - } - maxASAP = std::max(maxASAP, asap); - ScheduleInfo[*I].ASAP = asap; - ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; - } - - // Compute ALAP, ZeroLatencyHeight, and MOV. - for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), - E = Topo.rend(); - I != E; ++I) { - int alap = maxASAP; - int zeroLatencyHeight = 0; - SUnit *SU = &SUnits[*I]; - for (SUnit::const_succ_iterator IS = SU->Succs.begin(), - ES = SU->Succs.end(); - IS != ES; ++IS) { - SUnit *succ = IS->getSUnit(); - if (IS->getLatency() == 0) - zeroLatencyHeight = - std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); - if (ignoreDependence(*IS, true)) - continue; - alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + - getDistance(SU, succ, *IS) * MII)); - } - - ScheduleInfo[*I].ALAP = alap; - ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; - } - - // After computing the node functions, compute the summary for each node set. - for (NodeSet &I : NodeSets) - I.computeNodeSetInfo(this); - - LLVM_DEBUG({ - for (unsigned i = 0; i < SUnits.size(); i++) { - dbgs() << "\tNode " << i << ":\n"; - dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; - dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; - dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; - dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; - dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; - dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; - dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; - } - }); -} - -/// Compute the Pred_L(O) set, as defined in the paper. The set is defined -/// as the predecessors of the elements of NodeOrder that are not also in -/// NodeOrder. -static bool pred_L(SetVector<SUnit *> &NodeOrder, - SmallSetVector<SUnit *, 8> &Preds, - const NodeSet *S = nullptr) { - Preds.clear(); - for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); - I != E; ++I) { - for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); - PI != PE; ++PI) { - if (S && S->count(PI->getSUnit()) == 0) - continue; - if (ignoreDependence(*PI, true)) - continue; - if (NodeOrder.count(PI->getSUnit()) == 0) - Preds.insert(PI->getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), - ES = (*I)->Succs.end(); - IS != ES; ++IS) { - if (IS->getKind() != SDep::Anti) - continue; - if (S && S->count(IS->getSUnit()) == 0) - continue; - if (NodeOrder.count(IS->getSUnit()) == 0) - Preds.insert(IS->getSUnit()); - } - } - return !Preds.empty(); -} - -/// Compute the Succ_L(O) set, as defined in the paper. The set is defined -/// as the successors of the elements of NodeOrder that are not also in -/// NodeOrder. -static bool succ_L(SetVector<SUnit *> &NodeOrder, - SmallSetVector<SUnit *, 8> &Succs, - const NodeSet *S = nullptr) { - Succs.clear(); - for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); - I != E; ++I) { - for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); - SI != SE; ++SI) { - if (S && S->count(SI->getSUnit()) == 0) - continue; - if (ignoreDependence(*SI, false)) - continue; - if (NodeOrder.count(SI->getSUnit()) == 0) - Succs.insert(SI->getSUnit()); - } - for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), - PE = (*I)->Preds.end(); - PI != PE; ++PI) { - if (PI->getKind() != SDep::Anti) - continue; - if (S && S->count(PI->getSUnit()) == 0) - continue; - if (NodeOrder.count(PI->getSUnit()) == 0) - Succs.insert(PI->getSUnit()); - } - } - return !Succs.empty(); -} - -/// Return true if there is a path from the specified node to any of the nodes -/// in DestNodes. Keep track and return the nodes in any path. -static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, - SetVector<SUnit *> &DestNodes, - SetVector<SUnit *> &Exclude, - SmallPtrSet<SUnit *, 8> &Visited) { - if (Cur->isBoundaryNode()) - return false; + + if (AAResult != NoAlias) { + SDep Dep(Load, SDep::Barrier); + Dep.setLatency(1); + SU.addPred(Dep); + } + } + } + } + } +} + +/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer +/// processes dependences for PHIs. This function adds true dependences +/// from a PHI to a use, and a loop carried dependence from the use to the +/// PHI. The loop carried dependence is represented as an anti dependence +/// edge. This function also removes chain dependences between unrelated +/// PHIs. +void SwingSchedulerDAG::updatePhiDependences() { + SmallVector<SDep, 4> RemoveDeps; + const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>(); + + // Iterate over each DAG node. + for (SUnit &I : SUnits) { + RemoveDeps.clear(); + // Set to true if the instruction has an operand defined by a Phi. + unsigned HasPhiUse = 0; + unsigned HasPhiDef = 0; + MachineInstr *MI = I.getInstr(); + // Iterate over each operand, and we process the definitions. + for (MachineInstr::mop_iterator MOI = MI->operands_begin(), + MOE = MI->operands_end(); + MOI != MOE; ++MOI) { + if (!MOI->isReg()) + continue; + Register Reg = MOI->getReg(); + if (MOI->isDef()) { + // If the register is used by a Phi, then create an anti dependence. + for (MachineRegisterInfo::use_instr_iterator + UI = MRI.use_instr_begin(Reg), + UE = MRI.use_instr_end(); + UI != UE; ++UI) { + MachineInstr *UseMI = &*UI; + SUnit *SU = getSUnit(UseMI); + if (SU != nullptr && UseMI->isPHI()) { + if (!MI->isPHI()) { + SDep Dep(SU, SDep::Anti, Reg); + Dep.setLatency(1); + I.addPred(Dep); + } else { + HasPhiDef = Reg; + // Add a chain edge to a dependent Phi that isn't an existing + // predecessor. + if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) + I.addPred(SDep(SU, SDep::Barrier)); + } + } + } + } else if (MOI->isUse()) { + // If the register is defined by a Phi, then create a true dependence. + MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg); + if (DefMI == nullptr) + continue; + SUnit *SU = getSUnit(DefMI); + if (SU != nullptr && DefMI->isPHI()) { + if (!MI->isPHI()) { + SDep Dep(SU, SDep::Data, Reg); + Dep.setLatency(0); + ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep); + I.addPred(Dep); + } else { + HasPhiUse = Reg; + // Add a chain edge to a dependent Phi that isn't an existing + // predecessor. + if (SU->NodeNum < I.NodeNum && !I.isPred(SU)) + I.addPred(SDep(SU, SDep::Barrier)); + } + } + } + } + // Remove order dependences from an unrelated Phi. + if (!SwpPruneDeps) + continue; + for (auto &PI : I.Preds) { + MachineInstr *PMI = PI.getSUnit()->getInstr(); + if (PMI->isPHI() && PI.getKind() == SDep::Order) { + if (I.getInstr()->isPHI()) { + if (PMI->getOperand(0).getReg() == HasPhiUse) + continue; + if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef) + continue; + } + RemoveDeps.push_back(PI); + } + } + for (int i = 0, e = RemoveDeps.size(); i != e; ++i) + I.removePred(RemoveDeps[i]); + } +} + +/// Iterate over each DAG node and see if we can change any dependences +/// in order to reduce the recurrence MII. +void SwingSchedulerDAG::changeDependences() { + // See if an instruction can use a value from the previous iteration. + // If so, we update the base and offset of the instruction and change + // the dependences. + for (SUnit &I : SUnits) { + unsigned BasePos = 0, OffsetPos = 0, NewBase = 0; + int64_t NewOffset = 0; + if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase, + NewOffset)) + continue; + + // Get the MI and SUnit for the instruction that defines the original base. + Register OrigBase = I.getInstr()->getOperand(BasePos).getReg(); + MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase); + if (!DefMI) + continue; + SUnit *DefSU = getSUnit(DefMI); + if (!DefSU) + continue; + // Get the MI and SUnit for the instruction that defins the new base. + MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase); + if (!LastMI) + continue; + SUnit *LastSU = getSUnit(LastMI); + if (!LastSU) + continue; + + if (Topo.IsReachable(&I, LastSU)) + continue; + + // Remove the dependence. The value now depends on a prior iteration. + SmallVector<SDep, 4> Deps; + for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E; + ++P) + if (P->getSUnit() == DefSU) + Deps.push_back(*P); + for (int i = 0, e = Deps.size(); i != e; i++) { + Topo.RemovePred(&I, Deps[i].getSUnit()); + I.removePred(Deps[i]); + } + // Remove the chain dependence between the instructions. + Deps.clear(); + for (auto &P : LastSU->Preds) + if (P.getSUnit() == &I && P.getKind() == SDep::Order) + Deps.push_back(P); + for (int i = 0, e = Deps.size(); i != e; i++) { + Topo.RemovePred(LastSU, Deps[i].getSUnit()); + LastSU->removePred(Deps[i]); + } + + // Add a dependence between the new instruction and the instruction + // that defines the new base. + SDep Dep(&I, SDep::Anti, NewBase); + Topo.AddPred(LastSU, &I); + LastSU->addPred(Dep); + + // Remember the base and offset information so that we can update the + // instruction during code generation. + InstrChanges[&I] = std::make_pair(NewBase, NewOffset); + } +} + +namespace { + +// FuncUnitSorter - Comparison operator used to sort instructions by +// the number of functional unit choices. +struct FuncUnitSorter { + const InstrItineraryData *InstrItins; + const MCSubtargetInfo *STI; + DenseMap<InstrStage::FuncUnits, unsigned> Resources; + + FuncUnitSorter(const TargetSubtargetInfo &TSI) + : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {} + + // Compute the number of functional unit alternatives needed + // at each stage, and take the minimum value. We prioritize the + // instructions by the least number of choices first. + unsigned minFuncUnits(const MachineInstr *Inst, + InstrStage::FuncUnits &F) const { + unsigned SchedClass = Inst->getDesc().getSchedClass(); + unsigned min = UINT_MAX; + if (InstrItins && !InstrItins->isEmpty()) { + for (const InstrStage &IS : + make_range(InstrItins->beginStage(SchedClass), + InstrItins->endStage(SchedClass))) { + InstrStage::FuncUnits funcUnits = IS.getUnits(); + unsigned numAlternatives = countPopulation(funcUnits); + if (numAlternatives < min) { + min = numAlternatives; + F = funcUnits; + } + } + return min; + } + if (STI && STI->getSchedModel().hasInstrSchedModel()) { + const MCSchedClassDesc *SCDesc = + STI->getSchedModel().getSchedClassDesc(SchedClass); + if (!SCDesc->isValid()) + // No valid Schedule Class Desc for schedClass, should be + // Pseudo/PostRAPseudo + return min; + + for (const MCWriteProcResEntry &PRE : + make_range(STI->getWriteProcResBegin(SCDesc), + STI->getWriteProcResEnd(SCDesc))) { + if (!PRE.Cycles) + continue; + const MCProcResourceDesc *ProcResource = + STI->getSchedModel().getProcResource(PRE.ProcResourceIdx); + unsigned NumUnits = ProcResource->NumUnits; + if (NumUnits < min) { + min = NumUnits; + F = PRE.ProcResourceIdx; + } + } + return min; + } + llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); + } + + // Compute the critical resources needed by the instruction. This + // function records the functional units needed by instructions that + // must use only one functional unit. We use this as a tie breaker + // for computing the resource MII. The instrutions that require + // the same, highly used, functional unit have high priority. + void calcCriticalResources(MachineInstr &MI) { + unsigned SchedClass = MI.getDesc().getSchedClass(); + if (InstrItins && !InstrItins->isEmpty()) { + for (const InstrStage &IS : + make_range(InstrItins->beginStage(SchedClass), + InstrItins->endStage(SchedClass))) { + InstrStage::FuncUnits FuncUnits = IS.getUnits(); + if (countPopulation(FuncUnits) == 1) + Resources[FuncUnits]++; + } + return; + } + if (STI && STI->getSchedModel().hasInstrSchedModel()) { + const MCSchedClassDesc *SCDesc = + STI->getSchedModel().getSchedClassDesc(SchedClass); + if (!SCDesc->isValid()) + // No valid Schedule Class Desc for schedClass, should be + // Pseudo/PostRAPseudo + return; + + for (const MCWriteProcResEntry &PRE : + make_range(STI->getWriteProcResBegin(SCDesc), + STI->getWriteProcResEnd(SCDesc))) { + if (!PRE.Cycles) + continue; + Resources[PRE.ProcResourceIdx]++; + } + return; + } + llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!"); + } + + /// Return true if IS1 has less priority than IS2. + bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const { + InstrStage::FuncUnits F1 = 0, F2 = 0; + unsigned MFUs1 = minFuncUnits(IS1, F1); + unsigned MFUs2 = minFuncUnits(IS2, F2); + if (MFUs1 == MFUs2) + return Resources.lookup(F1) < Resources.lookup(F2); + return MFUs1 > MFUs2; + } +}; + +} // end anonymous namespace + +/// Calculate the resource constrained minimum initiation interval for the +/// specified loop. We use the DFA to model the resources needed for +/// each instruction, and we ignore dependences. A different DFA is created +/// for each cycle that is required. When adding a new instruction, we attempt +/// to add it to each existing DFA, until a legal space is found. If the +/// instruction cannot be reserved in an existing DFA, we create a new one. +unsigned SwingSchedulerDAG::calculateResMII() { + + LLVM_DEBUG(dbgs() << "calculateResMII:\n"); + SmallVector<ResourceManager*, 8> Resources; + MachineBasicBlock *MBB = Loop.getHeader(); + Resources.push_back(new ResourceManager(&MF.getSubtarget())); + + // Sort the instructions by the number of available choices for scheduling, + // least to most. Use the number of critical resources as the tie breaker. + FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget()); + for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), + E = MBB->getFirstTerminator(); + I != E; ++I) + FUS.calcCriticalResources(*I); + PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter> + FuncUnitOrder(FUS); + + for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(), + E = MBB->getFirstTerminator(); + I != E; ++I) + FuncUnitOrder.push(&*I); + + while (!FuncUnitOrder.empty()) { + MachineInstr *MI = FuncUnitOrder.top(); + FuncUnitOrder.pop(); + if (TII->isZeroCost(MI->getOpcode())) + continue; + // Attempt to reserve the instruction in an existing DFA. At least one + // DFA is needed for each cycle. + unsigned NumCycles = getSUnit(MI)->Latency; + unsigned ReservedCycles = 0; + SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin(); + SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end(); + LLVM_DEBUG({ + dbgs() << "Trying to reserve resource for " << NumCycles + << " cycles for \n"; + MI->dump(); + }); + for (unsigned C = 0; C < NumCycles; ++C) + while (RI != RE) { + if ((*RI)->canReserveResources(*MI)) { + (*RI)->reserveResources(*MI); + ++ReservedCycles; + break; + } + RI++; + } + LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles + << ", NumCycles:" << NumCycles << "\n"); + // Add new DFAs, if needed, to reserve resources. + for (unsigned C = ReservedCycles; C < NumCycles; ++C) { + LLVM_DEBUG(if (SwpDebugResource) dbgs() + << "NewResource created to reserve resources" + << "\n"); + ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget()); + assert(NewResource->canReserveResources(*MI) && "Reserve error."); + NewResource->reserveResources(*MI); + Resources.push_back(NewResource); + } + } + int Resmii = Resources.size(); + LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n"); + // Delete the memory for each of the DFAs that were created earlier. + for (ResourceManager *RI : Resources) { + ResourceManager *D = RI; + delete D; + } + Resources.clear(); + return Resmii; +} + +/// Calculate the recurrence-constrainted minimum initiation interval. +/// Iterate over each circuit. Compute the delay(c) and distance(c) +/// for each circuit. The II needs to satisfy the inequality +/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest +/// II that satisfies the inequality, and the RecMII is the maximum +/// of those values. +unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) { + unsigned RecMII = 0; + + for (NodeSet &Nodes : NodeSets) { + if (Nodes.empty()) + continue; + + unsigned Delay = Nodes.getLatency(); + unsigned Distance = 1; + + // ii = ceil(delay / distance) + unsigned CurMII = (Delay + Distance - 1) / Distance; + Nodes.setRecMII(CurMII); + if (CurMII > RecMII) + RecMII = CurMII; + } + + return RecMII; +} + +/// Swap all the anti dependences in the DAG. That