aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
diff options
context:
space:
mode:
authorshadchin <shadchin@yandex-team.ru>2022-02-10 16:44:39 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:44:39 +0300
commite9656aae26e0358d5378e5b63dcac5c8dbe0e4d0 (patch)
tree64175d5cadab313b3e7039ebaa06c5bc3295e274 /contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
parent2598ef1d0aee359b4b6d5fdd1758916d5907d04f (diff)
downloadydb-e9656aae26e0358d5378e5b63dcac5c8dbe0e4d0.tar.gz
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp')
-rw-r--r--contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp6726
1 files changed, 3363 insertions, 3363 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
index f76eb9e740..18ffe8ba06 100644
--- a/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
+++ b/contrib/libs/llvm12/lib/CodeGen/LiveDebugValues/InstrRefBasedImpl.cpp
@@ -1,3363 +1,3363 @@
-//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-/// \file InstrRefBasedImpl.cpp
-///
-/// This is a separate implementation of LiveDebugValues, see
-/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
-///
-/// This pass propagates variable locations between basic blocks, resolving
-/// control flow conflicts between them. The problem is much like SSA
-/// construction, where each DBG_VALUE instruction assigns the *value* that
-/// a variable has, and every instruction where the variable is in scope uses
-/// that variable. The resulting map of instruction-to-value is then translated
-/// into a register (or spill) location for each variable over each instruction.
-///
-/// This pass determines which DBG_VALUE dominates which instructions, or if
-/// none do, where values must be merged (like PHI nodes). The added
-/// complication is that because codegen has already finished, a PHI node may
-/// be needed for a variable location to be correct, but no register or spill
-/// slot merges the necessary values. In these circumstances, the variable
-/// location is dropped.
-///
-/// What makes this analysis non-trivial is loops: we cannot tell in advance
-/// whether a variable location is live throughout a loop, or whether its
-/// location is clobbered (or redefined by another DBG_VALUE), without
-/// exploring all the way through.
-///
-/// To make this simpler we perform two kinds of analysis. First, we identify
-/// every value defined by every instruction (ignoring those that only move
-/// another value), then compute a map of which values are available for each
-/// instruction. This is stronger than a reaching-def analysis, as we create
-/// PHI values where other values merge.
-///
-/// Secondly, for each variable, we effectively re-construct SSA using each
-/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
-/// first analysis from the location they refer to. We can then compute the
-/// dominance frontiers of where a variable has a value, and create PHI nodes
-/// where they merge.
-/// This isn't precisely SSA-construction though, because the function shape
-/// is pre-defined. If a variable location requires a PHI node, but no
-/// PHI for the relevant values is present in the function (as computed by the
-/// first analysis), the location must be dropped.
-///
-/// Once both are complete, we can pass back over all instructions knowing:
-/// * What _value_ each variable should contain, either defined by an
-/// instruction or where control flow merges
-/// * What the location of that value is (if any).
-/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
-/// a value moves location. After this pass runs, all variable locations within
-/// a block should be specified by DBG_VALUEs within that block, allowing
-/// DbgEntityHistoryCalculator to focus on individual blocks.
-///
-/// This pass is able to go fast because the size of the first
-/// reaching-definition analysis is proportional to the working-set size of
-/// the function, which the compiler tries to keep small. (It's also
-/// proportional to the number of blocks). Additionally, we repeatedly perform
-/// the second reaching-definition analysis with only the variables and blocks
-/// in a single lexical scope, exploiting their locality.
-///
-/// Determining where PHIs happen is trickier with this approach, and it comes
-/// to a head in the major problem for LiveDebugValues: is a value live-through
-/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
-/// facts about a function, however this analysis needs to generate new value
-/// numbers at joins.
-///
-/// To do this, consider a lattice of all definition values, from instructions
-/// and from PHIs. Each PHI is characterised by the RPO number of the block it
-/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
-/// with non-PHI values at the top, and any PHI value in the last block (by RPO
-/// order) at the bottom.
-///
-/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
-/// "rank" always refers to the former).
-///
-/// At any join, for each register, we consider:
-/// * All incoming values, and
-/// * The PREVIOUS live-in value at this join.
-/// If all incoming values agree: that's the live-in value. If they do not, the
-/// incoming values are ranked according to the partial order, and the NEXT
-/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
-/// the same rank are ignored as conflicting). If there are no candidate values,
-/// or if the rank of the live-in would be lower than the rank of the current
-/// blocks PHIs, create a new PHI value.
-///
-/// Intuitively: if it's not immediately obvious what value a join should result
-/// in, we iteratively descend from instruction-definitions down through PHI
-/// values, getting closer to the current block each time. If the current block
-/// is a loop head, this ordering is effectively searching outer levels of
-/// loops, to find a value that's live-through the current loop.
-///
-/// If there is no value that's live-through this loop, a PHI is created for
-/// this location instead. We can't use a lower-ranked PHI because by definition
-/// it doesn't dominate the current block. We can't create a PHI value any
-/// earlier, because we risk creating a PHI value at a location where values do
-/// not in fact merge, thus misrepresenting the truth, and not making the true
-/// live-through value for variable locations.
-///
-/// This algorithm applies to both calculating the availability of values in
-/// the first analysis, and the location of variables in the second. However
-/// for the second we add an extra dimension of pain: creating a variable
-/// location PHI is only valid if, for each incoming edge,
-/// * There is a value for the variable on the incoming edge, and
-/// * All the edges have that value in the same register.
-/// Or put another way: we can only create a variable-location PHI if there is
-/// a matching machine-location PHI, each input to which is the variables value
-/// in the predecessor block.
-///
-/// To accommodate this difference, each point on the lattice is split in
-/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
-/// have a location determined are "definite" PHIs, and no further work is
-/// needed. Otherwise, a location that all non-backedge predecessors agree
-/// on is picked and propagated as a "proposed" PHI value. If that PHI value
-/// is truly live-through, it'll appear on the loop backedges on the next
-/// dataflow iteration, after which the block live-in moves to be a "definite"
-/// PHI. If it's not truly live-through, the variable value will be downgraded
-/// further as we explore the lattice, or remains "proposed" and is considered
-/// invalid once dataflow completes.
-///
-/// ### Terminology
-///
-/// A machine location is a register or spill slot, a value is something that's
-/// defined by an instruction or PHI node, while a variable value is the value
-/// assigned to a variable. A variable location is a machine location, that must
-/// contain the appropriate variable value. A value that is a PHI node is
-/// occasionally called an mphi.
-///
-/// The first dataflow problem is the "machine value location" problem,
-/// because we're determining which machine locations contain which values.
-/// The "locations" are constant: what's unknown is what value they contain.
-///
-/// The second dataflow problem (the one for variables) is the "variable value
-/// problem", because it's determining what values a variable has, rather than
-/// what location those values are placed in. Unfortunately, it's not that
-/// simple, because producing a PHI value always involves picking a location.
-/// This is an imperfection that we just have to accept, at least for now.
-///
-/// TODO:
-/// Overlapping fragments
-/// Entry values
-/// Add back DEBUG statements for debugging this
-/// Collect statistics
-///
-//===----------------------------------------------------------------------===//
-
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/PostOrderIterator.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/UniqueVector.h"
-#include "llvm/CodeGen/LexicalScopes.h"
-#include "llvm/CodeGen/MachineBasicBlock.h"
-#include "llvm/CodeGen/MachineFrameInfo.h"
-#include "llvm/CodeGen/MachineFunction.h"
-#include "llvm/CodeGen/MachineFunctionPass.h"
-#include "llvm/CodeGen/MachineInstr.h"
-#include "llvm/CodeGen/MachineInstrBuilder.h"
-#include "llvm/CodeGen/MachineMemOperand.h"
-#include "llvm/CodeGen/MachineOperand.h"
-#include "llvm/CodeGen/PseudoSourceValue.h"
-#include "llvm/CodeGen/RegisterScavenging.h"
-#include "llvm/CodeGen/TargetFrameLowering.h"
-#include "llvm/CodeGen/TargetInstrInfo.h"
-#include "llvm/CodeGen/TargetLowering.h"
-#include "llvm/CodeGen/TargetPassConfig.h"
-#include "llvm/CodeGen/TargetRegisterInfo.h"
-#include "llvm/CodeGen/TargetSubtargetInfo.h"
-#include "llvm/Config/llvm-config.h"
-#include "llvm/IR/DIBuilder.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DebugLoc.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/Module.h"
-#include "llvm/InitializePasses.h"
-#include "llvm/MC/MCRegisterInfo.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/Casting.h"
-#include "llvm/Support/Compiler.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/TypeSize.h"
-#include "llvm/Support/raw_ostream.h"
-#include <algorithm>
-#include <cassert>
-#include <cstdint>
-#include <functional>
-#include <queue>
-#include <tuple>
-#include <utility>
-#include <vector>
-#include <limits.h>
-#include <limits>
-
-#include "LiveDebugValues.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "livedebugvalues"
-
-STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
-STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
-
-// Act more like the VarLoc implementation, by propagating some locations too
-// far and ignoring some transfers.
-static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
- cl::desc("Act like old LiveDebugValues did"),
- cl::init(false));
-
-// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
-static cl::opt<bool>
- ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
- cl::desc("Allow non-kill spill and restores"),
- cl::init(false));
-
-namespace {
-
-// The location at which a spilled value resides. It consists of a register and
-// an offset.
-struct SpillLoc {
- unsigned SpillBase;
- StackOffset SpillOffset;
- bool operator==(const SpillLoc &Other) const {
- return std::make_pair(SpillBase, SpillOffset) ==
- std::make_pair(Other.SpillBase, Other.SpillOffset);
- }
- bool operator<(const SpillLoc &Other) const {
- return std::make_tuple(SpillBase, SpillOffset.getFixed(),
- SpillOffset.getScalable()) <
- std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
- Other.SpillOffset.getScalable());
- }
-};
-
-class LocIdx {
- unsigned Location;
-
- // Default constructor is private, initializing to an illegal location number.
- // Use only for "not an entry" elements in IndexedMaps.
- LocIdx() : Location(UINT_MAX) { }
-
-public:
- #define NUM_LOC_BITS 24
- LocIdx(unsigned L) : Location(L) {
- assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
- }
-
- static LocIdx MakeIllegalLoc() {
- return LocIdx();
- }
-
- bool isIllegal() const {
- return Location == UINT_MAX;
- }
-
- uint64_t asU64() const {
- return Location;
- }
-
- bool operator==(unsigned L) const {
- return Location == L;
- }
-
- bool operator==(const LocIdx &L) const {
- return Location == L.Location;
- }
-
- bool operator!=(unsigned L) const {
- return !(*this == L);
- }
-
- bool operator!=(const LocIdx &L) const {
- return !(*this == L);
- }
-
- bool operator<(const LocIdx &Other) const {
- return Location < Other.Location;
- }
-};
-
-class LocIdxToIndexFunctor {
-public:
- using argument_type = LocIdx;
- unsigned operator()(const LocIdx &L) const {
- return L.asU64();
- }
-};
-
-/// Unique identifier for a value defined by an instruction, as a value type.
-/// Casts back and forth to a uint64_t. Probably replacable with something less
-/// bit-constrained. Each value identifies the instruction and machine location
-/// where the value is defined, although there may be no corresponding machine
-/// operand for it (ex: regmasks clobbering values). The instructions are
-/// one-based, and definitions that are PHIs have instruction number zero.
-///
-/// The obvious limits of a 1M block function or 1M instruction blocks are
-/// problematic; but by that point we should probably have bailed out of
-/// trying to analyse the function.
-class ValueIDNum {
- uint64_t BlockNo : 20; /// The block where the def happens.
- uint64_t InstNo : 20; /// The Instruction where the def happens.
- /// One based, is distance from start of block.
- uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
-
-public:
- // XXX -- temporarily enabled while the live-in / live-out tables are moved
- // to something more type-y
- ValueIDNum() : BlockNo(0xFFFFF),
- InstNo(0xFFFFF),
- LocNo(0xFFFFFF) { }
-
- ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
- : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
-
- ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
- : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
-
- uint64_t getBlock() const { return BlockNo; }
- uint64_t getInst() const { return InstNo; }
- uint64_t getLoc() const { return LocNo; }
- bool isPHI() const { return InstNo == 0; }
-
- uint64_t asU64() const {
- uint64_t TmpBlock = BlockNo;
- uint64_t TmpInst = InstNo;
- return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
- }
-
- static ValueIDNum fromU64(uint64_t v) {
- uint64_t L = (v & 0x3FFF);
- return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
- }
-
- bool operator<(const ValueIDNum &Other) const {
- return asU64() < Other.asU64();
- }
-
- bool operator==(const ValueIDNum &Other) const {
- return std::tie(BlockNo, InstNo, LocNo) ==
- std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
- }
-
- bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
-
- std::string asString(const std::string &mlocname) const {
- return Twine("Value{bb: ")
- .concat(Twine(BlockNo).concat(
- Twine(", inst: ")
- .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
- .concat(Twine(", loc: ").concat(Twine(mlocname)))
- .concat(Twine("}")))))
- .str();
- }
-
- static ValueIDNum EmptyValue;
-};
-
-} // end anonymous namespace
-
-namespace {
-
-/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
-/// the the value, and Boolean of whether or not it's indirect.
-class DbgValueProperties {
-public:
- DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
- : DIExpr(DIExpr), Indirect(Indirect) {}
-
- /// Extract properties from an existing DBG_VALUE instruction.
- DbgValueProperties(const MachineInstr &MI) {
- assert(MI.isDebugValue());
- DIExpr = MI.getDebugExpression();
- Indirect = MI.getOperand(1).isImm();
- }
-
- bool operator==(const DbgValueProperties &Other) const {
- return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
- }
-
- bool operator!=(const DbgValueProperties &Other) const {
- return !(*this == Other);
- }
-
- const DIExpression *DIExpr;
- bool Indirect;
-};
-
-/// Tracker for what values are in machine locations. Listens to the Things
-/// being Done by various instructions, and maintains a table of what machine
-/// locations have what values (as defined by a ValueIDNum).
-///
-/// There are potentially a much larger number of machine locations on the
-/// target machine than the actual working-set size of the function. On x86 for
-/// example, we're extremely unlikely to want to track values through control
-/// or debug registers. To avoid doing so, MLocTracker has several layers of
-/// indirection going on, with two kinds of ``location'':
-/// * A LocID uniquely identifies a register or spill location, with a
-/// predictable value.
-/// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
-/// Whenever a location is def'd or used by a MachineInstr, we automagically
-/// create a new LocIdx for a location, but not otherwise. This ensures we only
-/// account for locations that are actually used or defined. The cost is another
-/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
-/// fairly cheap, and the compiler tries to reduce the working-set at any one
-/// time in the function anyway.
-///
-/// Register mask operands completely blow this out of the water; I've just
-/// piled hacks on top of hacks to get around that.
-class MLocTracker {
-public:
- MachineFunction &MF;
- const TargetInstrInfo &TII;
- const TargetRegisterInfo &TRI;
- const TargetLowering &TLI;
-
- /// IndexedMap type, mapping from LocIdx to ValueIDNum.
- using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
-
- /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
- /// packed, entries only exist for locations that are being tracked.
- LocToValueType LocIdxToIDNum;
-
- /// "Map" of machine location IDs (i.e., raw register or spill number) to the
- /// LocIdx key / number for that location. There are always at least as many
- /// as the number of registers on the target -- if the value in the register
- /// is not being tracked, then the LocIdx value will be zero. New entries are
- /// appended if a new spill slot begins being tracked.
- /// This, and the corresponding reverse map persist for the analysis of the
- /// whole function, and is necessarying for decoding various vectors of
- /// values.
- std::vector<LocIdx> LocIDToLocIdx;
-
- /// Inverse map of LocIDToLocIdx.
- IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
-
- /// Unique-ification of spill slots. Used to number them -- their LocID
- /// number is the index in SpillLocs minus one plus NumRegs.
- UniqueVector<SpillLoc> SpillLocs;
-
- // If we discover a new machine location, assign it an mphi with this
- // block number.
- unsigned CurBB;
-
- /// Cached local copy of the number of registers the target has.
- unsigned NumRegs;
-
- /// Collection of register mask operands that have been observed. Second part
- /// of pair indicates the instruction that they happened in. Used to
- /// reconstruct where defs happened if we start tracking a location later
- /// on.
- SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
-
- /// Iterator for locations and the values they contain. Dereferencing
- /// produces a struct/pair containing the LocIdx key for this location,
- /// and a reference to the value currently stored. Simplifies the process
- /// of seeking a particular location.
- class MLocIterator {
- LocToValueType &ValueMap;
- LocIdx Idx;
-
- public:
- class value_type {
- public:
- value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
- const LocIdx Idx; /// Read-only index of this location.
- ValueIDNum &Value; /// Reference to the stored value at this location.
- };
-
- MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
- : ValueMap(ValueMap), Idx(Idx) { }
-
- bool operator==(const MLocIterator &Other) const {
- assert(&ValueMap == &Other.ValueMap);
- return Idx == Other.Idx;
- }
-
- bool operator!=(const MLocIterator &Other) const {
- return !(*this == Other);
- }
-
- void operator++() {
- Idx = LocIdx(Idx.asU64() + 1);
- }
-
- value_type operator*() {
- return value_type(Idx, ValueMap[LocIdx(Idx)]);
- }
- };
-
- MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
- const TargetRegisterInfo &TRI, const TargetLowering &TLI)
- : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
- LocIdxToIDNum(ValueIDNum::EmptyValue),
- LocIdxToLocID(0) {
- NumRegs = TRI.getNumRegs();
- reset();
- LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
- assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
-
- // Always track SP. This avoids the implicit clobbering caused by regmasks
- // from affectings its values. (LiveDebugValues disbelieves calls and
- // regmasks that claim to clobber SP).
- Register SP = TLI.getStackPointerRegisterToSaveRestore();
- if (SP) {
- unsigned ID = getLocID(SP, false);
- (void)lookupOrTrackRegister(ID);
- }
- }
-
- /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
- /// or spill number, and flag for whether it's a spill or not.
- unsigned getLocID(Register RegOrSpill, bool isSpill) {
- return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
- }
-
- /// Accessor for reading the value at Idx.
- ValueIDNum getNumAtPos(LocIdx Idx) const {
- assert(Idx.asU64() < LocIdxToIDNum.size());
- return LocIdxToIDNum[Idx];
- }
-
- unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
-
- /// Reset all locations to contain a PHI value at the designated block. Used
- /// sometimes for actual PHI values, othertimes to indicate the block entry
- /// value (before any more information is known).
- void setMPhis(unsigned NewCurBB) {
- CurBB = NewCurBB;
- for (auto Location : locations())
- Location.Value = {CurBB, 0, Location.Idx};
- }
-
- /// Load values for each location from array of ValueIDNums. Take current
- /// bbnum just in case we read a value from a hitherto untouched register.
- void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
- CurBB = NewCurBB;
- // Iterate over all tracked locations, and load each locations live-in
- // value into our local index.
- for (auto Location : locations())
- Location.Value = Locs[Location.Idx.asU64()];
- }
-
- /// Wipe any un-necessary location records after traversing a block.
- void reset(void) {
- // We could reset all the location values too; however either loadFromArray
- // or setMPhis should be called before this object is re-used. Just
- // clear Masks, they're definitely not needed.
- Masks.clear();
- }
-
- /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
- /// the information in this pass uninterpretable.
- void clear(void) {
- reset();
- LocIDToLocIdx.clear();
- LocIdxToLocID.clear();
- LocIdxToIDNum.clear();
- //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
- SpillLocs = decltype(SpillLocs)();
-
- LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
- }
-
- /// Set a locaiton to a certain value.
- void setMLoc(LocIdx L, ValueIDNum Num) {
- assert(L.asU64() < LocIdxToIDNum.size());
- LocIdxToIDNum[L] = Num;
- }
-
- /// Create a LocIdx for an untracked register ID. Initialize it to either an
- /// mphi value representing a live-in, or a recent register mask clobber.
- LocIdx trackRegister(unsigned ID) {
- assert(ID != 0);
- LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
- LocIdxToIDNum.grow(NewIdx);
- LocIdxToLocID.grow(NewIdx);
-
- // Default: it's an mphi.
- ValueIDNum ValNum = {CurBB, 0, NewIdx};
- // Was this reg ever touched by a regmask?
- for (const auto &MaskPair : reverse(Masks)) {
- if (MaskPair.first->clobbersPhysReg(ID)) {
- // There was an earlier def we skipped.
- ValNum = {CurBB, MaskPair.second, NewIdx};
- break;
- }
- }
-
- LocIdxToIDNum[NewIdx] = ValNum;
- LocIdxToLocID[NewIdx] = ID;
- return NewIdx;
- }
-
- LocIdx lookupOrTrackRegister(unsigned ID) {
- LocIdx &Index = LocIDToLocIdx[ID];
- if (Index.isIllegal())
- Index = trackRegister(ID);
- return Index;
- }
-
- /// Record a definition of the specified register at the given block / inst.
- /// This doesn't take a ValueIDNum, because the definition and its location
- /// are synonymous.
- void defReg(Register R, unsigned BB, unsigned Inst) {
- unsigned ID = getLocID(R, false);
- LocIdx Idx = lookupOrTrackRegister(ID);
- ValueIDNum ValueID = {BB, Inst, Idx};
- LocIdxToIDNum[Idx] = ValueID;
- }
-
- /// Set a register to a value number. To be used if the value number is
- /// known in advance.
- void setReg(Register R, ValueIDNum ValueID) {
- unsigned ID = getLocID(R, false);
- LocIdx Idx = lookupOrTrackRegister(ID);
- LocIdxToIDNum[Idx] = ValueID;
- }
-
- ValueIDNum readReg(Register R) {
- unsigned ID = getLocID(R, false);
- LocIdx Idx = lookupOrTrackRegister(ID);
- return LocIdxToIDNum[Idx];
- }
-
- /// Reset a register value to zero / empty. Needed to replicate the
- /// VarLoc implementation where a copy to/from a register effectively
- /// clears the contents of the source register. (Values can only have one
- /// machine location in VarLocBasedImpl).
- void wipeRegister(Register R) {
- unsigned ID = getLocID(R, false);
- LocIdx Idx = LocIDToLocIdx[ID];
- LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
- }
-
- /// Determine the LocIdx of an existing register.
- LocIdx getRegMLoc(Register R) {
- unsigned ID = getLocID(R, false);
- return LocIDToLocIdx[ID];
- }
-
- /// Record a RegMask operand being executed. Defs any register we currently
- /// track, stores a pointer to the mask in case we have to account for it
- /// later.
- void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
- // Ensure SP exists, so that we don't override it later.
- Register SP = TLI.getStackPointerRegisterToSaveRestore();
-
- // Def any register we track have that isn't preserved. The regmask
- // terminates the liveness of a register, meaning its value can't be
- // relied upon -- we represent this by giving it a new value.
- for (auto Location : locations()) {
- unsigned ID = LocIdxToLocID[Location.Idx];
- // Don't clobber SP, even if the mask says it's clobbered.
- if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
- defReg(ID, CurBB, InstID);
- }
- Masks.push_back(std::make_pair(MO, InstID));
- }
-
- /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
- LocIdx getOrTrackSpillLoc(SpillLoc L) {
- unsigned SpillID = SpillLocs.idFor(L);
- if (SpillID == 0) {
- SpillID = SpillLocs.insert(L);
- unsigned L = getLocID(SpillID, true);
- LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
- LocIdxToIDNum.grow(Idx);
- LocIdxToLocID.grow(Idx);
- LocIDToLocIdx.push_back(Idx);
- LocIdxToLocID[Idx] = L;
- return Idx;
- } else {
- unsigned L = getLocID(SpillID, true);
- LocIdx Idx = LocIDToLocIdx[L];
- return Idx;
- }
- }
-
- /// Set the value stored in a spill slot.
- void setSpill(SpillLoc L, ValueIDNum ValueID) {
- LocIdx Idx = getOrTrackSpillLoc(L);
- LocIdxToIDNum[Idx] = ValueID;
- }
-
- /// Read whatever value is in a spill slot, or None if it isn't tracked.
- Optional<ValueIDNum> readSpill(SpillLoc L) {
- unsigned SpillID = SpillLocs.idFor(L);
- if (SpillID == 0)
- return None;
-
- unsigned LocID = getLocID(SpillID, true);
- LocIdx Idx = LocIDToLocIdx[LocID];
- return LocIdxToIDNum[Idx];
- }
-
- /// Determine the LocIdx of a spill slot. Return None if it previously
- /// hasn't had a value assigned.
- Optional<LocIdx> getSpillMLoc(SpillLoc L) {
- unsigned SpillID = SpillLocs.idFor(L);
- if (SpillID == 0)
- return None;
- unsigned LocNo = getLocID(SpillID, true);
- return LocIDToLocIdx[LocNo];
- }
-
- /// Return true if Idx is a spill machine location.
- bool isSpill(LocIdx Idx) const {
- return LocIdxToLocID[Idx] >= NumRegs;
- }
-
- MLocIterator begin() {
- return MLocIterator(LocIdxToIDNum, 0);
- }
-
- MLocIterator end() {
- return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
- }
-
- /// Return a range over all locations currently tracked.
- iterator_range<MLocIterator> locations() {
- return llvm::make_range(begin(), end());
- }
-
- std::string LocIdxToName(LocIdx Idx) const {
- unsigned ID = LocIdxToLocID[Idx];
- if (ID >= NumRegs)
- return Twine("slot ").concat(Twine(ID - NumRegs)).str();
- else
- return TRI.getRegAsmName(ID).str();
- }
-
- std::string IDAsString(const ValueIDNum &Num) const {
- std::string DefName = LocIdxToName(Num.getLoc());
- return Num.asString(DefName);
- }
-
- LLVM_DUMP_METHOD
- void dump() {
- for (auto Location : locations()) {
- std::string MLocName = LocIdxToName(Location.Value.getLoc());
- std::string DefName = Location.Value.asString(MLocName);
- dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
- }
- }
-
- LLVM_DUMP_METHOD
- void dump_mloc_map() {
- for (auto Location : locations()) {
- std::string foo = LocIdxToName(Location.Idx);
- dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
- }
- }
-
- /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
- /// information in \pProperties, for variable Var. Don't insert it anywhere,
- /// just return the builder for it.
- MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
- const DbgValueProperties &Properties) {
- DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
- Var.getVariable()->getScope(),
- const_cast<DILocation *>(Var.getInlinedAt()));
- auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
-
- const DIExpression *Expr = Properties.DIExpr;
- if (!MLoc) {
- // No location -> DBG_VALUE $noreg
- MIB.addReg(0, RegState::Debug);
- MIB.addReg(0, RegState::Debug);
- } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
- unsigned LocID = LocIdxToLocID[*MLoc];
- const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
-
- auto *TRI = MF.getSubtarget().getRegisterInfo();
- Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
- Spill.SpillOffset);
- unsigned Base = Spill.SpillBase;
- MIB.addReg(Base, RegState::Debug);
- MIB.addImm(0);
- } else {
- unsigned LocID = LocIdxToLocID[*MLoc];
- MIB.addReg(LocID, RegState::Debug);
- if (Properties.Indirect)
- MIB.addImm(0);
- else
- MIB.addReg(0, RegState::Debug);
- }
-
- MIB.addMetadata(Var.getVariable());
- MIB.addMetadata(Expr);
- return MIB;
- }
-};
-
-/// Class recording the (high level) _value_ of a variable. Identifies either
-/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
-/// This class also stores meta-information about how the value is qualified.
-/// Used to reason about variable values when performing the second
-/// (DebugVariable specific) dataflow analysis.
-class DbgValue {
-public:
- union {
- /// If Kind is Def, the value number that this value is based on.
- ValueIDNum ID;
- /// If Kind is Const, the MachineOperand defining this value.
- MachineOperand MO;
- /// For a NoVal DbgValue, which block it was generated in.
- unsigned BlockNo;
- };
- /// Qualifiers for the ValueIDNum above.
- DbgValueProperties Properties;
-
- typedef enum {
- Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
- Def, // This value is defined by an inst, or is a PHI value.
- Const, // A constant value contained in the MachineOperand field.
- Proposed, // This is a tentative PHI value, which may be confirmed or
- // invalidated later.
- NoVal // Empty DbgValue, generated during dataflow. BlockNo stores
- // which block this was generated in.
- } KindT;
- /// Discriminator for whether this is a constant or an in-program value.
