aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp
diff options
context:
space:
mode:
authororivej <orivej@yandex-team.ru>2022-02-10 16:45:01 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:01 +0300
commit2d37894b1b037cf24231090eda8589bbb44fb6fc (patch)
treebe835aa92c6248212e705f25388ebafcf84bc7a1 /contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp
parent718c552901d703c502ccbefdfc3c9028d608b947 (diff)
downloadydb-2d37894b1b037cf24231090eda8589bbb44fb6fc.tar.gz
Restoring authorship annotation for <orivej@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp6194
1 files changed, 3097 insertions, 3097 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp b/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp
index e3d81ca2b2..d0fe29f65e 100644
--- a/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp
+++ b/contrib/libs/llvm12/lib/CodeGen/MachinePipeliner.cpp
@@ -1,447 +1,447 @@
-//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
-//
-// This SMS implementation is a target-independent back-end pass. When enabled,
-// the pass runs just prior to the register allocation pass, while the machine
-// IR is in SSA form. If software pipelining is successful, then the original
-// loop is replaced by the optimized loop. The optimized loop contains one or
-// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
-// the instructions cannot be scheduled in a given MII, we increase the MII by
-// one and try again.
-//
-// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
-// represent loop carried dependences in the DAG as order edges to the Phi
-// nodes. We also perform several passes over the DAG to eliminate unnecessary
-// edges that inhibit the ability to pipeline. The implementation uses the
-// DFAPacketizer class to compute the minimum initiation interval and the check
-// where an instruction may be inserted in the pipelined schedule.
-//
-// In order for the SMS pass to work, several target specific hooks need to be
-// implemented to get information about the loop structure and to rewrite
-// instructions.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/BitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/MapVector.h"
-#include "llvm/ADT/PriorityQueue.h"
-#include "llvm/ADT/SetVector.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/iterator_range.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/MemoryLocation.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/CodeGen/DFAPacketizer.h"
-#include "llvm/CodeGen/LiveIntervals.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineDominators.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineLoopInfo.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/MachinePipeliner.h"
-#include "llvm/CodeGen/MachineRegisterInfo.h"
-#include "llvm/CodeGen/ModuloSchedule.h"
-#include "llvm/CodeGen/RegisterPressure.h"
-#include "llvm/CodeGen/ScheduleDAG.h"
-#include "llvm/CodeGen/ScheduleDAGMutation.h"
-#include "llvm/CodeGen/TargetOpcodes.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/Attributes.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/MC/LaneBitmask.h"
-#include "llvm/MC/MCInstrDesc.h"
-#include "llvm/MC/MCInstrItineraries.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <climits>
-#include <cstdint>
-#include <deque>
-#include <functional>
-#include <iterator>
-#include <map>
-#include <memory>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "pipeliner"
-
-STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
-STATISTIC(NumPipelined, "Number of loops software pipelined");
-STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
-STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
-STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
-STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
-STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
-STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
-STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
-STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
-STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
-
-/// A command line option to turn software pipelining on or off.
-static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
- cl::ZeroOrMore,
- cl::desc("Enable Software Pipelining"));
-
-/// A command line option to enable SWP at -Os.
-static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
- cl::desc("Enable SWP at Os."), cl::Hidden,
- cl::init(false));
-
-/// A command line argument to limit minimum initial interval for pipelining.
-static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
- cl::desc("Size limit for the MII."),
- cl::Hidden, cl::init(27));
-
-/// A command line argument to limit the number of stages in the pipeline.
-static cl::opt<int>
- SwpMaxStages("pipeliner-max-stages",
- cl::desc("Maximum stages allowed in the generated scheduled."),
- cl::Hidden, cl::init(3));
-
-/// A command line option to disable the pruning of chain dependences due to
-/// an unrelated Phi.
-static cl::opt<bool>
- SwpPruneDeps("pipeliner-prune-deps",
- cl::desc("Prune dependences between unrelated Phi nodes."),
- cl::Hidden, cl::init(true));
-
-/// A command line option to disable the pruning of loop carried order
-/// dependences.
-static cl::opt<bool>
- SwpPruneLoopCarried("pipeliner-prune-loop-carried",
- cl::desc("Prune loop carried order dependences."),
- cl::Hidden, cl::init(true));
-
-#ifndef NDEBUG
-static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
-#endif
-
-static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
- cl::ReallyHidden, cl::init(false),
- cl::ZeroOrMore, cl::desc("Ignore RecMII"));
-
-static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
- cl::init(false));
-static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
- cl::init(false));
-
-static cl::opt<bool> EmitTestAnnotations(
- "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
- cl::desc("Instead of emitting the pipelined code, annotate instructions "
- "with the generated schedule for feeding into the "
- "-modulo-schedule-test pass"));
-
-static cl::opt<bool> ExperimentalCodeGen(
- "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
- cl::desc(
- "Use the experimental peeling code generator for software pipelining"));
-
-namespace llvm {
-
-// A command line option to enable the CopyToPhi DAG mutation.
-cl::opt<bool>
- SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
- cl::init(true), cl::ZeroOrMore,
- cl::desc("Enable CopyToPhi DAG Mutation"));
-
-} // end namespace llvm
-
-unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
-char MachinePipeliner::ID = 0;
-#ifndef NDEBUG
-int MachinePipeliner::NumTries = 0;
-#endif
-char &llvm::MachinePipelinerID = MachinePipeliner::ID;
-
-INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
-INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
-INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
-INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
-INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
- "Modulo Software Pipelining", false, false)
-
-/// The "main" function for implementing Swing Modulo Scheduling.
-bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
- if (skipFunction(mf.getFunction()))
- return false;
-
- if (!EnableSWP)
- return false;
-
- if (mf.getFunction().getAttributes().hasAttribute(
- AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
- !EnableSWPOptSize.getPosition())
- return false;
-
- if (!mf.getSubtarget().enableMachinePipeliner())
- return false;
-
- // Cannot pipeline loops without instruction itineraries if we are using
- // DFA for the pipeliner.
- if (mf.getSubtarget().useDFAforSMS() &&
- (!mf.getSubtarget().getInstrItineraryData() ||
- mf.getSubtarget().getInstrItineraryData()->isEmpty()))
- return false;
-
- MF = &mf;
- MLI = &getAnalysis<MachineLoopInfo>();
- MDT = &getAnalysis<MachineDominatorTree>();
- ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
- TII = MF->getSubtarget().getInstrInfo();
- RegClassInfo.runOnMachineFunction(*MF);
-
- for (auto &L : *MLI)
- scheduleLoop(*L);
-
- return false;
-}
-
-/// Attempt to perform the SMS algorithm on the specified loop. This function is
-/// the main entry point for the algorithm. The function identifies candidate
-/// loops, calculates the minimum initiation interval, and attempts to schedule
-/// the loop.
-bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
- bool Changed = false;
- for (auto &InnerLoop : L)
- Changed |= scheduleLoop(*InnerLoop);
-
-#ifndef NDEBUG
- // Stop trying after reaching the limit (if any).
- int Limit = SwpLoopLimit;
- if (Limit >= 0) {
- if (NumTries >= SwpLoopLimit)
- return Changed;
- NumTries++;
- }
-#endif
-
- setPragmaPipelineOptions(L);
- if (!canPipelineLoop(L)) {
- LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
- ORE->emit([&]() {
- return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Failed to pipeline loop";
- });
-
- return Changed;
- }
-
- ++NumTrytoPipeline;
-
- Changed = swingModuloScheduler(L);
-
- return Changed;
-}
-
-void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
- // Reset the pragma for the next loop in iteration.
- disabledByPragma = false;
+//===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
+//
+// This SMS implementation is a target-independent back-end pass. When enabled,
+// the pass runs just prior to the register allocation pass, while the machine
+// IR is in SSA form. If software pipelining is successful, then the original
+// loop is replaced by the optimized loop. The optimized loop contains one or
+// more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
+// the instructions cannot be scheduled in a given MII, we increase the MII by
+// one and try again.
+//
+// The SMS implementation is an extension of the ScheduleDAGInstrs class. We
+// represent loop carried dependences in the DAG as order edges to the Phi
+// nodes. We also perform several passes over the DAG to eliminate unnecessary
+// edges that inhibit the ability to pipeline. The implementation uses the
+// DFAPacketizer class to compute the minimum initiation interval and the check
+// where an instruction may be inserted in the pipelined schedule.
+//
+// In order for the SMS pass to work, several target specific hooks need to be
+// implemented to get information about the loop structure and to rewrite
+// instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/MapVector.h"
+#include "llvm/ADT/PriorityQueue.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/CodeGen/DFAPacketizer.h"
+#include "llvm/CodeGen/LiveIntervals.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineLoopInfo.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/MachinePipeliner.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/ModuloSchedule.h"
+#include "llvm/CodeGen/RegisterPressure.h"
+#include "llvm/CodeGen/ScheduleDAG.h"
+#include "llvm/CodeGen/ScheduleDAGMutation.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/MC/MCInstrItineraries.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <climits>
+#include <cstdint>
+#include <deque>
+#include <functional>
+#include <iterator>
+#include <map>
+#include <memory>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "pipeliner"
+
+STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
+STATISTIC(NumPipelined, "Number of loops software pipelined");
+STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
+STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
+STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
+STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
+STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
+STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
+STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
+STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
+STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
+
+/// A command line option to turn software pipelining on or off.
+static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
+ cl::ZeroOrMore,
+ cl::desc("Enable Software Pipelining"));
+
+/// A command line option to enable SWP at -Os.
+static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
+ cl::desc("Enable SWP at Os."), cl::Hidden,
+ cl::init(false));
+
+/// A command line argument to limit minimum initial interval for pipelining.
+static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
+ cl::desc("Size limit for the MII."),
+ cl::Hidden, cl::init(27));
+
+/// A command line argument to limit the number of stages in the pipeline.
+static cl::opt<int>
+ SwpMaxStages("pipeliner-max-stages",
+ cl::desc("Maximum stages allowed in the generated scheduled."),
+ cl::Hidden, cl::init(3));
+
+/// A command line option to disable the pruning of chain dependences due to
+/// an unrelated Phi.
+static cl::opt<bool>
+ SwpPruneDeps("pipeliner-prune-deps",
+ cl::desc("Prune dependences between unrelated Phi nodes."),
+ cl::Hidden, cl::init(true));
+
+/// A command line option to disable the pruning of loop carried order
+/// dependences.
+static cl::opt<bool>
+ SwpPruneLoopCarried("pipeliner-prune-loop-carried",
+ cl::desc("Prune loop carried order dependences."),
+ cl::Hidden, cl::init(true));
+
+#ifndef NDEBUG
+static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
+#endif
+
+static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
+ cl::ReallyHidden, cl::init(false),
+ cl::ZeroOrMore, cl::desc("Ignore RecMII"));
+
+static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
+ cl::init(false));
+static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
+ cl::init(false));
+
+static cl::opt<bool> EmitTestAnnotations(
+ "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
+ cl::desc("Instead of emitting the pipelined code, annotate instructions "
+ "with the generated schedule for feeding into the "
+ "-modulo-schedule-test pass"));
+
+static cl::opt<bool> ExperimentalCodeGen(
+ "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
+ cl::desc(
+ "Use the experimental peeling code generator for software pipelining"));
+
+namespace llvm {
+
+// A command line option to enable the CopyToPhi DAG mutation.
+cl::opt<bool>
+ SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
+ cl::init(true), cl::ZeroOrMore,
+ cl::desc("Enable CopyToPhi DAG Mutation"));
+
+} // end namespace llvm
+
+unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
+char MachinePipeliner::ID = 0;
+#ifndef NDEBUG
+int MachinePipeliner::NumTries = 0;
+#endif
+char &llvm::MachinePipelinerID = MachinePipeliner::ID;
+
+INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
+ "Modulo Software Pipelining", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
+INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
+INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
+INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
+ "Modulo Software Pipelining", false, false)
+
+/// The "main" function for implementing Swing Modulo Scheduling.
+bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
+ if (skipFunction(mf.getFunction()))
+ return false;
+
+ if (!EnableSWP)
+ return false;
+
+ if (mf.getFunction().getAttributes().hasAttribute(
+ AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
+ !EnableSWPOptSize.getPosition())
+ return false;
+
+ if (!mf.getSubtarget().enableMachinePipeliner())
+ return false;
+
+ // Cannot pipeline loops without instruction itineraries if we are using
+ // DFA for the pipeliner.
+ if (mf.getSubtarget().useDFAforSMS() &&
+ (!mf.getSubtarget().getInstrItineraryData() ||
+ mf.getSubtarget().getInstrItineraryData()->isEmpty()))
+ return false;
+
+ MF = &mf;
+ MLI = &getAnalysis<MachineLoopInfo>();
+ MDT = &getAnalysis<MachineDominatorTree>();
+ ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
+ TII = MF->getSubtarget().getInstrInfo();
+ RegClassInfo.runOnMachineFunction(*MF);
+
+ for (auto &L : *MLI)
+ scheduleLoop(*L);
+
+ return false;
+}
+
+/// Attempt to perform the SMS algorithm on the specified loop. This function is
+/// the main entry point for the algorithm. The function identifies candidate
+/// loops, calculates the minimum initiation interval, and attempts to schedule
+/// the loop.
+bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
+ bool Changed = false;
+ for (auto &InnerLoop : L)
+ Changed |= scheduleLoop(*InnerLoop);
+
+#ifndef NDEBUG
+ // Stop trying after reaching the limit (if any).
+ int Limit = SwpLoopLimit;
+ if (Limit >= 0) {
+ if (NumTries >= SwpLoopLimit)
+ return Changed;
+ NumTries++;
+ }
+#endif
+
+ setPragmaPipelineOptions(L);
+ if (!canPipelineLoop(L)) {
+ LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "Failed to pipeline loop";
+ });
+
+ return Changed;
+ }
+
+ ++NumTrytoPipeline;
+
+ Changed = swingModuloScheduler(L);
+
+ return Changed;
+}
+
+void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
+ // Reset the pragma for the next loop in iteration.
+ disabledByPragma = false;
II_setByPragma = 0;
-
- MachineBasicBlock *LBLK = L.getTopBlock();
-
- if (LBLK == nullptr)
- return;
-
- const BasicBlock *BBLK = LBLK->getBasicBlock();
- if (BBLK == nullptr)
- return;
-
- const Instruction *TI = BBLK->getTerminator();
- if (TI == nullptr)
- return;
-
- MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
- if (LoopID == nullptr)
- return;
-
- assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
- assert(LoopID->getOperand(0) == LoopID && "invalid loop");
-
- for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
- MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
-
- if (MD == nullptr)
- continue;
-
- MDString *S = dyn_cast<MDString>(MD->getOperand(0));
-
- if (S == nullptr)
- continue;
-
- if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
- assert(MD->getNumOperands() == 2 &&
- "Pipeline initiation interval hint metadata should have two operands.");
- II_setByPragma =
- mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
- assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
- } else if (S->getString() == "llvm.loop.pipeline.disable") {
- disabledByPragma = true;
- }
- }
-}
-
-/// Return true if the loop can be software pipelined. The algorithm is
-/// restricted to loops with a single basic block. Make sure that the
-/// branch in the loop can be analyzed.
-bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
- if (L.getNumBlocks() != 1) {
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Not a single basic block: "
- << ore::NV("NumBlocks", L.getNumBlocks());
- });
- return false;
- }
-
- if (disabledByPragma) {
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "Disabled by Pragma.";
- });
- return false;
- }
-
- // Check if the branch can't be understood because we can't do pipelining
- // if that's the case.
- LI.TBB = nullptr;
- LI.FBB = nullptr;
- LI.BrCond.clear();
- if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
- LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
- NumFailBranch++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "The branch can't be understood";
- });
- return false;
- }
-
- LI.LoopInductionVar = nullptr;
- LI.LoopCompare = nullptr;
- if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
- LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
- NumFailLoop++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "The loop structure is not supported";
- });
- return false;
- }
-
- if (!L.getLoopPreheader()) {
- LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
- NumFailPreheader++;
- ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
- L.getStartLoc(), L.getHeader())
- << "No loop preheader found";
- });
- return false;
- }
-
- // Remove any subregisters from inputs to phi nodes.
- preprocessPhiNodes(*L.getHeader());
- return true;
-}
-
-void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
- MachineRegisterInfo &MRI = MF->getRegInfo();
- SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
-
- for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
- MachineOperand &DefOp = PI.getOperand(0);
- assert(DefOp.getSubReg() == 0);
- auto *RC = MRI.getRegClass(DefOp.getReg());
-
- for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
- MachineOperand &RegOp = PI.getOperand(i);
- if (RegOp.getSubReg() == 0)
- continue;
-
- // If the operand uses a subregister, replace it with a new register
- // without subregisters, and generate a copy to the new register.
- Register NewReg = MRI.createVirtualRegister(RC);
- MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
- MachineBasicBlock::iterator At = PredB.getFirstTerminator();
- const DebugLoc &DL = PredB.findDebugLoc(At);
- auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
- .addReg(RegOp.getReg(), getRegState(RegOp),
- RegOp.getSubReg());
- Slots.insertMachineInstrInMaps(*Copy);
- RegOp.setReg(NewReg);
- RegOp.setSubReg(0);
- }
- }
-}
-
-/// The SMS algorithm consists of the following main steps:
-/// 1. Computation and analysis of the dependence graph.
-/// 2. Ordering of the nodes (instructions).
-/// 3. Attempt to Schedule the loop.
-bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
- assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
-
- SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
- II_setByPragma);
-
- MachineBasicBlock *MBB = L.getHeader();
- // The kernel should not include any terminator instructions. These
- // will be added back later.
- SMS.startBlock(MBB);
-
- // Compute the number of 'real' instructions in the basic block by
- // ignoring terminators.
- unsigned size = MBB->size();
- for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
- E = MBB->instr_end();
- I != E; ++I, --size)
- ;
-
- SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
- SMS.schedule();
- SMS.exitRegion();
-
- SMS.finishBlock();
- return SMS.hasNewSchedule();
-}
-
+
+ MachineBasicBlock *LBLK = L.getTopBlock();
+
+ if (LBLK == nullptr)
+ return;
+
+ const BasicBlock *BBLK = LBLK->getBasicBlock();
+ if (BBLK == nullptr)
+ return;
+
+ const Instruction *TI = BBLK->getTerminator();
+ if (TI == nullptr)
+ return;
+
+ MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
+ if (LoopID == nullptr)
+ return;
+
+ assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
+ assert(LoopID->getOperand(0) == LoopID && "invalid loop");
+
+ for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
+ MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
+
+ if (MD == nullptr)
+ continue;
+
+ MDString *S = dyn_cast<MDString>(MD->getOperand(0));
+
+ if (S == nullptr)
+ continue;
+
+ if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
+ assert(MD->getNumOperands() == 2 &&
+ "Pipeline initiation interval hint metadata should have two operands.");
+ II_setByPragma =
+ mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
+ assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
+ } else if (S->getString() == "llvm.loop.pipeline.disable") {
+ disabledByPragma = true;
+ }
+ }
+}
+
+/// Return true if the loop can be software pipelined. The algorithm is
+/// restricted to loops with a single basic block. Make sure that the
+/// branch in the loop can be analyzed.
+bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
+ if (L.getNumBlocks() != 1) {
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "Not a single basic block: "
+ << ore::NV("NumBlocks", L.getNumBlocks());
+ });
+ return false;
+ }
+
+ if (disabledByPragma) {
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "Disabled by Pragma.";
+ });
+ return false;
+ }
+
+ // Check if the branch can't be understood because we can't do pipelining
+ // if that's the case.
+ LI.TBB = nullptr;
+ LI.FBB = nullptr;
+ LI.BrCond.clear();
+ if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
+ LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
+ NumFailBranch++;
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "The branch can't be understood";
+ });
+ return false;
+ }
+
+ LI.LoopInductionVar = nullptr;
+ LI.LoopCompare = nullptr;
+ if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
+ LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
+ NumFailLoop++;
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "The loop structure is not supported";
+ });
+ return false;
+ }
+
+ if (!L.getLoopPreheader()) {
+ LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
+ NumFailPreheader++;
+ ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
+ L.getStartLoc(), L.getHeader())
+ << "No loop preheader found";
+ });
+ return false;
+ }
+
+ // Remove any subregisters from inputs to phi nodes.
+ preprocessPhiNodes(*L.getHeader());
+ return true;
+}
+
+void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
+
+ for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
+ MachineOperand &DefOp = PI.getOperand(0);
+ assert(DefOp.getSubReg() == 0);
+ auto *RC = MRI.getRegClass(DefOp.getReg());
+
+ for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
+ MachineOperand &RegOp = PI.getOperand(i);
+ if (RegOp.getSubReg() == 0)
+ continue;
+
+ // If the operand uses a subregister, replace it with a new register
+ // without subregisters, and generate a copy to the new register.
+ Register NewReg = MRI.createVirtualRegister(RC);
+ MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
+ MachineBasicBlock::iterator At = PredB.getFirstTerminator();
+ const DebugLoc &DL = PredB.findDebugLoc(At);
+ auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
+ .addReg(RegOp.getReg(), getRegState(RegOp),
+ RegOp.getSubReg());
+ Slots.insertMachineInstrInMaps(*Copy);
+ RegOp.setReg(NewReg);
+ RegOp.setSubReg(0);
+ }
+ }
+}
+
+/// The SMS algorithm consists of the following main steps:
+/// 1. Computation and analysis of the dependence graph.
+/// 2. Ordering of the nodes (instructions).
+/// 3. Attempt to Schedule the loop.
+bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
+ assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
+
+ SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
+ II_setByPragma);
+
+ MachineBasicBlock *MBB = L.getHeader();
+ // The kernel should not include any terminator instructions. These
+ // will be added back later.
+ SMS.startBlock(MBB);
+
+ // Compute the number of 'real' instructions in the basic block by
+ // ignoring terminators.
+ unsigned size = MBB->size();
+ for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
+ E = MBB->instr_end();
+ I != E; ++I, --size)
+ ;
+
+ SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
+ SMS.schedule();
+ SMS.exitRegion();
+
+ SMS.finishBlock();
+ return SMS.hasNewSchedule();
+}
+
void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<AAResultsWrapperPass>();
AU.addPreserved<AAResultsWrapperPass>();
@@ -452,2676 +452,2676 @@ void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
MachineFunctionPass::getAnalysisUsage(AU);
}
-void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
- if (II_setByPragma > 0)
- MII = II_setByPragma;
- else
- MII = std::max(ResMII, RecMII);
-}
-
-void SwingSchedulerDAG::setMAX_II() {
- if (II_setByPragma > 0)
- MAX_II = II_setByPragma;
- else
- MAX_II = MII + 10;
-}
-
-/// We override the schedule function in ScheduleDAGInstrs to implement the
-/// scheduling part of the Swing Modulo Scheduling algorithm.