means it is no longer a DAG, +/// but we do this to find the circuits, and then change them back. +static void swapAntiDependences(std::vector<SUnit> &SUnits) { + SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded; + for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { + SUnit *SU = &SUnits[i]; + for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end(); + IP != EP; ++IP) { + if (IP->getKind() != SDep::Anti) + continue; + DepsAdded.push_back(std::make_pair(SU, *IP)); + } + } + for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(), + E = DepsAdded.end(); + I != E; ++I) { + // Remove this anti dependency and add one in the reverse direction. + SUnit *SU = I->first; + SDep &D = I->second; + SUnit *TargetSU = D.getSUnit(); + unsigned Reg = D.getReg(); + unsigned Lat = D.getLatency(); + SU->removePred(D); + SDep Dep(SU, SDep::Anti, Reg); + Dep.setLatency(Lat); + TargetSU->addPred(Dep); + } +} + +/// Create the adjacency structure of the nodes in the graph. +void SwingSchedulerDAG::Circuits::createAdjacencyStructure( + SwingSchedulerDAG *DAG) { + BitVector Added(SUnits.size()); + DenseMap<int, int> OutputDeps; + for (int i = 0, e = SUnits.size(); i != e; ++i) { + Added.reset(); + // Add any successor to the adjacency matrix and exclude duplicates. + for (auto &SI : SUnits[i].Succs) { + // Only create a back-edge on the first and last nodes of a dependence + // chain. This records any chains and adds them later. + if (SI.getKind() == SDep::Output) { + int N = SI.getSUnit()->NodeNum; + int BackEdge = i; + auto Dep = OutputDeps.find(BackEdge); + if (Dep != OutputDeps.end()) { + BackEdge = Dep->second; + OutputDeps.erase(Dep); + } + OutputDeps[N] = BackEdge; + } + // Do not process a boundary node, an artificial node. + // A back-edge is processed only if it goes to a Phi. + if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() || + (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI())) + continue; + int N = SI.getSUnit()->NodeNum; + if (!Added.test(N)) { + AdjK[i].push_back(N); + Added.set(N); + } + } + // A chain edge between a store and a load is treated as a back-edge in the + // adjacency matrix. + for (auto &PI : SUnits[i].Preds) { + if (!SUnits[i].getInstr()->mayStore() || + !DAG->isLoopCarriedDep(&SUnits[i], PI, false)) + continue; + if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) { + int N = PI.getSUnit()->NodeNum; + if (!Added.test(N)) { + AdjK[i].push_back(N); + Added.set(N); + } + } + } + } + // Add back-edges in the adjacency matrix for the output dependences. + for (auto &OD : OutputDeps) + if (!Added.test(OD.second)) { + AdjK[OD.first].push_back(OD.second); + Added.set(OD.second); + } +} + +/// Identify an elementary circuit in the dependence graph starting at the +/// specified node. +bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets, + bool HasBackedge) { + SUnit *SV = &SUnits[V]; + bool F = false; + Stack.insert(SV); + Blocked.set(V); + + for (auto W : AdjK[V]) { + if (NumPaths > MaxPaths) + break; + if (W < S) + continue; + if (W == S) { + if (!HasBackedge) + NodeSets.push_back(NodeSet(Stack.begin(), Stack.end())); + F = true; + ++NumPaths; + break; + } else if (!Blocked.test(W)) { + if (circuit(W, S, NodeSets, + Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge)) + F = true; + } + } + + if (F) + unblock(V); + else { + for (auto W : AdjK[V]) { + if (W < S) + continue; + if (B[W].count(SV) == 0) + B[W].insert(SV); + } + } + Stack.pop_back(); + return F; +} + +/// Unblock a node in the circuit finding algorithm. +void SwingSchedulerDAG::Circuits::unblock(int U) { + Blocked.reset(U); + SmallPtrSet<SUnit *, 4> &BU = B[U]; + while (!BU.empty()) { + SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin(); + assert(SI != BU.end() && "Invalid B set."); + SUnit *W = *SI; + BU.erase(W); + if (Blocked.test(W->NodeNum)) + unblock(W->NodeNum); + } +} + +/// Identify all the elementary circuits in the dependence graph using +/// Johnson's circuit algorithm. +void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) { + // Swap all the anti dependences in the DAG. That means it is no longer a DAG, + // but we do this to find the circuits, and then change them back. + swapAntiDependences(SUnits); + + Circuits Cir(SUnits, Topo); + // Create the adjacency structure. + Cir.createAdjacencyStructure(this); + for (int i = 0, e = SUnits.size(); i != e; ++i) { + Cir.reset(); + Cir.circuit(i, i, NodeSets); + } + + // Change the dependences back so that we've created a DAG again. + swapAntiDependences(SUnits); +} + +// Create artificial dependencies between the source of COPY/REG_SEQUENCE that +// is loop-carried to the USE in next iteration. This will help pipeliner avoid +// additional copies that are needed across iterations. An artificial dependence +// edge is added from USE to SOURCE of COPY/REG_SEQUENCE. + +// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried) +// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE +// PHI-------True-Dep------> USEOfPhi + +// The mutation creates +// USEOfPHI -------Artificial-Dep---> SRCOfCopy + +// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy +// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled +// late to avoid additional copies across iterations. The possible scheduling +// order would be +// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE. + +void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) { + for (SUnit &SU : DAG->SUnits) { + // Find the COPY/REG_SEQUENCE instruction. + if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence()) + continue; + + // Record the loop carried PHIs. + SmallVector<SUnit *, 4> PHISUs; + // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions. + SmallVector<SUnit *, 4> SrcSUs; + + for (auto &Dep : SU.Preds) { + SUnit *TmpSU = Dep.getSUnit(); + MachineInstr *TmpMI = TmpSU->getInstr(); + SDep::Kind DepKind = Dep.getKind(); + // Save the loop carried PHI. + if (DepKind == SDep::Anti && TmpMI->isPHI()) + PHISUs.push_back(TmpSU); + // Save the source of COPY/REG_SEQUENCE. + // If the source has no pre-decessors, we will end up creating cycles. + else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0) + SrcSUs.push_back(TmpSU); + } + + if (PHISUs.size() == 0 || SrcSUs.size() == 0) + continue; + + // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this + // SUnit to the container. + SmallVector<SUnit *, 8> UseSUs; + // Do not use iterator based loop here as we are updating the container. + for (size_t Index = 0; Index < PHISUs.size(); ++Index) { + for (auto &Dep : PHISUs[Index]->Succs) { + if (Dep.getKind() != SDep::Data) + continue; + + SUnit *TmpSU = Dep.getSUnit(); + MachineInstr *TmpMI = TmpSU->getInstr(); + if (TmpMI->isPHI() || TmpMI->isRegSequence()) { + PHISUs.push_back(TmpSU); + continue; + } + UseSUs.push_back(TmpSU); + } + } + + if (UseSUs.size() == 0) + continue; + + SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG); + // Add the artificial dependencies if it does not form a cycle. + for (auto I : UseSUs) { + for (auto Src : SrcSUs) { + if (!SDAG->Topo.IsReachable(I, Src) && Src != I) { + Src->addPred(SDep(I, SDep::Artificial)); + SDAG->Topo.AddPred(Src, I); + } + } + } + } +} + +/// Return true for DAG nodes that we ignore when computing the cost functions. +/// We ignore the back-edge recurrence in order to avoid unbounded recursion +/// in the calculation of the ASAP, ALAP, etc functions. +static bool ignoreDependence(const SDep &D, bool isPred) { + if (D.isArtificial()) + return true; + return D.getKind() == SDep::Anti && isPred; +} + +/// Compute several functions need to order the nodes for scheduling. +/// ASAP - Earliest time to schedule a node. +/// ALAP - Latest time to schedule a node. +/// MOV - Mobility function, difference between ALAP and ASAP. +/// D - Depth of each node. +/// H - Height of each node. +void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) { + ScheduleInfo.resize(SUnits.size()); + + LLVM_DEBUG({ + for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), + E = Topo.end(); + I != E; ++I) { + const SUnit &SU = SUnits[*I]; + dumpNode(SU); + } + }); + + int maxASAP = 0; + // Compute ASAP and ZeroLatencyDepth. + for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(), + E = Topo.end(); + I != E; ++I) { + int asap = 0; + int zeroLatencyDepth = 0; + SUnit *SU = &SUnits[*I]; + for (SUnit::const_pred_iterator IP = SU->Preds.begin(), + EP = SU->Preds.end(); + IP != EP; ++IP) { + SUnit *pred = IP->getSUnit(); + if (IP->getLatency() == 0) + zeroLatencyDepth = + std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1); + if (ignoreDependence(*IP, true)) + continue; + asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() - + getDistance(pred, SU, *IP) * MII)); + } + maxASAP = std::max(maxASAP, asap); + ScheduleInfo[*I].ASAP = asap; + ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth; + } + + // Compute ALAP, ZeroLatencyHeight, and MOV. + for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(), + E = Topo.rend(); + I != E; ++I) { + int alap = maxASAP; + int zeroLatencyHeight = 0; + SUnit *SU = &SUnits[*I]; + for (SUnit::const_succ_iterator IS = SU->Succs.begin(), + ES = SU->Succs.end(); + IS != ES; ++IS) { + SUnit *succ = IS->getSUnit(); + if (IS->getLatency() == 0) + zeroLatencyHeight = + std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1); + if (ignoreDependence(*IS, true)) + continue; + alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() + + getDistance(SU, succ, *IS) * MII)); + } + + ScheduleInfo[*I].ALAP = alap; + ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight; + } + + // After computing the node functions, compute the summary for each node set. + for (NodeSet &I : NodeSets) + I.computeNodeSetInfo(this); + + LLVM_DEBUG({ + for (unsigned i = 0; i < SUnits.size(); i++) { + dbgs() << "\tNode " << i << ":\n"; + dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n"; + dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n"; + dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n"; + dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n"; + dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n"; + dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n"; + dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n"; + } + }); +} + +/// Compute the Pred_L(O) set, as defined in the paper. The set is defined +/// as the predecessors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool pred_L(SetVector<SUnit *> &NodeOrder, + SmallSetVector<SUnit *, 8> &Preds, + const NodeSet *S = nullptr) { + Preds.clear(); + for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); + I != E; ++I) { + for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end(); + PI != PE; ++PI) { + if (S && S->count(PI->getSUnit()) == 0) + continue; + if (ignoreDependence(*PI, true)) + continue; + if (NodeOrder.count(PI->getSUnit()) == 0) + Preds.insert(PI->getSUnit()); + } + // Back-edges are predecessors with an anti-dependence. + for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(), + ES = (*I)->Succs.end(); + IS != ES; ++IS) { + if (IS->getKind() != SDep::Anti) + continue; + if (S && S->count(IS->getSUnit()) == 0) + continue; + if (NodeOrder.count(IS->getSUnit()) == 0) + Preds.insert(IS->getSUnit()); + } + } + return !Preds.empty(); +} + +/// Compute the Succ_L(O) set, as defined in the paper. The set is defined +/// as the successors of the elements of NodeOrder that are not also in +/// NodeOrder. +static bool succ_L(SetVector<SUnit *> &NodeOrder, + SmallSetVector<SUnit *, 8> &Succs, + const NodeSet *S = nullptr) { + Succs.clear(); + for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end(); + I != E; ++I) { + for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end(); + SI != SE; ++SI) { + if (S && S->count(SI->getSUnit()) == 0) + continue; + if (ignoreDependence(*SI, false)) + continue; + if (NodeOrder.count(SI->getSUnit()) == 0) + Succs.insert(SI->getSUnit()); + } + for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(), + PE = (*I)->Preds.end(); + PI != PE; ++PI) { + if (PI->getKind() != SDep::Anti) + continue; + if (S && S->count(PI->getSUnit()) == 0) + continue; + if (NodeOrder.count(PI->getSUnit()) == 0) + Succs.insert(PI->getSUnit()); + } + } + return !Succs.empty(); +} + +/// Return true if there is a path from the specified node to any of the nodes +/// in DestNodes. Keep track and return the nodes in any path. +static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path, + SetVector<SUnit *> &DestNodes, + SetVector<SUnit *> &Exclude, + SmallPtrSet<SUnit *, 8> &Visited) { + if (Cur->isBoundaryNode()) + return false; if (Exclude.contains(Cur)) - return false; + return false; if (DestNodes.contains(Cur)) - return true; - if (!Visited.insert(Cur).second) + return true; + if (!Visited.insert(Cur).second) return Path.contains(Cur); - bool FoundPath = false; - for (auto &SI : Cur->Succs) - FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); - for (auto &PI : Cur->Preds) - if (PI.getKind() == SDep::Anti) - FoundPath |= - computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); - if (FoundPath) - Path.insert(Cur); - return FoundPath; -} - -/// Return true if Set1 is a subset of Set2. -template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { - for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) - if (Set2.count(*I) == 0) - return false; - return true; -} - -/// Compute the live-out registers for the instructions in a node-set. -/// The live-out registers are those that are defined in the node-set, -/// but not used. Except for use operands of Phis. -static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, - NodeSet &NS) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - MachineRegisterInfo &MRI = MF.getRegInfo(); - SmallVector<RegisterMaskPair, 8> LiveOutRegs; - SmallSet<unsigned, 4> Uses; - for (SUnit *SU : NS) { - const MachineInstr *MI = SU->getInstr(); - if (MI->isPHI()) - continue; - for (const MachineOperand &MO : MI->operands()) - if (MO.isReg() && MO.isUse()) { - Register Reg = MO.getReg(); - if (Register::isVirtualRegister(Reg)) - Uses.insert(Reg); - else if (MRI.isAllocatable(Reg)) + bool FoundPath = false; + for (auto &SI : Cur->Succs) + FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited); + for (auto &PI : Cur->Preds) + if (PI.getKind() == SDep::Anti) + FoundPath |= + computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited); + if (FoundPath) + Path.insert(Cur); + return FoundPath; +} + +/// Return true if Set1 is a subset of Set2. +template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) { + for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I) + if (Set2.count(*I) == 0) + return false; + return true; +} + +/// Compute the live-out registers for the instructions in a node-set. +/// The live-out registers are those that are defined in the node-set, +/// but not used. Except for use operands of Phis. +static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker, + NodeSet &NS) { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + MachineRegisterInfo &MRI = MF.getRegInfo(); + SmallVector<RegisterMaskPair, 8> LiveOutRegs; + SmallSet<unsigned, 4> Uses; + for (SUnit *SU : NS) { + const MachineInstr *MI = SU->getInstr(); + if (MI->isPHI()) + continue; + for (const MachineOperand &MO : MI->operands()) + if (MO.isReg() && MO.isUse()) { + Register Reg = MO.getReg(); + if (Register::isVirtualRegister(Reg)) + Uses.insert(Reg); + else if (MRI.isAllocatable(Reg)) for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); ++Units) - Uses.insert(*Units); - } - } - for (SUnit *SU : NS) - for (const MachineOperand &MO : SU->getInstr()->operands()) - if (MO.isReg() && MO.isDef() && !MO.isDead()) { - Register Reg = MO.getReg(); - if (Register::isVirtualRegister(Reg)) { - if (!Uses.count(Reg)) - LiveOutRegs.push_back(RegisterMaskPair(Reg, - LaneBitmask::getNone())); - } else if (MRI.isAllocatable(Reg)) { + Uses.insert(*Units); + } + } + for (SUnit *SU : NS) + for (const MachineOperand &MO : SU->getInstr()->operands()) + if (MO.isReg() && MO.isDef() && !MO.isDead()) { + Register Reg = MO.getReg(); + if (Register::isVirtualRegister(Reg)) { + if (!Uses.count(Reg)) + LiveOutRegs.push_back(RegisterMaskPair(Reg, + LaneBitmask::getNone())); + } else if (MRI.isAllocatable(Reg)) { for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid(); ++Units) - if (!Uses.count(*Units)) - LiveOutRegs.push_back(RegisterMaskPair(*Units, - LaneBitmask::getNone())); - } - } - RPTracker.addLiveRegs(LiveOutRegs); -} - -/// A heuristic to filter nodes in recurrent node-sets if the register -/// pressure of a set is too high. -void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { - for (auto &NS : NodeSets) { - // Skip small node-sets since they won't cause register pressure problems. - if (NS.size() <= 2) - continue; - IntervalPressure RecRegPressure; - RegPressureTracker RecRPTracker(RecRegPressure); - RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); - computeLiveOuts(MF, RecRPTracker, NS); - RecRPTracker.closeBottom(); - - std::vector<SUnit *> SUnits(NS.begin(), NS.end()); - llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { - return A->NodeNum > B->NodeNum; - }); - - for (auto &SU : SUnits) { - // Since we're computing the register pressure for a subset of the - // instructions in a block, we need to set the tracker for each - // instruction in the node-set. The tracker is set to the instruction - // just after the one we're interested in. - MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); - RecRPTracker.setPos(std::next(CurInstI)); - - RegPressureDelta RPDelta; - ArrayRef<PressureChange> CriticalPSets; - RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, - CriticalPSets, - RecRegPressure.MaxSetPressure); - if (RPDelta.Excess.isValid()) { - LLVM_DEBUG( - dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " - << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) - << ":" << RPDelta.Excess.getUnitInc()); - NS.setExceedPressure(SU); - break; - } - RecRPTracker.recede(); - } - } -} - -/// A heuristic to colocate node sets that have the same set of -/// successors. -void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { - unsigned Colocate = 0; - for (int i = 0, e = NodeSets.size(); i < e; ++i) { - NodeSet &N1 = NodeSets[i]; - SmallSetVector<SUnit *, 8> S1; - if (N1.empty() || !succ_L(N1, S1)) - continue; - for (int j = i + 1; j < e; ++j) { - NodeSet &N2 = NodeSets[j]; - if (N1.compareRecMII(N2) != 0) - continue; - SmallSetVector<SUnit *, 8> S2; - if (N2.empty() || !succ_L(N2, S2)) - continue; - if (isSubset(S1, S2) && S1.size() == S2.size()) { - N1.setColocate(++Colocate); - N2.setColocate(Colocate); - break; - } - } - } -} - -/// Check if the existing node-sets are profitable. If not, then ignore the -/// recurrent node-sets, and attempt to schedule all nodes together. This is -/// a heuristic. If the MII is large and all the recurrent node-sets are small, -/// then it's best to try to schedule all instructions together instead of -/// starting with the recurrent node-sets. -void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { - // Look for loops with a large MII. - if (MII < 17) - return; - // Check if the node-set contains only a simple add recurrence. - for (auto &NS : NodeSets) { - if (NS.getRecMII() > 2) - return; - if (NS.getMaxDepth() > MII) - return; - } - NodeSets.clear(); - LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); -} - -/// Add the nodes that do not belong to a recurrence set into groups -/// based upon connected componenets. -void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { - SetVector<SUnit *> NodesAdded; - SmallPtrSet<SUnit *, 8> Visited; - // Add the nodes that are on a path between the previous node sets and - // the current node set. - for (NodeSet &I : NodeSets) { - SmallSetVector<SUnit *, 8> N; - // Add the nodes from the current node set to the previous node set. - if (succ_L(I, N)) { - SetVector<SUnit *> Path; - for (SUnit *NI : N) { - Visited.clear(); - computePath(NI, Path, NodesAdded, I, Visited); - } - if (!Path.empty()) - I.insert(Path.begin(), Path.end()); - } - // Add the nodes from the previous node set to the current node set. - N.clear(); - if (succ_L(NodesAdded, N)) { - SetVector<SUnit *> Path; - for (SUnit *NI : N) { - Visited.clear(); - computePath(NI, Path, I, NodesAdded, Visited); - } - if (!Path.empty()) - I.insert(Path.begin(), Path.end()); - } - NodesAdded.insert(I.begin(), I.end()); - } - - // Create a new node set with the connected nodes of any successor of a node - // in a recurrent set. - NodeSet NewSet; - SmallSetVector<SUnit *, 8> N; - if (succ_L(NodesAdded, N)) - for (SUnit *I : N) - addConnectedNodes(I, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - - // Create a new node set with the connected nodes of any predecessor of a node - // in a recurrent set. - NewSet.clear(); - if (pred_L(NodesAdded, N)) - for (SUnit *I : N) - addConnectedNodes(I, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - - // Create new nodes sets with the connected nodes any remaining node that - // has no predecessor. - for (unsigned i = 0; i < SUnits.size(); ++i) { - SUnit *SU = &SUnits[i]; - if (NodesAdded.count(SU) == 0) { - NewSet.clear(); - addConnectedNodes(SU, NewSet, NodesAdded); - if (!NewSet.empty()) - NodeSets.push_back(NewSet); - } - } -} - -/// Add the node to the set, and add all of its connected nodes to the set. -void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, - SetVector<SUnit *> &NodesAdded) { - NewSet.insert(SU); - NodesAdded.insert(SU); - for (auto &SI : SU->Succs) { - SUnit *Successor = SI.getSUnit(); - if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) - addConnectedNodes(Successor, NewSet, NodesAdded); - } - for (auto &PI : SU->Preds) { - SUnit *Predecessor = PI.getSUnit(); - if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) - addConnectedNodes(Predecessor, NewSet, NodesAdded); - } -} - -/// Return true if Set1 contains elements in Set2. The elements in common -/// are returned in a different container. -static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, - SmallSetVector<SUnit *, 8> &Result) { - Result.clear(); - for (unsigned i = 0, e = Set1.size(); i != e; ++i) { - SUnit *SU = Set1[i]; - if (Set2.count(SU) != 0) - Result.insert(SU); - } - return !Result.empty(); -} - -/// Merge the recurrence node sets that have the same initial node. -void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { - for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; - ++I) { - NodeSet &NI = *I; - for (NodeSetType::iterator J = I + 1; J != E;) { - NodeSet &NJ = *J; - if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { - if (NJ.compareRecMII(NI) > 0) - NI.setRecMII(NJ.getRecMII()); - for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; - ++NII) - I->insert(*NII); - NodeSets.erase(J); - E = NodeSets.end(); - } else { - ++J; - } - } - } -} - -/// Remove nodes that have been scheduled in previous NodeSets. -void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { - for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; - ++I) - for (NodeSetType::iterator J = I + 1; J != E;) { - J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); - - if (J->empty()) { - NodeSets.erase(J); - E = NodeSets.end(); - } else { - ++J; - } - } -} - -/// Compute an ordered list of the dependence graph nodes, which -/// indicates the order that the nodes will be scheduled. This is a -/// two-level algorithm. First, a partial order is created, which -/// consists of a list of sets ordered from highest to lowest priority. -void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { - SmallSetVector<SUnit *, 8> R; - NodeOrder.clear(); - - for (auto &Nodes : NodeSets) { - LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); - OrderKind Order; - SmallSetVector<SUnit *, 8> N; - if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { - R.insert(N.begin(), N.end()); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (preds) "); - } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { - R.insert(N.begin(), N.end()); - Order = TopDown; - LLVM_DEBUG(dbgs() << " Top down (succs) "); - } else if (isIntersect(N, Nodes, R)) { - // If some of the successors are in the existing node-set, then use the - // top-down ordering. - Order = TopDown; - LLVM_DEBUG(dbgs() << " Top down (intersect) "); - } else if (NodeSets.size() == 1) { - for (auto &N : Nodes) - if (N->Succs.size() == 0) - R.insert(N); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (all) "); - } else { - // Find the node with the highest ASAP. - SUnit *maxASAP = nullptr; - for (SUnit *SU : Nodes) { - if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || - (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) - maxASAP = SU; - } - R.insert(maxASAP); - Order = BottomUp; - LLVM_DEBUG(dbgs() << " Bottom up (default) "); - } - - while (!R.empty()) { - if (Order == TopDown) { - // Choose the node with the maximum height. If more than one, choose - // the node wiTH the maximum ZeroLatencyHeight. If still more than one, - // choose the node with the lowest MOV. - while (!R.empty()) { - SUnit *maxHeight = nullptr; - for (SUnit *I : R) { - if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) - maxHeight = I; - else if (getHeight(I) == getHeight(maxHeight) && - getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) - maxHeight = I; - else if (getHeight(I) == getHeight(maxHeight) && - getZeroLatencyHeight(I) == - getZeroLatencyHeight(maxHeight) && - getMOV(I) < getMOV(maxHeight)) - maxHeight = I; - } - NodeOrder.insert(maxHeight); - LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); - R.remove(maxHeight); - for (const auto &I : maxHeight->Succs) { - if (Nodes.count(I.getSUnit()) == 0) - continue; + if (!Uses.count(*Units)) + LiveOutRegs.push_back(RegisterMaskPair(*Units, + LaneBitmask::getNone())); + } + } + RPTracker.addLiveRegs(LiveOutRegs); +} + +/// A heuristic to filter nodes in recurrent node-sets if the register +/// pressure of a set is too high. +void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) { + for (auto &NS : NodeSets) { + // Skip small node-sets since they won't cause register pressure problems. + if (NS.size() <= 2) + continue; + IntervalPressure RecRegPressure; + RegPressureTracker RecRPTracker(RecRegPressure); + RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true); + computeLiveOuts(MF, RecRPTracker, NS); + RecRPTracker.closeBottom(); + + std::vector<SUnit *> SUnits(NS.begin(), NS.end()); + llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) { + return A->NodeNum > B->NodeNum; + }); + + for (auto &SU : SUnits) { + // Since we're computing the register pressure for a subset of the + // instructions in a block, we need to set the tracker for each + // instruction in the node-set. The tracker is set to the instruction + // just after the one we're interested in. + MachineBasicBlock::const_iterator CurInstI = SU->getInstr(); + RecRPTracker.setPos(std::next(CurInstI)); + + RegPressureDelta RPDelta; + ArrayRef<PressureChange> CriticalPSets; + RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta, + CriticalPSets, + RecRegPressure.MaxSetPressure); + if (RPDelta.Excess.isValid()) { + LLVM_DEBUG( + dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") " + << TRI->getRegPressureSetName(RPDelta.Excess.getPSet()) + << ":" << RPDelta.Excess.getUnitInc()); + NS.setExceedPressure(SU); + break; + } + RecRPTracker.recede(); + } + } +} + +/// A heuristic to colocate node sets that have the same set of +/// successors. +void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) { + unsigned Colocate = 0; + for (int i = 0, e = NodeSets.size(); i < e; ++i) { + NodeSet &N1 = NodeSets[i]; + SmallSetVector<SUnit *, 8> S1; + if (N1.empty() || !succ_L(N1, S1)) + continue; + for (int j = i + 1; j < e; ++j) { + NodeSet &N2 = NodeSets[j]; + if (N1.compareRecMII(N2) != 0) + continue; + SmallSetVector<SUnit *, 8> S2; + if (N2.empty() || !succ_L(N2, S2)) + continue; + if (isSubset(S1, S2) && S1.size() == S2.size()) { + N1.setColocate(++Colocate); + N2.setColocate(Colocate); + break; + } + } + } +} + +/// Check if the existing node-sets are profitable. If not, then ignore the +/// recurrent node-sets, and attempt to schedule all nodes together. This is +/// a heuristic. If the MII is large and all the recurrent node-sets are small, +/// then it's best to try to schedule all instructions together instead of +/// starting with the recurrent node-sets. +void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) { + // Look for loops with a large MII. + if (MII < 17) + return; + // Check if the node-set contains only a simple add recurrence. + for (auto &NS : NodeSets) { + if (NS.getRecMII() > 2) + return; + if (NS.getMaxDepth() > MII) + return; + } + NodeSets.clear(); + LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n"); +} + +/// Add the nodes that do not belong to a recurrence set into groups +/// based upon connected componenets. +void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) { + SetVector<SUnit *> NodesAdded; + SmallPtrSet<SUnit *, 8> Visited; + // Add the nodes that are on a path between the previous node sets and + // the current node set. + for (NodeSet &I : NodeSets) { + SmallSetVector<SUnit *, 8> N; + // Add the nodes from the current node set to the previous node set. + if (succ_L(I, N)) { + SetVector<SUnit *> Path; + for (SUnit *NI : N) { + Visited.clear(); + computePath(NI, Path, NodesAdded, I, Visited); + } + if (!Path.empty()) + I.insert(Path.begin(), Path.end()); + } + // Add the nodes from the previous node set to the current node set. + N.clear(); + if (succ_L(NodesAdded, N)) { + SetVector<SUnit *> Path; + for (SUnit *NI : N) { + Visited.clear(); + computePath(NI, Path, I, NodesAdded, Visited); + } + if (!Path.empty()) + I.insert(Path.begin(), Path.end()); + } + NodesAdded.insert(I.begin(), I.end()); + } + + // Create a new node set with the connected nodes of any successor of a node + // in a recurrent set. + NodeSet NewSet; + SmallSetVector<SUnit *, 8> N; + if (succ_L(NodesAdded, N)) + for (SUnit *I : N) + addConnectedNodes(I, NewSet, NodesAdded); + if (!NewSet.empty()) + NodeSets.push_back(NewSet); + + // Create a new node set with the connected nodes of any predecessor of a node + // in a recurrent set. + NewSet.clear(); + if (pred_L(NodesAdded, N)) + for (SUnit *I : N) + addConnectedNodes(I, NewSet, NodesAdded); + if (!NewSet.empty()) + NodeSets.push_back(NewSet); + + // Create new nodes sets with the connected nodes any remaining node that + // has no predecessor. + for (unsigned i = 0; i < SUnits.size(); ++i) { + SUnit *SU = &SUnits[i]; + if (NodesAdded.count(SU) == 0) { + NewSet.clear(); + addConnectedNodes(SU, NewSet, NodesAdded); + if (!NewSet.empty()) + NodeSets.push_back(NewSet); + } + } +} + +/// Add the node to the set, and add all of its connected nodes to the set. +void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet, + SetVector<SUnit *> &NodesAdded) { + NewSet.insert(SU); + NodesAdded.insert(SU); + for (auto &SI : SU->Succs) { + SUnit *Successor = SI.getSUnit(); + if (!SI.isArtificial() && NodesAdded.count(Successor) == 0) + addConnectedNodes(Successor, NewSet, NodesAdded); + } + for (auto &PI : SU->Preds) { + SUnit *Predecessor = PI.getSUnit(); + if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0) + addConnectedNodes(Predecessor, NewSet, NodesAdded); + } +} + +/// Return true if Set1 contains elements in Set2. The elements in common +/// are returned in a different container. +static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2, + SmallSetVector<SUnit *, 8> &Result) { + Result.clear(); + for (unsigned i = 0, e = Set1.size(); i != e; ++i) { + SUnit *SU = Set1[i]; + if (Set2.count(SU) != 0) + Result.insert(SU); + } + return !Result.empty(); +} + +/// Merge the recurrence node sets that have the same initial node. +void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) { + for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; + ++I) { + NodeSet &NI = *I; + for (NodeSetType::iterator J = I + 1; J != E;) { + NodeSet &NJ = *J; + if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) { + if (NJ.compareRecMII(NI) > 0) + NI.setRecMII(NJ.getRecMII()); + for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI; + ++NII) + I->insert(*NII); + NodeSets.erase(J); + E = NodeSets.end(); + } else { + ++J; + } + } + } +} + +/// Remove nodes that have been scheduled in previous NodeSets. +void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) { + for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E; + ++I) + for (NodeSetType::iterator J = I + 1; J != E;) { + J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); }); + + if (J->empty()) { + NodeSets.erase(J); + E = NodeSets.end(); + } else { + ++J; + } + } +} + +/// Compute an ordered list of the dependence graph nodes, which +/// indicates the order that the nodes will be scheduled. This is a +/// two-level algorithm. First, a partial order is created, which +/// consists of a list of sets ordered from highest to lowest priority. +void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) { + SmallSetVector<SUnit *, 8> R; + NodeOrder.clear(); + + for (auto &Nodes : NodeSets) { + LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n"); + OrderKind Order; + SmallSetVector<SUnit *, 8> N; + if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) { + R.insert(N.begin(), N.end()); + Order = BottomUp; + LLVM_DEBUG(dbgs() << " Bottom up (preds) "); + } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) { + R.insert(N.begin(), N.end()); + Order = TopDown; + LLVM_DEBUG(dbgs() << " Top down (succs) "); + } else if (isIntersect(N, Nodes, R)) { + // If some of the successors are in the existing node-set, then use the + // top-down ordering. + Order = TopDown; + LLVM_DEBUG(dbgs() << " Top down (intersect) "); + } else if (NodeSets.size() == 1) { + for (auto &N : Nodes) + if (N->Succs.size() == 0) + R.insert(N); + Order = BottomUp; + LLVM_DEBUG(dbgs() << " Bottom up (all) "); + } else { + // Find the node with the highest ASAP. + SUnit *maxASAP = nullptr; + for (SUnit *SU : Nodes) { + if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) || + (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum)) + maxASAP = SU; + } + R.insert(maxASAP); + Order = BottomUp; + LLVM_DEBUG(dbgs() << " Bottom up (default) "); + } + + while (!R.empty()) { + if (Order == TopDown) { + // Choose the node with the maximum height. If more than one, choose + // the node wiTH the maximum ZeroLatencyHeight. If still more than one, + // choose the node with the lowest MOV. + while (!R.empty()) { + SUnit *maxHeight = nullptr; + for (SUnit *I : R) { + if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight)) + maxHeight = I; + else if (getHeight(I) == getHeight(maxHeight) && + getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight)) + maxHeight = I; + else if (getHeight(I) == getHeight(maxHeight) && + getZeroLatencyHeight(I) == + getZeroLatencyHeight(maxHeight) && + getMOV(I) < getMOV(maxHeight)) + maxHeight = I; + } + NodeOrder.insert(maxHeight); + LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " "); + R.remove(maxHeight); + for (const auto &I : maxHeight->Succs) { + if (Nodes.count(I.getSUnit()) == 0) + continue; if (NodeOrder.contains(I.getSUnit())) - continue; - if (ignoreDependence(I, false)) - continue; - R.insert(I.getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (const auto &I : maxHeight->Preds) { - if (I.getKind() != SDep::Anti) - continue; - if (Nodes.count(I.getSUnit()) == 0) - continue; + continue; + if (ignoreDependence(I, false)) + continue; + R.insert(I.getSUnit()); + } + // Back-edges are predecessors with an anti-dependence. + for (const auto &I : maxHeight->Preds) { + if (I.getKind() != SDep::Anti) + continue; + if (Nodes.count(I.getSUnit()) == 0) + continue; if (NodeOrder.contains(I.getSUnit())) - continue; - R.insert(I.getSUnit()); - } - } - Order = BottomUp; - LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); - SmallSetVector<SUnit *, 8> N; - if (pred_L(NodeOrder, N, &Nodes)) - R.insert(N.begin(), N.end()); - } else { - // Choose the node with the maximum depth. If more than one, choose - // the node with the maximum ZeroLatencyDepth. If still more than one, - // choose the node with the lowest MOV. - while (!R.empty()) { - SUnit *maxDepth = nullptr; - for (SUnit *I : R) { - if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) - maxDepth = I; - else if (getDepth(I) == getDepth(maxDepth) && - getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) - maxDepth = I; - else if (getDepth(I) == getDepth(maxDepth) && - getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && - getMOV(I) < getMOV(maxDepth)) - maxDepth = I; - } - NodeOrder.insert(maxDepth); - LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); - R.remove(maxDepth); - if (Nodes.isExceedSU(maxDepth)) { - Order = TopDown; - R.clear(); - R.insert(Nodes.getNode(0)); - break; - } - for (const auto &I : maxDepth->Preds) { - if (Nodes.count(I.getSUnit()) == 0) - continue; + continue; + R.insert(I.getSUnit()); + } + } + Order = BottomUp; + LLVM_DEBUG(dbgs() << "\n Switching order to bottom up "); + SmallSetVector<SUnit *, 8> N; + if (pred_L(NodeOrder, N, &Nodes)) + R.insert(N.begin(), N.end()); + } else { + // Choose the node with the maximum depth. If more than one, choose + // the node with the maximum ZeroLatencyDepth. If still more than one, + // choose the node with the lowest MOV. + while (!R.empty()) { + SUnit *maxDepth = nullptr; + for (SUnit *I : R) { + if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth)) + maxDepth = I; + else if (getDepth(I) == getDepth(maxDepth) && + getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth)) + maxDepth = I; + else if (getDepth(I) == getDepth(maxDepth) && + getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) && + getMOV(I) < getMOV(maxDepth)) + maxDepth = I; + } + NodeOrder.insert(maxDepth); + LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " "); + R.remove(maxDepth); + if (Nodes.isExceedSU(maxDepth)) { + Order = TopDown; + R.clear(); + R.insert(Nodes.getNode(0)); + break; + } + for (const auto &I : maxDepth->Preds) { + if (Nodes.count(I.getSUnit()) == 0) + continue; if (NodeOrder.contains(I.getSUnit())) - continue; - R.insert(I.getSUnit()); - } - // Back-edges are predecessors with an anti-dependence. - for (const auto &I : maxDepth->Succs) { - if (I.getKind() != SDep::Anti) - continue; - if (Nodes.count(I.getSUnit()) == 0) - continue; + continue; + R.insert(I.getSUnit()); + } + // Back-edges are predecessors with an anti-dependence. + for (const auto &I : maxDepth->Succs) { + if (I.getKind() != SDep::Anti) + continue; + if (Nodes.count(I.getSUnit()) == 0) + continue; if (NodeOrder.contains(I.getSUnit())) - continue; - R.insert(I.getSUnit()); - } - } - Order = TopDown; - LLVM_DEBUG(dbgs() << "\n Switching order to top down "); - SmallSetVector<SUnit *, 8> N; - if (succ_L(NodeOrder, N, &Nodes)) - R.insert(N.begin(), N.end()); - } - } - LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); - } - - LLVM_DEBUG({ - dbgs() << "Node order: "; - for (SUnit *I : NodeOrder) - dbgs() << " " << I->NodeNum << " "; - dbgs() << "\n"; - }); -} - -/// Process the nodes in the computed order and create the pipelined schedule -/// of the instructions, if possible. Return true if a schedule is found. -bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { - - if (NodeOrder.empty()){ - LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); - return false; - } - - bool scheduleFound = false; - unsigned II = 0; - // Keep increasing II until a valid schedule is found. - for (II = MII; II <= MAX_II && !scheduleFound; ++II) { - Schedule.reset(); - Schedule.setInitiationInterval(II); - LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); - - SetVector<SUnit *>::iterator NI = NodeOrder.begin(); - SetVector<SUnit *>::iterator NE = NodeOrder.end(); - do { - SUnit *SU = *NI; - - // Compute the schedule time for the instruction, which is based - // upon the scheduled time for any predecessors/successors. - int EarlyStart = INT_MIN; - int LateStart = INT_MAX; - // These values are set when the size of the schedule window is limited - // due to chain dependences. - int SchedEnd = INT_MAX; - int SchedStart = INT_MIN; - Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, - II, this); - LLVM_DEBUG({ - dbgs() << "\n"; - dbgs() << "Inst (" << SU->NodeNum << ") "; - SU->getInstr()->dump(); - dbgs() << "\n"; - }); - LLVM_DEBUG({ - dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, - LateStart, SchedEnd, SchedStart); - }); - - if (EarlyStart > LateStart || SchedEnd < EarlyStart || - SchedStart > LateStart) - scheduleFound = false; - else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { - SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); - scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); - } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { - SchedStart = std::max(SchedStart, LateStart - (int)II + 1); - scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); - } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { - SchedEnd = - std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); - // When scheduling a Phi it is better to start at the late cycle and go - // backwards. The default order may insert the Phi too far away from - // its first dependence. - if (SU->getInstr()->isPHI()) - scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); - else - scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); - } else { - int FirstCycle = Schedule.getFirstCycle(); - scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), - FirstCycle + getASAP(SU) + II - 1, II); - } - // Even if we find a schedule, make sure the schedule doesn't exceed the - // allowable number of stages. We keep trying if this happens. - if (scheduleFound) - if (SwpMaxStages > -1 && - Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) - scheduleFound = false; - - LLVM_DEBUG({ - if (!scheduleFound) - dbgs() << "\tCan't schedule\n"; - }); - } while (++NI != NE && scheduleFound); - - // If a schedule is found, check if it is a valid schedule too. - if (scheduleFound) - scheduleFound = Schedule.isValidSchedule(this); - } - - LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II - << ")\n"); - - if (scheduleFound) { - Schedule.finalizeSchedule(this); - Pass.ORE->emit([&]() { - return MachineOptimizationRemarkAnalysis( - DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) - << "Schedule found with Initiation Interval: " << ore::NV("II", II) - << ", MaxStageCount: " - << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); - }); - } else - Schedule.reset(); - - return scheduleFound && Schedule.getMaxStageCount() > 0; -} - -/// Return true if we can compute the amount the instruction changes -/// during each iteration. Set Delta to the amount of the change. -bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - const MachineOperand *BaseOp; - int64_t Offset; - bool OffsetIsScalable; - if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) - return false; - - // FIXME: This algorithm assumes instructions have fixed-size offsets. - if (OffsetIsScalable) - return false; - - if (!BaseOp->isReg()) - return false; - - Register BaseReg = BaseOp->getReg(); - - MachineRegisterInfo &MRI = MF.getRegInfo(); - // Check if there is a Phi. If so, get the definition in the loop. - MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); - if (BaseDef && BaseDef->isPHI()) { - BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); - BaseDef = MRI.getVRegDef(BaseReg); - } - if (!BaseDef) - return false; - - int D = 0; - if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) - return false; - - Delta = D; - return true; -} - -/// Check if we can change the instruction to use an offset value from the -/// previous iteration. If so, return true and set the base and offset values -/// so that we can rewrite the load, if necessary. -/// v1 = Phi(v0, v3) -/// v2 = load v1, 0 -/// v3 = post_store v1, 4, x -/// This function enables the load to be rewritten as v2 = load v3, 4. -bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, - unsigned &BasePos, - unsigned &OffsetPos, - unsigned &NewBase, - int64_t &Offset) { - // Get the load instruction. - if (TII->isPostIncrement(*MI)) - return false; - unsigned BasePosLd, OffsetPosLd; - if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) - return false; - Register BaseReg = MI->getOperand(BasePosLd).getReg(); - - // Look for the Phi instruction. - MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); - MachineInstr *Phi = MRI.getVRegDef(BaseReg); - if (!Phi || !Phi->isPHI()) - return false; - // Get the register defined in the loop block. - unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); - if (!PrevReg) - return false; - - // Check for the post-increment load/store instruction. - MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); - if (!PrevDef || PrevDef == MI) - return false; - - if (!TII->isPostIncrement(*PrevDef)) - return false; - - unsigned BasePos1 = 0, OffsetPos1 = 0; - if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) - return false; - - // Make sure that the instructions do not access the same memory location in - // the next iteration. - int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); - int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); - bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); - MF.DeleteMachineInstr(NewMI); - if (!Disjoint) - return false; - - // Set the return value once we determine that we return true. - BasePos = BasePosLd; - OffsetPos = OffsetPosLd; - NewBase = PrevReg; - Offset = StoreOffset; - return true; -} - -/// Apply changes to the instruction if needed. The changes are need -/// to improve the scheduling and depend up on the final schedule. -void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, - SMSchedule &Schedule) { - SUnit *SU = getSUnit(MI); - DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = - InstrChanges.find(SU); - if (It != InstrChanges.end()) { - std::pair<unsigned, int64_t> RegAndOffset = It->second; - unsigned BasePos, OffsetPos; - if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) - return; - Register BaseReg = MI->getOperand(BasePos).getReg(); - MachineInstr *LoopDef = findDefInLoop(BaseReg); - int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); - int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); - int BaseStageNum = Schedule.stageScheduled(SU); - int BaseCycleNum = Schedule.cycleScheduled(SU); - if (BaseStageNum < DefStageNum) { - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - int OffsetDiff = DefStageNum - BaseStageNum; - if (DefCycleNum < BaseCycleNum) { - NewMI->getOperand(BasePos).setReg(RegAndOffset.first); - if (OffsetDiff > 0) - --OffsetDiff; - } - int64_t NewOffset = - MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; - NewMI->getOperand(OffsetPos).setImm(NewOffset); - SU->setInstr(NewMI); - MISUnitMap[NewMI] = SU; - NewMIs[MI] = NewMI; - } - } -} - -/// Return the instruction in the loop that defines the register. -/// If the definition is a Phi, then follow the Phi operand to -/// the instruction in the loop. + continue; + R.insert(I.getSUnit()); + } + } + Order = TopDown; + LLVM_DEBUG(dbgs() << "\n Switching order to top down "); + SmallSetVector<SUnit *, 8> N; + if (succ_L(NodeOrder, N, &Nodes)) + R.insert(N.begin(), N.end()); + } + } + LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n"); + } + + LLVM_DEBUG({ + dbgs() << "Node order: "; + for (SUnit *I : NodeOrder) + dbgs() << " " << I->NodeNum << " "; + dbgs() << "\n"; + }); +} + +/// Process the nodes in the computed order and create the pipelined schedule +/// of the instructions, if possible. Return true if a schedule is found. +bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) { + + if (NodeOrder.empty()){ + LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" ); + return false; + } + + bool scheduleFound = false; + unsigned II = 0; + // Keep increasing II until a valid schedule is found. + for (II = MII; II <= MAX_II && !scheduleFound; ++II) { + Schedule.reset(); + Schedule.setInitiationInterval(II); + LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n"); + + SetVector<SUnit *>::iterator NI = NodeOrder.begin(); + SetVector<SUnit *>::iterator NE = NodeOrder.end(); + do { + SUnit *SU = *NI; + + // Compute the schedule time for the instruction, which is based + // upon the scheduled time for any predecessors/successors. + int EarlyStart = INT_MIN; + int LateStart = INT_MAX; + // These values are set when the size of the schedule window is limited + // due to chain dependences. + int SchedEnd = INT_MAX; + int SchedStart = INT_MIN; + Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart, + II, this); + LLVM_DEBUG({ + dbgs() << "\n"; + dbgs() << "Inst (" << SU->NodeNum << ") "; + SU->getInstr()->dump(); + dbgs() << "\n"; + }); + LLVM_DEBUG({ + dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart, + LateStart, SchedEnd, SchedStart); + }); + + if (EarlyStart > LateStart || SchedEnd < EarlyStart || + SchedStart > LateStart) + scheduleFound = false; + else if (EarlyStart != INT_MIN && LateStart == INT_MAX) { + SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1); + scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); + } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) { + SchedStart = std::max(SchedStart, LateStart - (int)II + 1); + scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II); + } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) { + SchedEnd = + std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1)); + // When scheduling a Phi it is better to start at the late cycle and go + // backwards. The default order may insert the Phi too far away from + // its first dependence. + if (SU->getInstr()->isPHI()) + scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II); + else + scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II); + } else { + int FirstCycle = Schedule.getFirstCycle(); + scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU), + FirstCycle + getASAP(SU) + II - 1, II); + } + // Even if we find a schedule, make sure the schedule doesn't exceed the + // allowable number of stages. We keep trying if this happens. + if (scheduleFound) + if (SwpMaxStages > -1 && + Schedule.getMaxStageCount() > (unsigned)SwpMaxStages) + scheduleFound = false; + + LLVM_DEBUG({ + if (!scheduleFound) + dbgs() << "\tCan't schedule\n"; + }); + } while (++NI != NE && scheduleFound); + + // If a schedule is found, check if it is a valid schedule too. + if (scheduleFound) + scheduleFound = Schedule.isValidSchedule(this); + } + + LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II + << ")\n"); + + if (scheduleFound) { + Schedule.finalizeSchedule(this); + Pass.ORE->emit([&]() { + return MachineOptimizationRemarkAnalysis( + DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader()) + << "Schedule found with Initiation Interval: " << ore::NV("II", II) + << ", MaxStageCount: " + << ore::NV("MaxStageCount", Schedule.getMaxStageCount()); + }); + } else + Schedule.reset(); + + return scheduleFound && Schedule.getMaxStageCount() > 0; +} + +/// Return true if we can compute the amount the instruction changes +/// during each iteration. Set Delta to the amount of the change. +bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) { + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + const MachineOperand *BaseOp; + int64_t Offset; + bool OffsetIsScalable; + if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) + return false; + + // FIXME: This algorithm assumes instructions have fixed-size offsets. + if (OffsetIsScalable) + return false; + + if (!BaseOp->isReg()) + return false; + + Register BaseReg = BaseOp->getReg(); + + MachineRegisterInfo &MRI = MF.getRegInfo(); + // Check if there is a Phi. If so, get the definition in the loop. + MachineInstr *BaseDef = MRI.getVRegDef(BaseReg); + if (BaseDef && BaseDef->isPHI()) { + BaseReg = getLoopPhiReg(*BaseDef, MI.getParent()); + BaseDef = MRI.getVRegDef(BaseReg); + } + if (!BaseDef) + return false; + + int D = 0; + if (!TII->getIncrementValue(*BaseDef, D) && D >= 0) + return false; + + Delta = D; + return true; +} + +/// Check if we can change the instruction to use an offset value from the +/// previous iteration. If so, return true and set the base and offset values +/// so that we can rewrite the load, if necessary. +/// v1 = Phi(v0, v3) +/// v2 = load v1, 0 +/// v3 = post_store v1, 4, x +/// This function enables the load to be rewritten as v2 = load v3, 4. +bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI, + unsigned &BasePos, + unsigned &OffsetPos, + unsigned &NewBase, + int64_t &Offset) { + // Get the load instruction. + if (TII->isPostIncrement(*MI)) + return false; + unsigned BasePosLd, OffsetPosLd; + if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd)) + return false; + Register BaseReg = MI->getOperand(BasePosLd).getReg(); + + // Look for the Phi instruction. + MachineRegisterInfo &MRI = MI->getMF()->getRegInfo(); + MachineInstr *Phi = MRI.getVRegDef(BaseReg); + if (!Phi || !Phi->isPHI()) + return false; + // Get the register defined in the loop block. + unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent()); + if (!PrevReg) + return false; + + // Check for the post-increment load/store instruction. + MachineInstr *PrevDef = MRI.getVRegDef(PrevReg); + if (!PrevDef || PrevDef == MI) + return false; + + if (!TII->isPostIncrement(*PrevDef)) + return false; + + unsigned BasePos1 = 0, OffsetPos1 = 0; + if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1)) + return false; + + // Make sure that the instructions do not access the same memory location in + // the next iteration. + int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm(); + int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm(); + MachineInstr *NewMI = MF.CloneMachineInstr(MI); + NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset); + bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef); + MF.DeleteMachineInstr(NewMI); + if (!Disjoint) + return false; + + // Set the return value once we determine that we return true. + BasePos = BasePosLd; + OffsetPos = OffsetPosLd; + NewBase = PrevReg; + Offset = StoreOffset; + return true; +} + +/// Apply changes to the instruction if needed. The changes are need +/// to improve the scheduling and depend up on the final schedule. +void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI, + SMSchedule &Schedule) { + SUnit *SU = getSUnit(MI); + DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = + InstrChanges.find(SU); + if (It != InstrChanges.end()) { + std::pair<unsigned, int64_t> RegAndOffset = It->second; + unsigned BasePos, OffsetPos; + if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) + return; + Register BaseReg = MI->getOperand(BasePos).getReg(); + MachineInstr *LoopDef = findDefInLoop(BaseReg); + int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef)); + int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef)); + int BaseStageNum = Schedule.stageScheduled(SU); + int BaseCycleNum = Schedule.cycleScheduled(SU); + if (BaseStageNum < DefStageNum) { + MachineInstr *NewMI = MF.CloneMachineInstr(MI); + int OffsetDiff = DefStageNum - BaseStageNum; + if (DefCycleNum < BaseCycleNum) { + NewMI->getOperand(BasePos).setReg(RegAndOffset.first); + if (OffsetDiff > 0) + --OffsetDiff; + } + int64_t NewOffset = + MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff; + NewMI->getOperand(OffsetPos).setImm(NewOffset); + SU->setInstr(NewMI); + MISUnitMap[NewMI] = SU; + NewMIs[MI] = NewMI; + } + } +} + +/// Return the instruction in the loop that defines the register. +/// If the definition is a Phi, then follow the Phi operand to +/// the instruction in the loop. MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) { - SmallPtrSet<MachineInstr *, 8> Visited; - MachineInstr *Def = MRI.getVRegDef(Reg); - while (Def->isPHI()) { - if (!Visited.insert(Def).second) - break; - for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) - if (Def->getOperand(i + 1).getMBB() == BB) { - Def = MRI.getVRegDef(Def->getOperand(i).getReg()); - break; - } - } - return Def; -} - -/// Return true for an order or output dependence that is loop carried -/// potentially. A dependence is loop carried if the destination defines a valu -/// that may be used or defined by the source in a subsequent iteration. -bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, - bool isSucc) { - if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || - Dep.isArtificial()) - return false; - - if (!SwpPruneLoopCarried) - return true; - - if (Dep.getKind() == SDep::Output) - return true; - - MachineInstr *SI = Source->getInstr(); - MachineInstr *DI = Dep.getSUnit()->getInstr(); - if (!isSucc) - std::swap(SI, DI); - assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); - - // Assume ordered loads and stores may have a loop carried dependence. - if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || - SI->mayRaiseFPException() || DI->mayRaiseFPException() || - SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) - return true; - - // Only chain dependences between a load and store can be loop carried. - if (!DI->mayStore() || !SI->mayLoad()) - return false; - - unsigned DeltaS, DeltaD; - if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) - return true; - - const MachineOperand *BaseOpS, *BaseOpD; - int64_t OffsetS, OffsetD; - bool OffsetSIsScalable, OffsetDIsScalable; - const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); - if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, - TRI) || - !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, - TRI)) - return true; - - assert(!OffsetSIsScalable && !OffsetDIsScalable && - "Expected offsets to be byte offsets"); - - if (!BaseOpS->isIdenticalTo(*BaseOpD)) - return true; - - // Check that the base register is incremented by a constant value for each - // iteration. - MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); - if (!Def || !Def->isPHI()) - return true; - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(*Def, BB, InitVal, LoopVal); - MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); - int D = 0; - if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) - return true; - - uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); - uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); - - // This is the main test, which checks the offset values and the loop - // increment value to determine if the accesses may be loop carried. - if (AccessSizeS == MemoryLocation::UnknownSize || - AccessSizeD == MemoryLocation::UnknownSize) - return true; - - if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) - return true; - - return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); -} - -void SwingSchedulerDAG::postprocessDAG() { - for (auto &M : Mutations) - M->apply(this); -} - -/// Try to schedule the node at the specified StartCycle and continue -/// until the node is schedule or the EndCycle is reached. This function -/// returns true if the node is scheduled. This routine may search either -/// forward or backward for a place to insert the instruction based upon -/// the relative values of StartCycle and EndCycle. -bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { - bool forward = true; - LLVM_DEBUG({ - dbgs() << "Trying to insert node between " << StartCycle << " and " - << EndCycle << " II: " << II << "\n"; - }); - if (StartCycle > EndCycle) - forward = false; - - // The terminating condition depends on the direction. - int termCycle = forward ? EndCycle + 1 : EndCycle - 1; - for (int curCycle = StartCycle; curCycle != termCycle; - forward ? ++curCycle : --curCycle) { - - // Add the already scheduled instructions at the specified cycle to the - // DFA. - ProcItinResources.clearResources(); - for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); - checkCycle <= LastCycle; checkCycle += II) { - std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; - - for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), - E = cycleInstrs.end(); - I != E; ++I) { - if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) - continue; - assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && - "These instructions have already been scheduled."); - ProcItinResources.reserveResources(*(*I)->getInstr()); - } - } - if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || - ProcItinResources.canReserveResources(*SU->getInstr())) { - LLVM_DEBUG({ - dbgs() << "\tinsert at cycle " << curCycle << " "; - SU->getInstr()->dump(); - }); - - ScheduledInstrs[curCycle].push_back(SU); - InstrToCycle.insert(std::make_pair(SU, curCycle)); - if (curCycle > LastCycle) - LastCycle = curCycle; - if (curCycle < FirstCycle) - FirstCycle = curCycle; - return true; - } - LLVM_DEBUG({ - dbgs() << "\tfailed to insert at cycle " << curCycle << " "; - SU->getInstr()->dump(); - }); - } - return false; -} - -// Return the cycle of the earliest scheduled instruction in the chain. -int SMSchedule::earliestCycleInChain(const SDep &Dep) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SDep, 8> Worklist; - Worklist.push_back(Dep); - int EarlyCycle = INT_MAX; - while (!Worklist.empty()) { - const SDep &Cur = Worklist.pop_back_val(); - SUnit *PrevSU = Cur.getSUnit(); - if (Visited.count(PrevSU)) - continue; - std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); - if (it == InstrToCycle.end()) - continue; - EarlyCycle = std::min(EarlyCycle, it->second); - for (const auto &PI : PrevSU->Preds) - if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) - Worklist.push_back(PI); - Visited.insert(PrevSU); - } - return EarlyCycle; -} - -// Return the cycle of the latest scheduled instruction in the chain. -int SMSchedule::latestCycleInChain(const SDep &Dep) { - SmallPtrSet<SUnit *, 8> Visited; - SmallVector<SDep, 8> Worklist; - Worklist.push_back(Dep); - int LateCycle = INT_MIN; - while (!Worklist.empty()) { - const SDep &Cur = Worklist.pop_back_val(); - SUnit *SuccSU = Cur.getSUnit(); - if (Visited.count(SuccSU)) - continue; - std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); - if (it == InstrToCycle.end()) - continue; - LateCycle = std::max(LateCycle, it->second); - for (const auto &SI : SuccSU->Succs) - if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) - Worklist.push_back(SI); - Visited.insert(SuccSU); - } - return LateCycle; -} - -/// If an instruction has a use that spans multiple iterations, then -/// return true. These instructions are characterized by having a back-ege -/// to a Phi, which contains a reference to another Phi. -static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { - for (auto &P : SU->Preds) - if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) - for (auto &S : P.getSUnit()->Succs) - if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) - return P.getSUnit(); - return nullptr; -} - -/// Compute the scheduling start slot for the instruction. The start slot -/// depends on any predecessor or successor nodes scheduled already. -void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, - int *MinEnd, int *MaxStart, int II, - SwingSchedulerDAG *DAG) { - // Iterate over each instruction that has been scheduled already. The start - // slot computation depends on whether the previously scheduled instruction - // is a predecessor or successor of the specified instruction. - for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { - - // Iterate over each instruction in the current cycle. - for (SUnit *I : getInstructions(cycle)) { - // Because we're processing a DAG for the dependences, we recognize - // the back-edge in recurrences by anti dependences. - for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { - const SDep &Dep = SU->Preds[i]; - if (Dep.getSUnit() == I) { - if (!DAG->isBackedge(SU, Dep)) { - int EarlyStart = cycle + Dep.getLatency() - - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; - *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); - if (DAG->isLoopCarriedDep(SU, Dep, false)) { - int