- KindT Kind;
-
- DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
- : ID(Val), Properties(Prop), Kind(Kind) {
- assert(Kind == Def || Kind == Proposed);
- }
-
- DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
- : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
- assert(Kind == NoVal);
- }
-
- DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
- : MO(MO), Properties(Prop), Kind(Kind) {
- assert(Kind == Const);
- }
-
- DbgValue(const DbgValueProperties &Prop, KindT Kind)
- : Properties(Prop), Kind(Kind) {
- assert(Kind == Undef &&
- "Empty DbgValue constructor must pass in Undef kind");
- }
-
- void dump(const MLocTracker *MTrack) const {
- if (Kind == Const) {
- MO.dump();
- } else if (Kind == NoVal) {
- dbgs() << "NoVal(" << BlockNo << ")";
- } else if (Kind == Proposed) {
- dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
- } else {
- assert(Kind == Def);
- dbgs() << MTrack->IDAsString(ID);
- }
- if (Properties.Indirect)
- dbgs() << " indir";
- if (Properties.DIExpr)
- dbgs() << " " << *Properties.DIExpr;
- }
-
- bool operator==(const DbgValue &Other) const {
- if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
- return false;
- else if (Kind == Proposed && ID != Other.ID)
- return false;
- else if (Kind == Def && ID != Other.ID)
- return false;
- else if (Kind == NoVal && BlockNo != Other.BlockNo)
- return false;
- else if (Kind == Const)
- return MO.isIdenticalTo(Other.MO);
-
- return true;
- }
-
- bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
-};
-
-/// Types for recording sets of variable fragments that overlap. For a given
-/// local variable, we record all other fragments of that variable that could
-/// overlap it, to reduce search time.
-using FragmentOfVar =
- std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
-using OverlapMap =
- DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
-
-/// Collection of DBG_VALUEs observed when traversing a block. Records each
-/// variable and the value the DBG_VALUE refers to. Requires the machine value
-/// location dataflow algorithm to have run already, so that values can be
-/// identified.
-class VLocTracker {
-public:
- /// Map DebugVariable to the latest Value it's defined to have.
- /// Needs to be a MapVector because we determine order-in-the-input-MIR from
- /// the order in this container.
- /// We only retain the last DbgValue in each block for each variable, to
- /// determine the blocks live-out variable value. The Vars container forms the
- /// transfer function for this block, as part of the dataflow analysis. The
- /// movement of values between locations inside of a block is handled at a
- /// much later stage, in the TransferTracker class.
- MapVector<DebugVariable, DbgValue> Vars;
- DenseMap<DebugVariable, const DILocation *> Scopes;
- MachineBasicBlock *MBB;
-
-public:
- VLocTracker() {}
-
- void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
- Optional<ValueIDNum> ID) {
- assert(MI.isDebugValue() || MI.isDebugRef());
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
- : DbgValue(Properties, DbgValue::Undef);
-
- // Attempt insertion; overwrite if it's already mapped.
- auto Result = Vars.insert(std::make_pair(Var, Rec));
- if (!Result.second)
- Result.first->second = Rec;
- Scopes[Var] = MI.getDebugLoc().get();
- }
-
- void defVar(const MachineInstr &MI, const MachineOperand &MO) {
- // Only DBG_VALUEs can define constant-valued variables.
- assert(MI.isDebugValue());
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- DbgValueProperties Properties(MI);
- DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
-
- // Attempt insertion; overwrite if it's already mapped.
- auto Result = Vars.insert(std::make_pair(Var, Rec));
- if (!Result.second)
- Result.first->second = Rec;
- Scopes[Var] = MI.getDebugLoc().get();
- }
-};
-
-/// Tracker for converting machine value locations and variable values into
-/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
-/// specifying block live-in locations and transfers within blocks.
-///
-/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
-/// and must be initialized with the set of variable values that are live-in to
-/// the block. The caller then repeatedly calls process(). TransferTracker picks
-/// out variable locations for the live-in variable values (if there _is_ a
-/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
-/// stepped through, transfers of values between machine locations are
-/// identified and if profitable, a DBG_VALUE created.
-///
-/// This is where debug use-before-defs would be resolved: a variable with an
-/// unavailable value could materialize in the middle of a block, when the
-/// value becomes available. Or, we could detect clobbers and re-specify the
-/// variable in a backup location. (XXX these are unimplemented).
-class TransferTracker {
-public:
- const TargetInstrInfo *TII;
- /// This machine location tracker is assumed to always contain the up-to-date
- /// value mapping for all machine locations. TransferTracker only reads
- /// information from it. (XXX make it const?)
- MLocTracker *MTracker;
- MachineFunction &MF;
-
- /// Record of all changes in variable locations at a block position. Awkwardly
- /// we allow inserting either before or after the point: MBB != nullptr
- /// indicates it's before, otherwise after.
- struct Transfer {
- MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
- MachineBasicBlock *MBB; /// non-null if we should insert after.
- SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
- };
-
- typedef struct {
- LocIdx Loc;
- DbgValueProperties Properties;
- } LocAndProperties;
-
- /// Collection of transfers (DBG_VALUEs) to be inserted.
- SmallVector<Transfer, 32> Transfers;
-
- /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
- /// between TransferTrackers view of variable locations and MLocTrackers. For
- /// example, MLocTracker observes all clobbers, but TransferTracker lazily
- /// does not.
- std::vector<ValueIDNum> VarLocs;
-
- /// Map from LocIdxes to which DebugVariables are based that location.
- /// Mantained while stepping through the block. Not accurate if
- /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
- std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
-
- /// Map from DebugVariable to it's current location and qualifying meta
- /// information. To be used in conjunction with ActiveMLocs to construct
- /// enough information for the DBG_VALUEs for a particular LocIdx.
- DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
-
- /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
- SmallVector<MachineInstr *, 4> PendingDbgValues;
-
- /// Record of a use-before-def: created when a value that's live-in to the
- /// current block isn't available in any machine location, but it will be
- /// defined in this block.
- struct UseBeforeDef {
- /// Value of this variable, def'd in block.
- ValueIDNum ID;
- /// Identity of this variable.
- DebugVariable Var;
- /// Additional variable properties.
- DbgValueProperties Properties;
- };
-
- /// Map from instruction index (within the block) to the set of UseBeforeDefs
- /// that become defined at that instruction.
- DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
-
- /// The set of variables that are in UseBeforeDefs and can become a location
- /// once the relevant value is defined. An element being erased from this
- /// collection prevents the use-before-def materializing.
- DenseSet<DebugVariable> UseBeforeDefVariables;
-
- const TargetRegisterInfo &TRI;
- const BitVector &CalleeSavedRegs;
-
- TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
- MachineFunction &MF, const TargetRegisterInfo &TRI,
- const BitVector &CalleeSavedRegs)
- : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
- CalleeSavedRegs(CalleeSavedRegs) {}
-
- /// Load object with live-in variable values. \p mlocs contains the live-in
- /// values in each machine location, while \p vlocs the live-in variable
- /// values. This method picks variable locations for the live-in variables,
- /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
- /// object fields to track variable locations as we step through the block.
- /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
- void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
- SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
- unsigned NumLocs) {
- ActiveMLocs.clear();
- ActiveVLocs.clear();
- VarLocs.clear();
- VarLocs.reserve(NumLocs);
- UseBeforeDefs.clear();
- UseBeforeDefVariables.clear();
-
- auto isCalleeSaved = [&](LocIdx L) {
- unsigned Reg = MTracker->LocIdxToLocID[L];
- if (Reg >= MTracker->NumRegs)
- return false;
- for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- };
-
- // Map of the preferred location for each value.
- std::map<ValueIDNum, LocIdx> ValueToLoc;
-
- // Produce a map of value numbers to the current machine locs they live
- // in. When emulating VarLocBasedImpl, there should only be one
- // location; when not, we get to pick.
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
- ValueIDNum &VNum = MLocs[Idx.asU64()];
- VarLocs.push_back(VNum);
- auto it = ValueToLoc.find(VNum);
- // In order of preference, pick:
- // * Callee saved registers,
- // * Other registers,
- // * Spill slots.
- if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
- (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
- // Insert, or overwrite if insertion failed.
- auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
- if (!PrefLocRes.second)
- PrefLocRes.first->second = Idx;
- }
- }
-
- // Now map variables to their picked LocIdxes.
- for (auto Var : VLocs) {
- if (Var.second.Kind == DbgValue::Const) {
- PendingDbgValues.push_back(
- emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
- continue;
- }
-
- // If the value has no location, we can't make a variable location.
- const ValueIDNum &Num = Var.second.ID;
- auto ValuesPreferredLoc = ValueToLoc.find(Num);
- if (ValuesPreferredLoc == ValueToLoc.end()) {
- // If it's a def that occurs in this block, register it as a
- // use-before-def to be resolved as we step through the block.
- if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
- addUseBeforeDef(Var.first, Var.second.Properties, Num);
- continue;
- }
-
- LocIdx M = ValuesPreferredLoc->second;
- auto NewValue = LocAndProperties{M, Var.second.Properties};
- auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
- if (!Result.second)
- Result.first->second = NewValue;
- ActiveMLocs[M].insert(Var.first);
- PendingDbgValues.push_back(
- MTracker->emitLoc(M, Var.first, Var.second.Properties));
- }
- flushDbgValues(MBB.begin(), &MBB);
- }
-
- /// Record that \p Var has value \p ID, a value that becomes available
- /// later in the function.
- void addUseBeforeDef(const DebugVariable &Var,
- const DbgValueProperties &Properties, ValueIDNum ID) {
- UseBeforeDef UBD = {ID, Var, Properties};
- UseBeforeDefs[ID.getInst()].push_back(UBD);
- UseBeforeDefVariables.insert(Var);
- }
-
- /// After the instruction at index \p Inst and position \p pos has been
- /// processed, check whether it defines a variable value in a use-before-def.
- /// If so, and the variable value hasn't changed since the start of the
- /// block, create a DBG_VALUE.
- void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
- auto MIt = UseBeforeDefs.find(Inst);
- if (MIt == UseBeforeDefs.end())
- return;
-
- for (auto &Use : MIt->second) {
- LocIdx L = Use.ID.getLoc();
-
- // If something goes very wrong, we might end up labelling a COPY
- // instruction or similar with an instruction number, where it doesn't
- // actually define a new value, instead it moves a value. In case this
- // happens, discard.
- if (MTracker->LocIdxToIDNum[L] != Use.ID)
- continue;
-
- // If a different debug instruction defined the variable value / location
- // since the start of the block, don't materialize this use-before-def.
- if (!UseBeforeDefVariables.count(Use.Var))
- continue;
-
- PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
- }
- flushDbgValues(pos, nullptr);
- }
-
- /// Helper to move created DBG_VALUEs into Transfers collection.
- void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
- if (PendingDbgValues.size() > 0) {
- Transfers.push_back({Pos, MBB, PendingDbgValues});
- PendingDbgValues.clear();
- }
- }
-
- /// Change a variable value after encountering a DBG_VALUE inside a block.
- void redefVar(const MachineInstr &MI) {
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- DbgValueProperties Properties(MI);
-
- const MachineOperand &MO = MI.getOperand(0);
-
- // Ignore non-register locations, we don't transfer those.
- if (!MO.isReg() || MO.getReg() == 0) {
- auto It = ActiveVLocs.find(Var);
- if (It != ActiveVLocs.end()) {
- ActiveMLocs[It->second.Loc].erase(Var);
- ActiveVLocs.erase(It);
- }
- // Any use-before-defs no longer apply.
- UseBeforeDefVariables.erase(Var);
- return;
- }
-
- Register Reg = MO.getReg();
- LocIdx NewLoc = MTracker->getRegMLoc(Reg);
- redefVar(MI, Properties, NewLoc);
- }
-
- /// Handle a change in variable location within a block. Terminate the
- /// variables current location, and record the value it now refers to, so
- /// that we can detect location transfers later on.
- void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
- Optional<LocIdx> OptNewLoc) {
- DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- // Any use-before-defs no longer apply.
- UseBeforeDefVariables.erase(Var);
-
- // Erase any previous location,
- auto It = ActiveVLocs.find(Var);
- if (It != ActiveVLocs.end())
- ActiveMLocs[It->second.Loc].erase(Var);
-
- // If there _is_ no new location, all we had to do was erase.
- if (!OptNewLoc)
- return;
- LocIdx NewLoc = *OptNewLoc;
-
- // Check whether our local copy of values-by-location in #VarLocs is out of
- // date. Wipe old tracking data for the location if it's been clobbered in
- // the meantime.
- if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
- for (auto &P : ActiveMLocs[NewLoc]) {
- ActiveVLocs.erase(P);
- }
- ActiveMLocs[NewLoc.asU64()].clear();
- VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
- }
-
- ActiveMLocs[NewLoc].insert(Var);
- if (It == ActiveVLocs.end()) {
- ActiveVLocs.insert(
- std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
- } else {
- It->second.Loc = NewLoc;
- It->second.Properties = Properties;
- }
- }
-
- /// Explicitly terminate variable locations based on \p mloc. Creates undef
- /// DBG_VALUEs for any variables that were located there, and clears
- /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
- void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
- assert(MTracker->isSpill(MLoc));
- auto ActiveMLocIt = ActiveMLocs.find(MLoc);
- if (ActiveMLocIt == ActiveMLocs.end())
- return;
-
- VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
-
- for (auto &Var : ActiveMLocIt->second) {
- auto ActiveVLocIt = ActiveVLocs.find(Var);
- // Create an undef. We can't feed in a nullptr DIExpression alas,
- // so use the variables last expression. Pass None as the location.
- const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
- DbgValueProperties Properties(Expr, false);
- PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
- ActiveVLocs.erase(ActiveVLocIt);
- }
- flushDbgValues(Pos, nullptr);
-
- ActiveMLocIt->second.clear();
- }
-
- /// Transfer variables based on \p Src to be based on \p Dst. This handles
- /// both register copies as well as spills and restores. Creates DBG_VALUEs
- /// describing the movement.
- void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
- // Does Src still contain the value num we expect? If not, it's been
- // clobbered in the meantime, and our variable locations are stale.
- if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
- return;
-
- // assert(ActiveMLocs[Dst].size() == 0);
- //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
- ActiveMLocs[Dst] = ActiveMLocs[Src];
- VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
-
- // For each variable based on Src; create a location at Dst.
- for (auto &Var : ActiveMLocs[Src]) {
- auto ActiveVLocIt = ActiveVLocs.find(Var);
- assert(ActiveVLocIt != ActiveVLocs.end());
- ActiveVLocIt->second.Loc = Dst;
-
- assert(Dst != 0);
- MachineInstr *MI =
- MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
- PendingDbgValues.push_back(MI);
- }
- ActiveMLocs[Src].clear();
- flushDbgValues(Pos, nullptr);
-
- // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
- // about the old location.
- if (EmulateOldLDV)
- VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
- }
-
- MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
- const DebugVariable &Var,
- const DbgValueProperties &Properties) {
- DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
- Var.getVariable()->getScope(),
- const_cast<DILocation *>(Var.getInlinedAt()));
- auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
- MIB.add(MO);
- if (Properties.Indirect)
- MIB.addImm(0);
- else
- MIB.addReg(0);
- MIB.addMetadata(Var.getVariable());
- MIB.addMetadata(Properties.DIExpr);
- return MIB;
- }
-};
-
-class InstrRefBasedLDV : public LDVImpl {
-private:
- using FragmentInfo = DIExpression::FragmentInfo;
- using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
-
- // Helper while building OverlapMap, a map of all fragments seen for a given
- // DILocalVariable.
- using VarToFragments =
- DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
-
- /// Machine location/value transfer function, a mapping of which locations
- /// are assigned which new values.
- using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
-
- /// Live in/out structure for the variable values: a per-block map of
- /// variables to their values. XXX, better name?
- using LiveIdxT =
- DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
-
- using VarAndLoc = std::pair<DebugVariable, DbgValue>;
-
- /// Type for a live-in value: the predecessor block, and its value.
- using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
-
- /// Vector (per block) of a collection (inner smallvector) of live-ins.
- /// Used as the result type for the variable value dataflow problem.
- using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
-
- const TargetRegisterInfo *TRI;
- const TargetInstrInfo *TII;
- const TargetFrameLowering *TFI;
- BitVector CalleeSavedRegs;
- LexicalScopes LS;
- TargetPassConfig *TPC;
-
- /// Object to track machine locations as we step through a block. Could
- /// probably be a field rather than a pointer, as it's always used.
- MLocTracker *MTracker;
-
- /// Number of the current block LiveDebugValues is stepping through.
- unsigned CurBB;
-
- /// Number of the current instruction LiveDebugValues is evaluating.
- unsigned CurInst;
-
- /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
- /// steps through a block. Reads the values at each location from the
- /// MLocTracker object.
- VLocTracker *VTracker;
-
- /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
- /// between locations during stepping, creates new DBG_VALUEs when values move
- /// location.
- TransferTracker *TTracker;
-
- /// Blocks which are artificial, i.e. blocks which exclusively contain
- /// instructions without DebugLocs, or with line 0 locations.
- SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
-
- // Mapping of blocks to and from their RPOT order.
- DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
- DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
- DenseMap<unsigned, unsigned> BBNumToRPO;
-
- /// Pair of MachineInstr, and its 1-based offset into the containing block.
- using InstAndNum = std::pair<const MachineInstr *, unsigned>;
- /// Map from debug instruction number to the MachineInstr labelled with that
- /// number, and its location within the function. Used to transform
- /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
- std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
-
- // Map of overlapping variable fragments.
- OverlapMap OverlapFragments;
- VarToFragments SeenFragments;
-
- /// Tests whether this instruction is a spill to a stack slot.
- bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
-
- /// Decide if @MI is a spill instruction and return true if it is. We use 2
- /// criteria to make this decision:
- /// - Is this instruction a store to a spill slot?
- /// - Is there a register operand that is both used and killed?
- /// TODO: Store optimization can fold spills into other stores (including
- /// other spills). We do not handle this yet (more than one memory operand).
- bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
- unsigned &Reg);
-
- /// If a given instruction is identified as a spill, return the spill slot
- /// and set \p Reg to the spilled register.
- Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
- MachineFunction *MF, unsigned &Reg);
-
- /// Given a spill instruction, extract the register and offset used to
- /// address the spill slot in a target independent way.
- SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
-
- /// Observe a single instruction while stepping through a block.
- void process(MachineInstr &MI);
-
- /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
- /// \returns true if MI was recognized and processed.
- bool transferDebugValue(const MachineInstr &MI);
-
- /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
- /// \returns true if MI was recognized and processed.
- bool transferDebugInstrRef(MachineInstr &MI);
-
- /// Examines whether \p MI is copy instruction, and notifies trackers.
- /// \returns true if MI was recognized and processed.
- bool transferRegisterCopy(MachineInstr &MI);
-
- /// Examines whether \p MI is stack spill or restore instruction, and
- /// notifies trackers. \returns true if MI was recognized and processed.
- bool transferSpillOrRestoreInst(MachineInstr &MI);
-
- /// Examines \p MI for any registers that it defines, and notifies trackers.
- void transferRegisterDef(MachineInstr &MI);
-
- /// Copy one location to the other, accounting for movement of subregisters
- /// too.
- void performCopy(Register Src, Register Dst);
-
- void accumulateFragmentMap(MachineInstr &MI);
-
- /// Step through the function, recording register definitions and movements
- /// in an MLocTracker. Convert the observations into a per-block transfer
- /// function in \p MLocTransfer, suitable for using with the machine value
- /// location dataflow problem.
- void
- produceMLocTransferFunction(MachineFunction &MF,
- SmallVectorImpl<MLocTransferMap> &MLocTransfer,
- unsigned MaxNumBlocks);
-
- /// Solve the machine value location dataflow problem. Takes as input the
- /// transfer functions in \p MLocTransfer. Writes the output live-in and
- /// live-out arrays to the (initialized to zero) multidimensional arrays in
- /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
- /// number, the inner by LocIdx.
- void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
- SmallVectorImpl<MLocTransferMap> &MLocTransfer);
-
- /// Perform a control flow join (lattice value meet) of the values in machine
- /// locations at \p MBB. Follows the algorithm described in the file-comment,
- /// reading live-outs of predecessors from \p OutLocs, the current live ins
- /// from \p InLocs, and assigning the newly computed live ins back into
- /// \p InLocs. \returns two bools -- the first indicates whether a change
- /// was made, the second whether a lattice downgrade occurred. If the latter
- /// is true, revisiting this block is necessary.
- std::tuple<bool, bool>
- mlocJoin(MachineBasicBlock &MBB,
- SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
- ValueIDNum **OutLocs, ValueIDNum *InLocs);
-
- /// Solve the variable value dataflow problem, for a single lexical scope.
- /// Uses the algorithm from the file comment to resolve control flow joins,
- /// although there are extra hacks, see vlocJoin. Reads the
- /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
- /// mlocDataflow) and reads the variable values transfer function from
- /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
- /// with the live-ins permanently stored to \p Output once the fixedpoint is
- /// reached.
- /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
- /// that we should be tracking.
- /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
- /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
- /// through.
- void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
- const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
- SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
- LiveInsT &Output, ValueIDNum **MOutLocs,
- ValueIDNum **MInLocs,
- SmallVectorImpl<VLocTracker> &AllTheVLocs);
-
- /// Compute the live-ins to a block, considering control flow merges according
- /// to the method in the file comment. Live out and live in variable values
- /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
- /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
- /// are modified.
- /// \p InLocsT Output argument, storage for calculated live-ins.
- /// \returns two bools -- the first indicates whether a change
- /// was made, the second whether a lattice downgrade occurred. If the latter
- /// is true, revisiting this block is necessary.
- std::tuple<bool, bool>
- vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
- SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
- unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
- ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
- SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
- SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
- DenseMap<DebugVariable, DbgValue> &InLocsT);
-
- /// Continue exploration of the variable-value lattice, as explained in the
- /// file-level comment. \p OldLiveInLocation contains the current
- /// exploration position, from which we need to descend further. \p Values
- /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
- /// the current block, and \p CandidateLocations a set of locations that
- /// should be considered as PHI locations, if we reach the bottom of the
- /// lattice. \returns true if we should downgrade; the value is the agreeing
- /// value number in a non-backedge predecessor.
- bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
- const DbgValue &OldLiveInLocation,
- const SmallVectorImpl<InValueT> &Values,
- unsigned CurBlockRPONum);
-
- /// For the given block and live-outs feeding into it, try to find a
- /// machine location where they all join. If a solution for all predecessors
- /// can't be found, a location where all non-backedge-predecessors join
- /// will be returned instead. While this method finds a join location, this
- /// says nothing as to whether it should be used.
- /// \returns Pair of value ID if found, and true when the correct value
- /// is available on all predecessor edges, or false if it's only available
- /// for non-backedge predecessors.
- std::tuple<Optional<ValueIDNum>, bool>
- pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
- const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
- ValueIDNum **MInLocs,
- const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
-
- /// Given the solutions to the two dataflow problems, machine value locations
- /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
- /// TransferTracker class over the function to produce live-in and transfer
- /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
- /// order given by AllVarsNumbering -- this could be any stable order, but
- /// right now "order of appearence in function, when explored in RPO", so
- /// that we can compare explictly against VarLocBasedImpl.
- void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
- ValueIDNum **MInLocs,
- DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
-
- /// Boilerplate computation of some initial sets, artifical blocks and
- /// RPOT block ordering.
- void initialSetup(MachineFunction &MF);
-
- bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
-
-public:
- /// Default construct and initialize the pass.
- InstrRefBasedLDV();
-
- LLVM_DUMP_METHOD
- void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
-
- bool isCalleeSaved(LocIdx L) {
- unsigned Reg = MTracker->LocIdxToLocID[L];
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- }
-};
-
-} // end anonymous namespace
-
-//===----------------------------------------------------------------------===//
-// Implementation
-//===----------------------------------------------------------------------===//
-
-ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
-
-/// Default construct and initialize the pass.
-InstrRefBasedLDV::InstrRefBasedLDV() {}
-
-//===----------------------------------------------------------------------===//
-// Debug Range Extension Implementation
-//===----------------------------------------------------------------------===//
-
-#ifndef NDEBUG
-// Something to restore in the future.
-// void InstrRefBasedLDV::printVarLocInMBB(..)
-#endif
-
-SpillLoc
-InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
- assert(MI.hasOneMemOperand() &&
- "Spill instruction does not have exactly one memory operand?");
- auto MMOI = MI.memoperands_begin();
- const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
- assert(PVal->kind() == PseudoSourceValue::FixedStack &&
- "Inconsistent memory operand in spill instruction");
- int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
- const MachineBasicBlock *MBB = MI.getParent();
- Register Reg;
- StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
- return {Reg, Offset};
-}
-
-/// End all previous ranges related to @MI and start a new range from @MI
-/// if it is a DBG_VALUE instr.
-bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
- if (!MI.isDebugValue())
- return false;
-
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *Expr = MI.getDebugExpression();
- const DILocation *DebugLoc = MI.getDebugLoc();
- const DILocation *InlinedAt = DebugLoc->getInlinedAt();
- assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
- "Expected inlined-at fields to agree");
-
- DebugVariable V(Var, Expr, InlinedAt);
- DbgValueProperties Properties(MI);
-
- // If there are no instructions in this lexical scope, do no location tracking
- // at all, this variable shouldn't get a legitimate location range.
- auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
- if (Scope == nullptr)
- return true; // handled it; by doing nothing
-
- const MachineOperand &MO = MI.getOperand(0);
-
- // MLocTracker needs to know that this register is read, even if it's only
- // read by a debug inst.
- if (MO.isReg() && MO.getReg() != 0)
- (void)MTracker->readReg(MO.getReg());
-
- // If we're preparing for the second analysis (variables), the machine value
- // locations are already solved, and we report this DBG_VALUE and the value
- // it refers to to VLocTracker.
- if (VTracker) {
- if (MO.isReg()) {
- // Feed defVar the new variable location, or if this is a
- // DBG_VALUE $noreg, feed defVar None.
- if (MO.getReg())
- VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
- else
- VTracker->defVar(MI, Properties, None);
- } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
- MI.getOperand(0).isCImm()) {
- VTracker->defVar(MI, MI.getOperand(0));
- }
- }
-
- // If performing final tracking of transfers, report this variable definition
- // to the TransferTracker too.
- if (TTracker)
- TTracker->redefVar(MI);
- return true;
-}
-
-bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) {
- if (!MI.isDebugRef())
- return false;
-
- // Only handle this instruction when we are building the variable value
- // transfer function.
- if (!VTracker)
- return false;
-
- unsigned InstNo = MI.getOperand(0).getImm();
- unsigned OpNo = MI.getOperand(1).getImm();
-
- const DILocalVariable *Var = MI.getDebugVariable();
- const DIExpression *Expr = MI.getDebugExpression();
- const DILocation *DebugLoc = MI.getDebugLoc();
- const DILocation *InlinedAt = DebugLoc->getInlinedAt();
- assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
- "Expected inlined-at fields to agree");
-
- DebugVariable V(Var, Expr, InlinedAt);
-
- auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
- if (Scope == nullptr)
- return true; // Handled by doing nothing. This variable is never in scope.
-
- const MachineFunction &MF = *MI.getParent()->getParent();
-
- // Various optimizations may have happened to the value during codegen,
- // recorded in the value substitution table. Apply any substitutions to
- // the instruction / operand number in this DBG_INSTR_REF.
- auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
- while (Sub != MF.DebugValueSubstitutions.end()) {
- InstNo = Sub->second.first;
- OpNo = Sub->second.second;
- Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
- }
-
- // Default machine value number is <None> -- if no instruction defines
- // the corresponding value, it must have been optimized out.
- Optional<ValueIDNum> NewID = None;
-
- // Try to lookup the instruction number, and find the machine value number
- // that it defines.
- auto InstrIt = DebugInstrNumToInstr.find(InstNo);
- if (InstrIt != DebugInstrNumToInstr.end()) {
- const MachineInstr &TargetInstr = *InstrIt->second.first;
- uint64_t BlockNo = TargetInstr.getParent()->getNumber();
-
- // Pick out the designated operand.
- assert(OpNo < TargetInstr.getNumOperands());
- const MachineOperand &MO = TargetInstr.getOperand(OpNo);
-
- // Today, this can only be a register.
- assert(MO.isReg() && MO.isDef());
-
- unsigned LocID = MTracker->getLocID(MO.getReg(), false);
- LocIdx L = MTracker->LocIDToLocIdx[LocID];
- NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
- }
-
- // We, we have a value number or None. Tell the variable value tracker about
- // it. The rest of this LiveDebugValues implementation acts exactly the same
- // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
- // aren't immediately available).
- DbgValueProperties Properties(Expr, false);
- VTracker->defVar(MI, Properties, NewID);
-
- // If we're on the final pass through the function, decompose this INSTR_REF
- // into a plain DBG_VALUE.
