aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
diff options
context:
space:
mode:
authorshadchin <shadchin@yandex-team.ru>2022-02-10 16:44:30 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:30 +0300
commit2598ef1d0aee359b4b6d5fdd1758916d5907d04f (patch)
tree012bb94d777798f1f56ac1cec429509766d05181 /contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
parent6751af0b0c1b952fede40b19b71da8025b5d8bcf (diff)
downloadydb-2598ef1d0aee359b4b6d5fdd1758916d5907d04f.tar.gz
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp3988
1 files changed, 1994 insertions, 1994 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
index e2daa46fe6..3d3d12a5b7 100644
--- a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
+++ b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/VarLocBasedImpl.cpp
@@ -1,1994 +1,1994 @@
-//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-///
-/// \file VarLocBasedImpl.cpp
-///
-/// LiveDebugValues is an optimistic "available expressions" dataflow
-/// algorithm. The set of expressions is the set of machine locations
-/// (registers, spill slots, constants) that a variable fragment might be
-/// located, qualified by a DIExpression and indirect-ness flag, while each
-/// variable is identified by a DebugVariable object. The availability of an
-/// expression begins when a DBG_VALUE instruction specifies the location of a
-/// DebugVariable, and continues until that location is clobbered or
-/// re-specified by a different DBG_VALUE for the same DebugVariable.
-///
-/// The output of LiveDebugValues is additional DBG_VALUE instructions,
-/// placed to extend variable locations as far they're available. This file
-/// and the VarLocBasedLDV class is an implementation that explicitly tracks
-/// locations, using the VarLoc class.
-///
-/// The canonical "available expressions" problem doesn't have expression
-/// clobbering, instead when a variable is re-assigned, any expressions using
-/// that variable get invalidated. LiveDebugValues can map onto "available
-/// expressions" by having every register represented by a variable, which is
-/// used in an expression that becomes available at a DBG_VALUE instruction.
-/// When the register is clobbered, its variable is effectively reassigned, and
-/// expressions computed from it become unavailable. A similar construct is
-/// needed when a DebugVariable has its location re-specified, to invalidate
-/// all other locations for that DebugVariable.
-///
-/// Using the dataflow analysis to compute the available expressions, we create
-/// a DBG_VALUE at the beginning of each block where the expression is
-/// live-in. This propagates variable locations into every basic block where
-/// the location can be determined, rather than only having DBG_VALUEs in blocks
-/// where locations are specified due to an assignment or some optimization.
-/// Movements of values between registers and spill slots are annotated with
-/// DBG_VALUEs too to track variable values bewteen locations. All this allows
-/// DbgEntityHistoryCalculator to focus on only the locations within individual
-/// blocks, facilitating testing and improving modularity.
-///
-/// We follow an optimisic dataflow approach, with this lattice:
-///
-/// \verbatim
-/// ┬ "Unknown"
-/// |
-/// v
-/// True
-/// |
-/// v
-/// ⊥ False
-/// \endverbatim With "True" signifying that the expression is available (and
-/// thus a DebugVariable's location is the corresponding register), while
-/// "False" signifies that the expression is unavailable. "Unknown"s never
-/// survive to the end of the analysis (see below).
-///
-/// Formally, all DebugVariable locations that are live-out of a block are
-/// initialized to \top. A blocks live-in values take the meet of the lattice
-/// value for every predecessors live-outs, except for the entry block, where
-/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
-/// function for a block assigns an expression for a DebugVariable to be "True"
-/// if a DBG_VALUE in the block specifies it; "False" if the location is
-/// clobbered; or the live-in value if it is unaffected by the block. We
-/// visit each block in reverse post order until a fixedpoint is reached. The
-/// solution produced is maximal.
-///
-/// Intuitively, we start by assuming that every expression / variable location
-/// is at least "True", and then propagate "False" from the entry block and any
-/// clobbers until there are no more changes to make. This gives us an accurate
-/// solution because all incorrect locations will have a "False" propagated into
-/// them. It also gives us a solution that copes well with loops by assuming
-/// that variable locations are live-through every loop, and then removing those
-/// that are not through dataflow.
-///
-/// Within LiveDebugValues: each variable location is represented by a
-/// VarLoc object that identifies the source variable, its current
-/// machine-location, and the DBG_VALUE inst that specifies the location. Each
-/// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a
-/// unique index. Rather than operate directly on machine locations, the
-/// dataflow analysis in this pass identifies locations by their index in the
-/// VarLocMap, meaning all the variable locations in a block can be described
-/// by a sparse vector of VarLocMap indicies.
-///
-/// All the storage for the dataflow analysis is local to the ExtendRanges
-/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
-/// in and out lattice values for each block. "OpenRanges" maintains a list of
-/// variable locations and, with the "process" method, evaluates the transfer
-/// function of each block. "flushPendingLocs" installs DBG_VALUEs for each
-/// live-in location at the start of blocks, while "Transfers" records
-/// transfers of values between machine-locations.
-///
-/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
-/// implementation. Instead, unvisited blocks implicitly have all lattice
-/// values set as "Unknown". After being visited, there will be path back to
-/// the entry block where the lattice value is "False", and as the transfer
-/// function cannot make new "Unknown" locations, there are no scenarios where
-/// a block can have an "Unknown" location after being visited. Similarly, we
-/// don't enumerate all possible variable locations before exploring the
-/// function: when a new location is discovered, all blocks previously explored
-/// were implicitly "False" but unrecorded, and become explicitly "False" when
-/// a new VarLoc is created with its bit not set in predecessor InLocs or
-/// OutLocs.
-///
-//===----------------------------------------------------------------------===//
-
-#include "LiveDebugValues.h"
-
-#include "llvm/ADT/CoalescingBitVector.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/UniqueVector.h"
-#include "llvm/CodeGen/LexicalScopes.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/CodeGen/TargetFrameLowering.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Module.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetMachine.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <queue>
-#include <tuple>
-#include <utility>
-#include <vector>
-
-using namespace llvm;
-
-#define DEBUG_TYPE "livedebugvalues"
-
-STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
-
-// Options to prevent pathological compile-time behavior. If InputBBLimit and
-// InputDbgValueLimit are both exceeded, range extension is disabled.
-static cl::opt<unsigned> InputBBLimit(
- "livedebugvalues-input-bb-limit",
- cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
- cl::init(10000), cl::Hidden);
-static cl::opt<unsigned> InputDbgValueLimit(
- "livedebugvalues-input-dbg-value-limit",
- cl::desc(
- "Maximum input DBG_VALUE insts supported by debug range extension"),
- cl::init(50000), cl::Hidden);
-
-// If @MI is a DBG_VALUE with debug value described by a defined
-// register, returns the number of this register. In the other case, returns 0.
-static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
- assert(MI.isDebugValue() && "expected a DBG_VALUE");
- assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
- // If location of variable is described using a register (directly
- // or indirectly), this register is always a first operand.
- return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg()
- : Register();
-}
-
-/// If \p Op is a stack or frame register return true, otherwise return false.
-/// This is used to avoid basing the debug entry values on the registers, since
-/// we do not support it at the moment.
-static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
- const MachineInstr &MI,
- const TargetRegisterInfo *TRI) {
- if (!Op.isReg())
- return false;
-
- const MachineFunction *MF = MI.getParent()->getParent();
- const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
- Register SP = TLI->getStackPointerRegisterToSaveRestore();
- Register FP = TRI->getFrameRegister(*MF);
- Register Reg = Op.getReg();
-
- return Reg && Reg != SP && Reg != FP;
-}
-
-namespace {
-
-// Max out the number of statically allocated elements in DefinedRegsSet, as
-// this prevents fallback to std::set::count() operations.
-using DefinedRegsSet = SmallSet<Register, 32>;
-
-using VarLocSet = CoalescingBitVector<uint64_t>;
-
-/// A type-checked pair of {Register Location (or 0), Index}, used to index
-/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
-/// for insertion into a \ref VarLocSet, and efficiently converted back. The
-/// type-checker helps ensure that the conversions aren't lossy.
-///
-/// Why encode a location /into/ the VarLocMap index? This makes it possible
-/// to find the open VarLocs killed by a register def very quickly. This is a
-/// performance-critical operation for LiveDebugValues.
-struct LocIndex {
- using u32_location_t = uint32_t;
- using u32_index_t = uint32_t;
-
- u32_location_t Location; // Physical registers live in the range [1;2^30) (see
- // \ref MCRegister), so we have plenty of range left
- // here to encode non-register locations.
- u32_index_t Index;
-
- /// The first location greater than 0 that is not reserved for VarLocs of
- /// kind RegisterKind.
- static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
-
- /// A special location reserved for VarLocs of kind SpillLocKind.
- static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
-
- /// A special location reserved for VarLocs of kind EntryValueBackupKind and
- /// EntryValueCopyBackupKind.
- static constexpr u32_location_t kEntryValueBackupLocation =
- kFirstInvalidRegLocation + 1;
-
- LocIndex(u32_location_t Location, u32_index_t Index)
- : Location(Location), Index(Index) {}
-
- uint64_t getAsRawInteger() const {
- return (static_cast<uint64_t>(Location) << 32) | Index;
- }
-
- template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
- static_assert(std::is_unsigned<IntT>::value &&
- sizeof(ID) == sizeof(uint64_t),
- "Cannot convert raw integer to LocIndex");
- return {static_cast<u32_location_t>(ID >> 32),
- static_cast<u32_index_t>(ID)};
- }
-
- /// Get the start of the interval reserved for VarLocs of kind RegisterKind
- /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
- static uint64_t rawIndexForReg(uint32_t Reg) {
- return LocIndex(Reg, 0).getAsRawInteger();
- }
-
- /// Return a range covering all set indices in the interval reserved for
- /// \p Location in \p Set.
- static auto indexRangeForLocation(const VarLocSet &Set,
- u32_location_t Location) {
- uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
- uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
- return Set.half_open_range(Start, End);
- }
-};
-
-class VarLocBasedLDV : public LDVImpl {
-private:
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
- const TargetFrameLowering *TFI;
- TargetPassConfig *TPC;
- BitVector CalleeSavedRegs;
- LexicalScopes LS;
- VarLocSet::Allocator Alloc;
-
- enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
-
- using FragmentInfo = DIExpression::FragmentInfo;
- using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
-
- /// A pair of debug variable and value location.
- struct VarLoc {
- // The location at which a spilled variable resides. It consists of a
- // register and an offset.
- struct SpillLoc {
- unsigned SpillBase;
- StackOffset SpillOffset;
- bool operator==(const SpillLoc &Other) const {
- return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
- }
- bool operator!=(const SpillLoc &Other) const {
- return !(*this == Other);
- }
- };
-
- /// Identity of the variable at this location.
- const DebugVariable Var;
-
- /// The expression applied to this location.
- const DIExpression *Expr;
-
- /// DBG_VALUE to clone var/expr information from if this location
- /// is moved.
- const MachineInstr &MI;
-
- enum VarLocKind {
- InvalidKind = 0,
- RegisterKind,
- SpillLocKind,
- ImmediateKind,
- EntryValueKind,
- EntryValueBackupKind,
- EntryValueCopyBackupKind
- } Kind = InvalidKind;
-
- /// The value location. Stored separately to avoid repeatedly
- /// extracting it from MI.
- union LocUnion {
- uint64_t RegNo;
- SpillLoc SpillLocation;
- uint64_t Hash;
- int64_t Immediate;
- const ConstantFP *FPImm;
- const ConstantInt *CImm;
- LocUnion() : Hash(0) {}
- } Loc;
-
- VarLoc(const MachineInstr &MI, LexicalScopes &LS)
- : Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt()),
- Expr(MI.getDebugExpression()), MI(MI) {
- assert(MI.isDebugValue() && "not a DBG_VALUE");
- assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
- if (int RegNo = isDbgValueDescribedByReg(MI)) {
- Kind = RegisterKind;
- Loc.RegNo = RegNo;
- } else if (MI.getDebugOperand(0).isImm()) {
- Kind = ImmediateKind;
- Loc.Immediate = MI.getDebugOperand(0).getImm();
- } else if (MI.getDebugOperand(0).isFPImm()) {
- Kind = ImmediateKind;
- Loc.FPImm = MI.getDebugOperand(0).getFPImm();
- } else if (MI.getDebugOperand(0).isCImm()) {
- Kind = ImmediateKind;
- Loc.CImm = MI.getDebugOperand(0).getCImm();
- }
-
- // We create the debug entry values from the factory functions rather than
- // from this ctor.
- assert(Kind != EntryValueKind && !isEntryBackupLoc());
- }
-
- /// Take the variable and machine-location in DBG_VALUE MI, and build an
- /// entry location using the given expression.
- static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
- const DIExpression *EntryExpr, Register Reg) {
- VarLoc VL(MI, LS);
- assert(VL.Kind == RegisterKind);
- VL.Kind = EntryValueKind;
- VL.Expr = EntryExpr;
- VL.Loc.RegNo = Reg;
- return VL;
- }
-
- /// Take the variable and machine-location from the DBG_VALUE (from the
- /// function entry), and build an entry value backup location. The backup
- /// location will turn into the normal location if the backup is valid at
- /// the time of the primary location clobbering.
- static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
- LexicalScopes &LS,
- const DIExpression *EntryExpr) {
- VarLoc VL(MI, LS);
- assert(VL.Kind == RegisterKind);
- VL.Kind = EntryValueBackupKind;
- VL.Expr = EntryExpr;
- return VL;
- }
-
- /// Take the variable and machine-location from the DBG_VALUE (from the
- /// function entry), and build a copy of an entry value backup location by
- /// setting the register location to NewReg.
- static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
- LexicalScopes &LS,
- const DIExpression *EntryExpr,
- Register NewReg) {
- VarLoc VL(MI, LS);
- assert(VL.Kind == RegisterKind);
- VL.Kind = EntryValueCopyBackupKind;
- VL.Expr = EntryExpr;
- VL.Loc.RegNo = NewReg;
- return VL;
- }
-
- /// Copy the register location in DBG_VALUE MI, updating the register to
- /// be NewReg.
- static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
- Register NewReg) {
- VarLoc VL(MI, LS);
- assert(VL.Kind == RegisterKind);
- VL.Loc.RegNo = NewReg;
- return VL;
- }
-
- /// Take the variable described by DBG_VALUE MI, and create a VarLoc
- /// locating it in the specified spill location.
- static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
- StackOffset SpillOffset, LexicalScopes &LS) {
- VarLoc VL(MI, LS);
- assert(VL.Kind == RegisterKind);
- VL.Kind = SpillLocKind;
- VL.Loc.SpillLocation = {SpillBase, SpillOffset};
- return VL;
- }
-
- /// Create a DBG_VALUE representing this VarLoc in the given function.
- /// Copies variable-specific information such as DILocalVariable and
- /// inlining information from the original DBG_VALUE instruction, which may
- /// have been several transfers ago.
- MachineInstr *BuildDbgValue(MachineFunction &MF) const {
- const DebugLoc &DbgLoc = MI.getDebugLoc();
- bool Indirect = MI.isIndirectDebugValue();
- const auto &IID = MI.getDesc();
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *DIExpr = MI.getDebugExpression();
- NumInserted++;
-
- switch (Kind) {
- case EntryValueKind:
- // An entry value is a register location -- but with an updated
- // expression. The register location of such DBG_VALUE is always the one
- // from the entry DBG_VALUE, it does not matter if the entry value was
- // copied in to another register due to some optimizations.
- return BuildMI(MF, DbgLoc, IID, Indirect,
- MI.getDebugOperand(0).getReg(), Var, Expr);
- case RegisterKind:
- // Register locations are like the source DBG_VALUE, but with the
- // register number from this VarLoc.
- return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
- case SpillLocKind: {
- // Spills are indirect DBG_VALUEs, with a base register and offset.
- // Use the original DBG_VALUEs expression to build the spilt location
- // on top of. FIXME: spill locations created before this pass runs
- // are not recognized, and not handled here.