End = earliestCycleInChain(Dep) + (II - 1); - *MinEnd = std::min(*MinEnd, End); - } - } else { - int LateStart = cycle - Dep.getLatency() + - DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; - *MinLateStart = std::min(*MinLateStart, LateStart); - } - } - // For instruction that requires multiple iterations, make sure that - // the dependent instruction is not scheduled past the definition. - SUnit *BE = multipleIterations(I, DAG); - if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && - !SU->isPred(I)) - *MinLateStart = std::min(*MinLateStart, cycle); - } - for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { - if (SU->Succs[i].getSUnit() == I) { - const SDep &Dep = SU->Succs[i]; - if (!DAG->isBackedge(SU, Dep)) { - int LateStart = cycle - Dep.getLatency() + - DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; - *MinLateStart = std::min(*MinLateStart, LateStart); - if (DAG->isLoopCarriedDep(SU, Dep)) { - int Start = latestCycleInChain(Dep) + 1 - II; - *MaxStart = std::max(*MaxStart, Start); - } - } else { - int EarlyStart = cycle + Dep.getLatency() - - DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; - *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); - } - } - } - } - } -} - -/// Order the instructions within a cycle so that the definitions occur -/// before the uses. Returns true if the instruction is added to the start -/// of the list, or false if added to the end. -void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, - std::deque<SUnit *> &Insts) { - MachineInstr *MI = SU->getInstr(); - bool OrderBeforeUse = false; - bool OrderAfterDef = false; - bool OrderBeforeDef = false; - unsigned MoveDef = 0; - unsigned MoveUse = 0; - int StageInst1 = stageScheduled(SU); - - unsigned Pos = 0; - for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; - ++I, ++Pos) { - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - MachineOperand &MO = MI->getOperand(i); - if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) - continue; - - Register Reg = MO.getReg(); - unsigned BasePos, OffsetPos; - if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) - if (MI->getOperand(BasePos).getReg() == Reg) - if (unsigned NewReg = SSD->getInstrBaseReg(SU)) - Reg = NewReg; - bool Reads, Writes; - std::tie(Reads, Writes) = - (*I)->getInstr()->readsWritesVirtualRegister(Reg); - if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { - // Add the instruction after the scheduled instruction. - OrderAfterDef = true; - MoveDef = Pos; - } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { - if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else { - OrderAfterDef = true; - MoveDef = Pos; - } - } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - if (MoveUse != 0) { - OrderAfterDef = true; - MoveDef = Pos - 1; - } - } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { - // Add the instruction before the scheduled instruction. - OrderBeforeUse = true; - if (MoveUse == 0) - MoveUse = Pos; - } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && - isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { - if (MoveUse == 0) { - OrderBeforeDef = true; - MoveUse = Pos; - } - } - } - // Check for order dependences between instructions. Make sure the source - // is ordered before the destination. - for (auto &S : SU->Succs) { - if (S.getSUnit() != *I) - continue; - if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { - OrderBeforeUse = true; - if (Pos < MoveUse) - MoveUse = Pos; - } - // We did not handle HW dependences in previous for loop, - // and we normally set Latency = 0 for Anti deps, - // so may have nodes in same cycle with Anti denpendent on HW regs. - else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { - OrderBeforeUse = true; - if ((MoveUse == 0) || (Pos < MoveUse)) - MoveUse = Pos; - } - } - for (auto &P : SU->Preds) { - if (P.getSUnit() != *I) - continue; - if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { - OrderAfterDef = true; - MoveDef = Pos; - } - } - } - - // A circular dependence. - if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) - OrderBeforeUse = false; - - // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due - // to a loop-carried dependence. - if (OrderBeforeDef) - OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); - - // The uncommon case when the instruction order needs to be updated because - // there is both a use and def. - if (OrderBeforeUse && OrderAfterDef) { - SUnit *UseSU = Insts.at(MoveUse); - SUnit *DefSU = Insts.at(MoveDef); - if (MoveUse > MoveDef) { - Insts.erase(Insts.begin() + MoveUse); - Insts.erase(Insts.begin() + MoveDef); - } else { - Insts.erase(Insts.begin() + MoveDef); - Insts.erase(Insts.begin() + MoveUse); - } - orderDependence(SSD, UseSU, Insts); - orderDependence(SSD, SU, Insts); - orderDependence(SSD, DefSU, Insts); - return; - } - // Put the new instruction first if there is a use in the list. Otherwise, - // put it at the end of the list. - if (OrderBeforeUse) - Insts.push_front(SU); - else - Insts.push_back(SU); -} - -/// Return true if the scheduled Phi has a loop carried operand. -bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { - if (!Phi.isPHI()) - return false; - assert(Phi.isPHI() && "Expecting a Phi."); - SUnit *DefSU = SSD->getSUnit(&Phi); - unsigned DefCycle = cycleScheduled(DefSU); - int DefStage = stageScheduled(DefSU); - - unsigned InitVal = 0; - unsigned LoopVal = 0; - getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); - SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); - if (!UseSU) - return true; - if (UseSU->getInstr()->isPHI()) - return true; - unsigned LoopCycle = cycleScheduled(UseSU); - int LoopStage = stageScheduled(UseSU); - return (LoopCycle > DefCycle) || (LoopStage <= DefStage); -} - -/// Return true if the instruction is a definition that is loop carried -/// and defines the use on the next iteration. -/// v1 = phi(v2, v3) -/// (Def) v3 = op v1 -/// (MO) = v1 -/// If MO appears before Def, then then v1 and v3 may get assigned to the same -/// register. -bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, - MachineInstr *Def, MachineOperand &MO) { - if (!MO.isReg()) - return false; - if (Def->isPHI()) - return false; - MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); - if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) - return false; - if (!isLoopCarried(SSD, *Phi)) - return false; - unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); - for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { - MachineOperand &DMO = Def->getOperand(i); - if (!DMO.isReg() || !DMO.isDef()) - continue; - if (DMO.getReg() == LoopReg) - return true; - } - return false; -} - -// Check if the generated schedule is valid. This function checks if -// an instruction that uses a physical register is scheduled in a -// different stage than the definition. The pipeliner does not handle -// physical register values that may cross a basic block boundary. -bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { - for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { - SUnit &SU = SSD->SUnits[i]; - if (!SU.hasPhysRegDefs) - continue; - int StageDef = stageScheduled(&SU); - assert(StageDef != -1 && "Instruction should have been scheduled."); - for (auto &SI : SU.Succs) - if (SI.isAssignedRegDep()) - if (Register::isPhysicalRegister(SI.getReg())) - if (stageScheduled(SI.getSUnit()) != StageDef) - return false; - } - return true; -} - -/// A property of the node order in swing-modulo-scheduling is -/// that for nodes outside circuits the following holds: -/// none of them is scheduled after both a successor and a -/// predecessor. -/// The method below checks whether the property is met. -/// If not, debug information is printed and statistics information updated. -/// Note that we do not use an assert statement. -/// The reason is that although an invalid node oder may prevent -/// the pipeliner from finding a pipelined schedule for arbitrary II, -/// it does not lead to the generation of incorrect code. -void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { - - // a sorted vector that maps each SUnit to its index in the NodeOrder - typedef std::pair<SUnit *, unsigned> UnitIndex; - std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); - - for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) - Indices.push_back(std::make_pair(NodeOrder[i], i)); - - auto CompareKey = [](UnitIndex i1, UnitIndex i2) { - return std::get<0>(i1) < std::get<0>(i2); - }; - - // sort, so that we can perform a binary search - llvm::sort(Indices, CompareKey); - - bool Valid = true; - (void)Valid; - // for each SUnit in the NodeOrder, check whether - // it appears after both a successor and a predecessor - // of the SUnit. If this is the case, and the SUnit - // is not part of circuit, then the NodeOrder is not - // valid. - for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { - SUnit *SU = NodeOrder[i]; - unsigned Index = i; - - bool PredBefore = false; - bool SuccBefore = false; - - SUnit *Succ; - SUnit *Pred; - (void)Succ; - (void)Pred; - - for (SDep &PredEdge : SU->Preds) { - SUnit *PredSU = PredEdge.getSUnit(); - unsigned PredIndex = std::get<1>( - *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); - if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { - PredBefore = true; - Pred = PredSU; - break; - } - } - - for (SDep &SuccEdge : SU->Succs) { - SUnit *SuccSU = SuccEdge.getSUnit(); - // Do not process a boundary node, it was not included in NodeOrder, - // hence not in Indices either, call to std::lower_bound() below will - // return Indices.end(). - if (SuccSU->isBoundaryNode()) - continue; - unsigned SuccIndex = std::get<1>( - *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); - if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { - SuccBefore = true; - Succ = SuccSU; - break; - } - } - - if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { - // instructions in circuits are allowed to be scheduled - // after both a successor and predecessor. - bool InCircuit = llvm::any_of( - Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); - if (InCircuit) - LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); - else { - Valid = false; - NumNodeOrderIssues++; - LLVM_DEBUG(dbgs() << "Predecessor ";); - } - LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum - << " are scheduled before node " << SU->NodeNum - << "\n";); - } - } - - LLVM_DEBUG({ - if (!Valid) - dbgs() << "Invalid node order found!\n"; - }); -} - -/// Attempt to fix the degenerate cases when the instruction serialization -/// causes the register lifetimes to overlap. For example, -/// p' = store_pi(p, b) -/// = load p, offset -/// In this case p and p' overlap, which means that two registers are needed. -/// Instead, this function changes the load to use p' and updates the offset. -void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { - unsigned OverlapReg = 0; - unsigned NewBaseReg = 0; - for (SUnit *SU : Instrs) { - MachineInstr *MI = SU->getInstr(); - for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { - const MachineOperand &MO = MI->getOperand(i); - // Look for an instruction that uses p. The instruction occurs in the - // same cycle but occurs later in the serialized order. - if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { - // Check that the instruction appears in the InstrChanges structure, - // which contains instructions that can have the offset updated. - DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = - InstrChanges.find(SU); - if (It != InstrChanges.end()) { - unsigned BasePos, OffsetPos; - // Update the base register and adjust the offset. - if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { - MachineInstr *NewMI = MF.CloneMachineInstr(MI); - NewMI->getOperand(BasePos).setReg(NewBaseReg); - int64_t NewOffset = - MI->getOperand(OffsetPos).getImm() - It->second.second; - NewMI->getOperand(OffsetPos).setImm(NewOffset); - SU->setInstr(NewMI); - MISUnitMap[NewMI] = SU; - NewMIs[MI] = NewMI; - } - } - OverlapReg = 0; - NewBaseReg = 0; - break; - } - // Look for an instruction of the form p' = op(p), which uses and defines - // two virtual registers that get allocated to the same physical register. - unsigned TiedUseIdx = 0; - if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { - // OverlapReg is p in the example above. - OverlapReg = MI->getOperand(TiedUseIdx).getReg(); - // NewBaseReg is p' in the example above. - NewBaseReg = MI->getOperand(i).getReg(); - break; - } - } - } -} - -/// After the schedule has been formed, call this function to combine -/// the instructions from the different stages/cycles. That is, this -/// function creates a schedule that represents a single iteration. -void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { - // Move all instructions to the first stage from later stages. - for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { - for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; - ++stage) { - std::deque<SUnit *> &cycleInstrs = - ScheduledInstrs[cycle + (stage * InitiationInterval)]; - for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), - E = cycleInstrs.rend(); - I != E; ++I) - ScheduledInstrs[cycle].push_front(*I); - } - } - - // Erase all the elements in the later stages. Only one iteration should - // remain in the scheduled list, and it contains all the instructions. - for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) - ScheduledInstrs.erase(cycle); - - // Change the registers in instruction as specified in the InstrChanges - // map. We need to use the new registers to create the correct order. - for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { - SUnit *SU = &SSD->SUnits[i]; - SSD->applyInstrChange(SU->getInstr(), *this); - } - - // Reorder the instructions in each cycle to fix and improve the - // generated code. - for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { - std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; - std::deque<SUnit *> newOrderPhi; - for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { - SUnit *SU = cycleInstrs[i]; - if (SU->getInstr()->isPHI()) - newOrderPhi.push_back(SU); - } - std::deque<SUnit *> newOrderI; - for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { - SUnit *SU = cycleInstrs[i]; - if (!SU->getInstr()->isPHI()) - orderDependence(SSD, SU, newOrderI); - } - // Replace the old order with the new order. - cycleInstrs.swap(newOrderPhi); + SmallPtrSet<MachineInstr *, 8> Visited; + MachineInstr *Def = MRI.getVRegDef(Reg); + while (Def->isPHI()) { + if (!Visited.insert(Def).second) + break; + for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2) + if (Def->getOperand(i + 1).getMBB() == BB) { + Def = MRI.getVRegDef(Def->getOperand(i).getReg()); + break; + } + } + return Def; +} + +/// Return true for an order or output dependence that is loop carried +/// potentially. A dependence is loop carried if the destination defines a valu +/// that may be used or defined by the source in a subsequent iteration. +bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep, + bool isSucc) { + if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) || + Dep.isArtificial()) + return false; + + if (!SwpPruneLoopCarried) + return true; + + if (Dep.getKind() == SDep::Output) + return true; + + MachineInstr *SI = Source->getInstr(); + MachineInstr *DI = Dep.getSUnit()->getInstr(); + if (!isSucc) + std::swap(SI, DI); + assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI."); + + // Assume ordered loads and stores may have a loop carried dependence. + if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() || + SI->mayRaiseFPException() || DI->mayRaiseFPException() || + SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef()) + return true; + + // Only chain dependences between a load and store can be loop carried. + if (!DI->mayStore() || !SI->mayLoad()) + return false; + + unsigned DeltaS, DeltaD; + if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD)) + return true; + + const MachineOperand *BaseOpS, *BaseOpD; + int64_t OffsetS, OffsetD; + bool OffsetSIsScalable, OffsetDIsScalable; + const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); + if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable, + TRI) || + !