-void SwingSchedulerDAG::schedule() {
- AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
- buildSchedGraph(AA);
- addLoopCarriedDependences(AA);
- updatePhiDependences();
- Topo.InitDAGTopologicalSorting();
- changeDependences();
- postprocessDAG();
- LLVM_DEBUG(dump());
-
- NodeSetType NodeSets;
- findCircuits(NodeSets);
- NodeSetType Circuits = NodeSets;
-
- // Calculate the MII.
- unsigned ResMII = calculateResMII();
- unsigned RecMII = calculateRecMII(NodeSets);
-
- fuseRecs(NodeSets);
-
- // This flag is used for testing and can cause correctness problems.
- if (SwpIgnoreRecMII)
- RecMII = 0;
-
- setMII(ResMII, RecMII);
- setMAX_II();
-
- LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
- << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
-
- // Can't schedule a loop without a valid MII.
- if (MII == 0) {
- LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
- NumFailZeroMII++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Invalid Minimal Initiation Interval: 0";
- });
- return;
- }
-
- // Don't pipeline large loops.
- if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
- LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
- << ", we don't pipleline large loops\n");
- NumFailLargeMaxMII++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Minimal Initiation Interval too large: "
- << ore::NV("MII", (int)MII) << " > "
- << ore::NV("SwpMaxMii", SwpMaxMii) << "."
- << "Refer to -pipeliner-max-mii.";
- });
- return;
- }
-
- computeNodeFunctions(NodeSets);
-
- registerPressureFilter(NodeSets);
-
- colocateNodeSets(NodeSets);
-
- checkNodeSets(NodeSets);
-
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " Rec NodeSet ";
- I.dump();
- }
- });
-
- llvm::stable_sort(NodeSets, std::greater<NodeSet>());
-
- groupRemainingNodes(NodeSets);
-
- removeDuplicateNodes(NodeSets);
-
- LLVM_DEBUG({
- for (auto &I : NodeSets) {
- dbgs() << " NodeSet ";
- I.dump();
- }
- });
-
- computeNodeOrder(NodeSets);
-
- // check for node order issues
- checkValidNodeOrder(Circuits);
-
- SMSchedule Schedule(Pass.MF);
- Scheduled = schedulePipeline(Schedule);
-
- if (!Scheduled){
- LLVM_DEBUG(dbgs() << "No schedule found, return\n");
- NumFailNoSchedule++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Unable to find schedule";
- });
- return;
- }
-
- unsigned numStages = Schedule.getMaxStageCount();
- // No need to generate pipeline if there are no overlapped iterations.
- if (numStages == 0) {
- LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
- NumFailZeroStage++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "No need to pipeline - no overlapped iterations in schedule.";
- });
- return;
- }
- // Check that the maximum stage count is less than user-defined limit.
- if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
- LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
- << " : too many stages, abort\n");
- NumFailLargeMaxStage++;
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Too many stages in schedule: "
- << ore::NV("numStages", (int)numStages) << " > "
- << ore::NV("SwpMaxStages", SwpMaxStages)
- << ". Refer to -pipeliner-max-stages.";
- });
- return;
- }
-
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
- Loop.getHeader())
- << "Pipelined succesfully!";
- });
-
- // Generate the schedule as a ModuloSchedule.
- DenseMap<MachineInstr *, int> Cycles, Stages;
- std::vector<MachineInstr *> OrderedInsts;
- for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
- ++Cycle) {
- for (SUnit *SU : Schedule.getInstructions(Cycle)) {
- OrderedInsts.push_back(SU->getInstr());
- Cycles[SU->getInstr()] = Cycle;
- Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
- }
- }
- DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
- for (auto &KV : NewMIs) {
- Cycles[KV.first] = Cycles[KV.second];
- Stages[KV.first] = Stages[KV.second];
- NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
- }
-
- ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
- std::move(Stages));
- if (EmitTestAnnotations) {
- assert(NewInstrChanges.empty() &&
- "Cannot serialize a schedule with InstrChanges!");
- ModuloScheduleTestAnnotater MSTI(MF, MS);
- MSTI.annotate();
- return;
- }
- // The experimental code generator can't work if there are InstChanges.
- if (ExperimentalCodeGen && NewInstrChanges.empty()) {
- PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
- MSE.expand();
- } else {
- ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
- MSE.expand();
- MSE.cleanup();
- }
- ++NumPipelined;
-}
-
-/// Clean up after the software pipeliner runs.
-void SwingSchedulerDAG::finishBlock() {
- for (auto &KV : NewMIs)
- MF.DeleteMachineInstr(KV.second);
- NewMIs.clear();
-
- // Call the superclass.
- ScheduleDAGInstrs::finishBlock();
-}
-
-/// Return the register values for the operands of a Phi instruction.
-/// This function assume the instruction is a Phi.
-static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
- unsigned &InitVal, unsigned &LoopVal) {
- assert(Phi.isPHI() && "Expecting a Phi.");
-
- InitVal = 0;
- LoopVal = 0;
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() != Loop)
- InitVal = Phi.getOperand(i).getReg();
- else
- LoopVal = Phi.getOperand(i).getReg();
-
- assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
-}
-
-/// Return the Phi register value that comes the loop block.
-static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
- for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
- if (Phi.getOperand(i + 1).getMBB() == LoopBB)
- return Phi.getOperand(i).getReg();
- return 0;
-}
-
-/// Return true if SUb can be reached from SUa following the chain edges.
-static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SUnit *, 8> Worklist;
- Worklist.push_back(SUa);
- while (!Worklist.empty()) {
- const SUnit *SU = Worklist.pop_back_val();
- for (auto &SI : SU->Succs) {
- SUnit *SuccSU = SI.getSUnit();
- if (SI.getKind() == SDep::Order) {
- if (Visited.count(SuccSU))
- continue;
- if (SuccSU == SUb)
- return true;
- Worklist.push_back(SuccSU);
- Visited.insert(SuccSU);
- }
- }
- }
- return false;
-}
-
-/// Return true if the instruction causes a chain between memory
-/// references before and after it.
-static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
- return MI.isCall() || MI.mayRaiseFPException() ||
- MI.hasUnmodeledSideEffects() ||
- (MI.hasOrderedMemoryRef() &&
- (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
-}
-
-/// Return the underlying objects for the memory references of an instruction.
-/// This function calls the code in ValueTracking, but first checks that the
-/// instruction has a memory operand.
-static void getUnderlyingObjects(const MachineInstr *MI,
+void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
+ if (II_setByPragma > 0)
+ MII = II_setByPragma;
+ else
+ MII = std::max(ResMII, RecMII);
+}
+
+void SwingSchedulerDAG::setMAX_II() {
+ if (II_setByPragma > 0)
+ MAX_II = II_setByPragma;
+ else
+ MAX_II = MII + 10;
+}
+
+/// We override the schedule function in ScheduleDAGInstrs to implement the
+/// scheduling part of the Swing Modulo Scheduling algorithm.
+void SwingSchedulerDAG::schedule() {
+ AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
+ buildSchedGraph(AA);
+ addLoopCarriedDependences(AA);
+ updatePhiDependences();
+ Topo.InitDAGTopologicalSorting();
+ changeDependences();
+ postprocessDAG();
+ LLVM_DEBUG(dump());
+
+ NodeSetType NodeSets;
+ findCircuits(NodeSets);
+ NodeSetType Circuits = NodeSets;
+
+ // Calculate the MII.
+ unsigned ResMII = calculateResMII();
+ unsigned RecMII = calculateRecMII(NodeSets);
+
+ fuseRecs(NodeSets);
+
+ // This flag is used for testing and can cause correctness problems.
+ if (SwpIgnoreRecMII)
+ RecMII = 0;
+
+ setMII(ResMII, RecMII);
+ setMAX_II();
+
+ LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
+ << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
+
+ // Can't schedule a loop without a valid MII.
+ if (MII == 0) {
+ LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
+ NumFailZeroMII++;
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "Invalid Minimal Initiation Interval: 0";
+ });
+ return;
+ }
+
+ // Don't pipeline large loops.
+ if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
+ LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
+ << ", we don't pipleline large loops\n");
+ NumFailLargeMaxMII++;
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "Minimal Initiation Interval too large: "
+ << ore::NV("MII", (int)MII) << " > "
+ << ore::NV("SwpMaxMii", SwpMaxMii) << "."
+ << "Refer to -pipeliner-max-mii.";
+ });
+ return;
+ }
+
+ computeNodeFunctions(NodeSets);
+
+ registerPressureFilter(NodeSets);
+
+ colocateNodeSets(NodeSets);
+
+ checkNodeSets(NodeSets);
+
+ LLVM_DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " Rec NodeSet ";
+ I.dump();
+ }
+ });
+
+ llvm::stable_sort(NodeSets, std::greater<NodeSet>());
+
+ groupRemainingNodes(NodeSets);
+
+ removeDuplicateNodes(NodeSets);
+
+ LLVM_DEBUG({
+ for (auto &I : NodeSets) {
+ dbgs() << " NodeSet ";
+ I.dump();
+ }
+ });
+
+ computeNodeOrder(NodeSets);
+
+ // check for node order issues
+ checkValidNodeOrder(Circuits);
+
+ SMSchedule Schedule(Pass.MF);
+ Scheduled = schedulePipeline(Schedule);
+
+ if (!Scheduled){
+ LLVM_DEBUG(dbgs() << "No schedule found, return\n");
+ NumFailNoSchedule++;
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "Unable to find schedule";
+ });
+ return;
+ }
+
+ unsigned numStages = Schedule.getMaxStageCount();
+ // No need to generate pipeline if there are no overlapped iterations.
+ if (numStages == 0) {
+ LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
+ NumFailZeroStage++;
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "No need to pipeline - no overlapped iterations in schedule.";
+ });
+ return;
+ }
+ // Check that the maximum stage count is less than user-defined limit.
+ if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
+ LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
+ << " : too many stages, abort\n");
+ NumFailLargeMaxStage++;
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "Too many stages in schedule: "
+ << ore::NV("numStages", (int)numStages) << " > "
+ << ore::NV("SwpMaxStages", SwpMaxStages)
+ << ". Refer to -pipeliner-max-stages.";
+ });
+ return;
+ }
+
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
+ Loop.getHeader())
+ << "Pipelined succesfully!";
+ });
+
+ // Generate the schedule as a ModuloSchedule.
+ DenseMap<MachineInstr *, int> Cycles, Stages;
+ std::vector<MachineInstr *> OrderedInsts;
+ for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
+ ++Cycle) {
+ for (SUnit *SU : Schedule.getInstructions(Cycle)) {
+ OrderedInsts.push_back(SU->getInstr());
+ Cycles[SU->getInstr()] = Cycle;
+ Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
+ }
+ }
+ DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
+ for (auto &KV : NewMIs) {
+ Cycles[KV.first] = Cycles[KV.second];
+ Stages[KV.first] = Stages[KV.second];
+ NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
+ }
+
+ ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
+ std::move(Stages));
+ if (EmitTestAnnotations) {
+ assert(NewInstrChanges.empty() &&
+ "Cannot serialize a schedule with InstrChanges!");
+ ModuloScheduleTestAnnotater MSTI(MF, MS);
+ MSTI.annotate();
+ return;
+ }
+ // The experimental code generator can't work if there are InstChanges.
+ if (ExperimentalCodeGen && NewInstrChanges.empty()) {
+ PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
+ MSE.expand();
+ } else {
+ ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
+ MSE.expand();
+ MSE.cleanup();
+ }
+ ++NumPipelined;
+}
+
+/// Clean up after the software pipeliner runs.
+void SwingSchedulerDAG::finishBlock() {
+ for (auto &KV : NewMIs)
+ MF.DeleteMachineInstr(KV.second);
+ NewMIs.clear();
+
+ // Call the superclass.
+ ScheduleDAGInstrs::finishBlock();
+}
+
+/// Return the register values for the operands of a Phi instruction.
+/// This function assume the instruction is a Phi.
+static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
+ unsigned &InitVal, unsigned &LoopVal) {
+ assert(Phi.isPHI() && "Expecting a Phi.");
+
+ InitVal = 0;
+ LoopVal = 0;
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() != Loop)
+ InitVal = Phi.getOperand(i).getReg();
+ else
+ LoopVal = Phi.getOperand(i).getReg();
+
+ assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
+}
+
+/// Return the Phi register value that comes the loop block.
+static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
+ for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
+ if (Phi.getOperand(i + 1).getMBB() == LoopBB)
+ return Phi.getOperand(i).getReg();
+ return 0;
+}
+
+/// Return true if SUb can be reached from SUa following the chain edges.
+static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SUnit *, 8> Worklist;
+ Worklist.push_back(SUa);
+ while (!Worklist.empty()) {
+ const SUnit *SU = Worklist.pop_back_val();
+ for (auto &SI : SU->Succs) {
+ SUnit *SuccSU = SI.getSUnit();
+ if (SI.getKind() == SDep::Order) {
+ if (Visited.count(SuccSU))
+ continue;
+ if (SuccSU == SUb)
+ return true;
+ Worklist.push_back(SuccSU);
+ Visited.insert(SuccSU);
+ }
+ }
+ }
+ return false;
+}
+
+/// Return true if the instruction causes a chain between memory
+/// references before and after it.
+static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
+ return MI.isCall() || MI.mayRaiseFPException() ||
+ MI.hasUnmodeledSideEffects() ||
+ (MI.hasOrderedMemoryRef() &&
+ (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
+}
+
+/// Return the underlying objects for the memory references of an instruction.
+/// This function calls the code in ValueTracking, but first checks that the
+/// instruction has a memory operand.
+static void getUnderlyingObjects(const MachineInstr *MI,
SmallVectorImpl<const Value *> &Objs) {
- if (!MI->hasOneMemOperand())
- return;
- MachineMemOperand *MM = *MI->memoperands_begin();
- if (!MM->getValue())
- return;
+ if (!MI->hasOneMemOperand())
+ return;
+ MachineMemOperand *MM = *MI->memoperands_begin();
+ if (!MM->getValue())
+ return;
getUnderlyingObjects(MM->getValue(), Objs);
- for (const Value *V : Objs) {
- if (!isIdentifiedObject(V)) {
- Objs.clear();
- return;
- }
- Objs.push_back(V);
- }
-}
-
-/// Add a chain edge between a load and store if the store can be an
-/// alias of the load on a subsequent iteration, i.e., a loop carried
-/// dependence. This code is very similar to the code in ScheduleDAGInstrs
-/// but that code doesn't create loop carried dependences.
-void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
- MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
- Value *UnknownValue =
- UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
- for (auto &SU : SUnits) {
- MachineInstr &MI = *SU.getInstr();
- if (isDependenceBarrier(MI, AA))
- PendingLoads.clear();
- else if (MI.mayLoad()) {
- SmallVector<const Value *, 4> Objs;
+ for (const Value *V : Objs) {
+ if (!isIdentifiedObject(V)) {
+ Objs.clear();
+ return;
+ }
+ Objs.push_back(V);
+ }
+}
+
+/// Add a chain edge between a load and store if the store can be an
+/// alias of the load on a subsequent iteration, i.e., a loop carried
+/// dependence. This code is very similar to the code in ScheduleDAGInstrs
+/// but that code doesn't create loop carried dependences.
+void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
+ MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
+ Value *UnknownValue =
+ UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
+ for (auto &SU : SUnits) {
+ MachineInstr &MI = *SU.getInstr();
+ if (isDependenceBarrier(MI, AA))
+ PendingLoads.clear();
+ else if (MI.mayLoad()) {
+ SmallVector<const Value *, 4> Objs;
::getUnderlyingObjects(&MI, Objs);
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (auto V : Objs) {
- SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
- SUs.push_back(&SU);
- }
- } else if (MI.mayStore()) {
- SmallVector<const Value *, 4> Objs;
+ if (Objs.empty())
+ Objs.push_back(UnknownValue);
+ for (auto V : Objs) {
+ SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
+ SUs.push_back(&SU);
+ }
+ } else if (MI.mayStore()) {
+ SmallVector<const Value *, 4> Objs;
::getUnderlyingObjects(&MI, Objs);
- if (Objs.empty())
- Objs.push_back(UnknownValue);
- for (auto V : Objs) {
- MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
- PendingLoads.find(V);
- if (I == PendingLoads.end())
- continue;
- for (auto Load : I->second) {
- if (isSuccOrder(Load, &SU))
- continue;
- MachineInstr &LdMI = *Load->getInstr();
- // First, perform the cheaper check that compares the base register.
- // If they are the same and the load offset is less than the store
- // offset, then mark the dependence as loop carried potentially.
- const MachineOperand *BaseOp1, *BaseOp2;
- int64_t Offset1, Offset2;
- bool Offset1IsScalable, Offset2IsScalable;
- if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
- Offset1IsScalable, TRI) &&
- TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
- Offset2IsScalable, TRI)) {
- if (BaseOp1->isIdenticalTo(*BaseOp2) &&
- Offset1IsScalable == Offset2IsScalable &&
- (int)Offset1 < (int)Offset2) {
- assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
- "What happened to the chain edge?");
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- }
- // Second, the more expensive check that uses alias analysis on the
- // base registers. If they alias, and the load offset is less than
- // the store offset, the mark the dependence as loop carried.
- if (!AA) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
- MachineMemOperand *MMO2 = *MI.memoperands_begin();
- if (!MMO1->getValue() || !MMO2->getValue()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- if (MMO1->getValue() == MMO2->getValue() &&
- MMO1->getOffset() <= MMO2->getOffset()) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- continue;
- }
- AliasResult AAResult = AA->alias(
+ if (Objs.empty())
+ Objs.push_back(UnknownValue);
+ for (auto V : Objs) {
+ MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
+ PendingLoads.find(V);
+ if (I == PendingLoads.end())
+ continue;
+ for (auto Load : I->second) {
+ if (isSuccOrder(Load, &SU))
+ continue;
+ MachineInstr &LdMI = *Load->getInstr();
+ // First, perform the cheaper check that compares the base register.
+ // If they are the same and the load offset is less than the store
+ // offset, then mark the dependence as loop carried potentially.
+ const MachineOperand *BaseOp1, *BaseOp2;
+ int64_t Offset1, Offset2;
+ bool Offset1IsScalable, Offset2IsScalable;
+ if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
+ Offset1IsScalable, TRI) &&
+ TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
+ Offset2IsScalable, TRI)) {
+ if (BaseOp1->isIdenticalTo(*BaseOp2) &&
+ Offset1IsScalable == Offset2IsScalable &&
+ (int)Offset1 < (int)Offset2) {
+ assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
+ "What happened to the chain edge?");
+ SDep Dep(Load, SDep::Barrier);
+ Dep.setLatency(1);
+ SU.addPred(Dep);
+ continue;
+ }
+ }
+ // Second, the more expensive check that uses alias analysis on the
+ // base registers. If they alias, and the load offset is less than
+ // the store offset, the mark the dependence as loop carried.
+ if (!AA) {
+ SDep Dep(Load, SDep::Barrier);
+ Dep.setLatency(1);
+ SU.addPred(Dep);
+ continue;
+ }
+ MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
+ MachineMemOperand *MMO2 = *MI.memoperands_begin();
+ if (!MMO1->getValue() || !MMO2->getValue()) {
+ SDep Dep(Load, SDep::Barrier);
+ Dep.setLatency(1);
+ SU.addPred(Dep);
+ continue;
+ }
+ if (MMO1->getValue() == MMO2->getValue() &&
+ MMO1->getOffset() <= MMO2->getOffset()) {
+ SDep Dep(Load, SDep::Barrier);
+ Dep.setLatency(1);
+ SU.addPred(Dep);
+ continue;
+ }
+ AliasResult AAResult = AA->alias(
MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
MemoryLocation::getAfter(MMO2->getValue(), MMO2->getAAInfo()));
-
- if (AAResult != NoAlias) {
- SDep Dep(Load, SDep::Barrier);
- Dep.setLatency(1);
- SU.addPred(Dep);
- }
- }
- }
- }
- }
-}
-
-/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
-/// processes dependences for PHIs. This function adds true dependences
-/// from a PHI to a use, and a loop carried dependence from the use to the
-/// PHI. The loop carried dependence is represented as an anti dependence
-/// edge. This function also removes chain dependences between unrelated
-/// PHIs.
-void SwingSchedulerDAG::updatePhiDependences() {
- SmallVector<SDep, 4> RemoveDeps;
- const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
-
- // Iterate over each DAG node.
- for (SUnit &I : SUnits) {
- RemoveDeps.clear();
- // Set to true if the instruction has an operand defined by a Phi.
- unsigned HasPhiUse = 0;
- unsigned HasPhiDef = 0;
- MachineInstr *MI = I.getInstr();
- // Iterate over each operand, and we process the definitions.
- for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
- MOE = MI->operands_end();
- MOI != MOE; ++MOI) {
- if (!MOI->isReg())
- continue;
- Register Reg = MOI->getReg();
- if (MOI->isDef()) {
- // If the register is used by a Phi, then create an anti dependence.
- for (MachineRegisterInfo::use_instr_iterator
- UI = MRI.use_instr_begin(Reg),
- UE = MRI.use_instr_end();
- UI != UE; ++UI) {
- MachineInstr *UseMI = &*UI;
- SUnit *SU = getSUnit(UseMI);
- if (SU != nullptr && UseMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(1);
- I.addPred(Dep);
- } else {
- HasPhiDef = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- } else if (MOI->isUse()) {
- // If the register is defined by a Phi, then create a true dependence.
- MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
- if (DefMI == nullptr)
- continue;
- SUnit *SU = getSUnit(DefMI);
- if (SU != nullptr && DefMI->isPHI()) {
- if (!MI->isPHI()) {
- SDep Dep(SU, SDep::Data, Reg);
- Dep.setLatency(0);
- ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
- I.addPred(Dep);
- } else {
- HasPhiUse = Reg;
- // Add a chain edge to a dependent Phi that isn't an existing
- // predecessor.
- if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
- I.addPred(SDep(SU, SDep::Barrier));
- }
- }
- }
- }
- // Remove order dependences from an unrelated Phi.