- auto *TRI = MF.getSubtarget().getRegisterInfo();
- auto *SpillExpr = TRI->prependOffsetExpression(
- DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
- unsigned Base = Loc.SpillLocation.SpillBase;
- return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
- }
- case ImmediateKind: {
- MachineOperand MO = MI.getDebugOperand(0);
- return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
- }
- case EntryValueBackupKind:
- case EntryValueCopyBackupKind:
- case InvalidKind:
- llvm_unreachable(
- "Tried to produce DBG_VALUE for invalid or backup VarLoc");
- }
- llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum");
- }
-
- /// Is the Loc field a constant or constant object?
- bool isConstant() const { return Kind == ImmediateKind; }
-
- /// Check if the Loc field is an entry backup location.
- bool isEntryBackupLoc() const {
- return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
- }
-
- /// If this variable is described by a register holding the entry value,
- /// return it, otherwise return 0.
- unsigned getEntryValueBackupReg() const {
- if (Kind == EntryValueBackupKind)
- return Loc.RegNo;
- return 0;
- }
-
- /// If this variable is described by a register holding the copy of the
- /// entry value, return it, otherwise return 0.
- unsigned getEntryValueCopyBackupReg() const {
- if (Kind == EntryValueCopyBackupKind)
- return Loc.RegNo;
- return 0;
- }
-
- /// If this variable is described by a register, return it,
- /// otherwise return 0.
- unsigned isDescribedByReg() const {
- if (Kind == RegisterKind)
- return Loc.RegNo;
- return 0;
- }
-
- /// Determine whether the lexical scope of this value's debug location
- /// dominates MBB.
- bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
- return LS.dominates(MI.getDebugLoc().get(), &MBB);
- }
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
- // TRI can be null.
- void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
- Out << "VarLoc(";
- switch (Kind) {
- case RegisterKind:
- case EntryValueKind:
- case EntryValueBackupKind:
- case EntryValueCopyBackupKind:
- Out << printReg(Loc.RegNo, TRI);
- break;
- case SpillLocKind:
- Out << printReg(Loc.SpillLocation.SpillBase, TRI);
- Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + "
- << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale"
- << "]";
- break;
- case ImmediateKind:
- Out << Loc.Immediate;
- break;
- case InvalidKind:
- llvm_unreachable("Invalid VarLoc in dump method");
- }
-
- Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
- if (Var.getInlinedAt())
- Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
- else
- Out << "(null))";
-
- if (isEntryBackupLoc())
- Out << " (backup loc)\n";
- else
- Out << "\n";
- }
-#endif
-
- bool operator==(const VarLoc &Other) const {
- if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr)
- return false;
-
- switch (Kind) {
- case SpillLocKind:
- return Loc.SpillLocation == Other.Loc.SpillLocation;
- case RegisterKind:
- case ImmediateKind:
- case EntryValueKind:
- case EntryValueBackupKind:
- case EntryValueCopyBackupKind:
- return Loc.Hash == Other.Loc.Hash;
- default:
- llvm_unreachable("Invalid kind");
- }
- }
-
- /// This operator guarantees that VarLocs are sorted by Variable first.
- bool operator<(const VarLoc &Other) const {
- switch (Kind) {
- case SpillLocKind:
- return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase,
- Loc.SpillLocation.SpillOffset.getFixed(),
- Loc.SpillLocation.SpillOffset.getScalable(),
- Expr) <
- std::make_tuple(
- Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase,
- Other.Loc.SpillLocation.SpillOffset.getFixed(),
- Other.Loc.SpillLocation.SpillOffset.getScalable(),
- Other.Expr);
- case RegisterKind:
- case ImmediateKind:
- case EntryValueKind:
- case EntryValueBackupKind:
- case EntryValueCopyBackupKind:
- return std::tie(Var, Kind, Loc.Hash, Expr) <
- std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
- default:
- llvm_unreachable("Invalid kind");
- }
- }
- };
-
- /// VarLocMap is used for two things:
- /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to
- /// virtually insert a VarLoc into a VarLocSet.
- /// 2) Given a LocIndex, look up the unique associated VarLoc.
- class VarLocMap {
- /// Map a VarLoc to an index within the vector reserved for its location
- /// within Loc2Vars.
- std::map<VarLoc, LocIndex::u32_index_t> Var2Index;
-
- /// Map a location to a vector which holds VarLocs which live in that
- /// location.
- SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
-
- /// Determine the 32-bit location reserved for \p VL, based on its kind.
- static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) {
- switch (VL.Kind) {
- case VarLoc::RegisterKind:
- assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) &&
- "Physreg out of range?");
- return VL.Loc.RegNo;
- case VarLoc::SpillLocKind:
- return LocIndex::kSpillLocation;
- case VarLoc::EntryValueBackupKind:
- case VarLoc::EntryValueCopyBackupKind:
- return LocIndex::kEntryValueBackupLocation;
- default:
- return 0;
- }
- }
-
- public:
- /// Retrieve a unique LocIndex for \p VL.
- LocIndex insert(const VarLoc &VL) {
- LocIndex::u32_location_t Location = getLocationForVar(VL);
- LocIndex::u32_index_t &Index = Var2Index[VL];
- if (!Index) {
- auto &Vars = Loc2Vars[Location];
- Vars.push_back(VL);
- Index = Vars.size();
- }
- return {Location, Index - 1};
- }
-
- /// Retrieve the unique VarLoc associated with \p ID.
- const VarLoc &operator[](LocIndex ID) const {
- auto LocIt = Loc2Vars.find(ID.Location);
- assert(LocIt != Loc2Vars.end() && "Location not tracked");
- return LocIt->second[ID.Index];
- }
- };
-
- using VarLocInMBB =
- SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
- struct TransferDebugPair {
- MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
- LocIndex LocationID; ///< Location number for the transfer dest.
- };
- using TransferMap = SmallVector<TransferDebugPair, 4>;
-
- // Types for recording sets of variable fragments that overlap. For a given
- // local variable, we record all other fragments of that variable that could
- // overlap it, to reduce search time.
- using FragmentOfVar =
- std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
- using OverlapMap =
- DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
-
- // Helper while building OverlapMap, a map of all fragments seen for a given
- // DILocalVariable.
- using VarToFragments =
- DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
-
- /// This holds the working set of currently open ranges. For fast
- /// access, this is done both as a set of VarLocIDs, and a map of
- /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
- /// previous open ranges for the same variable. In addition, we keep
- /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
- /// methods act differently depending on whether a VarLoc is primary
- /// location or backup one. In the case the VarLoc is backup location
- /// we will erase/insert from the EntryValuesBackupVars map, otherwise
- /// we perform the operation on the Vars.
- class OpenRangesSet {
- VarLocSet VarLocs;
- // Map the DebugVariable to recent primary location ID.
- SmallDenseMap<DebugVariable, LocIndex, 8> Vars;
- // Map the DebugVariable to recent backup location ID.
- SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars;
- OverlapMap &OverlappingFragments;
-
- public:
- OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
- : VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
-
- const VarLocSet &getVarLocs() const { return VarLocs; }
-
- /// Terminate all open ranges for VL.Var by removing it from the set.
- void erase(const VarLoc &VL);
-
- /// Terminate all open ranges listed in \c KillSet by removing
- /// them from the set.
- void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
-
- /// Insert a new range into the set.
- void insert(LocIndex VarLocID, const VarLoc &VL);
-
- /// Insert a set of ranges.
- void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
- for (uint64_t ID : ToLoad) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- const VarLoc &VarL = Map[Idx];
- insert(Idx, VarL);
- }
- }
-
- llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var);
-
- /// Empty the set.
- void clear() {
- VarLocs.clear();
- Vars.clear();
- EntryValuesBackupVars.clear();
- }
-
- /// Return whether the set is empty or not.
- bool empty() const {
- assert(Vars.empty() == EntryValuesBackupVars.empty() &&
- Vars.empty() == VarLocs.empty() &&
- "open ranges are inconsistent");
- return VarLocs.empty();
- }
-
- /// Get an empty range of VarLoc IDs.
- auto getEmptyVarLocRange() const {
- return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
- getVarLocs().end());
- }
-
- /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg.
- auto getRegisterVarLocs(Register Reg) const {
- return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
- }
-
- /// Get all set IDs for VarLocs of kind SpillLocKind.
- auto getSpillVarLocs() const {
- return LocIndex::indexRangeForLocation(getVarLocs(),
- LocIndex::kSpillLocation);
- }
-
- /// Get all set IDs for VarLocs of kind EntryValueBackupKind or
- /// EntryValueCopyBackupKind.
- auto getEntryValueBackupVarLocs() const {
- return LocIndex::indexRangeForLocation(
- getVarLocs(), LocIndex::kEntryValueBackupLocation);
- }
- };
-
- /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind
- /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs
- /// into \p Collected.
- void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs,
- const VarLocSet &CollectFrom) const;
-
- /// Get the registers which are used by VarLocs of kind RegisterKind tracked
- /// by \p CollectFrom.
- void getUsedRegs(const VarLocSet &CollectFrom,
- SmallVectorImpl<uint32_t> &UsedRegs) const;
-
- VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
- std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
- if (!VLS)
- VLS = std::make_unique<VarLocSet>(Alloc);
- return *VLS.get();
- }
-
- const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
- const VarLocInMBB &Locs) const {
- auto It = Locs.find(MBB);
- assert(It != Locs.end() && "MBB not in map");
- return *It->second.get();
- }
-
- /// Tests whether this instruction is a spill to a stack location.
- bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
-
- /// Decide if @MI is a spill instruction and return true if it is. We use 2
- /// criteria to make this decision:
- /// - Is this instruction a store to a spill slot?
- /// - Is there a register operand that is both used and killed?
- /// TODO: Store optimization can fold spills into other stores (including
- /// other spills). We do not handle this yet (more than one memory operand).
- bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
- Register &Reg);
-
- /// Returns true if the given machine instruction is a debug value which we
- /// can emit entry values for.
- ///
- /// Currently, we generate debug entry values only for parameters that are
- /// unmodified throughout the function and located in a register.
- bool isEntryValueCandidate(const MachineInstr &MI,
- const DefinedRegsSet &Regs) const;
-
- /// If a given instruction is identified as a spill, return the spill location
- /// and set \p Reg to the spilled register.
- Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
- MachineFunction *MF,
- Register &Reg);
- /// Given a spill instruction, extract the register and offset used to
- /// address the spill location in a target independent way.
- VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
- void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
- TransferMap &Transfers, VarLocMap &VarLocIDs,
- LocIndex OldVarID, TransferKind Kind,
- Register NewReg = Register());
-
- void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs);
- void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers);
- bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, const VarLoc &EntryVL);
- void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers,
- VarLocSet &KillSet);
- void recordEntryValue(const MachineInstr &MI,
- const DefinedRegsSet &DefinedRegs,
- OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
- void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers);
- void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers);
- bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
- VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
-
- void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers);
-
- void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
- OverlapMap &OLapMap);
-
- bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
- const VarLocMap &VarLocIDs,
- SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
- SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
-
- /// Create DBG_VALUE insts for inlocs that have been propagated but
- /// had their instruction creation deferred.
- void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
-
- bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
-
-public:
- /// Default construct and initialize the pass.
- VarLocBasedLDV();
-
- ~VarLocBasedLDV();
-
- /// Print to ostream with a message.
- void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
- const VarLocMap &VarLocIDs, const char *msg,
- raw_ostream &Out) const;
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// Implementation
-//===----------------------------------------------------------------------===//
-
-VarLocBasedLDV::VarLocBasedLDV() { }
-
-VarLocBasedLDV::~VarLocBasedLDV() { }
-
-/// Erase a variable from the set of open ranges, and additionally erase any
-/// fragments that may overlap it. If the VarLoc is a backup location, erase
-/// the variable from the EntryValuesBackupVars set, indicating we should stop
-/// tracking its backup entry location. Otherwise, if the VarLoc is primary
-/// location, erase the variable from the Vars set.
-void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
- // Erasure helper.
- auto DoErase = [VL, this](DebugVariable VarToErase) {
- auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
- auto It = EraseFrom->find(VarToErase);
- if (It != EraseFrom->end()) {
- LocIndex ID = It->second;
- VarLocs.reset(ID.getAsRawInteger());
- EraseFrom->erase(It);
- }
- };
-
- DebugVariable Var = VL.Var;
-
- // Erase the variable/fragment that ends here.
- DoErase(Var);
-
- // Extract the fragment. Interpret an empty fragment as one that covers all
- // possible bits.
- FragmentInfo ThisFragment = Var.getFragmentOrDefault();
-
- // There may be fragments that overlap the designated fragment. Look them up
- // in the pre-computed overlap map, and erase them too.
- auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
- if (MapIt != OverlappingFragments.end()) {
- for (auto Fragment : MapIt->second) {
- VarLocBasedLDV::OptFragmentInfo FragmentHolder;
- if (!DebugVariable::isDefaultFragment(Fragment))
- FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
- DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
- }
- }
-}
-
-void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet,
- const VarLocMap &VarLocIDs) {
- VarLocs.intersectWithComplement(KillSet);
- for (uint64_t ID : KillSet) {
- const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)];
- auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
- EraseFrom->erase(VL->Var);
- }
-}
-
-void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID,
- const VarLoc &VL) {
- auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
- VarLocs.set(VarLocID.getAsRawInteger());
- InsertInto->insert({VL.Var, VarLocID});
-}
-
-/// Return the Loc ID of an entry value backup location, if it exists for the
-/// variable.
-llvm::Optional<LocIndex>
-VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
- auto It = EntryValuesBackupVars.find(Var);
- if (It != EntryValuesBackupVars.end())
- return It->second;
-
- return llvm::None;
-}
-
-void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected,
- const DefinedRegsSet &Regs,
- const VarLocSet &CollectFrom) const {
- assert(!Regs.empty() && "Nothing to collect");
- SmallVector<uint32_t, 32> SortedRegs;
- for (Register Reg : Regs)
- SortedRegs.push_back(Reg);
- array_pod_sort(SortedRegs.begin(), SortedRegs.end());
- auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
- auto End = CollectFrom.end();
- for (uint32_t Reg : SortedRegs) {
- // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
- // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg.
- uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
- uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
- It.advanceToLowerBound(FirstIndexForReg);
-
- // Iterate through that half-open interval and collect all the set IDs.
- for (; It != End && *It < FirstInvalidIndex; ++It)
- Collected.set(*It);
-
- if (It == End)
- return;
- }
-}
-
-void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
- SmallVectorImpl<uint32_t> &UsedRegs) const {
- // All register-based VarLocs are assigned indices greater than or equal to
- // FirstRegIndex.
- uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1);
- uint64_t FirstInvalidIndex =
- LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
- for (auto It = CollectFrom.find(FirstRegIndex),
- End = CollectFrom.find(FirstInvalidIndex);
- It != End;) {
- // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
- // which register and add it to UsedRegs.
- uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
- assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
- "Duplicate used reg");
- UsedRegs.push_back(FoundReg);
-
- // Skip to the next /set/ register. Note that this finds a lower bound, so
- // even if there aren't any VarLocs living in `FoundReg+1`, we're still
- // guaranteed to move on to the next register (or to end()).
- uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
- It.advanceToLowerBound(NextRegIndex);
- }
-}
-
-//===----------------------------------------------------------------------===//
-// Debug Range Extension Implementation
-//===----------------------------------------------------------------------===//
-
-#ifndef NDEBUG
-void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
- const VarLocInMBB &V,
- const VarLocMap &VarLocIDs,
- const char *msg,
- raw_ostream &Out) const {
- Out << '\n' << msg << '\n';
- for (const MachineBasicBlock &BB : MF) {
- if (!V.count(&BB))
- continue;
- const VarLocSet &L = getVarLocsInMBB(&BB, V);
- if (L.empty())
- continue;
- Out << "MBB: " << BB.getNumber() << ":\n";
- for (uint64_t VLL : L) {
- const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)];
- Out << " Var: " << VL.Var.getVariable()->getName();
- Out << " MI: ";
- VL.dump(TRI, Out);
- }
- }
- Out << "\n";
-}
-#endif
-
-VarLocBasedLDV::VarLoc::SpillLoc
-VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
- assert(MI.hasOneMemOperand() &&
- "Spill instruction does not have exactly one memory operand?");
- auto MMOI = MI.memoperands_begin();
- const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
- assert(PVal->kind() == PseudoSourceValue::FixedStack &&
- "Inconsistent memory operand in spill instruction");
- int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
- const MachineBasicBlock *MBB = MI.getParent();
- Register Reg;
- StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
- return {Reg, Offset};
-}
-
-/// Try to salvage the debug entry value if we encounter a new debug value
-/// describing the same parameter, otherwise stop tracking the value. Return
-/// true if we should stop tracking the entry value, otherwise return false.
-bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs,
- const VarLoc &EntryVL) {
- // Skip the DBG_VALUE which is the debug entry value itself.
- if (MI.isIdenticalTo(EntryVL.MI))
- return false;
-
- // If the parameter's location is not register location, we can not track
- // the entry value any more. In addition, if the debug expression from the
- // DBG_VALUE is not empty, we can assume the parameter's value has changed
- // indicating that we should stop tracking its entry value as well.
- if (!MI.getDebugOperand(0).isReg() ||
- MI.getDebugExpression()->getNumElements() != 0)
- return true;
-
- // If the DBG_VALUE comes from a copy instruction that copies the entry value,
- // it means the parameter's value has not changed and we should be able to use
- // its entry value.
- bool TrySalvageEntryValue = false;
- Register Reg = MI.getDebugOperand(0).getReg();
- auto I = std::next(MI.getReverseIterator());
- const MachineOperand *SrcRegOp, *DestRegOp;
- if (I != MI.getParent()->rend()) {
- // TODO: Try to keep tracking of an entry value if we encounter a propagated
- // DBG_VALUE describing the copy of the entry value. (Propagated entry value
- // does not indicate the parameter modification.)
- auto DestSrc = TII->isCopyInstr(*I);
- if (!DestSrc)
- return true;
-
- SrcRegOp = DestSrc->Source;
- DestRegOp = DestSrc->Destination;
- if (Reg != DestRegOp->getReg())
- return true;
- TrySalvageEntryValue = true;
- }
-
- if (TrySalvageEntryValue) {
- for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
- const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
- if (VL.getEntryValueCopyBackupReg() == Reg &&
- VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
- return false;
- }
- }
-
- return true;
-}
-
-/// End all previous ranges related to @MI and start a new range from @MI
-/// if it is a DBG_VALUE instr.
-void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs) {
- if (!MI.isDebugValue())
- return;
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *Expr = MI.getDebugExpression();
- const DILocation *DebugLoc = MI.getDebugLoc();
- const DILocation *InlinedAt = DebugLoc->getInlinedAt();
- assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
- "Expected inlined-at fields to agree");
-
- DebugVariable V(Var, Expr, InlinedAt);
-
- // Check if this DBG_VALUE indicates a parameter's value changing.
- // If that is the case, we should stop tracking its entry value.
- auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
- if (Var->isParameter() && EntryValBackupID) {
- const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
- if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
- LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
- MI.print(dbgs(), /*IsStandalone*/ false,
- /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
- /*AddNewLine*/ true, TII));
- OpenRanges.erase(EntryVL);
- }
- }
-
- if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() ||
- MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) {
- // Use normal VarLoc constructor for registers and immediates.
- VarLoc VL(MI, LS);
- // End all previous ranges of VL.Var.
- OpenRanges.erase(VL);
-
- LocIndex ID = VarLocIDs.insert(VL);
- // Add the VarLoc to OpenRanges from this DBG_VALUE.
- OpenRanges.insert(ID, VL);
- } else if (MI.hasOneMemOperand()) {
- llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
- } else {
- // This must be an undefined location. If it has an open range, erase it.
- assert(MI.getDebugOperand(0).isReg() &&
- MI.getDebugOperand(0).getReg() == 0 &&
- "Unexpected non-undef DBG_VALUE encountered");
- VarLoc VL(MI, LS);
- OpenRanges.erase(VL);
- }
-}
-
-/// Turn the entry value backup locations into primary locations.
-void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs,
- TransferMap &Transfers,
- VarLocSet &KillSet) {
- // Do not insert entry value locations after a terminator.
- if (MI.isTerminator())
- return;
-
- for (uint64_t ID : KillSet) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- const VarLoc &VL = VarLocIDs[Idx];
- if (!VL.Var.getVariable()->isParameter())
- continue;
-
- auto DebugVar = VL.Var;
- Optional<LocIndex> EntryValBackupID =
- OpenRanges.getEntryValueBackup(DebugVar);
-
- // If the parameter has the entry value backup, it means we should
- // be able to use its entry value.
- if (!EntryValBackupID)
- continue;
-
- const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
- VarLoc EntryLoc =
- VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
- LocIndex EntryValueID = VarLocIDs.insert(EntryLoc);
- Transfers.push_back({&MI, EntryValueID});
- OpenRanges.insert(EntryValueID, EntryLoc);
- }
-}
-
-/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
-/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
-/// new VarLoc. If \p NewReg is different than default zero value then the
-/// new location will be register location created by the copy like instruction,
-/// otherwise it is variable's location on the stack.
-void VarLocBasedLDV::insertTransferDebugPair(
- MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
- VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
- Register NewReg) {
- const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
-
- auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
- LocIndex LocId = VarLocIDs.insert(VL);
-
- // Close this variable's previous location range.
- OpenRanges.erase(VL);
-
- // Record the new location as an open range, and a postponed transfer
- // inserting a DBG_VALUE for this location.
- OpenRanges.insert(LocId, VL);
- assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
- TransferDebugPair MIP = {&MI, LocId};
- Transfers.push_back(MIP);
- };
-
- // End all previous ranges of VL.Var.
- OpenRanges.erase(VarLocIDs[OldVarID]);
- switch (Kind) {
- case TransferKind::TransferCopy: {
- assert(NewReg &&
- "No register supplied when handling a copy of a debug value");
- // Create a DBG_VALUE instruction to describe the Var in its new
- // register location.
- VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
- ProcessVarLoc(VL);
- LLVM_DEBUG({
- dbgs() << "Creating VarLoc for register copy:";
- VL.dump(TRI);
- });
- return;
- }
- case TransferKind::TransferSpill: {
- // Create a DBG_VALUE instruction to describe the Var in its spilled
- // location.
- VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
- VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
- SpillLocation.SpillOffset, LS);
- ProcessVarLoc(VL);
- LLVM_DEBUG({
- dbgs() << "Creating VarLoc for spill:";
- VL.dump(TRI);
- });
- return;
- }
- case TransferKind::TransferRestore: {
- assert(NewReg &&
- "No register supplied when handling a restore of a debug value");
- // DebugInstr refers to the pre-spill location, therefore we can reuse
- // its expression.
- VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
- ProcessVarLoc(VL);
- LLVM_DEBUG({
- dbgs() << "Creating VarLoc for restore:";
- VL.dump(TRI);
- });
- return;
- }
- }
- llvm_unreachable("Invalid transfer kind");
-}
-
-/// A definition of a register may mark the end of a range.
-void VarLocBasedLDV::transferRegisterDef(
- MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
- TransferMap &Transfers) {
-
- // Meta Instructions do not affect the debug liveness of any register they
- // define.
- if (MI.isMetaInstruction())
- return;
-
- MachineFunction *MF = MI.getMF();
- const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
- Register SP = TLI->getStackPointerRegisterToSaveRestore();
-
- // Find the regs killed by MI, and find regmasks of preserved regs.
- DefinedRegsSet DeadRegs;
- SmallVector<const uint32_t *, 4> RegMasks;
- for (const MachineOperand &MO : MI.operands()) {
- // Determine whether the operand is a register def.
- if (MO.isReg() && MO.isDef() && MO.getReg() &&
- Register::isPhysicalRegister(MO.getReg()) &&
- !(MI.isCall() && MO.getReg() == SP)) {
- // Remove ranges of all aliased registers.
- for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
- // FIXME: Can we break out of this loop early if no insertion occurs?
- DeadRegs.insert(*RAI);
- } else if (MO.isRegMask()) {
- RegMasks.push_back(MO.getRegMask());
- }
- }
-
- // Erase VarLocs which reside in one of the dead registers. For performance
- // reasons, it's critical to not iterate over the full set of open VarLocs.
- // Iterate over the set of dying/used regs instead.
- if (!RegMasks.empty()) {
- SmallVector<uint32_t, 32> UsedRegs;
- getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
- for (uint32_t Reg : UsedRegs) {
- // Remove ranges of all clobbered registers. Register masks don't usually
- // list SP as preserved. Assume that call instructions never clobber SP,
- // because some backends (e.g., AArch64) never list SP in the regmask.
- // While the debug info may be off for an instruction or two around
- // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
- // still a better user experience.
- if (Reg == SP)
- continue;
- bool AnyRegMaskKillsReg =
- any_of(RegMasks, [Reg](const uint32_t *RegMask) {
- return MachineOperand::clobbersPhysReg(RegMask, Reg);
- });
- if (AnyRegMaskKillsReg)
- DeadRegs.insert(Reg);
- }
- }
-
- if (DeadRegs.empty())
- return;
-
- VarLocSet KillSet(Alloc);
- collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs());
- OpenRanges.erase(KillSet, VarLocIDs);
-
- if (TPC) {
- auto &TM = TPC->getTM<TargetMachine>();
- if (TM.Options.ShouldEmitDebugEntryValues())
- emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
- }
-}
-
-bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
- MachineFunction *MF) {
- // TODO: Handle multiple stores folded into one.
- if (!MI.hasOneMemOperand())
- return false;
-
- if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
- return false; // This is not a spill instruction, since no valid size was
- // returned from either function.
-
- return true;
-}
-
-bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
- MachineFunction *MF, Register &Reg) {
- if (!isSpillInstruction(MI, MF))
- return false;
-
- auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
- if (!MO.isReg() || !MO.isUse()) {
- Reg = 0;
- return false;
- }
- Reg = MO.getReg();
- return MO.isKill();
- };
-
- for (const MachineOperand &MO : MI.operands()) {
- // In a spill instruction generated by the InlineSpiller the spilled
- // register has its kill flag set.
- if (isKilledReg(MO, Reg))
- return true;
- if (Reg != 0) {
- // Check whether next instruction kills the spilled register.
- // FIXME: Current solution does not cover search for killed register in
- // bundles and instructions further down the chain.
- auto NextI = std::next(MI.getIterator());
- // Skip next instruction that points to basic block end iterator.
- if (MI.getParent()->end() == NextI)
- continue;
- Register RegNext;
- for (const MachineOperand &MONext : NextI->operands()) {
- // Return true if we came across the register from the
- // previous spill instruction that is killed in NextI.
- if (isKilledReg(MONext, RegNext) && RegNext == Reg)
- return true;
- }
- }
- }
- // Return false if we didn't find spilled register.
- return false;
-}
-
-Optional<VarLocBasedLDV::VarLoc::SpillLoc>
-VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
- MachineFunction *MF, Register &Reg) {
- if (!MI.hasOneMemOperand())
- return None;
-
- // FIXME: Handle folded restore instructions with more than one memory
- // operand.
- if (MI.getRestoreSize(TII)) {
- Reg = MI.getOperand(0).getReg();
- return extractSpillBaseRegAndOffset(MI);
- }
- return None;
-}
-
-/// A spilled register may indicate that we have to end the current range of
-/// a variable and create a new one for the spill location.
-/// A restored register may indicate the reverse situation.
-/// We don't want to insert any instructions in process(), so we just create
-/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
-/// It will be inserted into the BB when we're done iterating over the
-/// instructions.
-void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs,
- TransferMap &Transfers) {
- MachineFunction *MF = MI.getMF();
- TransferKind TKind;
- Register Reg;
- Optional<VarLoc::SpillLoc> Loc;
-
- LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
-
- // First, if there are any DBG_VALUEs pointing at a spill slot that is
- // written to, then close the variable location. The value in memory
- // will have changed.
- VarLocSet KillSet(Alloc);
- if (isSpillInstruction(MI, MF)) {
- Loc = extractSpillBaseRegAndOffset(MI);
- for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- const VarLoc &VL = VarLocIDs[Idx];
- assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
- if (VL.Loc.SpillLocation == *Loc) {
- // This location is overwritten by the current instruction -- terminate
- // the open range, and insert an explicit DBG_VALUE $noreg.
- //
- // Doing this at a later stage would require re-interpreting all
- // DBG_VALUes and DIExpressions to identify whether they point at
- // memory, and then analysing all memory writes to see if they
- // overwrite that memory, which is expensive.
- //
- // At this stage, we already know which DBG_VALUEs are for spills and
- // where they are located; it's best to fix handle overwrites now.
- KillSet.set(ID);
- VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
- LocIndex UndefLocID = VarLocIDs.insert(UndefVL);
- Transfers.push_back({&MI, UndefLocID});
- }
- }
- OpenRanges.erase(KillSet, VarLocIDs);
- }
-
- // Try to recognise spill and restore instructions that may create a new
- // variable location.
- if (isLocationSpill(MI, MF, Reg)) {
- TKind = TransferKind::TransferSpill;
- LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
- LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
- << "\n");
- } else {
- if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
- return;
- TKind = TransferKind::TransferRestore;
- LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
- LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
- << "\n");
- }
- // Check if the register or spill location is the location of a debug value.
- auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
- if (TKind == TransferKind::TransferSpill)
- TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
- else if (TKind == TransferKind::TransferRestore)
- TransferCandidates = OpenRanges.getSpillVarLocs();
- for (uint64_t ID : TransferCandidates) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- const VarLoc &VL = VarLocIDs[Idx];
- if (TKind == TransferKind::TransferSpill) {
- assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?");
- LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
- << VL.Var.getVariable()->getName() << ")\n");
- } else {
- assert(TKind == TransferKind::TransferRestore &&
- VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
- if (VL.Loc.SpillLocation != *Loc)
- // The spill location is not the location of a debug value.
- continue;
- LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
- << VL.Var.getVariable()->getName() << ")\n");
- }
- insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
- Reg);
- // FIXME: A comment should explain why it's correct to return early here,
- // if that is in fact correct.
- return;
- }
-}
-
-/// If \p MI is a register copy instruction, that copies a previously tracked
-/// value from one register to another register that is callee saved, we
-/// create new DBG_VALUE instruction described with copy destination register.
-void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs,
- TransferMap &Transfers) {
- auto DestSrc = TII->isCopyInstr(MI);
- if (!DestSrc)
- return;
-
- const MachineOperand *DestRegOp = DestSrc->Destination;
- const MachineOperand *SrcRegOp = DestSrc->Source;
-
- if (!DestRegOp->isDef())
- return;
-
- auto isCalleeSavedReg = [&](Register Reg) {
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- };
-
- Register SrcReg = SrcRegOp->getReg();
- Register DestReg = DestRegOp->getReg();
-
- // We want to recognize instructions where destination register is callee
- // saved register. If register that could be clobbered by the call is
- // included, there would be a great chance that it is going to be clobbered
- // soon. It is more likely that previous register location, which is callee
- // saved, is going to stay unclobbered longer, even if it is killed.
- if (!isCalleeSavedReg(DestReg))
- return;
-
- // Remember an entry value movement. If we encounter a new debug value of
- // a parameter describing only a moving of the value around, rather then
- // modifying it, we are still able to use the entry value if needed.
- if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
- for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- const VarLoc &VL = VarLocIDs[Idx];
- if (VL.getEntryValueBackupReg() == SrcReg) {
- LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
- VarLoc EntryValLocCopyBackup =
- VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
-
- // Stop tracking the original entry value.
- OpenRanges.erase(VL);
-
- // Start tracking the entry value copy.
- LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
- OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
- break;
- }
- }
- }
-
- if (!SrcRegOp->isKill())
- return;
-
- for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?");
- insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
- TransferKind::TransferCopy, DestReg);
- // FIXME: A comment should explain why it's correct to return early here,
- // if that is in fact correct.
