diff options
author | shadchin <shadchin@yandex-team.ru> | 2022-02-10 16:44:39 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:39 +0300 |
commit | e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (patch) | |
tree | 64175d5cadab313b3e7039ebaa06c5bc3295e274 /contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp | |
parent | 2598ef1d0aee359b4b6d5fdd1758916d5907d04f (diff) | |
download | ydb-e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0.tar.gz |
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp | 6726 |
1 files changed, 3363 insertions, 3363 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp index f76eb9e740..18ffe8ba06 100644 --- a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp @@ -1,3363 +1,3363 @@ -//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -/// \file InstrRefBasedImpl.cpp -/// -/// This is a separate implementation of LiveDebugValues, see -/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. -/// -/// This pass propagates variable locations between basic blocks, resolving -/// control flow conflicts between them. The problem is much like SSA -/// construction, where each DBG_VALUE instruction assigns the *value* that -/// a variable has, and every instruction where the variable is in scope uses -/// that variable. The resulting map of instruction-to-value is then translated -/// into a register (or spill) location for each variable over each instruction. -/// -/// This pass determines which DBG_VALUE dominates which instructions, or if -/// none do, where values must be merged (like PHI nodes). The added -/// complication is that because codegen has already finished, a PHI node may -/// be needed for a variable location to be correct, but no register or spill -/// slot merges the necessary values. In these circumstances, the variable -/// location is dropped. -/// -/// What makes this analysis non-trivial is loops: we cannot tell in advance -/// whether a variable location is live throughout a loop, or whether its -/// location is clobbered (or redefined by another DBG_VALUE), without -/// exploring all the way through. -/// -/// To make this simpler we perform two kinds of analysis. First, we identify -/// every value defined by every instruction (ignoring those that only move -/// another value), then compute a map of which values are available for each -/// instruction. This is stronger than a reaching-def analysis, as we create -/// PHI values where other values merge. -/// -/// Secondly, for each variable, we effectively re-construct SSA using each -/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the -/// first analysis from the location they refer to. We can then compute the -/// dominance frontiers of where a variable has a value, and create PHI nodes -/// where they merge. -/// This isn't precisely SSA-construction though, because the function shape -/// is pre-defined. If a variable location requires a PHI node, but no -/// PHI for the relevant values is present in the function (as computed by the -/// first analysis), the location must be dropped. -/// -/// Once both are complete, we can pass back over all instructions knowing: -/// * What _value_ each variable should contain, either defined by an -/// instruction or where control flow merges -/// * What the location of that value is (if any). -/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when -/// a value moves location. After this pass runs, all variable locations within -/// a block should be specified by DBG_VALUEs within that block, allowing -/// DbgEntityHistoryCalculator to focus on individual blocks. -/// -/// This pass is able to go fast because the size of the first -/// reaching-definition analysis is proportional to the working-set size of -/// the function, which the compiler tries to keep small. (It's also -/// proportional to the number of blocks). Additionally, we repeatedly perform -/// the second reaching-definition analysis with only the variables and blocks -/// in a single lexical scope, exploiting their locality. -/// -/// Determining where PHIs happen is trickier with this approach, and it comes -/// to a head in the major problem for LiveDebugValues: is a value live-through -/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of -/// facts about a function, however this analysis needs to generate new value -/// numbers at joins. -/// -/// To do this, consider a lattice of all definition values, from instructions -/// and from PHIs. Each PHI is characterised by the RPO number of the block it -/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): -/// with non-PHI values at the top, and any PHI value in the last block (by RPO -/// order) at the bottom. -/// -/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, -/// "rank" always refers to the former). -/// -/// At any join, for each register, we consider: -/// * All incoming values, and -/// * The PREVIOUS live-in value at this join. -/// If all incoming values agree: that's the live-in value. If they do not, the -/// incoming values are ranked according to the partial order, and the NEXT -/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of -/// the same rank are ignored as conflicting). If there are no candidate values, -/// or if the rank of the live-in would be lower than the rank of the current -/// blocks PHIs, create a new PHI value. -/// -/// Intuitively: if it's not immediately obvious what value a join should result -/// in, we iteratively descend from instruction-definitions down through PHI -/// values, getting closer to the current block each time. If the current block -/// is a loop head, this ordering is effectively searching outer levels of -/// loops, to find a value that's live-through the current loop. -/// -/// If there is no value that's live-through this loop, a PHI is created for -/// this location instead. We can't use a lower-ranked PHI because by definition -/// it doesn't dominate the current block. We can't create a PHI value any -/// earlier, because we risk creating a PHI value at a location where values do -/// not in fact merge, thus misrepresenting the truth, and not making the true -/// live-through value for variable locations. -/// -/// This algorithm applies to both calculating the availability of values in -/// the first analysis, and the location of variables in the second. However -/// for the second we add an extra dimension of pain: creating a variable -/// location PHI is only valid if, for each incoming edge, -/// * There is a value for the variable on the incoming edge, and -/// * All the edges have that value in the same register. -/// Or put another way: we can only create a variable-location PHI if there is -/// a matching machine-location PHI, each input to which is the variables value -/// in the predecessor block. -/// -/// To accommodate this difference, each point on the lattice is split in -/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately -/// have a location determined are "definite" PHIs, and no further work is -/// needed. Otherwise, a location that all non-backedge predecessors agree -/// on is picked and propagated as a "proposed" PHI value. If that PHI value -/// is truly live-through, it'll appear on the loop backedges on the next -/// dataflow iteration, after which the block live-in moves to be a "definite" -/// PHI. If it's not truly live-through, the variable value will be downgraded -/// further as we explore the lattice, or remains "proposed" and is considered -/// invalid once dataflow completes. -/// -/// ### Terminology -/// -/// A machine location is a register or spill slot, a value is something that's -/// defined by an instruction or PHI node, while a variable value is the value -/// assigned to a variable. A variable location is a machine location, that must -/// contain the appropriate variable value. A value that is a PHI node is -/// occasionally called an mphi. -/// -/// The first dataflow problem is the "machine value location" problem, -/// because we're determining which machine locations contain which values. -/// The "locations" are constant: what's unknown is what value they contain. -/// -/// The second dataflow problem (the one for variables) is the "variable value -/// problem", because it's determining what values a variable has, rather than -/// what location those values are placed in. Unfortunately, it's not that -/// simple, because producing a PHI value always involves picking a location. -/// This is an imperfection that we just have to accept, at least for now. -/// -/// TODO: -/// Overlapping fragments -/// Entry values -/// Add back DEBUG statements for debugging this -/// Collect statistics -/// -//===----------------------------------------------------------------------===// - -#include "llvm/ADT/DenseMap.h" -#include "llvm/ADT/PostOrderIterator.h" -#include "llvm/ADT/SmallPtrSet.h" -#include "llvm/ADT/SmallSet.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/ADT/UniqueVector.h" -#include "llvm/CodeGen/LexicalScopes.h" -#include "llvm/CodeGen/MachineBasicBlock.h" -#include "llvm/CodeGen/MachineFrameInfo.h" -#include "llvm/CodeGen/MachineFunction.h" -#include "llvm/CodeGen/MachineFunctionPass.h" -#include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineInstrBuilder.h" -#include "llvm/CodeGen/MachineMemOperand.h" -#include "llvm/CodeGen/MachineOperand.h" -#include "llvm/CodeGen/PseudoSourceValue.h" -#include "llvm/CodeGen/RegisterScavenging.h" -#include "llvm/CodeGen/TargetFrameLowering.h" -#include "llvm/CodeGen/TargetInstrInfo.h" -#include "llvm/CodeGen/TargetLowering.h" -#include "llvm/CodeGen/TargetPassConfig.h" -#include "llvm/CodeGen/TargetRegisterInfo.h" -#include "llvm/CodeGen/TargetSubtargetInfo.h" -#include "llvm/Config/llvm-config.h" -#include "llvm/IR/DIBuilder.h" -#include "llvm/IR/DebugInfoMetadata.h" -#include "llvm/IR/DebugLoc.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Module.h" -#include "llvm/InitializePasses.h" -#include "llvm/MC/MCRegisterInfo.h" -#include "llvm/Pass.h" -#include "llvm/Support/Casting.h" -#include "llvm/Support/Compiler.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/TypeSize.h" -#include "llvm/Support/raw_ostream.h" -#include <algorithm> -#include <cassert> -#include <cstdint> -#include <functional> -#include <queue> -#include <tuple> -#include <utility> -#include <vector> -#include <limits.h> -#include <limits> - -#include "LiveDebugValues.h" - -using namespace llvm; - -#define DEBUG_TYPE "livedebugvalues" - -STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); -STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); - -// Act more like the VarLoc implementation, by propagating some locations too -// far and ignoring some transfers. -static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, - cl::desc("Act like old LiveDebugValues did"), - cl::init(false)); - -// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. -static cl::opt<bool> - ObserveAllStackops("observe-all-stack-ops", cl::Hidden, - cl::desc("Allow non-kill spill and restores"), - cl::init(false)); - -namespace { - -// The location at which a spilled value resides. It consists of a register and -// an offset. -struct SpillLoc { - unsigned SpillBase; - StackOffset SpillOffset; - bool operator==(const SpillLoc &Other) const { - return std::make_pair(SpillBase, SpillOffset) == - std::make_pair(Other.SpillBase, Other.SpillOffset); - } - bool operator<(const SpillLoc &Other) const { - return std::make_tuple(SpillBase, SpillOffset.getFixed(), - SpillOffset.getScalable()) < - std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), - Other.SpillOffset.getScalable()); - } -}; - -class LocIdx { - unsigned Location; - - // Default constructor is private, initializing to an illegal location number. - // Use only for "not an entry" elements in IndexedMaps. - LocIdx() : Location(UINT_MAX) { } - -public: - #define NUM_LOC_BITS 24 - LocIdx(unsigned L) : Location(L) { - assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); - } - - static LocIdx MakeIllegalLoc() { - return LocIdx(); - } - - bool isIllegal() const { - return Location == UINT_MAX; - } - - uint64_t asU64() const { - return Location; - } - - bool operator==(unsigned L) const { - return Location == L; - } - - bool operator==(const LocIdx &L) const { - return Location == L.Location; - } - - bool operator!=(unsigned L) const { - return !(*this == L); - } - - bool operator!=(const LocIdx &L) const { - return !(*this == L); - } - - bool operator<(const LocIdx &Other) const { - return Location < Other.Location; - } -}; - -class LocIdxToIndexFunctor { -public: - using argument_type = LocIdx; - unsigned operator()(const LocIdx &L) const { - return L.asU64(); - } -}; - -/// Unique identifier for a value defined by an instruction, as a value type. -/// Casts back and forth to a uint64_t. Probably replacable with something less -/// bit-constrained. Each value identifies the instruction and machine location -/// where the value is defined, although there may be no corresponding machine -/// operand for it (ex: regmasks clobbering values). The instructions are -/// one-based, and definitions that are PHIs have instruction number zero. -/// -/// The obvious limits of a 1M block function or 1M instruction blocks are -/// problematic; but by that point we should probably have bailed out of -/// trying to analyse the function. -class ValueIDNum { - uint64_t BlockNo : 20; /// The block where the def happens. - uint64_t InstNo : 20; /// The Instruction where the def happens. - /// One based, is distance from start of block. - uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. - -public: - // XXX -- temporarily enabled while the live-in / live-out tables are moved - // to something more type-y - ValueIDNum() : BlockNo(0xFFFFF), - InstNo(0xFFFFF), - LocNo(0xFFFFFF) { } - - ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) - : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } - - ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) - : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } - - uint64_t getBlock() const { return BlockNo; } - uint64_t getInst() const { return InstNo; } - uint64_t getLoc() const { return LocNo; } - bool isPHI() const { return InstNo == 0; } - - uint64_t asU64() const { - uint64_t TmpBlock = BlockNo; - uint64_t TmpInst = InstNo; - return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; - } - - static ValueIDNum fromU64(uint64_t v) { - uint64_t L = (v & 0x3FFF); - return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; - } - - bool operator<(const ValueIDNum &Other) const { - return asU64() < Other.asU64(); - } - - bool operator==(const ValueIDNum &Other) const { - return std::tie(BlockNo, InstNo, LocNo) == - std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); - } - - bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } - - std::string asString(const std::string &mlocname) const { - return Twine("Value{bb: ") - .concat(Twine(BlockNo).concat( - Twine(", inst: ") - .concat((InstNo ? Twine(InstNo) : Twine("live-in")) - .concat(Twine(", loc: ").concat(Twine(mlocname))) - .concat(Twine("}"))))) - .str(); - } - - static ValueIDNum EmptyValue; -}; - -} // end anonymous namespace - -namespace { - -/// Meta qualifiers for a value. Pair of whatever expression is used to qualify -/// the the value, and Boolean of whether or not it's indirect. -class DbgValueProperties { -public: - DbgValueProperties(const DIExpression *DIExpr, bool Indirect) - : DIExpr(DIExpr), Indirect(Indirect) {} - - /// Extract properties from an existing DBG_VALUE instruction. - DbgValueProperties(const MachineInstr &MI) { - assert(MI.isDebugValue()); - DIExpr = MI.getDebugExpression(); - Indirect = MI.getOperand(1).isImm(); - } - - bool operator==(const DbgValueProperties &Other) const { - return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); - } - - bool operator!=(const DbgValueProperties &Other) const { - return !(*this == Other); - } - - const DIExpression *DIExpr; - bool Indirect; -}; - -/// Tracker for what values are in machine locations. Listens to the Things -/// being Done by various instructions, and maintains a table of what machine -/// locations have what values (as defined by a ValueIDNum). -/// -/// There are potentially a much larger number of machine locations on the -/// target machine than the actual working-set size of the function. On x86 for -/// example, we're extremely unlikely to want to track values through control -/// or debug registers. To avoid doing so, MLocTracker has several layers of -/// indirection going on, with two kinds of ``location'': -/// * A LocID uniquely identifies a register or spill location, with a -/// predictable value. -/// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. -/// Whenever a location is def'd or used by a MachineInstr, we automagically -/// create a new LocIdx for a location, but not otherwise. This ensures we only -/// account for locations that are actually used or defined. The cost is another -/// vector lookup (of LocID -> LocIdx) over any other implementation. This is -/// fairly cheap, and the compiler tries to reduce the working-set at any one -/// time in the function anyway. -/// -/// Register mask operands completely blow this out of the water; I've just -/// piled hacks on top of hacks to get around that. -class MLocTracker { -public: - MachineFunction &MF; - const TargetInstrInfo &TII; - const TargetRegisterInfo &TRI; - const TargetLowering &TLI; - - /// IndexedMap type, mapping from LocIdx to ValueIDNum. - using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; - - /// Map of LocIdxes to the ValueIDNums that they store. This is tightly - /// packed, entries only exist for locations that are being tracked. - LocToValueType LocIdxToIDNum; - - /// "Map" of machine location IDs (i.e., raw register or spill number) to the - /// LocIdx key / number for that location. There are always at least as many - /// as the number of registers on the target -- if the value in the register - /// is not being tracked, then the LocIdx value will be zero. New entries are - /// appended if a new spill slot begins being tracked. - /// This, and the corresponding reverse map persist for the analysis of the - /// whole function, and is necessarying for decoding various vectors of - /// values. - std::vector<LocIdx> LocIDToLocIdx; - - /// Inverse map of LocIDToLocIdx. - IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; - - /// Unique-ification of spill slots. Used to number them -- their LocID - /// number is the index in SpillLocs minus one plus NumRegs. - UniqueVector<SpillLoc> SpillLocs; - - // If we discover a new machine location, assign it an mphi with this - // block number. - unsigned CurBB; - - /// Cached local copy of the number of registers the target has. - unsigned NumRegs; - - /// Collection of register mask operands that have been observed. Second part - /// of pair indicates the instruction that they happened in. Used to - /// reconstruct where defs happened if we start tracking a location later - /// on. - SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; - - /// Iterator for locations and the values they contain. Dereferencing - /// produces a struct/pair containing the LocIdx key for this location, - /// and a reference to the value currently stored. Simplifies the process - /// of seeking a particular location. - class MLocIterator { - LocToValueType &ValueMap; - LocIdx Idx; - - public: - class value_type { - public: - value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } - const LocIdx Idx; /// Read-only index of this location. - ValueIDNum &Value; /// Reference to the stored value at this location. - }; - - MLocIterator(LocToValueType &ValueMap, LocIdx Idx) - : ValueMap(ValueMap), Idx(Idx) { } - - bool operator==(const MLocIterator &Other) const { - assert(&ValueMap == &Other.ValueMap); - return Idx == Other.Idx; - } - - bool operator!=(const MLocIterator &Other) const { - return !(*this == Other); - } - - void operator++() { - Idx = LocIdx(Idx.asU64() + 1); - } - - value_type operator*() { - return value_type(Idx, ValueMap[LocIdx(Idx)]); - } - }; - - MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, - const TargetRegisterInfo &TRI, const TargetLowering &TLI) - : MF(MF), TII(TII), TRI(TRI), TLI(TLI), - LocIdxToIDNum(ValueIDNum::EmptyValue), - LocIdxToLocID(0) { - NumRegs = TRI.getNumRegs(); - reset(); - LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); - assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure - - // Always track SP. This avoids the implicit clobbering caused by regmasks - // from affectings its values. (LiveDebugValues disbelieves calls and - // regmasks that claim to clobber SP). - Register SP = TLI.getStackPointerRegisterToSaveRestore(); - if (SP) { - unsigned ID = getLocID(SP, false); - (void)lookupOrTrackRegister(ID); - } - } - - /// Produce location ID number for indexing LocIDToLocIdx. Takes the register - /// or spill number, and flag for whether it's a spill or not. - unsigned getLocID(Register RegOrSpill, bool isSpill) { - return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); - } - - /// Accessor for reading the value at Idx. - ValueIDNum getNumAtPos(LocIdx Idx) const { - assert(Idx.asU64() < LocIdxToIDNum.size()); - return LocIdxToIDNum[Idx]; - } - - unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } - - /// Reset all locations to contain a PHI value at the designated block. Used - /// sometimes for actual PHI values, othertimes to indicate the block entry - /// value (before any more information is known). - void setMPhis(unsigned NewCurBB) { - CurBB = NewCurBB; - for (auto Location : locations()) - Location.Value = {CurBB, 0, Location.Idx}; - } - - /// Load values for each location from array of ValueIDNums. Take current - /// bbnum just in case we read a value from a hitherto untouched register. - void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { - CurBB = NewCurBB; - // Iterate over all tracked locations, and load each locations live-in - // value into our local index. - for (auto Location : locations()) - Location.Value = Locs[Location.Idx.asU64()]; - } - - /// Wipe any un-necessary location records after traversing a block. - void reset(void) { - // We could reset all the location values too; however either loadFromArray - // or setMPhis should be called before this object is re-used. Just - // clear Masks, they're definitely not needed. - Masks.clear(); - } - - /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of - /// the information in this pass uninterpretable. - void clear(void) { - reset(); - LocIDToLocIdx.clear(); - LocIdxToLocID.clear(); - LocIdxToIDNum.clear(); - //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 - SpillLocs = decltype(SpillLocs)(); - - LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); - } - - /// Set a locaiton to a certain value. - void setMLoc(LocIdx L, ValueIDNum Num) { - assert(L.asU64() < LocIdxToIDNum.size()); - LocIdxToIDNum[L] = Num; - } - - /// Create a LocIdx for an untracked register ID. Initialize it to either an - /// mphi value representing a live-in, or a recent register mask clobber. - LocIdx trackRegister(unsigned ID) { - assert(ID != 0); - LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); - LocIdxToIDNum.grow(NewIdx); - LocIdxToLocID.grow(NewIdx); - - // Default: it's an mphi. - ValueIDNum ValNum = {CurBB, 0, NewIdx}; - // Was this reg ever touched by a regmask? - for (const auto &MaskPair : reverse(Masks)) { - if (MaskPair.first->clobbersPhysReg(ID)) { - // There was an earlier def we skipped. - ValNum = {CurBB, MaskPair.second, NewIdx}; - break; - } - } - - LocIdxToIDNum[NewIdx] = ValNum; - LocIdxToLocID[NewIdx] = ID; - return NewIdx; - } - - LocIdx lookupOrTrackRegister(unsigned ID) { - LocIdx &Index = LocIDToLocIdx[ID]; - if (Index.isIllegal()) - Index = trackRegister(ID); - return Index; - } - - /// Record a definition of the specified register at the given block / inst. - /// This doesn't take a ValueIDNum, because the definition and its location - /// are synonymous. - void defReg(Register R, unsigned BB, unsigned Inst) { - unsigned ID = getLocID(R, false); - LocIdx Idx = lookupOrTrackRegister(ID); - ValueIDNum ValueID = {BB, Inst, Idx}; - LocIdxToIDNum[Idx] = ValueID; - } - - /// Set a register to a value number. To be used if the value number is - /// known in advance. - void setReg(Register R, ValueIDNum ValueID) { - unsigned ID = getLocID(R, false); - LocIdx Idx = lookupOrTrackRegister(ID); - LocIdxToIDNum[Idx] = ValueID; - } - - ValueIDNum readReg(Register R) { - unsigned ID = getLocID(R, false); - LocIdx Idx = lookupOrTrackRegister(ID); - return LocIdxToIDNum[Idx]; - } - - /// Reset a register value to zero / empty. Needed to replicate the - /// VarLoc implementation where a copy to/from a register effectively - /// clears the contents of the source register. (Values can only have one - /// machine location in VarLocBasedImpl). - void wipeRegister(Register R) { - unsigned ID = getLocID(R, false); - LocIdx Idx = LocIDToLocIdx[ID]; - LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; - } - - /// Determine the LocIdx of an existing register. - LocIdx getRegMLoc(Register R) { - unsigned ID = getLocID(R, false); - return LocIDToLocIdx[ID]; - } - - /// Record a RegMask operand being executed. Defs any register we currently - /// track, stores a pointer to the mask in case we have to account for it - /// later. - void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { - // Ensure SP exists, so that we don't override it later. - Register SP = TLI.getStackPointerRegisterToSaveRestore(); - - // Def any register we track have that isn't preserved. The regmask - // terminates the liveness of a register, meaning its value can't be - // relied upon -- we represent this by giving it a new value. - for (auto Location : locations()) { - unsigned ID = LocIdxToLocID[Location.Idx]; - // Don't clobber SP, even if the mask says it's clobbered. - if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) - defReg(ID, CurBB, InstID); - } - Masks.push_back(std::make_pair(MO, InstID)); - } - - /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. - LocIdx getOrTrackSpillLoc(SpillLoc L) { - unsigned SpillID = SpillLocs.idFor(L); - if (SpillID == 0) { - SpillID = SpillLocs.insert(L); - unsigned L = getLocID(SpillID, true); - LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx - LocIdxToIDNum.grow(Idx); - LocIdxToLocID.grow(Idx); - LocIDToLocIdx.push_back(Idx); - LocIdxToLocID[Idx] = L; - return Idx; - } else { - unsigned L = getLocID(SpillID, true); - LocIdx Idx = LocIDToLocIdx[L]; - return Idx; - } - } - - /// Set the value stored in a spill slot. - void setSpill(SpillLoc L, ValueIDNum ValueID) { - LocIdx Idx = getOrTrackSpillLoc(L); - LocIdxToIDNum[Idx] = ValueID; - } - - /// Read whatever value is in a spill slot, or None if it isn't tracked. - Optional<ValueIDNum> readSpill(SpillLoc L) { - unsigned SpillID = SpillLocs.idFor(L); - if (SpillID == 0) - return None; - - unsigned LocID = getLocID(SpillID, true); - LocIdx Idx = LocIDToLocIdx[LocID]; - return LocIdxToIDNum[Idx]; - } - - /// Determine the LocIdx of a spill slot. Return None if it previously - /// hasn't had a value assigned. - Optional<LocIdx> getSpillMLoc(SpillLoc L) { - unsigned SpillID = SpillLocs.idFor(L); - if (SpillID == 0) - return None; - unsigned LocNo = getLocID(SpillID, true); - return LocIDToLocIdx[LocNo]; - } - - /// Return true if Idx is a spill machine location. - bool isSpill(LocIdx Idx) const { - return LocIdxToLocID[Idx] >= NumRegs; - } - - MLocIterator begin() { - return MLocIterator(LocIdxToIDNum, 0); - } - - MLocIterator end() { - return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); - } - - /// Return a range over all locations currently tracked. - iterator_range<MLocIterator> locations() { - return llvm::make_range(begin(), end()); - } - - std::string LocIdxToName(LocIdx Idx) const { - unsigned ID = LocIdxToLocID[Idx]; - if (ID >= NumRegs) - return Twine("slot ").concat(Twine(ID - NumRegs)).str(); - else - return TRI.getRegAsmName(ID).str(); - } - - std::string IDAsString(const ValueIDNum &Num) const { - std::string DefName = LocIdxToName(Num.getLoc()); - return Num.asString(DefName); - } - - LLVM_DUMP_METHOD - void dump() { - for (auto Location : locations()) { - std::string MLocName = LocIdxToName(Location.Value.getLoc()); - std::string DefName = Location.Value.asString(MLocName); - dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; - } - } - - LLVM_DUMP_METHOD - void dump_mloc_map() { - for (auto Location : locations()) { - std::string foo = LocIdxToName(Location.Idx); - dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; - } - } - - /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the - /// information in \pProperties, for variable Var. Don't insert it anywhere, - /// just return the builder for it. - MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, - const DbgValueProperties &Properties) { - DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, - Var.getVariable()->getScope(), - const_cast<DILocation *>(Var.getInlinedAt())); - auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); - - const DIExpression *Expr = Properties.DIExpr; - if (!MLoc) { - // No location -> DBG_VALUE $noreg - MIB.addReg(0, RegState::Debug); - MIB.addReg(0, RegState::Debug); - } else if (LocIdxToLocID[*MLoc] >= NumRegs) { - unsigned LocID = LocIdxToLocID[*MLoc]; - const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; - - auto *TRI = MF.getSubtarget().getRegisterInfo(); - Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, - Spill.SpillOffset); - unsigned Base = Spill.SpillBase; - MIB.addReg(Base, RegState::Debug); - MIB.addImm(0); - } else { - unsigned LocID = LocIdxToLocID[*MLoc]; - MIB.addReg(LocID, RegState::Debug); - if (Properties.Indirect) - MIB.addImm(0); - else - MIB.addReg(0, RegState::Debug); - } - - MIB.addMetadata(Var.getVariable()); - MIB.addMetadata(Expr); - return MIB; - } -}; - -/// Class recording the (high level) _value_ of a variable. Identifies either -/// the value of the variable as a ValueIDNum, or a constant MachineOperand. -/// This class also stores meta-information about how the value is qualified. -/// Used to reason about variable values when performing the second -/// (DebugVariable specific) dataflow analysis. -class DbgValue { -public: - union { - /// If Kind is Def, the value number that this value is based on. - ValueIDNum ID; - /// If Kind is Const, the MachineOperand defining this value. - MachineOperand MO; - /// For a NoVal DbgValue, which block it was generated in. - unsigned BlockNo; - }; - /// Qualifiers for the ValueIDNum above. - DbgValueProperties Properties; - - typedef enum { - Undef, // Represents a DBG_VALUE $noreg in the transfer function only. - Def, // This value is defined by an inst, or is a PHI value. - Const, // A constant value contained in the MachineOperand field. - Proposed, // This is a tentative PHI value, which may be confirmed or - // invalidated later. - NoVal // Empty DbgValue, generated during dataflow. BlockNo stores - // which block this was generated in. - } KindT; - /// Discriminator for whether this is a constant or an in-program value. - KindT Kind; - - DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) - : ID(Val), Properties(Prop), Kind(Kind) { - assert(Kind == Def || Kind == Proposed); - } - - DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) - : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { - assert(Kind == NoVal); - } - - DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) - : MO(MO), Properties(Prop), Kind(Kind) { - assert(Kind == Const); - } - - DbgValue(const DbgValueProperties &Prop, KindT Kind) - : Properties(Prop), Kind(Kind) { - assert(Kind == Undef && - "Empty DbgValue constructor must pass in Undef kind"); - } - - void dump(const MLocTracker *MTrack) const { - if (Kind == Const) { - MO.dump(); - } else if (Kind == NoVal) { - dbgs() << "NoVal(" << BlockNo << ")"; - } else if (Kind == Proposed) { - dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; - } else { - assert(Kind == Def); - dbgs() << MTrack->IDAsString(ID); - } - if (Properties.Indirect) - dbgs() << " indir"; - if (Properties.DIExpr) - dbgs() << " " << *Properties.DIExpr; - } - - bool operator==(const DbgValue &Other) const { - if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) - return false; - else if (Kind == Proposed && ID != Other.ID) - return false; - else if (Kind == Def && ID != Other.ID) - return false; - else if (Kind == NoVal && BlockNo != Other.BlockNo) - return false; - else if (Kind == Const) - return MO.isIdenticalTo(Other.MO); - - return true; - } - - bool operator!