- if (!SwpPruneDeps)
- continue;
- for (auto &PI : I.Preds) {
- MachineInstr *PMI = PI.getSUnit()->getInstr();
- if (PMI->isPHI() && PI.getKind() == SDep::Order) {
- if (I.getInstr()->isPHI()) {
- if (PMI->getOperand(0).getReg() == HasPhiUse)
- continue;
- if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
- continue;
- }
- RemoveDeps.push_back(PI);
- }
- }
- for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
- I.removePred(RemoveDeps[i]);
- }
-}
-
-/// Iterate over each DAG node and see if we can change any dependences
-/// in order to reduce the recurrence MII.
-void SwingSchedulerDAG::changeDependences() {
- // See if an instruction can use a value from the previous iteration.
- // If so, we update the base and offset of the instruction and change
- // the dependences.
- for (SUnit &I : SUnits) {
- unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
- int64_t NewOffset = 0;
- if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
- NewOffset))
- continue;
-
- // Get the MI and SUnit for the instruction that defines the original base.
- Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
- MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
- if (!DefMI)
- continue;
- SUnit *DefSU = getSUnit(DefMI);
- if (!DefSU)
- continue;
- // Get the MI and SUnit for the instruction that defins the new base.
- MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
- if (!LastMI)
- continue;
- SUnit *LastSU = getSUnit(LastMI);
- if (!LastSU)
- continue;
-
- if (Topo.IsReachable(&I, LastSU))
- continue;
-
- // Remove the dependence. The value now depends on a prior iteration.
- SmallVector<SDep, 4> Deps;
- for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
- ++P)
- if (P->getSUnit() == DefSU)
- Deps.push_back(*P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(&I, Deps[i].getSUnit());
- I.removePred(Deps[i]);
- }
- // Remove the chain dependence between the instructions.
- Deps.clear();
- for (auto &P : LastSU->Preds)
- if (P.getSUnit() == &I && P.getKind() == SDep::Order)
- Deps.push_back(P);
- for (int i = 0, e = Deps.size(); i != e; i++) {
- Topo.RemovePred(LastSU, Deps[i].getSUnit());
- LastSU->removePred(Deps[i]);
- }
-
- // Add a dependence between the new instruction and the instruction
- // that defines the new base.
- SDep Dep(&I, SDep::Anti, NewBase);
- Topo.AddPred(LastSU, &I);
- LastSU->addPred(Dep);
-
- // Remember the base and offset information so that we can update the
- // instruction during code generation.
- InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
- }
-}
-
-namespace {
-
-// FuncUnitSorter - Comparison operator used to sort instructions by
-// the number of functional unit choices.
-struct FuncUnitSorter {
- const InstrItineraryData *InstrItins;
- const MCSubtargetInfo *STI;
- DenseMap<InstrStage::FuncUnits, unsigned> Resources;
-
- FuncUnitSorter(const TargetSubtargetInfo &TSI)
- : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
-
- // Compute the number of functional unit alternatives needed
- // at each stage, and take the minimum value. We prioritize the
- // instructions by the least number of choices first.
- unsigned minFuncUnits(const MachineInstr *Inst,
- InstrStage::FuncUnits &F) const {
- unsigned SchedClass = Inst->getDesc().getSchedClass();
- unsigned min = UINT_MAX;
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- InstrStage::FuncUnits funcUnits = IS.getUnits();
- unsigned numAlternatives = countPopulation(funcUnits);
- if (numAlternatives < min) {
- min = numAlternatives;
- F = funcUnits;
- }
- }
- return min;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return min;
-
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- const MCProcResourceDesc *ProcResource =
- STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
- unsigned NumUnits = ProcResource->NumUnits;
- if (NumUnits < min) {
- min = NumUnits;
- F = PRE.ProcResourceIdx;
- }
- }
- return min;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
-
- // Compute the critical resources needed by the instruction. This
- // function records the functional units needed by instructions that
- // must use only one functional unit. We use this as a tie breaker
- // for computing the resource MII. The instrutions that require
- // the same, highly used, functional unit have high priority.
- void calcCriticalResources(MachineInstr &MI) {
- unsigned SchedClass = MI.getDesc().getSchedClass();
- if (InstrItins && !InstrItins->isEmpty()) {
- for (const InstrStage &IS :
- make_range(InstrItins->beginStage(SchedClass),
- InstrItins->endStage(SchedClass))) {
- InstrStage::FuncUnits FuncUnits = IS.getUnits();
- if (countPopulation(FuncUnits) == 1)
- Resources[FuncUnits]++;
- }
- return;
- }
- if (STI && STI->getSchedModel().hasInstrSchedModel()) {
- const MCSchedClassDesc *SCDesc =
- STI->getSchedModel().getSchedClassDesc(SchedClass);
- if (!SCDesc->isValid())
- // No valid Schedule Class Desc for schedClass, should be
- // Pseudo/PostRAPseudo
- return;
-
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- Resources[PRE.ProcResourceIdx]++;
- }
- return;
- }
- llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
- }
-
- /// Return true if IS1 has less priority than IS2.
- bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
- InstrStage::FuncUnits F1 = 0, F2 = 0;
- unsigned MFUs1 = minFuncUnits(IS1, F1);
- unsigned MFUs2 = minFuncUnits(IS2, F2);
- if (MFUs1 == MFUs2)
- return Resources.lookup(F1) < Resources.lookup(F2);
- return MFUs1 > MFUs2;
- }
-};
-
-} // end anonymous namespace
-
-/// Calculate the resource constrained minimum initiation interval for the
-/// specified loop. We use the DFA to model the resources needed for
-/// each instruction, and we ignore dependences. A different DFA is created
-/// for each cycle that is required. When adding a new instruction, we attempt
-/// to add it to each existing DFA, until a legal space is found. If the
-/// instruction cannot be reserved in an existing DFA, we create a new one.
-unsigned SwingSchedulerDAG::calculateResMII() {
-
- LLVM_DEBUG(dbgs() << "calculateResMII:\n");
- SmallVector<ResourceManager*, 8> Resources;
- MachineBasicBlock *MBB = Loop.getHeader();
- Resources.push_back(new ResourceManager(&MF.getSubtarget()));
-
- // Sort the instructions by the number of available choices for scheduling,
- // least to most. Use the number of critical resources as the tie breaker.
- FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
- for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
- E = MBB->getFirstTerminator();
- I != E; ++I)
- FUS.calcCriticalResources(*I);
- PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
- FuncUnitOrder(FUS);
-
- for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
- E = MBB->getFirstTerminator();
- I != E; ++I)
- FuncUnitOrder.push(&*I);
-
- while (!FuncUnitOrder.empty()) {
- MachineInstr *MI = FuncUnitOrder.top();
- FuncUnitOrder.pop();
- if (TII->isZeroCost(MI->getOpcode()))
- continue;
- // Attempt to reserve the instruction in an existing DFA. At least one
- // DFA is needed for each cycle.
- unsigned NumCycles = getSUnit(MI)->Latency;
- unsigned ReservedCycles = 0;
- SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
- SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
- LLVM_DEBUG({
- dbgs() << "Trying to reserve resource for " << NumCycles
- << " cycles for \n";
- MI->dump();
- });
- for (unsigned C = 0; C < NumCycles; ++C)
- while (RI != RE) {
- if ((*RI)->canReserveResources(*MI)) {
- (*RI)->reserveResources(*MI);
- ++ReservedCycles;
- break;
- }
- RI++;
- }
- LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
- << ", NumCycles:" << NumCycles << "\n");
- // Add new DFAs, if needed, to reserve resources.
- for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
- LLVM_DEBUG(if (SwpDebugResource) dbgs()
- << "NewResource created to reserve resources"
- << "\n");
- ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
- assert(NewResource->canReserveResources(*MI) && "Reserve error.");
- NewResource->reserveResources(*MI);
- Resources.push_back(NewResource);
- }
- }
- int Resmii = Resources.size();
- LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
- // Delete the memory for each of the DFAs that were created earlier.
- for (ResourceManager *RI : Resources) {
- ResourceManager *D = RI;
- delete D;
- }
- Resources.clear();
- return Resmii;
-}
-
-/// Calculate the recurrence-constrainted minimum initiation interval.
-/// Iterate over each circuit. Compute the delay(c) and distance(c)
-/// for each circuit. The II needs to satisfy the inequality
-/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
-/// II that satisfies the inequality, and the RecMII is the maximum
-/// of those values.
-unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
- unsigned RecMII = 0;
-
- for (NodeSet &Nodes : NodeSets) {
- if (Nodes.empty())
- continue;
-
- unsigned Delay = Nodes.getLatency();
- unsigned Distance = 1;
-
- // ii = ceil(delay / distance)
- unsigned CurMII = (Delay + Distance - 1) / Distance;
- Nodes.setRecMII(CurMII);
- if (CurMII > RecMII)
- RecMII = CurMII;
- }
-
- return RecMII;
-}
-
-/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
-/// but we do this to find the circuits, and then change them back.
-static void swapAntiDependences(std::vector<SUnit> &SUnits) {
- SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
- for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
- SUnit *SU = &SUnits[i];
- for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
- IP != EP; ++IP) {
- if (IP->getKind() != SDep::Anti)
- continue;
- DepsAdded.push_back(std::make_pair(SU, *IP));
- }
- }
- for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
- E = DepsAdded.end();
- I != E; ++I) {
- // Remove this anti dependency and add one in the reverse direction.
- SUnit *SU = I->first;
- SDep &D = I->second;
- SUnit *TargetSU = D.getSUnit();
- unsigned Reg = D.getReg();
- unsigned Lat = D.getLatency();
- SU->removePred(D);
- SDep Dep(SU, SDep::Anti, Reg);
- Dep.setLatency(Lat);
- TargetSU->addPred(Dep);
- }
-}
-
-/// Create the adjacency structure of the nodes in the graph.
-void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
- SwingSchedulerDAG *DAG) {
- BitVector Added(SUnits.size());
- DenseMap<int, int> OutputDeps;
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Added.reset();
- // Add any successor to the adjacency matrix and exclude duplicates.
- for (auto &SI : SUnits[i].Succs) {
- // Only create a back-edge on the first and last nodes of a dependence
- // chain. This records any chains and adds them later.
- if (SI.getKind() == SDep::Output) {
- int N = SI.getSUnit()->NodeNum;
- int BackEdge = i;
- auto Dep = OutputDeps.find(BackEdge);
- if (Dep != OutputDeps.end()) {
- BackEdge = Dep->second;
- OutputDeps.erase(Dep);
- }
- OutputDeps[N] = BackEdge;
- }
- // Do not process a boundary node, an artificial node.
- // A back-edge is processed only if it goes to a Phi.
- if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
- (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
- continue;
- int N = SI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- // A chain edge between a store and a load is treated as a back-edge in the
- // adjacency matrix.
- for (auto &PI : SUnits[i].Preds) {
- if (!SUnits[i].getInstr()->mayStore() ||
- !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
- continue;
- if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
- int N = PI.getSUnit()->NodeNum;
- if (!Added.test(N)) {
- AdjK[i].push_back(N);
- Added.set(N);
- }
- }
- }
- }
- // Add back-edges in the adjacency matrix for the output dependences.
- for (auto &OD : OutputDeps)
- if (!Added.test(OD.second)) {
- AdjK[OD.first].push_back(OD.second);
- Added.set(OD.second);
- }
-}
-
-/// Identify an elementary circuit in the dependence graph starting at the
-/// specified node.
-bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
- bool HasBackedge) {
- SUnit *SV = &SUnits[V];
- bool F = false;
- Stack.insert(SV);
- Blocked.set(V);
-
- for (auto W : AdjK[V]) {
- if (NumPaths > MaxPaths)
- break;
- if (W < S)
- continue;
- if (W == S) {
- if (!HasBackedge)
- NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
- F = true;
- ++NumPaths;
- break;
- } else if (!Blocked.test(W)) {
- if (circuit(W, S, NodeSets,
- Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
- F = true;
- }
- }
-
- if (F)
- unblock(V);
- else {
- for (auto W : AdjK[V]) {
- if (W < S)
- continue;
- if (B[W].count(SV) == 0)
- B[W].insert(SV);
- }
- }
- Stack.pop_back();
- return F;
-}
-
-/// Unblock a node in the circuit finding algorithm.
-void SwingSchedulerDAG::Circuits::unblock(int U) {
- Blocked.reset(U);
- SmallPtrSet<SUnit *, 4> &BU = B[U];
- while (!BU.empty()) {
- SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
- assert(SI != BU.end() && "Invalid B set.");
- SUnit *W = *SI;
- BU.erase(W);
- if (Blocked.test(W->NodeNum))
- unblock(W->NodeNum);
- }
-}
-
-/// Identify all the elementary circuits in the dependence graph using
-/// Johnson's circuit algorithm.
-void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
- // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
- // but we do this to find the circuits, and then change them back.
- swapAntiDependences(SUnits);
-
- Circuits Cir(SUnits, Topo);
- // Create the adjacency structure.
- Cir.createAdjacencyStructure(this);
- for (int i = 0, e = SUnits.size(); i != e; ++i) {
- Cir.reset();
- Cir.circuit(i, i, NodeSets);
- }
-
- // Change the dependences back so that we've created a DAG again.
- swapAntiDependences(SUnits);
-}
-
-// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
-// is loop-carried to the USE in next iteration. This will help pipeliner avoid
-// additional copies that are needed across iterations. An artificial dependence
-// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
-
-// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
-// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
-// PHI-------True-Dep------> USEOfPhi
-
-// The mutation creates
-// USEOfPHI -------Artificial-Dep---> SRCOfCopy
-
-// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
-// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
-// late to avoid additional copies across iterations. The possible scheduling
-// order would be
-// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
-
-void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
- for (SUnit &SU : DAG->SUnits) {
- // Find the COPY/REG_SEQUENCE instruction.
- if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
- continue;
-
- // Record the loop carried PHIs.
- SmallVector<SUnit *, 4> PHISUs;
- // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
- SmallVector<SUnit *, 4> SrcSUs;
-
- for (auto &Dep : SU.Preds) {
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- SDep::Kind DepKind = Dep.getKind();
- // Save the loop carried PHI.
- if (DepKind == SDep::Anti && TmpMI->isPHI())
- PHISUs.push_back(TmpSU);
- // Save the source of COPY/REG_SEQUENCE.
- // If the source has no pre-decessors, we will end up creating cycles.
- else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
- SrcSUs.push_back(TmpSU);
- }
-
- if (PHISUs.size() == 0 || SrcSUs.size() == 0)
- continue;
-
- // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
- // SUnit to the container.
- SmallVector<SUnit *, 8> UseSUs;
- // Do not use iterator based loop here as we are updating the container.
- for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
- for (auto &Dep : PHISUs[Index]->Succs) {
- if (Dep.getKind() != SDep::Data)
- continue;
-
- SUnit *TmpSU = Dep.getSUnit();
- MachineInstr *TmpMI = TmpSU->getInstr();
- if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
- PHISUs.push_back(TmpSU);
- continue;
- }
- UseSUs.push_back(TmpSU);
- }
- }
-
- if (UseSUs.size() == 0)
- continue;
-
- SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
- // Add the artificial dependencies if it does not form a cycle.
- for (auto I : UseSUs) {
- for (auto Src : SrcSUs) {
- if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
- Src->addPred(SDep(I, SDep::Artificial));
- SDAG->Topo.AddPred(Src, I);
- }
- }
- }
- }
-}
-
-/// Return true for DAG nodes that we ignore when computing the cost functions.
-/// We ignore the back-edge recurrence in order to avoid unbounded recursion
-/// in the calculation of the ASAP, ALAP, etc functions.
-static bool ignoreDependence(const SDep &D, bool isPred) {
- if (D.isArtificial())
- return true;
- return D.getKind() == SDep::Anti && isPred;
-}
-
-/// Compute several functions need to order the nodes for scheduling.
-/// ASAP - Earliest time to schedule a node.
-/// ALAP - Latest time to schedule a node.
-/// MOV - Mobility function, difference between ALAP and ASAP.
-/// D - Depth of each node.
-/// H - Height of each node.
-void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
- ScheduleInfo.resize(SUnits.size());
-
- LLVM_DEBUG({
- for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
- E = Topo.end();
- I != E; ++I) {
- const SUnit &SU = SUnits[*I];
- dumpNode(SU);
- }
- });
-
- int maxASAP = 0;
- // Compute ASAP and ZeroLatencyDepth.
- for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
- E = Topo.end();
- I != E; ++I) {
- int asap = 0;
- int zeroLatencyDepth = 0;
- SUnit *SU = &SUnits[*I];
- for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
- EP = SU->Preds.end();
- IP != EP; ++IP) {
- SUnit *pred = IP->getSUnit();
- if (IP->getLatency() == 0)
- zeroLatencyDepth =
- std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
- if (ignoreDependence(*IP, true))
- continue;
- asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
- getDistance(pred, SU, *IP) * MII));
- }
- maxASAP = std::max(maxASAP, asap);
- ScheduleInfo[*I].ASAP = asap;
- ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
- }
-
- // Compute ALAP, ZeroLatencyHeight, and MOV.
- for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
- E = Topo.rend();
- I != E; ++I) {
- int alap = maxASAP;
- int zeroLatencyHeight = 0;
- SUnit *SU = &SUnits[*I];
- for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
- ES = SU->Succs.end();
- IS != ES; ++IS) {
- SUnit *succ = IS->getSUnit();
- if (IS->getLatency() == 0)
- zeroLatencyHeight =
- std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
- if (ignoreDependence(*IS, true))
- continue;
- alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
- getDistance(SU, succ, *IS) * MII));
- }
-
- ScheduleInfo[*I].ALAP = alap;
- ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
- }
-
- // After computing the node functions, compute the summary for each node set.
- for (NodeSet &I : NodeSets)
- I.computeNodeSetInfo(this);
-
- LLVM_DEBUG({
- for (unsigned i = 0; i < SUnits.size(); i++) {
- dbgs() << "\tNode " << i << ":\n";
- dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
- dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
- dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
- dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
- dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
- dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
- dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
- }
- });
-}
-
-/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
-/// as the predecessors of the elements of NodeOrder that are not also in
-/// NodeOrder.
-static bool pred_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Preds,
- const NodeSet *S = nullptr) {
- Preds.clear();
- for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
- I != E; ++I) {
- for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
- PI != PE; ++PI) {
- if (S && S->count(PI->getSUnit()) == 0)
- continue;
- if (ignoreDependence(*PI, true))
- continue;
- if (NodeOrder.count(PI->getSUnit()) == 0)
- Preds.insert(PI->getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
- ES = (*I)->Succs.end();
- IS != ES; ++IS) {
- if (IS->getKind() != SDep::Anti)
- continue;
- if (S && S->count(IS->getSUnit()) == 0)
- continue;
- if (NodeOrder.count(IS->getSUnit()) == 0)
- Preds.insert(IS->getSUnit());
- }
- }
- return !Preds.empty();
-}
-
-/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
-/// as the successors of the elements of NodeOrder that are not also in
-/// NodeOrder.
-static bool succ_L(SetVector<SUnit *> &NodeOrder,
- SmallSetVector<SUnit *, 8> &Succs,
- const NodeSet *S = nullptr) {
- Succs.clear();
- for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
- I != E; ++I) {
- for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
- SI != SE; ++SI) {
- if (S && S->count(SI->getSUnit()) == 0)
- continue;
- if (ignoreDependence(*SI, false))
- continue;
- if (NodeOrder.count(SI->getSUnit()) == 0)
- Succs.insert(SI->getSUnit());
- }
- for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
- PE = (*I)->Preds.end();
- PI != PE; ++PI) {
- if (PI->getKind() != SDep::Anti)
- continue;
- if (S && S->count(PI->getSUnit()) == 0)
- continue;
- if (NodeOrder.count(PI->getSUnit()) == 0)
- Succs.insert(PI->getSUnit());
- }
- }
- return !Succs.empty();
-}
-
-/// Return true if there is a path from the specified node to any of the nodes
-/// in DestNodes. Keep track and return the nodes in any path.
-static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
- SetVector<SUnit *> &DestNodes,
- SetVector<SUnit *> &Exclude,
- SmallPtrSet<SUnit *, 8> &Visited) {
- if (Cur->isBoundaryNode())
- return false;
+
+ if (AAResult != NoAlias) {
+ SDep Dep(Load, SDep::Barrier);
+ Dep.setLatency(1);
+ SU.addPred(Dep);
+ }
+ }
+ }
+ }
+ }
+}
+
+/// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
+/// processes dependences for PHIs. This function adds true dependences
+/// from a PHI to a use, and a loop carried dependence from the use to the
+/// PHI. The loop carried dependence is represented as an anti dependence
+/// edge. This function also removes chain dependences between unrelated
+/// PHIs.
+void SwingSchedulerDAG::updatePhiDependences() {
+ SmallVector<SDep, 4> RemoveDeps;
+ const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
+
+ // Iterate over each DAG node.
+ for (SUnit &I : SUnits) {
+ RemoveDeps.clear();
+ // Set to true if the instruction has an operand defined by a Phi.
+ unsigned HasPhiUse = 0;
+ unsigned HasPhiDef = 0;
+ MachineInstr *MI = I.getInstr();
+ // Iterate over each operand, and we process the definitions.
+ for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
+ MOE = MI->operands_end();
+ MOI != MOE; ++MOI) {
+ if (!MOI->isReg())
+ continue;
+ Register Reg = MOI->getReg();
+ if (MOI->isDef()) {
+ // If the register is used by a Phi, then create an anti dependence.
+ for (MachineRegisterInfo::use_instr_iterator
+ UI = MRI.use_instr_begin(Reg),
+ UE = MRI.use_instr_end();
+ UI != UE; ++UI) {
+ MachineInstr *UseMI = &*UI;
+ SUnit *SU = getSUnit(UseMI);
+ if (SU != nullptr && UseMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Anti, Reg);
+ Dep.setLatency(1);
+ I.addPred(Dep);
+ } else {
+ HasPhiDef = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ } else if (MOI->isUse()) {
+ // If the register is defined by a Phi, then create a true dependence.
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
+ if (DefMI == nullptr)
+ continue;
+ SUnit *SU = getSUnit(DefMI);
+ if (SU != nullptr && DefMI->isPHI()) {
+ if (!MI->isPHI()) {
+ SDep Dep(SU, SDep::Data, Reg);
+ Dep.setLatency(0);
+ ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
+ I.addPred(Dep);
+ } else {
+ HasPhiUse = Reg;
+ // Add a chain edge to a dependent Phi that isn't an existing
+ // predecessor.