- if (!TTracker)
- return true;
-
- // Pick a location for the machine value number, if such a location exists.
- // (This information could be stored in TransferTracker to make it faster).
- Optional<LocIdx> FoundLoc = None;
- for (auto Location : MTracker->locations()) {
- LocIdx CurL = Location.Idx;
- ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
- if (NewID && ID == NewID) {
- // If this is the first location with that value, pick it. Otherwise,
- // consider whether it's a "longer term" location.
- if (!FoundLoc) {
- FoundLoc = CurL;
- continue;
- }
-
- if (MTracker->isSpill(CurL))
- FoundLoc = CurL; // Spills are a longer term location.
- else if (!MTracker->isSpill(*FoundLoc) &&
- !MTracker->isSpill(CurL) &&
- !isCalleeSaved(*FoundLoc) &&
- isCalleeSaved(CurL))
- FoundLoc = CurL; // Callee saved regs are longer term than normal.
- }
- }
-
- // Tell transfer tracker that the variable value has changed.
- TTracker->redefVar(MI, Properties, FoundLoc);
-
- // If there was a value with no location; but the value is defined in a
- // later instruction in this block, this is a block-local use-before-def.
- if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
- NewID->getInst() > CurInst)
- TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
-
- // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
- // This DBG_VALUE is potentially a $noreg / undefined location, if
- // FoundLoc is None.
- // (XXX -- could morph the DBG_INSTR_REF in the future).
- MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
- TTracker->PendingDbgValues.push_back(DbgMI);
- TTracker->flushDbgValues(MI.getIterator(), nullptr);
-
- return true;
-}
-
-void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
- // Meta Instructions do not affect the debug liveness of any register they
- // define.
- if (MI.isImplicitDef()) {
- // Except when there's an implicit def, and the location it's defining has
- // no value number. The whole point of an implicit def is to announce that
- // the register is live, without be specific about it's value. So define
- // a value if there isn't one already.
- ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
- // Has a legitimate value -> ignore the implicit def.
- if (Num.getLoc() != 0)
- return;
- // Otherwise, def it here.
- } else if (MI.isMetaInstruction())
- return;
-
- MachineFunction *MF = MI.getMF();
- const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
- Register SP = TLI->getStackPointerRegisterToSaveRestore();
-
- // Find the regs killed by MI, and find regmasks of preserved regs.
- // Max out the number of statically allocated elements in `DeadRegs`, as this
- // prevents fallback to std::set::count() operations.
- SmallSet<uint32_t, 32> DeadRegs;
- SmallVector<const uint32_t *, 4> RegMasks;
- SmallVector<const MachineOperand *, 4> RegMaskPtrs;
- for (const MachineOperand &MO : MI.operands()) {
- // Determine whether the operand is a register def.
- if (MO.isReg() && MO.isDef() && MO.getReg() &&
- Register::isPhysicalRegister(MO.getReg()) &&
- !(MI.isCall() && MO.getReg() == SP)) {
- // Remove ranges of all aliased registers.
- for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
- // FIXME: Can we break out of this loop early if no insertion occurs?
- DeadRegs.insert(*RAI);
- } else if (MO.isRegMask()) {
- RegMasks.push_back(MO.getRegMask());
- RegMaskPtrs.push_back(&MO);
- }
- }
-
- // Tell MLocTracker about all definitions, of regmasks and otherwise.
- for (uint32_t DeadReg : DeadRegs)
- MTracker->defReg(DeadReg, CurBB, CurInst);
-
- for (auto *MO : RegMaskPtrs)
- MTracker->writeRegMask(MO, CurBB, CurInst);
-}
-
-void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
- ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
-
- MTracker->setReg(DstRegNum, SrcValue);
-
- // In all circumstances, re-def the super registers. It's definitely a new
- // value now. This doesn't uniquely identify the composition of subregs, for
- // example, two identical values in subregisters composed in different
- // places would not get equal value numbers.
- for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
- MTracker->defReg(*SRI, CurBB, CurInst);
-
- // If we're emulating VarLocBasedImpl, just define all the subregisters.
- // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
- // through prior copies.
- if (EmulateOldLDV) {
- for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
- MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
- return;
- }
-
- // Otherwise, actually copy subregisters from one location to another.
- // XXX: in addition, any subregisters of DstRegNum that don't line up with
- // the source register should be def'd.
- for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
- unsigned SrcSubReg = SRI.getSubReg();
- unsigned SubRegIdx = SRI.getSubRegIndex();
- unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
- if (!DstSubReg)
- continue;
-
- // Do copy. There are two matching subregisters, the source value should
- // have been def'd when the super-reg was, the latter might not be tracked
- // yet.
- // This will force SrcSubReg to be tracked, if it isn't yet.
- (void)MTracker->readReg(SrcSubReg);
- LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
- assert(SrcL.asU64());
- (void)MTracker->readReg(DstSubReg);
- LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
- assert(DstL.asU64());
- (void)DstL;
- ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
-
- MTracker->setReg(DstSubReg, CpyValue);
- }
-}
-
-bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
- MachineFunction *MF) {
- // TODO: Handle multiple stores folded into one.
- if (!MI.hasOneMemOperand())
- return false;
-
- if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
- return false; // This is not a spill instruction, since no valid size was
- // returned from either function.
-
- return true;
-}
-
-bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
- MachineFunction *MF, unsigned &Reg) {
- if (!isSpillInstruction(MI, MF))
- return false;
-
- // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
- // actual register number.
- if (ObserveAllStackops) {
- int FI;
- Reg = TII->isStoreToStackSlotPostFE(MI, FI);
- return Reg != 0;
- }
-
- auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
- if (!MO.isReg() || !MO.isUse()) {
- Reg = 0;
- return false;
- }
- Reg = MO.getReg();
- return MO.isKill();
- };
-
- for (const MachineOperand &MO : MI.operands()) {
- // In a spill instruction generated by the InlineSpiller the spilled
- // register has its kill flag set.
- if (isKilledReg(MO, Reg))
- return true;
- if (Reg != 0) {
- // Check whether next instruction kills the spilled register.
- // FIXME: Current solution does not cover search for killed register in
- // bundles and instructions further down the chain.
- auto NextI = std::next(MI.getIterator());
- // Skip next instruction that points to basic block end iterator.
- if (MI.getParent()->end() == NextI)
- continue;
- unsigned RegNext;
- for (const MachineOperand &MONext : NextI->operands()) {
- // Return true if we came across the register from the
- // previous spill instruction that is killed in NextI.
- if (isKilledReg(MONext, RegNext) && RegNext == Reg)
- return true;
- }
- }
- }
- // Return false if we didn't find spilled register.
- return false;
-}
-
-Optional<SpillLoc>
-InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
- MachineFunction *MF, unsigned &Reg) {
- if (!MI.hasOneMemOperand())
- return None;
-
- // FIXME: Handle folded restore instructions with more than one memory
- // operand.
- if (MI.getRestoreSize(TII)) {
- Reg = MI.getOperand(0).getReg();
- return extractSpillBaseRegAndOffset(MI);
- }
- return None;
-}
-
-bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
- // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
- // limitations under the new model. Therefore, when comparing them, compare
- // versions that don't attempt spills or restores at all.
- if (EmulateOldLDV)
- return false;
-
- MachineFunction *MF = MI.getMF();
- unsigned Reg;
- Optional<SpillLoc> Loc;
-
- LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
-
- // First, if there are any DBG_VALUEs pointing at a spill slot that is
- // written to, terminate that variable location. The value in memory
- // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
- if (isSpillInstruction(MI, MF)) {
- Loc = extractSpillBaseRegAndOffset(MI);
-
- if (TTracker) {
- Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
- if (MLoc)
- TTracker->clobberMloc(*MLoc, MI.getIterator());
- }
- }
-
- // Try to recognise spill and restore instructions that may transfer a value.
- if (isLocationSpill(MI, MF, Reg)) {
- Loc = extractSpillBaseRegAndOffset(MI);
- auto ValueID = MTracker->readReg(Reg);
-
- // If the location is empty, produce a phi, signify it's the live-in value.
- if (ValueID.getLoc() == 0)
- ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
-
- MTracker->setSpill(*Loc, ValueID);
- auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
- assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
- LocIdx SpillLocIdx = *OptSpillLocIdx;
-
- // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
- if (TTracker)
- TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
- MI.getIterator());
- } else {
- if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
- return false;
-
- // Is there a value to be restored?
- auto OptValueID = MTracker->readSpill(*Loc);
- if (OptValueID) {
- ValueIDNum ValueID = *OptValueID;
- LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
- // XXX -- can we recover sub-registers of this value? Until we can, first
- // overwrite all defs of the register being restored to.
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- MTracker->defReg(*RAI, CurBB, CurInst);
-
- // Now override the reg we're restoring to.
- MTracker->setReg(Reg, ValueID);
-
- // Report this restore to the transfer tracker too.
- if (TTracker)
- TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
- MI.getIterator());
- } else {
- // There isn't anything in the location; not clear if this is a code path
- // that still runs. Def this register anyway just in case.
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- MTracker->defReg(*RAI, CurBB, CurInst);
-
- // Force the spill slot to be tracked.
- LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
-
- // Set the restored value to be a machine phi number, signifying that it's
- // whatever the spills live-in value is in this block. Definitely has
- // a LocIdx due to the setSpill above.
- ValueIDNum ValueID = {CurBB, 0, L};
- MTracker->setReg(Reg, ValueID);
- MTracker->setSpill(*Loc, ValueID);
- }
- }
- return true;
-}
-
-bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
- auto DestSrc = TII->isCopyInstr(MI);
- if (!DestSrc)
- return false;
-
- const MachineOperand *DestRegOp = DestSrc->Destination;
- const MachineOperand *SrcRegOp = DestSrc->Source;
-
- auto isCalleeSavedReg = [&](unsigned Reg) {
- for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
- if (CalleeSavedRegs.test(*RAI))
- return true;
- return false;
- };
-
- Register SrcReg = SrcRegOp->getReg();
- Register DestReg = DestRegOp->getReg();
-
- // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
- if (SrcReg == DestReg)
- return true;
-
- // For emulating VarLocBasedImpl:
- // We want to recognize instructions where destination register is callee
- // saved register. If register that could be clobbered by the call is
- // included, there would be a great chance that it is going to be clobbered
- // soon. It is more likely that previous register, which is callee saved, is
- // going to stay unclobbered longer, even if it is killed.
- //
- // For InstrRefBasedImpl, we can track multiple locations per value, so
- // ignore this condition.
- if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
- return false;
-
- // InstrRefBasedImpl only followed killing copies.
- if (EmulateOldLDV && !SrcRegOp->isKill())
- return false;
-
- // Copy MTracker info, including subregs if available.
- InstrRefBasedLDV::performCopy(SrcReg, DestReg);
-
- // Only produce a transfer of DBG_VALUE within a block where old LDV
- // would have. We might make use of the additional value tracking in some
- // other way, later.
- if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
- TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
- MTracker->getRegMLoc(DestReg), MI.getIterator());
-
- // VarLocBasedImpl would quit tracking the old location after copying.
- if (EmulateOldLDV && SrcReg != DestReg)
- MTracker->defReg(SrcReg, CurBB, CurInst);
-
- return true;
-}
-
-/// Accumulate a mapping between each DILocalVariable fragment and other
-/// fragments of that DILocalVariable which overlap. This reduces work during
-/// the data-flow stage from "Find any overlapping fragments" to "Check if the
-/// known-to-overlap fragments are present".
-/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
-/// fragment usage.
-void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
- DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
- MI.getDebugLoc()->getInlinedAt());
- FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
-
- // If this is the first sighting of this variable, then we are guaranteed
- // there are currently no overlapping fragments either. Initialize the set
- // of seen fragments, record no overlaps for the current one, and return.
- auto SeenIt = SeenFragments.find(MIVar.getVariable());
- if (SeenIt == SeenFragments.end()) {
- SmallSet<FragmentInfo, 4> OneFragment;
- OneFragment.insert(ThisFragment);
- SeenFragments.insert({MIVar.getVariable(), OneFragment});
-
- OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- return;
- }
-
- // If this particular Variable/Fragment pair already exists in the overlap
- // map, it has already been accounted for.
- auto IsInOLapMap =
- OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
- if (!IsInOLapMap.second)
- return;
-
- auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
- auto &AllSeenFragments = SeenIt->second;
-
- // Otherwise, examine all other seen fragments for this variable, with "this"
- // fragment being a previously unseen fragment. Record any pair of
- // overlapping fragments.
- for (auto &ASeenFragment : AllSeenFragments) {
- // Does this previously seen fragment overlap?
- if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
- // Yes: Mark the current fragment as being overlapped.
- ThisFragmentsOverlaps.push_back(ASeenFragment);
- // Mark the previously seen fragment as being overlapped by the current
- // one.
- auto ASeenFragmentsOverlaps =
- OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
- assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
- "Previously seen var fragment has no vector of overlaps");
- ASeenFragmentsOverlaps->second.push_back(ThisFragment);
- }
- }
-
- AllSeenFragments.insert(ThisFragment);
-}
-
-void InstrRefBasedLDV::process(MachineInstr &MI) {
- // Try to interpret an MI as a debug or transfer instruction. Only if it's
- // none of these should we interpret it's register defs as new value
- // definitions.
- if (transferDebugValue(MI))
- return;
- if (transferDebugInstrRef(MI))
- return;
- if (transferRegisterCopy(MI))
- return;
- if (transferSpillOrRestoreInst(MI))
- return;
- transferRegisterDef(MI);
-}
-
-void InstrRefBasedLDV::produceMLocTransferFunction(
- MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
- unsigned MaxNumBlocks) {
- // Because we try to optimize around register mask operands by ignoring regs
- // that aren't currently tracked, we set up something ugly for later: RegMask
- // operands that are seen earlier than the first use of a register, still need
- // to clobber that register in the transfer function. But this information
- // isn't actively recorded. Instead, we track each RegMask used in each block,
- // and accumulated the clobbered but untracked registers in each block into
- // the following bitvector. Later, if new values are tracked, we can add
- // appropriate clobbers.
- SmallVector<BitVector, 32> BlockMasks;
- BlockMasks.resize(MaxNumBlocks);
-
- // Reserve one bit per register for the masks described above.
- unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
- for (auto &BV : BlockMasks)
- BV.resize(TRI->getNumRegs(), true);
-
- // Step through all instructions and inhale the transfer function.
- for (auto &MBB : MF) {
- // Object fields that are read by trackers to know where we are in the
- // function.
- CurBB = MBB.getNumber();
- CurInst = 1;
-
- // Set all machine locations to a PHI value. For transfer function
- // production only, this signifies the live-in value to the block.
- MTracker->reset();
- MTracker->setMPhis(CurBB);
-
- // Step through each instruction in this block.
- for (auto &MI : MBB) {
- process(MI);
- // Also accumulate fragment map.
- if (MI.isDebugValue())
- accumulateFragmentMap(MI);
-
- // Create a map from the instruction number (if present) to the
- // MachineInstr and its position.
- if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
- auto InstrAndPos = std::make_pair(&MI, CurInst);
- auto InsertResult =
- DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
-
- // There should never be duplicate instruction numbers.
- assert(InsertResult.second);
- (void)InsertResult;
- }
-
- ++CurInst;
- }
-
- // Produce the transfer function, a map of machine location to new value. If
- // any machine location has the live-in phi value from the start of the
- // block, it's live-through and doesn't need recording in the transfer
- // function.
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
- ValueIDNum &P = Location.Value;
- if (P.isPHI() && P.getLoc() == Idx.asU64())
- continue;
-
- // Insert-or-update.
- auto &TransferMap = MLocTransfer[CurBB];
- auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
- if (!Result.second)
- Result.first->second = P;
- }
-
- // Accumulate any bitmask operands into the clobberred reg mask for this
- // block.
- for (auto &P : MTracker->Masks) {
- BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
- }
- }
-
- // Compute a bitvector of all the registers that are tracked in this block.
- const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
- Register SP = TLI->getStackPointerRegisterToSaveRestore();
- BitVector UsedRegs(TRI->getNumRegs());
- for (auto Location : MTracker->locations()) {
- unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
- if (ID >= TRI->getNumRegs() || ID == SP)
- continue;
- UsedRegs.set(ID);
- }
-
- // Check that any regmask-clobber of a register that gets tracked, is not
- // live-through in the transfer function. It needs to be clobbered at the
- // very least.
- for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
- BitVector &BV = BlockMasks[I];
- BV.flip();
- BV &= UsedRegs;
- // This produces all the bits that we clobber, but also use. Check that
- // they're all clobbered or at least set in the designated transfer
- // elem.
- for (unsigned Bit : BV.set_bits()) {
- unsigned ID = MTracker->getLocID(Bit, false);
- LocIdx Idx = MTracker->LocIDToLocIdx[ID];
- auto &TransferMap = MLocTransfer[I];
-
- // Install a value representing the fact that this location is effectively
- // written to in this block. As there's no reserved value, instead use
- // a value number that is never generated. Pick the value number for the
- // first instruction in the block, def'ing this location, which we know
- // this block never used anyway.
- ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
- auto Result =
- TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
- if (!Result.second) {
- ValueIDNum &ValueID = Result.first->second;
- if (ValueID.getBlock() == I && ValueID.isPHI())
- // It was left as live-through. Set it to clobbered.
- ValueID = NotGeneratedNum;
- }
- }
- }
-}
-
-std::tuple<bool, bool>
-InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
- SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
- ValueIDNum **OutLocs, ValueIDNum *InLocs) {
- LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
- bool Changed = false;
- bool DowngradeOccurred = false;
-
- // Collect predecessors that have been visited. Anything that hasn't been
- // visited yet is a backedge on the first iteration, and the meet of it's
- // lattice value for all locations will be unaffected.
- SmallVector<const MachineBasicBlock *, 8> BlockOrders;
- for (auto Pred : MBB.predecessors()) {
- if (Visited.count(Pred)) {
- BlockOrders.push_back(Pred);
- }
- }
-
- // Visit predecessors in RPOT order.
- auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
- return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
- };
- llvm::sort(BlockOrders, Cmp);
-
- // Skip entry block.
- if (BlockOrders.size() == 0)
- return std::tuple<bool, bool>(false, false);
-
- // Step through all machine locations, then look at each predecessor and
- // detect disagreements.
- unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
- for (auto Location : MTracker->locations()) {
- LocIdx Idx = Location.Idx;
- // Pick out the first predecessors live-out value for this location. It's
- // guaranteed to be not a backedge, as we order by RPO.
- ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
-
- // Some flags for whether there's a disagreement, and whether it's a
- // disagreement with a backedge or not.
- bool Disagree = false;
- bool NonBackEdgeDisagree = false;
-
- // Loop around everything that wasn't 'base'.
- for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
- auto *MBB = BlockOrders[I];
- if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
- // Live-out of a predecessor disagrees with the first predecessor.
- Disagree = true;
-
- // Test whether it's a disagreemnt in the backedges or not.
- if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
- NonBackEdgeDisagree = true;
- }
- }
-
- bool OverRide = false;
- if (Disagree && !NonBackEdgeDisagree) {
- // Only the backedges disagree. Consider demoting the livein
- // lattice value, as per the file level comment. The value we consider
- // demoting to is the value that the non-backedge predecessors agree on.
- // The order of values is that non-PHIs are \top, a PHI at this block
- // \bot, and phis between the two are ordered by their RPO number.
- // If there's no agreement, or we've already demoted to this PHI value
- // before, replace with a PHI value at this block.
-
- // Calculate order numbers: zero means normal def, nonzero means RPO
- // number.
- unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
- if (!BaseVal.isPHI())
- BaseBlockRPONum = 0;
-
- ValueIDNum &InLocID = InLocs[Idx.asU64()];
- unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
- if (!InLocID.isPHI())
- InLocRPONum = 0;
-
- // Should we ignore the disagreeing backedges, and override with the
- // value the other predecessors agree on (in "base")?
- unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
- if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
- // Override.
- OverRide = true;
- DowngradeOccurred = true;
- }
- }
- // else: if we disagree in the non-backedges, then this is definitely
- // a control flow merge where different values merge. Make it a PHI.
-
- // Generate a phi...
- ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
- ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
- if (InLocs[Idx.asU64()] != NewVal) {
- Changed |= true;
- InLocs[Idx.asU64()] = NewVal;
- }
- }
-
- // TODO: Reimplement NumInserted and NumRemoved.
- return std::tuple<bool, bool>(Changed, DowngradeOccurred);
-}
-
-void InstrRefBasedLDV::mlocDataflow(
- ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
- SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist, Pending;
-
- // We track what is on the current and pending worklist to avoid inserting
- // the same thing twice. We could avoid this with a custom priority queue,
- // but this is probably not worth it.
- SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
-
- // Initialize worklist with every block to be visited.
- for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
- Worklist.push(I);
- OnWorklist.insert(OrderToBB[I]);
- }
-
- MTracker->reset();
-
- // Set inlocs for entry block -- each as a PHI at the entry block. Represents
- // the incoming value to the function.
- MTracker->setMPhis(0);
- for (auto Location : MTracker->locations())
- MInLocs[0][Location.Idx.asU64()] = Location.Value;
-
- SmallPtrSet<const MachineBasicBlock *, 16> Visited;
- while (!Worklist.empty() || !Pending.empty()) {
- // Vector for storing the evaluated block transfer function.
- SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
-
- while (!Worklist.empty()) {
- MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
- CurBB = MBB->getNumber();
- Worklist.pop();
-
- // Join the values in all predecessor blocks.
- bool InLocsChanged, DowngradeOccurred;
- std::tie(InLocsChanged, DowngradeOccurred) =
- mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
- InLocsChanged |= Visited.insert(MBB).second;
-
- // If a downgrade occurred, book us in for re-examination on the next
- // iteration.
- if (DowngradeOccurred && OnPending.insert(MBB).second)
- Pending.push(BBToOrder[MBB]);
-
- // Don't examine transfer function if we've visited this loc at least
- // once, and inlocs haven't changed.
- if (!InLocsChanged)
- continue;
-
- // Load the current set of live-ins into MLocTracker.
- MTracker->loadFromArray(MInLocs[CurBB], CurBB);
-
- // Each element of the transfer function can be a new def, or a read of
- // a live-in value. Evaluate each element, and store to "ToRemap".
- ToRemap.clear();
- for (auto &P : MLocTransfer[CurBB]) {
- if (P.second.getBlock() == CurBB && P.second.isPHI()) {
- // This is a movement of whatever was live in. Read it.
- ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
- ToRemap.push_back(std::make_pair(P.first, NewID));
- } else {
- // It's a def. Just set it.
- assert(P.second.getBlock() == CurBB);
- ToRemap.push_back(std::make_pair(P.first, P.second));
- }
- }
-
- // Commit the transfer function changes into mloc tracker, which
- // transforms the contents of the MLocTracker into the live-outs.
- for (auto &P : ToRemap)
- MTracker->setMLoc(P.first, P.second);
-
- // Now copy out-locs from mloc tracker into out-loc vector, checking
- // whether changes have occurred. These changes can have come from both
- // the transfer function, and mlocJoin.
- bool OLChanged = false;
- for (auto Location : MTracker->locations()) {
- OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
- MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
- }
-
- MTracker->reset();
-
- // No need to examine successors again if out-locs didn't change.
- if (!OLChanged)
- continue;
-
- // All successors should be visited: put any back-edges on the pending
- // list for the next dataflow iteration, and any other successors to be
- // visited this iteration, if they're not going to be already.
- for (auto s : MBB->successors()) {
- // Does branching to this successor represent a back-edge?
- if (BBToOrder[s] > BBToOrder[MBB]) {
- // No: visit it during this dataflow iteration.
- if (OnWorklist.insert(s).second)
- Worklist.push(BBToOrder[s]);
- } else {
- // Yes: visit it on the next iteration.
- if (OnPending.insert(s).second)
- Pending.push(BBToOrder[s]);
- }
- }
- }
-
- Worklist.swap(Pending);
- std::swap(OnPending, OnWorklist);
- OnPending.clear();
- // At this point, pending must be empty, since it was just the empty
- // worklist
- assert(Pending.empty() && "Pending should be empty");
- }
-
- // Once all the live-ins don't change on mlocJoin(), we've reached a
- // fixedpoint.
-}
-
-bool InstrRefBasedLDV::vlocDowngradeLattice(
- const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
- const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
- // Ranking value preference: see file level comment, the highest rank is
- // a plain def, followed by PHI values in reverse post-order. Numerically,
- // we assign all defs the rank '0', all PHIs their blocks RPO number plus
- // one, and consider the lowest value the highest ranked.
- int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
- if (!OldLiveInLocation.ID.isPHI())
- OldLiveInRank = 0;
-
- // Allow any unresolvable conflict to be over-ridden.
- if (OldLiveInLocation.Kind == DbgValue::NoVal) {
- // Although if it was an unresolvable conflict from _this_ block, then
- // all other seeking of downgrades and PHIs must have failed before hand.
- if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
- return false;
- OldLiveInRank = INT_MIN;
- }
-
- auto &InValue = *Values[0].second;
-
- if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
- return false;
-
- unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
- int ThisRank = ThisRPO + 1;
- if (!InValue.ID.isPHI())
- ThisRank = 0;
-
- // Too far down the lattice?
- if (ThisRPO >= CurBlockRPONum)
- return false;
-
- // Higher in the lattice than what we've already explored?
- if (ThisRank <= OldLiveInRank)
- return false;
-
- return true;
-}
-
-std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
- MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
- ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
- const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
- // Collect a set of locations from predecessor where its live-out value can
- // be found.
- SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
- unsigned NumLocs = MTracker->getNumLocs();
- unsigned BackEdgesStart = 0;
-
- for (auto p : BlockOrders) {
- // Pick out where backedges start in the list of predecessors. Relies on
- // BlockOrders being sorted by RPO.
- if (BBToOrder[p] < BBToOrder[&MBB])
- ++BackEdgesStart;
-
- // For each predecessor, create a new set of locations.
- Locs.resize(Locs.size() + 1);
- unsigned ThisBBNum = p->getNumber();
- auto LiveOutMap = LiveOuts.find(p);
- if (LiveOutMap == LiveOuts.end())
- // This predecessor isn't in scope, it must have no live-in/live-out
- // locations.
- continue;
-
- auto It = LiveOutMap->second->find(Var);
- if (It == LiveOutMap->second->end())
- // There's no value recorded for this variable in this predecessor,
- // leave an empty set of locations.
- continue;
-
- const DbgValue &OutVal = It->second;
-
- if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
- // Consts and no-values cannot have locations we can join on.
- continue;
-
- assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
- ValueIDNum ValToLookFor = OutVal.ID;
-
- // Search the live-outs of the predecessor for the specified value.
- for (unsigned int I = 0; I < NumLocs; ++I) {
- if (MOutLocs[ThisBBNum][I] == ValToLookFor)
- Locs.back().push_back(LocIdx(I));
- }
- }
-
- // If there were no locations at all, return an empty result.
- if (Locs.empty())
- return std::tuple<Optional<ValueIDNum>, bool>(None, false);
-
- // Lambda for seeking a common location within a range of location-sets.
- using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
- auto SeekLocation =
- [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
- // Starting with the first set of locations, take the intersection with
- // subsequent sets.
- SmallVector<LocIdx, 4> base = Locs[0];
- for (auto &S : SearchRange) {
- SmallVector<LocIdx, 4> new_base;
- std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
- std::inserter(new_base, new_base.begin()));
- base = new_base;
- }
- if (base.empty())
- return None;
-
- // We now have a set of LocIdxes that contain the right output value in
- // each of the predecessors. Pick the lowest; if there's a register loc,
- // that'll be it.
- return *base.begin();
- };
-
- // Search for a common location for all predecessors. If we can't, then fall
- // back to only finding a common location between non-backedge predecessors.
- bool ValidForAllLocs = true;
- auto TheLoc = SeekLocation(Locs);
- if (!TheLoc) {
- ValidForAllLocs = false;
- TheLoc =
- SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
- }
-
- if (!TheLoc)
- return std::tuple<Optional<ValueIDNum>, bool>(None, false);
-
- // Return a PHI-value-number for the found location.
- LocIdx L = *TheLoc;
- ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
- return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
-}
-
-std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
- MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
- SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
- const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
- ValueIDNum **MInLocs,
- SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
- SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
- DenseMap<DebugVariable, DbgValue> &InLocsT) {
- bool DowngradeOccurred = false;
-
- // To emulate VarLocBasedImpl, process this block if it's not in scope but
- // _does_ assign a variable value. No live-ins for this scope are transferred
- // in though, so we can return immediately.