- return;
- }
-}
-
-/// Terminate all open ranges at the end of the current basic block.
-bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
- OpenRangesSet &OpenRanges,
- VarLocInMBB &OutLocs,
- const VarLocMap &VarLocIDs) {
- bool Changed = false;
-
- LLVM_DEBUG(for (uint64_t ID
- : OpenRanges.getVarLocs()) {
- // Copy OpenRanges to OutLocs, if not already present.
- dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
- VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI);
- });
- VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
- Changed = VLS != OpenRanges.getVarLocs();
- // New OutLocs set may be different due to spill, restore or register
- // copy instruction processing.
- if (Changed)
- VLS = OpenRanges.getVarLocs();
- OpenRanges.clear();
- return Changed;
-}
-
-/// Accumulate a mapping between each DILocalVariable fragment and other
-/// fragments of that DILocalVariable which overlap. This reduces work during
-/// the data-flow stage from "Find any overlapping fragments" to "Check if the
-/// known-to-overlap fragments are present".
-/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
-/// fragment usage.
-/// \param SeenFragments Map from DILocalVariable to all fragments of that
-/// Variable which are known to exist.
-/// \param OverlappingFragments The overlap map being constructed, from one
-/// Var/Fragment pair to a vector of fragments known to overlap.
-void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
- VarToFragments &SeenFragments,
- OverlapMap &OverlappingFragments) {
- DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
-
- // If this is the first sighting of this variable, then we are guaranteed
- // there are currently no overlapping fragments either. Initialize the set
- // of seen fragments, record no overlaps for the current one, and return.
- auto SeenIt = SeenFragments.find(MIVar.getVariable());
- if (SeenIt == SeenFragments.end()) {
- SmallSet<FragmentInfo, 4> OneFragment;
- OneFragment.insert(ThisFragment);
- SeenFragments.insert({MIVar.getVariable(), OneFragment});
-
- OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- return;
- }
-
- // If this particular Variable/Fragment pair already exists in the overlap
- // map, it has already been accounted for.
- auto IsInOLapMap =
- OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- if (!IsInOLapMap.second)
- return;
-
- auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
- auto &AllSeenFragments = SeenIt->second;
-
- // Otherwise, examine all other seen fragments for this variable, with "this"
- // fragment being a previously unseen fragment. Record any pair of
- // overlapping fragments.
- for (auto &ASeenFragment : AllSeenFragments) {
- // Does this previously seen fragment overlap?
- if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
- // Yes: Mark the current fragment as being overlapped.
- ThisFragmentsOverlaps.push_back(ASeenFragment);
- // Mark the previously seen fragment as being overlapped by the current
- // one.
- auto ASeenFragmentsOverlaps =
- OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
- assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
- "Previously seen var fragment has no vector of overlaps");
- ASeenFragmentsOverlaps->second.push_back(ThisFragment);
- }
- }
-
- AllSeenFragments.insert(ThisFragment);
-}
-
-/// This routine creates OpenRanges.
-void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs, TransferMap &Transfers) {
- transferDebugValue(MI, OpenRanges, VarLocIDs);
- transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
- transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
- transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
-}
-
-/// This routine joins the analysis results of all incoming edges in @MBB by
-/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
-/// source variable in all the predecessors of @MBB reside in the same location.
-bool VarLocBasedLDV::join(
- MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
- const VarLocMap &VarLocIDs,
- SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
- SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
- LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
-
- VarLocSet InLocsT(Alloc); // Temporary incoming locations.
-
- // For all predecessors of this MBB, find the set of VarLocs that
- // can be joined.
- int NumVisited = 0;
- for (auto p : MBB.predecessors()) {
- // Ignore backedges if we have not visited the predecessor yet. As the
- // predecessor hasn't yet had locations propagated into it, most locations
- // will not yet be valid, so treat them as all being uninitialized and
- // potentially valid. If a location guessed to be correct here is
- // invalidated later, we will remove it when we revisit this block.
- if (!Visited.count(p)) {
- LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
- << "\n");
- continue;
- }
- auto OL = OutLocs.find(p);
- // Join is null in case of empty OutLocs from any of the pred.
- if (OL == OutLocs.end())
- return false;
-
- // Just copy over the Out locs to incoming locs for the first visited
- // predecessor, and for all other predecessors join the Out locs.
- VarLocSet &OutLocVLS = *OL->second.get();
- if (!NumVisited)
- InLocsT = OutLocVLS;
- else
- InLocsT &= OutLocVLS;
-
- LLVM_DEBUG({
- if (!InLocsT.empty()) {
- for (uint64_t ID : InLocsT)
- dbgs() << " gathered candidate incoming var: "
- << VarLocIDs[LocIndex::fromRawInteger(ID)]
- .Var.getVariable()
- ->getName()
- << "\n";
- }
- });
-
- NumVisited++;
- }
-
- // Filter out DBG_VALUES that are out of scope.
- VarLocSet KillSet(Alloc);
- bool IsArtificial = ArtificialBlocks.count(&MBB);
- if (!IsArtificial) {
- for (uint64_t ID : InLocsT) {
- LocIndex Idx = LocIndex::fromRawInteger(ID);
- if (!VarLocIDs[Idx].dominates(LS, MBB)) {
- KillSet.set(ID);
- LLVM_DEBUG({
- auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
- dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
- });
- }
- }
- }
- InLocsT.intersectWithComplement(KillSet);
-
- // As we are processing blocks in reverse post-order we
- // should have processed at least one predecessor, unless it
- // is the entry block which has no predecessor.
- assert((NumVisited || MBB.pred_empty()) &&
- "Should have processed at least one predecessor");
-
- VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
- bool Changed = false;
- if (ILS != InLocsT) {
- ILS = InLocsT;
- Changed = true;
- }
-
- return Changed;
-}
-
-void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
- VarLocMap &VarLocIDs) {
- // PendingInLocs records all locations propagated into blocks, which have
- // not had DBG_VALUE insts created. Go through and create those insts now.
- for (auto &Iter : PendingInLocs) {
- // Map is keyed on a constant pointer, unwrap it so we can insert insts.
- auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
- VarLocSet &Pending = *Iter.second.get();
-
- for (uint64_t ID : Pending) {
- // The ID location is live-in to MBB -- work out what kind of machine
- // location it is and create a DBG_VALUE.
- const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)];
- if (DiffIt.isEntryBackupLoc())
- continue;
- MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
- MBB.insert(MBB.instr_begin(), MI);
-
- (void)MI;
- LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
- }
- }
-}
-
-bool VarLocBasedLDV::isEntryValueCandidate(
- const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
- assert(MI.isDebugValue() && "This must be DBG_VALUE.");
-
- // TODO: Add support for local variables that are expressed in terms of
- // parameters entry values.
- // TODO: Add support for modified arguments that can be expressed
- // by using its entry value.
- auto *DIVar = MI.getDebugVariable();
- if (!DIVar->isParameter())
- return false;
-
- // Do not consider parameters that belong to an inlined function.
- if (MI.getDebugLoc()->getInlinedAt())
- return false;
-
- // Only consider parameters that are described using registers. Parameters
- // that are passed on the stack are not yet supported, so ignore debug
- // values that are described by the frame or stack pointer.
- if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
- return false;
-
- // If a parameter's value has been propagated from the caller, then the
- // parameter's DBG_VALUE may be described using a register defined by some
- // instruction in the entry block, in which case we shouldn't create an
- // entry value.
- if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
- return false;
-
- // TODO: Add support for parameters that have a pre-existing debug expressions
- // (e.g. fragments).
- if (MI.getDebugExpression()->getNumElements() > 0)
- return false;
-
- return true;
-}
-
-/// Collect all register defines (including aliases) for the given instruction.
-static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
- const TargetRegisterInfo *TRI) {
- for (const MachineOperand &MO : MI.operands())
- if (MO.isReg() && MO.isDef() && MO.getReg())
- for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
- Regs.insert(*AI);
-}
-
-/// This routine records the entry values of function parameters. The values
-/// could be used as backup values. If we loose the track of some unmodified
-/// parameters, the backup values will be used as a primary locations.
-void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
- const DefinedRegsSet &DefinedRegs,
- OpenRangesSet &OpenRanges,
- VarLocMap &VarLocIDs) {
- if (TPC) {
- auto &TM = TPC->getTM<TargetMachine>();
- if (!TM.Options.ShouldEmitDebugEntryValues())
- return;
- }
-
- DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
-
- if (!isEntryValueCandidate(MI, DefinedRegs) ||
- OpenRanges.getEntryValueBackup(V))
- return;
-
- LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
-
- // Create the entry value and use it as a backup location until it is
- // valid. It is valid until a parameter is not changed.
- DIExpression *NewExpr =
- DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
- VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
- LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
- OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
-}
-
-/// Calculate the liveness information for the given machine function and
-/// extend ranges across basic blocks.
-bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
- LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
-
- if (!MF.getFunction().getSubprogram())
- // VarLocBaseLDV will already have removed all DBG_VALUEs.
- return false;
-
- // Skip functions from NoDebug compilation units.
- if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
- DICompileUnit::NoDebug)
- return false;
-
- TRI = MF.getSubtarget().getRegisterInfo();
- TII = MF.getSubtarget().getInstrInfo();
- TFI = MF.getSubtarget().getFrameLowering();
- TFI->getCalleeSaves(MF, CalleeSavedRegs);
- this->TPC = TPC;
- LS.initialize(MF);
-
- bool Changed = false;
- bool OLChanged = false;
- bool MBBJoined = false;
-
- VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
- OverlapMap OverlapFragments; // Map of overlapping variable fragments.
- OpenRangesSet OpenRanges(Alloc, OverlapFragments);
- // Ranges that are open until end of bb.
- VarLocInMBB OutLocs; // Ranges that exist beyond bb.
- VarLocInMBB InLocs; // Ranges that are incoming after joining.
- TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
- // spills, copies and restores).
-
- VarToFragments SeenFragments;
-
- // Blocks which are artificial, i.e. blocks which exclusively contain
- // instructions without locations, or with line 0 locations.
- SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
-
- DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
- DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist;
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Pending;
-
- // Set of register defines that are seen when traversing the entry block
- // looking for debug entry value candidates.
- DefinedRegsSet DefinedRegs;
-
- // Only in the case of entry MBB collect DBG_VALUEs representing
- // function parameters in order to generate debug entry values for them.
- MachineBasicBlock &First_MBB = *(MF.begin());
- for (auto &MI : First_MBB) {
- collectRegDefs(MI, DefinedRegs, TRI);
- if (MI.isDebugValue())
- recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
- }
-
- // Initialize per-block structures and scan for fragment overlaps.
- for (auto &MBB : MF)
- for (auto &MI : MBB)
- if (MI.isDebugValue())
- accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
-
- auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
- if (const DebugLoc &DL = MI.getDebugLoc())
- return DL.getLine() != 0;
- return false;
- };
- for (auto &MBB : MF)
- if (none_of(MBB.instrs(), hasNonArtificialLocation))
- ArtificialBlocks.insert(&MBB);
-
- LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
- "OutLocs after initialization", dbgs()));
-
- ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
- unsigned int RPONumber = 0;
- for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
- OrderToBB[RPONumber] = *RI;
- BBToOrder[*RI] = RPONumber;
- Worklist.push(RPONumber);
- ++RPONumber;
- }
-
- if (RPONumber > InputBBLimit) {
- unsigned NumInputDbgValues = 0;
- for (auto &MBB : MF)
- for (auto &MI : MBB)
- if (MI.isDebugValue())
- ++NumInputDbgValues;
- if (NumInputDbgValues > InputDbgValueLimit) {
- LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
- << " has " << RPONumber << " basic blocks and "
- << NumInputDbgValues
- << " input DBG_VALUEs, exceeding limits.\n");
- return false;
- }
- }
-
- // This is a standard "union of predecessor outs" dataflow problem.
- // To solve it, we perform join() and process() using the two worklist method
- // until the ranges converge.
- // Ranges have converged when both worklists are empty.
- SmallPtrSet<const MachineBasicBlock *, 16> Visited;
- while (!Worklist.empty() || !Pending.empty()) {
- // We track what is on the pending worklist to avoid inserting the same
- // thing twice. We could avoid this with a custom priority queue, but this
- // is probably not worth it.
- SmallPtrSet<MachineBasicBlock *, 16> OnPending;
- LLVM_DEBUG(dbgs() << "Processing Worklist\n");
- while (!Worklist.empty()) {
- MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
- Worklist.pop();
- MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
- ArtificialBlocks);
- MBBJoined |= Visited.insert(MBB).second;
- if (MBBJoined) {
- MBBJoined = false;
- Changed = true;
- // Now that we have started to extend ranges across BBs we need to
- // examine spill, copy and restore instructions to see whether they
- // operate with registers that correspond to user variables.
- // First load any pending inlocs.
- OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
- for (auto &MI : *MBB)
- process(MI, OpenRanges, VarLocIDs, Transfers);
- OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
-
- LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
- "OutLocs after propagating", dbgs()));
- LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
- "InLocs after propagating", dbgs()));
-
- if (OLChanged) {
- OLChanged = false;
- for (auto s : MBB->successors())
- if (OnPending.insert(s).second) {
- Pending.push(BBToOrder[s]);
- }
- }
- }
- }
- Worklist.swap(Pending);
- // At this point, pending must be empty, since it was just the empty
- // worklist
- assert(Pending.empty() && "Pending should be empty");
- }
-
- // Add any DBG_VALUE instructions created by location transfers.
- for (auto &TR : Transfers) {
- assert(!TR.TransferInst->isTerminator() &&
- "Cannot insert DBG_VALUE after terminator");
- MachineBasicBlock *MBB = TR.TransferInst->getParent();
- const VarLoc &VL = VarLocIDs[TR.LocationID];
- MachineInstr *MI = VL.BuildDbgValue(MF);
- MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
- }
- Transfers.clear();
-
- // Deferred inlocs will not have had any DBG_VALUE insts created; do
- // that now.
- flushPendingLocs(InLocs, VarLocIDs);
-
- LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
- LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
- return Changed;
-}
-
-LDVImpl *
-llvm::makeVarLocBasedLiveDebugValues()
-{
- return new VarLocBasedLDV();
-}
+//===- VarLocBasedImpl.cpp - Tracking Debug Value MIs with VarLoc class----===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file VarLocBasedImpl.cpp
+///
+/// LiveDebugValues is an optimistic "available expressions" dataflow
+/// algorithm. The set of expressions is the set of machine locations
+/// (registers, spill slots, constants) that a variable fragment might be
+/// located, qualified by a DIExpression and indirect-ness flag, while each
+/// variable is identified by a DebugVariable object. The availability of an
+/// expression begins when a DBG_VALUE instruction specifies the location of a
+/// DebugVariable, and continues until that location is clobbered or
+/// re-specified by a different DBG_VALUE for the same DebugVariable.
+///
+/// The output of LiveDebugValues is additional DBG_VALUE instructions,
+/// placed to extend variable locations as far they're available. This file
+/// and the VarLocBasedLDV class is an implementation that explicitly tracks
+/// locations, using the VarLoc class.
+///
+/// The canonical "available expressions" problem doesn't have expression
+/// clobbering, instead when a variable is re-assigned, any expressions using
+/// that variable get invalidated. LiveDebugValues can map onto "available
+/// expressions" by having every register represented by a variable, which is
+/// used in an expression that becomes available at a DBG_VALUE instruction.
+/// When the register is clobbered, its variable is effectively reassigned, and
+/// expressions computed from it become unavailable. A similar construct is
+/// needed when a DebugVariable has its location re-specified, to invalidate
+/// all other locations for that DebugVariable.
+///
+/// Using the dataflow analysis to compute the available expressions, we create
+/// a DBG_VALUE at the beginning of each block where the expression is
+/// live-in. This propagates variable locations into every basic block where
+/// the location can be determined, rather than only having DBG_VALUEs in blocks
+/// where locations are specified due to an assignment or some optimization.