+ if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
+ I.addPred(SDep(SU, SDep::Barrier));
+ }
+ }
+ }
+ }
+ // Remove order dependences from an unrelated Phi.
+ if (!SwpPruneDeps)
+ continue;
+ for (auto &PI : I.Preds) {
+ MachineInstr *PMI = PI.getSUnit()->getInstr();
+ if (PMI->isPHI() && PI.getKind() == SDep::Order) {
+ if (I.getInstr()->isPHI()) {
+ if (PMI->getOperand(0).getReg() == HasPhiUse)
+ continue;
+ if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
+ continue;
+ }
+ RemoveDeps.push_back(PI);
+ }
+ }
+ for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
+ I.removePred(RemoveDeps[i]);
+ }
+}
+
+/// Iterate over each DAG node and see if we can change any dependences
+/// in order to reduce the recurrence MII.
+void SwingSchedulerDAG::changeDependences() {
+ // See if an instruction can use a value from the previous iteration.
+ // If so, we update the base and offset of the instruction and change
+ // the dependences.
+ for (SUnit &I : SUnits) {
+ unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
+ int64_t NewOffset = 0;
+ if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
+ NewOffset))
+ continue;
+
+ // Get the MI and SUnit for the instruction that defines the original base.
+ Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
+ MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
+ if (!DefMI)
+ continue;
+ SUnit *DefSU = getSUnit(DefMI);
+ if (!DefSU)
+ continue;
+ // Get the MI and SUnit for the instruction that defins the new base.
+ MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
+ if (!LastMI)
+ continue;
+ SUnit *LastSU = getSUnit(LastMI);
+ if (!LastSU)
+ continue;
+
+ if (Topo.IsReachable(&I, LastSU))
+ continue;
+
+ // Remove the dependence. The value now depends on a prior iteration.
+ SmallVector<SDep, 4> Deps;
+ for (SUnit::pred_iterator P = I.Preds.begin(), E = I.Preds.end(); P != E;
+ ++P)
+ if (P->getSUnit() == DefSU)
+ Deps.push_back(*P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(&I, Deps[i].getSUnit());
+ I.removePred(Deps[i]);
+ }
+ // Remove the chain dependence between the instructions.
+ Deps.clear();
+ for (auto &P : LastSU->Preds)
+ if (P.getSUnit() == &I && P.getKind() == SDep::Order)
+ Deps.push_back(P);
+ for (int i = 0, e = Deps.size(); i != e; i++) {
+ Topo.RemovePred(LastSU, Deps[i].getSUnit());
+ LastSU->removePred(Deps[i]);
+ }
+
+ // Add a dependence between the new instruction and the instruction
+ // that defines the new base.
+ SDep Dep(&I, SDep::Anti, NewBase);
+ Topo.AddPred(LastSU, &I);
+ LastSU->addPred(Dep);
+
+ // Remember the base and offset information so that we can update the
+ // instruction during code generation.
+ InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
+ }
+}
+
+namespace {
+
+// FuncUnitSorter - Comparison operator used to sort instructions by
+// the number of functional unit choices.
+struct FuncUnitSorter {
+ const InstrItineraryData *InstrItins;
+ const MCSubtargetInfo *STI;
+ DenseMap<InstrStage::FuncUnits, unsigned> Resources;
+
+ FuncUnitSorter(const TargetSubtargetInfo &TSI)
+ : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
+
+ // Compute the number of functional unit alternatives needed
+ // at each stage, and take the minimum value. We prioritize the
+ // instructions by the least number of choices first.
+ unsigned minFuncUnits(const MachineInstr *Inst,
+ InstrStage::FuncUnits &F) const {
+ unsigned SchedClass = Inst->getDesc().getSchedClass();
+ unsigned min = UINT_MAX;
+ if (InstrItins && !InstrItins->isEmpty()) {
+ for (const InstrStage &IS :
+ make_range(InstrItins->beginStage(SchedClass),
+ InstrItins->endStage(SchedClass))) {
+ InstrStage::FuncUnits funcUnits = IS.getUnits();
+ unsigned numAlternatives = countPopulation(funcUnits);
+ if (numAlternatives < min) {
+ min = numAlternatives;
+ F = funcUnits;
+ }
+ }
+ return min;
+ }
+ if (STI && STI->getSchedModel().hasInstrSchedModel()) {
+ const MCSchedClassDesc *SCDesc =
+ STI->getSchedModel().getSchedClassDesc(SchedClass);
+ if (!SCDesc->isValid())
+ // No valid Schedule Class Desc for schedClass, should be
+ // Pseudo/PostRAPseudo
+ return min;
+
+ for (const MCWriteProcResEntry &PRE :
+ make_range(STI->getWriteProcResBegin(SCDesc),
+ STI->getWriteProcResEnd(SCDesc))) {
+ if (!PRE.Cycles)
+ continue;
+ const MCProcResourceDesc *ProcResource =
+ STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
+ unsigned NumUnits = ProcResource->NumUnits;
+ if (NumUnits < min) {
+ min = NumUnits;
+ F = PRE.ProcResourceIdx;
+ }
+ }
+ return min;
+ }
+ llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
+ }
+
+ // Compute the critical resources needed by the instruction. This
+ // function records the functional units needed by instructions that
+ // must use only one functional unit. We use this as a tie breaker
+ // for computing the resource MII. The instrutions that require
+ // the same, highly used, functional unit have high priority.
+ void calcCriticalResources(MachineInstr &MI) {
+ unsigned SchedClass = MI.getDesc().getSchedClass();
+ if (InstrItins && !InstrItins->isEmpty()) {
+ for (const InstrStage &IS :
+ make_range(InstrItins->beginStage(SchedClass),
+ InstrItins->endStage(SchedClass))) {
+ InstrStage::FuncUnits FuncUnits = IS.getUnits();
+ if (countPopulation(FuncUnits) == 1)
+ Resources[FuncUnits]++;
+ }
+ return;
+ }
+ if (STI && STI->getSchedModel().hasInstrSchedModel()) {
+ const MCSchedClassDesc *SCDesc =
+ STI->getSchedModel().getSchedClassDesc(SchedClass);
+ if (!SCDesc->isValid())
+ // No valid Schedule Class Desc for schedClass, should be
+ // Pseudo/PostRAPseudo
+ return;
+
+ for (const MCWriteProcResEntry &PRE :
+ make_range(STI->getWriteProcResBegin(SCDesc),
+ STI->getWriteProcResEnd(SCDesc))) {
+ if (!PRE.Cycles)
+ continue;
+ Resources[PRE.ProcResourceIdx]++;
+ }
+ return;
+ }
+ llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
+ }
+
+ /// Return true if IS1 has less priority than IS2.
+ bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
+ InstrStage::FuncUnits F1 = 0, F2 = 0;
+ unsigned MFUs1 = minFuncUnits(IS1, F1);
+ unsigned MFUs2 = minFuncUnits(IS2, F2);
+ if (MFUs1 == MFUs2)
+ return Resources.lookup(F1) < Resources.lookup(F2);
+ return MFUs1 > MFUs2;
+ }
+};
+
+} // end anonymous namespace
+
+/// Calculate the resource constrained minimum initiation interval for the
+/// specified loop. We use the DFA to model the resources needed for
+/// each instruction, and we ignore dependences. A different DFA is created
+/// for each cycle that is required. When adding a new instruction, we attempt
+/// to add it to each existing DFA, until a legal space is found. If the
+/// instruction cannot be reserved in an existing DFA, we create a new one.
+unsigned SwingSchedulerDAG::calculateResMII() {
+
+ LLVM_DEBUG(dbgs() << "calculateResMII:\n");
+ SmallVector<ResourceManager*, 8> Resources;
+ MachineBasicBlock *MBB = Loop.getHeader();
+ Resources.push_back(new ResourceManager(&MF.getSubtarget()));
+
+ // Sort the instructions by the number of available choices for scheduling,
+ // least to most. Use the number of critical resources as the tie breaker.
+ FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FUS.calcCriticalResources(*I);
+ PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
+ FuncUnitOrder(FUS);
+
+ for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
+ E = MBB->getFirstTerminator();
+ I != E; ++I)
+ FuncUnitOrder.push(&*I);
+
+ while (!FuncUnitOrder.empty()) {
+ MachineInstr *MI = FuncUnitOrder.top();
+ FuncUnitOrder.pop();
+ if (TII->isZeroCost(MI->getOpcode()))
+ continue;
+ // Attempt to reserve the instruction in an existing DFA. At least one
+ // DFA is needed for each cycle.
+ unsigned NumCycles = getSUnit(MI)->Latency;
+ unsigned ReservedCycles = 0;
+ SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
+ SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
+ LLVM_DEBUG({
+ dbgs() << "Trying to reserve resource for " << NumCycles
+ << " cycles for \n";
+ MI->dump();
+ });
+ for (unsigned C = 0; C < NumCycles; ++C)
+ while (RI != RE) {
+ if ((*RI)->canReserveResources(*MI)) {
+ (*RI)->reserveResources(*MI);
+ ++ReservedCycles;
+ break;
+ }
+ RI++;
+ }
+ LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
+ << ", NumCycles:" << NumCycles << "\n");
+ // Add new DFAs, if needed, to reserve resources.
+ for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
+ LLVM_DEBUG(if (SwpDebugResource) dbgs()
+ << "NewResource created to reserve resources"
+ << "\n");
+ ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
+ assert(NewResource->canReserveResources(*MI) && "Reserve error.");
+ NewResource->reserveResources(*MI);
+ Resources.push_back(NewResource);
+ }
+ }
+ int Resmii = Resources.size();
+ LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
+ // Delete the memory for each of the DFAs that were created earlier.
+ for (ResourceManager *RI : Resources) {
+ ResourceManager *D = RI;
+ delete D;
+ }
+ Resources.clear();
+ return Resmii;
+}
+
+/// Calculate the recurrence-constrainted minimum initiation interval.
+/// Iterate over each circuit. Compute the delay(c) and distance(c)
+/// for each circuit. The II needs to satisfy the inequality
+/// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
+/// II that satisfies the inequality, and the RecMII is the maximum
+/// of those values.
+unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
+ unsigned RecMII = 0;
+
+ for (NodeSet &Nodes : NodeSets) {
+ if (Nodes.empty())
+ continue;
+
+ unsigned Delay = Nodes.getLatency();
+ unsigned Distance = 1;
+
+ // ii = ceil(delay / distance)
+ unsigned CurMII = (Delay + Distance - 1) / Distance;
+ Nodes.setRecMII(CurMII);
+ if (CurMII > RecMII)
+ RecMII = CurMII;
+ }
+
+ return RecMII;
+}
+
+/// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+/// but we do this to find the circuits, and then change them back.
+static void swapAntiDependences(std::vector<SUnit> &SUnits) {
+ SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
+ for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SUnits[i];
+ for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ if (IP->getKind() != SDep::Anti)
+ continue;
+ DepsAdded.push_back(std::make_pair(SU, *IP));
+ }
+ }
+ for (SmallVector<std::pair<SUnit *, SDep>, 8>::iterator I = DepsAdded.begin(),
+ E = DepsAdded.end();
+ I != E; ++I) {
+ // Remove this anti dependency and add one in the reverse direction.
+ SUnit *SU = I->first;
+ SDep &D = I->second;
+ SUnit *TargetSU = D.getSUnit();
+ unsigned Reg = D.getReg();
+ unsigned Lat = D.getLatency();
+ SU->removePred(D);
+ SDep Dep(SU, SDep::Anti, Reg);
+ Dep.setLatency(Lat);
+ TargetSU->addPred(Dep);
+ }
+}
+
+/// Create the adjacency structure of the nodes in the graph.
+void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
+ SwingSchedulerDAG *DAG) {
+ BitVector Added(SUnits.size());
+ DenseMap<int, int> OutputDeps;
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Added.reset();
+ // Add any successor to the adjacency matrix and exclude duplicates.
+ for (auto &SI : SUnits[i].Succs) {
+ // Only create a back-edge on the first and last nodes of a dependence
+ // chain. This records any chains and adds them later.
+ if (SI.getKind() == SDep::Output) {
+ int N = SI.getSUnit()->NodeNum;
+ int BackEdge = i;
+ auto Dep = OutputDeps.find(BackEdge);
+ if (Dep != OutputDeps.end()) {
+ BackEdge = Dep->second;
+ OutputDeps.erase(Dep);
+ }
+ OutputDeps[N] = BackEdge;
+ }
+ // Do not process a boundary node, an artificial node.
+ // A back-edge is processed only if it goes to a Phi.
+ if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
+ (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
+ continue;
+ int N = SI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ // A chain edge between a store and a load is treated as a back-edge in the
+ // adjacency matrix.
+ for (auto &PI : SUnits[i].Preds) {
+ if (!SUnits[i].getInstr()->mayStore() ||
+ !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
+ continue;
+ if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
+ int N = PI.getSUnit()->NodeNum;
+ if (!Added.test(N)) {
+ AdjK[i].push_back(N);
+ Added.set(N);
+ }
+ }
+ }
+ }
+ // Add back-edges in the adjacency matrix for the output dependences.
+ for (auto &OD : OutputDeps)
+ if (!Added.test(OD.second)) {
+ AdjK[OD.first].push_back(OD.second);
+ Added.set(OD.second);
+ }
+}
+
+/// Identify an elementary circuit in the dependence graph starting at the
+/// specified node.
+bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
+ bool HasBackedge) {
+ SUnit *SV = &SUnits[V];
+ bool F = false;
+ Stack.insert(SV);
+ Blocked.set(V);
+
+ for (auto W : AdjK[V]) {
+ if (NumPaths > MaxPaths)
+ break;
+ if (W < S)
+ continue;
+ if (W == S) {
+ if (!HasBackedge)
+ NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
+ F = true;
+ ++NumPaths;
+ break;
+ } else if (!Blocked.test(W)) {
+ if (circuit(W, S, NodeSets,
+ Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
+ F = true;
+ }
+ }
+
+ if (F)
+ unblock(V);
+ else {
+ for (auto W : AdjK[V]) {
+ if (W < S)
+ continue;
+ if (B[W].count(SV) == 0)
+ B[W].insert(SV);
+ }
+ }
+ Stack.pop_back();
+ return F;
+}
+
+/// Unblock a node in the circuit finding algorithm.
+void SwingSchedulerDAG::Circuits::unblock(int U) {
+ Blocked.reset(U);
+ SmallPtrSet<SUnit *, 4> &BU = B[U];
+ while (!BU.empty()) {
+ SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
+ assert(SI != BU.end() && "Invalid B set.");
+ SUnit *W = *SI;
+ BU.erase(W);
+ if (Blocked.test(W->NodeNum))
+ unblock(W->NodeNum);
+ }
+}
+
+/// Identify all the elementary circuits in the dependence graph using
+/// Johnson's circuit algorithm.
+void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
+ // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
+ // but we do this to find the circuits, and then change them back.
+ swapAntiDependences(SUnits);
+
+ Circuits Cir(SUnits, Topo);
+ // Create the adjacency structure.
+ Cir.createAdjacencyStructure(this);
+ for (int i = 0, e = SUnits.size(); i != e; ++i) {
+ Cir.reset();
+ Cir.circuit(i, i, NodeSets);
+ }
+
+ // Change the dependences back so that we've created a DAG again.
+ swapAntiDependences(SUnits);
+}
+
+// Create artificial dependencies between the source of COPY/REG_SEQUENCE that
+// is loop-carried to the USE in next iteration. This will help pipeliner avoid
+// additional copies that are needed across iterations. An artificial dependence
+// edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
+
+// PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
+// SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
+// PHI-------True-Dep------> USEOfPhi
+
+// The mutation creates
+// USEOfPHI -------Artificial-Dep---> SRCOfCopy
+
+// This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
+// (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
+// late to avoid additional copies across iterations. The possible scheduling
+// order would be
+// USEOfPHI --- SRCOfCopy--- COPY/REG_SEQUENCE.
+
+void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
+ for (SUnit &SU : DAG->SUnits) {
+ // Find the COPY/REG_SEQUENCE instruction.
+ if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
+ continue;
+
+ // Record the loop carried PHIs.
+ SmallVector<SUnit *, 4> PHISUs;
+ // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
+ SmallVector<SUnit *, 4> SrcSUs;
+
+ for (auto &Dep : SU.Preds) {
+ SUnit *TmpSU = Dep.getSUnit();
+ MachineInstr *TmpMI = TmpSU->getInstr();
+ SDep::Kind DepKind = Dep.getKind();
+ // Save the loop carried PHI.
+ if (DepKind == SDep::Anti && TmpMI->isPHI())
+ PHISUs.push_back(TmpSU);
+ // Save the source of COPY/REG_SEQUENCE.
+ // If the source has no pre-decessors, we will end up creating cycles.
+ else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
+ SrcSUs.push_back(TmpSU);
+ }
+
+ if (PHISUs.size() == 0 || SrcSUs.size() == 0)
+ continue;
+
+ // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
+ // SUnit to the container.
+ SmallVector<SUnit *, 8> UseSUs;
+ // Do not use iterator based loop here as we are updating the container.
+ for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
+ for (auto &Dep : PHISUs[Index]->Succs) {
+ if (Dep.getKind() != SDep::Data)
+ continue;
+
+ SUnit *TmpSU = Dep.getSUnit();
+ MachineInstr *TmpMI = TmpSU->getInstr();
+ if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
+ PHISUs.push_back(TmpSU);
+ continue;
+ }
+ UseSUs.push_back(TmpSU);
+ }
+ }
+
+ if (UseSUs.size() == 0)
+ continue;
+
+ SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
+ // Add the artificial dependencies if it does not form a cycle.
+ for (auto I : UseSUs) {
+ for (auto Src : SrcSUs) {
+ if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
+ Src->addPred(SDep(I, SDep::Artificial));
+ SDAG->Topo.AddPred(Src, I);
+ }
+ }
+ }
+ }
+}
+
+/// Return true for DAG nodes that we ignore when computing the cost functions.
+/// We ignore the back-edge recurrence in order to avoid unbounded recursion
+/// in the calculation of the ASAP, ALAP, etc functions.
+static bool ignoreDependence(const SDep &D, bool isPred) {
+ if (D.isArtificial())
+ return true;
+ return D.getKind() == SDep::Anti && isPred;
+}
+
+/// Compute several functions need to order the nodes for scheduling.
+/// ASAP - Earliest time to schedule a node.
+/// ALAP - Latest time to schedule a node.
+/// MOV - Mobility function, difference between ALAP and ASAP.
+/// D - Depth of each node.
+/// H - Height of each node.
+void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
+ ScheduleInfo.resize(SUnits.size());
+
+ LLVM_DEBUG({
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ const SUnit &SU = SUnits[*I];
+ dumpNode(SU);
+ }
+ });
+
+ int maxASAP = 0;
+ // Compute ASAP and ZeroLatencyDepth.
+ for (ScheduleDAGTopologicalSort::const_iterator I = Topo.begin(),
+ E = Topo.end();
+ I != E; ++I) {
+ int asap = 0;
+ int zeroLatencyDepth = 0;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
+ EP = SU->Preds.end();
+ IP != EP; ++IP) {
+ SUnit *pred = IP->getSUnit();
+ if (IP->getLatency() == 0)
+ zeroLatencyDepth =
+ std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
+ if (ignoreDependence(*IP, true))
+ continue;
+ asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
+ getDistance(pred, SU, *IP) * MII));
+ }
+ maxASAP = std::max(maxASAP, asap);
+ ScheduleInfo[*I].ASAP = asap;
+ ScheduleInfo[*I].ZeroLatencyDepth = zeroLatencyDepth;
+ }
+
+ // Compute ALAP, ZeroLatencyHeight, and MOV.
+ for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
+ E = Topo.rend();
+ I != E; ++I) {
+ int alap = maxASAP;
+ int zeroLatencyHeight = 0;
+ SUnit *SU = &SUnits[*I];
+ for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
+ ES = SU->Succs.end();
+ IS != ES; ++IS) {
+ SUnit *succ = IS->getSUnit();
+ if (IS->getLatency() == 0)
+ zeroLatencyHeight =
+ std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
+ if (ignoreDependence(*IS, true))
+ continue;
+ alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
+ getDistance(SU, succ, *IS) * MII));
+ }
+
+ ScheduleInfo[*I].ALAP = alap;
+ ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
+ }
+
+ // After computing the node functions, compute the summary for each node set.
+ for (NodeSet &I : NodeSets)
+ I.computeNodeSetInfo(this);
+
+ LLVM_DEBUG({
+ for (unsigned i = 0; i < SUnits.size(); i++) {
+ dbgs() << "\tNode " << i << ":\n";
+ dbgs() << "\t ASAP = " << getASAP(&SUnits[i]) << "\n";
+ dbgs() << "\t ALAP = " << getALAP(&SUnits[i]) << "\n";
+ dbgs() << "\t MOV = " << getMOV(&SUnits[i]) << "\n";
+ dbgs() << "\t D = " << getDepth(&SUnits[i]) << "\n";
+ dbgs() << "\t H = " << getHeight(&SUnits[i]) << "\n";
+ dbgs() << "\t ZLD = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
+ dbgs() << "\t ZLH = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
+ }
+ });
+}
+
+/// Compute the Pred_L(O) set, as defined in the paper. The set is defined
+/// as the predecessors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool pred_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Preds,
+ const NodeSet *S = nullptr) {
+ Preds.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::pred_iterator PI = (*I)->Preds.begin(), PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*PI, true))
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Preds.insert(PI->getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (SUnit::const_succ_iterator IS = (*I)->Succs.begin(),
+ ES = (*I)->Succs.end();
+ IS != ES; ++IS) {
+ if (IS->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(IS->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(IS->getSUnit()) == 0)
+ Preds.insert(IS->getSUnit());
+ }
+ }
+ return !Preds.empty();
+}
+
+/// Compute the Succ_L(O) set, as defined in the paper. The set is defined
+/// as the successors of the elements of NodeOrder that are not also in
+/// NodeOrder.