- if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
- if (VLOCVisited)
- return std::tuple<bool, bool>(true, false);
- return std::tuple<bool, bool>(false, false);
- }
-
- LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
- bool Changed = false;
-
- // Find any live-ins computed in a prior iteration.
- auto ILSIt = VLOCInLocs.find(&MBB);
- assert(ILSIt != VLOCInLocs.end());
- auto &ILS = *ILSIt->second;
-
- // Order predecessors by RPOT order, for exploring them in that order.
- SmallVector<MachineBasicBlock *, 8> BlockOrders;
- for (auto p : MBB.predecessors())
- BlockOrders.push_back(p);
-
- auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
- return BBToOrder[A] < BBToOrder[B];
- };
-
- llvm::sort(BlockOrders, Cmp);
-
- unsigned CurBlockRPONum = BBToOrder[&MBB];
-
- // Force a re-visit to loop heads in the first dataflow iteration.
- // FIXME: if we could "propose" Const values this wouldn't be needed,
- // because they'd need to be confirmed before being emitted.
- if (!BlockOrders.empty() &&
- BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
- VLOCVisited)
- DowngradeOccurred = true;
-
- auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
- auto Result = InLocsT.insert(std::make_pair(DV, VR));
- (void)Result;
- assert(Result.second);
- };
-
- auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
- DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
-
- ConfirmValue(Var, NoLocPHIVal);
- };
-
- // Attempt to join the values for each variable.
- for (auto &Var : AllVars) {
- // Collect all the DbgValues for this variable.
- SmallVector<InValueT, 8> Values;
- bool Bail = false;
- unsigned BackEdgesStart = 0;
- for (auto p : BlockOrders) {
- // If the predecessor isn't in scope / to be explored, we'll never be
- // able to join any locations.
- if (!BlocksToExplore.contains(p)) {
- Bail = true;
- break;
- }
-
- // Don't attempt to handle unvisited predecessors: they're implicitly
- // "unknown"s in the lattice.
- if (VLOCVisited && !VLOCVisited->count(p))
- continue;
-
- // If the predecessors OutLocs is absent, there's not much we can do.
- auto OL = VLOCOutLocs.find(p);
- if (OL == VLOCOutLocs.end()) {
- Bail = true;
- break;
- }
-
- // No live-out value for this predecessor also means we can't produce
- // a joined value.
- auto VIt = OL->second->find(Var);
- if (VIt == OL->second->end()) {
- Bail = true;
- break;
- }
-
- // Keep track of where back-edges begin in the Values vector. Relies on
- // BlockOrders being sorted by RPO.
- unsigned ThisBBRPONum = BBToOrder[p];
- if (ThisBBRPONum < CurBlockRPONum)
- ++BackEdgesStart;
-
- Values.push_back(std::make_pair(p, &VIt->second));
- }
-
- // If there were no values, or one of the predecessors couldn't have a
- // value, then give up immediately. It's not safe to produce a live-in
- // value.
- if (Bail || Values.size() == 0)
- continue;
-
- // Enumeration identifying the current state of the predecessors values.
- enum {
- Unset = 0,
- Agreed, // All preds agree on the variable value.
- PropDisagree, // All preds agree, but the value kind is Proposed in some.
- BEDisagree, // Only back-edges disagree on variable value.
- PHINeeded, // Non-back-edge predecessors have conflicing values.
- NoSolution // Conflicting Value metadata makes solution impossible.
- } OurState = Unset;
-
- // All (non-entry) blocks have at least one non-backedge predecessor.
- // Pick the variable value from the first of these, to compare against
- // all others.
- const DbgValue &FirstVal = *Values[0].second;
- const ValueIDNum &FirstID = FirstVal.ID;
-
- // Scan for variable values that can't be resolved: if they have different
- // DIExpressions, different indirectness, or are mixed constants /
- // non-constants.
- for (auto &V : Values) {
- if (V.second->Properties != FirstVal.Properties)
- OurState = NoSolution;
- if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
- OurState = NoSolution;
- }
-
- // Flags diagnosing _how_ the values disagree.
- bool NonBackEdgeDisagree = false;
- bool DisagreeOnPHINess = false;
- bool IDDisagree = false;
- bool Disagree = false;
- if (OurState == Unset) {
- for (auto &V : Values) {
- if (*V.second == FirstVal)
- continue; // No disagreement.
-
- Disagree = true;
-
- // Flag whether the value number actually diagrees.
- if (V.second->ID != FirstID)
- IDDisagree = true;
-
- // Distinguish whether disagreement happens in backedges or not.
- // Relies on Values (and BlockOrders) being sorted by RPO.
- unsigned ThisBBRPONum = BBToOrder[V.first];
- if (ThisBBRPONum < CurBlockRPONum)
- NonBackEdgeDisagree = true;
-
- // Is there a difference in whether the value is definite or only
- // proposed?
- if (V.second->Kind != FirstVal.Kind &&
- (V.second->Kind == DbgValue::Proposed ||
- V.second->Kind == DbgValue::Def) &&
- (FirstVal.Kind == DbgValue::Proposed ||
- FirstVal.Kind == DbgValue::Def))
- DisagreeOnPHINess = true;
- }
-
- // Collect those flags together and determine an overall state for
- // what extend the predecessors agree on a live-in value.
- if (!Disagree)
- OurState = Agreed;
- else if (!IDDisagree && DisagreeOnPHINess)
- OurState = PropDisagree;
- else if (!NonBackEdgeDisagree)
- OurState = BEDisagree;
- else
- OurState = PHINeeded;
- }
-
- // An extra indicator: if we only disagree on whether the value is a
- // Def, or proposed, then also flag whether that disagreement happens
- // in backedges only.
- bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
- !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
-
- const auto &Properties = FirstVal.Properties;
-
- auto OldLiveInIt = ILS.find(Var);
- const DbgValue *OldLiveInLocation =
- (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
-
- bool OverRide = false;
- if (OurState == BEDisagree && OldLiveInLocation) {
- // Only backedges disagree: we can consider downgrading. If there was a
- // previous live-in value, use it to work out whether the current
- // incoming value represents a lattice downgrade or not.
- OverRide =
- vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
- }
-
- // Use the current state of predecessor agreement and other flags to work
- // out what to do next. Possibilities include:
- // * Accept a value all predecessors agree on, or accept one that
- // represents a step down the exploration lattice,
- // * Use a PHI value number, if one can be found,
- // * Propose a PHI value number, and see if it gets confirmed later,
- // * Emit a 'NoVal' value, indicating we couldn't resolve anything.
- if (OurState == Agreed) {
- // Easiest solution: all predecessors agree on the variable value.
- ConfirmValue(Var, FirstVal);
- } else if (OurState == BEDisagree && OverRide) {
- // Only backedges disagree, and the other predecessors have produced
- // a new live-in value further down the exploration lattice.
- DowngradeOccurred = true;
- ConfirmValue(Var, FirstVal);
- } else if (OurState == PropDisagree) {
- // Predecessors agree on value, but some say it's only a proposed value.
- // Propagate it as proposed: unless it was proposed in this block, in
- // which case we're able to confirm the value.
- if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
- ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
- } else if (PropOnlyInBEs) {
- // If only backedges disagree, a higher (in RPO) block confirmed this
- // location, and we need to propagate it into this loop.
- ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
- } else {
- // Otherwise; a Def meeting a Proposed is still a Proposed.
- ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
- }
- } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
- // Predecessors disagree and can't be downgraded: this can only be
- // solved with a PHI. Use pickVPHILoc to go look for one.
- Optional<ValueIDNum> VPHI;
- bool AllEdgesVPHI = false;
- std::tie(VPHI, AllEdgesVPHI) =
- pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
-
- if (VPHI && AllEdgesVPHI) {
- // There's a PHI value that's valid for all predecessors -- we can use
- // it. If any of the non-backedge predecessors have proposed values
- // though, this PHI is also only proposed, until the predecessors are
- // confirmed.
- DbgValue::KindT K = DbgValue::Def;
- for (unsigned int I = 0; I < BackEdgesStart; ++I)
- if (Values[I].second->Kind == DbgValue::Proposed)
- K = DbgValue::Proposed;
-
- ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
- } else if (VPHI) {
- // There's a PHI value, but it's only legal for backedges. Leave this
- // as a proposed PHI value: it might come back on the backedges,
- // and allow us to confirm it in the future.
- DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
- ConfirmValue(Var, NoBEValue);
- } else {
- ConfirmNoVal(Var, Properties);
- }
- } else {
- // Otherwise: we don't know. Emit a "phi but no real loc" phi.
- ConfirmNoVal(Var, Properties);
- }
- }
-
- // Store newly calculated in-locs into VLOCInLocs, if they've changed.
- Changed = ILS != InLocsT;
- if (Changed)
- ILS = InLocsT;
-
- return std::tuple<bool, bool>(Changed, DowngradeOccurred);
-}
-
-void InstrRefBasedLDV::vlocDataflow(
- const LexicalScope *Scope, const DILocation *DILoc,
- const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
- SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
- ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
- SmallVectorImpl<VLocTracker> &AllTheVLocs) {
- // This method is much like mlocDataflow: but focuses on a single
- // LexicalScope at a time. Pick out a set of blocks and variables that are
- // to have their value assignments solved, then run our dataflow algorithm
- // until a fixedpoint is reached.
- std::priority_queue<unsigned int, std::vector<unsigned int>,
- std::greater<unsigned int>>
- Worklist, Pending;
- SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
-
- // The set of blocks we'll be examining.
- SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
-
- // The order in which to examine them (RPO).
- SmallVector<MachineBasicBlock *, 8> BlockOrders;
-
- // RPO ordering function.
- auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
- return BBToOrder[A] < BBToOrder[B];
- };
-
- LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
-
- // A separate container to distinguish "blocks we're exploring" versus
- // "blocks that are potentially in scope. See comment at start of vlocJoin.
- SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
-
- // Old LiveDebugValues tracks variable locations that come out of blocks
- // not in scope, where DBG_VALUEs occur. This is something we could
- // legitimately ignore, but lets allow it for now.
- if (EmulateOldLDV)
- BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
-
- // We also need to propagate variable values through any artificial blocks
- // that immediately follow blocks in scope.
- DenseSet<const MachineBasicBlock *> ToAdd;
-
- // Helper lambda: For a given block in scope, perform a depth first search
- // of all the artificial successors, adding them to the ToAdd collection.
- auto AccumulateArtificialBlocks =
- [this, &ToAdd, &BlocksToExplore,
- &InScopeBlocks](const MachineBasicBlock *MBB) {
- // Depth-first-search state: each node is a block and which successor
- // we're currently exploring.
- SmallVector<std::pair<const MachineBasicBlock *,
- MachineBasicBlock::const_succ_iterator>,
- 8>
- DFS;
-
- // Find any artificial successors not already tracked.
- for (auto *succ : MBB->successors()) {
- if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
- continue;
- if (!ArtificialBlocks.count(succ))
- continue;
- DFS.push_back(std::make_pair(succ, succ->succ_begin()));
- ToAdd.insert(succ);
- }
-
- // Search all those blocks, depth first.
- while (!DFS.empty()) {
- const MachineBasicBlock *CurBB = DFS.back().first;
- MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
- // Walk back if we've explored this blocks successors to the end.
- if (CurSucc == CurBB->succ_end()) {
- DFS.pop_back();
- continue;
- }
-
- // If the current successor is artificial and unexplored, descend into
- // it.
- if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
- DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
- ToAdd.insert(*CurSucc);
- continue;
- }
-
- ++CurSucc;
- }
- };
-
- // Search in-scope blocks and those containing a DBG_VALUE from this scope
- // for artificial successors.
- for (auto *MBB : BlocksToExplore)
- AccumulateArtificialBlocks(MBB);
- for (auto *MBB : InScopeBlocks)
- AccumulateArtificialBlocks(MBB);
-
- BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
- InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
-
- // Single block scope: not interesting! No propagation at all. Note that
- // this could probably go above ArtificialBlocks without damage, but
- // that then produces output differences from original-live-debug-values,
- // which propagates from a single block into many artificial ones.
- if (BlocksToExplore.size() == 1)
- return;
-
- // Picks out relevants blocks RPO order and sort them.
- for (auto *MBB : BlocksToExplore)
- BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
-
- llvm::sort(BlockOrders, Cmp);
- unsigned NumBlocks = BlockOrders.size();
-
- // Allocate some vectors for storing the live ins and live outs. Large.
- SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
- LiveIns.resize(NumBlocks);
- LiveOuts.resize(NumBlocks);
-
- // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
- // vlocJoin.
- LiveIdxT LiveOutIdx, LiveInIdx;
- LiveOutIdx.reserve(NumBlocks);
- LiveInIdx.reserve(NumBlocks);
- for (unsigned I = 0; I < NumBlocks; ++I) {
- LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
- LiveInIdx[BlockOrders[I]] = &LiveIns[I];
- }
-
- for (auto *MBB : BlockOrders) {
- Worklist.push(BBToOrder[MBB]);
- OnWorklist.insert(MBB);
- }
-
- // Iterate over all the blocks we selected, propagating variable values.
- bool FirstTrip = true;
- SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
- while (!Worklist.empty() || !Pending.empty()) {
- while (!Worklist.empty()) {
- auto *MBB = OrderToBB[Worklist.top()];
- CurBB = MBB->getNumber();
- Worklist.pop();
-
- DenseMap<DebugVariable, DbgValue> JoinedInLocs;
-
- // Join values from predecessors. Updates LiveInIdx, and writes output
- // into JoinedInLocs.
- bool InLocsChanged, DowngradeOccurred;
- std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
- *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
- CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
- BlocksToExplore, JoinedInLocs);
-
- bool FirstVisit = VLOCVisited.insert(MBB).second;
-
- // Always explore transfer function if inlocs changed, or if we've not
- // visited this block before.
- InLocsChanged |= FirstVisit;
-
- // If a downgrade occurred, book us in for re-examination on the next
- // iteration.
- if (DowngradeOccurred && OnPending.insert(MBB).second)
- Pending.push(BBToOrder[MBB]);
-
- if (!InLocsChanged)
- continue;
-
- // Do transfer function.
- auto &VTracker = AllTheVLocs[MBB->getNumber()];
- for (auto &Transfer : VTracker.Vars) {
- // Is this var we're mangling in this scope?
- if (VarsWeCareAbout.count(Transfer.first)) {
- // Erase on empty transfer (DBG_VALUE $noreg).
- if (Transfer.second.Kind == DbgValue::Undef) {
- JoinedInLocs.erase(Transfer.first);
- } else {
- // Insert new variable value; or overwrite.
- auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
- auto Result = JoinedInLocs.insert(NewValuePair);
- if (!Result.second)
- Result.first->second = Transfer.second;
- }
- }
- }
-
- // Did the live-out locations change?
- bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
-
- // If they haven't changed, there's no need to explore further.
- if (!OLChanged)
- continue;
-
- // Commit to the live-out record.
- *LiveOutIdx[MBB] = JoinedInLocs;
-
- // We should visit all successors. Ensure we'll visit any non-backedge
- // successors during this dataflow iteration; book backedge successors
- // to be visited next time around.
- for (auto s : MBB->successors()) {
- // Ignore out of scope / not-to-be-explored successors.
- if (LiveInIdx.find(s) == LiveInIdx.end())
- continue;
-
- if (BBToOrder[s] > BBToOrder[MBB]) {
- if (OnWorklist.insert(s).second)
- Worklist.push(BBToOrder[s]);
- } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
- Pending.push(BBToOrder[s]);
- }
- }
- }
- Worklist.swap(Pending);
- std::swap(OnWorklist, OnPending);
- OnPending.clear();
- assert(Pending.empty());
- FirstTrip = false;
- }
-
- // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
- // as being variable-PHIs, because those did not have their machine-PHI
- // value confirmed. Such variable values are places that could have been
- // PHIs, but are not.
- for (auto *MBB : BlockOrders) {
- auto &VarMap = *LiveInIdx[MBB];
- for (auto &P : VarMap) {
- if (P.second.Kind == DbgValue::Proposed ||
- P.second.Kind == DbgValue::NoVal)
- continue;
- Output[MBB->getNumber()].push_back(P);
- }
- }
-
- BlockOrders.clear();
- BlocksToExplore.clear();
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void InstrRefBasedLDV::dump_mloc_transfer(
- const MLocTransferMap &mloc_transfer) const {
- for (auto &P : mloc_transfer) {
- std::string foo = MTracker->LocIdxToName(P.first);
- std::string bar = MTracker->IDAsString(P.second);
- dbgs() << "Loc " << foo << " --> " << bar << "\n";
- }
-}
-#endif
-
-void InstrRefBasedLDV::emitLocations(
- MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
- DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
- TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
- unsigned NumLocs = MTracker->getNumLocs();
-
- // For each block, load in the machine value locations and variable value
- // live-ins, then step through each instruction in the block. New DBG_VALUEs
- // to be inserted will be created along the way.
- for (MachineBasicBlock &MBB : MF) {
- unsigned bbnum = MBB.getNumber();
- MTracker->reset();
- MTracker->loadFromArray(MInLocs[bbnum], bbnum);
- TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
- NumLocs);
-
- CurBB = bbnum;
- CurInst = 1;
- for (auto &MI : MBB) {
- process(MI);
- TTracker->checkInstForNewValues(CurInst, MI.getIterator());
- ++CurInst;
- }
- }
-
- // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
- // in DWARF in different orders. Use the order that they appear when walking
- // through each block / each instruction, stored in AllVarsNumbering.
- auto OrderDbgValues = [&](const MachineInstr *A,
- const MachineInstr *B) -> bool {
- DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
- A->getDebugLoc()->getInlinedAt());
- DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
- B->getDebugLoc()->getInlinedAt());
- return AllVarsNumbering.find(VarA)->second <
- AllVarsNumbering.find(VarB)->second;
- };
-
- // Go through all the transfers recorded in the TransferTracker -- this is
- // both the live-ins to a block, and any movements of values that happen
- // in the middle.
- for (auto &P : TTracker->Transfers) {
- // Sort them according to appearance order.
- llvm::sort(P.Insts, OrderDbgValues);
- // Insert either before or after the designated point...
- if (P.MBB) {
- MachineBasicBlock &MBB = *P.MBB;
- for (auto *MI : P.Insts) {
- MBB.insert(P.Pos, MI);
- }
- } else {
- MachineBasicBlock &MBB = *P.Pos->getParent();
- for (auto *MI : P.Insts) {
- MBB.insertAfter(P.Pos, MI);
- }
- }
- }
-}
-
-void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
- // Build some useful data structures.
- auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
- if (const DebugLoc &DL = MI.getDebugLoc())
- return DL.getLine() != 0;
- return false;
- };
- // Collect a set of all the artificial blocks.
- for (auto &MBB : MF)
- if (none_of(MBB.instrs(), hasNonArtificialLocation))
- ArtificialBlocks.insert(&MBB);
-
- // Compute mappings of block <=> RPO order.
- ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
- unsigned int RPONumber = 0;
- for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
- OrderToBB[RPONumber] = *RI;
- BBToOrder[*RI] = RPONumber;
- BBNumToRPO[(*RI)->getNumber()] = RPONumber;
- ++RPONumber;
- }
-}
-
-/// Calculate the liveness information for the given machine function and
-/// extend ranges across basic blocks.
-bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
- TargetPassConfig *TPC) {
- // No subprogram means this function contains no debuginfo.
- if (!MF.getFunction().getSubprogram())
- return false;
-
- LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
- this->TPC = TPC;
-
- TRI = MF.getSubtarget().getRegisterInfo();
- TII = MF.getSubtarget().getInstrInfo();
- TFI = MF.getSubtarget().getFrameLowering();
- TFI->getCalleeSaves(MF, CalleeSavedRegs);
- LS.initialize(MF);
-
- MTracker =
- new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
- VTracker = nullptr;
- TTracker = nullptr;
-
- SmallVector<MLocTransferMap, 32> MLocTransfer;
- SmallVector<VLocTracker, 8> vlocs;
- LiveInsT SavedLiveIns;
-
- int MaxNumBlocks = -1;
- for (auto &MBB : MF)
- MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
- assert(MaxNumBlocks >= 0);
- ++MaxNumBlocks;
-
- MLocTransfer.resize(MaxNumBlocks);
- vlocs.resize(MaxNumBlocks);
- SavedLiveIns.resize(MaxNumBlocks);
-
- initialSetup(MF);
-
- produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
-
- // Allocate and initialize two array-of-arrays for the live-in and live-out
- // machine values. The outer dimension is the block number; while the inner
- // dimension is a LocIdx from MLocTracker.
- ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
- ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
- unsigned NumLocs = MTracker->getNumLocs();
- for (int i = 0; i < MaxNumBlocks; ++i) {
- MOutLocs[i] = new ValueIDNum[NumLocs];
- MInLocs[i] = new ValueIDNum[NumLocs];
- }
-
- // Solve the machine value dataflow problem using the MLocTransfer function,
- // storing the computed live-ins / live-outs into the array-of-arrays. We use
- // both live-ins and live-outs for decision making in the variable value
- // dataflow problem.
- mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
-
- // Walk back through each block / instruction, collecting DBG_VALUE
- // instructions and recording what machine value their operands refer to.
- for (auto &OrderPair : OrderToBB) {
- MachineBasicBlock &MBB = *OrderPair.second;
- CurBB = MBB.getNumber();
- VTracker = &vlocs[CurBB];
- VTracker->MBB = &MBB;
- MTracker->loadFromArray(MInLocs[CurBB], CurBB);
- CurInst = 1;
- for (auto &MI : MBB) {
- process(MI);
- ++CurInst;
- }
- MTracker->reset();
- }
-
- // Number all variables in the order that they appear, to be used as a stable
- // insertion order later.
- DenseMap<DebugVariable, unsigned> AllVarsNumbering;
-
- // Map from one LexicalScope to all the variables in that scope.
- DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
-
- // Map from One lexical scope to all blocks in that scope.
- DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
- ScopeToBlocks;
-
- // Store a DILocation that describes a scope.
- DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
-
- // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
- // the order is unimportant, it just has to be stable.
- for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
- auto *MBB = OrderToBB[I];
- auto *VTracker = &vlocs[MBB->getNumber()];
- // Collect each variable with a DBG_VALUE in this block.
- for (auto &idx : VTracker->Vars) {
- const auto &Var = idx.first;
- const DILocation *ScopeLoc = VTracker->Scopes[Var];
- assert(ScopeLoc != nullptr);
- auto *Scope = LS.findLexicalScope(ScopeLoc);
-
- // No insts in scope -> shouldn't have been recorded.
- assert(Scope != nullptr);
-
- AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
- ScopeToVars[Scope].insert(Var);
- ScopeToBlocks[Scope].insert(VTracker->MBB);
- ScopeToDILocation[Scope] = ScopeLoc;
- }
- }
-
- // OK. Iterate over scopes: there might be something to be said for
- // ordering them by size/locality, but that's for the future. For each scope,
- // solve the variable value problem, producing a map of variables to values
- // in SavedLiveIns.
- for (auto &P : ScopeToVars) {
- vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
- ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
- vlocs);
- }
-
- // Using the computed value locations and variable values for each block,
- // create the DBG_VALUE instructions representing the extended variable
- // locations.
- emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);
-
- for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
- delete[] MOutLocs[Idx];
- delete[] MInLocs[Idx];
- }
- delete[] MOutLocs;
- delete[] MInLocs;
-
- // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
- bool Changed = TTracker->Transfers.size() != 0;
-
- delete MTracker;
- delete TTracker;
- MTracker = nullptr;
- VTracker = nullptr;
- TTracker = nullptr;
-
- ArtificialBlocks.clear();
- OrderToBB.clear();
- BBToOrder.clear();
- BBNumToRPO.clear();
- DebugInstrNumToInstr.clear();
-
- return Changed;
-}
-
-LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
- return new InstrRefBasedLDV();
-}
+//===- InstrRefBasedImpl.cpp - Tracking Debug Value MIs -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file InstrRefBasedImpl.cpp
+///
+/// This is a separate implementation of LiveDebugValues, see
+/// LiveDebugValues.cpp and VarLocBasedImpl.cpp for more information.
+///
+/// This pass propagates variable locations between basic blocks, resolving
+/// control flow conflicts between them. The problem is much like SSA
+/// construction, where each DBG_VALUE instruction assigns the *value* that
+/// a variable has, and every instruction where the variable is in scope uses
+/// that variable. The resulting map of instruction-to-value is then translated
+/// into a register (or spill) location for each variable over each instruction.
+///
+/// This pass determines which DBG_VALUE dominates which instructions, or if
+/// none do, where values must be merged (like PHI nodes). The added
+/// complication is that because codegen has already finished, a PHI node may
+/// be needed for a variable location to be correct, but no register or spill
+/// slot merges the necessary values. In these circumstances, the variable
+/// location is dropped.
+///
+/// What makes this analysis non-trivial is loops: we cannot tell in advance
+/// whether a variable location is live throughout a loop, or whether its
+/// location is clobbered (or redefined by another DBG_VALUE), without
+/// exploring all the way through.
+///
+/// To make this simpler we perform two kinds of analysis. First, we identify
+/// every value defined by every instruction (ignoring those that only move
+/// another value), then compute a map of which values are available for each
+/// instruction. This is stronger than a reaching-def analysis, as we create
+/// PHI values where other values merge.
+///
+/// Secondly, for each variable, we effectively re-construct SSA using each
+/// DBG_VALUE as a def. The DBG_VALUEs read a value-number computed by the
+/// first analysis from the location they refer to. We can then compute the
+/// dominance frontiers of where a variable has a value, and create PHI nodes
+/// where they merge.
+/// This isn't precisely SSA-construction though, because the function shape
+/// is pre-defined. If a variable location requires a PHI node, but no
+/// PHI for the relevant values is present in the function (as computed by the
+/// first analysis), the location must be dropped.
+///
+/// Once both are complete, we can pass back over all instructions knowing:
+/// * What _value_ each variable should contain, either defined by an
+/// instruction or where control flow merges
+/// * What the location of that value is (if any).
+/// Allowing us to create appropriate live-in DBG_VALUEs, and DBG_VALUEs when
+/// a value moves location. After this pass runs, all variable locations within
+/// a block should be specified by DBG_VALUEs within that block, allowing
+/// DbgEntityHistoryCalculator to focus on individual blocks.
+///
+/// This pass is able to go fast because the size of the first
+/// reaching-definition analysis is proportional to the working-set size of
+/// the function, which the compiler tries to keep small. (It's also
+/// proportional to the number of blocks). Additionally, we repeatedly perform
+/// the second reaching-definition analysis with only the variables and blocks
+/// in a single lexical scope, exploiting their locality.
+///
+/// Determining where PHIs happen is trickier with this approach, and it comes
+/// to a head in the major problem for LiveDebugValues: is a value live-through
+/// a loop, or not? Your garden-variety dataflow analysis aims to build a set of
+/// facts about a function, however this analysis needs to generate new value
+/// numbers at joins.
+///
+/// To do this, consider a lattice of all definition values, from instructions
+/// and from PHIs. Each PHI is characterised by the RPO number of the block it
+/// occurs in. Each value pair A, B can be ordered by RPO(A) < RPO(B):
+/// with non-PHI values at the top, and any PHI value in the last block (by RPO
+/// order) at the bottom.
+///
+/// (Awkwardly: lower-down-the _lattice_ means a greater RPO _number_. Below,
+/// "rank" always refers to the former).
+///
+/// At any join, for each register, we consider:
+/// * All incoming values, and
+/// * The PREVIOUS live-in value at this join.
+/// If all incoming values agree: that's the live-in value. If they do not, the
+/// incoming values are ranked according to the partial order, and the NEXT
+/// LOWEST rank after the PREVIOUS live-in value is picked (multiple values of
+/// the same rank are ignored as conflicting). If there are no candidate values,
+/// or if the rank of the live-in would be lower than the rank of the current
+/// blocks PHIs, create a new PHI value.
+///
+/// Intuitively: if it's not immediately obvious what value a join should result
+/// in, we iteratively descend from instruction-definitions down through PHI
+/// values, getting closer to the current block each time. If the current block
+/// is a loop head, this ordering is effectively searching outer levels of
+/// loops, to find a value that's live-through the current loop.
+///
+/// If there is no value that's live-through this loop, a PHI is created for
+/// this location instead. We can't use a lower-ranked PHI because by definition
+/// it doesn't dominate the current block. We can't create a PHI value any
+/// earlier, because we risk creating a PHI value at a location where values do
+/// not in fact merge, thus misrepresenting the truth, and not making the true
+/// live-through value for variable locations.
+///
+/// This algorithm applies to both calculating the availability of values in
+/// the first analysis, and the location of variables in the second. However
+/// for the second we add an extra dimension of pain: creating a variable
+/// location PHI is only valid if, for each incoming edge,
+/// * There is a value for the variable on the incoming edge, and
+/// * All the edges have that value in the same register.