+/// Movements of values between registers and spill slots are annotated with
+/// DBG_VALUEs too to track variable values bewteen locations. All this allows
+/// DbgEntityHistoryCalculator to focus on only the locations within individual
+/// blocks, facilitating testing and improving modularity.
+///
+/// We follow an optimisic dataflow approach, with this lattice:
+///
+/// \verbatim
+/// ┬ "Unknown"
+/// |
+/// v
+/// True
+/// |
+/// v
+/// ⊥ False
+/// \endverbatim With "True" signifying that the expression is available (and
+/// thus a DebugVariable's location is the corresponding register), while
+/// "False" signifies that the expression is unavailable. "Unknown"s never
+/// survive to the end of the analysis (see below).
+///
+/// Formally, all DebugVariable locations that are live-out of a block are
+/// initialized to \top. A blocks live-in values take the meet of the lattice
+/// value for every predecessors live-outs, except for the entry block, where
+/// all live-ins are \bot. The usual dataflow propagation occurs: the transfer
+/// function for a block assigns an expression for a DebugVariable to be "True"
+/// if a DBG_VALUE in the block specifies it; "False" if the location is
+/// clobbered; or the live-in value if it is unaffected by the block. We
+/// visit each block in reverse post order until a fixedpoint is reached. The
+/// solution produced is maximal.
+///
+/// Intuitively, we start by assuming that every expression / variable location
+/// is at least "True", and then propagate "False" from the entry block and any
+/// clobbers until there are no more changes to make. This gives us an accurate
+/// solution because all incorrect locations will have a "False" propagated into
+/// them. It also gives us a solution that copes well with loops by assuming
+/// that variable locations are live-through every loop, and then removing those
+/// that are not through dataflow.
+///
+/// Within LiveDebugValues: each variable location is represented by a
+/// VarLoc object that identifies the source variable, its current
+/// machine-location, and the DBG_VALUE inst that specifies the location. Each
+/// VarLoc is indexed in the (function-scope) \p VarLocMap, giving each VarLoc a
+/// unique index. Rather than operate directly on machine locations, the
+/// dataflow analysis in this pass identifies locations by their index in the
+/// VarLocMap, meaning all the variable locations in a block can be described
+/// by a sparse vector of VarLocMap indicies.
+///
+/// All the storage for the dataflow analysis is local to the ExtendRanges
+/// method and passed down to helper methods. "OutLocs" and "InLocs" record the
+/// in and out lattice values for each block. "OpenRanges" maintains a list of
+/// variable locations and, with the "process" method, evaluates the transfer
+/// function of each block. "flushPendingLocs" installs DBG_VALUEs for each
+/// live-in location at the start of blocks, while "Transfers" records
+/// transfers of values between machine-locations.
+///
+/// We avoid explicitly representing the "Unknown" (\top) lattice value in the
+/// implementation. Instead, unvisited blocks implicitly have all lattice
+/// values set as "Unknown". After being visited, there will be path back to
+/// the entry block where the lattice value is "False", and as the transfer
+/// function cannot make new "Unknown" locations, there are no scenarios where
+/// a block can have an "Unknown" location after being visited. Similarly, we
+/// don't enumerate all possible variable locations before exploring the
+/// function: when a new location is discovered, all blocks previously explored
+/// were implicitly "False" but unrecorded, and become explicitly "False" when
+/// a new VarLoc is created with its bit not set in predecessor InLocs or
+/// OutLocs.
+///
+//===----------------------------------------------------------------------===//
+
+#include "LiveDebugValues.h"
+
+#include "llvm/ADT/CoalescingBitVector.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+
+// Options to prevent pathological compile-time behavior. If InputBBLimit and
+// InputDbgValueLimit are both exceeded, range extension is disabled.
+static cl::opt<unsigned> InputBBLimit(
+ "livedebugvalues-input-bb-limit",
+ cl::desc("Maximum input basic blocks before DBG_VALUE limit applies"),
+ cl::init(10000), cl::Hidden);
+static cl::opt<unsigned> InputDbgValueLimit(
+ "livedebugvalues-input-dbg-value-limit",
+ cl::desc(
+ "Maximum input DBG_VALUE insts supported by debug range extension"),
+ cl::init(50000), cl::Hidden);
+
+// If @MI is a DBG_VALUE with debug value described by a defined
+// register, returns the number of this register. In the other case, returns 0.
+static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
+ assert(MI.isDebugValue() && "expected a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ // If location of variable is described using a register (directly
+ // or indirectly), this register is always a first operand.
+ return MI.getDebugOperand(0).isReg() ? MI.getDebugOperand(0).getReg()
+ : Register();
+}
+
+/// If \p Op is a stack or frame register return true, otherwise return false.
+/// This is used to avoid basing the debug entry values on the registers, since
+/// we do not support it at the moment.
+static bool isRegOtherThanSPAndFP(const MachineOperand &Op,
+ const MachineInstr &MI,
+ const TargetRegisterInfo *TRI) {
+ if (!Op.isReg())
+ return false;
+
+ const MachineFunction *MF = MI.getParent()->getParent();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+ Register FP = TRI->getFrameRegister(*MF);
+ Register Reg = Op.getReg();
+
+ return Reg && Reg != SP && Reg != FP;
+}
+
+namespace {
+
+// Max out the number of statically allocated elements in DefinedRegsSet, as
+// this prevents fallback to std::set::count() operations.
+using DefinedRegsSet = SmallSet<Register, 32>;
+
+using VarLocSet = CoalescingBitVector<uint64_t>;
+
+/// A type-checked pair of {Register Location (or 0), Index}, used to index
+/// into a \ref VarLocMap. This can be efficiently converted to a 64-bit int
+/// for insertion into a \ref VarLocSet, and efficiently converted back. The
+/// type-checker helps ensure that the conversions aren't lossy.
+///
+/// Why encode a location /into/ the VarLocMap index? This makes it possible
+/// to find the open VarLocs killed by a register def very quickly. This is a
+/// performance-critical operation for LiveDebugValues.
+struct LocIndex {
+ using u32_location_t = uint32_t;
+ using u32_index_t = uint32_t;
+
+ u32_location_t Location; // Physical registers live in the range [1;2^30) (see
+ // \ref MCRegister), so we have plenty of range left
+ // here to encode non-register locations.
+ u32_index_t Index;
+
+ /// The first location greater than 0 that is not reserved for VarLocs of
+ /// kind RegisterKind.
+ static constexpr u32_location_t kFirstInvalidRegLocation = 1 << 30;
+
+ /// A special location reserved for VarLocs of kind SpillLocKind.
+ static constexpr u32_location_t kSpillLocation = kFirstInvalidRegLocation;
+
+ /// A special location reserved for VarLocs of kind EntryValueBackupKind and
+ /// EntryValueCopyBackupKind.
+ static constexpr u32_location_t kEntryValueBackupLocation =
+ kFirstInvalidRegLocation + 1;
+
+ LocIndex(u32_location_t Location, u32_index_t Index)
+ : Location(Location), Index(Index) {}
+
+ uint64_t getAsRawInteger() const {
+ return (static_cast<uint64_t>(Location) << 32) | Index;
+ }
+
+ template<typename IntT> static LocIndex fromRawInteger(IntT ID) {
+ static_assert(std::is_unsigned<IntT>::value &&
+ sizeof(ID) == sizeof(uint64_t),
+ "Cannot convert raw integer to LocIndex");
+ return {static_cast<u32_location_t>(ID >> 32),
+ static_cast<u32_index_t>(ID)};
+ }
+
+ /// Get the start of the interval reserved for VarLocs of kind RegisterKind
+ /// which reside in \p Reg. The end is at rawIndexForReg(Reg+1)-1.
+ static uint64_t rawIndexForReg(uint32_t Reg) {
+ return LocIndex(Reg, 0).getAsRawInteger();
+ }
+
+ /// Return a range covering all set indices in the interval reserved for
+ /// \p Location in \p Set.
+ static auto indexRangeForLocation(const VarLocSet &Set,
+ u32_location_t Location) {
+ uint64_t Start = LocIndex(Location, 0).getAsRawInteger();
+ uint64_t End = LocIndex(Location + 1, 0).getAsRawInteger();
+ return Set.half_open_range(Start, End);
+ }
+};
+
+class VarLocBasedLDV : public LDVImpl {
+private:
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ TargetPassConfig *TPC;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+ VarLocSet::Allocator Alloc;
+
+ enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
+
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
+
+ /// A pair of debug variable and value location.
+ struct VarLoc {
+ // The location at which a spilled variable resides. It consists of a
+ // register and an offset.
+ struct SpillLoc {
+ unsigned SpillBase;
+ StackOffset SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
+ }
+ bool operator!=(const SpillLoc &Other) const {
+ return !(*this == Other);
+ }
+ };
+
+ /// Identity of the variable at this location.
+ const DebugVariable Var;
+
+ /// The expression applied to this location.
+ const DIExpression *Expr;
+
+ /// DBG_VALUE to clone var/expr information from if this location
+ /// is moved.
+ const MachineInstr &MI;
+
+ enum VarLocKind {
+ InvalidKind = 0,
+ RegisterKind,
+ SpillLocKind,
+ ImmediateKind,
+ EntryValueKind,
+ EntryValueBackupKind,
+ EntryValueCopyBackupKind
+ } Kind = InvalidKind;
+
+ /// The value location. Stored separately to avoid repeatedly
+ /// extracting it from MI.
+ union LocUnion {
+ uint64_t RegNo;
+ SpillLoc SpillLocation;
+ uint64_t Hash;
+ int64_t Immediate;
+ const ConstantFP *FPImm;
+ const ConstantInt *CImm;
+ LocUnion() : Hash(0) {}
+ } Loc;
+
+ VarLoc(const MachineInstr &MI, LexicalScopes &LS)
+ : Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt()),
+ Expr(MI.getDebugExpression()), MI(MI) {
+ assert(MI.isDebugValue() && "not a DBG_VALUE");
+ assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
+ if (int RegNo = isDbgValueDescribedByReg(MI)) {
+ Kind = RegisterKind;
+ Loc.RegNo = RegNo;
+ } else if (MI.getDebugOperand(0).isImm()) {
+ Kind = ImmediateKind;
+ Loc.Immediate = MI.getDebugOperand(0).getImm();
+ } else if (MI.getDebugOperand(0).isFPImm()) {
+ Kind = ImmediateKind;
+ Loc.FPImm = MI.getDebugOperand(0).getFPImm();
+ } else if (MI.getDebugOperand(0).isCImm()) {
+ Kind = ImmediateKind;
+ Loc.CImm = MI.getDebugOperand(0).getCImm();
+ }
+
+ // We create the debug entry values from the factory functions rather than
+ // from this ctor.
+ assert(Kind != EntryValueKind && !isEntryBackupLoc());
+ }
+
+ /// Take the variable and machine-location in DBG_VALUE MI, and build an
+ /// entry location using the given expression.
+ static VarLoc CreateEntryLoc(const MachineInstr &MI, LexicalScopes &LS,
+ const DIExpression *EntryExpr, Register Reg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueKind;
+ VL.Expr = EntryExpr;
+ VL.Loc.RegNo = Reg;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build an entry value backup location. The backup
+ /// location will turn into the normal location if the backup is valid at
+ /// the time of the primary location clobbering.
+ static VarLoc CreateEntryBackupLoc(const MachineInstr &MI,
+ LexicalScopes &LS,
+ const DIExpression *EntryExpr) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueBackupKind;
+ VL.Expr = EntryExpr;
+ return VL;
+ }
+
+ /// Take the variable and machine-location from the DBG_VALUE (from the
+ /// function entry), and build a copy of an entry value backup location by
+ /// setting the register location to NewReg.
+ static VarLoc CreateEntryCopyBackupLoc(const MachineInstr &MI,
+ LexicalScopes &LS,
+ const DIExpression *EntryExpr,
+ Register NewReg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = EntryValueCopyBackupKind;
+ VL.Expr = EntryExpr;
+ VL.Loc.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Copy the register location in DBG_VALUE MI, updating the register to
+ /// be NewReg.
+ static VarLoc CreateCopyLoc(const MachineInstr &MI, LexicalScopes &LS,
+ Register NewReg) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Loc.RegNo = NewReg;
+ return VL;
+ }
+
+ /// Take the variable described by DBG_VALUE MI, and create a VarLoc
+ /// locating it in the specified spill location.
+ static VarLoc CreateSpillLoc(const MachineInstr &MI, unsigned SpillBase,
+ StackOffset SpillOffset, LexicalScopes &LS) {
+ VarLoc VL(MI, LS);
+ assert(VL.Kind == RegisterKind);
+ VL.Kind = SpillLocKind;
+ VL.Loc.SpillLocation = {SpillBase, SpillOffset};
+ return VL;
+ }
+
+ /// Create a DBG_VALUE representing this VarLoc in the given function.
+ /// Copies variable-specific information such as DILocalVariable and
+ /// inlining information from the original DBG_VALUE instruction, which may
+ /// have been several transfers ago.
+ MachineInstr *BuildDbgValue(MachineFunction &MF) const {
+ const DebugLoc &DbgLoc = MI.getDebugLoc();
+ bool Indirect = MI.isIndirectDebugValue();
+ const auto &IID = MI.getDesc();
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *DIExpr = MI.getDebugExpression();
+ NumInserted++;
+
+ switch (Kind) {
+ case EntryValueKind:
+ // An entry value is a register location -- but with an updated
+ // expression. The register location of such DBG_VALUE is always the one
+ // from the entry DBG_VALUE, it does not matter if the entry value was
+ // copied in to another register due to some optimizations.
+ return BuildMI(MF, DbgLoc, IID, Indirect,
+ MI.getDebugOperand(0).getReg(), Var, Expr);
+ case RegisterKind:
+ // Register locations are like the source DBG_VALUE, but with the
+ // register number from this VarLoc.
+ return BuildMI(MF, DbgLoc, IID, Indirect, Loc.RegNo, Var, DIExpr);
+ case SpillLocKind: {
+ // Spills are indirect DBG_VALUEs, with a base register and offset.
+ // Use the original DBG_VALUEs expression to build the spilt location
+ // on top of. FIXME: spill locations created before this pass runs
+ // are not recognized, and not handled here.
+ auto *TRI = MF.getSubtarget().getRegisterInfo();
+ auto *SpillExpr = TRI->prependOffsetExpression(
+ DIExpr, DIExpression::ApplyOffset, Loc.SpillLocation.SpillOffset);
+ unsigned Base = Loc.SpillLocation.SpillBase;
+ return BuildMI(MF, DbgLoc, IID, true, Base, Var, SpillExpr);
+ }
+ case ImmediateKind: {
+ MachineOperand MO = MI.getDebugOperand(0);
+ return BuildMI(MF, DbgLoc, IID, Indirect, MO, Var, DIExpr);
+ }
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ case InvalidKind:
+ llvm_unreachable(
+ "Tried to produce DBG_VALUE for invalid or backup VarLoc");
+ }
+ llvm_unreachable("Unrecognized VarLocBasedLDV.VarLoc.Kind enum");
+ }
+
+ /// Is the Loc field a constant or constant object?
+ bool isConstant() const { return Kind == ImmediateKind; }
+
+ /// Check if the Loc field is an entry backup location.
+ bool isEntryBackupLoc() const {
+ return Kind == EntryValueBackupKind || Kind == EntryValueCopyBackupKind;
+ }
+
+ /// If this variable is described by a register holding the entry value,
+ /// return it, otherwise return 0.
+ unsigned getEntryValueBackupReg() const {
+ if (Kind == EntryValueBackupKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// If this variable is described by a register holding the copy of the
+ /// entry value, return it, otherwise return 0.
+ unsigned getEntryValueCopyBackupReg() const {
+ if (Kind == EntryValueCopyBackupKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// If this variable is described by a register, return it,
+ /// otherwise return 0.
+ unsigned isDescribedByReg() const {
+ if (Kind == RegisterKind)
+ return Loc.RegNo;
+ return 0;
+ }
+
+ /// Determine whether the lexical scope of this value's debug location
+ /// dominates MBB.