+static bool succ_L(SetVector<SUnit *> &NodeOrder,
+ SmallSetVector<SUnit *, 8> &Succs,
+ const NodeSet *S = nullptr) {
+ Succs.clear();
+ for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
+ I != E; ++I) {
+ for (SUnit::succ_iterator SI = (*I)->Succs.begin(), SE = (*I)->Succs.end();
+ SI != SE; ++SI) {
+ if (S && S->count(SI->getSUnit()) == 0)
+ continue;
+ if (ignoreDependence(*SI, false))
+ continue;
+ if (NodeOrder.count(SI->getSUnit()) == 0)
+ Succs.insert(SI->getSUnit());
+ }
+ for (SUnit::const_pred_iterator PI = (*I)->Preds.begin(),
+ PE = (*I)->Preds.end();
+ PI != PE; ++PI) {
+ if (PI->getKind() != SDep::Anti)
+ continue;
+ if (S && S->count(PI->getSUnit()) == 0)
+ continue;
+ if (NodeOrder.count(PI->getSUnit()) == 0)
+ Succs.insert(PI->getSUnit());
+ }
+ }
+ return !Succs.empty();
+}
+
+/// Return true if there is a path from the specified node to any of the nodes
+/// in DestNodes. Keep track and return the nodes in any path.
+static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
+ SetVector<SUnit *> &DestNodes,
+ SetVector<SUnit *> &Exclude,
+ SmallPtrSet<SUnit *, 8> &Visited) {
+ if (Cur->isBoundaryNode())
+ return false;
if (Exclude.contains(Cur))
- return false;
+ return false;
if (DestNodes.contains(Cur))
- return true;
- if (!Visited.insert(Cur).second)
+ return true;
+ if (!Visited.insert(Cur).second)
return Path.contains(Cur);
- bool FoundPath = false;
- for (auto &SI : Cur->Succs)
- FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
- for (auto &PI : Cur->Preds)
- if (PI.getKind() == SDep::Anti)
- FoundPath |=
- computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
- if (FoundPath)
- Path.insert(Cur);
- return FoundPath;
-}
-
-/// Return true if Set1 is a subset of Set2.
-template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
- for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
- if (Set2.count(*I) == 0)
- return false;
- return true;
-}
-
-/// Compute the live-out registers for the instructions in a node-set.
-/// The live-out registers are those that are defined in the node-set,
-/// but not used. Except for use operands of Phis.
-static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
- NodeSet &NS) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- MachineRegisterInfo &MRI = MF.getRegInfo();
- SmallVector<RegisterMaskPair, 8> LiveOutRegs;
- SmallSet<unsigned, 4> Uses;
- for (SUnit *SU : NS) {
- const MachineInstr *MI = SU->getInstr();
- if (MI->isPHI())
- continue;
- for (const MachineOperand &MO : MI->operands())
- if (MO.isReg() && MO.isUse()) {
- Register Reg = MO.getReg();
- if (Register::isVirtualRegister(Reg))
- Uses.insert(Reg);
- else if (MRI.isAllocatable(Reg))
+ bool FoundPath = false;
+ for (auto &SI : Cur->Succs)
+ FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ for (auto &PI : Cur->Preds)
+ if (PI.getKind() == SDep::Anti)
+ FoundPath |=
+ computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
+ if (FoundPath)
+ Path.insert(Cur);
+ return FoundPath;
+}
+
+/// Return true if Set1 is a subset of Set2.
+template <class S1Ty, class S2Ty> static bool isSubset(S1Ty &Set1, S2Ty &Set2) {
+ for (typename S1Ty::iterator I = Set1.begin(), E = Set1.end(); I != E; ++I)
+ if (Set2.count(*I) == 0)
+ return false;
+ return true;
+}
+
+/// Compute the live-out registers for the instructions in a node-set.
+/// The live-out registers are those that are defined in the node-set,
+/// but not used. Except for use operands of Phis.
+static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
+ NodeSet &NS) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ SmallVector<RegisterMaskPair, 8> LiveOutRegs;
+ SmallSet<unsigned, 4> Uses;
+ for (SUnit *SU : NS) {
+ const MachineInstr *MI = SU->getInstr();
+ if (MI->isPHI())
+ continue;
+ for (const MachineOperand &MO : MI->operands())
+ if (MO.isReg() && MO.isUse()) {
+ Register Reg = MO.getReg();
+ if (Register::isVirtualRegister(Reg))
+ Uses.insert(Reg);
+ else if (MRI.isAllocatable(Reg))
for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
++Units)
- Uses.insert(*Units);
- }
- }
- for (SUnit *SU : NS)
- for (const MachineOperand &MO : SU->getInstr()->operands())
- if (MO.isReg() && MO.isDef() && !MO.isDead()) {
- Register Reg = MO.getReg();
- if (Register::isVirtualRegister(Reg)) {
- if (!Uses.count(Reg))
- LiveOutRegs.push_back(RegisterMaskPair(Reg,
- LaneBitmask::getNone()));
- } else if (MRI.isAllocatable(Reg)) {
+ Uses.insert(*Units);
+ }
+ }
+ for (SUnit *SU : NS)
+ for (const MachineOperand &MO : SU->getInstr()->operands())
+ if (MO.isReg() && MO.isDef() && !MO.isDead()) {
+ Register Reg = MO.getReg();
+ if (Register::isVirtualRegister(Reg)) {
+ if (!Uses.count(Reg))
+ LiveOutRegs.push_back(RegisterMaskPair(Reg,
+ LaneBitmask::getNone()));
+ } else if (MRI.isAllocatable(Reg)) {
for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
++Units)
- if (!Uses.count(*Units))
- LiveOutRegs.push_back(RegisterMaskPair(*Units,
- LaneBitmask::getNone()));
- }
- }
- RPTracker.addLiveRegs(LiveOutRegs);
-}
-
-/// A heuristic to filter nodes in recurrent node-sets if the register
-/// pressure of a set is too high.
-void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
- for (auto &NS : NodeSets) {
- // Skip small node-sets since they won't cause register pressure problems.
- if (NS.size() <= 2)
- continue;
- IntervalPressure RecRegPressure;
- RegPressureTracker RecRPTracker(RecRegPressure);
- RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
- computeLiveOuts(MF, RecRPTracker, NS);
- RecRPTracker.closeBottom();
-
- std::vector<SUnit *> SUnits(NS.begin(), NS.end());
- llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
- return A->NodeNum > B->NodeNum;
- });
-
- for (auto &SU : SUnits) {
- // Since we're computing the register pressure for a subset of the
- // instructions in a block, we need to set the tracker for each
- // instruction in the node-set. The tracker is set to the instruction
- // just after the one we're interested in.
- MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
- RecRPTracker.setPos(std::next(CurInstI));
-
- RegPressureDelta RPDelta;
- ArrayRef<PressureChange> CriticalPSets;
- RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
- CriticalPSets,
- RecRegPressure.MaxSetPressure);
- if (RPDelta.Excess.isValid()) {
- LLVM_DEBUG(
- dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
- << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
- << ":" << RPDelta.Excess.getUnitInc());
- NS.setExceedPressure(SU);
- break;
- }
- RecRPTracker.recede();
- }
- }
-}
-
-/// A heuristic to colocate node sets that have the same set of
-/// successors.
-void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
- unsigned Colocate = 0;
- for (int i = 0, e = NodeSets.size(); i < e; ++i) {
- NodeSet &N1 = NodeSets[i];
- SmallSetVector<SUnit *, 8> S1;
- if (N1.empty() || !succ_L(N1, S1))
- continue;
- for (int j = i + 1; j < e; ++j) {
- NodeSet &N2 = NodeSets[j];
- if (N1.compareRecMII(N2) != 0)
- continue;
- SmallSetVector<SUnit *, 8> S2;
- if (N2.empty() || !succ_L(N2, S2))
- continue;
- if (isSubset(S1, S2) && S1.size() == S2.size()) {
- N1.setColocate(++Colocate);
- N2.setColocate(Colocate);
- break;
- }
- }
- }
-}
-
-/// Check if the existing node-sets are profitable. If not, then ignore the
-/// recurrent node-sets, and attempt to schedule all nodes together. This is
-/// a heuristic. If the MII is large and all the recurrent node-sets are small,
-/// then it's best to try to schedule all instructions together instead of
-/// starting with the recurrent node-sets.
-void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
- // Look for loops with a large MII.
- if (MII < 17)
- return;
- // Check if the node-set contains only a simple add recurrence.
- for (auto &NS : NodeSets) {
- if (NS.getRecMII() > 2)
- return;
- if (NS.getMaxDepth() > MII)
- return;
- }
- NodeSets.clear();
- LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
-}
-
-/// Add the nodes that do not belong to a recurrence set into groups
-/// based upon connected componenets.
-void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
- SetVector<SUnit *> NodesAdded;
- SmallPtrSet<SUnit *, 8> Visited;
- // Add the nodes that are on a path between the previous node sets and
- // the current node set.
- for (NodeSet &I : NodeSets) {
- SmallSetVector<SUnit *, 8> N;
- // Add the nodes from the current node set to the previous node set.
- if (succ_L(I, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, NodesAdded, I, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- // Add the nodes from the previous node set to the current node set.
- N.clear();
- if (succ_L(NodesAdded, N)) {
- SetVector<SUnit *> Path;
- for (SUnit *NI : N) {
- Visited.clear();
- computePath(NI, Path, I, NodesAdded, Visited);
- }
- if (!Path.empty())
- I.insert(Path.begin(), Path.end());
- }
- NodesAdded.insert(I.begin(), I.end());
- }
-
- // Create a new node set with the connected nodes of any successor of a node
- // in a recurrent set.
- NodeSet NewSet;
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
-
- // Create a new node set with the connected nodes of any predecessor of a node
- // in a recurrent set.
- NewSet.clear();
- if (pred_L(NodesAdded, N))
- for (SUnit *I : N)
- addConnectedNodes(I, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
-
- // Create new nodes sets with the connected nodes any remaining node that
- // has no predecessor.
- for (unsigned i = 0; i < SUnits.size(); ++i) {
- SUnit *SU = &SUnits[i];
- if (NodesAdded.count(SU) == 0) {
- NewSet.clear();
- addConnectedNodes(SU, NewSet, NodesAdded);
- if (!NewSet.empty())
- NodeSets.push_back(NewSet);
- }
- }
-}
-
-/// Add the node to the set, and add all of its connected nodes to the set.
-void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
- SetVector<SUnit *> &NodesAdded) {
- NewSet.insert(SU);
- NodesAdded.insert(SU);
- for (auto &SI : SU->Succs) {
- SUnit *Successor = SI.getSUnit();
- if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
- addConnectedNodes(Successor, NewSet, NodesAdded);
- }
- for (auto &PI : SU->Preds) {
- SUnit *Predecessor = PI.getSUnit();
- if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
- addConnectedNodes(Predecessor, NewSet, NodesAdded);
- }
-}
-
-/// Return true if Set1 contains elements in Set2. The elements in common
-/// are returned in a different container.
-static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
- SmallSetVector<SUnit *, 8> &Result) {
- Result.clear();
- for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
- SUnit *SU = Set1[i];
- if (Set2.count(SU) != 0)
- Result.insert(SU);
- }
- return !Result.empty();
-}
-
-/// Merge the recurrence node sets that have the same initial node.
-void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I) {
- NodeSet &NI = *I;
- for (NodeSetType::iterator J = I + 1; J != E;) {
- NodeSet &NJ = *J;
- if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
- if (NJ.compareRecMII(NI) > 0)
- NI.setRecMII(NJ.getRecMII());
- for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
- ++NII)
- I->insert(*NII);
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
- }
-}
-
-/// Remove nodes that have been scheduled in previous NodeSets.
-void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
- for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
- ++I)
- for (NodeSetType::iterator J = I + 1; J != E;) {
- J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
-
- if (J->empty()) {
- NodeSets.erase(J);
- E = NodeSets.end();
- } else {
- ++J;
- }
- }
-}
-
-/// Compute an ordered list of the dependence graph nodes, which
-/// indicates the order that the nodes will be scheduled. This is a
-/// two-level algorithm. First, a partial order is created, which
-/// consists of a list of sets ordered from highest to lowest priority.
-void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
- SmallSetVector<SUnit *, 8> R;
- NodeOrder.clear();
-
- for (auto &Nodes : NodeSets) {
- LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
- OrderKind Order;
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
- } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
- R.insert(N.begin(), N.end());
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (succs) ");
- } else if (isIntersect(N, Nodes, R)) {
- // If some of the successors are in the existing node-set, then use the
- // top-down ordering.
- Order = TopDown;
- LLVM_DEBUG(dbgs() << " Top down (intersect) ");
- } else if (NodeSets.size() == 1) {
- for (auto &N : Nodes)
- if (N->Succs.size() == 0)
- R.insert(N);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (all) ");
- } else {
- // Find the node with the highest ASAP.
- SUnit *maxASAP = nullptr;
- for (SUnit *SU : Nodes) {
- if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
- (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
- maxASAP = SU;
- }
- R.insert(maxASAP);
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << " Bottom up (default) ");
- }
-
- while (!R.empty()) {
- if (Order == TopDown) {
- // Choose the node with the maximum height. If more than one, choose
- // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxHeight = nullptr;
- for (SUnit *I : R) {
- if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
- maxHeight = I;
- else if (getHeight(I) == getHeight(maxHeight) &&
- getZeroLatencyHeight(I) ==
- getZeroLatencyHeight(maxHeight) &&
- getMOV(I) < getMOV(maxHeight))
- maxHeight = I;
- }
- NodeOrder.insert(maxHeight);
- LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
- R.remove(maxHeight);
- for (const auto &I : maxHeight->Succs) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
+ if (!Uses.count(*Units))
+ LiveOutRegs.push_back(RegisterMaskPair(*Units,
+ LaneBitmask::getNone()));
+ }
+ }
+ RPTracker.addLiveRegs(LiveOutRegs);
+}
+
+/// A heuristic to filter nodes in recurrent node-sets if the register
+/// pressure of a set is too high.
+void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
+ for (auto &NS : NodeSets) {
+ // Skip small node-sets since they won't cause register pressure problems.
+ if (NS.size() <= 2)
+ continue;
+ IntervalPressure RecRegPressure;
+ RegPressureTracker RecRPTracker(RecRegPressure);
+ RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
+ computeLiveOuts(MF, RecRPTracker, NS);
+ RecRPTracker.closeBottom();
+
+ std::vector<SUnit *> SUnits(NS.begin(), NS.end());
+ llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
+ return A->NodeNum > B->NodeNum;
+ });
+
+ for (auto &SU : SUnits) {
+ // Since we're computing the register pressure for a subset of the
+ // instructions in a block, we need to set the tracker for each
+ // instruction in the node-set. The tracker is set to the instruction
+ // just after the one we're interested in.
+ MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
+ RecRPTracker.setPos(std::next(CurInstI));
+
+ RegPressureDelta RPDelta;
+ ArrayRef<PressureChange> CriticalPSets;
+ RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
+ CriticalPSets,
+ RecRegPressure.MaxSetPressure);
+ if (RPDelta.Excess.isValid()) {
+ LLVM_DEBUG(
+ dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
+ << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
+ << ":" << RPDelta.Excess.getUnitInc());
+ NS.setExceedPressure(SU);
+ break;
+ }
+ RecRPTracker.recede();
+ }
+ }
+}
+
+/// A heuristic to colocate node sets that have the same set of
+/// successors.
+void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
+ unsigned Colocate = 0;
+ for (int i = 0, e = NodeSets.size(); i < e; ++i) {
+ NodeSet &N1 = NodeSets[i];
+ SmallSetVector<SUnit *, 8> S1;
+ if (N1.empty() || !succ_L(N1, S1))
+ continue;
+ for (int j = i + 1; j < e; ++j) {
+ NodeSet &N2 = NodeSets[j];
+ if (N1.compareRecMII(N2) != 0)
+ continue;
+ SmallSetVector<SUnit *, 8> S2;
+ if (N2.empty() || !succ_L(N2, S2))
+ continue;
+ if (isSubset(S1, S2) && S1.size() == S2.size()) {
+ N1.setColocate(++Colocate);
+ N2.setColocate(Colocate);
+ break;
+ }
+ }
+ }
+}
+
+/// Check if the existing node-sets are profitable. If not, then ignore the
+/// recurrent node-sets, and attempt to schedule all nodes together. This is
+/// a heuristic. If the MII is large and all the recurrent node-sets are small,
+/// then it's best to try to schedule all instructions together instead of
+/// starting with the recurrent node-sets.
+void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
+ // Look for loops with a large MII.
+ if (MII < 17)
+ return;
+ // Check if the node-set contains only a simple add recurrence.
+ for (auto &NS : NodeSets) {
+ if (NS.getRecMII() > 2)
+ return;
+ if (NS.getMaxDepth() > MII)
+ return;
+ }
+ NodeSets.clear();
+ LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
+}
+
+/// Add the nodes that do not belong to a recurrence set into groups
+/// based upon connected componenets.
+void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
+ SetVector<SUnit *> NodesAdded;
+ SmallPtrSet<SUnit *, 8> Visited;
+ // Add the nodes that are on a path between the previous node sets and
+ // the current node set.
+ for (NodeSet &I : NodeSets) {
+ SmallSetVector<SUnit *, 8> N;
+ // Add the nodes from the current node set to the previous node set.
+ if (succ_L(I, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, NodesAdded, I, Visited);
+ }
+ if (!Path.empty())
+ I.insert(Path.begin(), Path.end());
+ }
+ // Add the nodes from the previous node set to the current node set.
+ N.clear();
+ if (succ_L(NodesAdded, N)) {
+ SetVector<SUnit *> Path;
+ for (SUnit *NI : N) {
+ Visited.clear();
+ computePath(NI, Path, I, NodesAdded, Visited);
+ }
+ if (!Path.empty())
+ I.insert(Path.begin(), Path.end());
+ }
+ NodesAdded.insert(I.begin(), I.end());
+ }
+
+ // Create a new node set with the connected nodes of any successor of a node
+ // in a recurrent set.
+ NodeSet NewSet;
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (!NewSet.empty())
+ NodeSets.push_back(NewSet);
+
+ // Create a new node set with the connected nodes of any predecessor of a node
+ // in a recurrent set.
+ NewSet.clear();
+ if (pred_L(NodesAdded, N))
+ for (SUnit *I : N)
+ addConnectedNodes(I, NewSet, NodesAdded);
+ if (!NewSet.empty())
+ NodeSets.push_back(NewSet);
+
+ // Create new nodes sets with the connected nodes any remaining node that
+ // has no predecessor.
+ for (unsigned i = 0; i < SUnits.size(); ++i) {
+ SUnit *SU = &SUnits[i];
+ if (NodesAdded.count(SU) == 0) {
+ NewSet.clear();
+ addConnectedNodes(SU, NewSet, NodesAdded);
+ if (!NewSet.empty())
+ NodeSets.push_back(NewSet);
+ }
+ }
+}
+
+/// Add the node to the set, and add all of its connected nodes to the set.
+void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
+ SetVector<SUnit *> &NodesAdded) {
+ NewSet.insert(SU);
+ NodesAdded.insert(SU);
+ for (auto &SI : SU->Succs) {
+ SUnit *Successor = SI.getSUnit();
+ if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
+ addConnectedNodes(Successor, NewSet, NodesAdded);
+ }
+ for (auto &PI : SU->Preds) {
+ SUnit *Predecessor = PI.getSUnit();
+ if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
+ addConnectedNodes(Predecessor, NewSet, NodesAdded);
+ }
+}
+
+/// Return true if Set1 contains elements in Set2. The elements in common
+/// are returned in a different container.
+static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
+ SmallSetVector<SUnit *, 8> &Result) {
+ Result.clear();
+ for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
+ SUnit *SU = Set1[i];
+ if (Set2.count(SU) != 0)
+ Result.insert(SU);
+ }
+ return !Result.empty();
+}
+
+/// Merge the recurrence node sets that have the same initial node.
+void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I) {
+ NodeSet &NI = *I;
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ NodeSet &NJ = *J;
+ if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
+ if (NJ.compareRecMII(NI) > 0)
+ NI.setRecMII(NJ.getRecMII());
+ for (NodeSet::iterator NII = J->begin(), ENI = J->end(); NII != ENI;
+ ++NII)
+ I->insert(*NII);
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+ }
+}
+
+/// Remove nodes that have been scheduled in previous NodeSets.
+void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
+ for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
+ ++I)
+ for (NodeSetType::iterator J = I + 1; J != E;) {
+ J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
+
+ if (J->empty()) {
+ NodeSets.erase(J);
+ E = NodeSets.end();
+ } else {
+ ++J;
+ }
+ }
+}
+
+/// Compute an ordered list of the dependence graph nodes, which
+/// indicates the order that the nodes will be scheduled. This is a
+/// two-level algorithm. First, a partial order is created, which
+/// consists of a list of sets ordered from highest to lowest priority.
+void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
+ SmallSetVector<SUnit *, 8> R;
+ NodeOrder.clear();
+
+ for (auto &Nodes : NodeSets) {
+ LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
+ OrderKind Order;
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = BottomUp;
+ LLVM_DEBUG(dbgs() << " Bottom up (preds) ");
+ } else if (succ_L(NodeOrder, N) && isSubset(N, Nodes)) {
+ R.insert(N.begin(), N.end());
+ Order = TopDown;
+ LLVM_DEBUG(dbgs() << " Top down (succs) ");
+ } else if (isIntersect(N, Nodes, R)) {
+ // If some of the successors are in the existing node-set, then use the
+ // top-down ordering.
+ Order = TopDown;
+ LLVM_DEBUG(dbgs() << " Top down (intersect) ");
+ } else if (NodeSets.size() == 1) {
+ for (auto &N : Nodes)
+ if (N->Succs.size() == 0)
+ R.insert(N);
+ Order = BottomUp;
+ LLVM_DEBUG(dbgs() << " Bottom up (all) ");
+ } else {
+ // Find the node with the highest ASAP.
+ SUnit *maxASAP = nullptr;
+ for (SUnit *SU : Nodes) {
+ if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
+ (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
+ maxASAP = SU;
+ }
+ R.insert(maxASAP);
+ Order = BottomUp;
+ LLVM_DEBUG(dbgs() << " Bottom up (default) ");
+ }
+
+ while (!R.empty()) {
+ if (Order == TopDown) {
+ // Choose the node with the maximum height. If more than one, choose
+ // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
+ // choose the node with the lowest MOV.