+/// Or put another way: we can only create a variable-location PHI if there is
+/// a matching machine-location PHI, each input to which is the variables value
+/// in the predecessor block.
+///
+/// To accommodate this difference, each point on the lattice is split in
+/// two: a "proposed" PHI and "definite" PHI. Any PHI that can immediately
+/// have a location determined are "definite" PHIs, and no further work is
+/// needed. Otherwise, a location that all non-backedge predecessors agree
+/// on is picked and propagated as a "proposed" PHI value. If that PHI value
+/// is truly live-through, it'll appear on the loop backedges on the next
+/// dataflow iteration, after which the block live-in moves to be a "definite"
+/// PHI. If it's not truly live-through, the variable value will be downgraded
+/// further as we explore the lattice, or remains "proposed" and is considered
+/// invalid once dataflow completes.
+///
+/// ### Terminology
+///
+/// A machine location is a register or spill slot, a value is something that's
+/// defined by an instruction or PHI node, while a variable value is the value
+/// assigned to a variable. A variable location is a machine location, that must
+/// contain the appropriate variable value. A value that is a PHI node is
+/// occasionally called an mphi.
+///
+/// The first dataflow problem is the "machine value location" problem,
+/// because we're determining which machine locations contain which values.
+/// The "locations" are constant: what's unknown is what value they contain.
+///
+/// The second dataflow problem (the one for variables) is the "variable value
+/// problem", because it's determining what values a variable has, rather than
+/// what location those values are placed in. Unfortunately, it's not that
+/// simple, because producing a PHI value always involves picking a location.
+/// This is an imperfection that we just have to accept, at least for now.
+///
+/// TODO:
+/// Overlapping fragments
+/// Entry values
+/// Add back DEBUG statements for debugging this
+/// Collect statistics
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/PostOrderIterator.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/CodeGen/LexicalScopes.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineMemOperand.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/CodeGen/RegisterScavenging.h"
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/DIBuilder.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/TypeSize.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <functional>
+#include <queue>
+#include <tuple>
+#include <utility>
+#include <vector>
+#include <limits.h>
+#include <limits>
+
+#include "LiveDebugValues.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "livedebugvalues"
+
+STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
+STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
+
+// Act more like the VarLoc implementation, by propagating some locations too
+// far and ignoring some transfers.
+static cl::opt<bool> EmulateOldLDV("emulate-old-livedebugvalues", cl::Hidden,
+ cl::desc("Act like old LiveDebugValues did"),
+ cl::init(false));
+
+// Rely on isStoreToStackSlotPostFE and similar to observe all stack spills.
+static cl::opt<bool>
+ ObserveAllStackops("observe-all-stack-ops", cl::Hidden,
+ cl::desc("Allow non-kill spill and restores"),
+ cl::init(false));
+
+namespace {
+
+// The location at which a spilled value resides. It consists of a register and
+// an offset.
+struct SpillLoc {
+ unsigned SpillBase;
+ StackOffset SpillOffset;
+ bool operator==(const SpillLoc &Other) const {
+ return std::make_pair(SpillBase, SpillOffset) ==
+ std::make_pair(Other.SpillBase, Other.SpillOffset);
+ }
+ bool operator<(const SpillLoc &Other) const {
+ return std::make_tuple(SpillBase, SpillOffset.getFixed(),
+ SpillOffset.getScalable()) <
+ std::make_tuple(Other.SpillBase, Other.SpillOffset.getFixed(),
+ Other.SpillOffset.getScalable());
+ }
+};
+
+class LocIdx {
+ unsigned Location;
+
+ // Default constructor is private, initializing to an illegal location number.
+ // Use only for "not an entry" elements in IndexedMaps.
+ LocIdx() : Location(UINT_MAX) { }
+
+public:
+ #define NUM_LOC_BITS 24
+ LocIdx(unsigned L) : Location(L) {
+ assert(L < (1 << NUM_LOC_BITS) && "Machine locations must fit in 24 bits");
+ }
+
+ static LocIdx MakeIllegalLoc() {
+ return LocIdx();
+ }
+
+ bool isIllegal() const {
+ return Location == UINT_MAX;
+ }
+
+ uint64_t asU64() const {
+ return Location;
+ }
+
+ bool operator==(unsigned L) const {
+ return Location == L;
+ }
+
+ bool operator==(const LocIdx &L) const {
+ return Location == L.Location;
+ }
+
+ bool operator!=(unsigned L) const {
+ return !(*this == L);
+ }
+
+ bool operator!=(const LocIdx &L) const {
+ return !(*this == L);
+ }
+
+ bool operator<(const LocIdx &Other) const {
+ return Location < Other.Location;
+ }
+};
+
+class LocIdxToIndexFunctor {
+public:
+ using argument_type = LocIdx;
+ unsigned operator()(const LocIdx &L) const {
+ return L.asU64();
+ }
+};
+
+/// Unique identifier for a value defined by an instruction, as a value type.
+/// Casts back and forth to a uint64_t. Probably replacable with something less
+/// bit-constrained. Each value identifies the instruction and machine location
+/// where the value is defined, although there may be no corresponding machine
+/// operand for it (ex: regmasks clobbering values). The instructions are
+/// one-based, and definitions that are PHIs have instruction number zero.
+///
+/// The obvious limits of a 1M block function or 1M instruction blocks are
+/// problematic; but by that point we should probably have bailed out of
+/// trying to analyse the function.
+class ValueIDNum {
+ uint64_t BlockNo : 20; /// The block where the def happens.
+ uint64_t InstNo : 20; /// The Instruction where the def happens.
+ /// One based, is distance from start of block.
+ uint64_t LocNo : NUM_LOC_BITS; /// The machine location where the def happens.
+
+public:
+ // XXX -- temporarily enabled while the live-in / live-out tables are moved
+ // to something more type-y
+ ValueIDNum() : BlockNo(0xFFFFF),
+ InstNo(0xFFFFF),
+ LocNo(0xFFFFFF) { }
+
+ ValueIDNum(uint64_t Block, uint64_t Inst, uint64_t Loc)
+ : BlockNo(Block), InstNo(Inst), LocNo(Loc) { }
+
+ ValueIDNum(uint64_t Block, uint64_t Inst, LocIdx Loc)
+ : BlockNo(Block), InstNo(Inst), LocNo(Loc.asU64()) { }
+
+ uint64_t getBlock() const { return BlockNo; }
+ uint64_t getInst() const { return InstNo; }
+ uint64_t getLoc() const { return LocNo; }
+ bool isPHI() const { return InstNo == 0; }
+
+ uint64_t asU64() const {
+ uint64_t TmpBlock = BlockNo;
+ uint64_t TmpInst = InstNo;
+ return TmpBlock << 44ull | TmpInst << NUM_LOC_BITS | LocNo;
+ }
+
+ static ValueIDNum fromU64(uint64_t v) {
+ uint64_t L = (v & 0x3FFF);
+ return {v >> 44ull, ((v >> NUM_LOC_BITS) & 0xFFFFF), L};
+ }
+
+ bool operator<(const ValueIDNum &Other) const {
+ return asU64() < Other.asU64();
+ }
+
+ bool operator==(const ValueIDNum &Other) const {
+ return std::tie(BlockNo, InstNo, LocNo) ==
+ std::tie(Other.BlockNo, Other.InstNo, Other.LocNo);
+ }
+
+ bool operator!=(const ValueIDNum &Other) const { return !(*this == Other); }
+
+ std::string asString(const std::string &mlocname) const {
+ return Twine("Value{bb: ")
+ .concat(Twine(BlockNo).concat(
+ Twine(", inst: ")
+ .concat((InstNo ? Twine(InstNo) : Twine("live-in"))
+ .concat(Twine(", loc: ").concat(Twine(mlocname)))
+ .concat(Twine("}")))))
+ .str();
+ }
+
+ static ValueIDNum EmptyValue;
+};
+
+} // end anonymous namespace
+
+namespace {
+
+/// Meta qualifiers for a value. Pair of whatever expression is used to qualify
+/// the the value, and Boolean of whether or not it's indirect.
+class DbgValueProperties {
+public:
+ DbgValueProperties(const DIExpression *DIExpr, bool Indirect)
+ : DIExpr(DIExpr), Indirect(Indirect) {}
+
+ /// Extract properties from an existing DBG_VALUE instruction.
+ DbgValueProperties(const MachineInstr &MI) {
+ assert(MI.isDebugValue());
+ DIExpr = MI.getDebugExpression();
+ Indirect = MI.getOperand(1).isImm();
+ }
+
+ bool operator==(const DbgValueProperties &Other) const {
+ return std::tie(DIExpr, Indirect) == std::tie(Other.DIExpr, Other.Indirect);
+ }
+
+ bool operator!=(const DbgValueProperties &Other) const {
+ return !(*this == Other);
+ }
+
+ const DIExpression *DIExpr;
+ bool Indirect;
+};
+
+/// Tracker for what values are in machine locations. Listens to the Things
+/// being Done by various instructions, and maintains a table of what machine
+/// locations have what values (as defined by a ValueIDNum).
+///
+/// There are potentially a much larger number of machine locations on the
+/// target machine than the actual working-set size of the function. On x86 for
+/// example, we're extremely unlikely to want to track values through control
+/// or debug registers. To avoid doing so, MLocTracker has several layers of
+/// indirection going on, with two kinds of ``location'':
+/// * A LocID uniquely identifies a register or spill location, with a
+/// predictable value.
+/// * A LocIdx is a key (in the database sense) for a LocID and a ValueIDNum.
+/// Whenever a location is def'd or used by a MachineInstr, we automagically
+/// create a new LocIdx for a location, but not otherwise. This ensures we only
+/// account for locations that are actually used or defined. The cost is another
+/// vector lookup (of LocID -> LocIdx) over any other implementation. This is
+/// fairly cheap, and the compiler tries to reduce the working-set at any one
+/// time in the function anyway.
+///
+/// Register mask operands completely blow this out of the water; I've just
+/// piled hacks on top of hacks to get around that.
+class MLocTracker {
+public:
+ MachineFunction &MF;
+ const TargetInstrInfo &TII;
+ const TargetRegisterInfo &TRI;
+ const TargetLowering &TLI;
+
+ /// IndexedMap type, mapping from LocIdx to ValueIDNum.
+ using LocToValueType = IndexedMap<ValueIDNum, LocIdxToIndexFunctor>;
+
+ /// Map of LocIdxes to the ValueIDNums that they store. This is tightly
+ /// packed, entries only exist for locations that are being tracked.
+ LocToValueType LocIdxToIDNum;
+
+ /// "Map" of machine location IDs (i.e., raw register or spill number) to the
+ /// LocIdx key / number for that location. There are always at least as many
+ /// as the number of registers on the target -- if the value in the register
+ /// is not being tracked, then the LocIdx value will be zero. New entries are
+ /// appended if a new spill slot begins being tracked.
+ /// This, and the corresponding reverse map persist for the analysis of the
+ /// whole function, and is necessarying for decoding various vectors of
+ /// values.
+ std::vector<LocIdx> LocIDToLocIdx;
+
+ /// Inverse map of LocIDToLocIdx.
+ IndexedMap<unsigned, LocIdxToIndexFunctor> LocIdxToLocID;
+
+ /// Unique-ification of spill slots. Used to number them -- their LocID
+ /// number is the index in SpillLocs minus one plus NumRegs.
+ UniqueVector<SpillLoc> SpillLocs;
+
+ // If we discover a new machine location, assign it an mphi with this
+ // block number.
+ unsigned CurBB;
+
+ /// Cached local copy of the number of registers the target has.
+ unsigned NumRegs;
+
+ /// Collection of register mask operands that have been observed. Second part
+ /// of pair indicates the instruction that they happened in. Used to
+ /// reconstruct where defs happened if we start tracking a location later
+ /// on.
+ SmallVector<std::pair<const MachineOperand *, unsigned>, 32> Masks;
+
+ /// Iterator for locations and the values they contain. Dereferencing
+ /// produces a struct/pair containing the LocIdx key for this location,
+ /// and a reference to the value currently stored. Simplifies the process
+ /// of seeking a particular location.
+ class MLocIterator {
+ LocToValueType &ValueMap;
+ LocIdx Idx;
+
+ public:
+ class value_type {
+ public:
+ value_type(LocIdx Idx, ValueIDNum &Value) : Idx(Idx), Value(Value) { }
+ const LocIdx Idx; /// Read-only index of this location.
+ ValueIDNum &Value; /// Reference to the stored value at this location.
+ };
+
+ MLocIterator(LocToValueType &ValueMap, LocIdx Idx)
+ : ValueMap(ValueMap), Idx(Idx) { }
+
+ bool operator==(const MLocIterator &Other) const {
+ assert(&ValueMap == &Other.ValueMap);
+ return Idx == Other.Idx;
+ }
+
+ bool operator!=(const MLocIterator &Other) const {
+ return !(*this == Other);
+ }
+
+ void operator++() {
+ Idx = LocIdx(Idx.asU64() + 1);
+ }
+
+ value_type operator*() {
+ return value_type(Idx, ValueMap[LocIdx(Idx)]);
+ }
+ };
+
+ MLocTracker(MachineFunction &MF, const TargetInstrInfo &TII,
+ const TargetRegisterInfo &TRI, const TargetLowering &TLI)
+ : MF(MF), TII(TII), TRI(TRI), TLI(TLI),
+ LocIdxToIDNum(ValueIDNum::EmptyValue),
+ LocIdxToLocID(0) {
+ NumRegs = TRI.getNumRegs();
+ reset();
+ LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+ assert(NumRegs < (1u << NUM_LOC_BITS)); // Detect bit packing failure
+
+ // Always track SP. This avoids the implicit clobbering caused by regmasks
+ // from affectings its values. (LiveDebugValues disbelieves calls and
+ // regmasks that claim to clobber SP).
+ Register SP = TLI.getStackPointerRegisterToSaveRestore();
+ if (SP) {
+ unsigned ID = getLocID(SP, false);
+ (void)lookupOrTrackRegister(ID);
+ }
+ }
+
+ /// Produce location ID number for indexing LocIDToLocIdx. Takes the register
+ /// or spill number, and flag for whether it's a spill or not.
+ unsigned getLocID(Register RegOrSpill, bool isSpill) {
+ return (isSpill) ? RegOrSpill.id() + NumRegs - 1 : RegOrSpill.id();
+ }
+
+ /// Accessor for reading the value at Idx.
+ ValueIDNum getNumAtPos(LocIdx Idx) const {
+ assert(Idx.asU64() < LocIdxToIDNum.size());
+ return LocIdxToIDNum[Idx];
+ }
+
+ unsigned getNumLocs(void) const { return LocIdxToIDNum.size(); }
+
+ /// Reset all locations to contain a PHI value at the designated block. Used
+ /// sometimes for actual PHI values, othertimes to indicate the block entry
+ /// value (before any more information is known).
+ void setMPhis(unsigned NewCurBB) {
+ CurBB = NewCurBB;
+ for (auto Location : locations())
+ Location.Value = {CurBB, 0, Location.Idx};
+ }
+
+ /// Load values for each location from array of ValueIDNums. Take current
+ /// bbnum just in case we read a value from a hitherto untouched register.
+ void loadFromArray(ValueIDNum *Locs, unsigned NewCurBB) {
+ CurBB = NewCurBB;
+ // Iterate over all tracked locations, and load each locations live-in
+ // value into our local index.
+ for (auto Location : locations())
+ Location.Value = Locs[Location.Idx.asU64()];
+ }
+
+ /// Wipe any un-necessary location records after traversing a block.
+ void reset(void) {
+ // We could reset all the location values too; however either loadFromArray
+ // or setMPhis should be called before this object is re-used. Just
+ // clear Masks, they're definitely not needed.
+ Masks.clear();
+ }
+
+ /// Clear all data. Destroys the LocID <=> LocIdx map, which makes most of
+ /// the information in this pass uninterpretable.
+ void clear(void) {
+ reset();
+ LocIDToLocIdx.clear();
+ LocIdxToLocID.clear();
+ LocIdxToIDNum.clear();
+ //SpillLocs.reset(); XXX UniqueVector::reset assumes a SpillLoc casts from 0
+ SpillLocs = decltype(SpillLocs)();
+
+ LocIDToLocIdx.resize(NumRegs, LocIdx::MakeIllegalLoc());
+ }
+
+ /// Set a locaiton to a certain value.
+ void setMLoc(LocIdx L, ValueIDNum Num) {
+ assert(L.asU64() < LocIdxToIDNum.size());
+ LocIdxToIDNum[L] = Num;
+ }
+
+ /// Create a LocIdx for an untracked register ID. Initialize it to either an
+ /// mphi value representing a live-in, or a recent register mask clobber.
+ LocIdx trackRegister(unsigned ID) {
+ assert(ID != 0);
+ LocIdx NewIdx = LocIdx(LocIdxToIDNum.size());
+ LocIdxToIDNum.grow(NewIdx);
+ LocIdxToLocID.grow(NewIdx);
+
+ // Default: it's an mphi.
+ ValueIDNum ValNum = {CurBB, 0, NewIdx};
+ // Was this reg ever touched by a regmask?
+ for (const auto &MaskPair : reverse(Masks)) {
+ if (MaskPair.first->clobbersPhysReg(ID)) {
+ // There was an earlier def we skipped.
+ ValNum = {CurBB, MaskPair.second, NewIdx};
+ break;
+ }
+ }
+
+ LocIdxToIDNum[NewIdx] = ValNum;
+ LocIdxToLocID[NewIdx] = ID;
+ return NewIdx;
+ }
+
+ LocIdx lookupOrTrackRegister(unsigned ID) {
+ LocIdx &Index = LocIDToLocIdx[ID];
+ if (Index.isIllegal())
+ Index = trackRegister(ID);
+ return Index;
+ }
+
+ /// Record a definition of the specified register at the given block / inst.
+ /// This doesn't take a ValueIDNum, because the definition and its location
+ /// are synonymous.
+ void defReg(Register R, unsigned BB, unsigned Inst) {
+ unsigned ID = getLocID(R, false);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ ValueIDNum ValueID = {BB, Inst, Idx};
+ LocIdxToIDNum[Idx] = ValueID;
+ }
+
+ /// Set a register to a value number. To be used if the value number is
+ /// known in advance.
+ void setReg(Register R, ValueIDNum ValueID) {
+ unsigned ID = getLocID(R, false);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ LocIdxToIDNum[Idx] = ValueID;
+ }
+
+ ValueIDNum readReg(Register R) {
+ unsigned ID = getLocID(R, false);
+ LocIdx Idx = lookupOrTrackRegister(ID);
+ return LocIdxToIDNum[Idx];
+ }
+
+ /// Reset a register value to zero / empty. Needed to replicate the
+ /// VarLoc implementation where a copy to/from a register effectively
+ /// clears the contents of the source register. (Values can only have one
+ /// machine location in VarLocBasedImpl).
+ void wipeRegister(Register R) {
+ unsigned ID = getLocID(R, false);
+ LocIdx Idx = LocIDToLocIdx[ID];
+ LocIdxToIDNum[Idx] = ValueIDNum::EmptyValue;
+ }
+
+ /// Determine the LocIdx of an existing register.
+ LocIdx getRegMLoc(Register R) {
+ unsigned ID = getLocID(R, false);
+ return LocIDToLocIdx[ID];
+ }
+
+ /// Record a RegMask operand being executed. Defs any register we currently
+ /// track, stores a pointer to the mask in case we have to account for it
+ /// later.
+ void writeRegMask(const MachineOperand *MO, unsigned CurBB, unsigned InstID) {
+ // Ensure SP exists, so that we don't override it later.
+ Register SP = TLI.getStackPointerRegisterToSaveRestore();
+
+ // Def any register we track have that isn't preserved. The regmask
+ // terminates the liveness of a register, meaning its value can't be
+ // relied upon -- we represent this by giving it a new value.
+ for (auto Location : locations()) {
+ unsigned ID = LocIdxToLocID[Location.Idx];
+ // Don't clobber SP, even if the mask says it's clobbered.
+ if (ID < NumRegs && ID != SP && MO->clobbersPhysReg(ID))
+ defReg(ID, CurBB, InstID);
+ }
+ Masks.push_back(std::make_pair(MO, InstID));
+ }
+
+ /// Find LocIdx for SpillLoc \p L, creating a new one if it's not tracked.
+ LocIdx getOrTrackSpillLoc(SpillLoc L) {
+ unsigned SpillID = SpillLocs.idFor(L);
+ if (SpillID == 0) {
+ SpillID = SpillLocs.insert(L);
+ unsigned L = getLocID(SpillID, true);
+ LocIdx Idx = LocIdx(LocIdxToIDNum.size()); // New idx
+ LocIdxToIDNum.grow(Idx);
+ LocIdxToLocID.grow(Idx);
+ LocIDToLocIdx.push_back(Idx);
+ LocIdxToLocID[Idx] = L;
+ return Idx;
+ } else {
+ unsigned L = getLocID(SpillID, true);
+ LocIdx Idx = LocIDToLocIdx[L];
+ return Idx;
+ }
+ }
+
+ /// Set the value stored in a spill slot.
+ void setSpill(SpillLoc L, ValueIDNum ValueID) {
+ LocIdx Idx = getOrTrackSpillLoc(L);
+ LocIdxToIDNum[Idx] = ValueID;
+ }
+
+ /// Read whatever value is in a spill slot, or None if it isn't tracked.
+ Optional<ValueIDNum> readSpill(SpillLoc L) {
+ unsigned SpillID = SpillLocs.idFor(L);
+ if (SpillID == 0)
+ return None;
+
+ unsigned LocID = getLocID(SpillID, true);
+ LocIdx Idx = LocIDToLocIdx[LocID];
+ return LocIdxToIDNum[Idx];
+ }
+
+ /// Determine the LocIdx of a spill slot. Return None if it previously
+ /// hasn't had a value assigned.
+ Optional<LocIdx> getSpillMLoc(SpillLoc L) {
+ unsigned SpillID = SpillLocs.idFor(L);
+ if (SpillID == 0)
+ return None;
+ unsigned LocNo = getLocID(SpillID, true);
+ return LocIDToLocIdx[LocNo];
+ }
+
+ /// Return true if Idx is a spill machine location.
+ bool isSpill(LocIdx Idx) const {
+ return LocIdxToLocID[Idx] >= NumRegs;
+ }
+
+ MLocIterator begin() {
+ return MLocIterator(LocIdxToIDNum, 0);
+ }
+
+ MLocIterator end() {
+ return MLocIterator(LocIdxToIDNum, LocIdxToIDNum.size());
+ }
+
+ /// Return a range over all locations currently tracked.
+ iterator_range<MLocIterator> locations() {
+ return llvm::make_range(begin(), end());
+ }
+
+ std::string LocIdxToName(LocIdx Idx) const {
+ unsigned ID = LocIdxToLocID[Idx];
+ if (ID >= NumRegs)
+ return Twine("slot ").concat(Twine(ID - NumRegs)).str();
+ else
+ return TRI.getRegAsmName(ID).str();
+ }
+
+ std::string IDAsString(const ValueIDNum &Num) const {
+ std::string DefName = LocIdxToName(Num.getLoc());
+ return Num.asString(DefName);
+ }
+
+ LLVM_DUMP_METHOD
+ void dump() {
+ for (auto Location : locations()) {
+ std::string MLocName = LocIdxToName(Location.Value.getLoc());
+ std::string DefName = Location.Value.asString(MLocName);
+ dbgs() << LocIdxToName(Location.Idx) << " --> " << DefName << "\n";
+ }
+ }
+
+ LLVM_DUMP_METHOD
+ void dump_mloc_map() {
+ for (auto Location : locations()) {
+ std::string foo = LocIdxToName(Location.Idx);
+ dbgs() << "Idx " << Location.Idx.asU64() << " " << foo << "\n";
+ }
+ }
+
+ /// Create a DBG_VALUE based on machine location \p MLoc. Qualify it with the
+ /// information in \pProperties, for variable Var. Don't insert it anywhere,
+ /// just return the builder for it.
+ MachineInstrBuilder emitLoc(Optional<LocIdx> MLoc, const DebugVariable &Var,
+ const DbgValueProperties &Properties) {
+ DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
+ Var.getVariable()->getScope(),
+ const_cast<DILocation *>(Var.getInlinedAt()));
+ auto MIB = BuildMI(MF, DL, TII.get(TargetOpcode::DBG_VALUE));
+
+ const DIExpression *Expr = Properties.DIExpr;
+ if (!MLoc) {
+ // No location -> DBG_VALUE $noreg
+ MIB.addReg(0, RegState::Debug);
+ MIB.addReg(0, RegState::Debug);
+ } else if (LocIdxToLocID[*MLoc] >= NumRegs) {
+ unsigned LocID = LocIdxToLocID[*MLoc];
+ const SpillLoc &Spill = SpillLocs[LocID - NumRegs + 1];
+
+ auto *TRI = MF.getSubtarget().getRegisterInfo();
+ Expr = TRI->prependOffsetExpression(Expr, DIExpression::ApplyOffset,
+ Spill.SpillOffset);
+ unsigned Base = Spill.SpillBase;
+ MIB.addReg(Base, RegState::Debug);
+ MIB.addImm(0);
+ } else {
+ unsigned LocID = LocIdxToLocID[*MLoc];
+ MIB.addReg(LocID, RegState::Debug);
+ if (Properties.Indirect)
+ MIB.addImm(0);
+ else
+ MIB.addReg(0, RegState::Debug);
+ }
+
+ MIB.addMetadata(Var.getVariable());
+ MIB.addMetadata(Expr);
+ return MIB;
+ }
+};
+
+/// Class recording the (high level) _value_ of a variable. Identifies either
+/// the value of the variable as a ValueIDNum, or a constant MachineOperand.
+/// This class also stores meta-information about how the value is qualified.
+/// Used to reason about variable values when performing the second
+/// (DebugVariable specific) dataflow analysis.
+class DbgValue {
+public:
+ union {
+ /// If Kind is Def, the value number that this value is based on.
+ ValueIDNum ID;
+ /// If Kind is Const, the MachineOperand defining this value.
+ MachineOperand MO;
+ /// For a NoVal DbgValue, which block it was generated in.
+ unsigned BlockNo;
+ };
+ /// Qualifiers for the ValueIDNum above.
+ DbgValueProperties Properties;
+
+ typedef enum {
+ Undef, // Represents a DBG_VALUE $noreg in the transfer function only.
+ Def, // This value is defined by an inst, or is a PHI value.
+ Const, // A constant value contained in the MachineOperand field.
+ Proposed, // This is a tentative PHI value, which may be confirmed or
+ // invalidated later.
+ NoVal // Empty DbgValue, generated during dataflow. BlockNo stores
+ // which block this was generated in.
+ } KindT;
+ /// Discriminator for whether this is a constant or an in-program value.
+ KindT Kind;
+
+ DbgValue(const ValueIDNum &Val, const DbgValueProperties &Prop, KindT Kind)
+ : ID(Val), Properties(Prop), Kind(Kind) {
+ assert(Kind == Def || Kind == Proposed);
+ }
+
+ DbgValue(unsigned BlockNo, const DbgValueProperties &Prop, KindT Kind)
+ : BlockNo(BlockNo), Properties(Prop), Kind(Kind) {
+ assert(Kind == NoVal);
+ }
+
+ DbgValue(const MachineOperand &MO, const DbgValueProperties &Prop, KindT Kind)
+ : MO(MO), Properties(Prop), Kind(Kind) {
+ assert(Kind == Const);
+ }
+
+ DbgValue(const DbgValueProperties &Prop, KindT Kind)
+ : Properties(Prop), Kind(Kind) {
+ assert(Kind == Undef &&
+ "Empty DbgValue constructor must pass in Undef kind");
+ }
+
+ void dump(const MLocTracker *MTrack) const {
+ if (Kind == Const) {
+ MO.dump();
+ } else if (Kind == NoVal) {
+ dbgs() << "NoVal(" << BlockNo << ")";
+ } else if (Kind == Proposed) {
+ dbgs() << "VPHI(" << MTrack->IDAsString(ID) << ")";
+ } else {
+ assert(Kind == Def);
+ dbgs() << MTrack->IDAsString(ID);
+ }
+ if (Properties.Indirect)
+ dbgs() << " indir";
+ if (Properties.DIExpr)
+ dbgs() << " " << *Properties.DIExpr;
+ }
+
+ bool operator==(const DbgValue &Other) const {
+ if (std::tie(Kind, Properties) != std::tie(Other.Kind, Other.Properties))
+ return false;
+ else if (Kind == Proposed && ID != Other.ID)
+ return false;
+ else if (Kind == Def && ID != Other.ID)
+ return false;
+ else if (Kind == NoVal && BlockNo != Other.BlockNo)
+ return false;
+ else if (Kind == Const)
+ return MO.isIdenticalTo(Other.MO);
+
+ return true;
+ }
+
+ bool operator!=(const DbgValue &Other) const { return !(*this == Other); }
+};
+
+/// Types for recording sets of variable fragments that overlap. For a given
+/// local variable, we record all other fragments of that variable that could
+/// overlap it, to reduce search time.