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable, + TRI)) + return true; + + assert(!OffsetSIsScalable && !OffsetDIsScalable && + "Expected offsets to be byte offsets"); + + if (!BaseOpS->isIdenticalTo(*BaseOpD)) + return true; + + // Check that the base register is incremented by a constant value for each + // iteration. + MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg()); + if (!Def || !Def->isPHI()) + return true; + unsigned InitVal = 0; + unsigned LoopVal = 0; + getPhiRegs(*Def, BB, InitVal, LoopVal); + MachineInstr *LoopDef = MRI.getVRegDef(LoopVal); + int D = 0; + if (!LoopDef || !TII->getIncrementValue(*LoopDef, D)) + return true; + + uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize(); + uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize(); + + // This is the main test, which checks the offset values and the loop + // increment value to determine if the accesses may be loop carried. + if (AccessSizeS == MemoryLocation::UnknownSize || + AccessSizeD == MemoryLocation::UnknownSize) + return true; + + if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD) + return true; + + return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD); +} + +void SwingSchedulerDAG::postprocessDAG() { + for (auto &M : Mutations) + M->apply(this); +} + +/// Try to schedule the node at the specified StartCycle and continue +/// until the node is schedule or the EndCycle is reached. This function +/// returns true if the node is scheduled. This routine may search either +/// forward or backward for a place to insert the instruction based upon +/// the relative values of StartCycle and EndCycle. +bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) { + bool forward = true; + LLVM_DEBUG({ + dbgs() << "Trying to insert node between " << StartCycle << " and " + << EndCycle << " II: " << II << "\n"; + }); + if (StartCycle > EndCycle) + forward = false; + + // The terminating condition depends on the direction. + int termCycle = forward ? EndCycle + 1 : EndCycle - 1; + for (int curCycle = StartCycle; curCycle != termCycle; + forward ? ++curCycle : --curCycle) { + + // Add the already scheduled instructions at the specified cycle to the + // DFA. + ProcItinResources.clearResources(); + for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II); + checkCycle <= LastCycle; checkCycle += II) { + std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle]; + + for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(), + E = cycleInstrs.end(); + I != E; ++I) { + if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode())) + continue; + assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) && + "These instructions have already been scheduled."); + ProcItinResources.reserveResources(*(*I)->getInstr()); + } + } + if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) || + ProcItinResources.canReserveResources(*SU->getInstr())) { + LLVM_DEBUG({ + dbgs() << "\tinsert at cycle " << curCycle << " "; + SU->getInstr()->dump(); + }); + + ScheduledInstrs[curCycle].push_back(SU); + InstrToCycle.insert(std::make_pair(SU, curCycle)); + if (curCycle > LastCycle) + LastCycle = curCycle; + if (curCycle < FirstCycle) + FirstCycle = curCycle; + return true; + } + LLVM_DEBUG({ + dbgs() << "\tfailed to insert at cycle " << curCycle << " "; + SU->getInstr()->dump(); + }); + } + return false; +} + +// Return the cycle of the earliest scheduled instruction in the chain. +int SMSchedule::earliestCycleInChain(const SDep &Dep) { + SmallPtrSet<SUnit *, 8> Visited; + SmallVector<SDep, 8> Worklist; + Worklist.push_back(Dep); + int EarlyCycle = INT_MAX; + while (!Worklist.empty()) { + const SDep &Cur = Worklist.pop_back_val(); + SUnit *PrevSU = Cur.getSUnit(); + if (Visited.count(PrevSU)) + continue; + std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU); + if (it == InstrToCycle.end()) + continue; + EarlyCycle = std::min(EarlyCycle, it->second); + for (const auto &PI : PrevSU->Preds) + if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output) + Worklist.push_back(PI); + Visited.insert(PrevSU); + } + return EarlyCycle; +} + +// Return the cycle of the latest scheduled instruction in the chain. +int SMSchedule::latestCycleInChain(const SDep &Dep) { + SmallPtrSet<SUnit *, 8> Visited; + SmallVector<SDep, 8> Worklist; + Worklist.push_back(Dep); + int LateCycle = INT_MIN; + while (!Worklist.empty()) { + const SDep &Cur = Worklist.pop_back_val(); + SUnit *SuccSU = Cur.getSUnit(); + if (Visited.count(SuccSU)) + continue; + std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU); + if (it == InstrToCycle.end()) + continue; + LateCycle = std::max(LateCycle, it->second); + for (const auto &SI : SuccSU->Succs) + if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output) + Worklist.push_back(SI); + Visited.insert(SuccSU); + } + return LateCycle; +} + +/// If an instruction has a use that spans multiple iterations, then +/// return true. These instructions are characterized by having a back-ege +/// to a Phi, which contains a reference to another Phi. +static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) { + for (auto &P : SU->Preds) + if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI()) + for (auto &S : P.getSUnit()->Succs) + if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI()) + return P.getSUnit(); + return nullptr; +} + +/// Compute the scheduling start slot for the instruction. The start slot +/// depends on any predecessor or successor nodes scheduled already. +void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart, + int *MinEnd, int *MaxStart, int II, + SwingSchedulerDAG *DAG) { + // Iterate over each instruction that has been scheduled already. The start + // slot computation depends on whether the previously scheduled instruction + // is a predecessor or successor of the specified instruction. + for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) { + + // Iterate over each instruction in the current cycle. + for (SUnit *I : getInstructions(cycle)) { + // Because we're processing a DAG for the dependences, we recognize + // the back-edge in recurrences by anti dependences. + for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) { + const SDep &Dep = SU->Preds[i]; + if (Dep.getSUnit() == I) { + if (!DAG->isBackedge(SU, Dep)) { + int EarlyStart = cycle + Dep.getLatency() - + DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; + *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); + if (DAG->isLoopCarriedDep(SU, Dep, false)) { + int End = earliestCycleInChain(Dep) + (II - 1); + *MinEnd = std::min(*MinEnd, End); + } + } else { + int LateStart = cycle - Dep.getLatency() + + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; + *MinLateStart = std::min(*MinLateStart, LateStart); + } + } + // For instruction that requires multiple iterations, make sure that + // the dependent instruction is not scheduled past the definition. + SUnit *BE = multipleIterations(I, DAG); + if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() && + !SU->isPred(I)) + *MinLateStart = std::min(*MinLateStart, cycle); + } + for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) { + if (SU->Succs[i].getSUnit() == I) { + const SDep &Dep = SU->Succs[i]; + if (!DAG->isBackedge(SU, Dep)) { + int LateStart = cycle - Dep.getLatency() + + DAG->getDistance(SU, Dep.getSUnit(), Dep) * II; + *MinLateStart = std::min(*MinLateStart, LateStart); + if (DAG->isLoopCarriedDep(SU, Dep)) { + int Start = latestCycleInChain(Dep) + 1 - II; + *MaxStart = std::max(*MaxStart, Start); + } + } else { + int EarlyStart = cycle + Dep.getLatency() - + DAG->getDistance(Dep.getSUnit(), SU, Dep) * II; + *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart); + } + } + } + } + } +} + +/// Order the instructions within a cycle so that the definitions occur +/// before the uses. Returns true if the instruction is added to the start +/// of the list, or false if added to the end. +void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU, + std::deque<SUnit *> &Insts) { + MachineInstr *MI = SU->getInstr(); + bool OrderBeforeUse = false; + bool OrderAfterDef = false; + bool OrderBeforeDef = false; + unsigned MoveDef = 0; + unsigned MoveUse = 0; + int StageInst1 = stageScheduled(SU); + + unsigned Pos = 0; + for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E; + ++I, ++Pos) { + for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { + MachineOperand &MO = MI->getOperand(i); + if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg())) + continue; + + Register Reg = MO.getReg(); + unsigned BasePos, OffsetPos; + if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) + if (MI->getOperand(BasePos).getReg() == Reg) + if (unsigned NewReg = SSD->getInstrBaseReg(SU)) + Reg = NewReg; + bool Reads, Writes; + std::tie(Reads, Writes) = + (*I)->getInstr()->readsWritesVirtualRegister(Reg); + if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) { + OrderBeforeUse = true; + if (MoveUse == 0) + MoveUse = Pos; + } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) { + // Add the instruction after the scheduled instruction. + OrderAfterDef = true; + MoveDef = Pos; + } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) { + if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) { + OrderBeforeUse = true; + if (MoveUse == 0) + MoveUse = Pos; + } else { + OrderAfterDef = true; + MoveDef = Pos; + } + } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) { + OrderBeforeUse = true; + if (MoveUse == 0) + MoveUse = Pos; + if (MoveUse != 0) { + OrderAfterDef = true; + MoveDef = Pos - 1; + } + } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) { + // Add the instruction before the scheduled instruction. + OrderBeforeUse = true; + if (MoveUse == 0) + MoveUse = Pos; + } else if (MO.isUse() && stageScheduled(*I) == StageInst1 && + isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) { + if (MoveUse == 0) { + OrderBeforeDef = true; + MoveUse = Pos; + } + } + } + // Check for order dependences between instructions. Make sure the source + // is ordered before the destination. + for (auto &S : SU->Succs) { + if (S.getSUnit() != *I) + continue; + if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { + OrderBeforeUse = true; + if (Pos < MoveUse) + MoveUse = Pos; + } + // We did not handle HW dependences in previous for loop, + // and we normally set Latency = 0 for Anti deps, + // so may have nodes in same cycle with Anti denpendent on HW regs. + else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) { + OrderBeforeUse = true; + if ((MoveUse == 0) || (Pos < MoveUse)) + MoveUse = Pos; + } + } + for (auto &P : SU->Preds) { + if (P.getSUnit() != *I) + continue; + if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) { + OrderAfterDef = true; + MoveDef = Pos; + } + } + } + + // A circular dependence. + if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef) + OrderBeforeUse = false; + + // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due + // to a loop-carried dependence. + if (OrderBeforeDef) + OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef); + + // The uncommon case when the instruction order needs to be updated because + // there is both a use and def. + if (OrderBeforeUse && OrderAfterDef) { + SUnit *UseSU = Insts.at(MoveUse); + SUnit *DefSU = Insts.at(MoveDef); + if (MoveUse > MoveDef) { + Insts.erase(Insts.begin() + MoveUse); + Insts.erase(Insts.begin() + MoveDef); + } else { + Insts.erase(Insts.begin() + MoveDef); + Insts.erase(Insts.begin() + MoveUse); + } + orderDependence(SSD, UseSU, Insts); + orderDependence(SSD, SU, Insts); + orderDependence(SSD, DefSU, Insts); + return; + } + // Put the new instruction first if there is a use in the list. Otherwise, + // put it at the end of the list. + if (OrderBeforeUse) + Insts.push_front(SU); + else + Insts.push_back(SU); +} + +/// Return true if the scheduled Phi has a loop carried operand. +bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) { + if (!Phi.isPHI()) + return false; + assert(Phi.isPHI() && "Expecting a Phi."); + SUnit *DefSU = SSD->getSUnit(&Phi); + unsigned DefCycle = cycleScheduled(DefSU); + int DefStage = stageScheduled(DefSU); + + unsigned InitVal = 0; + unsigned LoopVal = 0; + getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal); + SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal)); + if (!UseSU) + return true; + if (UseSU->getInstr()->isPHI()) + return true; + unsigned LoopCycle = cycleScheduled(UseSU); + int LoopStage = stageScheduled(UseSU); + return (LoopCycle > DefCycle) || (LoopStage <= DefStage); +} + +/// Return true if the instruction is a definition that is loop carried +/// and defines the use on the next iteration. +/// v1 = phi(v2, v3) +/// (Def) v3 = op v1 +/// (MO) = v1 +/// If MO appears before Def, then then v1 and v3 may get assigned to the same +/// register. +bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD, + MachineInstr *Def, MachineOperand &MO) { + if (!MO.isReg()) + return false; + if (Def->isPHI()) + return false; + MachineInstr *Phi = MRI.getVRegDef(MO.getReg()); + if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent()) + return false; + if (!isLoopCarried(SSD, *Phi)) + return false; + unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent()); + for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) { + MachineOperand &DMO = Def->getOperand(i); + if (!DMO.isReg() || !DMO.isDef()) + continue; + if (DMO.getReg() == LoopReg) + return true; + } + return false; +} + +// Check if the generated schedule is valid. This function checks if +// an instruction that uses a physical register is scheduled in a +// different stage than the definition. The pipeliner does not handle +// physical register values that may cross a basic block boundary. +bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) { + for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) { + SUnit &SU = SSD->SUnits[i]; + if (!SU.hasPhysRegDefs) + continue; + int StageDef = stageScheduled(&SU); + assert(StageDef != -1 && "Instruction should have been scheduled."); + for (auto &SI : SU.Succs) + if (SI.isAssignedRegDep()) + if (Register::isPhysicalRegister(SI.getReg())) + if (stageScheduled(SI.getSUnit()) != StageDef) + return false; + } + return true; +} + +/// A property of the node order in swing-modulo-scheduling is +/// that for nodes outside circuits the following holds: +/// none of them is scheduled after both a successor and a +/// predecessor. +/// The method below checks whether the property is met. +/// If not, debug information is printed and statistics information updated. +/// Note that we do not use an assert statement. +/// The reason is that although an invalid node oder may prevent +/// the pipeliner from finding a pipelined schedule for arbitrary II, +/// it does not lead to the generation of incorrect code. +void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const { + + // a sorted vector that maps each SUnit to its index in the NodeOrder + typedef std::pair<SUnit *, unsigned> UnitIndex; + std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0)); + + for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) + Indices.push_back(std::make_pair(NodeOrder[i], i)); + + auto CompareKey = [](UnitIndex i1, UnitIndex i2) { + return std::get<0>(i1) < std::get<0>(i2); + }; + + // sort, so that we can perform a binary search + llvm::sort(Indices, CompareKey); + + bool Valid = true; + (void)Valid; + // for each SUnit in the NodeOrder, check whether + // it appears after both a successor and a predecessor + // of the SUnit. If this is the case, and the SUnit + // is not part of circuit, then the NodeOrder is not + // valid. + for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) { + SUnit *SU = NodeOrder[i]; + unsigned Index = i; + + bool PredBefore = false; + bool SuccBefore = false; + + SUnit *Succ; + SUnit *Pred; + (void)Succ; + (void)Pred; + + for (SDep &PredEdge : SU->Preds) { + SUnit *PredSU = PredEdge.getSUnit(); + unsigned PredIndex = std::get<1>( + *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey)); + if (!PredSU->getInstr()->isPHI() && PredIndex < Index) { + PredBefore = true; + Pred = PredSU; + break; + } + } + + for (SDep &SuccEdge : SU->Succs) { + SUnit *SuccSU = SuccEdge.getSUnit(); + // Do not process a boundary node, it was not included in NodeOrder, + // hence not in Indices either, call to std::lower_bound() below will + // return Indices.end(). + if (SuccSU->isBoundaryNode()) + continue; + unsigned SuccIndex = std::get<1>( + *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey)); + if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) { + SuccBefore = true; + Succ = SuccSU; + break; + } + } + + if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) { + // instructions in circuits are allowed to be scheduled + // after both a successor and predecessor. + bool InCircuit = llvm::any_of( + Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); }); + if (InCircuit) + LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";); + else { + Valid = false; + NumNodeOrderIssues++; + LLVM_DEBUG(dbgs() << "Predecessor ";); + } + LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum + << " are scheduled before node " << SU->NodeNum + << "\n";); + } + } + + LLVM_DEBUG({ + if (!Valid) + dbgs() << "Invalid node order found!