+ while (!R.empty()) {
+ SUnit *maxHeight = nullptr;
+ for (SUnit *I : R) {
+ if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
+ maxHeight = I;
+ else if (getHeight(I) == getHeight(maxHeight) &&
+ getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
+ maxHeight = I;
+ else if (getHeight(I) == getHeight(maxHeight) &&
+ getZeroLatencyHeight(I) ==
+ getZeroLatencyHeight(maxHeight) &&
+ getMOV(I) < getMOV(maxHeight))
+ maxHeight = I;
+ }
+ NodeOrder.insert(maxHeight);
+ LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
+ R.remove(maxHeight);
+ for (const auto &I : maxHeight->Succs) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
if (NodeOrder.contains(I.getSUnit()))
- continue;
- if (ignoreDependence(I, false))
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxHeight->Preds) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
+ continue;
+ if (ignoreDependence(I, false))
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxHeight->Preds) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = BottomUp;
- LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
- SmallSetVector<SUnit *, 8> N;
- if (pred_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- } else {
- // Choose the node with the maximum depth. If more than one, choose
- // the node with the maximum ZeroLatencyDepth. If still more than one,
- // choose the node with the lowest MOV.
- while (!R.empty()) {
- SUnit *maxDepth = nullptr;
- for (SUnit *I : R) {
- if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
- maxDepth = I;
- else if (getDepth(I) == getDepth(maxDepth) &&
- getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
- getMOV(I) < getMOV(maxDepth))
- maxDepth = I;
- }
- NodeOrder.insert(maxDepth);
- LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
- R.remove(maxDepth);
- if (Nodes.isExceedSU(maxDepth)) {
- Order = TopDown;
- R.clear();
- R.insert(Nodes.getNode(0));
- break;
- }
- for (const auto &I : maxDepth->Preds) {
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = BottomUp;
+ LLVM_DEBUG(dbgs() << "\n Switching order to bottom up ");
+ SmallSetVector<SUnit *, 8> N;
+ if (pred_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ } else {
+ // Choose the node with the maximum depth. If more than one, choose
+ // the node with the maximum ZeroLatencyDepth. If still more than one,
+ // choose the node with the lowest MOV.
+ while (!R.empty()) {
+ SUnit *maxDepth = nullptr;
+ for (SUnit *I : R) {
+ if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
+ maxDepth = I;
+ else if (getDepth(I) == getDepth(maxDepth) &&
+ getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
+ maxDepth = I;
+ else if (getDepth(I) == getDepth(maxDepth) &&
+ getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
+ getMOV(I) < getMOV(maxDepth))
+ maxDepth = I;
+ }
+ NodeOrder.insert(maxDepth);
+ LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
+ R.remove(maxDepth);
+ if (Nodes.isExceedSU(maxDepth)) {
+ Order = TopDown;
+ R.clear();
+ R.insert(Nodes.getNode(0));
+ break;
+ }
+ for (const auto &I : maxDepth->Preds) {
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- // Back-edges are predecessors with an anti-dependence.
- for (const auto &I : maxDepth->Succs) {
- if (I.getKind() != SDep::Anti)
- continue;
- if (Nodes.count(I.getSUnit()) == 0)
- continue;
+ continue;
+ R.insert(I.getSUnit());
+ }
+ // Back-edges are predecessors with an anti-dependence.
+ for (const auto &I : maxDepth->Succs) {
+ if (I.getKind() != SDep::Anti)
+ continue;
+ if (Nodes.count(I.getSUnit()) == 0)
+ continue;
if (NodeOrder.contains(I.getSUnit()))
- continue;
- R.insert(I.getSUnit());
- }
- }
- Order = TopDown;
- LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
- SmallSetVector<SUnit *, 8> N;
- if (succ_L(NodeOrder, N, &Nodes))
- R.insert(N.begin(), N.end());
- }
- }
- LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
- }
-
- LLVM_DEBUG({
- dbgs() << "Node order: ";
- for (SUnit *I : NodeOrder)
- dbgs() << " " << I->NodeNum << " ";
- dbgs() << "\n";
- });
-}
-
-/// Process the nodes in the computed order and create the pipelined schedule
-/// of the instructions, if possible. Return true if a schedule is found.
-bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
-
- if (NodeOrder.empty()){
- LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
- return false;
- }
-
- bool scheduleFound = false;
- unsigned II = 0;
- // Keep increasing II until a valid schedule is found.
- for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
- Schedule.reset();
- Schedule.setInitiationInterval(II);
- LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
-
- SetVector<SUnit *>::iterator NI = NodeOrder.begin();
- SetVector<SUnit *>::iterator NE = NodeOrder.end();
- do {
- SUnit *SU = *NI;
-
- // Compute the schedule time for the instruction, which is based
- // upon the scheduled time for any predecessors/successors.
- int EarlyStart = INT_MIN;
- int LateStart = INT_MAX;
- // These values are set when the size of the schedule window is limited
- // due to chain dependences.
- int SchedEnd = INT_MAX;
- int SchedStart = INT_MIN;
- Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
- II, this);
- LLVM_DEBUG({
- dbgs() << "\n";
- dbgs() << "Inst (" << SU->NodeNum << ") ";
- SU->getInstr()->dump();
- dbgs() << "\n";
- });
- LLVM_DEBUG({
- dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
- LateStart, SchedEnd, SchedStart);
- });
-
- if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
- SchedStart > LateStart)
- scheduleFound = false;
- else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
- SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
- SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
- scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
- } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
- SchedEnd =
- std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
- // When scheduling a Phi it is better to start at the late cycle and go
- // backwards. The default order may insert the Phi too far away from
- // its first dependence.
- if (SU->getInstr()->isPHI())
- scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
- else
- scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
- } else {
- int FirstCycle = Schedule.getFirstCycle();
- scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
- FirstCycle + getASAP(SU) + II - 1, II);
- }
- // Even if we find a schedule, make sure the schedule doesn't exceed the
- // allowable number of stages. We keep trying if this happens.
- if (scheduleFound)
- if (SwpMaxStages > -1 &&
- Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
- scheduleFound = false;
-
- LLVM_DEBUG({
- if (!scheduleFound)
- dbgs() << "\tCan't schedule\n";
- });
- } while (++NI != NE && scheduleFound);
-
- // If a schedule is found, check if it is a valid schedule too.
- if (scheduleFound)
- scheduleFound = Schedule.isValidSchedule(this);
- }
-
- LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
- << ")\n");
-
- if (scheduleFound) {
- Schedule.finalizeSchedule(this);
- Pass.ORE->emit([&]() {
- return MachineOptimizationRemarkAnalysis(
- DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
- << "Schedule found with Initiation Interval: " << ore::NV("II", II)
- << ", MaxStageCount: "
- << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
- });
- } else
- Schedule.reset();
-
- return scheduleFound && Schedule.getMaxStageCount() > 0;
-}
-
-/// Return true if we can compute the amount the instruction changes
-/// during each iteration. Set Delta to the amount of the change.
-bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- const MachineOperand *BaseOp;
- int64_t Offset;
- bool OffsetIsScalable;
- if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
- return false;
-
- // FIXME: This algorithm assumes instructions have fixed-size offsets.
- if (OffsetIsScalable)
- return false;
-
- if (!BaseOp->isReg())
- return false;
-
- Register BaseReg = BaseOp->getReg();
-
- MachineRegisterInfo &MRI = MF.getRegInfo();
- // Check if there is a Phi. If so, get the definition in the loop.
- MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
- if (BaseDef && BaseDef->isPHI()) {
- BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
- BaseDef = MRI.getVRegDef(BaseReg);
- }
- if (!BaseDef)
- return false;
-
- int D = 0;
- if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
- return false;
-
- Delta = D;
- return true;
-}
-
-/// Check if we can change the instruction to use an offset value from the
-/// previous iteration. If so, return true and set the base and offset values
-/// so that we can rewrite the load, if necessary.
-/// v1 = Phi(v0, v3)
-/// v2 = load v1, 0
-/// v3 = post_store v1, 4, x
-/// This function enables the load to be rewritten as v2 = load v3, 4.
-bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
- unsigned &BasePos,
- unsigned &OffsetPos,
- unsigned &NewBase,
- int64_t &Offset) {
- // Get the load instruction.
- if (TII->isPostIncrement(*MI))
- return false;
- unsigned BasePosLd, OffsetPosLd;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
- return false;
- Register BaseReg = MI->getOperand(BasePosLd).getReg();
-
- // Look for the Phi instruction.
- MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
- MachineInstr *Phi = MRI.getVRegDef(BaseReg);
- if (!Phi || !Phi->isPHI())
- return false;
- // Get the register defined in the loop block.
- unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
- if (!PrevReg)
- return false;
-
- // Check for the post-increment load/store instruction.
- MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
- if (!PrevDef || PrevDef == MI)
- return false;
-
- if (!TII->isPostIncrement(*PrevDef))
- return false;
-
- unsigned BasePos1 = 0, OffsetPos1 = 0;
- if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
- return false;
-
- // Make sure that the instructions do not access the same memory location in
- // the next iteration.
- int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
- int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
- bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
- MF.DeleteMachineInstr(NewMI);
- if (!Disjoint)
- return false;
-
- // Set the return value once we determine that we return true.
- BasePos = BasePosLd;
- OffsetPos = OffsetPosLd;
- NewBase = PrevReg;
- Offset = StoreOffset;
- return true;
-}
-
-/// Apply changes to the instruction if needed. The changes are need
-/// to improve the scheduling and depend up on the final schedule.
-void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
- SMSchedule &Schedule) {
- SUnit *SU = getSUnit(MI);
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- std::pair<unsigned, int64_t> RegAndOffset = It->second;
- unsigned BasePos, OffsetPos;
- if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- return;
- Register BaseReg = MI->getOperand(BasePos).getReg();
- MachineInstr *LoopDef = findDefInLoop(BaseReg);
- int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
- int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
- int BaseStageNum = Schedule.stageScheduled(SU);
- int BaseCycleNum = Schedule.cycleScheduled(SU);
- if (BaseStageNum < DefStageNum) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- int OffsetDiff = DefStageNum - BaseStageNum;
- if (DefCycleNum < BaseCycleNum) {
- NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
- if (OffsetDiff > 0)
- --OffsetDiff;
- }
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs[MI] = NewMI;
- }
- }
-}
-
-/// Return the instruction in the loop that defines the register.
-/// If the definition is a Phi, then follow the Phi operand to
-/// the instruction in the loop.
+ continue;
+ R.insert(I.getSUnit());
+ }
+ }
+ Order = TopDown;
+ LLVM_DEBUG(dbgs() << "\n Switching order to top down ");
+ SmallSetVector<SUnit *, 8> N;
+ if (succ_L(NodeOrder, N, &Nodes))
+ R.insert(N.begin(), N.end());
+ }
+ }
+ LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
+ }
+
+ LLVM_DEBUG({
+ dbgs() << "Node order: ";
+ for (SUnit *I : NodeOrder)
+ dbgs() << " " << I->NodeNum << " ";
+ dbgs() << "\n";
+ });
+}
+
+/// Process the nodes in the computed order and create the pipelined schedule
+/// of the instructions, if possible. Return true if a schedule is found.
+bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
+
+ if (NodeOrder.empty()){
+ LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
+ return false;
+ }
+
+ bool scheduleFound = false;
+ unsigned II = 0;
+ // Keep increasing II until a valid schedule is found.
+ for (II = MII; II <= MAX_II && !scheduleFound; ++II) {
+ Schedule.reset();
+ Schedule.setInitiationInterval(II);
+ LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
+
+ SetVector<SUnit *>::iterator NI = NodeOrder.begin();
+ SetVector<SUnit *>::iterator NE = NodeOrder.end();
+ do {
+ SUnit *SU = *NI;
+
+ // Compute the schedule time for the instruction, which is based
+ // upon the scheduled time for any predecessors/successors.
+ int EarlyStart = INT_MIN;
+ int LateStart = INT_MAX;
+ // These values are set when the size of the schedule window is limited
+ // due to chain dependences.
+ int SchedEnd = INT_MAX;
+ int SchedStart = INT_MIN;
+ Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
+ II, this);
+ LLVM_DEBUG({
+ dbgs() << "\n";
+ dbgs() << "Inst (" << SU->NodeNum << ") ";
+ SU->getInstr()->dump();
+ dbgs() << "\n";
+ });
+ LLVM_DEBUG({
+ dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
+ LateStart, SchedEnd, SchedStart);
+ });
+
+ if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
+ SchedStart > LateStart)
+ scheduleFound = false;
+ else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
+ SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
+ SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
+ scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
+ } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
+ SchedEnd =
+ std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
+ // When scheduling a Phi it is better to start at the late cycle and go
+ // backwards. The default order may insert the Phi too far away from
+ // its first dependence.
+ if (SU->getInstr()->isPHI())
+ scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
+ else
+ scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
+ } else {
+ int FirstCycle = Schedule.getFirstCycle();
+ scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
+ FirstCycle + getASAP(SU) + II - 1, II);
+ }
+ // Even if we find a schedule, make sure the schedule doesn't exceed the
+ // allowable number of stages. We keep trying if this happens.
+ if (scheduleFound)
+ if (SwpMaxStages > -1 &&
+ Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
+ scheduleFound = false;
+
+ LLVM_DEBUG({
+ if (!scheduleFound)
+ dbgs() << "\tCan't schedule\n";
+ });
+ } while (++NI != NE && scheduleFound);
+
+ // If a schedule is found, check if it is a valid schedule too.
+ if (scheduleFound)
+ scheduleFound = Schedule.isValidSchedule(this);
+ }
+
+ LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound << " (II=" << II
+ << ")\n");
+
+ if (scheduleFound) {
+ Schedule.finalizeSchedule(this);
+ Pass.ORE->emit([&]() {
+ return MachineOptimizationRemarkAnalysis(
+ DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
+ << "Schedule found with Initiation Interval: " << ore::NV("II", II)
+ << ", MaxStageCount: "
+ << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
+ });
+ } else
+ Schedule.reset();
+
+ return scheduleFound && Schedule.getMaxStageCount() > 0;
+}
+
+/// Return true if we can compute the amount the instruction changes
+/// during each iteration. Set Delta to the amount of the change.
+bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ const MachineOperand *BaseOp;
+ int64_t Offset;
+ bool OffsetIsScalable;
+ if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
+ return false;
+
+ // FIXME: This algorithm assumes instructions have fixed-size offsets.
+ if (OffsetIsScalable)
+ return false;
+
+ if (!BaseOp->isReg())
+ return false;
+
+ Register BaseReg = BaseOp->getReg();
+
+ MachineRegisterInfo &MRI = MF.getRegInfo();
+ // Check if there is a Phi. If so, get the definition in the loop.
+ MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
+ if (BaseDef && BaseDef->isPHI()) {
+ BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
+ BaseDef = MRI.getVRegDef(BaseReg);
+ }
+ if (!BaseDef)
+ return false;
+
+ int D = 0;
+ if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
+ return false;
+
+ Delta = D;
+ return true;
+}
+
+/// Check if we can change the instruction to use an offset value from the
+/// previous iteration. If so, return true and set the base and offset values
+/// so that we can rewrite the load, if necessary.
+/// v1 = Phi(v0, v3)
+/// v2 = load v1, 0
+/// v3 = post_store v1, 4, x
+/// This function enables the load to be rewritten as v2 = load v3, 4.
+bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
+ unsigned &BasePos,
+ unsigned &OffsetPos,
+ unsigned &NewBase,
+ int64_t &Offset) {
+ // Get the load instruction.
+ if (TII->isPostIncrement(*MI))
+ return false;
+ unsigned BasePosLd, OffsetPosLd;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
+ return false;
+ Register BaseReg = MI->getOperand(BasePosLd).getReg();
+
+ // Look for the Phi instruction.
+ MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
+ MachineInstr *Phi = MRI.getVRegDef(BaseReg);
+ if (!Phi || !Phi->isPHI())
+ return false;
+ // Get the register defined in the loop block.
+ unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
+ if (!PrevReg)
+ return false;
+
+ // Check for the post-increment load/store instruction.
+ MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
+ if (!PrevDef || PrevDef == MI)
+ return false;
+
+ if (!TII->isPostIncrement(*PrevDef))
+ return false;
+
+ unsigned BasePos1 = 0, OffsetPos1 = 0;
+ if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
+ return false;
+
+ // Make sure that the instructions do not access the same memory location in
+ // the next iteration.
+ int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
+ int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
+ MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
+ bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
+ MF.DeleteMachineInstr(NewMI);
+ if (!Disjoint)
+ return false;
+
+ // Set the return value once we determine that we return true.
+ BasePos = BasePosLd;
+ OffsetPos = OffsetPosLd;
+ NewBase = PrevReg;
+ Offset = StoreOffset;
+ return true;
+}
+
+/// Apply changes to the instruction if needed. The changes are need
+/// to improve the scheduling and depend up on the final schedule.
+void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
+ SMSchedule &Schedule) {
+ SUnit *SU = getSUnit(MI);
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end()) {
+ std::pair<unsigned, int64_t> RegAndOffset = It->second;
+ unsigned BasePos, OffsetPos;
+ if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ return;
+ Register BaseReg = MI->getOperand(BasePos).getReg();
+ MachineInstr *LoopDef = findDefInLoop(BaseReg);
+ int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
+ int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
+ int BaseStageNum = Schedule.stageScheduled(SU);
+ int BaseCycleNum = Schedule.cycleScheduled(SU);
+ if (BaseStageNum < DefStageNum) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ int OffsetDiff = DefStageNum - BaseStageNum;
+ if (DefCycleNum < BaseCycleNum) {
+ NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
+ if (OffsetDiff > 0)
+ --OffsetDiff;
+ }
+ int64_t NewOffset =
+ MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ SU->setInstr(NewMI);
+ MISUnitMap[NewMI] = SU;
+ NewMIs[MI] = NewMI;
+ }
+ }
+}
+
+/// Return the instruction in the loop that defines the register.
+/// If the definition is a Phi, then follow the Phi operand to
+/// the instruction in the loop.
MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
- SmallPtrSet<MachineInstr *, 8> Visited;
- MachineInstr *Def = MRI.getVRegDef(Reg);
- while (Def->isPHI()) {
- if (!Visited.insert(Def).second)
- break;
- for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
- if (Def->getOperand(i + 1).getMBB() == BB) {
- Def = MRI.getVRegDef(Def->getOperand(i).getReg());
- break;
- }
- }
- return Def;
-}
-
-/// Return true for an order or output dependence that is loop carried
-/// potentially. A dependence is loop carried if the destination defines a valu
-/// that may be used or defined by the source in a subsequent iteration.
-bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
- bool isSucc) {
- if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
- Dep.isArtificial())
- return false;
-
- if (!SwpPruneLoopCarried)
- return true;
-
- if (Dep.getKind() == SDep::Output)
- return true;
-
- MachineInstr *SI = Source->getInstr();
- MachineInstr *DI = Dep.getSUnit()->getInstr();
- if (!isSucc)
- std::swap(SI, DI);
- assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
-
- // Assume ordered loads and stores may have a loop carried dependence.
- if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
- SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
- SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
- return true;
-
- // Only chain dependences between a load and store can be loop carried.
- if (!DI->mayStore() || !SI->mayLoad())
- return false;
-
- unsigned DeltaS, DeltaD;
- if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
- return true;
-
- const MachineOperand *BaseOpS, *BaseOpD;
- int64_t OffsetS, OffsetD;
- bool OffsetSIsScalable, OffsetDIsScalable;
- const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
- if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
- TRI) ||
- !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
- TRI))
- return true;
-
- assert(!OffsetSIsScalable && !OffsetDIsScalable &&
- "Expected offsets to be byte offsets");
-
- if (!BaseOpS->isIdenticalTo(*BaseOpD))
- return true;
-
- // Check that the base register is incremented by a constant value for each
- // iteration.
- MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
- if (!Def || !Def->isPHI())
- return true;
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(*Def, BB, InitVal, LoopVal);
- MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
- int D = 0;
- if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
- return true;
-
- uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
- uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
-
- // This is the main test, which checks the offset values and the loop
- // increment value to determine if the accesses may be loop carried.
- if (AccessSizeS == MemoryLocation::UnknownSize ||
- AccessSizeD == MemoryLocation::UnknownSize)
- return true;
-
- if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
- return true;
-
- return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
-}
-
-void SwingSchedulerDAG::postprocessDAG() {
- for (auto &M : Mutations)
- M->apply(this);
-}
-
-/// Try to schedule the node at the specified StartCycle and continue
-/// until the node is schedule or the EndCycle is reached. This function
-/// returns true if the node is scheduled. This routine may search either
-/// forward or backward for a place to insert the instruction based upon
-/// the relative values of StartCycle and EndCycle.
-bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
- bool forward = true;
- LLVM_DEBUG({
- dbgs() << "Trying to insert node between " << StartCycle << " and "
- << EndCycle << " II: " << II << "\n";
- });
- if (StartCycle > EndCycle)
- forward = false;
-
- // The terminating condition depends on the direction.
- int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
- for (int curCycle = StartCycle; curCycle != termCycle;
- forward ? ++curCycle : --curCycle) {
-
- // Add the already scheduled instructions at the specified cycle to the
- // DFA.
- ProcItinResources.clearResources();
- for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
- checkCycle <= LastCycle; checkCycle += II) {
- std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
-
- for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
- E = cycleInstrs.end();
- I != E; ++I) {
- if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
- continue;
- assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
- "These instructions have already been scheduled.");
- ProcItinResources.reserveResources(*(*I)->getInstr());
- }
- }
- if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
- ProcItinResources.canReserveResources(*SU->getInstr())) {
- LLVM_DEBUG({
- dbgs() << "\tinsert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
-
- ScheduledInstrs[curCycle].push_back(SU);
- InstrToCycle.insert(std::make_pair(SU, curCycle));
- if (curCycle > LastCycle)
- LastCycle = curCycle;
- if (curCycle < FirstCycle)
- FirstCycle = curCycle;
- return true;
- }
- LLVM_DEBUG({
- dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
- SU->getInstr()->dump();
- });
- }
- return false;
-}
-
-// Return the cycle of the earliest scheduled instruction in the chain.
-int SMSchedule::earliestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int EarlyCycle = INT_MAX;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *PrevSU = Cur.getSUnit();
- if (Visited.count(PrevSU))
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
- if (it == InstrToCycle.end())
- continue;
- EarlyCycle = std::min(EarlyCycle, it->second);
- for (const auto &PI : PrevSU->Preds)
- if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
- Worklist.push_back(PI);
- Visited.insert(PrevSU);
- }
- return EarlyCycle;
-}
-
-// Return the cycle of the latest scheduled instruction in the chain.