=(const DbgValue &Other) const { return !(*this == Other); } -}; - -/// Types for recording sets of variable fragments that overlap. For a given -/// local variable, we record all other fragments of that variable that could -/// overlap it, to reduce search time. -using FragmentOfVar = - std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; -using OverlapMap = - DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; - -/// Collection of DBG_VALUEs observed when traversing a block. Records each -/// variable and the value the DBG_VALUE refers to. Requires the machine value -/// location dataflow algorithm to have run already, so that values can be -/// identified. -class VLocTracker { -public: - /// Map DebugVariable to the latest Value it's defined to have. - /// Needs to be a MapVector because we determine order-in-the-input-MIR from - /// the order in this container. - /// We only retain the last DbgValue in each block for each variable, to - /// determine the blocks live-out variable value. The Vars container forms the - /// transfer function for this block, as part of the dataflow analysis. The - /// movement of values between locations inside of a block is handled at a - /// much later stage, in the TransferTracker class. - MapVector<DebugVariable, DbgValue> Vars; - DenseMap<DebugVariable, const DILocation *> Scopes; - MachineBasicBlock *MBB; - -public: - VLocTracker() {} - - void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, - Optional<ValueIDNum> ID) { - assert(MI.isDebugValue() || MI.isDebugRef()); - DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), - MI.getDebugLoc()->getInlinedAt()); - DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) - : DbgValue(Properties, DbgValue::Undef); - - // Attempt insertion; overwrite if it's already mapped. - auto Result = Vars.insert(std::make_pair(Var, Rec)); - if (!Result.second) - Result.first->second = Rec; - Scopes[Var] = MI.getDebugLoc().get(); - } - - void defVar(const MachineInstr &MI, const MachineOperand &MO) { - // Only DBG_VALUEs can define constant-valued variables. - assert(MI.isDebugValue()); - DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), - MI.getDebugLoc()->getInlinedAt()); - DbgValueProperties Properties(MI); - DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); - - // Attempt insertion; overwrite if it's already mapped. - auto Result = Vars.insert(std::make_pair(Var, Rec)); - if (!Result.second) - Result.first->second = Rec; - Scopes[Var] = MI.getDebugLoc().get(); - } -}; - -/// Tracker for converting machine value locations and variable values into -/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs -/// specifying block live-in locations and transfers within blocks. -/// -/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker -/// and must be initialized with the set of variable values that are live-in to -/// the block. The caller then repeatedly calls process(). TransferTracker picks -/// out variable locations for the live-in variable values (if there _is_ a -/// location) and creates the corresponding DBG_VALUEs. Then, as the block is -/// stepped through, transfers of values between machine locations are -/// identified and if profitable, a DBG_VALUE created. -/// -/// This is where debug use-before-defs would be resolved: a variable with an -/// unavailable value could materialize in the middle of a block, when the -/// value becomes available. Or, we could detect clobbers and re-specify the -/// variable in a backup location. (XXX these are unimplemented). -class TransferTracker { -public: - const TargetInstrInfo *TII; - /// This machine location tracker is assumed to always contain the up-to-date - /// value mapping for all machine locations. TransferTracker only reads - /// information from it. (XXX make it const?) - MLocTracker *MTracker; - MachineFunction &MF; - - /// Record of all changes in variable locations at a block position. Awkwardly - /// we allow inserting either before or after the point: MBB != nullptr - /// indicates it's before, otherwise after. - struct Transfer { - MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes - MachineBasicBlock *MBB; /// non-null if we should insert after. - SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. - }; - - typedef struct { - LocIdx Loc; - DbgValueProperties Properties; - } LocAndProperties; - - /// Collection of transfers (DBG_VALUEs) to be inserted. - SmallVector<Transfer, 32> Transfers; - - /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences - /// between TransferTrackers view of variable locations and MLocTrackers. For - /// example, MLocTracker observes all clobbers, but TransferTracker lazily - /// does not. - std::vector<ValueIDNum> VarLocs; - - /// Map from LocIdxes to which DebugVariables are based that location. - /// Mantained while stepping through the block. Not accurate if - /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. - std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; - - /// Map from DebugVariable to it's current location and qualifying meta - /// information. To be used in conjunction with ActiveMLocs to construct - /// enough information for the DBG_VALUEs for a particular LocIdx. - DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; - - /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. - SmallVector<MachineInstr *, 4> PendingDbgValues; - - /// Record of a use-before-def: created when a value that's live-in to the - /// current block isn't available in any machine location, but it will be - /// defined in this block. - struct UseBeforeDef { - /// Value of this variable, def'd in block. - ValueIDNum ID; - /// Identity of this variable. - DebugVariable Var; - /// Additional variable properties. - DbgValueProperties Properties; - }; - - /// Map from instruction index (within the block) to the set of UseBeforeDefs - /// that become defined at that instruction. - DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; - - /// The set of variables that are in UseBeforeDefs and can become a location - /// once the relevant value is defined. An element being erased from this - /// collection prevents the use-before-def materializing. - DenseSet<DebugVariable> UseBeforeDefVariables; - - const TargetRegisterInfo &TRI; - const BitVector &CalleeSavedRegs; - - TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, - MachineFunction &MF, const TargetRegisterInfo &TRI, - const BitVector &CalleeSavedRegs) - : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), - CalleeSavedRegs(CalleeSavedRegs) {} - - /// Load object with live-in variable values. \p mlocs contains the live-in - /// values in each machine location, while \p vlocs the live-in variable - /// values. This method picks variable locations for the live-in variables, - /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other - /// object fields to track variable locations as we step through the block. - /// FIXME: could just examine mloctracker instead of passing in \p mlocs? - void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, - SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, - unsigned NumLocs) { - ActiveMLocs.clear(); - ActiveVLocs.clear(); - VarLocs.clear(); - VarLocs.reserve(NumLocs); - UseBeforeDefs.clear(); - UseBeforeDefVariables.clear(); - - auto isCalleeSaved = [&](LocIdx L) { - unsigned Reg = MTracker->LocIdxToLocID[L]; - if (Reg >= MTracker->NumRegs) - return false; - for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) - if (CalleeSavedRegs.test(*RAI)) - return true; - return false; - }; - - // Map of the preferred location for each value. - std::map<ValueIDNum, LocIdx> ValueToLoc; - - // Produce a map of value numbers to the current machine locs they live - // in. When emulating VarLocBasedImpl, there should only be one - // location; when not, we get to pick. - for (auto Location : MTracker->locations()) { - LocIdx Idx = Location.Idx; - ValueIDNum &VNum = MLocs[Idx.asU64()]; - VarLocs.push_back(VNum); - auto it = ValueToLoc.find(VNum); - // In order of preference, pick: - // * Callee saved registers, - // * Other registers, - // * Spill slots. - if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || - (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { - // Insert, or overwrite if insertion failed. - auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); - if (!PrefLocRes.second) - PrefLocRes.first->second = Idx; - } - } - - // Now map variables to their picked LocIdxes. - for (auto Var : VLocs) { - if (Var.second.Kind == DbgValue::Const) { - PendingDbgValues.push_back( - emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); - continue; - } - - // If the value has no location, we can't make a variable location. - const ValueIDNum &Num = Var.second.ID; - auto ValuesPreferredLoc = ValueToLoc.find(Num); - if (ValuesPreferredLoc == ValueToLoc.end()) { - // If it's a def that occurs in this block, register it as a - // use-before-def to be resolved as we step through the block. - if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) - addUseBeforeDef(Var.first, Var.second.Properties, Num); - continue; - } - - LocIdx M = ValuesPreferredLoc->second; - auto NewValue = LocAndProperties{M, Var.second.Properties}; - auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); - if (!Result.second) - Result.first->second = NewValue; - ActiveMLocs[M].insert(Var.first); - PendingDbgValues.push_back( - MTracker->emitLoc(M, Var.first, Var.second.Properties)); - } - flushDbgValues(MBB.begin(), &MBB); - } - - /// Record that \p Var has value \p ID, a value that becomes available - /// later in the function. - void addUseBeforeDef(const DebugVariable &Var, - const DbgValueProperties &Properties, ValueIDNum ID) { - UseBeforeDef UBD = {ID, Var, Properties}; - UseBeforeDefs[ID.getInst()].push_back(UBD); - UseBeforeDefVariables.insert(Var); - } - - /// After the instruction at index \p Inst and position \p pos has been - /// processed, check whether it defines a variable value in a use-before-def. - /// If so, and the variable value hasn't changed since the start of the - /// block, create a DBG_VALUE. - void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { - auto MIt = UseBeforeDefs.find(Inst); - if (MIt == UseBeforeDefs.end()) - return; - - for (auto &Use : MIt->second) { - LocIdx L = Use.ID.getLoc(); - - // If something goes very wrong, we might end up labelling a COPY - // instruction or similar with an instruction number, where it doesn't - // actually define a new value, instead it moves a value. In case this - // happens, discard. - if (MTracker->LocIdxToIDNum[L] != Use.ID) - continue; - - // If a different debug instruction defined the variable value / location - // since the start of the block, don't materialize this use-before-def. - if (!UseBeforeDefVariables.count(Use.Var)) - continue; - - PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); - } - flushDbgValues(pos, nullptr); - } - - /// Helper to move created DBG_VALUEs into Transfers collection. - void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { - if (PendingDbgValues.size() > 0) { - Transfers.push_back({Pos, MBB, PendingDbgValues}); - PendingDbgValues.clear(); - } - } - - /// Change a variable value after encountering a DBG_VALUE inside a block. - void redefVar(const MachineInstr &MI) { - DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), - MI.getDebugLoc()->getInlinedAt()); - DbgValueProperties Properties(MI); - - const MachineOperand &MO = MI.getOperand(0); - - // Ignore non-register locations, we don't transfer those. - if (!MO.isReg() || MO.getReg() == 0) { - auto It = ActiveVLocs.find(Var); - if (It != ActiveVLocs.end()) { - ActiveMLocs[It->second.Loc].erase(Var); - ActiveVLocs.erase(It); - } - // Any use-before-defs no longer apply. - UseBeforeDefVariables.erase(Var); - return; - } - - Register Reg = MO.getReg(); - LocIdx NewLoc = MTracker->getRegMLoc(Reg); - redefVar(MI, Properties, NewLoc); - } - - /// Handle a change in variable location within a block. Terminate the - /// variables current location, and record the value it now refers to, so - /// that we can detect location transfers later on. - void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, - Optional<LocIdx> OptNewLoc) { - DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), - MI.getDebugLoc()->getInlinedAt()); - // Any use-before-defs no longer apply. - UseBeforeDefVariables.erase(Var); - - // Erase any previous location, - auto It = ActiveVLocs.find(Var); - if (It != ActiveVLocs.end()) - ActiveMLocs[It->second.Loc].erase(Var); - - // If there _is_ no new location, all we had to do was erase. - if (!OptNewLoc) - return; - LocIdx NewLoc = *OptNewLoc; - - // Check whether our local copy of values-by-location in #VarLocs is out of - // date. Wipe old tracking data for the location if it's been clobbered in - // the meantime. - if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { - for (auto &P : ActiveMLocs[NewLoc]) { - ActiveVLocs.erase(P); - } - ActiveMLocs[NewLoc.asU64()].clear(); - VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); - } - - ActiveMLocs[NewLoc].insert(Var); - if (It == ActiveVLocs.end()) { - ActiveVLocs.insert( - std::make_pair(Var, LocAndProperties{NewLoc, Properties})); - } else { - It->second.Loc = NewLoc; - It->second.Properties = Properties; - } - } - - /// Explicitly terminate variable locations based on \p mloc. Creates undef - /// DBG_VALUEs for any variables that were located there, and clears - /// #ActiveMLoc / #ActiveVLoc tracking information for that location. - void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { - assert(MTracker->isSpill(MLoc)); - auto ActiveMLocIt = ActiveMLocs.find(MLoc); - if (ActiveMLocIt == ActiveMLocs.end()) - return; - - VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; - - for (auto &Var : ActiveMLocIt->second) { - auto ActiveVLocIt = ActiveVLocs.find(Var); - // Create an undef. We can't feed in a nullptr DIExpression alas, - // so use the variables last expression. Pass None as the location. - const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; - DbgValueProperties Properties(Expr, false); - PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); - ActiveVLocs.erase(ActiveVLocIt); - } - flushDbgValues(Pos, nullptr); - - ActiveMLocIt->second.clear(); - } - - /// Transfer variables based on \p Src to be based on \p Dst. This handles - /// both register copies as well as spills and restores. Creates DBG_VALUEs - /// describing the movement. - void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { - // Does Src still contain the value num we expect? If not, it's been - // clobbered in the meantime, and our variable locations are stale. - if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) - return; - - // assert(ActiveMLocs[Dst].size() == 0); - //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? - ActiveMLocs[Dst] = ActiveMLocs[Src]; - VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; - - // For each variable based on Src; create a location at Dst. - for (auto &Var : ActiveMLocs[Src]) { - auto ActiveVLocIt = ActiveVLocs.find(Var); - assert(ActiveVLocIt != ActiveVLocs.end()); - ActiveVLocIt->second.Loc = Dst; - - assert(Dst != 0); - MachineInstr *MI = - MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); - PendingDbgValues.push_back(MI); - } - ActiveMLocs[Src].clear(); - flushDbgValues(Pos, nullptr); - - // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data - // about the old location. - if (EmulateOldLDV) - VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; - } - - MachineInstrBuilder emitMOLoc(const MachineOperand &MO, - const DebugVariable &Var, - const DbgValueProperties &Properties) { - DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, - Var.getVariable()->getScope(), - const_cast<DILocation *>(Var.getInlinedAt())); - auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); - MIB.add(MO); - if (Properties.Indirect) - MIB.addImm(0); - else - MIB.addReg(0); - MIB.addMetadata(Var.getVariable()); - MIB.addMetadata(Properties.DIExpr); - return MIB; - } -}; - -class InstrRefBasedLDV : public LDVImpl { -private: - using FragmentInfo = DIExpression::FragmentInfo; - using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; - - // Helper while building OverlapMap, a map of all fragments seen for a given - // DILocalVariable. - using VarToFragments = - DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; - - /// Machine location/value transfer function, a mapping of which locations - /// are assigned which new values. - using MLocTransferMap = std::map<LocIdx, ValueIDNum>; - - /// Live in/out structure for the variable values: a per-block map of - /// variables to their values. XXX, better name? - using LiveIdxT = - DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>; - - using VarAndLoc = std::pair<DebugVariable, DbgValue>; - - /// Type for a live-in value: the predecessor block, and its value. - using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; - - /// Vector (per block) of a collection (inner smallvector) of live-ins. - /// Used as the result type for the variable value dataflow problem. - using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; - - const TargetRegisterInfo *TRI; - const TargetInstrInfo *TII; - const TargetFrameLowering *TFI; - BitVector CalleeSavedRegs; - LexicalScopes LS; - TargetPassConfig *TPC; - - /// Object to track machine locations as we step through a block. Could - /// probably be a field rather than a pointer, as it's always used. - MLocTracker *MTracker; - - /// Number of the current block LiveDebugValues is stepping through. - unsigned CurBB; - - /// Number of the current instruction LiveDebugValues is evaluating. - unsigned CurInst; - - /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl - /// steps through a block. Reads the values at each location from the - /// MLocTracker object. - VLocTracker *VTracker; - - /// Tracker for transfers, listens to DBG_VALUEs and transfers of values - /// between locations during stepping, creates new DBG_VALUEs when values move - /// location. - TransferTracker *TTracker; - - /// Blocks which are artificial, i.e. blocks which exclusively contain - /// instructions without DebugLocs, or with line 0 locations. - SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; - - // Mapping of blocks to and from their RPOT order. - DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; - DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; - DenseMap<unsigned, unsigned> BBNumToRPO; - - /// Pair of MachineInstr, and its 1-based offset into the containing block. - using InstAndNum = std::pair<const MachineInstr *, unsigned>; - /// Map from debug instruction number to the MachineInstr labelled with that - /// number, and its location within the function. Used to transform - /// instruction numbers in DBG_INSTR_REFs into machine value numbers. - std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; - - // Map of overlapping variable fragments. - OverlapMap OverlapFragments; - VarToFragments SeenFragments; - - /// Tests whether this instruction is a spill to a stack slot. - bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); - - /// Decide if @MI is a spill instruction and return true if it is. We use 2 - /// criteria to make this decision: - /// - Is this instruction a store to a spill slot? - /// - Is there a register operand that is both used and killed? - /// TODO: Store optimization can fold spills into other stores (including - /// other spills). We do not handle this yet (more than one memory operand). - bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, - unsigned &Reg); - - /// If a given instruction is identified as a spill, return the spill slot - /// and set \p Reg to the spilled register. - Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, - MachineFunction *MF, unsigned &Reg); - - /// Given a spill instruction, extract the register and offset used to - /// address the spill slot in a target independent way. - SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); - - /// Observe a single instruction while stepping through a block. - void process(MachineInstr &MI); - - /// Examines whether \p MI is a DBG_VALUE and notifies trackers. - /// \returns true if MI was recognized and processed. - bool transferDebugValue(const MachineInstr &MI); - - /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. - /// \returns true if MI was recognized and processed. - bool transferDebugInstrRef(MachineInstr &MI); - - /// Examines whether \p MI is copy instruction, and notifies trackers. - /// \returns true if MI was recognized and processed. - bool transferRegisterCopy(MachineInstr &MI); - - /// Examines whether \p MI is stack spill or restore instruction, and - /// notifies trackers. \returns true if MI was recognized and processed. - bool transferSpillOrRestoreInst(MachineInstr &MI); - - /// Examines \p MI for any registers that it defines, and notifies trackers. - void transferRegisterDef(MachineInstr &MI); - - /// Copy one location to the other, accounting for movement of subregisters - /// too. - void performCopy(Register Src, Register Dst); - - void accumulateFragmentMap(MachineInstr &MI); - - /// Step through the function, recording register definitions and movements - /// in an MLocTracker. Convert the observations into a per-block transfer - /// function in \p MLocTransfer, suitable for using with the machine value - /// location dataflow problem. - void - produceMLocTransferFunction(MachineFunction &MF, - SmallVectorImpl<MLocTransferMap> &MLocTransfer, - unsigned MaxNumBlocks); - - /// Solve the machine value location dataflow problem. Takes as input the - /// transfer functions in \p MLocTransfer. Writes the output live-in and - /// live-out arrays to the (initialized to zero) multidimensional arrays in - /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block - /// number, the inner by LocIdx. - void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, - SmallVectorImpl<MLocTransferMap> &MLocTransfer); - - /// Perform a control flow join (lattice value meet) of the values in machine - /// locations at \p MBB. Follows the algorithm described in the file-comment, - /// reading live-outs of predecessors from \p OutLocs, the current live ins - /// from \p InLocs, and assigning the newly computed live ins back into - /// \p InLocs. \returns two bools -- the first indicates whether a change - /// was made, the second whether a lattice downgrade occurred. If the latter - /// is true, revisiting this block is necessary. - std::tuple<bool, bool> - mlocJoin(MachineBasicBlock &MBB, - SmallPtrSet<const MachineBasicBlock *, 16> &Visited, - ValueIDNum **OutLocs, ValueIDNum *InLocs); - - /// Solve the variable value dataflow problem, for a single lexical scope. - /// Uses the algorithm from the file comment to resolve control flow joins, - /// although there are extra hacks, see vlocJoin. Reads the - /// locations of values from the \p MInLocs and \p MOutLocs arrays (see - /// mlocDataflow) and reads the variable values transfer function from - /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, - /// with the live-ins permanently stored to \p Output once the fixedpoint is - /// reached. - /// \p VarsWeCareAbout contains a collection of the variables in \p Scope - /// that we should be tracking. - /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but - /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations - /// through. - void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, - const SmallSet<DebugVariable, 4> &VarsWeCareAbout, - SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, - LiveInsT &Output, ValueIDNum **MOutLocs, - ValueIDNum **MInLocs, - SmallVectorImpl<VLocTracker> &AllTheVLocs); - - /// Compute the live-ins to a block, considering control flow merges according - /// to the method in the file comment. Live out and live in variable values - /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB - /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins - /// are modified. - /// \p InLocsT Output argument, storage for calculated live-ins. - /// \returns two bools -- the first indicates whether a change - /// was made, the second whether a lattice downgrade occurred. If the latter - /// is true, revisiting this block is necessary. - std::tuple<bool, bool> - vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, - SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, - unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, - ValueIDNum **MOutLocs, ValueIDNum **MInLocs, - SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, - SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, - DenseMap<DebugVariable, DbgValue> &InLocsT); - - /// Continue exploration of the variable-value lattice, as explained in the - /// file-level comment. \p OldLiveInLocation contains the current - /// exploration position, from which we need to descend further. \p Values - /// contains the set of live-in values, \p CurBlockRPONum the RPO number of - /// the current block, and \p CandidateLocations a set of locations that - /// should be considered as PHI locations, if we reach the bottom of the - /// lattice. \returns true if we should downgrade; the value is the agreeing - /// value number in a non-backedge predecessor. - bool vlocDowngradeLattice(const MachineBasicBlock &MBB, - const DbgValue &OldLiveInLocation, - const SmallVectorImpl<InValueT> &Values, - unsigned CurBlockRPONum); - - /// For the given block and live-outs feeding into it, try to find a - /// machine location where they all join. If a solution for all predecessors - /// can't be found, a location where all non-backedge-predecessors join - /// will be returned instead. While this method finds a join location, this - /// says nothing as to whether it should be used. - /// \returns Pair of value ID if found, and true when the correct value - /// is available on all predecessor edges, or false if it's only available - /// for non-backedge predecessors. - std::tuple<Optional<ValueIDNum>, bool> - pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, - const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, - ValueIDNum **MInLocs, - const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); - - /// Given the solutions to the two dataflow problems, machine value locations - /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the - /// TransferTracker class over the function to produce live-in and transfer - /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the - /// order given by AllVarsNumbering -- this could be any stable order, but - /// right now "order of appearence in function, when explored in RPO", so - /// that we can compare explictly against VarLocBasedImpl. - void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, - ValueIDNum **MInLocs, - DenseMap<DebugVariable, unsigned> &AllVarsNumbering); - - /// Boilerplate computation of some initial sets, artifical blocks and - /// RPOT block ordering. - void initialSetup(MachineFunction &MF); - - bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; - -public: - /// Default construct and initialize the pass. - InstrRefBasedLDV(); - - LLVM_DUMP_METHOD - void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; - - bool isCalleeSaved(LocIdx L) { - unsigned Reg = MTracker->LocIdxToLocID[L]; - for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) - if (CalleeSavedRegs.test(*RAI)) - return true; - return false; - } -}; - -} // end anonymous namespace - -//===----------------------------------------------------------------------===// -// Implementation -//===----------------------------------------------------------------------===// - -ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; - -/// Default construct and initialize the pass. -InstrRefBasedLDV::InstrRefBasedLDV() {} - -//===----------------------------------------------------------------------===// -// Debug Range Extension Implementation -//===----------------------------------------------------------------------===// - -#ifndef NDEBUG -// Something to restore in the future. -// void InstrRefBasedLDV::printVarLocInMBB(..) -#endif - -SpillLoc -InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { - assert(MI.hasOneMemOperand() && - "Spill instruction does not have exactly one memory operand?"); - auto MMOI = MI.memoperands_begin(); - const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); - assert(PVal->kind() == PseudoSourceValue::FixedStack && - "Inconsistent memory operand in spill instruction"); - int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); - const MachineBasicBlock *MBB = MI.getParent(); - Register Reg; - StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); - return {Reg, Offset}; -} - -/// End all previous ranges related to @MI and start a new range from @MI -/// if it is a DBG_VALUE instr. -bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { - if (!MI.isDebugValue()) - return false; - - const DILocalVariable *Var = MI.getDebugVariable(); - const DIExpression *Expr = MI.getDebugExpression(); - const DILocation *DebugLoc = MI.getDebugLoc(); - const DILocation *InlinedAt = DebugLoc->getInlinedAt(); - assert(Var->isValidLocationForIntrinsic(DebugLoc) && - "Expected inlined-at fields to agree"); - - DebugVariable