+using FragmentOfVar =
+ std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
+using OverlapMap =
+ DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
+
+/// Collection of DBG_VALUEs observed when traversing a block. Records each
+/// variable and the value the DBG_VALUE refers to. Requires the machine value
+/// location dataflow algorithm to have run already, so that values can be
+/// identified.
+class VLocTracker {
+public:
+ /// Map DebugVariable to the latest Value it's defined to have.
+ /// Needs to be a MapVector because we determine order-in-the-input-MIR from
+ /// the order in this container.
+ /// We only retain the last DbgValue in each block for each variable, to
+ /// determine the blocks live-out variable value. The Vars container forms the
+ /// transfer function for this block, as part of the dataflow analysis. The
+ /// movement of values between locations inside of a block is handled at a
+ /// much later stage, in the TransferTracker class.
+ MapVector<DebugVariable, DbgValue> Vars;
+ DenseMap<DebugVariable, const DILocation *> Scopes;
+ MachineBasicBlock *MBB;
+
+public:
+ VLocTracker() {}
+
+ void defVar(const MachineInstr &MI, const DbgValueProperties &Properties,
+ Optional<ValueIDNum> ID) {
+ assert(MI.isDebugValue() || MI.isDebugRef());
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ DbgValue Rec = (ID) ? DbgValue(*ID, Properties, DbgValue::Def)
+ : DbgValue(Properties, DbgValue::Undef);
+
+ // Attempt insertion; overwrite if it's already mapped.
+ auto Result = Vars.insert(std::make_pair(Var, Rec));
+ if (!Result.second)
+ Result.first->second = Rec;
+ Scopes[Var] = MI.getDebugLoc().get();
+ }
+
+ void defVar(const MachineInstr &MI, const MachineOperand &MO) {
+ // Only DBG_VALUEs can define constant-valued variables.
+ assert(MI.isDebugValue());
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ DbgValueProperties Properties(MI);
+ DbgValue Rec = DbgValue(MO, Properties, DbgValue::Const);
+
+ // Attempt insertion; overwrite if it's already mapped.
+ auto Result = Vars.insert(std::make_pair(Var, Rec));
+ if (!Result.second)
+ Result.first->second = Rec;
+ Scopes[Var] = MI.getDebugLoc().get();
+ }
+};
+
+/// Tracker for converting machine value locations and variable values into
+/// variable locations (the output of LiveDebugValues), recorded as DBG_VALUEs
+/// specifying block live-in locations and transfers within blocks.
+///
+/// Operating on a per-block basis, this class takes a (pre-loaded) MLocTracker
+/// and must be initialized with the set of variable values that are live-in to
+/// the block. The caller then repeatedly calls process(). TransferTracker picks
+/// out variable locations for the live-in variable values (if there _is_ a
+/// location) and creates the corresponding DBG_VALUEs. Then, as the block is
+/// stepped through, transfers of values between machine locations are
+/// identified and if profitable, a DBG_VALUE created.
+///
+/// This is where debug use-before-defs would be resolved: a variable with an
+/// unavailable value could materialize in the middle of a block, when the
+/// value becomes available. Or, we could detect clobbers and re-specify the
+/// variable in a backup location. (XXX these are unimplemented).
+class TransferTracker {
+public:
+ const TargetInstrInfo *TII;
+ /// This machine location tracker is assumed to always contain the up-to-date
+ /// value mapping for all machine locations. TransferTracker only reads
+ /// information from it. (XXX make it const?)
+ MLocTracker *MTracker;
+ MachineFunction &MF;
+
+ /// Record of all changes in variable locations at a block position. Awkwardly
+ /// we allow inserting either before or after the point: MBB != nullptr
+ /// indicates it's before, otherwise after.
+ struct Transfer {
+ MachineBasicBlock::iterator Pos; /// Position to insert DBG_VALUes
+ MachineBasicBlock *MBB; /// non-null if we should insert after.
+ SmallVector<MachineInstr *, 4> Insts; /// Vector of DBG_VALUEs to insert.
+ };
+
+ typedef struct {
+ LocIdx Loc;
+ DbgValueProperties Properties;
+ } LocAndProperties;
+
+ /// Collection of transfers (DBG_VALUEs) to be inserted.
+ SmallVector<Transfer, 32> Transfers;
+
+ /// Local cache of what-value-is-in-what-LocIdx. Used to identify differences
+ /// between TransferTrackers view of variable locations and MLocTrackers. For
+ /// example, MLocTracker observes all clobbers, but TransferTracker lazily
+ /// does not.
+ std::vector<ValueIDNum> VarLocs;
+
+ /// Map from LocIdxes to which DebugVariables are based that location.
+ /// Mantained while stepping through the block. Not accurate if
+ /// VarLocs[Idx] != MTracker->LocIdxToIDNum[Idx].
+ std::map<LocIdx, SmallSet<DebugVariable, 4>> ActiveMLocs;
+
+ /// Map from DebugVariable to it's current location and qualifying meta
+ /// information. To be used in conjunction with ActiveMLocs to construct
+ /// enough information for the DBG_VALUEs for a particular LocIdx.
+ DenseMap<DebugVariable, LocAndProperties> ActiveVLocs;
+
+ /// Temporary cache of DBG_VALUEs to be entered into the Transfers collection.
+ SmallVector<MachineInstr *, 4> PendingDbgValues;
+
+ /// Record of a use-before-def: created when a value that's live-in to the
+ /// current block isn't available in any machine location, but it will be
+ /// defined in this block.
+ struct UseBeforeDef {
+ /// Value of this variable, def'd in block.
+ ValueIDNum ID;
+ /// Identity of this variable.
+ DebugVariable Var;
+ /// Additional variable properties.
+ DbgValueProperties Properties;
+ };
+
+ /// Map from instruction index (within the block) to the set of UseBeforeDefs
+ /// that become defined at that instruction.
+ DenseMap<unsigned, SmallVector<UseBeforeDef, 1>> UseBeforeDefs;
+
+ /// The set of variables that are in UseBeforeDefs and can become a location
+ /// once the relevant value is defined. An element being erased from this
+ /// collection prevents the use-before-def materializing.
+ DenseSet<DebugVariable> UseBeforeDefVariables;
+
+ const TargetRegisterInfo &TRI;
+ const BitVector &CalleeSavedRegs;
+
+ TransferTracker(const TargetInstrInfo *TII, MLocTracker *MTracker,
+ MachineFunction &MF, const TargetRegisterInfo &TRI,
+ const BitVector &CalleeSavedRegs)
+ : TII(TII), MTracker(MTracker), MF(MF), TRI(TRI),
+ CalleeSavedRegs(CalleeSavedRegs) {}
+
+ /// Load object with live-in variable values. \p mlocs contains the live-in
+ /// values in each machine location, while \p vlocs the live-in variable
+ /// values. This method picks variable locations for the live-in variables,
+ /// creates DBG_VALUEs and puts them in #Transfers, then prepares the other
+ /// object fields to track variable locations as we step through the block.
+ /// FIXME: could just examine mloctracker instead of passing in \p mlocs?
+ void loadInlocs(MachineBasicBlock &MBB, ValueIDNum *MLocs,
+ SmallVectorImpl<std::pair<DebugVariable, DbgValue>> &VLocs,
+ unsigned NumLocs) {
+ ActiveMLocs.clear();
+ ActiveVLocs.clear();
+ VarLocs.clear();
+ VarLocs.reserve(NumLocs);
+ UseBeforeDefs.clear();
+ UseBeforeDefVariables.clear();
+
+ auto isCalleeSaved = [&](LocIdx L) {
+ unsigned Reg = MTracker->LocIdxToLocID[L];
+ if (Reg >= MTracker->NumRegs)
+ return false;
+ for (MCRegAliasIterator RAI(Reg, &TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ // Map of the preferred location for each value.
+ std::map<ValueIDNum, LocIdx> ValueToLoc;
+
+ // Produce a map of value numbers to the current machine locs they live
+ // in. When emulating VarLocBasedImpl, there should only be one
+ // location; when not, we get to pick.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ ValueIDNum &VNum = MLocs[Idx.asU64()];
+ VarLocs.push_back(VNum);
+ auto it = ValueToLoc.find(VNum);
+ // In order of preference, pick:
+ // * Callee saved registers,
+ // * Other registers,
+ // * Spill slots.
+ if (it == ValueToLoc.end() || MTracker->isSpill(it->second) ||
+ (!isCalleeSaved(it->second) && isCalleeSaved(Idx.asU64()))) {
+ // Insert, or overwrite if insertion failed.
+ auto PrefLocRes = ValueToLoc.insert(std::make_pair(VNum, Idx));
+ if (!PrefLocRes.second)
+ PrefLocRes.first->second = Idx;
+ }
+ }
+
+ // Now map variables to their picked LocIdxes.
+ for (auto Var : VLocs) {
+ if (Var.second.Kind == DbgValue::Const) {
+ PendingDbgValues.push_back(
+ emitMOLoc(Var.second.MO, Var.first, Var.second.Properties));
+ continue;
+ }
+
+ // If the value has no location, we can't make a variable location.
+ const ValueIDNum &Num = Var.second.ID;
+ auto ValuesPreferredLoc = ValueToLoc.find(Num);
+ if (ValuesPreferredLoc == ValueToLoc.end()) {
+ // If it's a def that occurs in this block, register it as a
+ // use-before-def to be resolved as we step through the block.
+ if (Num.getBlock() == (unsigned)MBB.getNumber() && !Num.isPHI())
+ addUseBeforeDef(Var.first, Var.second.Properties, Num);
+ continue;
+ }
+
+ LocIdx M = ValuesPreferredLoc->second;
+ auto NewValue = LocAndProperties{M, Var.second.Properties};
+ auto Result = ActiveVLocs.insert(std::make_pair(Var.first, NewValue));
+ if (!Result.second)
+ Result.first->second = NewValue;
+ ActiveMLocs[M].insert(Var.first);
+ PendingDbgValues.push_back(
+ MTracker->emitLoc(M, Var.first, Var.second.Properties));
+ }
+ flushDbgValues(MBB.begin(), &MBB);
+ }
+
+ /// Record that \p Var has value \p ID, a value that becomes available
+ /// later in the function.
+ void addUseBeforeDef(const DebugVariable &Var,
+ const DbgValueProperties &Properties, ValueIDNum ID) {
+ UseBeforeDef UBD = {ID, Var, Properties};
+ UseBeforeDefs[ID.getInst()].push_back(UBD);
+ UseBeforeDefVariables.insert(Var);
+ }
+
+ /// After the instruction at index \p Inst and position \p pos has been
+ /// processed, check whether it defines a variable value in a use-before-def.
+ /// If so, and the variable value hasn't changed since the start of the
+ /// block, create a DBG_VALUE.
+ void checkInstForNewValues(unsigned Inst, MachineBasicBlock::iterator pos) {
+ auto MIt = UseBeforeDefs.find(Inst);
+ if (MIt == UseBeforeDefs.end())
+ return;
+
+ for (auto &Use : MIt->second) {
+ LocIdx L = Use.ID.getLoc();
+
+ // If something goes very wrong, we might end up labelling a COPY
+ // instruction or similar with an instruction number, where it doesn't
+ // actually define a new value, instead it moves a value. In case this
+ // happens, discard.
+ if (MTracker->LocIdxToIDNum[L] != Use.ID)
+ continue;
+
+ // If a different debug instruction defined the variable value / location
+ // since the start of the block, don't materialize this use-before-def.
+ if (!UseBeforeDefVariables.count(Use.Var))
+ continue;
+
+ PendingDbgValues.push_back(MTracker->emitLoc(L, Use.Var, Use.Properties));
+ }
+ flushDbgValues(pos, nullptr);
+ }
+
+ /// Helper to move created DBG_VALUEs into Transfers collection.
+ void flushDbgValues(MachineBasicBlock::iterator Pos, MachineBasicBlock *MBB) {
+ if (PendingDbgValues.size() > 0) {
+ Transfers.push_back({Pos, MBB, PendingDbgValues});
+ PendingDbgValues.clear();
+ }
+ }
+
+ /// Change a variable value after encountering a DBG_VALUE inside a block.
+ void redefVar(const MachineInstr &MI) {
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ DbgValueProperties Properties(MI);
+
+ const MachineOperand &MO = MI.getOperand(0);
+
+ // Ignore non-register locations, we don't transfer those.
+ if (!MO.isReg() || MO.getReg() == 0) {
+ auto It = ActiveVLocs.find(Var);
+ if (It != ActiveVLocs.end()) {
+ ActiveMLocs[It->second.Loc].erase(Var);
+ ActiveVLocs.erase(It);
+ }
+ // Any use-before-defs no longer apply.
+ UseBeforeDefVariables.erase(Var);
+ return;
+ }
+
+ Register Reg = MO.getReg();
+ LocIdx NewLoc = MTracker->getRegMLoc(Reg);
+ redefVar(MI, Properties, NewLoc);
+ }
+
+ /// Handle a change in variable location within a block. Terminate the
+ /// variables current location, and record the value it now refers to, so
+ /// that we can detect location transfers later on.
+ void redefVar(const MachineInstr &MI, const DbgValueProperties &Properties,
+ Optional<LocIdx> OptNewLoc) {
+ DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ // Any use-before-defs no longer apply.
+ UseBeforeDefVariables.erase(Var);
+
+ // Erase any previous location,
+ auto It = ActiveVLocs.find(Var);
+ if (It != ActiveVLocs.end())
+ ActiveMLocs[It->second.Loc].erase(Var);
+
+ // If there _is_ no new location, all we had to do was erase.
+ if (!OptNewLoc)
+ return;
+ LocIdx NewLoc = *OptNewLoc;
+
+ // Check whether our local copy of values-by-location in #VarLocs is out of
+ // date. Wipe old tracking data for the location if it's been clobbered in
+ // the meantime.
+ if (MTracker->getNumAtPos(NewLoc) != VarLocs[NewLoc.asU64()]) {
+ for (auto &P : ActiveMLocs[NewLoc]) {
+ ActiveVLocs.erase(P);
+ }
+ ActiveMLocs[NewLoc.asU64()].clear();
+ VarLocs[NewLoc.asU64()] = MTracker->getNumAtPos(NewLoc);
+ }
+
+ ActiveMLocs[NewLoc].insert(Var);
+ if (It == ActiveVLocs.end()) {
+ ActiveVLocs.insert(
+ std::make_pair(Var, LocAndProperties{NewLoc, Properties}));
+ } else {
+ It->second.Loc = NewLoc;
+ It->second.Properties = Properties;
+ }
+ }
+
+ /// Explicitly terminate variable locations based on \p mloc. Creates undef
+ /// DBG_VALUEs for any variables that were located there, and clears
+ /// #ActiveMLoc / #ActiveVLoc tracking information for that location.
+ void clobberMloc(LocIdx MLoc, MachineBasicBlock::iterator Pos) {
+ assert(MTracker->isSpill(MLoc));
+ auto ActiveMLocIt = ActiveMLocs.find(MLoc);
+ if (ActiveMLocIt == ActiveMLocs.end())
+ return;
+
+ VarLocs[MLoc.asU64()] = ValueIDNum::EmptyValue;
+
+ for (auto &Var : ActiveMLocIt->second) {
+ auto ActiveVLocIt = ActiveVLocs.find(Var);
+ // Create an undef. We can't feed in a nullptr DIExpression alas,
+ // so use the variables last expression. Pass None as the location.
+ const DIExpression *Expr = ActiveVLocIt->second.Properties.DIExpr;
+ DbgValueProperties Properties(Expr, false);
+ PendingDbgValues.push_back(MTracker->emitLoc(None, Var, Properties));
+ ActiveVLocs.erase(ActiveVLocIt);
+ }
+ flushDbgValues(Pos, nullptr);
+
+ ActiveMLocIt->second.clear();
+ }
+
+ /// Transfer variables based on \p Src to be based on \p Dst. This handles
+ /// both register copies as well as spills and restores. Creates DBG_VALUEs
+ /// describing the movement.
+ void transferMlocs(LocIdx Src, LocIdx Dst, MachineBasicBlock::iterator Pos) {
+ // Does Src still contain the value num we expect? If not, it's been
+ // clobbered in the meantime, and our variable locations are stale.
+ if (VarLocs[Src.asU64()] != MTracker->getNumAtPos(Src))
+ return;
+
+ // assert(ActiveMLocs[Dst].size() == 0);
+ //^^^ Legitimate scenario on account of un-clobbered slot being assigned to?
+ ActiveMLocs[Dst] = ActiveMLocs[Src];
+ VarLocs[Dst.asU64()] = VarLocs[Src.asU64()];
+
+ // For each variable based on Src; create a location at Dst.
+ for (auto &Var : ActiveMLocs[Src]) {
+ auto ActiveVLocIt = ActiveVLocs.find(Var);
+ assert(ActiveVLocIt != ActiveVLocs.end());
+ ActiveVLocIt->second.Loc = Dst;
+
+ assert(Dst != 0);
+ MachineInstr *MI =
+ MTracker->emitLoc(Dst, Var, ActiveVLocIt->second.Properties);
+ PendingDbgValues.push_back(MI);
+ }
+ ActiveMLocs[Src].clear();
+ flushDbgValues(Pos, nullptr);
+
+ // XXX XXX XXX "pretend to be old LDV" means dropping all tracking data
+ // about the old location.
+ if (EmulateOldLDV)
+ VarLocs[Src.asU64()] = ValueIDNum::EmptyValue;
+ }
+
+ MachineInstrBuilder emitMOLoc(const MachineOperand &MO,
+ const DebugVariable &Var,
+ const DbgValueProperties &Properties) {
+ DebugLoc DL = DILocation::get(Var.getVariable()->getContext(), 0, 0,
+ Var.getVariable()->getScope(),
+ const_cast<DILocation *>(Var.getInlinedAt()));
+ auto MIB = BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE));
+ MIB.add(MO);
+ if (Properties.Indirect)
+ MIB.addImm(0);
+ else
+ MIB.addReg(0);
+ MIB.addMetadata(Var.getVariable());
+ MIB.addMetadata(Properties.DIExpr);
+ return MIB;
+ }
+};
+
+class InstrRefBasedLDV : public LDVImpl {
+private:
+ using FragmentInfo = DIExpression::FragmentInfo;
+ using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
+
+ // Helper while building OverlapMap, a map of all fragments seen for a given
+ // DILocalVariable.
+ using VarToFragments =
+ DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
+
+ /// Machine location/value transfer function, a mapping of which locations
+ /// are assigned which new values.
+ using MLocTransferMap = std::map<LocIdx, ValueIDNum>;
+
+ /// Live in/out structure for the variable values: a per-block map of
+ /// variables to their values. XXX, better name?
+ using LiveIdxT =
+ DenseMap<const MachineBasicBlock *, DenseMap<DebugVariable, DbgValue> *>;
+
+ using VarAndLoc = std::pair<DebugVariable, DbgValue>;
+
+ /// Type for a live-in value: the predecessor block, and its value.
+ using InValueT = std::pair<MachineBasicBlock *, DbgValue *>;
+
+ /// Vector (per block) of a collection (inner smallvector) of live-ins.
+ /// Used as the result type for the variable value dataflow problem.
+ using LiveInsT = SmallVector<SmallVector<VarAndLoc, 8>, 8>;
+
+ const TargetRegisterInfo *TRI;
+ const TargetInstrInfo *TII;
+ const TargetFrameLowering *TFI;
+ BitVector CalleeSavedRegs;
+ LexicalScopes LS;
+ TargetPassConfig *TPC;
+
+ /// Object to track machine locations as we step through a block. Could
+ /// probably be a field rather than a pointer, as it's always used.
+ MLocTracker *MTracker;
+
+ /// Number of the current block LiveDebugValues is stepping through.
+ unsigned CurBB;
+
+ /// Number of the current instruction LiveDebugValues is evaluating.
+ unsigned CurInst;
+
+ /// Variable tracker -- listens to DBG_VALUEs occurring as InstrRefBasedImpl
+ /// steps through a block. Reads the values at each location from the
+ /// MLocTracker object.
+ VLocTracker *VTracker;
+
+ /// Tracker for transfers, listens to DBG_VALUEs and transfers of values
+ /// between locations during stepping, creates new DBG_VALUEs when values move
+ /// location.
+ TransferTracker *TTracker;
+
+ /// Blocks which are artificial, i.e. blocks which exclusively contain
+ /// instructions without DebugLocs, or with line 0 locations.
+ SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
+
+ // Mapping of blocks to and from their RPOT order.
+ DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
+ DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
+ DenseMap<unsigned, unsigned> BBNumToRPO;
+
+ /// Pair of MachineInstr, and its 1-based offset into the containing block.
+ using InstAndNum = std::pair<const MachineInstr *, unsigned>;
+ /// Map from debug instruction number to the MachineInstr labelled with that
+ /// number, and its location within the function. Used to transform
+ /// instruction numbers in DBG_INSTR_REFs into machine value numbers.
+ std::map<uint64_t, InstAndNum> DebugInstrNumToInstr;
+
+ // Map of overlapping variable fragments.
+ OverlapMap OverlapFragments;
+ VarToFragments SeenFragments;
+
+ /// Tests whether this instruction is a spill to a stack slot.
+ bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
+
+ /// Decide if @MI is a spill instruction and return true if it is. We use 2
+ /// criteria to make this decision:
+ /// - Is this instruction a store to a spill slot?
+ /// - Is there a register operand that is both used and killed?
+ /// TODO: Store optimization can fold spills into other stores (including
+ /// other spills). We do not handle this yet (more than one memory operand).
+ bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
+ unsigned &Reg);
+
+ /// If a given instruction is identified as a spill, return the spill slot
+ /// and set \p Reg to the spilled register.
+ Optional<SpillLoc> isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg);
+
+ /// Given a spill instruction, extract the register and offset used to
+ /// address the spill slot in a target independent way.
+ SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
+
+ /// Observe a single instruction while stepping through a block.
+ void process(MachineInstr &MI);
+
+ /// Examines whether \p MI is a DBG_VALUE and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferDebugValue(const MachineInstr &MI);
+
+ /// Examines whether \p MI is a DBG_INSTR_REF and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferDebugInstrRef(MachineInstr &MI);
+
+ /// Examines whether \p MI is copy instruction, and notifies trackers.
+ /// \returns true if MI was recognized and processed.
+ bool transferRegisterCopy(MachineInstr &MI);
+
+ /// Examines whether \p MI is stack spill or restore instruction, and
+ /// notifies trackers. \returns true if MI was recognized and processed.
+ bool transferSpillOrRestoreInst(MachineInstr &MI);
+
+ /// Examines \p MI for any registers that it defines, and notifies trackers.
+ void transferRegisterDef(MachineInstr &MI);
+
+ /// Copy one location to the other, accounting for movement of subregisters
+ /// too.
+ void performCopy(Register Src, Register Dst);
+
+ void accumulateFragmentMap(MachineInstr &MI);
+
+ /// Step through the function, recording register definitions and movements
+ /// in an MLocTracker. Convert the observations into a per-block transfer
+ /// function in \p MLocTransfer, suitable for using with the machine value
+ /// location dataflow problem.
+ void
+ produceMLocTransferFunction(MachineFunction &MF,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+ unsigned MaxNumBlocks);
+
+ /// Solve the machine value location dataflow problem. Takes as input the
+ /// transfer functions in \p MLocTransfer. Writes the output live-in and
+ /// live-out arrays to the (initialized to zero) multidimensional arrays in
+ /// \p MInLocs and \p MOutLocs. The outer dimension is indexed by block
+ /// number, the inner by LocIdx.
+ void mlocDataflow(ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer);
+
+ /// Perform a control flow join (lattice value meet) of the values in machine
+ /// locations at \p MBB. Follows the algorithm described in the file-comment,
+ /// reading live-outs of predecessors from \p OutLocs, the current live ins
+ /// from \p InLocs, and assigning the newly computed live ins back into
+ /// \p InLocs. \returns two bools -- the first indicates whether a change
+ /// was made, the second whether a lattice downgrade occurred. If the latter
+ /// is true, revisiting this block is necessary.
+ std::tuple<bool, bool>
+ mlocJoin(MachineBasicBlock &MBB,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ ValueIDNum **OutLocs, ValueIDNum *InLocs);
+
+ /// Solve the variable value dataflow problem, for a single lexical scope.
+ /// Uses the algorithm from the file comment to resolve control flow joins,
+ /// although there are extra hacks, see vlocJoin. Reads the
+ /// locations of values from the \p MInLocs and \p MOutLocs arrays (see
+ /// mlocDataflow) and reads the variable values transfer function from
+ /// \p AllTheVlocs. Live-in and Live-out variable values are stored locally,
+ /// with the live-ins permanently stored to \p Output once the fixedpoint is
+ /// reached.
+ /// \p VarsWeCareAbout contains a collection of the variables in \p Scope
+ /// that we should be tracking.
+ /// \p AssignBlocks contains the set of blocks that aren't in \p Scope, but
+ /// which do contain DBG_VALUEs, which VarLocBasedImpl tracks locations
+ /// through.
+ void vlocDataflow(const LexicalScope *Scope, const DILocation *DILoc,
+ const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+ SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks,
+ LiveInsT &Output, ValueIDNum **MOutLocs,
+ ValueIDNum **MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs);
+
+ /// Compute the live-ins to a block, considering control flow merges according
+ /// to the method in the file comment. Live out and live in variable values
+ /// are stored in \p VLOCOutLocs and \p VLOCInLocs. The live-ins for \p MBB
+ /// are computed and stored into \p VLOCInLocs. \returns true if the live-ins
+ /// are modified.
+ /// \p InLocsT Output argument, storage for calculated live-ins.
+ /// \returns two bools -- the first indicates whether a change
+ /// was made, the second whether a lattice downgrade occurred. If the latter
+ /// is true, revisiting this block is necessary.
+ std::tuple<bool, bool>
+ vlocJoin(MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
+ SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited,
+ unsigned BBNum, const SmallSet<DebugVariable, 4> &AllVars,
+ ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+ SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
+ SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+ DenseMap<DebugVariable, DbgValue> &InLocsT);
+
+ /// Continue exploration of the variable-value lattice, as explained in the
+ /// file-level comment. \p OldLiveInLocation contains the current
+ /// exploration position, from which we need to descend further. \p Values
+ /// contains the set of live-in values, \p CurBlockRPONum the RPO number of
+ /// the current block, and \p CandidateLocations a set of locations that
+ /// should be considered as PHI locations, if we reach the bottom of the
+ /// lattice. \returns true if we should downgrade; the value is the agreeing
+ /// value number in a non-backedge predecessor.
+ bool vlocDowngradeLattice(const MachineBasicBlock &MBB,
+ const DbgValue &OldLiveInLocation,
+ const SmallVectorImpl<InValueT> &Values,
+ unsigned CurBlockRPONum);
+
+ /// For the given block and live-outs feeding into it, try to find a
+ /// machine location where they all join. If a solution for all predecessors
+ /// can't be found, a location where all non-backedge-predecessors join
+ /// will be returned instead. While this method finds a join location, this
+ /// says nothing as to whether it should be used.
+ /// \returns Pair of value ID if found, and true when the correct value
+ /// is available on all predecessor edges, or false if it's only available
+ /// for non-backedge predecessors.
+ std::tuple<Optional<ValueIDNum>, bool>
+ pickVPHILoc(MachineBasicBlock &MBB, const DebugVariable &Var,
+ const LiveIdxT &LiveOuts, ValueIDNum **MOutLocs,
+ ValueIDNum **MInLocs,
+ const SmallVectorImpl<MachineBasicBlock *> &BlockOrders);
+
+ /// Given the solutions to the two dataflow problems, machine value locations
+ /// in \p MInLocs and live-in variable values in \p SavedLiveIns, runs the
+ /// TransferTracker class over the function to produce live-in and transfer
+ /// DBG_VALUEs, then inserts them. Groups of DBG_VALUEs are inserted in the
+ /// order given by AllVarsNumbering -- this could be any stable order, but
+ /// right now "order of appearence in function, when explored in RPO", so
+ /// that we can compare explictly against VarLocBasedImpl.