-int SMSchedule::latestCycleInChain(const SDep &Dep) {
- SmallPtrSet<SUnit *, 8> Visited;
- SmallVector<SDep, 8> Worklist;
- Worklist.push_back(Dep);
- int LateCycle = INT_MIN;
- while (!Worklist.empty()) {
- const SDep &Cur = Worklist.pop_back_val();
- SUnit *SuccSU = Cur.getSUnit();
- if (Visited.count(SuccSU))
- continue;
- std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
- if (it == InstrToCycle.end())
- continue;
- LateCycle = std::max(LateCycle, it->second);
- for (const auto &SI : SuccSU->Succs)
- if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
- Worklist.push_back(SI);
- Visited.insert(SuccSU);
- }
- return LateCycle;
-}
-
-/// If an instruction has a use that spans multiple iterations, then
-/// return true. These instructions are characterized by having a back-ege
-/// to a Phi, which contains a reference to another Phi.
-static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
- for (auto &P : SU->Preds)
- if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
- for (auto &S : P.getSUnit()->Succs)
- if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
- return P.getSUnit();
- return nullptr;
-}
-
-/// Compute the scheduling start slot for the instruction. The start slot
-/// depends on any predecessor or successor nodes scheduled already.
-void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
- int *MinEnd, int *MaxStart, int II,
- SwingSchedulerDAG *DAG) {
- // Iterate over each instruction that has been scheduled already. The start
- // slot computation depends on whether the previously scheduled instruction
- // is a predecessor or successor of the specified instruction.
- for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
-
- // Iterate over each instruction in the current cycle.
- for (SUnit *I : getInstructions(cycle)) {
- // Because we're processing a DAG for the dependences, we recognize
- // the back-edge in recurrences by anti dependences.
- for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
- const SDep &Dep = SU->Preds[i];
- if (Dep.getSUnit() == I) {
- if (!DAG->isBackedge(SU, Dep)) {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- if (DAG->isLoopCarriedDep(SU, Dep, false)) {
- int End = earliestCycleInChain(Dep) + (II - 1);
- *MinEnd = std::min(*MinEnd, End);
- }
- } else {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- }
- }
- // For instruction that requires multiple iterations, make sure that
- // the dependent instruction is not scheduled past the definition.
- SUnit *BE = multipleIterations(I, DAG);
- if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
- !SU->isPred(I))
- *MinLateStart = std::min(*MinLateStart, cycle);
- }
- for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
- if (SU->Succs[i].getSUnit() == I) {
- const SDep &Dep = SU->Succs[i];
- if (!DAG->isBackedge(SU, Dep)) {
- int LateStart = cycle - Dep.getLatency() +
- DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
- *MinLateStart = std::min(*MinLateStart, LateStart);
- if (DAG->isLoopCarriedDep(SU, Dep)) {
- int Start = latestCycleInChain(Dep) + 1 - II;
- *MaxStart = std::max(*MaxStart, Start);
- }
- } else {
- int EarlyStart = cycle + Dep.getLatency() -
- DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
- *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
- }
- }
- }
- }
- }
-}
-
-/// Order the instructions within a cycle so that the definitions occur
-/// before the uses. Returns true if the instruction is added to the start
-/// of the list, or false if added to the end.
-void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
- std::deque<SUnit *> &Insts) {
- MachineInstr *MI = SU->getInstr();
- bool OrderBeforeUse = false;
- bool OrderAfterDef = false;
- bool OrderBeforeDef = false;
- unsigned MoveDef = 0;
- unsigned MoveUse = 0;
- int StageInst1 = stageScheduled(SU);
-
- unsigned Pos = 0;
- for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
- ++I, ++Pos) {
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- MachineOperand &MO = MI->getOperand(i);
- if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
- continue;
-
- Register Reg = MO.getReg();
- unsigned BasePos, OffsetPos;
- if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
- if (MI->getOperand(BasePos).getReg() == Reg)
- if (unsigned NewReg = SSD->getInstrBaseReg(SU))
- Reg = NewReg;
- bool Reads, Writes;
- std::tie(Reads, Writes) =
- (*I)->getInstr()->readsWritesVirtualRegister(Reg);
- if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
- // Add the instruction after the scheduled instruction.
- OrderAfterDef = true;
- MoveDef = Pos;
- } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
- if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- if (MoveUse != 0) {
- OrderAfterDef = true;
- MoveDef = Pos - 1;
- }
- } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
- // Add the instruction before the scheduled instruction.
- OrderBeforeUse = true;
- if (MoveUse == 0)
- MoveUse = Pos;
- } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
- isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
- if (MoveUse == 0) {
- OrderBeforeDef = true;
- MoveUse = Pos;
- }
- }
- }
- // Check for order dependences between instructions. Make sure the source
- // is ordered before the destination.
- for (auto &S : SU->Succs) {
- if (S.getSUnit() != *I)
- continue;
- if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if (Pos < MoveUse)
- MoveUse = Pos;
- }
- // We did not handle HW dependences in previous for loop,
- // and we normally set Latency = 0 for Anti deps,
- // so may have nodes in same cycle with Anti denpendent on HW regs.
- else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
- OrderBeforeUse = true;
- if ((MoveUse == 0) || (Pos < MoveUse))
- MoveUse = Pos;
- }
- }
- for (auto &P : SU->Preds) {
- if (P.getSUnit() != *I)
- continue;
- if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
- OrderAfterDef = true;
- MoveDef = Pos;
- }
- }
- }
-
- // A circular dependence.
- if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
- OrderBeforeUse = false;
-
- // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
- // to a loop-carried dependence.
- if (OrderBeforeDef)
- OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
-
- // The uncommon case when the instruction order needs to be updated because
- // there is both a use and def.
- if (OrderBeforeUse && OrderAfterDef) {
- SUnit *UseSU = Insts.at(MoveUse);
- SUnit *DefSU = Insts.at(MoveDef);
- if (MoveUse > MoveDef) {
- Insts.erase(Insts.begin() + MoveUse);
- Insts.erase(Insts.begin() + MoveDef);
- } else {
- Insts.erase(Insts.begin() + MoveDef);
- Insts.erase(Insts.begin() + MoveUse);
- }
- orderDependence(SSD, UseSU, Insts);
- orderDependence(SSD, SU, Insts);
- orderDependence(SSD, DefSU, Insts);
- return;
- }
- // Put the new instruction first if there is a use in the list. Otherwise,
- // put it at the end of the list.
- if (OrderBeforeUse)
- Insts.push_front(SU);
- else
- Insts.push_back(SU);
-}
-
-/// Return true if the scheduled Phi has a loop carried operand.
-bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
- if (!Phi.isPHI())
- return false;
- assert(Phi.isPHI() && "Expecting a Phi.");
- SUnit *DefSU = SSD->getSUnit(&Phi);
- unsigned DefCycle = cycleScheduled(DefSU);
- int DefStage = stageScheduled(DefSU);
-
- unsigned InitVal = 0;
- unsigned LoopVal = 0;
- getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
- SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
- if (!UseSU)
- return true;
- if (UseSU->getInstr()->isPHI())
- return true;
- unsigned LoopCycle = cycleScheduled(UseSU);
- int LoopStage = stageScheduled(UseSU);
- return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
-}
-
-/// Return true if the instruction is a definition that is loop carried
-/// and defines the use on the next iteration.
-/// v1 = phi(v2, v3)
-/// (Def) v3 = op v1
-/// (MO) = v1
-/// If MO appears before Def, then then v1 and v3 may get assigned to the same
-/// register.
-bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
- MachineInstr *Def, MachineOperand &MO) {
- if (!MO.isReg())
- return false;
- if (Def->isPHI())
- return false;
- MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
- if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
- return false;
- if (!isLoopCarried(SSD, *Phi))
- return false;
- unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
- for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
- MachineOperand &DMO = Def->getOperand(i);
- if (!DMO.isReg() || !DMO.isDef())
- continue;
- if (DMO.getReg() == LoopReg)
- return true;
- }
- return false;
-}
-
-// Check if the generated schedule is valid. This function checks if
-// an instruction that uses a physical register is scheduled in a
-// different stage than the definition. The pipeliner does not handle
-// physical register values that may cross a basic block boundary.
-bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
- for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
- SUnit &SU = SSD->SUnits[i];
- if (!SU.hasPhysRegDefs)
- continue;
- int StageDef = stageScheduled(&SU);
- assert(StageDef != -1 && "Instruction should have been scheduled.");
- for (auto &SI : SU.Succs)
- if (SI.isAssignedRegDep())
- if (Register::isPhysicalRegister(SI.getReg()))
- if (stageScheduled(SI.getSUnit()) != StageDef)
- return false;
- }
- return true;
-}
-
-/// A property of the node order in swing-modulo-scheduling is
-/// that for nodes outside circuits the following holds:
-/// none of them is scheduled after both a successor and a
-/// predecessor.
-/// The method below checks whether the property is met.
-/// If not, debug information is printed and statistics information updated.
-/// Note that we do not use an assert statement.
-/// The reason is that although an invalid node oder may prevent
-/// the pipeliner from finding a pipelined schedule for arbitrary II,
-/// it does not lead to the generation of incorrect code.
-void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
-
- // a sorted vector that maps each SUnit to its index in the NodeOrder
- typedef std::pair<SUnit *, unsigned> UnitIndex;
- std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
-
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
- Indices.push_back(std::make_pair(NodeOrder[i], i));
-
- auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
- return std::get<0>(i1) < std::get<0>(i2);
- };
-
- // sort, so that we can perform a binary search
- llvm::sort(Indices, CompareKey);
-
- bool Valid = true;
- (void)Valid;
- // for each SUnit in the NodeOrder, check whether
- // it appears after both a successor and a predecessor
- // of the SUnit. If this is the case, and the SUnit
- // is not part of circuit, then the NodeOrder is not
- // valid.
- for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
- SUnit *SU = NodeOrder[i];
- unsigned Index = i;
-
- bool PredBefore = false;
- bool SuccBefore = false;
-
- SUnit *Succ;
- SUnit *Pred;
- (void)Succ;
- (void)Pred;
-
- for (SDep &PredEdge : SU->Preds) {
- SUnit *PredSU = PredEdge.getSUnit();
- unsigned PredIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
- if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
- PredBefore = true;
- Pred = PredSU;
- break;
- }
- }
-
- for (SDep &SuccEdge : SU->Succs) {
- SUnit *SuccSU = SuccEdge.getSUnit();
- // Do not process a boundary node, it was not included in NodeOrder,
- // hence not in Indices either, call to std::lower_bound() below will
- // return Indices.end().
- if (SuccSU->isBoundaryNode())
- continue;
- unsigned SuccIndex = std::get<1>(
- *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
- if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
- SuccBefore = true;
- Succ = SuccSU;
- break;
- }
- }
-
- if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
- // instructions in circuits are allowed to be scheduled
- // after both a successor and predecessor.
- bool InCircuit = llvm::any_of(
- Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
- if (InCircuit)
- LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
- else {
- Valid = false;
- NumNodeOrderIssues++;
- LLVM_DEBUG(dbgs() << "Predecessor ";);
- }
- LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
- << " are scheduled before node " << SU->NodeNum
- << "\n";);
- }
- }
-
- LLVM_DEBUG({
- if (!Valid)
- dbgs() << "Invalid node order found!\n";
- });
-}
-
-/// Attempt to fix the degenerate cases when the instruction serialization
-/// causes the register lifetimes to overlap. For example,
-/// p' = store_pi(p, b)
-/// = load p, offset
-/// In this case p and p' overlap, which means that two registers are needed.
-/// Instead, this function changes the load to use p' and updates the offset.
-void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
- unsigned OverlapReg = 0;
- unsigned NewBaseReg = 0;
- for (SUnit *SU : Instrs) {
- MachineInstr *MI = SU->getInstr();
- for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
- const MachineOperand &MO = MI->getOperand(i);
- // Look for an instruction that uses p. The instruction occurs in the
- // same cycle but occurs later in the serialized order.
- if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
- // Check that the instruction appears in the InstrChanges structure,
- // which contains instructions that can have the offset updated.
- DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
- InstrChanges.find(SU);
- if (It != InstrChanges.end()) {
- unsigned BasePos, OffsetPos;
- // Update the base register and adjust the offset.
- if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
- MachineInstr *NewMI = MF.CloneMachineInstr(MI);
- NewMI->getOperand(BasePos).setReg(NewBaseReg);
- int64_t NewOffset =
- MI->getOperand(OffsetPos).getImm() - It->second.second;
- NewMI->getOperand(OffsetPos).setImm(NewOffset);
- SU->setInstr(NewMI);
- MISUnitMap[NewMI] = SU;
- NewMIs[MI] = NewMI;
- }
- }
- OverlapReg = 0;
- NewBaseReg = 0;
- break;
- }
- // Look for an instruction of the form p' = op(p), which uses and defines
- // two virtual registers that get allocated to the same physical register.
- unsigned TiedUseIdx = 0;
- if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
- // OverlapReg is p in the example above.
- OverlapReg = MI->getOperand(TiedUseIdx).getReg();
- // NewBaseReg is p' in the example above.
- NewBaseReg = MI->getOperand(i).getReg();
- break;
- }
- }
- }
-}
-
-/// After the schedule has been formed, call this function to combine
-/// the instructions from the different stages/cycles. That is, this
-/// function creates a schedule that represents a single iteration.
-void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
- // Move all instructions to the first stage from later stages.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
- ++stage) {
- std::deque<SUnit *> &cycleInstrs =
- ScheduledInstrs[cycle + (stage * InitiationInterval)];
- for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
- E = cycleInstrs.rend();
- I != E; ++I)
- ScheduledInstrs[cycle].push_front(*I);
- }
- }
-
- // Erase all the elements in the later stages. Only one iteration should
- // remain in the scheduled list, and it contains all the instructions.
- for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
- ScheduledInstrs.erase(cycle);
-
- // Change the registers in instruction as specified in the InstrChanges
- // map. We need to use the new registers to create the correct order.
- for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
- SUnit *SU = &SSD->SUnits[i];
- SSD->applyInstrChange(SU->getInstr(), *this);
- }
-
- // Reorder the instructions in each cycle to fix and improve the
- // generated code.
- for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
- std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
- std::deque<SUnit *> newOrderPhi;
- for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
- SUnit *SU = cycleInstrs[i];
- if (SU->getInstr()->isPHI())
- newOrderPhi.push_back(SU);
- }
- std::deque<SUnit *> newOrderI;
- for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
- SUnit *SU = cycleInstrs[i];
- if (!SU->getInstr()->isPHI())
- orderDependence(SSD, SU, newOrderI);
- }
- // Replace the old order with the new order.
- cycleInstrs.swap(newOrderPhi);
+ SmallPtrSet<MachineInstr *, 8> Visited;
+ MachineInstr *Def = MRI.getVRegDef(Reg);
+ while (Def->isPHI()) {
+ if (!Visited.insert(Def).second)
+ break;
+ for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
+ if (Def->getOperand(i + 1).getMBB() == BB) {
+ Def = MRI.getVRegDef(Def->getOperand(i).getReg());
+ break;
+ }
+ }
+ return Def;
+}
+
+/// Return true for an order or output dependence that is loop carried
+/// potentially. A dependence is loop carried if the destination defines a valu
+/// that may be used or defined by the source in a subsequent iteration.
+bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
+ bool isSucc) {
+ if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
+ Dep.isArtificial())
+ return false;
+
+ if (!SwpPruneLoopCarried)
+ return true;
+
+ if (Dep.getKind() == SDep::Output)
+ return true;
+
+ MachineInstr *SI = Source->getInstr();
+ MachineInstr *DI = Dep.getSUnit()->getInstr();
+ if (!isSucc)
+ std::swap(SI, DI);
+ assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
+
+ // Assume ordered loads and stores may have a loop carried dependence.
+ if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
+ SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
+ SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
+ return true;
+
+ // Only chain dependences between a load and store can be loop carried.
+ if (!DI->mayStore() || !SI->mayLoad())
+ return false;
+
+ unsigned DeltaS, DeltaD;
+ if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
+ return true;
+
+ const MachineOperand *BaseOpS, *BaseOpD;
+ int64_t OffsetS, OffsetD;
+ bool OffsetSIsScalable, OffsetDIsScalable;
+ const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
+ if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
+ TRI) ||
+ !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
+ TRI))
+ return true;
+
+ assert(!OffsetSIsScalable && !OffsetDIsScalable &&
+ "Expected offsets to be byte offsets");
+
+ if (!BaseOpS->isIdenticalTo(*BaseOpD))
+ return true;
+
+ // Check that the base register is incremented by a constant value for each
+ // iteration.
+ MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
+ if (!Def || !Def->isPHI())
+ return true;
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(*Def, BB, InitVal, LoopVal);
+ MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
+ int D = 0;
+ if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
+ return true;
+
+ uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
+ uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
+
+ // This is the main test, which checks the offset values and the loop
+ // increment value to determine if the accesses may be loop carried.
+ if (AccessSizeS == MemoryLocation::UnknownSize ||
+ AccessSizeD == MemoryLocation::UnknownSize)
+ return true;
+
+ if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
+ return true;
+
+ return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
+}
+
+void SwingSchedulerDAG::postprocessDAG() {
+ for (auto &M : Mutations)
+ M->apply(this);
+}
+
+/// Try to schedule the node at the specified StartCycle and continue
+/// until the node is schedule or the EndCycle is reached. This function
+/// returns true if the node is scheduled. This routine may search either
+/// forward or backward for a place to insert the instruction based upon
+/// the relative values of StartCycle and EndCycle.
+bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
+ bool forward = true;
+ LLVM_DEBUG({
+ dbgs() << "Trying to insert node between " << StartCycle << " and "
+ << EndCycle << " II: " << II << "\n";
+ });
+ if (StartCycle > EndCycle)
+ forward = false;
+
+ // The terminating condition depends on the direction.
+ int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
+ for (int curCycle = StartCycle; curCycle != termCycle;
+ forward ? ++curCycle : --curCycle) {
+
+ // Add the already scheduled instructions at the specified cycle to the
+ // DFA.
+ ProcItinResources.clearResources();
+ for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
+ checkCycle <= LastCycle; checkCycle += II) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
+
+ for (std::deque<SUnit *>::iterator I = cycleInstrs.begin(),
+ E = cycleInstrs.end();
+ I != E; ++I) {
+ if (ST.getInstrInfo()->isZeroCost((*I)->getInstr()->getOpcode()))
+ continue;
+ assert(ProcItinResources.canReserveResources(*(*I)->getInstr()) &&
+ "These instructions have already been scheduled.");
+ ProcItinResources.reserveResources(*(*I)->getInstr());
+ }
+ }
+ if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
+ ProcItinResources.canReserveResources(*SU->getInstr())) {
+ LLVM_DEBUG({
+ dbgs() << "\tinsert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+
+ ScheduledInstrs[curCycle].push_back(SU);
+ InstrToCycle.insert(std::make_pair(SU, curCycle));
+ if (curCycle > LastCycle)
+ LastCycle = curCycle;
+ if (curCycle < FirstCycle)
+ FirstCycle = curCycle;
+ return true;
+ }
+ LLVM_DEBUG({
+ dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
+ SU->getInstr()->dump();
+ });
+ }
+ return false;
+}
+
+// Return the cycle of the earliest scheduled instruction in the chain.
+int SMSchedule::earliestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int EarlyCycle = INT_MAX;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *PrevSU = Cur.getSUnit();
+ if (Visited.count(PrevSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
+ if (it == InstrToCycle.end())
+ continue;
+ EarlyCycle = std::min(EarlyCycle, it->second);
+ for (const auto &PI : PrevSU->Preds)
+ if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
+ Worklist.push_back(PI);
+ Visited.insert(PrevSU);
+ }
+ return EarlyCycle;
+}
+
+// Return the cycle of the latest scheduled instruction in the chain.
+int SMSchedule::latestCycleInChain(const SDep &Dep) {
+ SmallPtrSet<SUnit *, 8> Visited;
+ SmallVector<SDep, 8> Worklist;
+ Worklist.push_back(Dep);
+ int LateCycle = INT_MIN;
+ while (!Worklist.empty()) {
+ const SDep &Cur = Worklist.pop_back_val();
+ SUnit *SuccSU = Cur.getSUnit();
+ if (Visited.count(SuccSU))
+ continue;
+ std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
+ if (it == InstrToCycle.end())
+ continue;
+ LateCycle = std::max(LateCycle, it->second);
+ for (const auto &SI : SuccSU->Succs)
+ if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
+ Worklist.push_back(SI);
+ Visited.insert(SuccSU);
+ }
+ return LateCycle;
+}
+
+/// If an instruction has a use that spans multiple iterations, then
+/// return true. These instructions are characterized by having a back-ege
+/// to a Phi, which contains a reference to another Phi.
+static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
+ for (auto &P : SU->Preds)
+ if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
+ for (auto &S : P.getSUnit()->Succs)
+ if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
+ return P.getSUnit();
+ return nullptr;
+}
+
+/// Compute the scheduling start slot for the instruction. The start slot
+/// depends on any predecessor or successor nodes scheduled already.
+void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
+ int *MinEnd, int *MaxStart, int II,
+ SwingSchedulerDAG *DAG) {
+ // Iterate over each instruction that has been scheduled already. The start
+ // slot computation depends on whether the previously scheduled instruction
+ // is a predecessor or successor of the specified instruction.
+ for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
+
+ // Iterate over each instruction in the current cycle.
+ for (SUnit *I : getInstructions(cycle)) {
+ // Because we're processing a DAG for the dependences, we recognize
+ // the back-edge in recurrences by anti dependences.
+ for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
+ const SDep &Dep = SU->Preds[i];
+ if (Dep.getSUnit() == I) {
+ if (!DAG->isBackedge(SU, Dep)) {
+ int EarlyStart = cycle + Dep.getLatency() -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ if (DAG->isLoopCarriedDep(SU, Dep, false)) {
+ int End = earliestCycleInChain(Dep) + (II - 1);
+ *MinEnd = std::min(*MinEnd, End);
+ }
+ } else {
+ int LateStart = cycle - Dep.getLatency() +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ }
+ }
+ // For instruction that requires multiple iterations, make sure that
+ // the dependent instruction is not scheduled past the definition.
+ SUnit *BE = multipleIterations(I, DAG);
+ if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
+ !SU->isPred(I))
+ *MinLateStart = std::min(*MinLateStart, cycle);
+ }
+ for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
+ if (SU->Succs[i].getSUnit() == I) {
+ const SDep &Dep = SU->Succs[i];
+ if (!DAG->isBackedge(SU, Dep)) {
+ int LateStart = cycle - Dep.getLatency() +
+ DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
+ *MinLateStart = std::min(*MinLateStart, LateStart);
+ if (DAG->isLoopCarriedDep(SU, Dep)) {
+ int Start = latestCycleInChain(Dep) + 1 - II;
+ *MaxStart = std::max(*MaxStart, Start);
+ }
+ } else {
+ int EarlyStart = cycle + Dep.getLatency() -
+ DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
+ *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
+ }
+ }
+ }
+ }
+ }
+}
+
+/// Order the instructions within a cycle so that the definitions occur
+/// before the uses. Returns true if the instruction is added to the start
+/// of the list, or false if added to the end.