V(Var, Expr, InlinedAt); - DbgValueProperties Properties(MI); - - // If there are no instructions in this lexical scope, do no location tracking - // at all, this variable shouldn't get a legitimate location range. - auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); - if (Scope == nullptr) - return true; // handled it; by doing nothing - - const MachineOperand &MO = MI.getOperand(0); - - // MLocTracker needs to know that this register is read, even if it's only - // read by a debug inst. - if (MO.isReg() && MO.getReg() != 0) - (void)MTracker->readReg(MO.getReg()); - - // If we're preparing for the second analysis (variables), the machine value - // locations are already solved, and we report this DBG_VALUE and the value - // it refers to to VLocTracker. - if (VTracker) { - if (MO.isReg()) { - // Feed defVar the new variable location, or if this is a - // DBG_VALUE $noreg, feed defVar None. - if (MO.getReg()) - VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); - else - VTracker->defVar(MI, Properties, None); - } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || - MI.getOperand(0).isCImm()) { - VTracker->defVar(MI, MI.getOperand(0)); - } - } - - // If performing final tracking of transfers, report this variable definition - // to the TransferTracker too. - if (TTracker) - TTracker->redefVar(MI); - return true; -} - -bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) { - if (!MI.isDebugRef()) - return false; - - // Only handle this instruction when we are building the variable value - // transfer function. - if (!VTracker) - return false; - - unsigned InstNo = MI.getOperand(0).getImm(); - unsigned OpNo = MI.getOperand(1).getImm(); - - const DILocalVariable *Var = MI.getDebugVariable(); - const DIExpression *Expr = MI.getDebugExpression(); - const DILocation *DebugLoc = MI.getDebugLoc(); - const DILocation *InlinedAt = DebugLoc->getInlinedAt(); - assert(Var->isValidLocationForIntrinsic(DebugLoc) && - "Expected inlined-at fields to agree"); - - DebugVariable V(Var, Expr, InlinedAt); - - auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); - if (Scope == nullptr) - return true; // Handled by doing nothing. This variable is never in scope. - - const MachineFunction &MF = *MI.getParent()->getParent(); - - // Various optimizations may have happened to the value during codegen, - // recorded in the value substitution table. Apply any substitutions to - // the instruction / operand number in this DBG_INSTR_REF. - auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); - while (Sub != MF.DebugValueSubstitutions.end()) { - InstNo = Sub->second.first; - OpNo = Sub->second.second; - Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); - } - - // Default machine value number is <None> -- if no instruction defines - // the corresponding value, it must have been optimized out. - Optional<ValueIDNum> NewID = None; - - // Try to lookup the instruction number, and find the machine value number - // that it defines. - auto InstrIt = DebugInstrNumToInstr.find(InstNo); - if (InstrIt != DebugInstrNumToInstr.end()) { - const MachineInstr &TargetInstr = *InstrIt->second.first; - uint64_t BlockNo = TargetInstr.getParent()->getNumber(); - - // Pick out the designated operand. - assert(OpNo < TargetInstr.getNumOperands()); - const MachineOperand &MO = TargetInstr.getOperand(OpNo); - - // Today, this can only be a register. - assert(MO.isReg() && MO.isDef()); - - unsigned LocID = MTracker->getLocID(MO.getReg(), false); - LocIdx L = MTracker->LocIDToLocIdx[LocID]; - NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); - } - - // We, we have a value number or None. Tell the variable value tracker about - // it. The rest of this LiveDebugValues implementation acts exactly the same - // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that - // aren't immediately available). - DbgValueProperties Properties(Expr, false); - VTracker->defVar(MI, Properties, NewID); - - // If we're on the final pass through the function, decompose this INSTR_REF - // into a plain DBG_VALUE. - if (!TTracker) - return true; - - // Pick a location for the machine value number, if such a location exists. - // (This information could be stored in TransferTracker to make it faster). - Optional<LocIdx> FoundLoc = None; - for (auto Location : MTracker->locations()) { - LocIdx CurL = Location.Idx; - ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; - if (NewID && ID == NewID) { - // If this is the first location with that value, pick it. Otherwise, - // consider whether it's a "longer term" location. - if (!FoundLoc) { - FoundLoc = CurL; - continue; - } - - if (MTracker->isSpill(CurL)) - FoundLoc = CurL; // Spills are a longer term location. - else if (!MTracker->isSpill(*FoundLoc) && - !MTracker->isSpill(CurL) && - !isCalleeSaved(*FoundLoc) && - isCalleeSaved(CurL)) - FoundLoc = CurL; // Callee saved regs are longer term than normal. - } - } - - // Tell transfer tracker that the variable value has changed. - TTracker->redefVar(MI, Properties, FoundLoc); - - // If there was a value with no location; but the value is defined in a - // later instruction in this block, this is a block-local use-before-def. - if (!FoundLoc && NewID && NewID->getBlock() == CurBB && - NewID->getInst() > CurInst) - TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); - - // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. - // This DBG_VALUE is potentially a $noreg / undefined location, if - // FoundLoc is None. - // (XXX -- could morph the DBG_INSTR_REF in the future). - MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); - TTracker->PendingDbgValues.push_back(DbgMI); - TTracker->flushDbgValues(MI.getIterator(), nullptr); - - return true; -} - -void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { - // Meta Instructions do not affect the debug liveness of any register they - // define. - if (MI.isImplicitDef()) { - // Except when there's an implicit def, and the location it's defining has - // no value number. The whole point of an implicit def is to announce that - // the register is live, without be specific about it's value. So define - // a value if there isn't one already. - ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); - // Has a legitimate value -> ignore the implicit def. - if (Num.getLoc() != 0) - return; - // Otherwise, def it here. - } else if (MI.isMetaInstruction()) - return; - - MachineFunction *MF = MI.getMF(); - const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); - Register SP = TLI->getStackPointerRegisterToSaveRestore(); - - // Find the regs killed by MI, and find regmasks of preserved regs. - // Max out the number of statically allocated elements in `DeadRegs`, as this - // prevents fallback to std::set::count() operations. - SmallSet<uint32_t, 32> DeadRegs; - SmallVector<const uint32_t *, 4> RegMasks; - SmallVector<const MachineOperand *, 4> RegMaskPtrs; - for (const MachineOperand &MO : MI.operands()) { - // Determine whether the operand is a register def. - if (MO.isReg() && MO.isDef() && MO.getReg() && - Register::isPhysicalRegister(MO.getReg()) && - !(MI.isCall() && MO.getReg() == SP)) { - // Remove ranges of all aliased registers. - for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) - // FIXME: Can we break out of this loop early if no insertion occurs? - DeadRegs.insert(*RAI); - } else if (MO.isRegMask()) { - RegMasks.push_back(MO.getRegMask()); - RegMaskPtrs.push_back(&MO); - } - } - - // Tell MLocTracker about all definitions, of regmasks and otherwise. - for (uint32_t DeadReg : DeadRegs) - MTracker->defReg(DeadReg, CurBB, CurInst); - - for (auto *MO : RegMaskPtrs) - MTracker->writeRegMask(MO, CurBB, CurInst); -} - -void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { - ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); - - MTracker->setReg(DstRegNum, SrcValue); - - // In all circumstances, re-def the super registers. It's definitely a new - // value now. This doesn't uniquely identify the composition of subregs, for - // example, two identical values in subregisters composed in different - // places would not get equal value numbers. - for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) - MTracker->defReg(*SRI, CurBB, CurInst); - - // If we're emulating VarLocBasedImpl, just define all the subregisters. - // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not - // through prior copies. - if (EmulateOldLDV) { - for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) - MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); - return; - } - - // Otherwise, actually copy subregisters from one location to another. - // XXX: in addition, any subregisters of DstRegNum that don't line up with - // the source register should be def'd. - for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { - unsigned SrcSubReg = SRI.getSubReg(); - unsigned SubRegIdx = SRI.getSubRegIndex(); - unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); - if (!DstSubReg) - continue; - - // Do copy. There are two matching subregisters, the source value should - // have been def'd when the super-reg was, the latter might not be tracked - // yet. - // This will force SrcSubReg to be tracked, if it isn't yet. - (void)MTracker->readReg(SrcSubReg); - LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); - assert(SrcL.asU64()); - (void)MTracker->readReg(DstSubReg); - LocIdx DstL = MTracker->getRegMLoc(DstSubReg); - assert(DstL.asU64()); - (void)DstL; - ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; - - MTracker->setReg(DstSubReg, CpyValue); - } -} - -bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, - MachineFunction *MF) { - // TODO: Handle multiple stores folded into one. - if (!MI.hasOneMemOperand()) - return false; - - if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) - return false; // This is not a spill instruction, since no valid size was - // returned from either function. - - return true; -} - -bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, - MachineFunction *MF, unsigned &Reg) { - if (!isSpillInstruction(MI, MF)) - return false; - - // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an - // actual register number. - if (ObserveAllStackops) { - int FI; - Reg = TII->isStoreToStackSlotPostFE(MI, FI); - return Reg != 0; - } - - auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { - if (!MO.isReg() || !MO.isUse()) { - Reg = 0; - return false; - } - Reg = MO.getReg(); - return MO.isKill(); - }; - - for (const MachineOperand &MO : MI.operands()) { - // In a spill instruction generated by the InlineSpiller the spilled - // register has its kill flag set. - if (isKilledReg(MO, Reg)) - return true; - if (Reg != 0) { - // Check whether next instruction kills the spilled register. - // FIXME: Current solution does not cover search for killed register in - // bundles and instructions further down the chain. - auto NextI = std::next(MI.getIterator()); - // Skip next instruction that points to basic block end iterator. - if (MI.getParent()->end() == NextI) - continue; - unsigned RegNext; - for (const MachineOperand &MONext : NextI->operands()) { - // Return true if we came across the register from the - // previous spill instruction that is killed in NextI. - if (isKilledReg(MONext, RegNext) && RegNext == Reg) - return true; - } - } - } - // Return false if we didn't find spilled register. - return false; -} - -Optional<SpillLoc> -InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, - MachineFunction *MF, unsigned &Reg) { - if (!MI.hasOneMemOperand()) - return None; - - // FIXME: Handle folded restore instructions with more than one memory - // operand. - if (MI.getRestoreSize(TII)) { - Reg = MI.getOperand(0).getReg(); - return extractSpillBaseRegAndOffset(MI); - } - return None; -} - -bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { - // XXX -- it's too difficult to implement VarLocBasedImpl's stack location - // limitations under the new model. Therefore, when comparing them, compare - // versions that don't attempt spills or restores at all. - if (EmulateOldLDV) - return false; - - MachineFunction *MF = MI.getMF(); - unsigned Reg; - Optional<SpillLoc> Loc; - - LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); - - // First, if there are any DBG_VALUEs pointing at a spill slot that is - // written to, terminate that variable location. The value in memory - // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. - if (isSpillInstruction(MI, MF)) { - Loc = extractSpillBaseRegAndOffset(MI); - - if (TTracker) { - Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); - if (MLoc) - TTracker->clobberMloc(*MLoc, MI.getIterator()); - } - } - - // Try to recognise spill and restore instructions that may transfer a value. - if (isLocationSpill(MI, MF, Reg)) { - Loc = extractSpillBaseRegAndOffset(MI); - auto ValueID = MTracker->readReg(Reg); - - // If the location is empty, produce a phi, signify it's the live-in value. - if (ValueID.getLoc() == 0) - ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; - - MTracker->setSpill(*Loc, ValueID); - auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); - assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); - LocIdx SpillLocIdx = *OptSpillLocIdx; - - // Tell TransferTracker about this spill, produce DBG_VALUEs for it. - if (TTracker) - TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, - MI.getIterator()); - } else { - if (!(Loc = isRestoreInstruction(MI, MF, Reg))) - return false; - - // Is there a value to be restored? - auto OptValueID = MTracker->readSpill(*Loc); - if (OptValueID) { - ValueIDNum ValueID = *OptValueID; - LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); - // XXX -- can we recover sub-registers of this value? Until we can, first - // overwrite all defs of the register being restored to. - for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) - MTracker->defReg(*RAI, CurBB, CurInst); - - // Now override the reg we're restoring to. - MTracker->setReg(Reg, ValueID); - - // Report this restore to the transfer tracker too. - if (TTracker) - TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), - MI.getIterator()); - } else { - // There isn't anything in the location; not clear if this is a code path - // that still runs. Def this register anyway just in case. - for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) - MTracker->defReg(*RAI, CurBB, CurInst); - - // Force the spill slot to be tracked. - LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); - - // Set the restored value to be a machine phi number, signifying that it's - // whatever the spills live-in value is in this block. Definitely has - // a LocIdx due to the setSpill above. - ValueIDNum ValueID = {CurBB, 0, L}; - MTracker->setReg(Reg, ValueID); - MTracker->setSpill(*Loc, ValueID); - } - } - return true; -} - -bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { - auto DestSrc = TII->isCopyInstr(MI); - if (!DestSrc) - return false; - - const MachineOperand *DestRegOp = DestSrc->Destination; - const MachineOperand *SrcRegOp = DestSrc->Source; - - auto isCalleeSavedReg = [&](unsigned Reg) { - for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) - if (CalleeSavedRegs.test(*RAI)) - return true; - return false; - }; - - Register SrcReg = SrcRegOp->getReg(); - Register DestReg = DestRegOp->getReg(); - - // Ignore identity copies. Yep, these make it as far as LiveDebugValues. - if (SrcReg == DestReg) - return true; - - // For emulating VarLocBasedImpl: - // We want to recognize instructions where destination register is callee - // saved register. If register that could be clobbered by the call is - // included, there would be a great chance that it is going to be clobbered - // soon. It is more likely that previous register, which is callee saved, is - // going to stay unclobbered longer, even if it is killed. - // - // For InstrRefBasedImpl, we can track multiple locations per value, so - // ignore this condition. - if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) - return false; - - // InstrRefBasedImpl only followed killing copies. - if (EmulateOldLDV && !SrcRegOp->isKill()) - return false; - - // Copy MTracker info, including subregs if available. - InstrRefBasedLDV::performCopy(SrcReg, DestReg); - - // Only produce a transfer of DBG_VALUE within a block where old LDV - // would have. We might make use of the additional value tracking in some - // other way, later. - if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) - TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), - MTracker->getRegMLoc(DestReg), MI.getIterator()); - - // VarLocBasedImpl would quit tracking the old location after copying. - if (EmulateOldLDV && SrcReg != DestReg) - MTracker->defReg(SrcReg, CurBB, CurInst); - - return true; -} - -/// Accumulate a mapping between each DILocalVariable fragment and other -/// fragments of that DILocalVariable which overlap. This reduces work during -/// the data-flow stage from "Find any overlapping fragments" to "Check if the -/// known-to-overlap fragments are present". -/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for -/// fragment usage. -void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { - DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), - MI.getDebugLoc()->getInlinedAt()); - FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); - - // If this is the first sighting of this variable, then we are guaranteed - // there are currently no overlapping fragments either. Initialize the set - // of seen fragments, record no overlaps for the current one, and return. - auto SeenIt = SeenFragments.find(MIVar.getVariable()); - if (SeenIt == SeenFragments.end()) { - SmallSet<FragmentInfo, 4> OneFragment; - OneFragment.insert(ThisFragment); - SeenFragments.insert({MIVar.getVariable(), OneFragment}); - - OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); - return; - } - - // If this particular Variable/Fragment pair already exists in the overlap - // map, it has already been accounted for. - auto IsInOLapMap = - OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); - if (!IsInOLapMap.second) - return; - - auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; - auto &AllSeenFragments = SeenIt->second; - - // Otherwise, examine all other seen fragments for this variable, with "this" - // fragment being a previously unseen fragment. Record any pair of - // overlapping fragments. - for (auto &ASeenFragment : AllSeenFragments) { - // Does this previously seen fragment overlap? - if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { - // Yes: Mark the current fragment as being overlapped. - ThisFragmentsOverlaps.push_back(ASeenFragment); - // Mark the previously seen fragment as being overlapped by the current - // one. - auto ASeenFragmentsOverlaps = - OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); - assert(ASeenFragmentsOverlaps != OverlapFragments.end() && - "Previously seen var fragment has no vector of overlaps"); - ASeenFragmentsOverlaps->second.push_back(ThisFragment); - } - } - - AllSeenFragments.insert(ThisFragment); -} - -void InstrRefBasedLDV::process(MachineInstr &MI) { - // Try to interpret an MI as a debug or transfer instruction. Only if it's - // none of these should we interpret it's register defs as new value - // definitions. - if (transferDebugValue(MI)) - return; - if (transferDebugInstrRef(MI)) - return; - if (transferRegisterCopy(MI)) - return; - if (transferSpillOrRestoreInst(MI)) - return; - transferRegisterDef(MI); -} - -void InstrRefBasedLDV::produceMLocTransferFunction( - MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, - unsigned MaxNumBlocks) { - // Because we try to optimize around register mask operands by ignoring regs - // that aren't currently tracked, we set up something ugly for later: RegMask - // operands that are seen earlier than the first use of a register, still need - // to clobber that register in the transfer function. But this information - // isn't actively recorded. Instead, we track each RegMask used in each block, - // and accumulated the clobbered but untracked registers in each block into - // the following bitvector. Later, if new values are tracked, we can add - // appropriate clobbers. - SmallVector<BitVector, 32> BlockMasks; - BlockMasks.resize(MaxNumBlocks); - - // Reserve one bit per register for the masks described above. - unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); - for (auto &BV : BlockMasks) - BV.resize(TRI->getNumRegs(), true); - - // Step through all instructions and inhale the transfer function. - for (auto &MBB : MF) { - // Object fields that are read by trackers to know where we are in the - // function. - CurBB = MBB.getNumber(); - CurInst = 1; - - // Set all machine locations to a PHI value. For transfer function - // production only, this signifies the live-in value to the block. - MTracker->reset(); - MTracker->setMPhis(CurBB); - - // Step through each instruction in this block. - for (auto &MI : MBB) { - process(MI); - // Also accumulate fragment map. - if (MI.isDebugValue()) - accumulateFragmentMap(MI); - - // Create a map from the instruction number (if present) to the - // MachineInstr and its position. - if (uint64_t InstrNo = MI.peekDebugInstrNum()) { - auto InstrAndPos = std::make_pair(&MI, CurInst); - auto InsertResult = - DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); - - // There should never be duplicate instruction numbers. - assert(InsertResult.second); - (void)InsertResult; - } - - ++CurInst; - } - - // Produce the transfer function, a map of machine location to new value. If - // any machine location has the live-in phi value from the start of the - // block, it's live-through and doesn't need recording in the transfer - // function. - for (auto Location : MTracker->locations()) { - LocIdx Idx = Location.Idx; - ValueIDNum &P = Location.Value; - if (P.isPHI() && P.getLoc() == Idx.asU64()) - continue; - - // Insert-or-update. - auto &TransferMap = MLocTransfer[CurBB]; - auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); - if (!Result.second) - Result.first->second = P; - } - - // Accumulate any bitmask operands into the clobberred reg mask for this - // block. - for (auto &P : MTracker->Masks) { - BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); - } - } - - // Compute a bitvector of all the registers that are tracked in this block. - const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); - Register SP = TLI->getStackPointerRegisterToSaveRestore(); - BitVector UsedRegs(TRI->getNumRegs()); - for (auto Location : MTracker->locations()) { - unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; - if (ID >= TRI->getNumRegs() || ID == SP) - continue; - UsedRegs.set(ID); - } - - // Check that any regmask-clobber of a register that gets tracked, is not - // live-through in the transfer function. It needs to be clobbered at the - // very least. - for (unsigned int I = 0; I < MaxNumBlocks; ++I) { - BitVector &BV = BlockMasks[I]; - BV.flip(); - BV &= UsedRegs; - // This produces all the bits that we clobber, but also use. Check that - // they're all clobbered or at least set in the designated transfer - // elem. - for (unsigned Bit : BV.set_bits()) { - unsigned ID = MTracker->getLocID(Bit, false); - LocIdx Idx = MTracker->LocIDToLocIdx[ID]; - auto &TransferMap = MLocTransfer[I]; - - // Install a value representing the fact that this location is effectively - // written to in this block. As there's no reserved value, instead use - // a value number that is never generated. Pick the value number for the - // first instruction in the block, def'ing this location, which we know - // this block never used anyway. - ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); - auto Result = - TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); - if (!Result.second) { - ValueIDNum &ValueID = Result.first->second; - if (ValueID.getBlock() == I && ValueID.isPHI()) - // It was left as live-through. Set it to clobbered. - ValueID = NotGeneratedNum; - } - } - } -} - -std::tuple<bool, bool> -InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, - SmallPtrSet<const MachineBasicBlock *, 16> &Visited, - ValueIDNum **OutLocs, ValueIDNum *InLocs) { - LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); - bool Changed = false; - bool DowngradeOccurred = false; - - // Collect predecessors that have been visited. Anything that hasn't been - // visited yet is a backedge on the first iteration, and the meet of it's - // lattice value for all locations will be unaffected. - SmallVector<const MachineBasicBlock *, 8> BlockOrders; - for (auto Pred : MBB.predecessors()) { - if (Visited.count(Pred)) { - BlockOrders.push_back(Pred); - } - } - - // Visit predecessors in RPOT order. - auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { - return BBToOrder.find(A)->second < BBToOrder.find(B)->second; - }; - llvm::sort(BlockOrders, Cmp); - - // Skip entry block. - if (BlockOrders.size() == 0) - return std::tuple<bool, bool>(false, false); - - // Step through all machine locations, then look at each predecessor and - // detect disagreements. - unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; - for (auto Location : MTracker->locations()) { - LocIdx Idx = Location.Idx; - // Pick out the first predecessors live-out value for this location. It's - // guaranteed to be not a backedge, as we order by RPO. - ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; - - // Some flags for whether there's a disagreement, and whether it's a - // disagreement with a backedge or not. - bool Disagree = false; - bool NonBackEdgeDisagree = false; - - // Loop around everything that wasn't 'base'. - for (unsigned int I = 1; I < BlockOrders.size(); ++I) { - auto *MBB = BlockOrders[I]; - if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { - // Live-out of a predecessor disagrees with the first predecessor. - Disagree = true; - - // Test whether it's a disagreemnt in the backedges or not. - if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e - NonBackEdgeDisagree = true; - } - } - - bool OverRide = false; - if (Disagree && !NonBackEdgeDisagree) { - // Only the backedges disagree. Consider demoting the livein - // lattice value, as per the file level comment. The value we consider - // demoting to is the value that the non-backedge predecessors agree on. - // The order of values is that non-PHIs are \top, a PHI at this block - // \bot, and phis between the two are ordered by their RPO number. - // If there's no agreement, or we've already demoted to this PHI value - // before, replace with a PHI value at this block. - - // Calculate order numbers: zero means normal def, nonzero means RPO - // number. - unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; - if (!BaseVal.isPHI()) - BaseBlockRPONum = 0; - - ValueIDNum &InLocID = InLocs[Idx.asU64()]; - unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; - if (!InLocID.isPHI()) - InLocRPONum = 0; - - // Should we ignore the disagreeing backedges, and override with the - // value the other predecessors agree on (in "base")? - unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; - if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { - // Override. - OverRide = true; - DowngradeOccurred = true; - } - } - // else: if we disagree in the non-backedges, then this is definitely - // a control flow merge where different values merge. Make it a PHI. - - // Generate a phi... - ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; - ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; - if (InLocs[Idx.asU64()] != NewVal) { - Changed |= true; - InLocs[Idx.asU64()] = NewVal; - } - } - - // TODO: Reimplement NumInserted and NumRemoved. - return std::tuple<bool, bool>(Changed, DowngradeOccurred); -} - -void InstrRefBasedLDV::mlocDataflow( - ValueIDNum **MInLocs, ValueIDNum **MOutLocs, - SmallVectorImpl<MLocTransferMap> &MLocTransfer) { - std::priority_queue<unsigned int, std::vector<unsigned int>, - std::greater<unsigned int>> - Worklist, Pending; - - // We track what is on the current and pending worklist to avoid inserting - // the same thing twice. We could avoid this with a custom priority queue, - // but this is probably not worth it. - SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; - - // Initialize worklist with every block to be visited. - for (unsigned int I = 0; I < BBToOrder.size(); ++I) { - Worklist.push(I); - OnWorklist.insert(OrderToBB[I]); - } - - MTracker->reset(); - - // Set inlocs for entry block -- each as a PHI at the entry block. Represents - // the incoming value to the function. - MTracker->setMPhis(0); - for (auto Location : MTracker->locations()) - MInLocs[0][Location.Idx.asU64()] = Location.Value; - - SmallPtrSet<const MachineBasicBlock *, 16> Visited; - while (!Worklist.empty() || !Pending.empty()) { - // Vector for storing the evaluated block transfer function. - SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; - - while (!Worklist.empty()) { - MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; - CurBB = MBB->getNumber(); - Worklist.pop(); - - // Join the values in all predecessor blocks. - bool InLocsChanged, DowngradeOccurred; - std::tie(InLocsChanged, DowngradeOccurred) = - mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); - InLocsChanged |= Visited.insert(MBB).second; - - // If a downgrade occurred, book us in for re-examination on the next - // iteration. - if (DowngradeOccurred && OnPending.insert(MBB).second) - Pending.push(BBToOrder[MBB]); - - // Don't examine transfer function if we've visited this loc at least - // once, and inlocs haven't changed. - if (!InLocsChanged) - continue; - - // Load the current set of live-ins into MLocTracker. - MTracker->loadFromArray(MInLocs[CurBB], CurBB); - - // Each element of the transfer function can be a new def, or a read of - // a live-in value. Evaluate each element, and store to "ToRemap". - ToRemap.clear(); - for (auto &P : MLocTransfer[CurBB]) { - if (P.second.getBlock() == CurBB && P.second.isPHI()) { - // This is a movement of whatever was live in. Read it. - ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); - ToRemap.push_back(std::make_pair(P.first, NewID)); - } else { - // It's a def. Just set it. - assert(P.second.getBlock() == CurBB); - ToRemap.push_back(std::make_pair(P.first, P.second)); - } - } - - // Commit the transfer function changes into mloc tracker, which - // transforms the contents of the MLocTracker into the live-outs. - for (auto &P : ToRemap) - MTracker->setMLoc(P.first, P.second); - - // Now copy out-locs from mloc tracker into out-loc vector, checking - // whether changes have occurred. These changes can have come from both - // the transfer function, and mlocJoin. - bool OLChanged = false; - for (auto Location : MTracker->locations()) { - OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; - MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; - } - - MTracker->reset(); - - // No need to examine successors again if out-locs didn't change. - if (!OLChanged) - continue; - - // All successors should be visited: put any back-edges on the pending - // list for the next dataflow iteration, and any other successors to be - // visited this iteration, if they're not going to be already. - for (auto s : MBB->successors()) { - // Does branching to this successor represent a back-edge? - if (BBToOrder[s] > BBToOrder[MBB]) { - // No: visit it during this dataflow iteration. - if (OnWorklist.insert(s).second) - Worklist.push(BBToOrder[s]); - } else { - // Yes: visit it on the next iteration. - if (OnPending.insert(s).second) - Pending.push(BBToOrder[s]); - } - } - } - - Worklist.swap(Pending); - std::swap(OnPending, OnWorklist); - OnPending.clear(); - // At this point, pending must be empty, since it was just the empty - // worklist - assert(Pending.empty() && "Pending should be empty"); - } - - // Once all the live-ins don't change on mlocJoin(), we've reached a - // fixedpoint. -} - -bool InstrRefBasedLDV::vlocDowngradeLattice( - const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, - const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { - // Ranking value preference: see file level comment, the highest rank is - // a plain def, followed by PHI values in reverse post-order. Numerically, - // we assign all defs the rank '0', all PHIs their blocks RPO number plus - // one, and consider the lowest value the highest ranked. - int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; - if (!OldLiveInLocation.ID.isPHI()) - OldLiveInRank = 0; - - // Allow any unresolvable conflict to be over-ridden. - if (OldLiveInLocation.Kind == DbgValue::NoVal) { - // Although if it was an unresolvable conflict from _this_ block, then - // all other seeking of downgrades and PHIs must have failed before hand. - if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) - return false; - OldLiveInRank = INT_MIN; - } - - auto &InValue = *Values[0].second; - - if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) - return false; - - unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; - int ThisRank = ThisRPO + 1; - if (!InValue.ID.isPHI()) - ThisRank = 0; - - // Too far down the lattice? - if (ThisRPO >= CurBlockRPONum) - return false; - - // Higher in the lattice than what we've already explored? - if (ThisRank <= OldLiveInRank) - return false; - - return true; -} - -std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( - MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, - ValueIDNum **MOutLocs, ValueIDNum **MInLocs, - const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { - // Collect a set of locations from predecessor where its live-out value can - // be found. - SmallVector<SmallVector<LocIdx, 4>, 8> Locs; - unsigned NumLocs = MTracker->getNumLocs(); - unsigned BackEdgesStart = 0; - - for (auto p : BlockOrders) { - // Pick out where backedges start in the list of predecessors. Relies on - // BlockOrders being sorted by RPO. - if (BBToOrder[p] < BBToOrder[&MBB]) - ++BackEdgesStart; - - // For each predecessor, create a new set of locations. - Locs.resize(Locs.size() + 1); - unsigned ThisBBNum = p->getNumber(); - auto LiveOutMap = LiveOuts.find(p); - if (LiveOutMap == LiveOuts.end()) - // This predecessor isn't in scope, it must have no live-in/live-out - // locations. - continue; - - auto It = LiveOutMap->second->find(Var); - if (It == LiveOutMap->second->end()) - // There's no value recorded for this variable in this predecessor, - // leave an empty set of locations. - continue; - - const DbgValue &OutVal = It->second; - - if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) - // Consts and no-values cannot have locations we can join on. - continue; - - assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); - ValueIDNum ValToLookFor = OutVal.ID; - - // Search the live-outs of the predecessor for the specified value. - for (unsigned int I = 0; I < NumLocs; ++I) { - if (MOutLocs[ThisBBNum][I] == ValToLookFor) - Locs.back().push_back(LocIdx(I)); - } - } - - // If there were no locations at all, return an empty result. - if (Locs.empty()) - return std::tuple<Optional<ValueIDNum>, bool>(None, false); - - // Lambda for seeking a common location within a range of location-sets. - using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; - auto SeekLocation = - [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { - // Starting with the first set of locations, take the intersection with - // subsequent sets. - SmallVector<LocIdx, 4> base = Locs[0]; - for (auto &S : SearchRange) { - SmallVector<LocIdx, 4> new_base; - std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), - std::inserter(new_base, new_base.begin())); - base = new_base; - } - if (base.empty()) - return None; - - // We now have a set of LocIdxes that contain the right output value in - // each of the predecessors. Pick the lowest; if there's a register loc, - // that'll be it. - return *base.begin(); - }; - - // Search for a common location for all predecessors. If we can't, then fall - // back to only finding a common location between non-backedge predecessors. - bool ValidForAllLocs = true; - auto TheLoc = SeekLocation(Locs); - if (!TheLoc) { - ValidForAllLocs = false; - TheLoc = - SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); - } - - if (!TheLoc) - return std::tuple<Optional<ValueIDNum>, bool>(None, false); - - // Return a PHI-value-number for the found location. - LocIdx L = *TheLoc; - ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; - return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); -} - -std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( - MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, - SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, - const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, - ValueIDNum **MInLocs, - SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, - SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, - DenseMap<DebugVariable, DbgValue> &InLocsT) { - bool DowngradeOccurred = false; - - // To emulate VarLocBasedImpl, process this block if it's not in scope but - // _does_ assign a variable value. No live-ins for this scope are transferred - // in though, so we can return immediately. - if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { - if (VLOCVisited) - return std::tuple<bool, bool>(true, false); - return std::tuple<bool, bool>(false, false); - } - - LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); - bool Changed = false; - - // Find any live-ins computed in a prior iteration. - auto ILSIt = VLOCInLocs.find(&MBB); - assert(ILSIt != VLOCInLocs.end()); - auto &ILS = *ILSIt->second; - - // Order predecessors by RPOT order, for exploring them in that order. - SmallVector<MachineBasicBlock *, 8> BlockOrders; - for (auto p : MBB.predecessors()) - BlockOrders.push_back(p); - - auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { - return BBToOrder[A] < BBToOrder[B]; - }; - - llvm::sort(BlockOrders, Cmp); - - unsigned CurBlockRPONum = BBToOrder[&MBB]; - - // Force a re-visit to loop heads in the first dataflow iteration. - // FIXME: if we could "propose" Const values this wouldn't be needed, - // because they'd need to be confirmed before being emitted. - if (!BlockOrders.empty() && - BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && - VLOCVisited) - DowngradeOccurred = true; - - auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { - auto Result = InLocsT.insert(std::make_pair(DV, VR)); - (void)Result; - assert(Result.second); - }; - - auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { - DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); - - ConfirmValue(Var, NoLocPHIVal); - }; - - // Attempt to join the values for each variable. - for (auto &Var : AllVars) { - // Collect all the DbgValues for this variable. - SmallVector<InValueT, 8> Values; - bool Bail = false; - unsigned BackEdgesStart = 0; - for (auto p : BlockOrders) { - // If the predecessor isn't in scope / to be explored, we'll never be - // able to join any locations. - if (!BlocksToExplore.contains(p)) { - Bail = true; - break; - } - - // Don't attempt to handle unvisited predecessors: they're implicitly - // "unknown"s in the lattice. - if (VLOCVisited && !VLOCVisited->count(p)) - continue; - - // If the predecessors OutLocs is absent, there's not much we can do. - auto OL = VLOCOutLocs.find(p); - if (OL == VLOCOutLocs.end()) { - Bail = true; - break; - } - - // No live-out value for this predecessor also means we can't produce - // a joined value. - auto VIt = OL->second->find(Var); - if (VIt == OL->second->end()) { - Bail = true; - break; - } - - // Keep track of where back-edges begin in the Values vector. Relies on - // BlockOrders being sorted by RPO. - unsigned ThisBBRPONum = BBToOrder[p]; - if (ThisBBRPONum < CurBlockRPONum) - ++BackEdgesStart; - - Values.push_back(std::make_pair(p, &VIt->second)); - } - - // If there were no values, or one of the predecessors couldn't have a - // value, then give up immediately. It's not safe to produce a live-in - // value. - if (Bail || Values.size() == 0) - continue; - - // Enumeration identifying the current state of the predecessors values. - enum { - Unset = 0, - Agreed, // All preds agree on the variable value. - PropDisagree, // All preds agree, but the value kind is Proposed in some. - BEDisagree, // Only back-edges disagree on variable value. - PHINeeded, // Non-back-edge predecessors have conflicing values. - NoSolution // Conflicting Value metadata makes solution impossible. - } OurState = Unset; - - // All (non-entry) blocks have at least one non-backedge predecessor. - // Pick the variable value from the first of these, to compare against - // all others. - const DbgValue &FirstVal = *Values[0].second; - const ValueIDNum &FirstID = FirstVal.ID; - - // Scan for variable values that can't be resolved: if they have different - // DIExpressions, different indirectness, or are mixed constants / - // non-constants. - for (auto &V : Values) { - if (V.second->Properties != FirstVal.Properties) - OurState = NoSolution; - if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) - OurState = NoSolution; - } - - // Flags diagnosing _how_ the values disagree. - bool NonBackEdgeDisagree = false; - bool DisagreeOnPHINess = false; - bool IDDisagree = false; - bool Disagree = false; - if (OurState == Unset) { - for (auto &V : Values) { - if (*V.second == FirstVal) - continue; // No disagreement. - - Disagree = true; - - // Flag whether the value number actually diagrees. - if (V.second->ID != FirstID) - IDDisagree = true; - - // Distinguish whether disagreement happens in backedges or not. - // Relies on Values (and BlockOrders) being sorted by RPO. - unsigned ThisBBRPONum = BBToOrder[V.first]; - if (ThisBBRPONum < CurBlockRPONum) - NonBackEdgeDisagree = true; - - // Is there a difference in whether the value is definite or only - // proposed? - if (V.second->Kind != FirstVal.Kind && - (V.second->Kind == DbgValue::Proposed || - V.second->Kind == DbgValue::Def) && - (FirstVal.Kind == DbgValue::Proposed || - FirstVal.Kind == DbgValue::Def)) - DisagreeOnPHINess = true; - } - - // Collect those flags together and determine an overall state for - // what extend the predecessors agree on a live-in value. - if (!Disagree) - OurState = Agreed; - else if (!IDDisagree && DisagreeOnPHINess) - OurState = PropDisagree; - else if (!NonBackEdgeDisagree) - OurState = BEDisagree; - else - OurState = PHINeeded; - } - - // An extra indicator: if we only disagree on whether the value is a - // Def, or proposed, then also flag whether that disagreement happens - // in backedges only. - bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && - !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; - - const auto &Properties = FirstVal.Properties; - - auto OldLiveInIt = ILS.find(Var); - const DbgValue *OldLiveInLocation = - (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; - - bool OverRide = false; - if (OurState == BEDisagree && OldLiveInLocation) { - // Only backedges disagree: we can consider downgrading. If there was a - // previous live-in value, use it to work out whether the current - // incoming value represents a lattice downgrade or not. - OverRide = - vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); - } - - // Use the current state of predecessor agreement and other flags to work - // out what to do next. Possibilities include: - // * Accept a value all predecessors agree on, or accept one that - // represents a step down the exploration lattice, - // * Use a PHI value number, if one can be found, - // * Propose a PHI value number, and see if it gets confirmed later, - // * Emit a 'NoVal' value, indicating we couldn't resolve anything. - if (OurState == Agreed) { - // Easiest solution: all predecessors agree on the variable value. - ConfirmValue(Var, FirstVal); - } else if (OurState == BEDisagree && OverRide) { - // Only backedges disagree, and the other predecessors have produced - // a new live-in value further down the exploration lattice. - DowngradeOccurred = true; - ConfirmValue(Var, FirstVal); - } else if (OurState == PropDisagree) { - // Predecessors agree on value, but some say it's only a proposed value. - // Propagate it as proposed: unless it was proposed in this block, in - // which case we're able to confirm the value. - if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { - ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); - } else if (PropOnlyInBEs) { - // If only backedges disagree, a higher (in RPO) block confirmed this - // location, and we need to propagate it into this loop. - ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); - } else { - // Otherwise; a Def meeting a Proposed is still a Proposed. - ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); - } - } else if ((OurState == PHINeeded || OurState == BEDisagree)) { - // Predecessors disagree and can't be downgraded: this can only be - // solved with a PHI. Use pickVPHILoc to go look for one. - Optional<ValueIDNum> VPHI; - bool AllEdgesVPHI = false; - std::tie(VPHI, AllEdgesVPHI) = - pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); - - if (VPHI && AllEdgesVPHI) { - // There's a PHI value that's valid for all predecessors -- we can use - // it. If any of the non-backedge predecessors have proposed values - // though, this PHI is also only proposed, until the predecessors are - // confirmed. - DbgValue::KindT K = DbgValue::Def; - for (unsigned int I = 0; I < BackEdgesStart; ++I) - if (Values[I].second->Kind == DbgValue::Proposed) - K = DbgValue::Proposed; - - ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); - } else if (VPHI) { - // There's a PHI value, but it's only legal for backedges. Leave this - // as a proposed PHI value: it might come back on the backedges, - // and allow us to confirm it in the future. - DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); - ConfirmValue(Var, NoBEValue); - } else { - ConfirmNoVal(Var, Properties); - } - } else { - // Otherwise: we don't know. Emit a "phi but no real loc" phi. - ConfirmNoVal(Var, Properties); - } - } - - // Store newly calculated in-locs into VLOCInLocs, if they've changed. - Changed = ILS != InLocsT; - if (Changed) - ILS = InLocsT; - - return std::tuple<bool, bool>(Changed, DowngradeOccurred); -} - -void InstrRefBasedLDV::vlocDataflow( - const LexicalScope *Scope, const DILocation *DILoc, - const SmallSet<DebugVariable, 4> &VarsWeCareAbout, - SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, - ValueIDNum **MOutLocs, ValueIDNum **MInLocs, - SmallVectorImpl<VLocTracker> &AllTheVLocs) { - // This method is much like mlocDataflow: but focuses on a single - // LexicalScope at a time. Pick out a set of blocks and variables that are - // to have their value assignments solved, then run our dataflow algorithm - // until a fixedpoint is reached. - std::priority_queue<unsigned int, std::vector<unsigned int>, - std::greater<unsigned int>> - Worklist, Pending; - SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; - - // The set of blocks we'll be examining. - SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; - - // The order in which to examine them (RPO). - SmallVector<MachineBasicBlock *, 8> BlockOrders; - - // RPO ordering function. - auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { - return BBToOrder[A] < BBToOrder[B]; - }; - - LS.getMachineBasicBlocks(DILoc, BlocksToExplore); - - // A separate container to distinguish "blocks we're exploring" versus - // "blocks that are potentially in scope. See comment at start of vlocJoin. - SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; - - // Old LiveDebugValues tracks variable locations that come out of blocks - // not in scope, where DBG_VALUEs occur. This is something we could - // legitimately ignore, but lets allow it for now. - if (EmulateOldLDV) - BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); - - // We also need to propagate variable values through any artificial blocks - // that immediately follow blocks in scope. - DenseSet<const MachineBasicBlock *> ToAdd; - - // Helper lambda: For a given block in scope, perform a depth first search - // of all the artificial successors, adding them to the ToAdd collection. - auto AccumulateArtificialBlocks = - [this, &ToAdd, &BlocksToExplore, - &InScopeBlocks](const MachineBasicBlock *MBB) { - // Depth-first-search state: each node is a block and which successor - // we're currently exploring. - SmallVector<std::pair<const MachineBasicBlock *, - MachineBasicBlock::const_succ_iterator>, - 8> - DFS; - - // Find any artificial successors not already tracked. - for (auto *succ : MBB->successors()) { - if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) - continue; - if (!ArtificialBlocks.count(succ)) - continue; - DFS.push_back(std::make_pair(succ, succ->succ_begin())); - ToAdd.insert(succ); - } - - // Search all those blocks, depth first. - while (!DFS.empty()) { - const MachineBasicBlock *CurBB = DFS.back().first; - MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; - // Walk back if we've explored this blocks successors to the end. - if (CurSucc == CurBB->succ_end()) { - DFS.pop_back(); - continue; - } - - // If the current successor is artificial and unexplored, descend into - // it. - if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { - DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); - ToAdd.insert(*CurSucc); - continue; - } - - ++CurSucc; - } - }; - - // Search in-scope blocks and those containing a DBG_VALUE from this scope - // for artificial successors. - for (auto *MBB : BlocksToExplore) - AccumulateArtificialBlocks(MBB); - for (auto *MBB : InScopeBlocks) - AccumulateArtificialBlocks(MBB); - - BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); - InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); - - // Single block scope: not interesting! No propagation at all. Note that - // this could probably go above ArtificialBlocks without damage, but - // that then produces output differences from original-live-debug-values, - // which propagates from a single block into many artificial ones. - if (BlocksToExplore.size() == 1) - return; - - // Picks out relevants blocks RPO order and sort them. - for (auto *MBB : BlocksToExplore) - BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); - - llvm::sort(BlockOrders, Cmp); - unsigned NumBlocks = BlockOrders.size(); - - // Allocate some vectors for storing the live ins and live outs. Large. - SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; - LiveIns.resize(NumBlocks); - LiveOuts.resize(NumBlocks); - - // Produce by-MBB indexes of live-in/live-outs, to ease lookup within - // vlocJoin. - LiveIdxT LiveOutIdx, LiveInIdx; - LiveOutIdx.reserve(NumBlocks); - LiveInIdx.reserve(NumBlocks); - for (unsigned I = 0; I < NumBlocks; ++I) { - LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; - LiveInIdx[BlockOrders[I]] = &LiveIns[I]; - } - - for (auto *MBB : BlockOrders) { - Worklist.push(BBToOrder[MBB]); - OnWorklist.insert(MBB); - } - - // Iterate over all the blocks we selected, propagating variable values. - bool FirstTrip = true; - SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; - while (!Worklist.empty() || !Pending.empty()) { - while (!Worklist.empty()) { - auto *MBB = OrderToBB[Worklist.top()]; - CurBB = MBB->getNumber(); - Worklist.pop(); - - DenseMap<DebugVariable, DbgValue> JoinedInLocs; - - // Join values from predecessors. Updates LiveInIdx, and writes output - // into JoinedInLocs. - bool InLocsChanged, DowngradeOccurred; - std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( - *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, - CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, - BlocksToExplore, JoinedInLocs); - - bool FirstVisit = VLOCVisited.insert(MBB).second; - - // Always explore transfer function if inlocs changed, or if we've not - // visited this block before. - InLocsChanged |= FirstVisit; - - // If a downgrade occurred, book us in for re-examination on the next - // iteration. - if (DowngradeOccurred && OnPending.insert(MBB).second) - Pending.push(BBToOrder[MBB]); - - if (!InLocsChanged) - continue; - - // Do transfer function. - auto &VTracker = AllTheVLocs[MBB->getNumber()]; - for (auto &Transfer : VTracker.Vars) { - // Is this var we're mangling in this scope? - if (VarsWeCareAbout.count(Transfer.first)) { - // Erase on empty transfer (DBG_VALUE $noreg). - if (Transfer.second.Kind == DbgValue::Undef) { - JoinedInLocs.erase(Transfer.first); - } else { - // Insert new variable value; or overwrite. - auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); - auto Result = JoinedInLocs.insert(NewValuePair); - if (!Result.second) - Result.first->second = Transfer.second; - } - } - } - - // Did the live-out locations change? - bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; - - // If they haven't changed, there's no need to explore further. - if (!OLChanged) - continue; - - // Commit to the live-out record. - *LiveOutIdx[MBB] = JoinedInLocs; - - // We should visit all successors. Ensure we'll visit any non-backedge - // successors during this dataflow iteration; book backedge successors - // to be visited next time around. - for (auto s : MBB->successors()) { - // Ignore out of scope / not-to-be-explored successors. - if (LiveInIdx.find(s) == LiveInIdx.end()) - continue; - - if (BBToOrder[s] > BBToOrder[MBB]) { - if (OnWorklist.insert(s).second) - Worklist.push(BBToOrder[s]); - } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { - Pending.push(BBToOrder[s]); - } - } - } - Worklist.swap(Pending); - std::swap(OnWorklist, OnPending); - OnPending.clear(); - assert(Pending.empty()); - FirstTrip = false; - } - - // Dataflow done. Now what? Save live-ins. Ignore any that are still marked - // as being variable-PHIs, because those did not have their machine-PHI - // value confirmed. Such variable values are places that could have been - // PHIs, but are not. - for (auto *MBB : BlockOrders) { - auto &VarMap = *LiveInIdx[MBB]; - for (auto &P : VarMap) { - if (P.second.Kind == DbgValue::Proposed || - P.second.Kind == DbgValue::NoVal) - continue; - Output[MBB->getNumber()].push_back(P); - } - } - - BlockOrders.clear(); - BlocksToExplore.clear(); -} - -#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) -void InstrRefBasedLDV::dump_mloc_transfer( - const MLocTransferMap &mloc_transfer) const { - for (auto &P : mloc_transfer) { - std::string foo = MTracker->LocIdxToName(P.first); - std::string bar = MTracker->IDAsString(P.second); - dbgs() << "Loc " << foo << " --> " << bar << "\n"; - } -} -#endif - -void InstrRefBasedLDV::emitLocations( - MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, - DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { - TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); - unsigned NumLocs = MTracker->getNumLocs(); - - // For each block, load in the machine value locations and variable value - // live-ins, then step through each instruction in the block. New DBG_VALUEs - // to be inserted will be created along the way. - for (MachineBasicBlock &MBB : MF) { - unsigned bbnum = MBB.getNumber(); - MTracker->reset(); - MTracker->loadFromArray(MInLocs[bbnum], bbnum); - TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], - NumLocs); - - CurBB = bbnum; - CurInst = 1; - for (auto &MI : MBB) { - process(MI); - TTracker->checkInstForNewValues(CurInst, MI.getIterator()); - ++CurInst; - } - } - - // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer - // in DWARF in different orders. Use the order that they appear when walking - // through each block / each instruction, stored in AllVarsNumbering. - auto OrderDbgValues = [&](const MachineInstr *A, - const MachineInstr *B) -> bool { - DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), - A->getDebugLoc()->getInlinedAt()); - DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), - B->getDebugLoc()->getInlinedAt()); - return AllVarsNumbering.find(VarA)->second < - AllVarsNumbering.find(VarB)->second; - }; - - // Go through all the transfers recorded in the TransferTracker -- this is - // both the live-ins to a block, and any movements of values that happen - // in the middle. - for (auto &P : TTracker->Transfers) { - // Sort them according to appearance order. - llvm::sort(P.Insts, OrderDbgValues); - // Insert either before or after the designated point... - if (P.MBB) { - MachineBasicBlock &MBB = *P.MBB; - for (auto *MI : P.Insts) { - MBB.insert(P.Pos, MI); - } - } else { - MachineBasicBlock &MBB = *P.Pos->getParent(); - for (auto *MI : P.Insts) { - MBB.insertAfter(P.Pos, MI); - } - } - } -} - -void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { - // Build some useful data structures. - auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { - if (const DebugLoc &DL = MI.getDebugLoc()) - return DL.getLine() != 0; - return false; - }; - // Collect a set of all the artificial blocks. - for (auto &MBB : MF) - if (none_of(MBB.instrs(), hasNonArtificialLocation)) - ArtificialBlocks.insert(&MBB); - - // Compute mappings of block <=> RPO order. - ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); - unsigned int RPONumber = 0; - for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { - OrderToBB[RPONumber] = *RI; - BBToOrder[*RI] = RPONumber; - BBNumToRPO[(*RI)->getNumber()] = RPONumber; - ++RPONumber; - } -} - -/// Calculate the liveness information for the given machine function and -/// extend ranges across basic blocks. -bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, - TargetPassConfig *TPC) { - // No subprogram means this function contains no debuginfo. - if (!MF.getFunction().getSubprogram()) - return false; - - LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); - this->TPC = TPC; - - TRI = MF.getSubtarget().getRegisterInfo(); - TII = MF.getSubtarget().getInstrInfo(); - TFI = MF.getSubtarget().getFrameLowering(); - TFI->getCalleeSaves(MF, CalleeSavedRegs); - LS.initialize(MF); - - MTracker = - new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); - VTracker = nullptr; - TTracker = nullptr; - - SmallVector<MLocTransferMap, 32> MLocTransfer; - SmallVector<VLocTracker, 8> vlocs; - LiveInsT SavedLiveIns; - - int MaxNumBlocks = -1; - for (auto &MBB : MF) - MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); - assert(MaxNumBlocks >= 0); - ++MaxNumBlocks; - - MLocTransfer.resize(MaxNumBlocks); - vlocs.resize(MaxNumBlocks); - SavedLiveIns.resize(MaxNumBlocks); - - initialSetup(MF); - - produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); - - // Allocate and initialize two array-of-arrays for the live-in and live-out - // machine values. The outer dimension is the block number; while the inner - // dimension is a LocIdx from MLocTracker. - ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; - ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; - unsigned NumLocs = MTracker->getNumLocs(); - for (int i = 0; i < MaxNumBlocks; ++i) { - MOutLocs[i] = new ValueIDNum[NumLocs]; - MInLocs[i] = new ValueIDNum[NumLocs]; - } - - // Solve the machine value dataflow problem using the MLocTransfer function, - // storing the computed live-ins / live-outs into the array-of-arrays. We use - // both live-ins and live-outs for decision making in the variable value - // dataflow problem. - mlocDataflow(MInLocs, MOutLocs, MLocTransfer); - - // Walk back through each block / instruction, collecting DBG_VALUE - // instructions and recording what machine value their operands refer to. - for (auto &OrderPair : OrderToBB) { - MachineBasicBlock &MBB = *OrderPair.second; - CurBB = MBB.getNumber(); - VTracker = &vlocs[CurBB]; - VTracker->MBB = &MBB; - MTracker->loadFromArray(MInLocs[CurBB], CurBB); - CurInst = 1; - for (auto &MI : MBB) { - process(MI); - ++CurInst; - } - MTracker->reset(); - } - - // Number all variables in the order that they appear, to be used as a stable - // insertion order later. - DenseMap<DebugVariable, unsigned> AllVarsNumbering; - - // Map from one LexicalScope to all the variables in that scope. - DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; - - // Map from One lexical scope to all blocks in that scope. - DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> - ScopeToBlocks; - - // Store a DILocation that describes a scope. - DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; - - // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise - // the order is unimportant, it just has to be stable. - for (unsigned int I = 0; I < OrderToBB.size(); ++I) { - auto *MBB = OrderToBB[I]; - auto *VTracker = &vlocs[MBB->getNumber()]; - // Collect each variable with a DBG_VALUE in this block. - for (auto &idx : VTracker->Vars) { - const auto &Var = idx.first; - const DILocation *ScopeLoc = VTracker->Scopes[Var]; - assert(ScopeLoc != nullptr); - auto *Scope = LS.findLexicalScope(ScopeLoc); - - // No insts in scope -> shouldn't have been recorded. - assert(Scope != nullptr); - - AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); - ScopeToVars[Scope].insert(Var); - ScopeToBlocks[Scope].insert(VTracker->MBB); - ScopeToDILocation[Scope] = ScopeLoc; - } - } - - // OK. Iterate over scopes: there might be something to be said for - // ordering them by size/locality, but that's for the future. For each scope, - // solve the variable value problem, producing a map of variables to values - // in SavedLiveIns. - for (auto &P : ScopeToVars) { - vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, - ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, - vlocs); - } - - // Using the computed value locations and variable values for each block, - // create the DBG_VALUE instructions representing the extended variable - // locations. - emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); - - for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { - delete[] MOutLocs[Idx]; - delete[] MInLocs[Idx]; - } - delete[] MOutLocs; - delete[] MInLocs; - - // Did we actually make any changes? If we created any DBG_VALUEs, then yes. - bool Changed = TTracker->Transfers.size() != 0; - - delete MTracker; - delete TTracker; - MTracker = nullptr; - VTracker = nullptr; - TTracker = nullptr; - - ArtificialBlocks.clear(); - OrderToBB.clear(); - BBToOrder.clear(); - BBNumToRPO.clear(); - DebugInstrNumToInstr.clear(); - - return Changed; -} - -LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { - return new InstrRefBasedLDV(); -} +//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +/// \file InstrRefBasedImpl.cpp +/// +/// This is a separate implementation of LiveDebugValues, see +/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information. +/// +/// This pass propagates variable locations between basic blocks, resolving +/// control flow conflicts between them. The problem is much like SSA +/// construction, where each DBG_VALUE instruction assigns the *value* that +/// a variable has, and every instruction where the variable is in scope uses +/// that variable. The resulting map of instruction-to-value is then translated +/// into a register (or spill) location for each variable over each instruction. +/// +/// This pass determines which DBG_VALUE dominates which instructions, or if +/// none do, where values must be merged (like PHI nodes). The added +/// complication is that because codegen has already finished, a PHI node may +/// be needed for a variable location to be correct, but no register or spill +/// slot merges the necessary values. In these circumstances, the variable +/// location is dropped. +/// +/// What makes this analysis non-trivial is loops: we cannot tell in advance +/// whether a variable location is live throughout a loop, or whether its +/// location is clobbered (or redefined by another DBG_VALUE), without +/// exploring all the way through. +/// +/// To make this simpler we perform two kinds of analysis. First, we identify +/// every value defined by every instruction (ignoring those that only move +/// another value), then compute a map of which values are available for each +/// instruction. This is stronger than a reaching-def analysis, as we create +/// PHI values where other values merge. +/// +/// Secondly, for each variable, we effectively re-construct SSA using each +/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the +/// first analysis from the location they refer to. We can then compute the +/// dominance frontiers of where a variable has a value, and create PHI nodes +/// where they merge. +/// This isn't precisely SSA-construction though, because the function shape +/// is pre-defined. If a variable location requires a PHI node, but no +/// PHI for the relevant values is present in the function (as computed by the +/// first analysis), the location must be dropped. +/// +/// Once both are complete, we can pass back over all instructions knowing: +/// * What _value_ each variable should contain, either defined by an +/// instruction or where control flow merges +/// * What the location of that value is (if any). +/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when +/// a value moves location. After this pass runs, all variable locations within +/// a block should be specified by DBG_VALUEs within that block, allowing +/// DbgEntityHistoryCalculator to focus on individual blocks. +/// +/// This pass is able to go fast because the size of the first +/// reaching-definition analysis is proportional to the working-set size of +/// the function, which the compiler tries to keep small. (It's also +/// proportional to the number of blocks). Additionally, we repeatedly perform +/// the second reaching-definition analysis with only the variables and blocks +/// in a single lexical scope, exploiting their locality. +/// +/// Determining where PHIs happen is trickier with this approach, and it comes +/// to a head in the major problem for LiveDebugValues: is a value live-through +/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of +/// facts about a function, however this analysis needs to generate new value +/// numbers at joins. +/// +/// To do this, consider a lattice of all definition values, from instructions +/// and from PHIs. Each PHI is characterised by the RPO number of the block it +/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B): +/// with non-PHI values at the top, and any PHI value in the last block (by RPO +/// order) at the bottom. +/// +/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below, +/// "rank" always refers to the former). +/// +/// At any join, for each register, we consider: +/// * All incoming values, and +/// * The PREVIOUS live-in value at this join. +/// If all incoming values agree: that's the live-in value. If they do not, the +/// incoming values are ranked according to the partial order, and the NEXT +/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of +/// the same rank are ignored as conflicting). If there are no candidate values, +/// or if the rank of the live-in would be lower than the rank of the current +/// blocks PHIs, create a new PHI value. +/// +/// Intuitively: if it's not immediately obvious what value a join should result +/// in, we iteratively descend from instruction-definitions down through PHI +/// values, getting closer to the current block each time. If the current block +/// is a loop head, this ordering is effectively searching outer levels of +/// loops, to find a value that's live-through the current loop. +/// +/// If there is no value that's live-through this loop, a PHI is created for +/// this location instead. We can't use a lower-ranked PHI because by definition +/// it doesn't dominate the current block. We can't create a PHI value any +/// earlier, because we risk creating a PHI value at a location where values do +/// not in fact merge, thus misrepresenting the truth, and not making the true +/// live-through value for variable locations. +/// +/// This algorithm applies to both calculating the availability of values in +/// the first analysis, and the location of variables in the second. However +/// for the second we add an extra dimension of pain: creating a variable +/// location PHI is only valid if, for each incoming edge, +/// * There is a value for the variable on the incoming edge, and +/// * All the edges have that value in the same register. +/// Or put another way: we can only create a variable-location PHI if there is +/// a matching machine-location PHI, each input to which is the variables value +/// in the predecessor block. +/// +/// To accommodate this difference, each point on the lattice is split in +/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately +/// have a location determined are "definite" PHIs, and no further work is +/// needed. Otherwise, a location that all non-backedge predecessors agree +/// on is picked and propagated as a "proposed" PHI value. If that PHI value +/// is truly live-through, it'll appear on the loop backedges on the next +/// dataflow iteration, after which the block live-in moves to be a "definite" +/// PHI. If it's not truly live-through, the variable value will be downgraded +/// further as we explore the lattice, or remains "proposed" and is considered +/// invalid once dataflow completes. +/// +/// ### Terminology +/// +/// A machine location is a register or spill slot, a value is something that's +/// defined by an instruction or PHI node, while a variable value is the value +/// assigned to a variable. A variable location is a machine location, that must +/// contain the appropriate variable value. A value that is a PHI node is +/// occasionally called an mphi. +/// +/// The first dataflow problem is the "machine value location" problem, +/// because we're determining which machine locations contain which values. +/// The "locations" are constant: what's unknown is what value they contain. +/// +/// The second dataflow problem (the one for variables) is the "variable value +/// problem", because it's determining what values a variable has, rather than +/// what location those values are placed in. Unfortunately, it's not that +/// simple, because producing a PHI value always involves picking a location. +/// This is an imperfection that we just have to accept, at least for now. +/// +/// TODO: +/// Overlapping fragments +/// Entry values +/// Add back DEBUG statements for debugging this +/// Collect statistics +/// +//===----------------------------------------------------------------------===// + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/PostOrderIterator.h" +#include "llvm/ADT/SmallPtrSet.h" +#include "llvm/ADT/SmallSet.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/ADT/Statistic.h" +#include "llvm/ADT/UniqueVector.h" +#include "llvm/CodeGen/LexicalScopes.h" +#include "llvm/CodeGen/MachineBasicBlock.h" +#include "llvm/CodeGen/MachineFrameInfo.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/MachineFunctionPass.h" +#include "llvm/CodeGen/MachineInstr.h" +#include "llvm/CodeGen/MachineInstrBuilder.h" +#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineOperand.h" +#include "llvm/CodeGen/PseudoSourceValue.h" +#include "llvm/CodeGen/RegisterScavenging.h" +#include "llvm/CodeGen/TargetFrameLowering.h" +#include "llvm/CodeGen/TargetInstrInfo.h" +#include "llvm/CodeGen/TargetLowering.h" +#include "llvm/CodeGen/TargetPassConfig.h" +#include "llvm/CodeGen/TargetRegisterInfo.h" +#include "llvm/CodeGen/TargetSubtargetInfo.h" +#include "llvm/Config/llvm-config.h" +#include "llvm/IR/DIBuilder.h" +#include "llvm/IR/DebugInfoMetadata.h" +#include "llvm/IR/DebugLoc.h" +#include "llvm/IR/Function.h" +#include "llvm/IR/Module.h" +#include "llvm/InitializePasses.h" +#include "llvm/MC/MCRegisterInfo.h" +#include "llvm/Pass.h" +#include "llvm/Support/Casting.h" +#include "llvm/Support/Compiler.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/TypeSize.h" +#include "llvm/Support/raw_ostream.h" +#include <algorithm> +#include <cassert> +#include <cstdint> +#include <functional> +#include <queue> +#include <tuple> +#include <utility> +#include <vector> +#include <limits.h> +#include <limits> + +#include "LiveDebugValues.h" + +using namespace llvm; + +#define DEBUG_TYPE "livedebugvalues" + +STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted"); +STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed"); + +// Act more like the VarLoc implementation, by propagating some locations too +// far and ignoring some transfers. +static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden, + cl::desc("Act like old LiveDebugValues did"), + cl::init(false)); + +// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills. +static cl::opt<bool> + ObserveAllStackops("observe-all-stack-ops", cl::Hidden, + cl::desc("Allow non-kill spill and restores"), + cl::init(false)); + +namespace { + +// The location at which a spilled value resides. It consists of a register and +// an offset. +struct SpillLoc { + unsigned SpillBase; + StackOffset SpillOffset; + bool operator==(const SpillLoc &Other) const { + return std::make_pair(SpillBase, SpillOffset) == + std::make_pair(Other.SpillBase, Other.SpillOffset); + } + bool operator<(const SpillLoc &Other) const { + return std::make_tuple(SpillBase, SpillOffset.getFixed(), + SpillOffset.getScalable()) < + std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(), + Other.SpillOffset.getScalable()); + } +}; + +class LocIdx { + unsigned Location; + + // Default constructor is private, initializing to an illegal location number. + // Use only for "not an entry" elements in IndexedMaps. + LocIdx() : Location(UINT_MAX) { } + +public: + #define NUM_LOC_BITS 24 + LocIdx(unsigned L) : Location(L) { + assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits"); + } + + static LocIdx MakeIllegalLoc() { + return LocIdx(); + } + + bool isIllegal() const { + return Location == UINT_MAX; + } + + uint64_t asU64() const { + return Location; + } + + bool operator==(unsigned L) const { + return Location == L; + } + + bool operator==(const LocIdx &L) const { + return Location == L.Location; + } + + bool operator!=(unsigned L) const { + return !(*this == L); + } + + bool operator!=(const LocIdx &L) const { + return !(*this == L); + } + + bool operator<(const LocIdx &Other) const { + return Location < Other.Location; + } +}; + +class LocIdxToIndexFunctor { +public: + using argument_type = LocIdx; + unsigned operator()(const LocIdx &L) const { + return L.asU64(); + } +}; + +/// Unique identifier for a value defined by an instruction, as a value type. +/// Casts back and forth to a uint64_t. Probably replacable with something less +/// bit-constrained. Each value identifies the instruction and machine location +/// where the value is defined, although there may be no corresponding machine +/// operand for it (ex: regmasks clobbering values). The instructions are +/// one-based, and definitions that are PHIs have instruction number zero. +/// +/// The obvious limits of a 1M block function or 1M instruction blocks are +/// problematic; but by that point we should probably have bailed out of +/// trying to analyse the function. +class ValueIDNum { + uint64_t BlockNo : 20; /// The block where the def happens. + uint64_t InstNo : 20; /// The Instruction where the def happens. + /// One based, is distance from start of block. + uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens. + +public: + // XXX -- temporarily enabled while the live-in / live-out tables are moved + // to something more type-y + ValueIDNum() : BlockNo(0xFFFFF), + InstNo(0xFFFFF), + LocNo(0xFFFFFF) { } + + ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc) + : BlockNo(Block), InstNo(Inst), LocNo(Loc) { } + + ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc) + : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { } + + uint64_t getBlock() const { return BlockNo; } + uint64_t getInst() const { return InstNo; } + uint64_t getLoc() const { return LocNo; } + bool isPHI() const { return InstNo == 0; } + + uint64_t asU64() const { + uint64_t TmpBlock = BlockNo; + uint64_t TmpInst = InstNo; + return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo; + } + + static ValueIDNum fromU64(uint64_t v) { + uint64_t L = (v & 0x3FFF); + return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L}; + } + + bool operator<(const ValueIDNum &Other) const { + return asU64() < Other.asU64(); + } + + bool operator==(const ValueIDNum &Other) const { + return std::tie(BlockNo, InstNo, LocNo) == + std::tie(Other.BlockNo, Other.InstNo, Other.LocNo); + } + + bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); } + + std::string asString(const std::string &mlocname) const { + return Twine("Value{bb: ") + .concat(Twine(BlockNo).concat( + Twine(", inst: ") + .concat((InstNo ? Twine(InstNo) : Twine("live-in")) + .concat(Twine(", loc: ").concat(Twine(mlocname))) + .concat(Twine("}"))))) + .str(); + } + + static ValueIDNum EmptyValue; +}; + +} // end anonymous namespace + +namespace { + +/// Meta qualifiers for a value. Pair of whatever expression is used to qualify +/// the the value, and Boolean of whether or not it's indirect. +class DbgValueProperties { +public: + DbgValueProperties(const DIExpression *DIExpr, bool Indirect) + : DIExpr(DIExpr), Indirect(Indirect) {} + + /// Extract properties from an existing DBG_VALUE instruction. + DbgValueProperties(const MachineInstr &MI) { + assert(MI.isDebugValue()); + DIExpr = MI.getDebugExpression(); + Indirect = MI.getOperand(1).isImm(); + } + + bool operator==(const DbgValueProperties &Other) const { + return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect); + } + + bool operator!=(const DbgValueProperties &Other) const { + return !(*this == Other); + } + + const DIExpression *DIExpr; + bool Indirect; +}; + +/// Tracker for what values are in machine locations. Listens to the Things +/// being Done by various instructions, and maintains a table of what machine +/// locations have what values (as defined by a ValueIDNum). +/// +/// There are potentially a much larger number of machine locations on the +/// target machine than the actual working-set size of the function. On x86 for +/// example, we're extremely unlikely to want to track values through control +/// or debug registers. To avoid doing so, MLocTracker has several layers of +/// indirection going on, with two kinds of ``location'': +/// * A LocID uniquely identifies a register or spill location, with a +/// predictable value. +/// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum. +/// Whenever a location is def'd or used by a MachineInstr, we automagically +/// create a new LocIdx for a location, but not otherwise. This ensures we only +/// account for locations that are actually used or defined. The cost is another +/// vector lookup (of LocID -> LocIdx) over any other implementation. This is +/// fairly cheap, and the compiler tries to reduce the working-set at any one +/// time in the function anyway. +/// +/// Register mask operands completely blow this out of the water; I've just +/// piled hacks on top of hacks to get around that. +class MLocTracker { +public: + MachineFunction &MF; + const TargetInstrInfo &TII; + const TargetRegisterInfo &TRI; + const TargetLowering &TLI; + + /// IndexedMap type, mapping from LocIdx to ValueIDNum. + using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>; + + /// Map of LocIdxes to the ValueIDNums that they store. This is tightly + /// packed, entries only exist for locations that are being tracked. + LocToValueType LocIdxToIDNum; + + /// "Map" of machine location IDs (i.e., raw register or spill number) to the + /// LocIdx key / number for that location. There are always at least as many + /// as the number of registers on the target -- if the value in the register + /// is not being tracked, then the LocIdx value will be zero. New entries are + /// appended if a new spill slot begins being tracked. + /// This, and the corresponding reverse map persist for the analysis of the + /// whole function, and is necessarying for decoding various vectors of + /// values. + std::vector<LocIdx> LocIDToLocIdx; + + /// Inverse map of LocIDToLocIdx. + IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID; + + /// Unique-ification of spill slots. Used to number them -- their LocID + /// number is the index in SpillLocs minus one plus NumRegs. + UniqueVector<SpillLoc> SpillLocs; + + // If we discover a new machine location, assign it an mphi with this + // block number. + unsigned CurBB; + + /// Cached local copy of the number of registers the target has. + unsigned NumRegs; + + /// Collection of register mask operands that have been observed. Second part + /// of pair indicates the instruction that they happened in. Used to + /// reconstruct where defs happened if we start tracking a location later + /// on. + SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks; + + /// Iterator for locations and the values they contain. Dereferencing + /// produces a struct/pair containing the LocIdx key for this location, + /// and a reference to the value currently stored. Simplifies the process + /// of seeking a particular location. + class MLocIterator { + LocToValueType &ValueMap; + LocIdx Idx; + + public: + class value_type { + public: + value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { } + const LocIdx Idx; /// Read-only index of this location. + ValueIDNum &Value; /// Reference to the stored value at this location. + }; + + MLocIterator(LocToValueType &ValueMap, LocIdx Idx) + : ValueMap(ValueMap), Idx(Idx) { } + + bool operator==(const MLocIterator &Other) const { + assert(&ValueMap == &Other.ValueMap); + return Idx == Other.Idx; + } + + bool operator!=(const MLocIterator &Other) const { + return !(*this == Other); + } + + void operator++() { + Idx = LocIdx(Idx.asU64() + 1); + } + + value_type operator*() { + return value_type(Idx, ValueMap[LocIdx(Idx)]); + } + }; + + MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII, + const TargetRegisterInfo &TRI, const TargetLowering &TLI) + : MF(MF), TII(TII), TRI(TRI), TLI(TLI), + LocIdxToIDNum(ValueIDNum::EmptyValue), + LocIdxToLocID(0) { + NumRegs = TRI.getNumRegs(); + reset(); + LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); + assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure + + // Always track SP. This avoids the implicit clobbering caused by regmasks + // from affectings its values. (LiveDebugValues disbelieves calls and + // regmasks that claim to clobber SP). + Register SP = TLI.getStackPointerRegisterToSaveRestore(); + if (SP) { + unsigned ID = getLocID(SP, false); + (void)lookupOrTrackRegister(ID); + } + } + + /// Produce location ID number for indexing LocIDToLocIdx. Takes the register + /// or spill number, and flag for whether it's a spill or not. + unsigned getLocID(Register RegOrSpill, bool isSpill) { + return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id(); + } + + /// Accessor for reading the value at Idx. + ValueIDNum getNumAtPos(LocIdx Idx) const { + assert(Idx.asU64() < LocIdxToIDNum.size()); + return LocIdxToIDNum[Idx]; + } + + unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); } + + /// Reset all locations to contain a PHI value at the designated block. Used + /// sometimes for actual PHI values, othertimes to indicate the block entry + /// value (before any more information is known). + void setMPhis(unsigned NewCurBB) { + CurBB = NewCurBB; + for (auto Location : locations()) + Location.Value = {CurBB, 0, Location.Idx}; + } + + /// Load values for each location from array of ValueIDNums. Take current + /// bbnum just in case we read a value from a hitherto untouched register. + void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) { + CurBB = NewCurBB; + // Iterate over all tracked locations, and load each locations live-in + // value into our local index. + for (auto Location : locations()) + Location.Value = Locs[Location.Idx.asU64()]; + } + + /// Wipe any un-necessary location records after traversing a block. + void reset(void) { + // We could reset all the location values too; however either loadFromArray + // or setMPhis should be called before this object is re-used. Just + // clear Masks, they're definitely not needed. + Masks.clear(); + } + + /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of + /// the information in this pass uninterpretable. + void clear(void) { + reset(); + LocIDToLocIdx.clear(); + LocIdxToLocID.clear(); + LocIdxToIDNum.clear(); + //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0 + SpillLocs = decltype(SpillLocs)(); + + LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc()); + } + + /// Set a locaiton to a certain value. + void setMLoc(LocIdx L, ValueIDNum Num) { + assert(L.asU64() < LocIdxToIDNum.size()); + LocIdxToIDNum[L] = Num; + } + + /// Create a LocIdx for an untracked register ID. Initialize it to either an + /// mphi value representing a live-in, or a recent register mask clobber. + LocIdx trackRegister(unsigned ID) { + assert(ID != 0); + LocIdx NewIdx = LocIdx(LocIdxToIDNum.size()); + LocIdxToIDNum.grow(NewIdx); + LocIdxToLocID.grow(NewIdx); + + // Default: it's an mphi. + ValueIDNum ValNum = {CurBB, 0, NewIdx}; + // Was this reg ever touched by a regmask? + for (const auto &MaskPair : reverse(Masks)) { + if (MaskPair.first->clobbersPhysReg(ID)) { + // There was an earlier def we skipped. + ValNum = {CurBB, MaskPair.second, NewIdx}; + break; + } + } + + LocIdxToIDNum[NewIdx] = ValNum; + LocIdxToLocID[NewIdx] = ID; + return NewIdx; + } + + LocIdx lookupOrTrackRegister(unsigned ID) { + LocIdx &Index = LocIDToLocIdx[ID]; + if (Index.isIllegal()) + Index = trackRegister(ID); + return Index; + } + + /// Record a definition of the specified register at the given block / inst. + /// This doesn't take a ValueIDNum, because the definition and its location + /// are synonymous. + void defReg(Register R, unsigned BB, unsigned Inst) { + unsigned ID = getLocID(R, false); + LocIdx Idx = lookupOrTrackRegister(ID); + ValueIDNum ValueID = {BB, Inst, Idx}; + LocIdxToIDNum[Idx] = ValueID; + } + + /// Set a register to a value number. To be used if the value number is + /// known in advance. + void setReg(Register R, ValueIDNum ValueID) { + unsigned ID = getLocID(R, false); + LocIdx Idx = lookupOrTrackRegister(ID); + LocIdxToIDNum[Idx] = ValueID; + } + + ValueIDNum readReg(Register R) { + unsigned ID = getLocID(R, false); + LocIdx Idx = lookupOrTrackRegister(ID); + return LocIdxToIDNum[Idx]; + } + + /// Reset a register value to zero / empty. Needed to replicate the + /// VarLoc implementation where a copy to/from a register effectively + /// clears the contents of the source register. (Values can only have one + /// machine location in VarLocBasedImpl). + void wipeRegister(Register R) { + unsigned ID = getLocID(R, false); + LocIdx Idx = LocIDToLocIdx[ID]; + LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue; + } + + /// Determine the LocIdx of an existing register. + LocIdx getRegMLoc(Register R) { + unsigned ID = getLocID(R, false); + return LocIDToLocIdx[ID]; + } + + /// Record a RegMask operand being executed. Defs any register we currently + /// track, stores a pointer to the mask in case we have to account for it + /// later. + void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) { + // Ensure SP exists, so that we don't override it later. + Register SP = TLI.getStackPointerRegisterToSaveRestore(); + + // Def any register we track have that isn't preserved. The regmask + // terminates the liveness of a register, meaning its value can't be + // relied upon -- we represent this by giving it a new value. + for (auto Location : locations()) { + unsigned ID = LocIdxToLocID[Location.Idx]; + // Don't clobber SP, even if the mask says it's clobbered. + if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID)) + defReg(ID, CurBB, InstID); + } + Masks.push_back(std::make_pair(MO, InstID)); + } + + /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked. + LocIdx getOrTrackSpillLoc(SpillLoc L) { + unsigned SpillID = SpillLocs.idFor(L); + if (SpillID == 0) { + SpillID = SpillLocs.insert(L); + unsigned L = getLocID(SpillID, true); + LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx + LocIdxToIDNum.grow(Idx); + LocIdxToLocID.grow(Idx); + LocIDToLocIdx.push_back(Idx); + LocIdxToLocID[Idx] = L; + return Idx; + } else { + unsigned L = getLocID(SpillID, true); + LocIdx Idx = LocIDToLocIdx[L]; + return Idx; + } + } + + /// Set the value stored in a spill slot. + void setSpill(SpillLoc L, ValueIDNum ValueID) { + LocIdx Idx = getOrTrackSpillLoc(L); + LocIdxToIDNum[Idx] = ValueID; + } + + /// Read whatever value is in a spill slot, or None if it isn't tracked. + Optional<ValueIDNum> readSpill(SpillLoc L) { + unsigned SpillID = SpillLocs.idFor(L); + if (SpillID == 0) + return None; + + unsigned LocID = getLocID(SpillID, true); + LocIdx Idx = LocIDToLocIdx[LocID]; + return LocIdxToIDNum[Idx]; + } + + /// Determine the LocIdx of a spill slot. Return None if it previously + /// hasn't had a value assigned. + Optional<LocIdx> getSpillMLoc(SpillLoc L) { + unsigned SpillID = SpillLocs.idFor(L); + if (SpillID == 0) + return None; + unsigned LocNo = getLocID(SpillID, true); + return LocIDToLocIdx[LocNo]; + } + + /// Return true if Idx is a spill machine location. + bool isSpill(LocIdx Idx) const { + return LocIdxToLocID[Idx] >= NumRegs; + } + + MLocIterator begin() { + return MLocIterator(LocIdxToIDNum, 0); + } + + MLocIterator end() { + return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size()); + } + + /// Return a range over all locations currently tracked. + iterator_range<MLocIterator> locations() { + return llvm::make_range(begin(), end()); + } + + std::string LocIdxToName(LocIdx Idx) const { + unsigned ID = LocIdxToLocID[Idx]; + if (ID >= NumRegs) + return Twine("slot ").concat(Twine(ID - NumRegs)).str(); + else + return TRI.getRegAsmName(ID).str(); + } + + std::string IDAsString(const ValueIDNum &Num) const { + std::string DefName = LocIdxToName(Num.getLoc()); + return Num.asString(DefName); + } + + LLVM_DUMP_METHOD + void dump() { + for (auto Location : locations()) { + std::string MLocName = LocIdxToName(Location.Value.getLoc()); + std::string DefName = Location.Value.asString(MLocName); + dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n"; + } + } + + LLVM_DUMP_METHOD + void dump_mloc_map() { + for (auto Location : locations()) { + std::string foo = LocIdxToName(Location.Idx); + dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n"; + } + } + + /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the + /// information in \pProperties, for variable Var. Don't insert it anywhere, + /// just return the builder for it. + MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var, + const DbgValueProperties &Properties) { + DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, + Var.getVariable()->getScope(), + const_cast<DILocation *>(Var.getInlinedAt())); + auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE)); + + const DIExpression *Expr = Properties.DIExpr; + if (!MLoc) { + // No location -> DBG_VALUE $noreg + MIB.addReg(0, RegState::Debug); + MIB.addReg(0, RegState::Debug); + } else if (LocIdxToLocID[*MLoc] >= NumRegs) { + unsigned LocID = LocIdxToLocID[*MLoc]; + const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1]; + + auto *TRI = MF.getSubtarget().getRegisterInfo(); + Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset, + Spill.SpillOffset); + unsigned Base = Spill.SpillBase; + MIB.addReg(Base, RegState::Debug); + MIB.addImm(0); + } else { + unsigned LocID = LocIdxToLocID[*MLoc]; + MIB.addReg(LocID, RegState::Debug); + if (Properties.Indirect) + MIB.addImm(0); + else + MIB.addReg(0, RegState::Debug); + } + + MIB.addMetadata(Var.getVariable()); + MIB.addMetadata(Expr); + return MIB; + } +}; + +/// Class recording the (high level) _value_ of a variable. Identifies either +/// the value of the variable as a ValueIDNum, or a constant MachineOperand. +/// This class also stores meta-information about how the value is qualified. +/// Used to reason about variable values when performing the second +/// (DebugVariable specific) dataflow analysis. +class DbgValue { +public: + union { + /// If Kind is Def, the value number that this value is based on. + ValueIDNum ID; + /// If Kind is Const, the MachineOperand defining this value. + MachineOperand MO; + /// For a NoVal DbgValue, which block it was generated in. + unsigned BlockNo; + }; + /// Qualifiers for the ValueIDNum above. + DbgValueProperties Properties; + + typedef enum { + Undef, // Represents a DBG_VALUE $noreg in the transfer function only. + Def, // This value is defined by an inst, or is a PHI value. + Const, // A constant value contained in the MachineOperand field. + Proposed, // This is a tentative PHI value, which may be confirmed or + // invalidated later. + NoVal // Empty DbgValue, generated during dataflow. BlockNo stores + // which block this was generated in. + } KindT; + /// Discriminator for whether this is a constant or an in-program value. + KindT Kind; + + DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind) + : ID(Val), Properties(Prop), Kind(Kind) { + assert(Kind == Def || Kind == Proposed); + } + + DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind) + : BlockNo(BlockNo), Properties(Prop), Kind(Kind) { + assert(Kind == NoVal); + } + + DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind) + : MO(MO), Properties(Prop), Kind(Kind) { + assert(Kind == Const); + } + + DbgValue(const DbgValueProperties &Prop, KindT Kind) + : Properties(Prop), Kind(Kind) { + assert(Kind == Undef && + "Empty DbgValue constructor must pass in Undef kind"); + } + + void dump(const MLocTracker *MTrack) const { + if (Kind == Const) { + MO.dump(); + } else if (Kind == NoVal) { + dbgs() << "NoVal(" << BlockNo << ")"; + } else if (Kind == Proposed) { + dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")"; + } else { + assert(Kind == Def); + dbgs() << MTrack->IDAsString(ID); + } + if (Properties.Indirect) + dbgs() << " indir"; + if (Properties.DIExpr) + dbgs() << " " << *Properties.DIExpr; + } + + bool operator==(const DbgValue &Other) const { + if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties)) + return false; + else if (Kind == Proposed && ID != Other.ID) + return false; + else if (Kind == Def && ID != Other.ID) + return false; + else if (Kind == NoVal && BlockNo != Other.BlockNo) + return false; + else if (Kind == Const) + return MO.isIdenticalTo(Other.MO); + + return true; + } + + bool operator!