+ bool dominates(LexicalScopes &LS, MachineBasicBlock &MBB) const {
+ return LS.dominates(MI.getDebugLoc().get(), &MBB);
+ }
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+ // TRI can be null.
+ void dump(const TargetRegisterInfo *TRI, raw_ostream &Out = dbgs()) const {
+ Out << "VarLoc(";
+ switch (Kind) {
+ case RegisterKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ Out << printReg(Loc.RegNo, TRI);
+ break;
+ case SpillLocKind:
+ Out << printReg(Loc.SpillLocation.SpillBase, TRI);
+ Out << "[" << Loc.SpillLocation.SpillOffset.getFixed() << " + "
+ << Loc.SpillLocation.SpillOffset.getScalable() << "x vscale"
+ << "]";
+ break;
+ case ImmediateKind:
+ Out << Loc.Immediate;
+ break;
+ case InvalidKind:
+ llvm_unreachable("Invalid VarLoc in dump method");
+ }
+
+ Out << ", \"" << Var.getVariable()->getName() << "\", " << *Expr << ", ";
+ if (Var.getInlinedAt())
+ Out << "!" << Var.getInlinedAt()->getMetadataID() << ")\n";
+ else
+ Out << "(null))";
+
+ if (isEntryBackupLoc())
+ Out << " (backup loc)\n";
+ else
+ Out << "\n";
+ }
+#endif
+
+ bool operator==(const VarLoc &Other) const {
+ if (Kind != Other.Kind || !(Var == Other.Var) || Expr != Other.Expr)
+ return false;
+
+ switch (Kind) {
+ case SpillLocKind:
+ return Loc.SpillLocation == Other.Loc.SpillLocation;
+ case RegisterKind:
+ case ImmediateKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ return Loc.Hash == Other.Loc.Hash;
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+
+ /// This operator guarantees that VarLocs are sorted by Variable first.
+ bool operator<(const VarLoc &Other) const {
+ switch (Kind) {
+ case SpillLocKind:
+ return std::make_tuple(Var, Kind, Loc.SpillLocation.SpillBase,
+ Loc.SpillLocation.SpillOffset.getFixed(),
+ Loc.SpillLocation.SpillOffset.getScalable(),
+ Expr) <
+ std::make_tuple(
+ Other.Var, Other.Kind, Other.Loc.SpillLocation.SpillBase,
+ Other.Loc.SpillLocation.SpillOffset.getFixed(),
+ Other.Loc.SpillLocation.SpillOffset.getScalable(),
+ Other.Expr);
+ case RegisterKind:
+ case ImmediateKind:
+ case EntryValueKind:
+ case EntryValueBackupKind:
+ case EntryValueCopyBackupKind:
+ return std::tie(Var, Kind, Loc.Hash, Expr) <
+ std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
+ default:
+ llvm_unreachable("Invalid kind");
+ }
+ }
+ };
+
+ /// VarLocMap is used for two things:
+ /// 1) Assigning a unique LocIndex to a VarLoc. This LocIndex can be used to
+ /// virtually insert a VarLoc into a VarLocSet.
+ /// 2) Given a LocIndex, look up the unique associated VarLoc.
+ class VarLocMap {
+ /// Map a VarLoc to an index within the vector reserved for its location
+ /// within Loc2Vars.
+ std::map<VarLoc, LocIndex::u32_index_t> Var2Index;
+
+ /// Map a location to a vector which holds VarLocs which live in that
+ /// location.
+ SmallDenseMap<LocIndex::u32_location_t, std::vector<VarLoc>> Loc2Vars;
+
+ /// Determine the 32-bit location reserved for \p VL, based on its kind.
+ static LocIndex::u32_location_t getLocationForVar(const VarLoc &VL) {
+ switch (VL.Kind) {
+ case VarLoc::RegisterKind:
+ assert((VL.Loc.RegNo < LocIndex::kFirstInvalidRegLocation) &&
+ "Physreg out of range?");
+ return VL.Loc.RegNo;
+ case VarLoc::SpillLocKind:
+ return LocIndex::kSpillLocation;
+ case VarLoc::EntryValueBackupKind:
+ case VarLoc::EntryValueCopyBackupKind:
+ return LocIndex::kEntryValueBackupLocation;
+ default:
+ return 0;
+ }
+ }
+
+ public:
+ /// Retrieve a unique LocIndex for \p VL.
+ LocIndex insert(const VarLoc &VL) {
+ LocIndex::u32_location_t Location = getLocationForVar(VL);
+ LocIndex::u32_index_t &Index = Var2Index[VL];
+ if (!Index) {
+ auto &Vars = Loc2Vars[Location];
+ Vars.push_back(VL);
+ Index = Vars.size();
+ }
+ return {Location, Index - 1};
+ }
+
+ /// Retrieve the unique VarLoc associated with \p ID.
+ const VarLoc &operator[](LocIndex ID) const {
+ auto LocIt = Loc2Vars.find(ID.Location);
+ assert(LocIt != Loc2Vars.end() && "Location not tracked");
+ return LocIt->second[ID.Index];
+ }
+ };
+
+ using VarLocInMBB =
+ SmallDenseMap<const MachineBasicBlock *, std::unique_ptr<VarLocSet>>;
+ struct TransferDebugPair {
+ MachineInstr *TransferInst; ///< Instruction where this transfer occurs.
+ LocIndex LocationID; ///< Location number for the transfer dest.
+ };
+ using TransferMap = SmallVector<TransferDebugPair, 4>;
+
+ // Types for recording sets of variable fragments that overlap. For a given
+ // local variable, we record all other fragments of that variable that could
+ // overlap it, to reduce search time.
+ using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+ using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// This holds the working set of currently open ranges. For fast
+ /// access, this is done both as a set of VarLocIDs, and a map of
+ /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
+ /// previous open ranges for the same variable. In addition, we keep
+ /// two different maps (Vars/EntryValuesBackupVars), so erase/insert
+ /// methods act differently depending on whether a VarLoc is primary
+ /// location or backup one. In the case the VarLoc is backup location
+ /// we will erase/insert from the EntryValuesBackupVars map, otherwise
+ /// we perform the operation on the Vars.
+ class OpenRangesSet {
+ VarLocSet VarLocs;
+ // Map the DebugVariable to recent primary location ID.
+ SmallDenseMap<DebugVariable, LocIndex, 8> Vars;
+ // Map the DebugVariable to recent backup location ID.
+ SmallDenseMap<DebugVariable, LocIndex, 8> EntryValuesBackupVars;
+ OverlapMap &OverlappingFragments;
+
+ public:
+ OpenRangesSet(VarLocSet::Allocator &Alloc, OverlapMap &_OLapMap)
+ : VarLocs(Alloc), OverlappingFragments(_OLapMap) {}
+
+ const VarLocSet &getVarLocs() const { return VarLocs; }
+
+ /// Terminate all open ranges for VL.Var by removing it from the set.
+ void erase(const VarLoc &VL);
+
+ /// Terminate all open ranges listed in \c KillSet by removing
+ /// them from the set.
+ void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs);
+
+ /// Insert a new range into the set.
+ void insert(LocIndex VarLocID, const VarLoc &VL);
+
+ /// Insert a set of ranges.
+ void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
+ for (uint64_t ID : ToLoad) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VarL = Map[Idx];
+ insert(Idx, VarL);
+ }
+ }
+
+ llvm::Optional<LocIndex> getEntryValueBackup(DebugVariable Var);
+
+ /// Empty the set.
+ void clear() {
+ VarLocs.clear();
+ Vars.clear();
+ EntryValuesBackupVars.clear();
+ }
+
+ /// Return whether the set is empty or not.
+ bool empty() const {
+ assert(Vars.empty() == EntryValuesBackupVars.empty() &&
+ Vars.empty() == VarLocs.empty() &&
+ "open ranges are inconsistent");
+ return VarLocs.empty();
+ }
+
+ /// Get an empty range of VarLoc IDs.
+ auto getEmptyVarLocRange() const {
+ return iterator_range<VarLocSet::const_iterator>(getVarLocs().end(),
+ getVarLocs().end());
+ }
+
+ /// Get all set IDs for VarLocs of kind RegisterKind in \p Reg.
+ auto getRegisterVarLocs(Register Reg) const {
+ return LocIndex::indexRangeForLocation(getVarLocs(), Reg);
+ }
+
+ /// Get all set IDs for VarLocs of kind SpillLocKind.
+ auto getSpillVarLocs() const {
+ return LocIndex::indexRangeForLocation(getVarLocs(),
+ LocIndex::kSpillLocation);
+ }
+
+ /// Get all set IDs for VarLocs of kind EntryValueBackupKind or
+ /// EntryValueCopyBackupKind.
+ auto getEntryValueBackupVarLocs() const {
+ return LocIndex::indexRangeForLocation(
+ getVarLocs(), LocIndex::kEntryValueBackupLocation);
+ }
+ };
+
+ /// Collect all VarLoc IDs from \p CollectFrom for VarLocs of kind
+ /// RegisterKind which are located in any reg in \p Regs. Insert collected IDs
+ /// into \p Collected.
+ void collectIDsForRegs(VarLocSet &Collected, const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom) const;
+
+ /// Get the registers which are used by VarLocs of kind RegisterKind tracked
+ /// by \p CollectFrom.
+ void getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<uint32_t> &UsedRegs) const;
+
+ VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB, VarLocInMBB &Locs) {
+ std::unique_ptr<VarLocSet> &VLS = Locs[MBB];
+ if (!VLS)
+ VLS = std::make_unique<VarLocSet>(Alloc);
+ return *VLS.get();
+ }
+
+ const VarLocSet &getVarLocsInMBB(const MachineBasicBlock *MBB,
+ const VarLocInMBB &Locs) const {
+ auto It = Locs.find(MBB);
+ assert(It != Locs.end() && "MBB not in map");
+ return *It->second.get();
+ }
+
+ /// Tests whether this instruction is a spill to a stack location.
+ bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ Register &Reg);
+
+ /// Returns true if the given machine instruction is a debug value which we
+ /// can emit entry values for.
+ ///
+ /// Currently, we generate debug entry values only for parameters that are
+ /// unmodified throughout the function and located in a register.
+ bool isEntryValueCandidate(const MachineInstr &MI,
+ const DefinedRegsSet &Regs) const;
+
+ /// If a given instruction is identified as a spill, return the spill location
+ /// and set \p Reg to the spilled register.
+ Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF,
+ Register &Reg);
+ /// Given a spill instruction, extract the register and offset used to
+ /// address the spill location in a target independent way.
+ VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+ void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ TransferMap &Transfers, VarLocMap &VarLocIDs,
+ LocIndex OldVarID, TransferKind Kind,
+ Register NewReg = Register());
+
+ void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs);
+ void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ bool removeEntryValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, const VarLoc &EntryVL);
+ void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers,
+ VarLocSet &KillSet);
+ void recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs);
+ void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+ bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
+
+ void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers);
+
+ void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
+ OverlapMap &OLapMap);
+
+ bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks);
+
+ /// Create DBG_VALUE insts for inlocs that have been propagated but
+ /// had their instruction creation deferred.
+ void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
+
+ bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
+
+public:
+ /// Default construct and initialize the pass.
+ VarLocBasedLDV();
+
+ ~VarLocBasedLDV();
+
+ /// Print to ostream with a message.
+ void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs, const char *msg,
+ raw_ostream &Out) const;
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+VarLocBasedLDV::VarLocBasedLDV() { }
+
+VarLocBasedLDV::~VarLocBasedLDV() { }
+
+/// Erase a variable from the set of open ranges, and additionally erase any
+/// fragments that may overlap it. If the VarLoc is a backup location, erase
+/// the variable from the EntryValuesBackupVars set, indicating we should stop
+/// tracking its backup entry location. Otherwise, if the VarLoc is primary
+/// location, erase the variable from the Vars set.
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLoc &VL) {
+ // Erasure helper.
+ auto DoErase = [VL, this](DebugVariable VarToErase) {
+ auto *EraseFrom = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ auto It = EraseFrom->find(VarToErase);
+ if (It != EraseFrom->end()) {
+ LocIndex ID = It->second;
+ VarLocs.reset(ID.getAsRawInteger());
+ EraseFrom->erase(It);
+ }
+ };
+
+ DebugVariable Var = VL.Var;
+
+ // Erase the variable/fragment that ends here.
+ DoErase(Var);
+
+ // Extract the fragment. Interpret an empty fragment as one that covers all
+ // possible bits.
+ FragmentInfo ThisFragment = Var.getFragmentOrDefault();
+
+ // There may be fragments that overlap the designated fragment. Look them up
+ // in the pre-computed overlap map, and erase them too.
+ auto MapIt = OverlappingFragments.find({Var.getVariable(), ThisFragment});
+ if (MapIt != OverlappingFragments.end()) {
+ for (auto Fragment : MapIt->second) {
+ VarLocBasedLDV::OptFragmentInfo FragmentHolder;
+ if (!DebugVariable::isDefaultFragment(Fragment))
+ FragmentHolder = VarLocBasedLDV::OptFragmentInfo(Fragment);
+ DoErase({Var.getVariable(), FragmentHolder, Var.getInlinedAt()});
+ }
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::erase(const VarLocSet &KillSet,
+ const VarLocMap &VarLocIDs) {
+ VarLocs.intersectWithComplement(KillSet);
+ for (uint64_t ID : KillSet) {
+ const VarLoc *VL = &VarLocIDs[LocIndex::fromRawInteger(ID)];
+ auto *EraseFrom = VL->isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ EraseFrom->erase(VL->Var);
+ }
+}
+
+void VarLocBasedLDV::OpenRangesSet::insert(LocIndex VarLocID,
+ const VarLoc &VL) {
+ auto *InsertInto = VL.isEntryBackupLoc() ? &EntryValuesBackupVars : &Vars;
+ VarLocs.set(VarLocID.getAsRawInteger());
+ InsertInto->insert({VL.Var, VarLocID});
+}
+
+/// Return the Loc ID of an entry value backup location, if it exists for the
+/// variable.
+llvm::Optional<LocIndex>
+VarLocBasedLDV::OpenRangesSet::getEntryValueBackup(DebugVariable Var) {
+ auto It = EntryValuesBackupVars.find(Var);
+ if (It != EntryValuesBackupVars.end())
+ return It->second;
+
+ return llvm::None;
+}
+
+void VarLocBasedLDV::collectIDsForRegs(VarLocSet &Collected,
+ const DefinedRegsSet &Regs,
+ const VarLocSet &CollectFrom) const {
+ assert(!Regs.empty() && "Nothing to collect");
+ SmallVector<uint32_t, 32> SortedRegs;
+ for (Register Reg : Regs)
+ SortedRegs.push_back(Reg);
+ array_pod_sort(SortedRegs.begin(), SortedRegs.end());
+ auto It = CollectFrom.find(LocIndex::rawIndexForReg(SortedRegs.front()));
+ auto End = CollectFrom.end();
+ for (uint32_t Reg : SortedRegs) {
+ // The half-open interval [FirstIndexForReg, FirstInvalidIndex) contains all
+ // possible VarLoc IDs for VarLocs of kind RegisterKind which live in Reg.
+ uint64_t FirstIndexForReg = LocIndex::rawIndexForReg(Reg);
+ uint64_t FirstInvalidIndex = LocIndex::rawIndexForReg(Reg + 1);
+ It.advanceToLowerBound(FirstIndexForReg);
+
+ // Iterate through that half-open interval and collect all the set IDs.
+ for (; It != End && *It < FirstInvalidIndex; ++It)
+ Collected.set(*It);
+
+ if (It == End)
+ return;
+ }
+}
+
+void VarLocBasedLDV::getUsedRegs(const VarLocSet &CollectFrom,
+ SmallVectorImpl<uint32_t> &UsedRegs) const {
+ // All register-based VarLocs are assigned indices greater than or equal to
+ // FirstRegIndex.