+void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
+ std::deque<SUnit *> &Insts) {
+ MachineInstr *MI = SU->getInstr();
+ bool OrderBeforeUse = false;
+ bool OrderAfterDef = false;
+ bool OrderBeforeDef = false;
+ unsigned MoveDef = 0;
+ unsigned MoveUse = 0;
+ int StageInst1 = stageScheduled(SU);
+
+ unsigned Pos = 0;
+ for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
+ ++I, ++Pos) {
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ MachineOperand &MO = MI->getOperand(i);
+ if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
+ continue;
+
+ Register Reg = MO.getReg();
+ unsigned BasePos, OffsetPos;
+ if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
+ if (MI->getOperand(BasePos).getReg() == Reg)
+ if (unsigned NewReg = SSD->getInstrBaseReg(SU))
+ Reg = NewReg;
+ bool Reads, Writes;
+ std::tie(Reads, Writes) =
+ (*I)->getInstr()->readsWritesVirtualRegister(Reg);
+ if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
+ OrderBeforeUse = true;
+ if (MoveUse == 0)
+ MoveUse = Pos;
+ } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
+ // Add the instruction after the scheduled instruction.
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
+ if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
+ OrderBeforeUse = true;
+ if (MoveUse == 0)
+ MoveUse = Pos;
+ } else {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
+ OrderBeforeUse = true;
+ if (MoveUse == 0)
+ MoveUse = Pos;
+ if (MoveUse != 0) {
+ OrderAfterDef = true;
+ MoveDef = Pos - 1;
+ }
+ } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
+ // Add the instruction before the scheduled instruction.
+ OrderBeforeUse = true;
+ if (MoveUse == 0)
+ MoveUse = Pos;
+ } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
+ isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
+ if (MoveUse == 0) {
+ OrderBeforeDef = true;
+ MoveUse = Pos;
+ }
+ }
+ }
+ // Check for order dependences between instructions. Make sure the source
+ // is ordered before the destination.
+ for (auto &S : SU->Succs) {
+ if (S.getSUnit() != *I)
+ continue;
+ if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
+ OrderBeforeUse = true;
+ if (Pos < MoveUse)
+ MoveUse = Pos;
+ }
+ // We did not handle HW dependences in previous for loop,
+ // and we normally set Latency = 0 for Anti deps,
+ // so may have nodes in same cycle with Anti denpendent on HW regs.
+ else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
+ OrderBeforeUse = true;
+ if ((MoveUse == 0) || (Pos < MoveUse))
+ MoveUse = Pos;
+ }
+ }
+ for (auto &P : SU->Preds) {
+ if (P.getSUnit() != *I)
+ continue;
+ if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
+ OrderAfterDef = true;
+ MoveDef = Pos;
+ }
+ }
+ }
+
+ // A circular dependence.
+ if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
+ OrderBeforeUse = false;
+
+ // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
+ // to a loop-carried dependence.
+ if (OrderBeforeDef)
+ OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
+
+ // The uncommon case when the instruction order needs to be updated because
+ // there is both a use and def.
+ if (OrderBeforeUse && OrderAfterDef) {
+ SUnit *UseSU = Insts.at(MoveUse);
+ SUnit *DefSU = Insts.at(MoveDef);
+ if (MoveUse > MoveDef) {
+ Insts.erase(Insts.begin() + MoveUse);
+ Insts.erase(Insts.begin() + MoveDef);
+ } else {
+ Insts.erase(Insts.begin() + MoveDef);
+ Insts.erase(Insts.begin() + MoveUse);
+ }
+ orderDependence(SSD, UseSU, Insts);
+ orderDependence(SSD, SU, Insts);
+ orderDependence(SSD, DefSU, Insts);
+ return;
+ }
+ // Put the new instruction first if there is a use in the list. Otherwise,
+ // put it at the end of the list.
+ if (OrderBeforeUse)
+ Insts.push_front(SU);
+ else
+ Insts.push_back(SU);
+}
+
+/// Return true if the scheduled Phi has a loop carried operand.
+bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
+ if (!Phi.isPHI())
+ return false;
+ assert(Phi.isPHI() && "Expecting a Phi.");
+ SUnit *DefSU = SSD->getSUnit(&Phi);
+ unsigned DefCycle = cycleScheduled(DefSU);
+ int DefStage = stageScheduled(DefSU);
+
+ unsigned InitVal = 0;
+ unsigned LoopVal = 0;
+ getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
+ SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
+ if (!UseSU)
+ return true;
+ if (UseSU->getInstr()->isPHI())
+ return true;
+ unsigned LoopCycle = cycleScheduled(UseSU);
+ int LoopStage = stageScheduled(UseSU);
+ return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
+}
+
+/// Return true if the instruction is a definition that is loop carried
+/// and defines the use on the next iteration.
+/// v1 = phi(v2, v3)
+/// (Def) v3 = op v1
+/// (MO) = v1
+/// If MO appears before Def, then then v1 and v3 may get assigned to the same
+/// register.
+bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
+ MachineInstr *Def, MachineOperand &MO) {
+ if (!MO.isReg())
+ return false;
+ if (Def->isPHI())
+ return false;
+ MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
+ if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
+ return false;
+ if (!isLoopCarried(SSD, *Phi))
+ return false;
+ unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
+ for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
+ MachineOperand &DMO = Def->getOperand(i);
+ if (!DMO.isReg() || !DMO.isDef())
+ continue;
+ if (DMO.getReg() == LoopReg)
+ return true;
+ }
+ return false;
+}
+
+// Check if the generated schedule is valid. This function checks if
+// an instruction that uses a physical register is scheduled in a
+// different stage than the definition. The pipeliner does not handle
+// physical register values that may cross a basic block boundary.
+bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
+ for (int i = 0, e = SSD->SUnits.size(); i < e; ++i) {
+ SUnit &SU = SSD->SUnits[i];
+ if (!SU.hasPhysRegDefs)
+ continue;
+ int StageDef = stageScheduled(&SU);
+ assert(StageDef != -1 && "Instruction should have been scheduled.");
+ for (auto &SI : SU.Succs)
+ if (SI.isAssignedRegDep())
+ if (Register::isPhysicalRegister(SI.getReg()))
+ if (stageScheduled(SI.getSUnit()) != StageDef)
+ return false;
+ }
+ return true;
+}
+
+/// A property of the node order in swing-modulo-scheduling is
+/// that for nodes outside circuits the following holds:
+/// none of them is scheduled after both a successor and a
+/// predecessor.
+/// The method below checks whether the property is met.
+/// If not, debug information is printed and statistics information updated.
+/// Note that we do not use an assert statement.
+/// The reason is that although an invalid node oder may prevent
+/// the pipeliner from finding a pipelined schedule for arbitrary II,
+/// it does not lead to the generation of incorrect code.
+void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
+
+ // a sorted vector that maps each SUnit to its index in the NodeOrder
+ typedef std::pair<SUnit *, unsigned> UnitIndex;
+ std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
+
+ for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
+ Indices.push_back(std::make_pair(NodeOrder[i], i));
+
+ auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
+ return std::get<0>(i1) < std::get<0>(i2);
+ };
+
+ // sort, so that we can perform a binary search
+ llvm::sort(Indices, CompareKey);
+
+ bool Valid = true;
+ (void)Valid;
+ // for each SUnit in the NodeOrder, check whether
+ // it appears after both a successor and a predecessor
+ // of the SUnit. If this is the case, and the SUnit
+ // is not part of circuit, then the NodeOrder is not
+ // valid.
+ for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
+ SUnit *SU = NodeOrder[i];
+ unsigned Index = i;
+
+ bool PredBefore = false;
+ bool SuccBefore = false;
+
+ SUnit *Succ;
+ SUnit *Pred;
+ (void)Succ;
+ (void)Pred;
+
+ for (SDep &PredEdge : SU->Preds) {
+ SUnit *PredSU = PredEdge.getSUnit();
+ unsigned PredIndex = std::get<1>(
+ *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
+ if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
+ PredBefore = true;
+ Pred = PredSU;
+ break;
+ }
+ }
+
+ for (SDep &SuccEdge : SU->Succs) {
+ SUnit *SuccSU = SuccEdge.getSUnit();
+ // Do not process a boundary node, it was not included in NodeOrder,
+ // hence not in Indices either, call to std::lower_bound() below will
+ // return Indices.end().
+ if (SuccSU->isBoundaryNode())
+ continue;
+ unsigned SuccIndex = std::get<1>(
+ *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
+ if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
+ SuccBefore = true;
+ Succ = SuccSU;
+ break;
+ }
+ }
+
+ if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
+ // instructions in circuits are allowed to be scheduled
+ // after both a successor and predecessor.
+ bool InCircuit = llvm::any_of(
+ Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
+ if (InCircuit)
+ LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
+ else {
+ Valid = false;
+ NumNodeOrderIssues++;
+ LLVM_DEBUG(dbgs() << "Predecessor ";);
+ }
+ LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
+ << " are scheduled before node " << SU->NodeNum
+ << "\n";);
+ }
+ }
+
+ LLVM_DEBUG({
+ if (!Valid)
+ dbgs() << "Invalid node order found!\n";
+ });
+}
+
+/// Attempt to fix the degenerate cases when the instruction serialization
+/// causes the register lifetimes to overlap. For example,
+/// p' = store_pi(p, b)
+/// = load p, offset
+/// In this case p and p' overlap, which means that two registers are needed.
+/// Instead, this function changes the load to use p' and updates the offset.
+void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
+ unsigned OverlapReg = 0;
+ unsigned NewBaseReg = 0;
+ for (SUnit *SU : Instrs) {
+ MachineInstr *MI = SU->getInstr();
+ for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
+ // Look for an instruction that uses p. The instruction occurs in the
+ // same cycle but occurs later in the serialized order.
+ if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
+ // Check that the instruction appears in the InstrChanges structure,
+ // which contains instructions that can have the offset updated.
+ DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
+ InstrChanges.find(SU);
+ if (It != InstrChanges.end()) {
+ unsigned BasePos, OffsetPos;
+ // Update the base register and adjust the offset.
+ if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
+ MachineInstr *NewMI = MF.CloneMachineInstr(MI);
+ NewMI->getOperand(BasePos).setReg(NewBaseReg);
+ int64_t NewOffset =
+ MI->getOperand(OffsetPos).getImm() - It->second.second;
+ NewMI->getOperand(OffsetPos).setImm(NewOffset);
+ SU->setInstr(NewMI);
+ MISUnitMap[NewMI] = SU;
+ NewMIs[MI] = NewMI;
+ }
+ }
+ OverlapReg = 0;
+ NewBaseReg = 0;
+ break;
+ }
+ // Look for an instruction of the form p' = op(p), which uses and defines
+ // two virtual registers that get allocated to the same physical register.
+ unsigned TiedUseIdx = 0;
+ if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
+ // OverlapReg is p in the example above.
+ OverlapReg = MI->getOperand(TiedUseIdx).getReg();
+ // NewBaseReg is p' in the example above.
+ NewBaseReg = MI->getOperand(i).getReg();
+ break;
+ }
+ }
+ }
+}
+
+/// After the schedule has been formed, call this function to combine
+/// the instructions from the different stages/cycles. That is, this
+/// function creates a schedule that represents a single iteration.
+void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
+ // Move all instructions to the first stage from later stages.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
+ ++stage) {
+ std::deque<SUnit *> &cycleInstrs =
+ ScheduledInstrs[cycle + (stage * InitiationInterval)];
+ for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
+ E = cycleInstrs.rend();
+ I != E; ++I)
+ ScheduledInstrs[cycle].push_front(*I);
+ }
+ }
+
+ // Erase all the elements in the later stages. Only one iteration should
+ // remain in the scheduled list, and it contains all the instructions.
+ for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
+ ScheduledInstrs.erase(cycle);
+
+ // Change the registers in instruction as specified in the InstrChanges
+ // map. We need to use the new registers to create the correct order.
+ for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
+ SUnit *SU = &SSD->SUnits[i];
+ SSD->applyInstrChange(SU->getInstr(), *this);
+ }
+
+ // Reorder the instructions in each cycle to fix and improve the
+ // generated code.
+ for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
+ std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
+ std::deque<SUnit *> newOrderPhi;
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (SU->getInstr()->isPHI())
+ newOrderPhi.push_back(SU);
+ }
+ std::deque<SUnit *> newOrderI;
+ for (unsigned i = 0, e = cycleInstrs.size(); i < e; ++i) {
+ SUnit *SU = cycleInstrs[i];
+ if (!SU->getInstr()->isPHI())
+ orderDependence(SSD, SU, newOrderI);
+ }
+ // Replace the old order with the new order.
+ cycleInstrs.swap(newOrderPhi);
llvm::append_range(cycleInstrs, newOrderI);
- SSD->fixupRegisterOverlaps(cycleInstrs);
- }
-
- LLVM_DEBUG(dump(););
-}
-
-void NodeSet::print(raw_ostream &os) const {
- os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
- << " depth " << MaxDepth << " col " << Colocate << "\n";
- for (const auto &I : Nodes)
- os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
- os << "\n";
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-/// Print the schedule information to the given output.
-void SMSchedule::print(raw_ostream &os) const {
- // Iterate over each cycle.
- for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
- // Iterate over each instruction in the cycle.
- const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
- for (SUnit *CI : cycleInstrs->second) {
- os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
- os << "(" << CI->NodeNum << ") ";
- CI->getInstr()->print(os);
- os << "\n";
- }
- }
-}
-
-/// Utility function used for debugging to print the schedule.
-LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
-LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
-
-#endif
-
-void ResourceManager::initProcResourceVectors(
- const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
- unsigned ProcResourceID = 0;
-
- // We currently limit the resource kinds to 64 and below so that we can use
- // uint64_t for Masks
- assert(SM.getNumProcResourceKinds() < 64 &&
- "Too many kinds of resources, unsupported");
- // Create a unique bitmask for every processor resource unit.
- // Skip resource at index 0, since it always references 'InvalidUnit'.
- Masks.resize(SM.getNumProcResourceKinds());
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- ProcResourceID++;
- }
- // Create a unique bitmask for every processor resource group.
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc &Desc = *SM.getProcResource(I);
- if (!Desc.SubUnitsIdxBegin)
- continue;
- Masks[I] = 1ULL << ProcResourceID;
- for (unsigned U = 0; U < Desc.NumUnits; ++U)
- Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
- ProcResourceID++;
- }
- LLVM_DEBUG({
- if (SwpShowResMask) {
- dbgs() << "ProcResourceDesc:\n";
- for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
- const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
- dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
- ProcResource->Name, I, Masks[I],
- ProcResource->NumUnits);
- }
- dbgs() << " -----------------\n";
- }
- });
-}
-
-bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
-
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "canReserveResources:\n";
- });
- if (UseDFA)
- return DFAResources->canReserveResources(MID);
-
- unsigned InsnClass = MID->getSchedClass();
- const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
- });
- return true;
- }
-
- const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
- const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
- for (; I != E; ++I) {
- if (!I->Cycles)
- continue;
- const MCProcResourceDesc *ProcResource =
- SM.getProcResource(I->ProcResourceIdx);
- unsigned NumUnits = ProcResource->NumUnits;
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
- ProcResource->Name, I->ProcResourceIdx,
- ProcResourceCount[I->ProcResourceIdx], NumUnits,
- I->Cycles);
- });
- if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
- return false;
- }
- LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
- return true;
-}
-
-void ResourceManager::reserveResources(const MCInstrDesc *MID) {
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "reserveResources:\n";
- });
- if (UseDFA)
- return DFAResources->reserveResources(MID);
-
- unsigned InsnClass = MID->getSchedClass();
- const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
- if (!SCDesc->isValid()) {
- LLVM_DEBUG({
- dbgs() << "No valid Schedule Class Desc for schedClass!\n";
- dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
- });
- return;
- }
- for (const MCWriteProcResEntry &PRE :
- make_range(STI->getWriteProcResBegin(SCDesc),
- STI->getWriteProcResEnd(SCDesc))) {
- if (!PRE.Cycles)
- continue;
- ++ProcResourceCount[PRE.ProcResourceIdx];
- LLVM_DEBUG({
- if (SwpDebugResource) {
- const MCProcResourceDesc *ProcResource =
- SM.getProcResource(PRE.ProcResourceIdx);
- dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
- ProcResource->Name, PRE.ProcResourceIdx,
- ProcResourceCount[PRE.ProcResourceIdx],
- ProcResource->NumUnits, PRE.Cycles);
- }
- });
- }
- LLVM_DEBUG({
- if (SwpDebugResource)
- dbgs() << "reserveResources: done!\n\n";
- });
-}
-
-bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
- return canReserveResources(&MI.getDesc());
-}
-
-void ResourceManager::reserveResources(const MachineInstr &MI) {
- return reserveResources(&MI.getDesc());
-}
-
-void ResourceManager::clearResources() {
- if (UseDFA)
- return DFAResources->clearResources();
- std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
-}
+ SSD->fixupRegisterOverlaps(cycleInstrs);
+ }
+
+ LLVM_DEBUG(dump(););
+}
+
+void NodeSet::print(raw_ostream &os) const {
+ os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
+ << " depth " << MaxDepth << " col " << Colocate << "\n";
+ for (const auto &I : Nodes)
+ os << " SU(" << I->NodeNum << ") " << *(I->getInstr());
+ os << "\n";
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+/// Print the schedule information to the given output.
+void SMSchedule::print(raw_ostream &os) const {
+ // Iterate over each cycle.
+ for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
+ // Iterate over each instruction in the cycle.
+ const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
+ for (SUnit *CI : cycleInstrs->second) {
+ os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
+ os << "(" << CI->NodeNum << ") ";
+ CI->getInstr()->print(os);
+ os << "\n";
+ }
+ }
+}
+
+/// Utility function used for debugging to print the schedule.
+LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
+LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
+
+#endif
+
+void ResourceManager::initProcResourceVectors(
+ const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
+ unsigned ProcResourceID = 0;
+
+ // We currently limit the resource kinds to 64 and below so that we can use
+ // uint64_t for Masks
+ assert(SM.getNumProcResourceKinds() < 64 &&
+ "Too many kinds of resources, unsupported");
+ // Create a unique bitmask for every processor resource unit.
+ // Skip resource at index 0, since it always references 'InvalidUnit'.
+ Masks.resize(SM.getNumProcResourceKinds());
+ for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
+ const MCProcResourceDesc &Desc = *SM.getProcResource(I);
+ if (Desc.SubUnitsIdxBegin)
+ continue;
+ Masks[I] = 1ULL << ProcResourceID;
+ ProcResourceID++;
+ }
+ // Create a unique bitmask for every processor resource group.
+ for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
+ const MCProcResourceDesc &Desc = *SM.getProcResource(I);
+ if (!Desc.SubUnitsIdxBegin)
+ continue;
+ Masks[I] = 1ULL << ProcResourceID;
+ for (unsigned U = 0; U < Desc.NumUnits; ++U)
+ Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
+ ProcResourceID++;
+ }
+ LLVM_DEBUG({
+ if (SwpShowResMask) {
+ dbgs() << "ProcResourceDesc:\n";
+ for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
+ const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
+ dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
+ ProcResource->Name, I, Masks[I],
+ ProcResource->NumUnits);
+ }
+ dbgs() << " -----------------\n";
+ }
+ });
+}
+
+bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
+
+ LLVM_DEBUG({
+ if (SwpDebugResource)
+ dbgs() << "canReserveResources:\n";
+ });
+ if (UseDFA)
+ return DFAResources->canReserveResources(MID);
+
+ unsigned InsnClass = MID->getSchedClass();
+ const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
+ if (!SCDesc->isValid()) {
+ LLVM_DEBUG({
+ dbgs() << "No valid Schedule Class Desc for schedClass!\n";
+ dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
+ });
+ return true;
+ }
+
+ const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
+ const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
+ for (; I != E; ++I) {
+ if (!I->Cycles)
+ continue;
+ const MCProcResourceDesc *ProcResource =
+ SM.getProcResource(I->ProcResourceIdx);
+ unsigned NumUnits = ProcResource->NumUnits;
+ LLVM_DEBUG({
+ if (SwpDebugResource)
+ dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
+ ProcResource->Name, I->ProcResourceIdx,
+ ProcResourceCount[I->ProcResourceIdx], NumUnits,
+ I->Cycles);
+ });
+ if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
+ return false;
+ }
+ LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
+ return true;
+}
+
+void ResourceManager::reserveResources(const MCInstrDesc *MID) {
+ LLVM_DEBUG({
+ if (SwpDebugResource)
+ dbgs() << "reserveResources:\n";
+ });
+ if (UseDFA)
+ return DFAResources->reserveResources(MID);
+
+ unsigned InsnClass = MID->getSchedClass();
+ const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
+ if (!SCDesc->isValid()) {
+ LLVM_DEBUG({
+ dbgs() << "No valid Schedule Class Desc for schedClass!\n";
+ dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
+ });
+ return;
+ }
+ for (const MCWriteProcResEntry &PRE :
+ make_range(STI->getWriteProcResBegin(SCDesc),
+ STI->getWriteProcResEnd(SCDesc))) {
+ if (!PRE.Cycles)
+ continue;
+ ++ProcResourceCount[PRE.ProcResourceIdx];
+ LLVM_DEBUG({
+ if (SwpDebugResource) {
+ const MCProcResourceDesc *ProcResource =
+ SM.getProcResource(PRE.ProcResourceIdx);
+ dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
+ ProcResource->Name, PRE.ProcResourceIdx,
+ ProcResourceCount[PRE.ProcResourceIdx],
+ ProcResource->NumUnits, PRE.Cycles);
+ }
+ });
+ }
+ LLVM_DEBUG({
+ if (SwpDebugResource)
+ dbgs() << "reserveResources: done!\n\n";
+ });
+}
+
+bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
+ return canReserveResources(&MI.getDesc());
+}
+
+void ResourceManager::reserveResources(const MachineInstr &MI) {
+ return reserveResources(&MI.getDesc());
+}
+
+void ResourceManager::clearResources() {
+ if (UseDFA)
+ return DFAResources->clearResources();
+ std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
+}