=(const DbgValue &Other) const { return !(*this == Other); } +}; + +/// Types for recording sets of variable fragments that overlap. For a given +/// local variable, we record all other fragments of that variable that could +/// overlap it, to reduce search time. +using FragmentOfVar = + std::pair<const DILocalVariable *, DIExpression::FragmentInfo>; +using OverlapMap = + DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>; + +/// Collection of DBG_VALUEs observed when traversing a block. Records each +/// variable and the value the DBG_VALUE refers to. Requires the machine value +/// location dataflow algorithm to have run already, so that values can be +/// identified. +class VLocTracker { +public: + /// Map DebugVariable to the latest Value it's defined to have. + /// Needs to be a MapVector because we determine order-in-the-input-MIR from + /// the order in this container. + /// We only retain the last DbgValue in each block for each variable, to + /// determine the blocks live-out variable value. The Vars container forms the + /// transfer function for this block, as part of the dataflow analysis. The + /// movement of values between locations inside of a block is handled at a + /// much later stage, in the TransferTracker class. + MapVector<DebugVariable, DbgValue> Vars; + DenseMap<DebugVariable, const DILocation *> Scopes; + MachineBasicBlock *MBB; + +public: + VLocTracker() {} + + void defVar(const MachineInstr &MI, const DbgValueProperties &Properties, + Optional<ValueIDNum> ID) { + assert(MI.isDebugValue() || MI.isDebugRef()); + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def) + : DbgValue(Properties, DbgValue::Undef); + + // Attempt insertion; overwrite if it's already mapped. + auto Result = Vars.insert(std::make_pair(Var, Rec)); + if (!Result.second) + Result.first->second = Rec; + Scopes[Var] = MI.getDebugLoc().get(); + } + + void defVar(const MachineInstr &MI, const MachineOperand &MO) { + // Only DBG_VALUEs can define constant-valued variables. + assert(MI.isDebugValue()); + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + DbgValueProperties Properties(MI); + DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const); + + // Attempt insertion; overwrite if it's already mapped. + auto Result = Vars.insert(std::make_pair(Var, Rec)); + if (!Result.second) + Result.first->second = Rec; + Scopes[Var] = MI.getDebugLoc().get(); + } +}; + +/// Tracker for converting machine value locations and variable values into +/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs +/// specifying block live-in locations and transfers within blocks. +/// +/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker +/// and must be initialized with the set of variable values that are live-in to +/// the block. The caller then repeatedly calls process(). TransferTracker picks +/// out variable locations for the live-in variable values (if there _is_ a +/// location) and creates the corresponding DBG_VALUEs. Then, as the block is +/// stepped through, transfers of values between machine locations are +/// identified and if profitable, a DBG_VALUE created. +/// +/// This is where debug use-before-defs would be resolved: a variable with an +/// unavailable value could materialize in the middle of a block, when the +/// value becomes available. Or, we could detect clobbers and re-specify the +/// variable in a backup location. (XXX these are unimplemented). +class TransferTracker { +public: + const TargetInstrInfo *TII; + /// This machine location tracker is assumed to always contain the up-to-date + /// value mapping for all machine locations. TransferTracker only reads + /// information from it. (XXX make it const?) + MLocTracker *MTracker; + MachineFunction &MF; + + /// Record of all changes in variable locations at a block position. Awkwardly + /// we allow inserting either before or after the point: MBB != nullptr + /// indicates it's before, otherwise after. + struct Transfer { + MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes + MachineBasicBlock *MBB; /// non-null if we should insert after. + SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert. + }; + + typedef struct { + LocIdx Loc; + DbgValueProperties Properties; + } LocAndProperties; + + /// Collection of transfers (DBG_VALUEs) to be inserted. + SmallVector<Transfer, 32> Transfers; + + /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences + /// between TransferTrackers view of variable locations and MLocTrackers. For + /// example, MLocTracker observes all clobbers, but TransferTracker lazily + /// does not. + std::vector<ValueIDNum> VarLocs; + + /// Map from LocIdxes to which DebugVariables are based that location. + /// Mantained while stepping through the block. Not accurate if + /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx]. + std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs; + + /// Map from DebugVariable to it's current location and qualifying meta + /// information. To be used in conjunction with ActiveMLocs to construct + /// enough information for the DBG_VALUEs for a particular LocIdx. + DenseMap<DebugVariable, LocAndProperties> ActiveVLocs; + + /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection. + SmallVector<MachineInstr *, 4> PendingDbgValues; + + /// Record of a use-before-def: created when a value that's live-in to the + /// current block isn't available in any machine location, but it will be + /// defined in this block. + struct UseBeforeDef { + /// Value of this variable, def'd in block. + ValueIDNum ID; + /// Identity of this variable. + DebugVariable Var; + /// Additional variable properties. + DbgValueProperties Properties; + }; + + /// Map from instruction index (within the block) to the set of UseBeforeDefs + /// that become defined at that instruction. + DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs; + + /// The set of variables that are in UseBeforeDefs and can become a location + /// once the relevant value is defined. An element being erased from this + /// collection prevents the use-before-def materializing. + DenseSet<DebugVariable> UseBeforeDefVariables; + + const TargetRegisterInfo &TRI; + const BitVector &CalleeSavedRegs; + + TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker, + MachineFunction &MF, const TargetRegisterInfo &TRI, + const BitVector &CalleeSavedRegs) + : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI), + CalleeSavedRegs(CalleeSavedRegs) {} + + /// Load object with live-in variable values. \p mlocs contains the live-in + /// values in each machine location, while \p vlocs the live-in variable + /// values. This method picks variable locations for the live-in variables, + /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other + /// object fields to track variable locations as we step through the block. + /// FIXME: could just examine mloctracker instead of passing in \p mlocs? + void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs, + SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs, + unsigned NumLocs) { + ActiveMLocs.clear(); + ActiveVLocs.clear(); + VarLocs.clear(); + VarLocs.reserve(NumLocs); + UseBeforeDefs.clear(); + UseBeforeDefVariables.clear(); + + auto isCalleeSaved = [&](LocIdx L) { + unsigned Reg = MTracker->LocIdxToLocID[L]; + if (Reg >= MTracker->NumRegs) + return false; + for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + }; + + // Map of the preferred location for each value. + std::map<ValueIDNum, LocIdx> ValueToLoc; + + // Produce a map of value numbers to the current machine locs they live + // in. When emulating VarLocBasedImpl, there should only be one + // location; when not, we get to pick. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + ValueIDNum &VNum = MLocs[Idx.asU64()]; + VarLocs.push_back(VNum); + auto it = ValueToLoc.find(VNum); + // In order of preference, pick: + // * Callee saved registers, + // * Other registers, + // * Spill slots. + if (it == ValueToLoc.end() || MTracker->isSpill(it->second) || + (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) { + // Insert, or overwrite if insertion failed. + auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx)); + if (!PrefLocRes.second) + PrefLocRes.first->second = Idx; + } + } + + // Now map variables to their picked LocIdxes. + for (auto Var : VLocs) { + if (Var.second.Kind == DbgValue::Const) { + PendingDbgValues.push_back( + emitMOLoc(Var.second.MO, Var.first, Var.second.Properties)); + continue; + } + + // If the value has no location, we can't make a variable location. + const ValueIDNum &Num = Var.second.ID; + auto ValuesPreferredLoc = ValueToLoc.find(Num); + if (ValuesPreferredLoc == ValueToLoc.end()) { + // If it's a def that occurs in this block, register it as a + // use-before-def to be resolved as we step through the block. + if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI()) + addUseBeforeDef(Var.first, Var.second.Properties, Num); + continue; + } + + LocIdx M = ValuesPreferredLoc->second; + auto NewValue = LocAndProperties{M, Var.second.Properties}; + auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue)); + if (!Result.second) + Result.first->second = NewValue; + ActiveMLocs[M].insert(Var.first); + PendingDbgValues.push_back( + MTracker->emitLoc(M, Var.first, Var.second.Properties)); + } + flushDbgValues(MBB.begin(), &MBB); + } + + /// Record that \p Var has value \p ID, a value that becomes available + /// later in the function. + void addUseBeforeDef(const DebugVariable &Var, + const DbgValueProperties &Properties, ValueIDNum ID) { + UseBeforeDef UBD = {ID, Var, Properties}; + UseBeforeDefs[ID.getInst()].push_back(UBD); + UseBeforeDefVariables.insert(Var); + } + + /// After the instruction at index \p Inst and position \p pos has been + /// processed, check whether it defines a variable value in a use-before-def. + /// If so, and the variable value hasn't changed since the start of the + /// block, create a DBG_VALUE. + void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) { + auto MIt = UseBeforeDefs.find(Inst); + if (MIt == UseBeforeDefs.end()) + return; + + for (auto &Use : MIt->second) { + LocIdx L = Use.ID.getLoc(); + + // If something goes very wrong, we might end up labelling a COPY + // instruction or similar with an instruction number, where it doesn't + // actually define a new value, instead it moves a value. In case this + // happens, discard. + if (MTracker->LocIdxToIDNum[L] != Use.ID) + continue; + + // If a different debug instruction defined the variable value / location + // since the start of the block, don't materialize this use-before-def. + if (!UseBeforeDefVariables.count(Use.Var)) + continue; + + PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties)); + } + flushDbgValues(pos, nullptr); + } + + /// Helper to move created DBG_VALUEs into Transfers collection. + void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) { + if (PendingDbgValues.size() > 0) { + Transfers.push_back({Pos, MBB, PendingDbgValues}); + PendingDbgValues.clear(); + } + } + + /// Change a variable value after encountering a DBG_VALUE inside a block. + void redefVar(const MachineInstr &MI) { + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + DbgValueProperties Properties(MI); + + const MachineOperand &MO = MI.getOperand(0); + + // Ignore non-register locations, we don't transfer those. + if (!MO.isReg() || MO.getReg() == 0) { + auto It = ActiveVLocs.find(Var); + if (It != ActiveVLocs.end()) { + ActiveMLocs[It->second.Loc].erase(Var); + ActiveVLocs.erase(It); + } + // Any use-before-defs no longer apply. + UseBeforeDefVariables.erase(Var); + return; + } + + Register Reg = MO.getReg(); + LocIdx NewLoc = MTracker->getRegMLoc(Reg); + redefVar(MI, Properties, NewLoc); + } + + /// Handle a change in variable location within a block. Terminate the + /// variables current location, and record the value it now refers to, so + /// that we can detect location transfers later on. + void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties, + Optional<LocIdx> OptNewLoc) { + DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + // Any use-before-defs no longer apply. + UseBeforeDefVariables.erase(Var); + + // Erase any previous location, + auto It = ActiveVLocs.find(Var); + if (It != ActiveVLocs.end()) + ActiveMLocs[It->second.Loc].erase(Var); + + // If there _is_ no new location, all we had to do was erase. + if (!OptNewLoc) + return; + LocIdx NewLoc = *OptNewLoc; + + // Check whether our local copy of values-by-location in #VarLocs is out of + // date. Wipe old tracking data for the location if it's been clobbered in + // the meantime. + if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) { + for (auto &P : ActiveMLocs[NewLoc]) { + ActiveVLocs.erase(P); + } + ActiveMLocs[NewLoc.asU64()].clear(); + VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc); + } + + ActiveMLocs[NewLoc].insert(Var); + if (It == ActiveVLocs.end()) { + ActiveVLocs.insert( + std::make_pair(Var, LocAndProperties{NewLoc, Properties})); + } else { + It->second.Loc = NewLoc; + It->second.Properties = Properties; + } + } + + /// Explicitly terminate variable locations based on \p mloc. Creates undef + /// DBG_VALUEs for any variables that were located there, and clears + /// #ActiveMLoc / #ActiveVLoc tracking information for that location. + void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) { + assert(MTracker->isSpill(MLoc)); + auto ActiveMLocIt = ActiveMLocs.find(MLoc); + if (ActiveMLocIt == ActiveMLocs.end()) + return; + + VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue; + + for (auto &Var : ActiveMLocIt->second) { + auto ActiveVLocIt = ActiveVLocs.find(Var); + // Create an undef. We can't feed in a nullptr DIExpression alas, + // so use the variables last expression. Pass None as the location. + const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr; + DbgValueProperties Properties(Expr, false); + PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties)); + ActiveVLocs.erase(ActiveVLocIt); + } + flushDbgValues(Pos, nullptr); + + ActiveMLocIt->second.clear(); + } + + /// Transfer variables based on \p Src to be based on \p Dst. This handles + /// both register copies as well as spills and restores. Creates DBG_VALUEs + /// describing the movement. + void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) { + // Does Src still contain the value num we expect? If not, it's been + // clobbered in the meantime, and our variable locations are stale. + if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src)) + return; + + // assert(ActiveMLocs[Dst].size() == 0); + //^^^ Legitimate scenario on account of un-clobbered slot being assigned to? + ActiveMLocs[Dst] = ActiveMLocs[Src]; + VarLocs[Dst.asU64()] = VarLocs[Src.asU64()]; + + // For each variable based on Src; create a location at Dst. + for (auto &Var : ActiveMLocs[Src]) { + auto ActiveVLocIt = ActiveVLocs.find(Var); + assert(ActiveVLocIt != ActiveVLocs.end()); + ActiveVLocIt->second.Loc = Dst; + + assert(Dst != 0); + MachineInstr *MI = + MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties); + PendingDbgValues.push_back(MI); + } + ActiveMLocs[Src].clear(); + flushDbgValues(Pos, nullptr); + + // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data + // about the old location. + if (EmulateOldLDV) + VarLocs[Src.asU64()] = ValueIDNum::EmptyValue; + } + + MachineInstrBuilder emitMOLoc(const MachineOperand &MO, + const DebugVariable &Var, + const DbgValueProperties &Properties) { + DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0, + Var.getVariable()->getScope(), + const_cast<DILocation *>(Var.getInlinedAt())); + auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE)); + MIB.add(MO); + if (Properties.Indirect) + MIB.addImm(0); + else + MIB.addReg(0); + MIB.addMetadata(Var.getVariable()); + MIB.addMetadata(Properties.DIExpr); + return MIB; + } +}; + +class InstrRefBasedLDV : public LDVImpl { +private: + using FragmentInfo = DIExpression::FragmentInfo; + using OptFragmentInfo = Optional<DIExpression::FragmentInfo>; + + // Helper while building OverlapMap, a map of all fragments seen for a given + // DILocalVariable. + using VarToFragments = + DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>; + + /// Machine location/value transfer function, a mapping of which locations + /// are assigned which new values. + using MLocTransferMap = std::map<LocIdx, ValueIDNum>; + + /// Live in/out structure for the variable values: a per-block map of + /// variables to their values. XXX, better name? + using LiveIdxT = + DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>; + + using VarAndLoc = std::pair<DebugVariable, DbgValue>; + + /// Type for a live-in value: the predecessor block, and its value. + using InValueT = std::pair<MachineBasicBlock *, DbgValue *>; + + /// Vector (per block) of a collection (inner smallvector) of live-ins. + /// Used as the result type for the variable value dataflow problem. + using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>; + + const TargetRegisterInfo *TRI; + const TargetInstrInfo *TII; + const TargetFrameLowering *TFI; + BitVector CalleeSavedRegs; + LexicalScopes LS; + TargetPassConfig *TPC; + + /// Object to track machine locations as we step through a block. Could + /// probably be a field rather than a pointer, as it's always used. + MLocTracker *MTracker; + + /// Number of the current block LiveDebugValues is stepping through. + unsigned CurBB; + + /// Number of the current instruction LiveDebugValues is evaluating. + unsigned CurInst; + + /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl + /// steps through a block. Reads the values at each location from the + /// MLocTracker object. + VLocTracker *VTracker; + + /// Tracker for transfers, listens to DBG_VALUEs and transfers of values + /// between locations during stepping, creates new DBG_VALUEs when values move + /// location. + TransferTracker *TTracker; + + /// Blocks which are artificial, i.e. blocks which exclusively contain + /// instructions without DebugLocs, or with line 0 locations. + SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks; + + // Mapping of blocks to and from their RPOT order. + DenseMap<unsigned int, MachineBasicBlock *> OrderToBB; + DenseMap<MachineBasicBlock *, unsigned int> BBToOrder; + DenseMap<unsigned, unsigned> BBNumToRPO; + + /// Pair of MachineInstr, and its 1-based offset into the containing block. + using InstAndNum = std::pair<const MachineInstr *, unsigned>; + /// Map from debug instruction number to the MachineInstr labelled with that + /// number, and its location within the function. Used to transform + /// instruction numbers in DBG_INSTR_REFs into machine value numbers. + std::map<uint64_t, InstAndNum> DebugInstrNumToInstr; + + // Map of overlapping variable fragments. + OverlapMap OverlapFragments; + VarToFragments SeenFragments; + + /// Tests whether this instruction is a spill to a stack slot. + bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF); + + /// Decide if @MI is a spill instruction and return true if it is. We use 2 + /// criteria to make this decision: + /// - Is this instruction a store to a spill slot? + /// - Is there a register operand that is both used and killed? + /// TODO: Store optimization can fold spills into other stores (including + /// other spills). We do not handle this yet (more than one memory operand). + bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF, + unsigned &Reg); + + /// If a given instruction is identified as a spill, return the spill slot + /// and set \p Reg to the spilled register. + Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, unsigned &Reg); + + /// Given a spill instruction, extract the register and offset used to + /// address the spill slot in a target independent way. + SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI); + + /// Observe a single instruction while stepping through a block. + void process(MachineInstr &MI); + + /// Examines whether \p MI is a DBG_VALUE and notifies trackers. + /// \returns true if MI was recognized and processed. + bool transferDebugValue(const MachineInstr &MI); + + /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers. + /// \returns true if MI was recognized and processed. + bool transferDebugInstrRef(MachineInstr &MI); + + /// Examines whether \p MI is copy instruction, and notifies trackers. + /// \returns true if MI was recognized and processed. + bool transferRegisterCopy(MachineInstr &MI); + + /// Examines whether \p MI is stack spill or restore instruction, and + /// notifies trackers. \returns true if MI was recognized and processed. + bool transferSpillOrRestoreInst(MachineInstr &MI); + + /// Examines \p MI for any registers that it defines, and notifies trackers. + void transferRegisterDef(MachineInstr &MI); + + /// Copy one location to the other, accounting for movement of subregisters + /// too. + void performCopy(Register Src, Register Dst); + + void accumulateFragmentMap(MachineInstr &MI); + + /// Step through the function, recording register definitions and movements + /// in an MLocTracker. Convert the observations into a per-block transfer + /// function in \p MLocTransfer, suitable for using with the machine value + /// location dataflow problem. + void + produceMLocTransferFunction(MachineFunction &MF, + SmallVectorImpl<MLocTransferMap> &MLocTransfer, + unsigned MaxNumBlocks); + + /// Solve the machine value location dataflow problem. Takes as input the + /// transfer functions in \p MLocTransfer. Writes the output live-in and + /// live-out arrays to the (initialized to zero) multidimensional arrays in + /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block + /// number, the inner by LocIdx. + void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs, + SmallVectorImpl<MLocTransferMap> &MLocTransfer); + + /// Perform a control flow join (lattice value meet) of the values in machine + /// locations at \p MBB. Follows the algorithm described in the file-comment, + /// reading live-outs of predecessors from \p OutLocs, the current live ins + /// from \p InLocs, and assigning the newly computed live ins back into + /// \p InLocs. \returns two bools -- the first indicates whether a change + /// was made, the second whether a lattice downgrade occurred. If the latter + /// is true, revisiting this block is necessary. + std::tuple<bool, bool> + mlocJoin(MachineBasicBlock &MBB, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + ValueIDNum **OutLocs, ValueIDNum *InLocs); + + /// Solve the variable value dataflow problem, for a single lexical scope. + /// Uses the algorithm from the file comment to resolve control flow joins, + /// although there are extra hacks, see vlocJoin. Reads the + /// locations of values from the \p MInLocs and \p MOutLocs arrays (see + /// mlocDataflow) and reads the variable values transfer function from + /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally, + /// with the live-ins permanently stored to \p Output once the fixedpoint is + /// reached. + /// \p VarsWeCareAbout contains a collection of the variables in \p Scope + /// that we should be tracking. + /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but + /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations + /// through. + void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc, + const SmallSet<DebugVariable, 4> &VarsWeCareAbout, + SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, + LiveInsT &Output, ValueIDNum **MOutLocs, + ValueIDNum **MInLocs, + SmallVectorImpl<VLocTracker> &AllTheVLocs); + + /// Compute the live-ins to a block, considering control flow merges according + /// to the method in the file comment. Live out and live in variable values + /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB + /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins + /// are modified. + /// \p InLocsT Output argument, storage for calculated live-ins. + /// \returns two bools -- the first indicates whether a change + /// was made, the second whether a lattice downgrade occurred. If the latter + /// is true, revisiting this block is necessary. + std::tuple<bool, bool> + vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, + SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, + unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars, + ValueIDNum **MOutLocs, ValueIDNum **MInLocs, + SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, + SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, + DenseMap<DebugVariable, DbgValue> &InLocsT); + + /// Continue exploration of the variable-value lattice, as explained in the + /// file-level comment. \p OldLiveInLocation contains the current + /// exploration position, from which we need to descend further. \p Values + /// contains the set of live-in values, \p CurBlockRPONum the RPO number of + /// the current block, and \p CandidateLocations a set of locations that + /// should be considered as PHI locations, if we reach the bottom of the + /// lattice. \returns true if we should downgrade; the value is the agreeing + /// value number in a non-backedge predecessor. + bool vlocDowngradeLattice(const MachineBasicBlock &MBB, + const DbgValue &OldLiveInLocation, + const SmallVectorImpl<InValueT> &Values, + unsigned CurBlockRPONum); + + /// For the given block and live-outs feeding into it, try to find a + /// machine location where they all join. If a solution for all predecessors + /// can't be found, a location where all non-backedge-predecessors join + /// will be returned instead. While this method finds a join location, this + /// says nothing as to whether it should be used. + /// \returns Pair of value ID if found, and true when the correct value + /// is available on all predecessor edges, or false if it's only available + /// for non-backedge predecessors. + std::tuple<Optional<ValueIDNum>, bool> + pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var, + const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs, + ValueIDNum **MInLocs, + const SmallVectorImpl<MachineBasicBlock *> &BlockOrders); + + /// Given the solutions to the two dataflow problems, machine value locations + /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the + /// TransferTracker class over the function to produce live-in and transfer + /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the + /// order given by AllVarsNumbering -- this could be any stable order, but + /// right now "order of appearence in function, when explored in RPO", so + /// that we can compare explictly against VarLocBasedImpl. + void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns, + ValueIDNum **MInLocs, + DenseMap<DebugVariable, unsigned> &AllVarsNumbering); + + /// Boilerplate computation of some initial sets, artifical blocks and + /// RPOT block ordering. + void initialSetup(MachineFunction &MF); + + bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override; + +public: + /// Default construct and initialize the pass. + InstrRefBasedLDV(); + + LLVM_DUMP_METHOD + void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const; + + bool isCalleeSaved(LocIdx L) { + unsigned Reg = MTracker->LocIdxToLocID[L]; + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + } +}; + +} // end anonymous namespace + +//===----------------------------------------------------------------------===// +// Implementation +//===----------------------------------------------------------------------===// + +ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX}; + +/// Default construct and initialize the pass. +InstrRefBasedLDV::InstrRefBasedLDV() {} + +//===----------------------------------------------------------------------===// +// Debug Range Extension Implementation +//===----------------------------------------------------------------------===// + +#ifndef NDEBUG +// Something to restore in the future. +// void InstrRefBasedLDV::printVarLocInMBB(..) +#endif + +SpillLoc +InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) { + assert(MI.hasOneMemOperand() && + "Spill instruction does not have exactly one memory operand?"); + auto MMOI = MI.memoperands_begin(); + const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue(); + assert(PVal->kind() == PseudoSourceValue::FixedStack && + "Inconsistent memory operand in spill instruction"); + int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex(); + const MachineBasicBlock *MBB = MI.getParent(); + Register Reg; + StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg); + return {Reg, Offset}; +} + +/// End all previous ranges related to @MI and start a new range from @MI +/// if it is a DBG_VALUE instr. +bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) { + if (!MI.isDebugValue()) + return false; + + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + const DILocation *DebugLoc = MI.getDebugLoc(); + const DILocation *InlinedAt = DebugLoc->getInlinedAt(); + assert(Var->isValidLocationForIntrinsic(DebugLoc) && + "Expected inlined-at fields to agree"); + + DebugVariable V(Var, Expr, InlinedAt); + DbgValueProperties Properties(MI); + + // If there are no instructions in this lexical scope, do no location tracking + // at all, this variable shouldn't get a legitimate location range. + auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); + if (Scope == nullptr) + return true; // handled it; by doing nothing + + const MachineOperand &MO = MI.getOperand(0); + + // MLocTracker needs to know that this register is read, even if it's only + // read by a debug inst. + if (MO.isReg() && MO.getReg() != 0) + (void)MTracker->readReg(MO.getReg()); + + // If