+ uint64_t FirstRegIndex = LocIndex::rawIndexForReg(1);
+ uint64_t FirstInvalidIndex =
+ LocIndex::rawIndexForReg(LocIndex::kFirstInvalidRegLocation);
+ for (auto It = CollectFrom.find(FirstRegIndex),
+ End = CollectFrom.find(FirstInvalidIndex);
+ It != End;) {
+ // We found a VarLoc ID for a VarLoc that lives in a register. Figure out
+ // which register and add it to UsedRegs.
+ uint32_t FoundReg = LocIndex::fromRawInteger(*It).Location;
+ assert((UsedRegs.empty() || FoundReg != UsedRegs.back()) &&
+ "Duplicate used reg");
+ UsedRegs.push_back(FoundReg);
+
+ // Skip to the next /set/ register. Note that this finds a lower bound, so
+ // even if there aren't any VarLocs living in `FoundReg+1`, we're still
+ // guaranteed to move on to the next register (or to end()).
+ uint64_t NextRegIndex = LocIndex::rawIndexForReg(FoundReg + 1);
+ It.advanceToLowerBound(NextRegIndex);
+ }
+}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+void VarLocBasedLDV::printVarLocInMBB(const MachineFunction &MF,
+ const VarLocInMBB &V,
+ const VarLocMap &VarLocIDs,
+ const char *msg,
+ raw_ostream &Out) const {
+ Out << '\n' << msg << '\n';
+ for (const MachineBasicBlock &BB : MF) {
+ if (!V.count(&BB))
+ continue;
+ const VarLocSet &L = getVarLocsInMBB(&BB, V);
+ if (L.empty())
+ continue;
+ Out << "MBB: " << BB.getNumber() << ":\n";
+ for (uint64_t VLL : L) {
+ const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(VLL)];
+ Out << " Var: " << VL.Var.getVariable()->getName();
+ Out << " MI: ";
+ VL.dump(TRI, Out);
+ }
+ }
+ Out << "\n";
+}
+#endif
+
+VarLocBasedLDV::VarLoc::SpillLoc
+VarLocBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ Register Reg;
+ StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return {Reg, Offset};
+}
+
+/// Try to salvage the debug entry value if we encounter a new debug value
+/// describing the same parameter, otherwise stop tracking the value. Return
+/// true if we should stop tracking the entry value, otherwise return false.
+bool VarLocBasedLDV::removeEntryValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ const VarLoc &EntryVL) {
+ // Skip the DBG_VALUE which is the debug entry value itself.
+ if (MI.isIdenticalTo(EntryVL.MI))
+ return false;
+
+ // If the parameter's location is not register location, we can not track
+ // the entry value any more. In addition, if the debug expression from the
+ // DBG_VALUE is not empty, we can assume the parameter's value has changed
+ // indicating that we should stop tracking its entry value as well.
+ if (!MI.getDebugOperand(0).isReg() ||
+ MI.getDebugExpression()->getNumElements() != 0)
+ return true;
+
+ // If the DBG_VALUE comes from a copy instruction that copies the entry value,
+ // it means the parameter's value has not changed and we should be able to use
+ // its entry value.
+ bool TrySalvageEntryValue = false;
+ Register Reg = MI.getDebugOperand(0).getReg();
+ auto I = std::next(MI.getReverseIterator());
+ const MachineOperand *SrcRegOp, *DestRegOp;
+ if (I != MI.getParent()->rend()) {
+ // TODO: Try to keep tracking of an entry value if we encounter a propagated
+ // DBG_VALUE describing the copy of the entry value. (Propagated entry value
+ // does not indicate the parameter modification.)
+ auto DestSrc = TII->isCopyInstr(*I);
+ if (!DestSrc)
+ return true;
+
+ SrcRegOp = DestSrc->Source;
+ DestRegOp = DestSrc->Destination;
+ if (Reg != DestRegOp->getReg())
+ return true;
+ TrySalvageEntryValue = true;
+ }
+
+ if (TrySalvageEntryValue) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ const VarLoc &VL = VarLocIDs[LocIndex::fromRawInteger(ID)];
+ if (VL.getEntryValueCopyBackupReg() == Reg &&
+ VL.MI.getDebugOperand(0).getReg() == SrcRegOp->getReg())
+ return false;
+ }
+ }
+
+ return true;
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+void VarLocBasedLDV::transferDebugValue(const MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (!MI.isDebugValue())
+ return;
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+
+ // Check if this DBG_VALUE indicates a parameter's value changing.
+ // If that is the case, we should stop tracking its entry value.
+ auto EntryValBackupID = OpenRanges.getEntryValueBackup(V);
+ if (Var->isParameter() && EntryValBackupID) {
+ const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
+ if (removeEntryValue(MI, OpenRanges, VarLocIDs, EntryVL)) {
+ LLVM_DEBUG(dbgs() << "Deleting a DBG entry value because of: ";
+ MI.print(dbgs(), /*IsStandalone*/ false,
+ /*SkipOpers*/ false, /*SkipDebugLoc*/ false,
+ /*AddNewLine*/ true, TII));
+ OpenRanges.erase(EntryVL);
+ }
+ }
+
+ if (isDbgValueDescribedByReg(MI) || MI.getDebugOperand(0).isImm() ||
+ MI.getDebugOperand(0).isFPImm() || MI.getDebugOperand(0).isCImm()) {
+ // Use normal VarLoc constructor for registers and immediates.
+ VarLoc VL(MI, LS);
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VL);
+
+ LocIndex ID = VarLocIDs.insert(VL);
+ // Add the VarLoc to OpenRanges from this DBG_VALUE.
+ OpenRanges.insert(ID, VL);
+ } else if (MI.hasOneMemOperand()) {
+ llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
+ } else {
+ // This must be an undefined location. If it has an open range, erase it.
+ assert(MI.getDebugOperand(0).isReg() &&
+ MI.getDebugOperand(0).getReg() == 0 &&
+ "Unexpected non-undef DBG_VALUE encountered");
+ VarLoc VL(MI, LS);
+ OpenRanges.erase(VL);
+ }
+}
+
+/// Turn the entry value backup locations into primary locations.
+void VarLocBasedLDV::emitEntryValues(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers,
+ VarLocSet &KillSet) {
+ // Do not insert entry value locations after a terminator.
+ if (MI.isTerminator())
+ return;
+
+ for (uint64_t ID : KillSet) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (!VL.Var.getVariable()->isParameter())
+ continue;
+
+ auto DebugVar = VL.Var;
+ Optional<LocIndex> EntryValBackupID =
+ OpenRanges.getEntryValueBackup(DebugVar);
+
+ // If the parameter has the entry value backup, it means we should
+ // be able to use its entry value.
+ if (!EntryValBackupID)
+ continue;
+
+ const VarLoc &EntryVL = VarLocIDs[*EntryValBackupID];
+ VarLoc EntryLoc =
+ VarLoc::CreateEntryLoc(EntryVL.MI, LS, EntryVL.Expr, EntryVL.Loc.RegNo);
+ LocIndex EntryValueID = VarLocIDs.insert(EntryLoc);
+ Transfers.push_back({&MI, EntryValueID});
+ OpenRanges.insert(EntryValueID, EntryLoc);
+ }
+}
+
+/// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
+/// with \p OldVarID should be deleted form \p OpenRanges and replaced with
+/// new VarLoc. If \p NewReg is different than default zero value then the
+/// new location will be register location created by the copy like instruction,
+/// otherwise it is variable's location on the stack.
+void VarLocBasedLDV::insertTransferDebugPair(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
+ VarLocMap &VarLocIDs, LocIndex OldVarID, TransferKind Kind,
+ Register NewReg) {
+ const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
+
+ auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &VarLocIDs](VarLoc &VL) {
+ LocIndex LocId = VarLocIDs.insert(VL);
+
+ // Close this variable's previous location range.
+ OpenRanges.erase(VL);
+
+ // Record the new location as an open range, and a postponed transfer
+ // inserting a DBG_VALUE for this location.
+ OpenRanges.insert(LocId, VL);
+ assert(!MI.isTerminator() && "Cannot insert DBG_VALUE after terminator");
+ TransferDebugPair MIP = {&MI, LocId};
+ Transfers.push_back(MIP);
+ };
+
+ // End all previous ranges of VL.Var.
+ OpenRanges.erase(VarLocIDs[OldVarID]);
+ switch (Kind) {
+ case TransferKind::TransferCopy: {
+ assert(NewReg &&
+ "No register supplied when handling a copy of a debug value");
+ // Create a DBG_VALUE instruction to describe the Var in its new
+ // register location.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for register copy:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferSpill: {
+ // Create a DBG_VALUE instruction to describe the Var in its spilled
+ // location.
+ VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
+ VarLoc VL = VarLoc::CreateSpillLoc(*DebugInstr, SpillLocation.SpillBase,
+ SpillLocation.SpillOffset, LS);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for spill:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ case TransferKind::TransferRestore: {
+ assert(NewReg &&
+ "No register supplied when handling a restore of a debug value");
+ // DebugInstr refers to the pre-spill location, therefore we can reuse
+ // its expression.
+ VarLoc VL = VarLoc::CreateCopyLoc(*DebugInstr, LS, NewReg);
+ ProcessVarLoc(VL);
+ LLVM_DEBUG({
+ dbgs() << "Creating VarLoc for restore:";
+ VL.dump(TRI);
+ });
+ return;
+ }
+ }
+ llvm_unreachable("Invalid transfer kind");
+}
+
+/// A definition of a register may mark the end of a range.
+void VarLocBasedLDV::transferRegisterDef(
+ MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+
+ // Meta Instructions do not affect the debug liveness of any register they
+ // define.
+ if (MI.isMetaInstruction())
+ return;
+
+ MachineFunction *MF = MI.getMF();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+
+ // Find the regs killed by MI, and find regmasks of preserved regs.
+ DefinedRegsSet DeadRegs;
+ SmallVector<const uint32_t *, 4> RegMasks;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def.
+ if (MO.isReg() && MO.isDef() && MO.getReg() &&
+ Register::isPhysicalRegister(MO.getReg()) &&
+ !(MI.isCall() && MO.getReg() == SP)) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ // FIXME: Can we break out of this loop early if no insertion occurs?
+ DeadRegs.insert(*RAI);
+ } else if (MO.isRegMask()) {
+ RegMasks.push_back(MO.getRegMask());
+ }
+ }
+
+ // Erase VarLocs which reside in one of the dead registers. For performance
+ // reasons, it's critical to not iterate over the full set of open VarLocs.
+ // Iterate over the set of dying/used regs instead.
+ if (!RegMasks.empty()) {
+ SmallVector<uint32_t, 32> UsedRegs;
+ getUsedRegs(OpenRanges.getVarLocs(), UsedRegs);
+ for (uint32_t Reg : UsedRegs) {
+ // Remove ranges of all clobbered registers. Register masks don't usually
+ // list SP as preserved. Assume that call instructions never clobber SP,
+ // because some backends (e.g., AArch64) never list SP in the regmask.
+ // While the debug info may be off for an instruction or two around
+ // callee-cleanup calls, transferring the DEBUG_VALUE across the call is
+ // still a better user experience.
+ if (Reg == SP)
+ continue;
+ bool AnyRegMaskKillsReg =
+ any_of(RegMasks, [Reg](const uint32_t *RegMask) {
+ return MachineOperand::clobbersPhysReg(RegMask, Reg);
+ });
+ if (AnyRegMaskKillsReg)
+ DeadRegs.insert(Reg);
+ }
+ }
+
+ if (DeadRegs.empty())
+ return;
+
+ VarLocSet KillSet(Alloc);
+ collectIDsForRegs(KillSet, DeadRegs, OpenRanges.getVarLocs());
+ OpenRanges.erase(KillSet, VarLocIDs);
+
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (TM.Options.ShouldEmitDebugEntryValues())
+ emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, KillSet);
+ }
+}
+
+bool VarLocBasedLDV::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return false;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return false; // This is not a spill instruction, since no valid size was
+ // returned from either function.
+
+ return true;
+}
+
+bool VarLocBasedLDV::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ auto isKilledReg = [&](const MachineOperand MO, Register &Reg) {
+ if (!MO.isReg() || !MO.isUse()) {
+ Reg = 0;
+ return false;
+ }
+ Reg = MO.getReg();
+ return MO.isKill();
+ };
+
+ for (const MachineOperand &MO : MI.operands()) {
+ // In a spill instruction generated by the InlineSpiller the spilled
+ // register has its kill flag set.
+ if (isKilledReg(MO, Reg))
+ return true;
+ if (Reg != 0) {
+ // Check whether next instruction kills the spilled register.
+ // FIXME: Current solution does not cover search for killed register in
+ // bundles and instructions further down the chain.
+ auto NextI = std::next(MI.getIterator());
+ // Skip next instruction that points to basic block end iterator.
+ if (MI.getParent()->end() == NextI)
+ continue;
+ Register RegNext;
+ for (const MachineOperand &MONext : NextI->operands()) {
+ // Return true if we came across the register from the
+ // previous spill instruction that is killed in NextI.
+ if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+ return true;
+ }
+ }
+ }
+ // Return false if we didn't find spilled register.
+ return false;
+}
+
+Optional<VarLocBasedLDV::VarLoc::SpillLoc>
+VarLocBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, Register &Reg) {
+ if (!MI.hasOneMemOperand())
+ return None;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return None;
+}
+
+/// A spilled register may indicate that we have to end the current range of
+/// a variable and create a new one for the spill location.
+/// A restored register may indicate the reverse situation.
+/// We don't want to insert any instructions in process(), so we just create
+/// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
+/// It will be inserted into the BB when we're done iterating over the
+/// instructions.
+void VarLocBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ MachineFunction *MF = MI.getMF();
+ TransferKind TKind;
+ Register Reg;
+ Optional<VarLoc::SpillLoc> Loc;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, then close the variable location. The value in memory
+ // will have changed.
+ VarLocSet KillSet(Alloc);
+ if (isSpillInstruction(MI, MF)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+ for (uint64_t ID : OpenRanges.getSpillVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ assert(VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
+ if (VL.Loc.SpillLocation == *Loc) {
+ // This location is overwritten by the current instruction -- terminate
+ // the open range, and insert an explicit DBG_VALUE $noreg.
+ //
+ // Doing this at a later stage would require re-interpreting all
+ // DBG_VALUes and DIExpressions to identify whether they point at
+ // memory, and then analysing all memory writes to see if they
+ // overwrite that memory, which is expensive.
+ //
+ // At this stage, we already know which DBG_VALUEs are for spills and
+ // where they are located; it's best to fix handle overwrites now.
+ KillSet.set(ID);
+ VarLoc UndefVL = VarLoc::CreateCopyLoc(VL.MI, LS, 0);
+ LocIndex UndefLocID = VarLocIDs.insert(UndefVL);
+ Transfers.push_back({&MI, UndefLocID});
+ }
+ }
+ OpenRanges.erase(KillSet, VarLocIDs);
+ }
+
+ // Try to recognise spill and restore instructions that may create a new
+ // variable location.
+ if (isLocationSpill(MI, MF, Reg)) {
+ TKind = TransferKind::TransferSpill;
+ LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ } else {
+ if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+ return;
+ TKind = TransferKind::TransferRestore;
+ LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
+ LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
+ << "\n");
+ }
+ // Check if the register or spill location is the location of a debug value.
+ auto TransferCandidates = OpenRanges.getEmptyVarLocRange();
+ if (TKind == TransferKind::TransferSpill)
+ TransferCandidates = OpenRanges.getRegisterVarLocs(Reg);
+ else if (TKind == TransferKind::TransferRestore)
+ TransferCandidates = OpenRanges.getSpillVarLocs();
+ for (uint64_t ID : TransferCandidates) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (TKind == TransferKind::TransferSpill) {
+ assert(VL.isDescribedByReg() == Reg && "Broken VarLocSet?");
+ LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ } else {
+ assert(TKind == TransferKind::TransferRestore &&
+ VL.Kind == VarLoc::SpillLocKind && "Broken VarLocSet?");
+ if (VL.Loc.SpillLocation != *Loc)
+ // The spill location is not the location of a debug value.