+ void emitLocations(MachineFunction &MF, LiveInsT SavedLiveIns,
+ ValueIDNum **MInLocs,
+ DenseMap<DebugVariable, unsigned> &AllVarsNumbering);
+
+ /// Boilerplate computation of some initial sets, artifical blocks and
+ /// RPOT block ordering.
+ void initialSetup(MachineFunction &MF);
+
+ bool ExtendRanges(MachineFunction &MF, TargetPassConfig *TPC) override;
+
+public:
+ /// Default construct and initialize the pass.
+ InstrRefBasedLDV();
+
+ LLVM_DUMP_METHOD
+ void dump_mloc_transfer(const MLocTransferMap &mloc_transfer) const;
+
+ bool isCalleeSaved(LocIdx L) {
+ unsigned Reg = MTracker->LocIdxToLocID[L];
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+//===----------------------------------------------------------------------===//
+// Implementation
+//===----------------------------------------------------------------------===//
+
+ValueIDNum ValueIDNum::EmptyValue = {UINT_MAX, UINT_MAX, UINT_MAX};
+
+/// Default construct and initialize the pass.
+InstrRefBasedLDV::InstrRefBasedLDV() {}
+
+//===----------------------------------------------------------------------===//
+// Debug Range Extension Implementation
+//===----------------------------------------------------------------------===//
+
+#ifndef NDEBUG
+// Something to restore in the future.
+// void InstrRefBasedLDV::printVarLocInMBB(..)
+#endif
+
+SpillLoc
+InstrRefBasedLDV::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
+ assert(MI.hasOneMemOperand() &&
+ "Spill instruction does not have exactly one memory operand?");
+ auto MMOI = MI.memoperands_begin();
+ const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
+ assert(PVal->kind() == PseudoSourceValue::FixedStack &&
+ "Inconsistent memory operand in spill instruction");
+ int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
+ const MachineBasicBlock *MBB = MI.getParent();
+ Register Reg;
+ StackOffset Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
+ return {Reg, Offset};
+}
+
+/// End all previous ranges related to @MI and start a new range from @MI
+/// if it is a DBG_VALUE instr.
+bool InstrRefBasedLDV::transferDebugValue(const MachineInstr &MI) {
+ if (!MI.isDebugValue())
+ return false;
+
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+ DbgValueProperties Properties(MI);
+
+ // If there are no instructions in this lexical scope, do no location tracking
+ // at all, this variable shouldn't get a legitimate location range.
+ auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
+ if (Scope == nullptr)
+ return true; // handled it; by doing nothing
+
+ const MachineOperand &MO = MI.getOperand(0);
+
+ // MLocTracker needs to know that this register is read, even if it's only
+ // read by a debug inst.
+ if (MO.isReg() && MO.getReg() != 0)
+ (void)MTracker->readReg(MO.getReg());
+
+ // If we're preparing for the second analysis (variables), the machine value
+ // locations are already solved, and we report this DBG_VALUE and the value
+ // it refers to to VLocTracker.
+ if (VTracker) {
+ if (MO.isReg()) {
+ // Feed defVar the new variable location, or if this is a
+ // DBG_VALUE $noreg, feed defVar None.
+ if (MO.getReg())
+ VTracker->defVar(MI, Properties, MTracker->readReg(MO.getReg()));
+ else
+ VTracker->defVar(MI, Properties, None);
+ } else if (MI.getOperand(0).isImm() || MI.getOperand(0).isFPImm() ||
+ MI.getOperand(0).isCImm()) {
+ VTracker->defVar(MI, MI.getOperand(0));
+ }
+ }
+
+ // If performing final tracking of transfers, report this variable definition
+ // to the TransferTracker too.
+ if (TTracker)
+ TTracker->redefVar(MI);
+ return true;
+}
+
+bool InstrRefBasedLDV::transferDebugInstrRef(MachineInstr &MI) {
+ if (!MI.isDebugRef())
+ return false;
+
+ // Only handle this instruction when we are building the variable value
+ // transfer function.
+ if (!VTracker)
+ return false;
+
+ unsigned InstNo = MI.getOperand(0).getImm();
+ unsigned OpNo = MI.getOperand(1).getImm();
+
+ const DILocalVariable *Var = MI.getDebugVariable();
+ const DIExpression *Expr = MI.getDebugExpression();
+ const DILocation *DebugLoc = MI.getDebugLoc();
+ const DILocation *InlinedAt = DebugLoc->getInlinedAt();
+ assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
+ "Expected inlined-at fields to agree");
+
+ DebugVariable V(Var, Expr, InlinedAt);
+
+ auto *Scope = LS.findLexicalScope(MI.getDebugLoc().get());
+ if (Scope == nullptr)
+ return true; // Handled by doing nothing. This variable is never in scope.
+
+ const MachineFunction &MF = *MI.getParent()->getParent();
+
+ // Various optimizations may have happened to the value during codegen,
+ // recorded in the value substitution table. Apply any substitutions to
+ // the instruction / operand number in this DBG_INSTR_REF.
+ auto Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
+ while (Sub != MF.DebugValueSubstitutions.end()) {
+ InstNo = Sub->second.first;
+ OpNo = Sub->second.second;
+ Sub = MF.DebugValueSubstitutions.find(std::make_pair(InstNo, OpNo));
+ }
+
+ // Default machine value number is <None> -- if no instruction defines
+ // the corresponding value, it must have been optimized out.
+ Optional<ValueIDNum> NewID = None;
+
+ // Try to lookup the instruction number, and find the machine value number
+ // that it defines.
+ auto InstrIt = DebugInstrNumToInstr.find(InstNo);
+ if (InstrIt != DebugInstrNumToInstr.end()) {
+ const MachineInstr &TargetInstr = *InstrIt->second.first;
+ uint64_t BlockNo = TargetInstr.getParent()->getNumber();
+
+ // Pick out the designated operand.
+ assert(OpNo < TargetInstr.getNumOperands());
+ const MachineOperand &MO = TargetInstr.getOperand(OpNo);
+
+ // Today, this can only be a register.
+ assert(MO.isReg() && MO.isDef());
+
+ unsigned LocID = MTracker->getLocID(MO.getReg(), false);
+ LocIdx L = MTracker->LocIDToLocIdx[LocID];
+ NewID = ValueIDNum(BlockNo, InstrIt->second.second, L);
+ }
+
+ // We, we have a value number or None. Tell the variable value tracker about
+ // it. The rest of this LiveDebugValues implementation acts exactly the same
+ // for DBG_INSTR_REFs as DBG_VALUEs (just, the former can refer to values that
+ // aren't immediately available).
+ DbgValueProperties Properties(Expr, false);
+ VTracker->defVar(MI, Properties, NewID);
+
+ // If we're on the final pass through the function, decompose this INSTR_REF
+ // into a plain DBG_VALUE.
+ if (!TTracker)
+ return true;
+
+ // Pick a location for the machine value number, if such a location exists.
+ // (This information could be stored in TransferTracker to make it faster).
+ Optional<LocIdx> FoundLoc = None;
+ for (auto Location : MTracker->locations()) {
+ LocIdx CurL = Location.Idx;
+ ValueIDNum ID = MTracker->LocIdxToIDNum[CurL];
+ if (NewID && ID == NewID) {
+ // If this is the first location with that value, pick it. Otherwise,
+ // consider whether it's a "longer term" location.
+ if (!FoundLoc) {
+ FoundLoc = CurL;
+ continue;
+ }
+
+ if (MTracker->isSpill(CurL))
+ FoundLoc = CurL; // Spills are a longer term location.
+ else if (!MTracker->isSpill(*FoundLoc) &&
+ !MTracker->isSpill(CurL) &&
+ !isCalleeSaved(*FoundLoc) &&
+ isCalleeSaved(CurL))
+ FoundLoc = CurL; // Callee saved regs are longer term than normal.
+ }
+ }
+
+ // Tell transfer tracker that the variable value has changed.
+ TTracker->redefVar(MI, Properties, FoundLoc);
+
+ // If there was a value with no location; but the value is defined in a
+ // later instruction in this block, this is a block-local use-before-def.
+ if (!FoundLoc && NewID && NewID->getBlock() == CurBB &&
+ NewID->getInst() > CurInst)
+ TTracker->addUseBeforeDef(V, {MI.getDebugExpression(), false}, *NewID);
+
+ // Produce a DBG_VALUE representing what this DBG_INSTR_REF meant.
+ // This DBG_VALUE is potentially a $noreg / undefined location, if
+ // FoundLoc is None.
+ // (XXX -- could morph the DBG_INSTR_REF in the future).
+ MachineInstr *DbgMI = MTracker->emitLoc(FoundLoc, V, Properties);
+ TTracker->PendingDbgValues.push_back(DbgMI);
+ TTracker->flushDbgValues(MI.getIterator(), nullptr);
+
+ return true;
+}
+
+void InstrRefBasedLDV::transferRegisterDef(MachineInstr &MI) {
+ // Meta Instructions do not affect the debug liveness of any register they
+ // define.
+ if (MI.isImplicitDef()) {
+ // Except when there's an implicit def, and the location it's defining has
+ // no value number. The whole point of an implicit def is to announce that
+ // the register is live, without be specific about it's value. So define
+ // a value if there isn't one already.
+ ValueIDNum Num = MTracker->readReg(MI.getOperand(0).getReg());
+ // Has a legitimate value -> ignore the implicit def.
+ if (Num.getLoc() != 0)
+ return;
+ // Otherwise, def it here.
+ } else if (MI.isMetaInstruction())
+ return;
+
+ MachineFunction *MF = MI.getMF();
+ const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+
+ // Find the regs killed by MI, and find regmasks of preserved regs.
+ // Max out the number of statically allocated elements in `DeadRegs`, as this
+ // prevents fallback to std::set::count() operations.
+ SmallSet<uint32_t, 32> DeadRegs;
+ SmallVector<const uint32_t *, 4> RegMasks;
+ SmallVector<const MachineOperand *, 4> RegMaskPtrs;
+ for (const MachineOperand &MO : MI.operands()) {
+ // Determine whether the operand is a register def.
+ if (MO.isReg() && MO.isDef() && MO.getReg() &&
+ Register::isPhysicalRegister(MO.getReg()) &&
+ !(MI.isCall() && MO.getReg() == SP)) {
+ // Remove ranges of all aliased registers.
+ for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
+ // FIXME: Can we break out of this loop early if no insertion occurs?
+ DeadRegs.insert(*RAI);
+ } else if (MO.isRegMask()) {
+ RegMasks.push_back(MO.getRegMask());
+ RegMaskPtrs.push_back(&MO);
+ }
+ }
+
+ // Tell MLocTracker about all definitions, of regmasks and otherwise.
+ for (uint32_t DeadReg : DeadRegs)
+ MTracker->defReg(DeadReg, CurBB, CurInst);
+
+ for (auto *MO : RegMaskPtrs)
+ MTracker->writeRegMask(MO, CurBB, CurInst);
+}
+
+void InstrRefBasedLDV::performCopy(Register SrcRegNum, Register DstRegNum) {
+ ValueIDNum SrcValue = MTracker->readReg(SrcRegNum);
+
+ MTracker->setReg(DstRegNum, SrcValue);
+
+ // In all circumstances, re-def the super registers. It's definitely a new
+ // value now. This doesn't uniquely identify the composition of subregs, for
+ // example, two identical values in subregisters composed in different
+ // places would not get equal value numbers.
+ for (MCSuperRegIterator SRI(DstRegNum, TRI); SRI.isValid(); ++SRI)
+ MTracker->defReg(*SRI, CurBB, CurInst);
+
+ // If we're emulating VarLocBasedImpl, just define all the subregisters.
+ // DBG_VALUEs of them will expect to be tracked from the DBG_VALUE, not
+ // through prior copies.
+ if (EmulateOldLDV) {
+ for (MCSubRegIndexIterator DRI(DstRegNum, TRI); DRI.isValid(); ++DRI)
+ MTracker->defReg(DRI.getSubReg(), CurBB, CurInst);
+ return;
+ }
+
+ // Otherwise, actually copy subregisters from one location to another.
+ // XXX: in addition, any subregisters of DstRegNum that don't line up with
+ // the source register should be def'd.
+ for (MCSubRegIndexIterator SRI(SrcRegNum, TRI); SRI.isValid(); ++SRI) {
+ unsigned SrcSubReg = SRI.getSubReg();
+ unsigned SubRegIdx = SRI.getSubRegIndex();
+ unsigned DstSubReg = TRI->getSubReg(DstRegNum, SubRegIdx);
+ if (!DstSubReg)
+ continue;
+
+ // Do copy. There are two matching subregisters, the source value should
+ // have been def'd when the super-reg was, the latter might not be tracked
+ // yet.
+ // This will force SrcSubReg to be tracked, if it isn't yet.
+ (void)MTracker->readReg(SrcSubReg);
+ LocIdx SrcL = MTracker->getRegMLoc(SrcSubReg);
+ assert(SrcL.asU64());
+ (void)MTracker->readReg(DstSubReg);
+ LocIdx DstL = MTracker->getRegMLoc(DstSubReg);
+ assert(DstL.asU64());
+ (void)DstL;
+ ValueIDNum CpyValue = {SrcValue.getBlock(), SrcValue.getInst(), SrcL};
+
+ MTracker->setReg(DstSubReg, CpyValue);
+ }
+}
+
+bool InstrRefBasedLDV::isSpillInstruction(const MachineInstr &MI,
+ MachineFunction *MF) {
+ // TODO: Handle multiple stores folded into one.
+ if (!MI.hasOneMemOperand())
+ return false;
+
+ if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
+ return false; // This is not a spill instruction, since no valid size was
+ // returned from either function.
+
+ return true;
+}
+
+bool InstrRefBasedLDV::isLocationSpill(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!isSpillInstruction(MI, MF))
+ return false;
+
+ // XXX FIXME: On x86, isStoreToStackSlotPostFE returns '1' instead of an
+ // actual register number.
+ if (ObserveAllStackops) {
+ int FI;
+ Reg = TII->isStoreToStackSlotPostFE(MI, FI);
+ return Reg != 0;
+ }
+
+ auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
+ if (!MO.isReg() || !MO.isUse()) {
+ Reg = 0;
+ return false;
+ }
+ Reg = MO.getReg();
+ return MO.isKill();
+ };
+
+ for (const MachineOperand &MO : MI.operands()) {
+ // In a spill instruction generated by the InlineSpiller the spilled
+ // register has its kill flag set.
+ if (isKilledReg(MO, Reg))
+ return true;
+ if (Reg != 0) {
+ // Check whether next instruction kills the spilled register.
+ // FIXME: Current solution does not cover search for killed register in
+ // bundles and instructions further down the chain.
+ auto NextI = std::next(MI.getIterator());
+ // Skip next instruction that points to basic block end iterator.
+ if (MI.getParent()->end() == NextI)
+ continue;
+ unsigned RegNext;
+ for (const MachineOperand &MONext : NextI->operands()) {
+ // Return true if we came across the register from the
+ // previous spill instruction that is killed in NextI.
+ if (isKilledReg(MONext, RegNext) && RegNext == Reg)
+ return true;
+ }
+ }
+ }
+ // Return false if we didn't find spilled register.
+ return false;
+}
+
+Optional<SpillLoc>
+InstrRefBasedLDV::isRestoreInstruction(const MachineInstr &MI,
+ MachineFunction *MF, unsigned &Reg) {
+ if (!MI.hasOneMemOperand())
+ return None;
+
+ // FIXME: Handle folded restore instructions with more than one memory
+ // operand.
+ if (MI.getRestoreSize(TII)) {
+ Reg = MI.getOperand(0).getReg();
+ return extractSpillBaseRegAndOffset(MI);
+ }
+ return None;
+}
+
+bool InstrRefBasedLDV::transferSpillOrRestoreInst(MachineInstr &MI) {
+ // XXX -- it's too difficult to implement VarLocBasedImpl's stack location
+ // limitations under the new model. Therefore, when comparing them, compare
+ // versions that don't attempt spills or restores at all.
+ if (EmulateOldLDV)
+ return false;
+
+ MachineFunction *MF = MI.getMF();
+ unsigned Reg;
+ Optional<SpillLoc> Loc;
+
+ LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
+
+ // First, if there are any DBG_VALUEs pointing at a spill slot that is
+ // written to, terminate that variable location. The value in memory
+ // will have changed. DbgEntityHistoryCalculator doesn't try to detect this.
+ if (isSpillInstruction(MI, MF)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+
+ if (TTracker) {
+ Optional<LocIdx> MLoc = MTracker->getSpillMLoc(*Loc);
+ if (MLoc)
+ TTracker->clobberMloc(*MLoc, MI.getIterator());
+ }
+ }
+
+ // Try to recognise spill and restore instructions that may transfer a value.
+ if (isLocationSpill(MI, MF, Reg)) {
+ Loc = extractSpillBaseRegAndOffset(MI);
+ auto ValueID = MTracker->readReg(Reg);
+
+ // If the location is empty, produce a phi, signify it's the live-in value.
+ if (ValueID.getLoc() == 0)
+ ValueID = {CurBB, 0, MTracker->getRegMLoc(Reg)};
+
+ MTracker->setSpill(*Loc, ValueID);
+ auto OptSpillLocIdx = MTracker->getSpillMLoc(*Loc);
+ assert(OptSpillLocIdx && "Spill slot set but has no LocIdx?");
+ LocIdx SpillLocIdx = *OptSpillLocIdx;
+
+ // Tell TransferTracker about this spill, produce DBG_VALUEs for it.
+ if (TTracker)
+ TTracker->transferMlocs(MTracker->getRegMLoc(Reg), SpillLocIdx,
+ MI.getIterator());
+ } else {
+ if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
+ return false;
+
+ // Is there a value to be restored?
+ auto OptValueID = MTracker->readSpill(*Loc);
+ if (OptValueID) {
+ ValueIDNum ValueID = *OptValueID;
+ LocIdx SpillLocIdx = *MTracker->getSpillMLoc(*Loc);
+ // XXX -- can we recover sub-registers of this value? Until we can, first
+ // overwrite all defs of the register being restored to.
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ MTracker->defReg(*RAI, CurBB, CurInst);
+
+ // Now override the reg we're restoring to.
+ MTracker->setReg(Reg, ValueID);
+
+ // Report this restore to the transfer tracker too.
+ if (TTracker)
+ TTracker->transferMlocs(SpillLocIdx, MTracker->getRegMLoc(Reg),
+ MI.getIterator());
+ } else {
+ // There isn't anything in the location; not clear if this is a code path
+ // that still runs. Def this register anyway just in case.
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ MTracker->defReg(*RAI, CurBB, CurInst);
+
+ // Force the spill slot to be tracked.
+ LocIdx L = MTracker->getOrTrackSpillLoc(*Loc);
+
+ // Set the restored value to be a machine phi number, signifying that it's
+ // whatever the spills live-in value is in this block. Definitely has
+ // a LocIdx due to the setSpill above.
+ ValueIDNum ValueID = {CurBB, 0, L};
+ MTracker->setReg(Reg, ValueID);
+ MTracker->setSpill(*Loc, ValueID);
+ }
+ }
+ return true;
+}
+
+bool InstrRefBasedLDV::transferRegisterCopy(MachineInstr &MI) {
+ auto DestSrc = TII->isCopyInstr(MI);
+ if (!DestSrc)
+ return false;
+
+ const MachineOperand *DestRegOp = DestSrc->Destination;
+ const MachineOperand *SrcRegOp = DestSrc->Source;
+
+ auto isCalleeSavedReg = [&](unsigned Reg) {
+ for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
+ if (CalleeSavedRegs.test(*RAI))
+ return true;
+ return false;
+ };
+
+ Register SrcReg = SrcRegOp->getReg();
+ Register DestReg = DestRegOp->getReg();
+
+ // Ignore identity copies. Yep, these make it as far as LiveDebugValues.
+ if (SrcReg == DestReg)
+ return true;
+
+ // For emulating VarLocBasedImpl:
+ // We want to recognize instructions where destination register is callee
+ // saved register. If register that could be clobbered by the call is
+ // included, there would be a great chance that it is going to be clobbered
+ // soon. It is more likely that previous register, which is callee saved, is
+ // going to stay unclobbered longer, even if it is killed.
+ //
+ // For InstrRefBasedImpl, we can track multiple locations per value, so
+ // ignore this condition.
+ if (EmulateOldLDV && !isCalleeSavedReg(DestReg))
+ return false;
+
+ // InstrRefBasedImpl only followed killing copies.
+ if (EmulateOldLDV && !SrcRegOp->isKill())
+ return false;
+
+ // Copy MTracker info, including subregs if available.
+ InstrRefBasedLDV::performCopy(SrcReg, DestReg);
+
+ // Only produce a transfer of DBG_VALUE within a block where old LDV
+ // would have. We might make use of the additional value tracking in some
+ // other way, later.
+ if (TTracker && isCalleeSavedReg(DestReg) && SrcRegOp->isKill())
+ TTracker->transferMlocs(MTracker->getRegMLoc(SrcReg),
+ MTracker->getRegMLoc(DestReg), MI.getIterator());
+
+ // VarLocBasedImpl would quit tracking the old location after copying.
+ if (EmulateOldLDV && SrcReg != DestReg)
+ MTracker->defReg(SrcReg, CurBB, CurInst);
+
+ return true;
+}
+
+/// Accumulate a mapping between each DILocalVariable fragment and other
+/// fragments of that DILocalVariable which overlap. This reduces work during
+/// the data-flow stage from "Find any overlapping fragments" to "Check if the
+/// known-to-overlap fragments are present".
+/// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
+/// fragment usage.
+void InstrRefBasedLDV::accumulateFragmentMap(MachineInstr &MI) {
+ DebugVariable MIVar(MI.getDebugVariable(), MI.getDebugExpression(),
+ MI.getDebugLoc()->getInlinedAt());
+ FragmentInfo ThisFragment = MIVar.getFragmentOrDefault();
+
+ // If this is the first sighting of this variable, then we are guaranteed
+ // there are currently no overlapping fragments either. Initialize the set
+ // of seen fragments, record no overlaps for the current one, and return.
+ auto SeenIt = SeenFragments.find(MIVar.getVariable());
+ if (SeenIt == SeenFragments.end()) {
+ SmallSet<FragmentInfo, 4> OneFragment;
+ OneFragment.insert(ThisFragment);
+ SeenFragments.insert({MIVar.getVariable(), OneFragment});
+
+ OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ return;
+ }
+
+ // If this particular Variable/Fragment pair already exists in the overlap
+ // map, it has already been accounted for.
+ auto IsInOLapMap =
+ OverlapFragments.insert({{MIVar.getVariable(), ThisFragment}, {}});
+ if (!IsInOLapMap.second)
+ return;
+
+ auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
+ auto &AllSeenFragments = SeenIt->second;
+
+ // Otherwise, examine all other seen fragments for this variable, with "this"
+ // fragment being a previously unseen fragment. Record any pair of
+ // overlapping fragments.
+ for (auto &ASeenFragment : AllSeenFragments) {
+ // Does this previously seen fragment overlap?
+ if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
+ // Yes: Mark the current fragment as being overlapped.
+ ThisFragmentsOverlaps.push_back(ASeenFragment);
+ // Mark the previously seen fragment as being overlapped by the current
+ // one.
+ auto ASeenFragmentsOverlaps =
+ OverlapFragments.find({MIVar.getVariable(), ASeenFragment});
+ assert(ASeenFragmentsOverlaps != OverlapFragments.end() &&
+ "Previously seen var fragment has no vector of overlaps");
+ ASeenFragmentsOverlaps->second.push_back(ThisFragment);
+ }
+ }
+
+ AllSeenFragments.insert(ThisFragment);
+}
+
+void InstrRefBasedLDV::process(MachineInstr &MI) {
+ // Try to interpret an MI as a debug or transfer instruction. Only if it's
+ // none of these should we interpret it's register defs as new value
+ // definitions.
+ if (transferDebugValue(MI))
+ return;
+ if (transferDebugInstrRef(MI))
+ return;
+ if (transferRegisterCopy(MI))
+ return;
+ if (transferSpillOrRestoreInst(MI))
+ return;
+ transferRegisterDef(MI);
+}
+
+void InstrRefBasedLDV::produceMLocTransferFunction(
+ MachineFunction &MF, SmallVectorImpl<MLocTransferMap> &MLocTransfer,
+ unsigned MaxNumBlocks) {
+ // Because we try to optimize around register mask operands by ignoring regs
+ // that aren't currently tracked, we set up something ugly for later: RegMask
+ // operands that are seen earlier than the first use of a register, still need
+ // to clobber that register in the transfer function. But this information
+ // isn't actively recorded. Instead, we track each RegMask used in each block,
+ // and accumulated the clobbered but untracked registers in each block into
+ // the following bitvector. Later, if new values are tracked, we can add
+ // appropriate clobbers.
+ SmallVector<BitVector, 32> BlockMasks;
+ BlockMasks.resize(MaxNumBlocks);
+
+ // Reserve one bit per register for the masks described above.
+ unsigned BVWords = MachineOperand::getRegMaskSize(TRI->getNumRegs());
+ for (auto &BV : BlockMasks)
+ BV.resize(TRI->getNumRegs(), true);
+
+ // Step through all instructions and inhale the transfer function.
+ for (auto &MBB : MF) {
+ // Object fields that are read by trackers to know where we are in the
+ // function.
+ CurBB = MBB.getNumber();
+ CurInst = 1;
+
+ // Set all machine locations to a PHI value. For transfer function
+ // production only, this signifies the live-in value to the block.
+ MTracker->reset();
+ MTracker->setMPhis(CurBB);
+
+ // Step through each instruction in this block.
+ for (auto &MI : MBB) {
+ process(MI);
+ // Also accumulate fragment map.
+ if (MI.isDebugValue())
+ accumulateFragmentMap(MI);
+
+ // Create a map from the instruction number (if present) to the
+ // MachineInstr and its position.
+ if (uint64_t InstrNo = MI.peekDebugInstrNum()) {
+ auto InstrAndPos = std::make_pair(&MI, CurInst);
+ auto InsertResult =
+ DebugInstrNumToInstr.insert(std::make_pair(InstrNo, InstrAndPos));
+
+ // There should never be duplicate instruction numbers.
+ assert(InsertResult.second);
+ (void)InsertResult;
+ }
+
+ ++CurInst;
+ }
+
+ // Produce the transfer function, a map of machine location to new value. If
+ // any machine location has the live-in phi value from the start of the
+ // block, it's live-through and doesn't need recording in the transfer
+ // function.
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ ValueIDNum &P = Location.Value;
+ if (P.isPHI() && P.getLoc() == Idx.asU64())
+ continue;
+
+ // Insert-or-update.
+ auto &TransferMap = MLocTransfer[CurBB];
+ auto Result = TransferMap.insert(std::make_pair(Idx.asU64(), P));
+ if (!Result.second)
+ Result.first->second = P;
+ }
+
+ // Accumulate any bitmask operands into the clobberred reg mask for this
+ // block.
+ for (auto &P : MTracker->Masks) {
+ BlockMasks[CurBB].clearBitsNotInMask(P.first->getRegMask(), BVWords);
+ }
+ }
+
+ // Compute a bitvector of all the registers that are tracked in this block.
+ const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
+ Register SP = TLI->getStackPointerRegisterToSaveRestore();
+ BitVector UsedRegs(TRI->getNumRegs());
+ for (auto Location : MTracker->locations()) {
+ unsigned ID = MTracker->LocIdxToLocID[Location.Idx];
+ if (ID >= TRI->getNumRegs() || ID == SP)
+ continue;
+ UsedRegs.set(ID);
+ }
+
+ // Check that any regmask-clobber of a register that gets tracked, is not
+ // live-through in the transfer function. It needs to be clobbered at the
+ // very least.
+ for (unsigned int I = 0; I < MaxNumBlocks; ++I) {
+ BitVector &BV = BlockMasks[I];
+ BV.flip();
+ BV &= UsedRegs;
+ // This produces all the bits that we clobber, but also use. Check that
+ // they're all clobbered or at least set in the designated transfer
+ // elem.
+ for (unsigned Bit : BV.set_bits()) {
+ unsigned ID = MTracker->getLocID(Bit, false);
+ LocIdx Idx = MTracker->LocIDToLocIdx[ID];
+ auto &TransferMap = MLocTransfer[I];
+
+ // Install a value representing the fact that this location is effectively
+ // written to in this block. As there's no reserved value, instead use
+ // a value number that is never generated. Pick the value number for the
+ // first instruction in the block, def'ing this location, which we know
+ // this block never used anyway.
+ ValueIDNum NotGeneratedNum = ValueIDNum(I, 1, Idx);
+ auto Result =
+ TransferMap.insert(std::make_pair(Idx.asU64(), NotGeneratedNum));
+ if (!Result.second) {
+ ValueIDNum &ValueID = Result.first->second;
+ if (ValueID.getBlock() == I && ValueID.isPHI())
+ // It was left as live-through. Set it to clobbered.