we're preparing for the second analysis (variables), the machine value + // locations are already solved, and we report this DBG_VALUE and the value + // it refers to to VLocTracker. + if (VTracker) { + if (MO.isReg()) { + // Feed defVar the new variable location, or if this is a + // DBG_VALUE $noreg, feed defVar None. + if (MO.getReg()) + VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg())); + else + VTracker->defVar(MI, Properties, None); + } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() || + MI.getOperand(0).isCImm()) { + VTracker->defVar(MI, MI.getOperand(0)); + } + } + + // If performing final tracking of transfers, report this variable definition + // to the TransferTracker too. + if (TTracker) + TTracker->redefVar(MI); + return true; +} + +bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) { + if (!MI.isDebugRef()) + return false; + + // Only handle this instruction when we are building the variable value + // transfer function. + if (!VTracker) + return false; + + unsigned InstNo = MI.getOperand(0).getImm(); + unsigned OpNo = MI.getOperand(1).getImm(); + + const DILocalVariable *Var = MI.getDebugVariable(); + const DIExpression *Expr = MI.getDebugExpression(); + const DILocation *DebugLoc = MI.getDebugLoc(); + const DILocation *InlinedAt = DebugLoc->getInlinedAt(); + assert(Var->isValidLocationForIntrinsic(DebugLoc) && + "Expected inlined-at fields to agree"); + + DebugVariable V(Var, Expr, InlinedAt); + + auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get()); + if (Scope == nullptr) + return true; // Handled by doing nothing. This variable is never in scope. + + const MachineFunction &MF = *MI.getParent()->getParent(); + + // Various optimizations may have happened to the value during codegen, + // recorded in the value substitution table. Apply any substitutions to + // the instruction / operand number in this DBG_INSTR_REF. + auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); + while (Sub != MF.DebugValueSubstitutions.end()) { + InstNo = Sub->second.first; + OpNo = Sub->second.second; + Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo)); + } + + // Default machine value number is <None> -- if no instruction defines + // the corresponding value, it must have been optimized out. + Optional<ValueIDNum> NewID = None; + + // Try to lookup the instruction number, and find the machine value number + // that it defines. + auto InstrIt = DebugInstrNumToInstr.find(InstNo); + if (InstrIt != DebugInstrNumToInstr.end()) { + const MachineInstr &TargetInstr = *InstrIt->second.first; + uint64_t BlockNo = TargetInstr.getParent()->getNumber(); + + // Pick out the designated operand. + assert(OpNo < TargetInstr.getNumOperands()); + const MachineOperand &MO = TargetInstr.getOperand(OpNo); + + // Today, this can only be a register. + assert(MO.isReg() && MO.isDef()); + + unsigned LocID = MTracker->getLocID(MO.getReg(), false); + LocIdx L = MTracker->LocIDToLocIdx[LocID]; + NewID = ValueIDNum(BlockNo, InstrIt->second.second, L); + } + + // We, we have a value number or None. Tell the variable value tracker about + // it. The rest of this LiveDebugValues implementation acts exactly the same + // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that + // aren't immediately available). + DbgValueProperties Properties(Expr, false); + VTracker->defVar(MI, Properties, NewID); + + // If we're on the final pass through the function, decompose this INSTR_REF + // into a plain DBG_VALUE. + if (!TTracker) + return true; + + // Pick a location for the machine value number, if such a location exists. + // (This information could be stored in TransferTracker to make it faster). + Optional<LocIdx> FoundLoc = None; + for (auto Location : MTracker->locations()) { + LocIdx CurL = Location.Idx; + ValueIDNum ID = MTracker->LocIdxToIDNum[CurL]; + if (NewID && ID == NewID) { + // If this is the first location with that value, pick it. Otherwise, + // consider whether it's a "longer term" location. + if (!FoundLoc) { + FoundLoc = CurL; + continue; + } + + if (MTracker->isSpill(CurL)) + FoundLoc = CurL; // Spills are a longer term location. + else if (!MTracker->isSpill(*FoundLoc) && + !MTracker->isSpill(CurL) && + !isCalleeSaved(*FoundLoc) && + isCalleeSaved(CurL)) + FoundLoc = CurL; // Callee saved regs are longer term than normal. + } + } + + // Tell transfer tracker that the variable value has changed. + TTracker->redefVar(MI, Properties, FoundLoc); + + // If there was a value with no location; but the value is defined in a + // later instruction in this block, this is a block-local use-before-def. + if (!FoundLoc && NewID && NewID->getBlock() == CurBB && + NewID->getInst() > CurInst) + TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID); + + // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant. + // This DBG_VALUE is potentially a $noreg / undefined location, if + // FoundLoc is None. + // (XXX -- could morph the DBG_INSTR_REF in the future). + MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties); + TTracker->PendingDbgValues.push_back(DbgMI); + TTracker->flushDbgValues(MI.getIterator(), nullptr); + + return true; +} + +void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) { + // Meta Instructions do not affect the debug liveness of any register they + // define. + if (MI.isImplicitDef()) { + // Except when there's an implicit def, and the location it's defining has + // no value number. The whole point of an implicit def is to announce that + // the register is live, without be specific about it's value. So define + // a value if there isn't one already. + ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg()); + // Has a legitimate value -> ignore the implicit def. + if (Num.getLoc() != 0) + return; + // Otherwise, def it here. + } else if (MI.isMetaInstruction()) + return; + + MachineFunction *MF = MI.getMF(); + const TargetLowering *TLI = MF->getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + + // Find the regs killed by MI, and find regmasks of preserved regs. + // Max out the number of statically allocated elements in `DeadRegs`, as this + // prevents fallback to std::set::count() operations. + SmallSet<uint32_t, 32> DeadRegs; + SmallVector<const uint32_t *, 4> RegMasks; + SmallVector<const MachineOperand *, 4> RegMaskPtrs; + for (const MachineOperand &MO : MI.operands()) { + // Determine whether the operand is a register def. + if (MO.isReg() && MO.isDef() && MO.getReg() && + Register::isPhysicalRegister(MO.getReg()) && + !(MI.isCall() && MO.getReg() == SP)) { + // Remove ranges of all aliased registers. + for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI) + // FIXME: Can we break out of this loop early if no insertion occurs? + DeadRegs.insert(*RAI); + } else if (MO.isRegMask()) { + RegMasks.push_back(MO.getRegMask()); + RegMaskPtrs.push_back(&MO); + } + } + + // Tell MLocTracker about all definitions, of regmasks and otherwise. + for (uint32_t DeadReg : DeadRegs) + MTracker->defReg(DeadReg, CurBB, CurInst); + + for (auto *MO : RegMaskPtrs) + MTracker->writeRegMask(MO, CurBB, CurInst); +} + +void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) { + ValueIDNum SrcValue = MTracker->readReg(SrcRegNum); + + MTracker->setReg(DstRegNum, SrcValue); + + // In all circumstances, re-def the super registers. It's definitely a new + // value now. This doesn't uniquely identify the composition of subregs, for + // example, two identical values in subregisters composed in different + // places would not get equal value numbers. + for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI) + MTracker->defReg(*SRI, CurBB, CurInst); + + // If we're emulating VarLocBasedImpl, just define all the subregisters. + // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not + // through prior copies. + if (EmulateOldLDV) { + for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI) + MTracker->defReg(DRI.getSubReg(), CurBB, CurInst); + return; + } + + // Otherwise, actually copy subregisters from one location to another. + // XXX: in addition, any subregisters of DstRegNum that don't line up with + // the source register should be def'd. + for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) { + unsigned SrcSubReg = SRI.getSubReg(); + unsigned SubRegIdx = SRI.getSubRegIndex(); + unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx); + if (!DstSubReg) + continue; + + // Do copy. There are two matching subregisters, the source value should + // have been def'd when the super-reg was, the latter might not be tracked + // yet. + // This will force SrcSubReg to be tracked, if it isn't yet. + (void)MTracker->readReg(SrcSubReg); + LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg); + assert(SrcL.asU64()); + (void)MTracker->readReg(DstSubReg); + LocIdx DstL = MTracker->getRegMLoc(DstSubReg); + assert(DstL.asU64()); + (void)DstL; + ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL}; + + MTracker->setReg(DstSubReg, CpyValue); + } +} + +bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI, + MachineFunction *MF) { + // TODO: Handle multiple stores folded into one. + if (!MI.hasOneMemOperand()) + return false; + + if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII)) + return false; // This is not a spill instruction, since no valid size was + // returned from either function. + + return true; +} + +bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI, + MachineFunction *MF, unsigned &Reg) { + if (!isSpillInstruction(MI, MF)) + return false; + + // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an + // actual register number. + if (ObserveAllStackops) { + int FI; + Reg = TII->isStoreToStackSlotPostFE(MI, FI); + return Reg != 0; + } + + auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) { + if (!MO.isReg() || !MO.isUse()) { + Reg = 0; + return false; + } + Reg = MO.getReg(); + return MO.isKill(); + }; + + for (const MachineOperand &MO : MI.operands()) { + // In a spill instruction generated by the InlineSpiller the spilled + // register has its kill flag set. + if (isKilledReg(MO, Reg)) + return true; + if (Reg != 0) { + // Check whether next instruction kills the spilled register. + // FIXME: Current solution does not cover search for killed register in + // bundles and instructions further down the chain. + auto NextI = std::next(MI.getIterator()); + // Skip next instruction that points to basic block end iterator. + if (MI.getParent()->end() == NextI) + continue; + unsigned RegNext; + for (const MachineOperand &MONext : NextI->operands()) { + // Return true if we came across the register from the + // previous spill instruction that is killed in NextI. + if (isKilledReg(MONext, RegNext) && RegNext == Reg) + return true; + } + } + } + // Return false if we didn't find spilled register. + return false; +} + +Optional<SpillLoc> +InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI, + MachineFunction *MF, unsigned &Reg) { + if (!MI.hasOneMemOperand()) + return None; + + // FIXME: Handle folded restore instructions with more than one memory + // operand. + if (MI.getRestoreSize(TII)) { + Reg = MI.getOperand(0).getReg(); + return extractSpillBaseRegAndOffset(MI); + } + return None; +} + +bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) { + // XXX -- it's too difficult to implement VarLocBasedImpl's stack location + // limitations under the new model. Therefore, when comparing them, compare + // versions that don't attempt spills or restores at all. + if (EmulateOldLDV) + return false; + + MachineFunction *MF = MI.getMF(); + unsigned Reg; + Optional<SpillLoc> Loc; + + LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump();); + + // First, if there are any DBG_VALUEs pointing at a spill slot that is + // written to, terminate that variable location. The value in memory + // will have changed. DbgEntityHistoryCalculator doesn't try to detect this. + if (isSpillInstruction(MI, MF)) { + Loc = extractSpillBaseRegAndOffset(MI); + + if (TTracker) { + Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc); + if (MLoc) + TTracker->clobberMloc(*MLoc, MI.getIterator()); + } + } + + // Try to recognise spill and restore instructions that may transfer a value. + if (isLocationSpill(MI, MF, Reg)) { + Loc = extractSpillBaseRegAndOffset(MI); + auto ValueID = MTracker->readReg(Reg); + + // If the location is empty, produce a phi, signify it's the live-in value. + if (ValueID.getLoc() == 0) + ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)}; + + MTracker->setSpill(*Loc, ValueID); + auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc); + assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?"); + LocIdx SpillLocIdx = *OptSpillLocIdx; + + // Tell TransferTracker about this spill, produce DBG_VALUEs for it. + if (TTracker) + TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx, + MI.getIterator()); + } else { + if (!(Loc = isRestoreInstruction(MI, MF, Reg))) + return false; + + // Is there a value to be restored? + auto OptValueID = MTracker->readSpill(*Loc); + if (OptValueID) { + ValueIDNum ValueID = *OptValueID; + LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc); + // XXX -- can we recover sub-registers of this value? Until we can, first + // overwrite all defs of the register being restored to. + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + MTracker->defReg(*RAI, CurBB, CurInst); + + // Now override the reg we're restoring to. + MTracker->setReg(Reg, ValueID); + + // Report this restore to the transfer tracker too. + if (TTracker) + TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg), + MI.getIterator()); + } else { + // There isn't anything in the location; not clear if this is a code path + // that still runs. Def this register anyway just in case. + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + MTracker->defReg(*RAI, CurBB, CurInst); + + // Force the spill slot to be tracked. + LocIdx L = MTracker->getOrTrackSpillLoc(*Loc); + + // Set the restored value to be a machine phi number, signifying that it's + // whatever the spills live-in value is in this block. Definitely has + // a LocIdx due to the setSpill above. + ValueIDNum ValueID = {CurBB, 0, L}; + MTracker->setReg(Reg, ValueID); + MTracker->setSpill(*Loc, ValueID); + } + } + return true; +} + +bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) { + auto DestSrc = TII->isCopyInstr(MI); + if (!DestSrc) + return false; + + const MachineOperand *DestRegOp = DestSrc->Destination; + const MachineOperand *SrcRegOp = DestSrc->Source; + + auto isCalleeSavedReg = [&](unsigned Reg) { + for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI) + if (CalleeSavedRegs.test(*RAI)) + return true; + return false; + }; + + Register SrcReg = SrcRegOp->getReg(); + Register DestReg = DestRegOp->getReg(); + + // Ignore identity copies. Yep, these make it as far as LiveDebugValues. + if (SrcReg == DestReg) + return true; + + // For emulating VarLocBasedImpl: + // We want to recognize instructions where destination register is callee + // saved register. If register that could be clobbered by the call is + // included, there would be a great chance that it is going to be clobbered + // soon. It is more likely that previous register, which is callee saved, is + // going to stay unclobbered longer, even if it is killed. + // + // For InstrRefBasedImpl, we can track multiple locations per value, so + // ignore this condition. + if (EmulateOldLDV && !isCalleeSavedReg(DestReg)) + return false; + + // InstrRefBasedImpl only followed killing copies. + if (EmulateOldLDV && !SrcRegOp->isKill()) + return false; + + // Copy MTracker info, including subregs if available. + InstrRefBasedLDV::performCopy(SrcReg, DestReg); + + // Only produce a transfer of DBG_VALUE within a block where old LDV + // would have. We might make use of the additional value tracking in some + // other way, later. + if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill()) + TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg), + MTracker->getRegMLoc(DestReg), MI.getIterator()); + + // VarLocBasedImpl would quit tracking the old location after copying. + if (EmulateOldLDV && SrcReg != DestReg) + MTracker->defReg(SrcReg, CurBB, CurInst); + + return true; +} + +/// Accumulate a mapping between each DILocalVariable fragment and other +/// fragments of that DILocalVariable which overlap. This reduces work during +/// the data-flow stage from "Find any overlapping fragments" to "Check if the +/// known-to-overlap fragments are present". +/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for +/// fragment usage. +void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) { + DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(), + MI.getDebugLoc()->getInlinedAt()); + FragmentInfo ThisFragment = MIVar.getFragmentOrDefault(); + + // If this is the first sighting of this variable, then we are guaranteed + // there are currently no overlapping fragments either. Initialize the set + // of seen fragments, record no overlaps for the current one, and return. + auto SeenIt = SeenFragments.find(MIVar.getVariable()); + if (SeenIt == SeenFragments.end()) { + SmallSet<FragmentInfo, 4> OneFragment; + OneFragment.insert(ThisFragment); + SeenFragments.insert({MIVar.getVariable(), OneFragment}); + + OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + return; + } + + // If this particular Variable/Fragment pair already exists in the overlap + // map, it has already been accounted for. + auto IsInOLapMap = + OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}}); + if (!IsInOLapMap.second) + return; + + auto &ThisFragmentsOverlaps = IsInOLapMap.first->second; + auto &AllSeenFragments = SeenIt->second; + + // Otherwise, examine all other seen fragments for this variable, with "this" + // fragment being a previously unseen fragment. Record any pair of + // overlapping fragments. + for (auto &ASeenFragment : AllSeenFragments) { + // Does this previously seen fragment overlap? + if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) { + // Yes: Mark the current fragment as being overlapped. + ThisFragmentsOverlaps.push_back(ASeenFragment); + // Mark the previously seen fragment as being overlapped by the current + // one. + auto ASeenFragmentsOverlaps = + OverlapFragments.find({MIVar.getVariable(), ASeenFragment}); + assert(ASeenFragmentsOverlaps != OverlapFragments.end() && + "Previously seen var fragment has no vector of overlaps"); + ASeenFragmentsOverlaps->second.push_back(ThisFragment); + } + } + + AllSeenFragments.insert(ThisFragment); +} + +void InstrRefBasedLDV::process(MachineInstr &MI) { + // Try to interpret an MI as a debug or transfer instruction. Only if it's + // none of these should we interpret it's register defs as new value + // definitions. + if (transferDebugValue(MI)) + return; + if (transferDebugInstrRef(MI)) + return; + if (transferRegisterCopy(MI)) + return; + if (transferSpillOrRestoreInst(MI)) + return; + transferRegisterDef(MI); +} + +void InstrRefBasedLDV::produceMLocTransferFunction( + MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer, + unsigned MaxNumBlocks) { + // Because we try to optimize around register mask operands by ignoring regs + // that aren't currently tracked, we set up something ugly for later: RegMask + // operands that are seen earlier than the first use of a register, still need + // to clobber that register in the transfer function. But this information + // isn't actively recorded. Instead, we track each RegMask used in each block, + // and accumulated the clobbered but untracked registers in each block into + // the following bitvector. Later, if new values are tracked, we can add + // appropriate clobbers. + SmallVector<BitVector, 32> BlockMasks; + BlockMasks.resize(MaxNumBlocks); + + // Reserve one bit per register for the masks described above. + unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs()); + for (auto &BV : BlockMasks) + BV.resize(TRI->getNumRegs(), true); + + // Step through all instructions and inhale the transfer function. + for (auto &MBB : MF) { + // Object fields that are read by trackers to know where we are in the + // function. + CurBB = MBB.getNumber(); + CurInst = 1; + + // Set all machine locations to a PHI value. For transfer function + // production only, this signifies the live-in value to the block. + MTracker->reset(); + MTracker->setMPhis(CurBB); + + // Step through each instruction in this block. + for (auto &MI : MBB) { + process(MI); + // Also accumulate fragment map. + if (MI.isDebugValue()) + accumulateFragmentMap(MI); + + // Create a map from the instruction number (if present) to the + // MachineInstr and its position. + if (uint64_t InstrNo = MI.peekDebugInstrNum()) { + auto InstrAndPos = std::make_pair(&MI, CurInst); + auto InsertResult = + DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos)); + + // There should never be duplicate instruction numbers. + assert(InsertResult.second); + (void)InsertResult; + } + + ++CurInst; + } + + // Produce the transfer function, a map of machine location to new value. If + // any machine location has the live-in phi value from the start of the + // block, it's live-through and doesn't need recording in the transfer + // function. + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + ValueIDNum &P = Location.Value; + if (P.isPHI() && P.getLoc() == Idx.asU64()) + continue; + + // Insert-or-update. + auto &TransferMap = MLocTransfer[CurBB]; + auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P)); + if (!Result.second) + Result.first->second = P; + } + + // Accumulate any bitmask operands into the clobberred reg mask for this + // block. + for (auto &P : MTracker->Masks) { + BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords); + } + } + + // Compute a bitvector of all the registers that are tracked in this block. + const TargetLowering *TLI = MF.getSubtarget().getTargetLowering(); + Register SP = TLI->getStackPointerRegisterToSaveRestore(); + BitVector UsedRegs(TRI->getNumRegs()); + for (auto Location : MTracker->locations()) { + unsigned ID = MTracker->LocIdxToLocID[Location.Idx]; + if (ID >= TRI->getNumRegs() || ID == SP) + continue; + UsedRegs.set(ID); + } + + // Check that any regmask-clobber of a register that gets tracked, is not + // live-through in the transfer function. It needs to be clobbered at the + // very least. + for (unsigned int I = 0; I < MaxNumBlocks; ++I) { + BitVector &BV = BlockMasks[I]; + BV.flip(); + BV &= UsedRegs; + // This produces all the bits that we clobber, but also use. Check that + // they're all clobbered or at least set in the designated transfer + // elem. + for (unsigned Bit : BV.set_bits()) { + unsigned ID = MTracker->getLocID(Bit, false); + LocIdx Idx = MTracker->LocIDToLocIdx[ID]; + auto &TransferMap = MLocTransfer[I]; + + // Install a value representing the fact that this location is effectively + // written to in this block. As there's no reserved value, instead use + // a value number that is never generated. Pick the value number for the + // first instruction in the block, def'ing this location, which we know + // this block never used anyway. + ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx); + auto Result = + TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum)); + if (!Result.second) { + ValueIDNum &ValueID = Result.first->second; + if (ValueID.getBlock() == I && ValueID.isPHI()) + // It was left as live-through. Set it to clobbered. + ValueID = NotGeneratedNum; + } + } + } +} + +std::tuple<bool, bool> +InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB, + SmallPtrSet<const MachineBasicBlock *, 16> &Visited, + ValueIDNum **OutLocs, ValueIDNum *InLocs) { + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + bool Changed = false; + bool DowngradeOccurred = false; + + // Collect predecessors that have been visited. Anything that hasn't been + // visited yet is a backedge on the first iteration, and the meet of it's + // lattice value for all locations will be unaffected. + SmallVector<const MachineBasicBlock *, 8> BlockOrders; + for (auto Pred : MBB.predecessors()) { + if (Visited.count(Pred)) { + BlockOrders.push_back(Pred); + } + } + + // Visit predecessors in RPOT order. + auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) { + return BBToOrder.find(A)->second < BBToOrder.find(B)->second; + }; + llvm::sort(BlockOrders, Cmp); + + // Skip entry block. + if (BlockOrders.size() == 0) + return std::tuple<bool, bool>(false, false); + + // Step through all machine locations, then look at each predecessor and + // detect disagreements. + unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second; + for (auto Location : MTracker->locations()) { + LocIdx Idx = Location.Idx; + // Pick out the first predecessors live-out value for this location. It's + // guaranteed to be not a backedge, as we order by RPO. + ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()]; + + // Some flags for whether there's a disagreement, and whether it's a + // disagreement with a backedge or not. + bool Disagree = false; + bool NonBackEdgeDisagree = false; + + // Loop around everything that wasn't 'base'. + for (unsigned int I = 1; I < BlockOrders.size(); ++I) { + auto *MBB = BlockOrders[I]; + if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) { + // Live-out of a predecessor disagrees with the first predecessor. + Disagree = true; + + // Test whether it's a disagreemnt in the backedges or not. + if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e + NonBackEdgeDisagree = true; + } + } + + bool OverRide = false; + if (Disagree && !NonBackEdgeDisagree) { + // Only the backedges disagree. Consider demoting the livein + // lattice value, as per the file level comment. The value we consider + // demoting to is the value that the non-backedge predecessors agree on. + // The order of values is that non-PHIs are \top, a PHI at this block + // \bot, and phis between the two are ordered by their RPO number. + // If there's no agreement, or we've already demoted to this PHI value + // before, replace with a PHI value at this block. + + // Calculate order numbers: zero means normal def, nonzero means RPO + // number. + unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1; + if (!BaseVal.isPHI()) + BaseBlockRPONum = 0; + + ValueIDNum &InLocID = InLocs[Idx.asU64()]; + unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1; + if (!InLocID.isPHI()) + InLocRPONum = 0; + + // Should we ignore the disagreeing backedges, and override with the + // value the other predecessors agree on (in "base")? + unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1; + if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) { + // Override. + OverRide = true; + DowngradeOccurred = true; + } + } + // else: if we disagree in the non-backedges, then this is definitely + // a control flow merge where different values merge. Make it a PHI. + + // Generate a phi... + ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx}; + ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal; + if (InLocs[Idx.asU64()] != NewVal) { + Changed |= true; + InLocs[Idx.asU64()] = NewVal; + } + } + + // TODO: Reimplement NumInserted and NumRemoved. + return std::tuple<bool, bool>(Changed, DowngradeOccurred); +} + +void InstrRefBasedLDV::mlocDataflow( + ValueIDNum **MInLocs, ValueIDNum **MOutLocs, + SmallVectorImpl<MLocTransferMap> &MLocTransfer) { + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist, Pending; + + // We track what is on the current and pending worklist to avoid inserting + // the same thing twice. We could avoid this with a custom priority queue, + // but this is probably not worth it. + SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist; + + // Initialize worklist with every block to be visited. + for (unsigned int I = 0; I < BBToOrder.size(); ++I) { + Worklist.push(I); + OnWorklist.insert(OrderToBB[I]); + } + + MTracker->reset(); + + // Set inlocs for entry block -- each as a PHI at the entry block. Represents + // the incoming value to the function. + MTracker->setMPhis(0); + for (auto Location : MTracker->locations()) + MInLocs[0][Location.Idx.asU64()] = Location.Value; + + SmallPtrSet<const MachineBasicBlock *, 16> Visited; + while (!Worklist.empty() || !Pending.empty()) { + // Vector for storing the evaluated block transfer function. + SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap; + + while (!Worklist.empty()) { + MachineBasicBlock *MBB = OrderToBB[Worklist.top()]; + CurBB = MBB->getNumber(); + Worklist.pop(); + + // Join the values in all predecessor blocks. + bool InLocsChanged, DowngradeOccurred; + std::tie(InLocsChanged, DowngradeOccurred) = + mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]); + InLocsChanged |= Visited.insert(MBB).second; + + // If a downgrade occurred, book us in for re-examination on the next + // iteration. + if (DowngradeOccurred && OnPending.insert(MBB).second) + Pending.push(BBToOrder[MBB]); + + // Don't examine transfer function if we've visited this loc at least + // once, and inlocs haven't changed. + if (!InLocsChanged) + continue; + + // Load the current set of live-ins into MLocTracker. + MTracker->loadFromArray(MInLocs[CurBB], CurBB); + + // Each element of the transfer function can be a new def, or a read of + // a live-in value. Evaluate each element, and store to "ToRemap". + ToRemap.clear(); + for (auto &P : MLocTransfer[CurBB]) { + if (P.second.getBlock() == CurBB && P.second.isPHI()) { + // This is a movement of whatever was live in. Read it. + ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc()); + ToRemap.push_back(std::make_pair(P.first, NewID)); + } else { + // It's a def. Just set it. + assert(P.second.getBlock() == CurBB); + ToRemap.push_back(std::make_pair(P.first, P.second)); + } + } + + // Commit the transfer function changes into mloc tracker, which + // transforms the contents of the MLocTracker into the live-outs. + for (auto &P : ToRemap) + MTracker->setMLoc(P.first, P.second); + + // Now copy out-locs from mloc tracker into out-loc vector, checking + // whether changes have occurred. These changes can have come from both + // the transfer function, and mlocJoin. + bool OLChanged = false; + for (auto Location : MTracker->locations()) { + OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value; + MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value; + } + + MTracker->reset(); + + // No need to examine successors again if out-locs didn't change. + if (!OLChanged) + continue; + + // All successors should be visited: put any back-edges on the pending + // list for the next dataflow iteration, and any other successors to be + // visited this iteration, if they're not going to be already. + for (auto s : MBB->successors()) { + // Does branching to this successor represent a back-edge? + if (BBToOrder[s] > BBToOrder[MBB]) { + // No: visit it during this dataflow iteration. + if (OnWorklist.insert(s).second) + Worklist.push(BBToOrder[s]); + } else { + // Yes: visit it on the next iteration. + if (OnPending.insert(s).second) + Pending.push(BBToOrder[s]); + } + } + } + + Worklist.swap(Pending); + std::swap(OnPending, OnWorklist); + OnPending.clear(); + // At this point, pending must be empty, since it was just the empty + // worklist + assert(Pending.empty() && "Pending should be empty"); + } + + // Once all the live-ins don't change on mlocJoin(), we've reached a + // fixedpoint. +} + +bool InstrRefBasedLDV::vlocDowngradeLattice( + const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation, + const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) { + // Ranking value preference: see file level comment, the highest rank is + // a plain def, followed by PHI values in reverse post-order. Numerically, + // we assign all defs the rank '0', all PHIs their blocks RPO number plus + // one, and consider the lowest value the highest ranked. + int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1; + if (!OldLiveInLocation.ID.isPHI()) + OldLiveInRank = 0; + + // Allow any unresolvable conflict to be over-ridden. + if (OldLiveInLocation.Kind == DbgValue::NoVal) { + // Although if it was an unresolvable conflict from _this_ block, then + // all other seeking of downgrades and PHIs must have failed before hand. + if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber()) + return false; + OldLiveInRank = INT_MIN; + } + + auto &InValue = *Values[0].second; + + if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal) + return false; + + unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()]; + int ThisRank = ThisRPO + 1; + if (!InValue.ID.isPHI()) + ThisRank = 0; + + // Too far down the lattice? + if (ThisRPO >= CurBlockRPONum) + return false; + + // Higher in the lattice than what we've already explored? + if (ThisRank <= OldLiveInRank) + return false; + + return true; +} + +std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc( + MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts, + ValueIDNum **MOutLocs, ValueIDNum **MInLocs, + const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) { + // Collect a set of locations from predecessor where its live-out value can + // be found. + SmallVector<SmallVector<LocIdx, 4>, 8> Locs; + unsigned NumLocs = MTracker->getNumLocs(); + unsigned BackEdgesStart = 0; + + for (auto p : BlockOrders) { + // Pick out where backedges start in the list of predecessors. Relies on + // BlockOrders being sorted by RPO. + if (BBToOrder[p] < BBToOrder[&MBB]) + ++BackEdgesStart; + + // For each predecessor, create a new set of locations. + Locs.resize(Locs.size() + 1); + unsigned ThisBBNum = p->getNumber(); + auto LiveOutMap = LiveOuts.find(p); + if (LiveOutMap == LiveOuts.end()) + // This predecessor isn't in scope, it must have no live-in/live-out + // locations. + continue; + + auto It = LiveOutMap->second->find(Var); + if (It == LiveOutMap->second->end()) + // There's no value recorded for this variable in this predecessor, + // leave an empty set of locations. + continue; + + const DbgValue &OutVal = It->second; + + if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal) + // Consts and no-values cannot have locations we can join on. + continue; + + assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def); + ValueIDNum ValToLookFor = OutVal.ID; + + // Search the live-outs of the predecessor for the specified value. + for (unsigned int I = 0; I < NumLocs; ++I) { + if (MOutLocs[ThisBBNum][I] == ValToLookFor) + Locs.back().push_back(LocIdx(I)); + } + } + + // If there were no locations at all, return an empty result. + if (Locs.empty()) + return std::tuple<Optional<ValueIDNum>, bool>(None, false); + + // Lambda for seeking a common location within a range of location-sets. + using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator; + auto SeekLocation = + [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> { + // Starting with the first set of locations, take the intersection with + // subsequent sets. + SmallVector<LocIdx, 4> base = Locs[0]; + for (auto &S : SearchRange) { + SmallVector<LocIdx, 4> new_base; + std::set_intersection(base.begin(), base.end(), S.begin(), S.end(), + std::inserter(new_base, new_base.begin())); + base = new_base; + } + if (base.empty()) + return None; + + // We now have a set of LocIdxes that contain the right output value in + // each of the predecessors. Pick the lowest; if there's a register loc, + // that'll be it. + return *base.begin(); + }; + + // Search for a common location for all predecessors. If we can't, then fall + // back to only finding a common location between non-backedge predecessors. + bool ValidForAllLocs = true; + auto TheLoc = SeekLocation(Locs); + if (!TheLoc) { + ValidForAllLocs = false; + TheLoc = + SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart)); + } + + if (!TheLoc) + return std::tuple<Optional<ValueIDNum>, bool>(None, false); + + // Return a PHI-value-number for the found location. + LocIdx L = *TheLoc; + ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L}; + return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs); +} + +std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin( + MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs, + SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum, + const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs, + ValueIDNum **MInLocs, + SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks, + SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore, + DenseMap<DebugVariable, DbgValue> &InLocsT) { + bool DowngradeOccurred = false; + + // To emulate VarLocBasedImpl, process this block if it's not in scope but + // _does_ assign a variable value. No live-ins for this scope are transferred + // in though, so we can return immediately. + if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) { + if (VLOCVisited) + return std::tuple<bool, bool>(true, false); + return std::tuple<bool, bool>(false, false); + } + + LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n"); + bool Changed = false; + + // Find any live-ins computed in a prior iteration. + auto ILSIt = VLOCInLocs.find(&MBB); + assert(ILSIt != VLOCInLocs.end()); + auto &ILS = *ILSIt->second; + + // Order predecessors by RPOT order, for exploring them in that order. + SmallVector<MachineBasicBlock *, 8> BlockOrders; + for (auto p : MBB.predecessors()) + BlockOrders.push_back(p); + + auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { + return BBToOrder[A] < BBToOrder[B]; + }; + + llvm::sort(BlockOrders, Cmp); + + unsigned CurBlockRPONum = BBToOrder[&MBB]; + + // Force a re-visit to loop heads in the first dataflow iteration. + // FIXME: if we could "propose" Const values this wouldn't be needed, + // because they'd need to be confirmed before being emitted. + if (!BlockOrders.empty() && + BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum && + VLOCVisited) + DowngradeOccurred = true; + + auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) { + auto Result = InLocsT.insert(std::make_pair(DV, VR)); + (void)Result; + assert(Result.second); + }; + + auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) { + DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal); + + ConfirmValue(Var, NoLocPHIVal); + }; + + // Attempt to join the values for each variable. + for (auto &Var : AllVars) { + // Collect all the DbgValues for this variable. + SmallVector<InValueT, 8> Values; + bool Bail = false; + unsigned BackEdgesStart = 0; + for (auto p : BlockOrders) { + // If the predecessor isn't in scope / to be explored, we'll never be + // able to join any locations. + if (!BlocksToExplore.contains(p)) { + Bail = true; + break; + } + + // Don't attempt to handle unvisited predecessors: they're implicitly + // "unknown"s in the lattice. + if (VLOCVisited && !VLOCVisited->count(p)) + continue; + + // If the predecessors OutLocs is absent, there's not much we can do. + auto OL = VLOCOutLocs.find(p); + if (OL == VLOCOutLocs.end()) { + Bail = true; + break; + } + + // No live-out value for this predecessor also means we can't produce + // a joined value. + auto VIt = OL->second->find(Var); + if (VIt == OL->second->end()) { + Bail = true; + break; + } + + // Keep track of where back-edges begin in the Values vector. Relies on + // BlockOrders being sorted by RPO. + unsigned ThisBBRPONum = BBToOrder[p]; + if (ThisBBRPONum < CurBlockRPONum) + ++BackEdgesStart; + + Values.push_back(std::make_pair(p, &VIt->second)); + } + + // If there were no values, or one of the predecessors couldn't have a + // value, then give up immediately. It's not safe to produce a live-in + // value. + if (Bail || Values.size() == 0) + continue; + + // Enumeration identifying the current state of the predecessors values. + enum { + Unset = 0, + Agreed, // All preds agree on the variable value. + PropDisagree, // All preds agree, but the value kind is Proposed in some. + BEDisagree, // Only back-edges disagree on variable value. + PHINeeded, // Non-back-edge predecessors have conflicing values. + NoSolution // Conflicting Value metadata makes solution impossible. + } OurState = Unset; + + // All (non-entry) blocks have at least one non-backedge predecessor. + // Pick the variable value from the first of these, to compare against + // all others. + const DbgValue &FirstVal = *Values[0].second; + const ValueIDNum &FirstID = FirstVal.ID; + + // Scan for variable values that can't be resolved: if they have different + // DIExpressions, different indirectness, or are mixed constants / + // non-constants. + for (auto &V : Values) { + if (V.second->Properties != FirstVal.Properties) + OurState = NoSolution; + if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const) + OurState = NoSolution; + } + + // Flags diagnosing _how_ the values disagree. + bool NonBackEdgeDisagree = false; + bool DisagreeOnPHINess = false; + bool IDDisagree = false; + bool Disagree = false; + if (OurState == Unset) { + for (auto &V : Values) { + if (*V.second == FirstVal) + continue; // No disagreement. + + Disagree = true; + + // Flag whether the value number actually diagrees. + if (V.second->ID != FirstID) + IDDisagree = true; + + // Distinguish whether disagreement happens in backedges or not. + // Relies on Values (and BlockOrders) being sorted by RPO. + unsigned ThisBBRPONum = BBToOrder[V.first]; + if (ThisBBRPONum < CurBlockRPONum) + NonBackEdgeDisagree = true; + + // Is there a difference in whether the value is definite or only + // proposed? + if (V.second->Kind != FirstVal.Kind && + (V.second->Kind == DbgValue::Proposed || + V.second->Kind == DbgValue::Def) && + (FirstVal.Kind == DbgValue::Proposed || + FirstVal.Kind == DbgValue::Def)) + DisagreeOnPHINess = true; + } + + // Collect those flags together and determine an overall state for + // what extend the predecessors agree on a live-in value. + if (!Disagree) + OurState = Agreed; + else if (!IDDisagree && DisagreeOnPHINess) + OurState = PropDisagree; + else if (!NonBackEdgeDisagree) + OurState = BEDisagree; + else + OurState = PHINeeded; + } + + // An extra indicator: if we only disagree on whether the value is a + // Def, or proposed, then also flag whether that disagreement happens + // in backedges only. + bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess && + !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def; + + const auto &Properties = FirstVal.Properties; + + auto OldLiveInIt = ILS.find(Var); + const DbgValue *OldLiveInLocation = + (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr; + + bool OverRide = false; + if (OurState == BEDisagree && OldLiveInLocation) { + // Only backedges disagree: we can consider downgrading. If there was a + // previous live-in value, use it to work out whether the current + // incoming value represents a lattice downgrade or not. + OverRide = + vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum); + } + + // Use the current state of predecessor agreement and other flags to work + // out what to do next. Possibilities include: + // * Accept a value all predecessors agree on, or accept one that + // represents a step down the exploration lattice, + // * Use a PHI value number, if one can be found, + // * Propose a PHI value number, and see if it gets confirmed later, + // * Emit a 'NoVal' value, indicating we couldn't resolve anything. + if (OurState == Agreed) { + // Easiest solution: all predecessors agree on the variable value. + ConfirmValue(Var, FirstVal); + } else if (OurState == BEDisagree && OverRide) { + // Only backedges disagree, and the other predecessors have produced + // a new live-in value further down the exploration lattice. + DowngradeOccurred = true; + ConfirmValue(Var, FirstVal); + } else if (OurState == PropDisagree) { + // Predecessors agree on value, but some say it's only a proposed value. + // Propagate it as proposed: unless it was proposed in this block, in + // which case we're able to confirm the value. + if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) { + ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); + } else if (PropOnlyInBEs) { + // If only backedges disagree, a higher (in RPO) block confirmed this + // location, and we need to propagate it into this loop. + ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def)); + } else { + // Otherwise; a Def meeting a Proposed is still a Proposed. + ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed)); + } + } else if ((OurState == PHINeeded || OurState == BEDisagree)) { + // Predecessors disagree and can't be downgraded: this can only be + // solved with a PHI. Use pickVPHILoc to go look for one. + Optional<ValueIDNum> VPHI; + bool AllEdgesVPHI = false; + std::tie(VPHI, AllEdgesVPHI) = + pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders); + + if (VPHI && AllEdgesVPHI) { + // There's a PHI value that's valid for all predecessors -- we can use + // it. If any of the non-backedge predecessors have proposed values + // though, this PHI is also only proposed, until the predecessors are + // confirmed. + DbgValue::KindT K = DbgValue::Def; + for (unsigned int I = 0; I < BackEdgesStart; ++I) + if (Values[I].second->Kind == DbgValue::Proposed) + K = DbgValue::Proposed; + + ConfirmValue(Var, DbgValue(*VPHI, Properties, K)); + } else if (VPHI) { + // There's a PHI value, but it's only legal for backedges. Leave this + // as a proposed PHI value: it might come back on the backedges, + // and allow us to confirm it in the future. + DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed); + ConfirmValue(Var, NoBEValue); + } else { + ConfirmNoVal(Var, Properties); + } + } else { + // Otherwise: we don't know. Emit a "phi but no real loc" phi. + ConfirmNoVal(Var, Properties); + } + } + + // Store newly calculated in-locs into VLOCInLocs, if they've changed. + Changed = ILS != InLocsT; + if (Changed) + ILS = InLocsT; + + return std::tuple<bool, bool>(Changed, DowngradeOccurred); +} + +void InstrRefBasedLDV::vlocDataflow( + const LexicalScope *Scope, const DILocation *DILoc, + const SmallSet<DebugVariable, 4> &VarsWeCareAbout, + SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output, + ValueIDNum **MOutLocs, ValueIDNum **MInLocs, + SmallVectorImpl<VLocTracker> &AllTheVLocs) { + // This method is much like mlocDataflow: but focuses on a single + // LexicalScope at a time. Pick out a set of blocks and variables that are + // to have their value assignments solved, then run our dataflow algorithm + // until a fixedpoint is reached. + std::priority_queue<unsigned int, std::vector<unsigned int>, + std::greater<unsigned int>> + Worklist, Pending; + SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending; + + // The set of blocks we'll be examining. + SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore; + + // The order in which to examine them (RPO). + SmallVector<MachineBasicBlock *, 8> BlockOrders; + + // RPO ordering function. + auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) { + return BBToOrder[A] < BBToOrder[B]; + }; + + LS.getMachineBasicBlocks(DILoc, BlocksToExplore); + + // A separate container to distinguish "blocks we're exploring" versus + // "blocks that are potentially in scope. See comment at start of vlocJoin. + SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore; + + // Old LiveDebugValues tracks variable locations that come out of blocks + // not in scope, where DBG_VALUEs occur. This is something we could + // legitimately ignore, but lets allow it for now. + if (EmulateOldLDV) + BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end()); + + // We also need to propagate variable values through any artificial blocks + // that immediately follow blocks in scope. + DenseSet<const MachineBasicBlock *> ToAdd; + + // Helper lambda: For a given block in scope, perform a depth first search + // of all the artificial successors, adding them to the ToAdd collection. + auto AccumulateArtificialBlocks = + [this, &ToAdd, &BlocksToExplore, + &InScopeBlocks](const MachineBasicBlock *MBB) { + // Depth-first-search state: each node is a block and which successor + // we're currently exploring. + SmallVector<std::pair<const MachineBasicBlock *, + MachineBasicBlock::const_succ_iterator>, + 8> + DFS; + + // Find any artificial successors not already tracked. + for (auto *succ : MBB->successors()) { + if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ)) + continue; + if (!ArtificialBlocks.count(succ)) + continue; + DFS.push_back(std::make_pair(succ, succ->succ_begin())); + ToAdd.insert(succ); + } + + // Search all those blocks, depth first. + while (!DFS.empty()) { + const MachineBasicBlock *CurBB = DFS.back().first; + MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second; + // Walk back if we've explored this blocks successors to the end. + if (CurSucc == CurBB->succ_end()) { + DFS.pop_back(); + continue; + } + + // If the current successor is artificial and unexplored, descend into + // it. + if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) { + DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin())); + ToAdd.insert(*CurSucc); + continue; + } + + ++CurSucc; + } + }; + + // Search in-scope blocks and those containing a DBG_VALUE from this scope + // for artificial successors. + for (auto *MBB : BlocksToExplore) + AccumulateArtificialBlocks(MBB); + for (auto *MBB : InScopeBlocks) + AccumulateArtificialBlocks(MBB); + + BlocksToExplore.insert(ToAdd.begin(), ToAdd.end()); + InScopeBlocks.insert(ToAdd.begin(), ToAdd.end()); + + // Single block scope: not interesting! No propagation at all. Note that + // this could probably go above ArtificialBlocks without damage, but + // that then produces output differences from original-live-debug-values, + // which propagates from a single block into many artificial ones. + if (BlocksToExplore.size() == 1) + return; + + // Picks out relevants blocks RPO order and sort them. + for (auto *MBB : BlocksToExplore) + BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB)); + + llvm::sort(BlockOrders, Cmp); + unsigned NumBlocks = BlockOrders.size(); + + // Allocate some vectors for storing the live ins and live outs. Large. + SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts; + LiveIns.resize(NumBlocks); + LiveOuts.resize(NumBlocks); + + // Produce by-MBB indexes of live-in/live-outs, to ease lookup within + // vlocJoin. + LiveIdxT LiveOutIdx, LiveInIdx; + LiveOutIdx.reserve(NumBlocks); + LiveInIdx.reserve(NumBlocks); + for (unsigned I = 0; I < NumBlocks; ++I) { + LiveOutIdx[BlockOrders[I]] = &LiveOuts[I]; + LiveInIdx[BlockOrders[I]] = &LiveIns[I]; + } + + for (auto *MBB : BlockOrders) { + Worklist.push(BBToOrder[MBB]); + OnWorklist.insert(MBB); + } + + // Iterate over all the blocks we selected, propagating variable values. + bool FirstTrip = true; + SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited; + while (!Worklist.empty() || !Pending.empty()) { + while (!Worklist.empty()) { + auto *MBB = OrderToBB[Worklist.top()]; + CurBB = MBB->getNumber(); + Worklist.pop(); + + DenseMap<DebugVariable, DbgValue> JoinedInLocs; + + // Join values from predecessors. Updates LiveInIdx, and writes output + // into JoinedInLocs. + bool InLocsChanged, DowngradeOccurred; + std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin( + *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr, + CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks, + BlocksToExplore, JoinedInLocs); + + bool FirstVisit = VLOCVisited.insert(MBB).second; + + // Always explore transfer function if inlocs changed, or if we've not + // visited this block before. + InLocsChanged |= FirstVisit; + + // If a downgrade occurred, book us in for re-examination on the next + // iteration. + if (DowngradeOccurred && OnPending.insert(MBB).second) + Pending.push(BBToOrder[MBB]); + + if (!InLocsChanged) + continue; + + // Do transfer function. + auto &VTracker = AllTheVLocs[MBB->getNumber()]; + for (auto &Transfer : VTracker.Vars) { + // Is this var we're mangling in this scope? + if (VarsWeCareAbout.count(Transfer.first)) { + // Erase on empty transfer (DBG_VALUE $noreg). + if (Transfer.second.Kind == DbgValue::Undef) { + JoinedInLocs.erase(Transfer.first); + } else { + // Insert new variable value; or overwrite. + auto NewValuePair = std::make_pair(Transfer.first, Transfer.second); + auto Result = JoinedInLocs.insert(NewValuePair); + if (!Result.second) + Result.first->second = Transfer.second; + } + } + } + + // Did the live-out locations change? + bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB]; + + // If they haven't changed, there's no need to explore further. + if (!OLChanged) + continue; + + // Commit to the live-out record. + *LiveOutIdx[MBB] = JoinedInLocs; + + // We should visit all successors. Ensure we'll visit any non-backedge + // successors during this dataflow iteration; book backedge successors + // to be visited next time around. + for (auto s : MBB->successors()) { + // Ignore out of scope / not-to-be-explored successors. + if (LiveInIdx.find(s) == LiveInIdx.end()) + continue; + + if (BBToOrder[s] > BBToOrder[MBB]) { + if (OnWorklist.insert(s).second) + Worklist.push(BBToOrder[s]); + } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) { + Pending.push(BBToOrder[s]); + } + } + } + Worklist.swap(Pending); + std::swap(OnWorklist, OnPending); + OnPending.clear(); + assert(Pending.empty()); + FirstTrip = false; + } + + // Dataflow done. Now what? Save live-ins. Ignore any that are still marked + // as being variable-PHIs, because those did not have their machine-PHI + // value confirmed. Such variable values are places that could have been + // PHIs, but are not. + for (auto *MBB : BlockOrders) { + auto &VarMap = *LiveInIdx[MBB]; + for (auto &P : VarMap) { + if (P.second.Kind == DbgValue::Proposed || + P.second.Kind == DbgValue::NoVal) + continue; + Output[MBB->getNumber()].push_back(P); + } + } + + BlockOrders.clear(); + BlocksToExplore.clear(); +} + +#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) +void InstrRefBasedLDV::dump_mloc_transfer( + const MLocTransferMap &mloc_transfer) const { + for (auto &P : mloc_transfer) { + std::string foo = MTracker->LocIdxToName(P.first); + std::string bar = MTracker->IDAsString(P.second); + dbgs() << "Loc " << foo << " --> " << bar << "\n"; + } +} +#endif + +void InstrRefBasedLDV::emitLocations( + MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs, + DenseMap<DebugVariable, unsigned> &AllVarsNumbering) { + TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs); + unsigned NumLocs = MTracker->getNumLocs(); + + // For each block, load in the machine value locations and variable value + // live-ins, then step through each instruction in the block. New DBG_VALUEs + // to be inserted will be created along the way. + for (MachineBasicBlock &MBB : MF) { + unsigned bbnum = MBB.getNumber(); + MTracker->reset(); + MTracker->loadFromArray(MInLocs[bbnum], bbnum); + TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()], + NumLocs); + + CurBB = bbnum; + CurInst = 1; + for (auto &MI : MBB) { + process(MI); + TTracker->checkInstForNewValues(CurInst, MI.getIterator()); + ++CurInst; + } + } + + // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer + // in DWARF in different orders. Use the order that they appear when walking + // through each block / each instruction, stored in AllVarsNumbering. + auto OrderDbgValues = [&](const MachineInstr *A, + const MachineInstr *B) -> bool { + DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(), + A->getDebugLoc()->getInlinedAt()); + DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(), + B->getDebugLoc()->getInlinedAt()); + return AllVarsNumbering.find(VarA)->second < + AllVarsNumbering.find(VarB)->second; + }; + + // Go through all the transfers recorded in the TransferTracker -- this is + // both the live-ins to a block, and any movements of values that happen + // in the middle. + for (auto &P : TTracker->Transfers) { + // Sort them according to appearance order. + llvm::sort(P.Insts, OrderDbgValues); + // Insert either before or after the designated point... + if (P.MBB) { + MachineBasicBlock &MBB = *P.MBB; + for (auto *MI : P.Insts) { + MBB.insert(P.Pos, MI); + } + } else { + MachineBasicBlock &MBB = *P.Pos->getParent(); + for (auto *MI : P.Insts) { + MBB.insertAfter(P.Pos, MI); + } + } + } +} + +void InstrRefBasedLDV::initialSetup(MachineFunction &MF) { + // Build some useful data structures. + auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool { + if (const DebugLoc &DL = MI.getDebugLoc()) + return DL.getLine() != 0; + return false; + }; + // Collect a set of all the artificial blocks. + for (auto &MBB : MF) + if (none_of(MBB.instrs(), hasNonArtificialLocation)) + ArtificialBlocks.insert(&MBB); + + // Compute mappings of block <=> RPO order. + ReversePostOrderTraversal<MachineFunction *> RPOT(&MF); + unsigned int RPONumber = 0; + for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) { + OrderToBB[RPONumber] = *RI; + BBToOrder[*RI] = RPONumber; + BBNumToRPO[(*RI)->getNumber()] = RPONumber; + ++RPONumber; + } +} + +/// Calculate the liveness information for the given machine function and +/// extend ranges across basic blocks. +bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF, + TargetPassConfig *TPC) { + // No subprogram means this function contains no debuginfo. + if (!MF.getFunction().getSubprogram()) + return false; + + LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n"); + this->TPC = TPC; + + TRI = MF.getSubtarget().getRegisterInfo(); + TII = MF.getSubtarget().getInstrInfo(); + TFI = MF.getSubtarget().getFrameLowering(); + TFI->getCalleeSaves(MF, CalleeSavedRegs); + LS.initialize(MF); + + MTracker = + new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering()); + VTracker = nullptr; + TTracker = nullptr; + + SmallVector<MLocTransferMap, 32> MLocTransfer; + SmallVector<VLocTracker, 8> vlocs; + LiveInsT SavedLiveIns; + + int MaxNumBlocks = -1; + for (auto &MBB : MF) + MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks); + assert(MaxNumBlocks >= 0); + ++MaxNumBlocks; + + MLocTransfer.resize(MaxNumBlocks); + vlocs.resize(MaxNumBlocks); + SavedLiveIns.resize(MaxNumBlocks); + + initialSetup(MF); + + produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks); + + // Allocate and initialize two array-of-arrays for the live-in and live-out + // machine values. The outer dimension is the block number; while the inner + // dimension is a LocIdx from MLocTracker. + ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks]; + ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks]; + unsigned NumLocs = MTracker->getNumLocs(); + for (int i = 0; i < MaxNumBlocks; ++i) { + MOutLocs[i] = new ValueIDNum[NumLocs]; + MInLocs[i] = new ValueIDNum[NumLocs]; + } + + // Solve the machine value dataflow problem using the MLocTransfer function, + // storing the computed live-ins / live-outs into the array-of-arrays. We use + // both live-ins and live-outs for decision making in the variable value + // dataflow problem. + mlocDataflow(MInLocs, MOutLocs, MLocTransfer); + + // Walk back through each block / instruction, collecting DBG_VALUE + // instructions and recording what machine value their operands refer to. + for (auto &OrderPair : OrderToBB) { + MachineBasicBlock &MBB = *OrderPair.second; + CurBB = MBB.getNumber(); + VTracker = &vlocs[CurBB]; + VTracker->MBB = &MBB; + MTracker->loadFromArray(MInLocs[CurBB], CurBB); + CurInst = 1; + for (auto &MI : MBB) { + process(MI); + ++CurInst; + } + MTracker->reset(); + } + + // Number all variables in the order that they appear, to be used as a stable + // insertion order later. + DenseMap<DebugVariable, unsigned> AllVarsNumbering; + + // Map from one LexicalScope to all the variables in that scope. + DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars; + + // Map from One lexical scope to all blocks in that scope. + DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>> + ScopeToBlocks; + + // Store a DILocation that describes a scope. + DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation; + + // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise + // the order is unimportant, it just has to be stable. + for (unsigned int I = 0; I < OrderToBB.size(); ++I) { + auto *MBB = OrderToBB[I]; + auto *VTracker = &vlocs[MBB->getNumber()]; + // Collect each variable with a DBG_VALUE in this block. + for (auto &idx : VTracker->Vars) { + const auto &Var = idx.first; + const DILocation *ScopeLoc = VTracker->Scopes[Var]; + assert(ScopeLoc != nullptr); + auto *Scope = LS.findLexicalScope(ScopeLoc); + + // No insts in scope -> shouldn't have been recorded. + assert(Scope != nullptr); + + AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size())); + ScopeToVars[Scope].insert(Var); + ScopeToBlocks[Scope].insert(VTracker->MBB); + ScopeToDILocation[Scope] = ScopeLoc; + } + } + + // OK. Iterate over scopes: there might be something to be said for + // ordering them by size/locality, but that's for the future. For each scope, + // solve the variable value problem, producing a map of variables to values + // in SavedLiveIns. + for (auto &P : ScopeToVars) { + vlocDataflow(P.first, ScopeToDILocation[P.first], P.second, + ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs, + vlocs); + } + + // Using the computed value locations and variable values for each block, + // create the DBG_VALUE instructions representing the extended variable + // locations. + emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering); + + for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) { + delete[] MOutLocs[Idx]; + delete[] MInLocs[Idx]; + } + delete[] MOutLocs; + delete[] MInLocs; + + // Did we actually make any changes? If we created any DBG_VALUEs, then yes. + bool Changed = TTracker->Transfers.size() != 0; + + delete MTracker; + delete TTracker; + MTracker = nullptr; + VTracker = nullptr; + TTracker = nullptr; + + ArtificialBlocks.clear(); + OrderToBB.clear(); + BBToOrder.clear(); + BBNumToRPO.clear(); + DebugInstrNumToInstr.clear(); + + return Changed; +} + +LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() { + return new InstrRefBasedLDV(); +} |