+ continue;
+ LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
+ << VL.Var.getVariable()->getName() << ")\n");
+ }
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx, TKind,
+ Reg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// If \p MI is a register copy instruction, that copies a previously tracked
+/// value from one register to another register that is callee saved, we
+/// create new DBG_VALUE instruction described with copy destination register.
+void VarLocBasedLDV::transferRegisterCopy(MachineInstr &MI,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs,
+ TransferMap &Transfers) {
+ auto DestSrc = TII->isCopyInstr(MI);
+ if (!DestSrc)
+ return;
+
+ const MachineOperand *DestRegOp = DestSrc->Destination;
+ const MachineOperand *SrcRegOp = DestSrc->Source;
+
+ if (!DestRegOp->isDef())
+ return;
+
+ auto isCalleeSavedReg = [&](Register Reg) {
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register location, which is callee
+ // saved, is going to stay unclobbered longer, even if it is killed.
+ if (!isCalleeSavedReg(DestReg))
+ return;
+
+ // Remember an entry value movement. If we encounter a new debug value of
+ // a parameter describing only a moving of the value around, rather then
+ // modifying it, we are still able to use the entry value if needed.
+ if (isRegOtherThanSPAndFP(*DestRegOp, MI, TRI)) {
+ for (uint64_t ID : OpenRanges.getEntryValueBackupVarLocs()) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ const VarLoc &VL = VarLocIDs[Idx];
+ if (VL.getEntryValueBackupReg() == SrcReg) {
+ LLVM_DEBUG(dbgs() << "Copy of the entry value: "; MI.dump(););
+ VarLoc EntryValLocCopyBackup =
+ VarLoc::CreateEntryCopyBackupLoc(VL.MI, LS, VL.Expr, DestReg);
+
+ // Stop tracking the original entry value.
+ OpenRanges.erase(VL);
+
+ // Start tracking the entry value copy.
+ LocIndex EntryValCopyLocID = VarLocIDs.insert(EntryValLocCopyBackup);
+ OpenRanges.insert(EntryValCopyLocID, EntryValLocCopyBackup);
+ break;
+ }
+ }
+ }
+
+ if (!SrcRegOp->isKill())
+ return;
+
+ for (uint64_t ID : OpenRanges.getRegisterVarLocs(SrcReg)) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ assert(VarLocIDs[Idx].isDescribedByReg() == SrcReg && "Broken VarLocSet?");
+ insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, Idx,
+ TransferKind::TransferCopy, DestReg);
+ // FIXME: A comment should explain why it's correct to return early here,
+ // if that is in fact correct.
+ return;
+ }
+}
+
+/// Terminate all open ranges at the end of the current basic block.
+bool VarLocBasedLDV::transferTerminator(MachineBasicBlock *CurMBB,
+ OpenRangesSet &OpenRanges,
+ VarLocInMBB &OutLocs,
+ const VarLocMap &VarLocIDs) {
+ bool Changed = false;
+
+ LLVM_DEBUG(for (uint64_t ID
+ : OpenRanges.getVarLocs()) {
+ // Copy OpenRanges to OutLocs, if not already present.
+ dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
+ VarLocIDs[LocIndex::fromRawInteger(ID)].dump(TRI);
+ });
+ VarLocSet &VLS = getVarLocsInMBB(CurMBB, OutLocs);
+ Changed = VLS != OpenRanges.getVarLocs();
+ // New OutLocs set may be different due to spill, restore or register
+ // copy instruction processing.
+ if (Changed)
+ VLS = OpenRanges.getVarLocs();
+ OpenRanges.clear();
+ return Changed;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+/// fragment usage.
+/// \param SeenFragments Map from DILocalVariable to all fragments of that
+/// Variable which are known to exist.
+/// \param OverlappingFragments The overlap map being constructed, from one
+/// Var/Fragment pair to a vector of fragments known to overlap.
+void VarLocBasedLDV::accumulateFragmentMap(MachineInstr &MI,
+ VarToFragments &SeenFragments,
+ OverlapMap &OverlappingFragments) {
+ DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVariable());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlappingFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlappingFragments.find({MIVar.getVariable(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+/// This routine creates OpenRanges.
+void VarLocBasedLDV::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs, TransferMap &Transfers) {
+ transferDebugValue(MI, OpenRanges, VarLocIDs);
+ transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers);
+ transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
+ transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
+}
+
+/// This routine joins the analysis results of all incoming edges in @MBB by
+/// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
+/// source variable in all the predecessors of @MBB reside in the same location.
+bool VarLocBasedLDV::join(
+ MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
+ const VarLocMap &VarLocIDs,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+
+ VarLocSet InLocsT(Alloc); // Temporary incoming locations.
+
+ // For all predecessors of this MBB, find the set of VarLocs that
+ // can be joined.
+ int NumVisited = 0;
+ for (auto p : MBB.predecessors()) {
+ // Ignore backedges if we have not visited the predecessor yet. As the
+ // predecessor hasn't yet had locations propagated into it, most locations
+ // will not yet be valid, so treat them as all being uninitialized and
+ // potentially valid. If a location guessed to be correct here is
+ // invalidated later, we will remove it when we revisit this block.
+ if (!Visited.count(p)) {
+ LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
+ << "\n");
+ continue;
+ }
+ auto OL = OutLocs.find(p);
+ // Join is null in case of empty OutLocs from any of the pred.
+ if (OL == OutLocs.end())
+ return false;
+
+ // Just copy over the Out locs to incoming locs for the first visited
+ // predecessor, and for all other predecessors join the Out locs.
+ VarLocSet &OutLocVLS = *OL->second.get();
+ if (!NumVisited)
+ InLocsT = OutLocVLS;
+ else
+ InLocsT &= OutLocVLS;
+
+ LLVM_DEBUG({
+ if (!InLocsT.empty()) {
+ for (uint64_t ID : InLocsT)
+ dbgs() << " gathered candidate incoming var: "
+ << VarLocIDs[LocIndex::fromRawInteger(ID)]
+ .Var.getVariable()
+ ->getName()
+ << "\n";
+ }
+ });
+
+ NumVisited++;
+ }
+
+ // Filter out DBG_VALUES that are out of scope.
+ VarLocSet KillSet(Alloc);
+ bool IsArtificial = ArtificialBlocks.count(&MBB);
+ if (!IsArtificial) {
+ for (uint64_t ID : InLocsT) {
+ LocIndex Idx = LocIndex::fromRawInteger(ID);
+ if (!VarLocIDs[Idx].dominates(LS, MBB)) {
+ KillSet.set(ID);
+ LLVM_DEBUG({
+ auto Name = VarLocIDs[Idx].Var.getVariable()->getName();
+ dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
+ });
+ }
+ }
+ }
+ InLocsT.intersectWithComplement(KillSet);
+
+ // As we are processing blocks in reverse post-order we
+ // should have processed at least one predecessor, unless it
+ // is the entry block which has no predecessor.
+ assert((NumVisited || MBB.pred_empty()) &&
+ "Should have processed at least one predecessor");
+
+ VarLocSet &ILS = getVarLocsInMBB(&MBB, InLocs);
+ bool Changed = false;
+ if (ILS != InLocsT) {
+ ILS = InLocsT;
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+void VarLocBasedLDV::flushPendingLocs(VarLocInMBB &PendingInLocs,
+ VarLocMap &VarLocIDs) {
+ // PendingInLocs records all locations propagated into blocks, which have
+ // not had DBG_VALUE insts created. Go through and create those insts now.
+ for (auto &Iter : PendingInLocs) {
+ // Map is keyed on a constant pointer, unwrap it so we can insert insts.
+ auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
+ VarLocSet &Pending = *Iter.second.get();
+
+ for (uint64_t ID : Pending) {
+ // The ID location is live-in to MBB -- work out what kind of machine
+ // location it is and create a DBG_VALUE.
+ const VarLoc &DiffIt = VarLocIDs[LocIndex::fromRawInteger(ID)];
+ if (DiffIt.isEntryBackupLoc())
+ continue;
+ MachineInstr *MI = DiffIt.BuildDbgValue(*MBB.getParent());
+ MBB.insert(MBB.instr_begin(), MI);
+
+ (void)MI;
+ LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
+ }
+ }
+}
+
+bool VarLocBasedLDV::isEntryValueCandidate(
+ const MachineInstr &MI, const DefinedRegsSet &DefinedRegs) const {
+ assert(MI.isDebugValue() && "This must be DBG_VALUE.");
+
+ // TODO: Add support for local variables that are expressed in terms of
+ // parameters entry values.
+ // TODO: Add support for modified arguments that can be expressed
+ // by using its entry value.
+ auto *DIVar = MI.getDebugVariable();
+ if (!DIVar->isParameter())
+ return false;
+
+ // Do not consider parameters that belong to an inlined function.
+ if (MI.getDebugLoc()->getInlinedAt())
+ return false;
+
+ // Only consider parameters that are described using registers. Parameters
+ // that are passed on the stack are not yet supported, so ignore debug
+ // values that are described by the frame or stack pointer.
+ if (!isRegOtherThanSPAndFP(MI.getDebugOperand(0), MI, TRI))
+ return false;
+
+ // If a parameter's value has been propagated from the caller, then the
+ // parameter's DBG_VALUE may be described using a register defined by some
+ // instruction in the entry block, in which case we shouldn't create an
+ // entry value.
+ if (DefinedRegs.count(MI.getDebugOperand(0).getReg()))
+ return false;
+
+ // TODO: Add support for parameters that have a pre-existing debug expressions
+ // (e.g. fragments).
+ if (MI.getDebugExpression()->getNumElements() > 0)
+ return false;
+
+ return true;
+}
+
+/// Collect all register defines (including aliases) for the given instruction.
+static void collectRegDefs(const MachineInstr &MI, DefinedRegsSet &Regs,
+ const TargetRegisterInfo *TRI) {
+ for (const MachineOperand &MO : MI.operands())
+ if (MO.isReg() && MO.isDef() && MO.getReg())
+ for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI)
+ Regs.insert(*AI);
+}
+
+/// This routine records the entry values of function parameters. The values
+/// could be used as backup values. If we loose the track of some unmodified
+/// parameters, the backup values will be used as a primary locations.
+void VarLocBasedLDV::recordEntryValue(const MachineInstr &MI,
+ const DefinedRegsSet &DefinedRegs,
+ OpenRangesSet &OpenRanges,
+ VarLocMap &VarLocIDs) {
+ if (TPC) {
+ auto &TM = TPC->getTM<TargetMachine>();
+ if (!TM.Options.ShouldEmitDebugEntryValues())
+ return;
+ }
+
+ DebugVariable V(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+
+ if (!isEntryValueCandidate(MI, DefinedRegs) ||
+ OpenRanges.getEntryValueBackup(V))
+ return;
+
+ LLVM_DEBUG(dbgs() << "Creating the backup entry location: "; MI.dump(););
+
+ // Create the entry value and use it as a backup location until it is
+ // valid. It is valid until a parameter is not changed.
+ DIExpression *NewExpr =
+ DIExpression::prepend(MI.getDebugExpression(), DIExpression::EntryValue);
+ VarLoc EntryValLocAsBackup = VarLoc::CreateEntryBackupLoc(MI, LS, NewExpr);
+ LocIndex EntryValLocID = VarLocIDs.insert(EntryValLocAsBackup);
+ OpenRanges.insert(EntryValLocID, EntryValLocAsBackup);
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool VarLocBasedLDV::ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) {
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+
+ if (!MF.getFunction().getSubprogram())
+ // VarLocBaseLDV will already have removed all DBG_VALUEs.
+ return false;
+
+ // Skip functions from NoDebug compilation units.
+ if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
+ DICompileUnit::NoDebug)
+ return false;
+
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->getCalleeSaves(MF, CalleeSavedRegs);
+ this->TPC = TPC;
+ LS.initialize(MF);
+
+ bool Changed = false;
+ bool OLChanged = false;
+ bool MBBJoined = false;
+
+ VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
+ OverlapMap OverlapFragments; // Map of overlapping variable fragments.
+ OpenRangesSet OpenRanges(Alloc, OverlapFragments);
+ // Ranges that are open until end of bb.
+ VarLocInMBB OutLocs; // Ranges that exist beyond bb.
+ VarLocInMBB InLocs; // Ranges that are incoming after joining.
+ TransferMap Transfers; // DBG_VALUEs associated with transfers (such as
+ // spills, copies and restores).
+
+ VarToFragments SeenFragments;
+
+ // Blocks which are artificial, i.e. blocks which exclusively contain
+ // instructions without locations, or with line 0 locations.
+ SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist;
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Pending;
+
+ // Set of register defines that are seen when traversing the entry block
+ // looking for debug entry value candidates.
+ DefinedRegsSet DefinedRegs;
+
+ // Only in the case of entry MBB collect DBG_VALUEs representing
+ // function parameters in order to generate debug entry values for them.
+ MachineBasicBlock &First_MBB = *(MF.begin());
+ for (auto &MI : First_MBB) {
+ collectRegDefs(MI, DefinedRegs, TRI);
+ if (MI.isDebugValue())
+ recordEntryValue(MI, DefinedRegs, OpenRanges, VarLocIDs);
+ }
+
+ // Initialize per-block structures and scan for fragment overlaps.
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
+
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after initialization", dbgs()));
+
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ Worklist.push(RPONumber);
+ ++RPONumber;
+ }
+
+ if (RPONumber > InputBBLimit) {
+ unsigned NumInputDbgValues = 0;
+ for (auto &MBB : MF)
+ for (auto &MI : MBB)
+ if (MI.isDebugValue())
+ ++NumInputDbgValues;
+ if (NumInputDbgValues > InputDbgValueLimit) {
+ LLVM_DEBUG(dbgs() << "Disabling VarLocBasedLDV: " << MF.getName()
+ << " has " << RPONumber << " basic blocks and "
+ << NumInputDbgValues
+ << " input DBG_VALUEs, exceeding limits.\n");
+ return false;
+ }
+ }
+
+ // This is a standard "union of predecessor outs" dataflow problem.
+ // To solve it, we perform join() and process() using the two worklist method
+ // until the ranges converge.
+ // Ranges have converged when both worklists are empty.
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // We track what is on the pending worklist to avoid inserting the same
+ // thing twice. We could avoid this with a custom priority queue, but this
+ // is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending;
+ LLVM_DEBUG(dbgs() << "Processing Worklist\n");
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ Worklist.pop();
+ MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
+ ArtificialBlocks);
+ MBBJoined |= Visited.insert(MBB).second;
+ if (MBBJoined) {
+ MBBJoined = false;
+ Changed = true;
+ // Now that we have started to extend ranges across BBs we need to
+ // examine spill, copy and restore instructions to see whether they
+ // operate with registers that correspond to user variables.
+ // First load any pending inlocs.
+ OpenRanges.insertFromLocSet(getVarLocsInMBB(MBB, InLocs), VarLocIDs);
+ for (auto &MI : *MBB)
+ process(MI, OpenRanges, VarLocIDs, Transfers);
+ OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
+ "OutLocs after propagating", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
+ "InLocs after propagating", dbgs()));
+
+ if (OLChanged) {
+ OLChanged = false;
+ for (auto s : MBB->successors())
+ if (OnPending.insert(s).second) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Add any DBG_VALUE instructions created by location transfers.
+ for (auto &TR : Transfers) {
+ assert(!TR.TransferInst->isTerminator() &&
+ "Cannot insert DBG_VALUE after terminator");
+ MachineBasicBlock *MBB = TR.TransferInst->getParent();
+ const VarLoc &VL = VarLocIDs[TR.LocationID];
+ MachineInstr *MI = VL.BuildDbgValue(MF);
+ MBB->insertAfterBundle(TR.TransferInst->getIterator(), MI);
+ }
+ Transfers.clear();
+
+ // Deferred inlocs will not have had any DBG_VALUE insts created; do
+ // that now.
+ flushPendingLocs(InLocs, VarLocIDs);
+
+ LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
+ LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
+ return Changed;
+}
+
+LDVImpl *
+llvm::makeVarLocBasedLiveDebugValues()
+{
+ return new VarLocBasedLDV();
+}