\n"; + }); +} + +/// Attempt to fix the degenerate cases when the instruction serialization +/// causes the register lifetimes to overlap. For example, +/// p' = store_pi(p, b) +/// = load p, offset +/// In this case p and p' overlap, which means that two registers are needed. +/// Instead, this function changes the load to use p' and updates the offset. +void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) { + unsigned OverlapReg = 0; + unsigned NewBaseReg = 0; + for (SUnit *SU : Instrs) { + MachineInstr *MI = SU->getInstr(); + for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) { + const MachineOperand &MO = MI->getOperand(i); + // Look for an instruction that uses p. The instruction occurs in the + // same cycle but occurs later in the serialized order. + if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) { + // Check that the instruction appears in the InstrChanges structure, + // which contains instructions that can have the offset updated. + DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It = + InstrChanges.find(SU); + if (It != InstrChanges.end()) { + unsigned BasePos, OffsetPos; + // Update the base register and adjust the offset. + if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) { + MachineInstr *NewMI = MF.CloneMachineInstr(MI); + NewMI->getOperand(BasePos).setReg(NewBaseReg); + int64_t NewOffset = + MI->getOperand(OffsetPos).getImm() - It->second.second; + NewMI->getOperand(OffsetPos).setImm(NewOffset); + SU->setInstr(NewMI); + MISUnitMap[NewMI] = SU; + NewMIs[MI] = NewMI; + } + } + OverlapReg = 0; + NewBaseReg = 0; + break; + } + // Look for an instruction of the form p' = op(p), which uses and defines + // two virtual registers that get allocated to the same physical register. + unsigned TiedUseIdx = 0; + if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) { + // OverlapReg is p in the example above. + OverlapReg = MI->getOperand(TiedUseIdx).getReg(); + // NewBaseReg is p' in the example above. + NewBaseReg = MI->getOperand(i).getReg(); + break; + } + } + } +} + +/// After the schedule has been formed, call this function to combine +/// the instructions from the different stages/cycles. That is, this +/// function creates a schedule that represents a single iteration. +void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) { + // Move all instructions to the first stage from later stages. + for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { + for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage; + ++stage) { + std::deque<SUnit *> &cycleInstrs = + ScheduledInstrs[cycle + (stage * InitiationInterval)]; + for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(), + E = cycleInstrs.rend(); + I != E; ++I) + ScheduledInstrs[cycle].push_front(*I); + } + } + + // Erase all the elements in the later stages. Only one iteration should + // remain in the scheduled list, and it contains all the instructions. + for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle) + ScheduledInstrs.erase(cycle); + + // Change the registers in instruction as specified in the InstrChanges + // map. We need to use the new registers to create the correct order. + for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) { + SUnit *SU = &SSD->SUnits[i]; + SSD->applyInstrChange(SU->getInstr(), *this); + } + + // Reorder the instructions in each cycle to fix and improve the + // generated code. + for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) { + std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle]; + std::deque<SUnit *> newOrderPhi; + for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { + SUnit *SU = cycleInstrs[i]; + if (SU->getInstr()->isPHI()) + newOrderPhi.push_back(SU); + } + std::deque<SUnit *> newOrderI; + for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) { + SUnit *SU = cycleInstrs[i]; + if (!SU->getInstr()->isPHI()) + orderDependence(SSD, SU, newOrderI); + } + // Replace the old order with the new order. + cycleInstrs.swap(newOrderPhi); llvm::append_range(cycleInstrs, newOrderI); - SSD->fixupRegisterOverlaps(cycleInstrs); - } - - LLVM_DEBUG(dump();); -} - -void NodeSet::print(raw_ostream &os) const { - os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV - << " depth " << MaxDepth << " col " << Colocate << "\n"; - for (const auto &I : Nodes) - os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); - os << "\n"; -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -/// Print the schedule information to the given output. -void SMSchedule::print(raw_ostream &os) const { - // Iterate over each cycle. - for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { - // Iterate over each instruction in the cycle. - const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); - for (SUnit *CI : cycleInstrs->second) { - os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; - os << "(" << CI->NodeNum << ") "; - CI->getInstr()->print(os); - os << "\n"; - } - } -} - -/// Utility function used for debugging to print the schedule. -LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } -LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } - -#endif - -void ResourceManager::initProcResourceVectors( - const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { - unsigned ProcResourceID = 0; - - // We currently limit the resource kinds to 64 and below so that we can use - // uint64_t for Masks - assert(SM.getNumProcResourceKinds() < 64 && - "Too many kinds of resources, unsupported"); - // Create a unique bitmask for every processor resource unit. - // Skip resource at index 0, since it always references 'InvalidUnit'. - Masks.resize(SM.getNumProcResourceKinds()); - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc &Desc = *SM.getProcResource(I); - if (Desc.SubUnitsIdxBegin) - continue; - Masks[I] = 1ULL << ProcResourceID; - ProcResourceID++; - } - // Create a unique bitmask for every processor resource group. - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc &Desc = *SM.getProcResource(I); - if (!Desc.SubUnitsIdxBegin) - continue; - Masks[I] = 1ULL << ProcResourceID; - for (unsigned U = 0; U < Desc.NumUnits; ++U) - Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; - ProcResourceID++; - } - LLVM_DEBUG({ - if (SwpShowResMask) { - dbgs() << "ProcResourceDesc:\n"; - for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { - const MCProcResourceDesc *ProcResource = SM.getProcResource(I); - dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", - ProcResource->Name, I, Masks[I], - ProcResource->NumUnits); - } - dbgs() << " -----------------\n"; - } - }); -} - -bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { - - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "canReserveResources:\n"; - }); - if (UseDFA) - return DFAResources->canReserveResources(MID); - - unsigned InsnClass = MID->getSchedClass(); - const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); - if (!SCDesc->isValid()) { - LLVM_DEBUG({ - dbgs() << "No valid Schedule Class Desc for schedClass!\n"; - dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; - }); - return true; - } - - const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); - const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); - for (; I != E; ++I) { - if (!I->Cycles) - continue; - const MCProcResourceDesc *ProcResource = - SM.getProcResource(I->ProcResourceIdx); - unsigned NumUnits = ProcResource->NumUnits; - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", - ProcResource->Name, I->ProcResourceIdx, - ProcResourceCount[I->ProcResourceIdx], NumUnits, - I->Cycles); - }); - if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) - return false; - } - LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); - return true; -} - -void ResourceManager::reserveResources(const MCInstrDesc *MID) { - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "reserveResources:\n"; - }); - if (UseDFA) - return DFAResources->reserveResources(MID); - - unsigned InsnClass = MID->getSchedClass(); - const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); - if (!SCDesc->isValid()) { - LLVM_DEBUG({ - dbgs() << "No valid Schedule Class Desc for schedClass!\n"; - dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; - }); - return; - } - for (const MCWriteProcResEntry &PRE : - make_range(STI->getWriteProcResBegin(SCDesc), - STI->getWriteProcResEnd(SCDesc))) { - if (!PRE.Cycles) - continue; - ++ProcResourceCount[PRE.ProcResourceIdx]; - LLVM_DEBUG({ - if (SwpDebugResource) { - const MCProcResourceDesc *ProcResource = - SM.getProcResource(PRE.ProcResourceIdx); - dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", - ProcResource->Name, PRE.ProcResourceIdx, - ProcResourceCount[PRE.ProcResourceIdx], - ProcResource->NumUnits, PRE.Cycles); - } - }); - } - LLVM_DEBUG({ - if (SwpDebugResource) - dbgs() << "reserveResources: done!\n\n"; - }); -} - -bool ResourceManager::canReserveResources(const MachineInstr &MI) const { - return canReserveResources(&MI.getDesc()); -} - -void ResourceManager::reserveResources(const MachineInstr &MI) { - return reserveResources(&MI.getDesc()); -} - -void ResourceManager::clearResources() { - if (UseDFA) - return DFAResources->clearResources(); - std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); -} + SSD->fixupRegisterOverlaps(cycleInstrs); + } + + LLVM_DEBUG(dump();); +} + +void NodeSet::print(raw_ostream &os) const { + os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV + << " depth " << MaxDepth << " col " << Colocate << "\n"; + for (const auto &I : Nodes) + os << " SU(" << I->NodeNum << ") " << *(I->getInstr()); + os << "\n"; +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +/// Print the schedule information to the given output. +void SMSchedule::print(raw_ostream &os) const { + // Iterate over each cycle. + for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) { + // Iterate over each instruction in the cycle. + const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle); + for (SUnit *CI : cycleInstrs->second) { + os << "cycle " << cycle << " (" << stageScheduled(CI) << ") "; + os << "(" << CI->NodeNum << ") "; + CI->getInstr()->print(os); + os << "\n"; + } + } +} + +/// Utility function used for debugging to print the schedule. +LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); } +LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); } + +#endif + +void ResourceManager::initProcResourceVectors( + const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) { + unsigned ProcResourceID = 0; + + // We currently limit the resource kinds to 64 and below so that we can use + // uint64_t for Masks + assert(SM.getNumProcResourceKinds() < 64 && + "Too many kinds of resources, unsupported"); + // Create a unique bitmask for every processor resource unit. + // Skip resource at index 0, since it always references 'InvalidUnit'. + Masks.resize(SM.getNumProcResourceKinds()); + for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { + const MCProcResourceDesc &Desc = *SM.getProcResource(I); + if (Desc.SubUnitsIdxBegin) + continue; + Masks[I] = 1ULL << ProcResourceID; + ProcResourceID++; + } + // Create a unique bitmask for every processor resource group. + for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { + const MCProcResourceDesc &Desc = *SM.getProcResource(I); + if (!Desc.SubUnitsIdxBegin) + continue; + Masks[I] = 1ULL << ProcResourceID; + for (unsigned U = 0; U < Desc.NumUnits; ++U) + Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]]; + ProcResourceID++; + } + LLVM_DEBUG({ + if (SwpShowResMask) { + dbgs() << "ProcResourceDesc:\n"; + for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) { + const MCProcResourceDesc *ProcResource = SM.getProcResource(I); + dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n", + ProcResource->Name, I, Masks[I], + ProcResource->NumUnits); + } + dbgs() << " -----------------\n"; + } + }); +} + +bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const { + + LLVM_DEBUG({ + if (SwpDebugResource) + dbgs() << "canReserveResources:\n"; + }); + if (UseDFA) + return DFAResources->canReserveResources(MID); + + unsigned InsnClass = MID->getSchedClass(); + const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); + if (!SCDesc->isValid()) { + LLVM_DEBUG({ + dbgs() << "No valid Schedule Class Desc for schedClass!\n"; + dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; + }); + return true; + } + + const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc); + const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc); + for (; I != E; ++I) { + if (!I->Cycles) + continue; + const MCProcResourceDesc *ProcResource = + SM.getProcResource(I->ProcResourceIdx); + unsigned NumUnits = ProcResource->NumUnits; + LLVM_DEBUG({ + if (SwpDebugResource) + dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", + ProcResource->Name, I->ProcResourceIdx, + ProcResourceCount[I->ProcResourceIdx], NumUnits, + I->Cycles); + }); + if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits) + return false; + } + LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";); + return true; +} + +void ResourceManager::reserveResources(const MCInstrDesc *MID) { + LLVM_DEBUG({ + if (SwpDebugResource) + dbgs() << "reserveResources:\n"; + }); + if (UseDFA) + return DFAResources->reserveResources(MID); + + unsigned InsnClass = MID->getSchedClass(); + const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass); + if (!SCDesc->isValid()) { + LLVM_DEBUG({ + dbgs() << "No valid Schedule Class Desc for schedClass!\n"; + dbgs() << "isPseduo:" << MID->isPseudo() << "\n"; + }); + return; + } + for (const MCWriteProcResEntry &PRE : + make_range(STI->getWriteProcResBegin(SCDesc), + STI->getWriteProcResEnd(SCDesc))) { + if (!PRE.Cycles) + continue; + ++ProcResourceCount[PRE.ProcResourceIdx]; + LLVM_DEBUG({ + if (SwpDebugResource) { + const MCProcResourceDesc *ProcResource = + SM.getProcResource(PRE.ProcResourceIdx); + dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n", + ProcResource->Name, PRE.ProcResourceIdx, + ProcResourceCount[PRE.ProcResourceIdx], + ProcResource->NumUnits, PRE.Cycles); + } + }); + } + LLVM_DEBUG({ + if (SwpDebugResource) + dbgs() << "reserveResources: done!\n\n"; + }); +} + +bool ResourceManager::canReserveResources(const MachineInstr &MI) const { + return canReserveResources(&MI.getDesc()); +} + +void ResourceManager::reserveResources(const MachineInstr &MI) { + return reserveResources(&MI.getDesc()); +} + +void ResourceManager::clearResources() { + if (UseDFA) + return DFAResources->clearResources(); + std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0); +} |