+ ValueID = NotGeneratedNum;
+ }
+ }
+ }
+}
+
+std::tuple<bool, bool>
+InstrRefBasedLDV::mlocJoin(MachineBasicBlock &MBB,
+ SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
+ ValueIDNum **OutLocs, ValueIDNum *InLocs) {
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+ bool Changed = false;
+ bool DowngradeOccurred = false;
+
+ // Collect predecessors that have been visited. Anything that hasn't been
+ // visited yet is a backedge on the first iteration, and the meet of it's
+ // lattice value for all locations will be unaffected.
+ SmallVector<const MachineBasicBlock *, 8> BlockOrders;
+ for (auto Pred : MBB.predecessors()) {
+ if (Visited.count(Pred)) {
+ BlockOrders.push_back(Pred);
+ }
+ }
+
+ // Visit predecessors in RPOT order.
+ auto Cmp = [&](const MachineBasicBlock *A, const MachineBasicBlock *B) {
+ return BBToOrder.find(A)->second < BBToOrder.find(B)->second;
+ };
+ llvm::sort(BlockOrders, Cmp);
+
+ // Skip entry block.
+ if (BlockOrders.size() == 0)
+ return std::tuple<bool, bool>(false, false);
+
+ // Step through all machine locations, then look at each predecessor and
+ // detect disagreements.
+ unsigned ThisBlockRPO = BBToOrder.find(&MBB)->second;
+ for (auto Location : MTracker->locations()) {
+ LocIdx Idx = Location.Idx;
+ // Pick out the first predecessors live-out value for this location. It's
+ // guaranteed to be not a backedge, as we order by RPO.
+ ValueIDNum BaseVal = OutLocs[BlockOrders[0]->getNumber()][Idx.asU64()];
+
+ // Some flags for whether there's a disagreement, and whether it's a
+ // disagreement with a backedge or not.
+ bool Disagree = false;
+ bool NonBackEdgeDisagree = false;
+
+ // Loop around everything that wasn't 'base'.
+ for (unsigned int I = 1; I < BlockOrders.size(); ++I) {
+ auto *MBB = BlockOrders[I];
+ if (BaseVal != OutLocs[MBB->getNumber()][Idx.asU64()]) {
+ // Live-out of a predecessor disagrees with the first predecessor.
+ Disagree = true;
+
+ // Test whether it's a disagreemnt in the backedges or not.
+ if (BBToOrder.find(MBB)->second < ThisBlockRPO) // might be self b/e
+ NonBackEdgeDisagree = true;
+ }
+ }
+
+ bool OverRide = false;
+ if (Disagree && !NonBackEdgeDisagree) {
+ // Only the backedges disagree. Consider demoting the livein
+ // lattice value, as per the file level comment. The value we consider
+ // demoting to is the value that the non-backedge predecessors agree on.
+ // The order of values is that non-PHIs are \top, a PHI at this block
+ // \bot, and phis between the two are ordered by their RPO number.
+ // If there's no agreement, or we've already demoted to this PHI value
+ // before, replace with a PHI value at this block.
+
+ // Calculate order numbers: zero means normal def, nonzero means RPO
+ // number.
+ unsigned BaseBlockRPONum = BBNumToRPO[BaseVal.getBlock()] + 1;
+ if (!BaseVal.isPHI())
+ BaseBlockRPONum = 0;
+
+ ValueIDNum &InLocID = InLocs[Idx.asU64()];
+ unsigned InLocRPONum = BBNumToRPO[InLocID.getBlock()] + 1;
+ if (!InLocID.isPHI())
+ InLocRPONum = 0;
+
+ // Should we ignore the disagreeing backedges, and override with the
+ // value the other predecessors agree on (in "base")?
+ unsigned ThisBlockRPONum = BBNumToRPO[MBB.getNumber()] + 1;
+ if (BaseBlockRPONum > InLocRPONum && BaseBlockRPONum < ThisBlockRPONum) {
+ // Override.
+ OverRide = true;
+ DowngradeOccurred = true;
+ }
+ }
+ // else: if we disagree in the non-backedges, then this is definitely
+ // a control flow merge where different values merge. Make it a PHI.
+
+ // Generate a phi...
+ ValueIDNum PHI = {(uint64_t)MBB.getNumber(), 0, Idx};
+ ValueIDNum NewVal = (Disagree && !OverRide) ? PHI : BaseVal;
+ if (InLocs[Idx.asU64()] != NewVal) {
+ Changed |= true;
+ InLocs[Idx.asU64()] = NewVal;
+ }
+ }
+
+ // TODO: Reimplement NumInserted and NumRemoved.
+ return std::tuple<bool, bool>(Changed, DowngradeOccurred);
+}
+
+void InstrRefBasedLDV::mlocDataflow(
+ ValueIDNum **MInLocs, ValueIDNum **MOutLocs,
+ SmallVectorImpl<MLocTransferMap> &MLocTransfer) {
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist, Pending;
+
+ // We track what is on the current and pending worklist to avoid inserting
+ // the same thing twice. We could avoid this with a custom priority queue,
+ // but this is probably not worth it.
+ SmallPtrSet<MachineBasicBlock *, 16> OnPending, OnWorklist;
+
+ // Initialize worklist with every block to be visited.
+ for (unsigned int I = 0; I < BBToOrder.size(); ++I) {
+ Worklist.push(I);
+ OnWorklist.insert(OrderToBB[I]);
+ }
+
+ MTracker->reset();
+
+ // Set inlocs for entry block -- each as a PHI at the entry block. Represents
+ // the incoming value to the function.
+ MTracker->setMPhis(0);
+ for (auto Location : MTracker->locations())
+ MInLocs[0][Location.Idx.asU64()] = Location.Value;
+
+ SmallPtrSet<const MachineBasicBlock *, 16> Visited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ // Vector for storing the evaluated block transfer function.
+ SmallVector<std::pair<LocIdx, ValueIDNum>, 32> ToRemap;
+
+ while (!Worklist.empty()) {
+ MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
+ CurBB = MBB->getNumber();
+ Worklist.pop();
+
+ // Join the values in all predecessor blocks.
+ bool InLocsChanged, DowngradeOccurred;
+ std::tie(InLocsChanged, DowngradeOccurred) =
+ mlocJoin(*MBB, Visited, MOutLocs, MInLocs[CurBB]);
+ InLocsChanged |= Visited.insert(MBB).second;
+
+ // If a downgrade occurred, book us in for re-examination on the next
+ // iteration.
+ if (DowngradeOccurred && OnPending.insert(MBB).second)
+ Pending.push(BBToOrder[MBB]);
+
+ // Don't examine transfer function if we've visited this loc at least
+ // once, and inlocs haven't changed.
+ if (!InLocsChanged)
+ continue;
+
+ // Load the current set of live-ins into MLocTracker.
+ MTracker->loadFromArray(MInLocs[CurBB], CurBB);
+
+ // Each element of the transfer function can be a new def, or a read of
+ // a live-in value. Evaluate each element, and store to "ToRemap".
+ ToRemap.clear();
+ for (auto &P : MLocTransfer[CurBB]) {
+ if (P.second.getBlock() == CurBB && P.second.isPHI()) {
+ // This is a movement of whatever was live in. Read it.
+ ValueIDNum NewID = MTracker->getNumAtPos(P.second.getLoc());
+ ToRemap.push_back(std::make_pair(P.first, NewID));
+ } else {
+ // It's a def. Just set it.
+ assert(P.second.getBlock() == CurBB);
+ ToRemap.push_back(std::make_pair(P.first, P.second));
+ }
+ }
+
+ // Commit the transfer function changes into mloc tracker, which
+ // transforms the contents of the MLocTracker into the live-outs.
+ for (auto &P : ToRemap)
+ MTracker->setMLoc(P.first, P.second);
+
+ // Now copy out-locs from mloc tracker into out-loc vector, checking
+ // whether changes have occurred. These changes can have come from both
+ // the transfer function, and mlocJoin.
+ bool OLChanged = false;
+ for (auto Location : MTracker->locations()) {
+ OLChanged |= MOutLocs[CurBB][Location.Idx.asU64()] != Location.Value;
+ MOutLocs[CurBB][Location.Idx.asU64()] = Location.Value;
+ }
+
+ MTracker->reset();
+
+ // No need to examine successors again if out-locs didn't change.
+ if (!OLChanged)
+ continue;
+
+ // All successors should be visited: put any back-edges on the pending
+ // list for the next dataflow iteration, and any other successors to be
+ // visited this iteration, if they're not going to be already.
+ for (auto s : MBB->successors()) {
+ // Does branching to this successor represent a back-edge?
+ if (BBToOrder[s] > BBToOrder[MBB]) {
+ // No: visit it during this dataflow iteration.
+ if (OnWorklist.insert(s).second)
+ Worklist.push(BBToOrder[s]);
+ } else {
+ // Yes: visit it on the next iteration.
+ if (OnPending.insert(s).second)
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+
+ Worklist.swap(Pending);
+ std::swap(OnPending, OnWorklist);
+ OnPending.clear();
+ // At this point, pending must be empty, since it was just the empty
+ // worklist
+ assert(Pending.empty() && "Pending should be empty");
+ }
+
+ // Once all the live-ins don't change on mlocJoin(), we've reached a
+ // fixedpoint.
+}
+
+bool InstrRefBasedLDV::vlocDowngradeLattice(
+ const MachineBasicBlock &MBB, const DbgValue &OldLiveInLocation,
+ const SmallVectorImpl<InValueT> &Values, unsigned CurBlockRPONum) {
+ // Ranking value preference: see file level comment, the highest rank is
+ // a plain def, followed by PHI values in reverse post-order. Numerically,
+ // we assign all defs the rank '0', all PHIs their blocks RPO number plus
+ // one, and consider the lowest value the highest ranked.
+ int OldLiveInRank = BBNumToRPO[OldLiveInLocation.ID.getBlock()] + 1;
+ if (!OldLiveInLocation.ID.isPHI())
+ OldLiveInRank = 0;
+
+ // Allow any unresolvable conflict to be over-ridden.
+ if (OldLiveInLocation.Kind == DbgValue::NoVal) {
+ // Although if it was an unresolvable conflict from _this_ block, then
+ // all other seeking of downgrades and PHIs must have failed before hand.
+ if (OldLiveInLocation.BlockNo == (unsigned)MBB.getNumber())
+ return false;
+ OldLiveInRank = INT_MIN;
+ }
+
+ auto &InValue = *Values[0].second;
+
+ if (InValue.Kind == DbgValue::Const || InValue.Kind == DbgValue::NoVal)
+ return false;
+
+ unsigned ThisRPO = BBNumToRPO[InValue.ID.getBlock()];
+ int ThisRank = ThisRPO + 1;
+ if (!InValue.ID.isPHI())
+ ThisRank = 0;
+
+ // Too far down the lattice?
+ if (ThisRPO >= CurBlockRPONum)
+ return false;
+
+ // Higher in the lattice than what we've already explored?
+ if (ThisRank <= OldLiveInRank)
+ return false;
+
+ return true;
+}
+
+std::tuple<Optional<ValueIDNum>, bool> InstrRefBasedLDV::pickVPHILoc(
+ MachineBasicBlock &MBB, const DebugVariable &Var, const LiveIdxT &LiveOuts,
+ ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+ const SmallVectorImpl<MachineBasicBlock *> &BlockOrders) {
+ // Collect a set of locations from predecessor where its live-out value can
+ // be found.
+ SmallVector<SmallVector<LocIdx, 4>, 8> Locs;
+ unsigned NumLocs = MTracker->getNumLocs();
+ unsigned BackEdgesStart = 0;
+
+ for (auto p : BlockOrders) {
+ // Pick out where backedges start in the list of predecessors. Relies on
+ // BlockOrders being sorted by RPO.
+ if (BBToOrder[p] < BBToOrder[&MBB])
+ ++BackEdgesStart;
+
+ // For each predecessor, create a new set of locations.
+ Locs.resize(Locs.size() + 1);
+ unsigned ThisBBNum = p->getNumber();
+ auto LiveOutMap = LiveOuts.find(p);
+ if (LiveOutMap == LiveOuts.end())
+ // This predecessor isn't in scope, it must have no live-in/live-out
+ // locations.
+ continue;
+
+ auto It = LiveOutMap->second->find(Var);
+ if (It == LiveOutMap->second->end())
+ // There's no value recorded for this variable in this predecessor,
+ // leave an empty set of locations.
+ continue;
+
+ const DbgValue &OutVal = It->second;
+
+ if (OutVal.Kind == DbgValue::Const || OutVal.Kind == DbgValue::NoVal)
+ // Consts and no-values cannot have locations we can join on.
+ continue;
+
+ assert(OutVal.Kind == DbgValue::Proposed || OutVal.Kind == DbgValue::Def);
+ ValueIDNum ValToLookFor = OutVal.ID;
+
+ // Search the live-outs of the predecessor for the specified value.
+ for (unsigned int I = 0; I < NumLocs; ++I) {
+ if (MOutLocs[ThisBBNum][I] == ValToLookFor)
+ Locs.back().push_back(LocIdx(I));
+ }
+ }
+
+ // If there were no locations at all, return an empty result.
+ if (Locs.empty())
+ return std::tuple<Optional<ValueIDNum>, bool>(None, false);
+
+ // Lambda for seeking a common location within a range of location-sets.
+ using LocsIt = SmallVector<SmallVector<LocIdx, 4>, 8>::iterator;
+ auto SeekLocation =
+ [&Locs](llvm::iterator_range<LocsIt> SearchRange) -> Optional<LocIdx> {
+ // Starting with the first set of locations, take the intersection with
+ // subsequent sets.
+ SmallVector<LocIdx, 4> base = Locs[0];
+ for (auto &S : SearchRange) {
+ SmallVector<LocIdx, 4> new_base;
+ std::set_intersection(base.begin(), base.end(), S.begin(), S.end(),
+ std::inserter(new_base, new_base.begin()));
+ base = new_base;
+ }
+ if (base.empty())
+ return None;
+
+ // We now have a set of LocIdxes that contain the right output value in
+ // each of the predecessors. Pick the lowest; if there's a register loc,
+ // that'll be it.
+ return *base.begin();
+ };
+
+ // Search for a common location for all predecessors. If we can't, then fall
+ // back to only finding a common location between non-backedge predecessors.
+ bool ValidForAllLocs = true;
+ auto TheLoc = SeekLocation(Locs);
+ if (!TheLoc) {
+ ValidForAllLocs = false;
+ TheLoc =
+ SeekLocation(make_range(Locs.begin(), Locs.begin() + BackEdgesStart));
+ }
+
+ if (!TheLoc)
+ return std::tuple<Optional<ValueIDNum>, bool>(None, false);
+
+ // Return a PHI-value-number for the found location.
+ LocIdx L = *TheLoc;
+ ValueIDNum PHIVal = {(unsigned)MBB.getNumber(), 0, L};
+ return std::tuple<Optional<ValueIDNum>, bool>(PHIVal, ValidForAllLocs);
+}
+
+std::tuple<bool, bool> InstrRefBasedLDV::vlocJoin(
+ MachineBasicBlock &MBB, LiveIdxT &VLOCOutLocs, LiveIdxT &VLOCInLocs,
+ SmallPtrSet<const MachineBasicBlock *, 16> *VLOCVisited, unsigned BBNum,
+ const SmallSet<DebugVariable, 4> &AllVars, ValueIDNum **MOutLocs,
+ ValueIDNum **MInLocs,
+ SmallPtrSet<const MachineBasicBlock *, 8> &InScopeBlocks,
+ SmallPtrSet<const MachineBasicBlock *, 8> &BlocksToExplore,
+ DenseMap<DebugVariable, DbgValue> &InLocsT) {
+ bool DowngradeOccurred = false;
+
+ // To emulate VarLocBasedImpl, process this block if it's not in scope but
+ // _does_ assign a variable value. No live-ins for this scope are transferred
+ // in though, so we can return immediately.
+ if (InScopeBlocks.count(&MBB) == 0 && !ArtificialBlocks.count(&MBB)) {
+ if (VLOCVisited)
+ return std::tuple<bool, bool>(true, false);
+ return std::tuple<bool, bool>(false, false);
+ }
+
+ LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
+ bool Changed = false;
+
+ // Find any live-ins computed in a prior iteration.
+ auto ILSIt = VLOCInLocs.find(&MBB);
+ assert(ILSIt != VLOCInLocs.end());
+ auto &ILS = *ILSIt->second;
+
+ // Order predecessors by RPOT order, for exploring them in that order.
+ SmallVector<MachineBasicBlock *, 8> BlockOrders;
+ for (auto p : MBB.predecessors())
+ BlockOrders.push_back(p);
+
+ auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+ return BBToOrder[A] < BBToOrder[B];
+ };
+
+ llvm::sort(BlockOrders, Cmp);
+
+ unsigned CurBlockRPONum = BBToOrder[&MBB];
+
+ // Force a re-visit to loop heads in the first dataflow iteration.
+ // FIXME: if we could "propose" Const values this wouldn't be needed,
+ // because they'd need to be confirmed before being emitted.
+ if (!BlockOrders.empty() &&
+ BBToOrder[BlockOrders[BlockOrders.size() - 1]] >= CurBlockRPONum &&
+ VLOCVisited)
+ DowngradeOccurred = true;
+
+ auto ConfirmValue = [&InLocsT](const DebugVariable &DV, DbgValue VR) {
+ auto Result = InLocsT.insert(std::make_pair(DV, VR));
+ (void)Result;
+ assert(Result.second);
+ };
+
+ auto ConfirmNoVal = [&ConfirmValue, &MBB](const DebugVariable &Var, const DbgValueProperties &Properties) {
+ DbgValue NoLocPHIVal(MBB.getNumber(), Properties, DbgValue::NoVal);
+
+ ConfirmValue(Var, NoLocPHIVal);
+ };
+
+ // Attempt to join the values for each variable.
+ for (auto &Var : AllVars) {
+ // Collect all the DbgValues for this variable.
+ SmallVector<InValueT, 8> Values;
+ bool Bail = false;
+ unsigned BackEdgesStart = 0;
+ for (auto p : BlockOrders) {
+ // If the predecessor isn't in scope / to be explored, we'll never be
+ // able to join any locations.
+ if (!BlocksToExplore.contains(p)) {
+ Bail = true;
+ break;
+ }
+
+ // Don't attempt to handle unvisited predecessors: they're implicitly
+ // "unknown"s in the lattice.
+ if (VLOCVisited && !VLOCVisited->count(p))
+ continue;
+
+ // If the predecessors OutLocs is absent, there's not much we can do.
+ auto OL = VLOCOutLocs.find(p);
+ if (OL == VLOCOutLocs.end()) {
+ Bail = true;
+ break;
+ }
+
+ // No live-out value for this predecessor also means we can't produce
+ // a joined value.
+ auto VIt = OL->second->find(Var);
+ if (VIt == OL->second->end()) {
+ Bail = true;
+ break;
+ }
+
+ // Keep track of where back-edges begin in the Values vector. Relies on
+ // BlockOrders being sorted by RPO.
+ unsigned ThisBBRPONum = BBToOrder[p];
+ if (ThisBBRPONum < CurBlockRPONum)
+ ++BackEdgesStart;
+
+ Values.push_back(std::make_pair(p, &VIt->second));
+ }
+
+ // If there were no values, or one of the predecessors couldn't have a
+ // value, then give up immediately. It's not safe to produce a live-in
+ // value.
+ if (Bail || Values.size() == 0)
+ continue;
+
+ // Enumeration identifying the current state of the predecessors values.
+ enum {
+ Unset = 0,
+ Agreed, // All preds agree on the variable value.
+ PropDisagree, // All preds agree, but the value kind is Proposed in some.
+ BEDisagree, // Only back-edges disagree on variable value.
+ PHINeeded, // Non-back-edge predecessors have conflicing values.
+ NoSolution // Conflicting Value metadata makes solution impossible.
+ } OurState = Unset;
+
+ // All (non-entry) blocks have at least one non-backedge predecessor.
+ // Pick the variable value from the first of these, to compare against
+ // all others.
+ const DbgValue &FirstVal = *Values[0].second;
+ const ValueIDNum &FirstID = FirstVal.ID;
+
+ // Scan for variable values that can't be resolved: if they have different
+ // DIExpressions, different indirectness, or are mixed constants /
+ // non-constants.
+ for (auto &V : Values) {
+ if (V.second->Properties != FirstVal.Properties)
+ OurState = NoSolution;
+ if (V.second->Kind == DbgValue::Const && FirstVal.Kind != DbgValue::Const)
+ OurState = NoSolution;
+ }
+
+ // Flags diagnosing _how_ the values disagree.
+ bool NonBackEdgeDisagree = false;
+ bool DisagreeOnPHINess = false;
+ bool IDDisagree = false;
+ bool Disagree = false;
+ if (OurState == Unset) {
+ for (auto &V : Values) {
+ if (*V.second == FirstVal)
+ continue; // No disagreement.
+
+ Disagree = true;
+
+ // Flag whether the value number actually diagrees.
+ if (V.second->ID != FirstID)
+ IDDisagree = true;
+
+ // Distinguish whether disagreement happens in backedges or not.
+ // Relies on Values (and BlockOrders) being sorted by RPO.
+ unsigned ThisBBRPONum = BBToOrder[V.first];
+ if (ThisBBRPONum < CurBlockRPONum)
+ NonBackEdgeDisagree = true;
+
+ // Is there a difference in whether the value is definite or only
+ // proposed?
+ if (V.second->Kind != FirstVal.Kind &&
+ (V.second->Kind == DbgValue::Proposed ||
+ V.second->Kind == DbgValue::Def) &&
+ (FirstVal.Kind == DbgValue::Proposed ||
+ FirstVal.Kind == DbgValue::Def))
+ DisagreeOnPHINess = true;
+ }
+
+ // Collect those flags together and determine an overall state for
+ // what extend the predecessors agree on a live-in value.
+ if (!Disagree)
+ OurState = Agreed;
+ else if (!IDDisagree && DisagreeOnPHINess)
+ OurState = PropDisagree;
+ else if (!NonBackEdgeDisagree)
+ OurState = BEDisagree;
+ else
+ OurState = PHINeeded;
+ }
+
+ // An extra indicator: if we only disagree on whether the value is a
+ // Def, or proposed, then also flag whether that disagreement happens
+ // in backedges only.
+ bool PropOnlyInBEs = Disagree && !IDDisagree && DisagreeOnPHINess &&
+ !NonBackEdgeDisagree && FirstVal.Kind == DbgValue::Def;
+
+ const auto &Properties = FirstVal.Properties;
+
+ auto OldLiveInIt = ILS.find(Var);
+ const DbgValue *OldLiveInLocation =
+ (OldLiveInIt != ILS.end()) ? &OldLiveInIt->second : nullptr;
+
+ bool OverRide = false;
+ if (OurState == BEDisagree && OldLiveInLocation) {
+ // Only backedges disagree: we can consider downgrading. If there was a
+ // previous live-in value, use it to work out whether the current
+ // incoming value represents a lattice downgrade or not.
+ OverRide =
+ vlocDowngradeLattice(MBB, *OldLiveInLocation, Values, CurBlockRPONum);
+ }
+
+ // Use the current state of predecessor agreement and other flags to work
+ // out what to do next. Possibilities include:
+ // * Accept a value all predecessors agree on, or accept one that
+ // represents a step down the exploration lattice,
+ // * Use a PHI value number, if one can be found,
+ // * Propose a PHI value number, and see if it gets confirmed later,
+ // * Emit a 'NoVal' value, indicating we couldn't resolve anything.
+ if (OurState == Agreed) {
+ // Easiest solution: all predecessors agree on the variable value.
+ ConfirmValue(Var, FirstVal);
+ } else if (OurState == BEDisagree && OverRide) {
+ // Only backedges disagree, and the other predecessors have produced
+ // a new live-in value further down the exploration lattice.
+ DowngradeOccurred = true;
+ ConfirmValue(Var, FirstVal);
+ } else if (OurState == PropDisagree) {
+ // Predecessors agree on value, but some say it's only a proposed value.
+ // Propagate it as proposed: unless it was proposed in this block, in
+ // which case we're able to confirm the value.
+ if (FirstID.getBlock() == (uint64_t)MBB.getNumber() && FirstID.isPHI()) {
+ ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
+ } else if (PropOnlyInBEs) {
+ // If only backedges disagree, a higher (in RPO) block confirmed this
+ // location, and we need to propagate it into this loop.
+ ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Def));
+ } else {
+ // Otherwise; a Def meeting a Proposed is still a Proposed.
+ ConfirmValue(Var, DbgValue(FirstID, Properties, DbgValue::Proposed));
+ }
+ } else if ((OurState == PHINeeded || OurState == BEDisagree)) {
+ // Predecessors disagree and can't be downgraded: this can only be
+ // solved with a PHI. Use pickVPHILoc to go look for one.
+ Optional<ValueIDNum> VPHI;
+ bool AllEdgesVPHI = false;
+ std::tie(VPHI, AllEdgesVPHI) =
+ pickVPHILoc(MBB, Var, VLOCOutLocs, MOutLocs, MInLocs, BlockOrders);
+
+ if (VPHI && AllEdgesVPHI) {
+ // There's a PHI value that's valid for all predecessors -- we can use
+ // it. If any of the non-backedge predecessors have proposed values
+ // though, this PHI is also only proposed, until the predecessors are
+ // confirmed.
+ DbgValue::KindT K = DbgValue::Def;
+ for (unsigned int I = 0; I < BackEdgesStart; ++I)
+ if (Values[I].second->Kind == DbgValue::Proposed)
+ K = DbgValue::Proposed;
+
+ ConfirmValue(Var, DbgValue(*VPHI, Properties, K));
+ } else if (VPHI) {
+ // There's a PHI value, but it's only legal for backedges. Leave this
+ // as a proposed PHI value: it might come back on the backedges,
+ // and allow us to confirm it in the future.
+ DbgValue NoBEValue = DbgValue(*VPHI, Properties, DbgValue::Proposed);
+ ConfirmValue(Var, NoBEValue);
+ } else {
+ ConfirmNoVal(Var, Properties);
+ }
+ } else {
+ // Otherwise: we don't know. Emit a "phi but no real loc" phi.
+ ConfirmNoVal(Var, Properties);
+ }
+ }
+
+ // Store newly calculated in-locs into VLOCInLocs, if they've changed.
+ Changed = ILS != InLocsT;
+ if (Changed)
+ ILS = InLocsT;
+
+ return std::tuple<bool, bool>(Changed, DowngradeOccurred);
+}
+
+void InstrRefBasedLDV::vlocDataflow(
+ const LexicalScope *Scope, const DILocation *DILoc,
+ const SmallSet<DebugVariable, 4> &VarsWeCareAbout,
+ SmallPtrSetImpl<MachineBasicBlock *> &AssignBlocks, LiveInsT &Output,
+ ValueIDNum **MOutLocs, ValueIDNum **MInLocs,
+ SmallVectorImpl<VLocTracker> &AllTheVLocs) {
+ // This method is much like mlocDataflow: but focuses on a single
+ // LexicalScope at a time. Pick out a set of blocks and variables that are
+ // to have their value assignments solved, then run our dataflow algorithm
+ // until a fixedpoint is reached.
+ std::priority_queue<unsigned int, std::vector<unsigned int>,
+ std::greater<unsigned int>>
+ Worklist, Pending;
+ SmallPtrSet<MachineBasicBlock *, 16> OnWorklist, OnPending;
+
+ // The set of blocks we'll be examining.
+ SmallPtrSet<const MachineBasicBlock *, 8> BlocksToExplore;
+
+ // The order in which to examine them (RPO).
+ SmallVector<MachineBasicBlock *, 8> BlockOrders;
+
+ // RPO ordering function.
+ auto Cmp = [&](MachineBasicBlock *A, MachineBasicBlock *B) {
+ return BBToOrder[A] < BBToOrder[B];
+ };
+
+ LS.getMachineBasicBlocks(DILoc, BlocksToExplore);
+
+ // A separate container to distinguish "blocks we're exploring" versus
+ // "blocks that are potentially in scope. See comment at start of vlocJoin.
+ SmallPtrSet<const MachineBasicBlock *, 8> InScopeBlocks = BlocksToExplore;
+
+ // Old LiveDebugValues tracks variable locations that come out of blocks
+ // not in scope, where DBG_VALUEs occur. This is something we could
+ // legitimately ignore, but lets allow it for now.
+ if (EmulateOldLDV)
+ BlocksToExplore.insert(AssignBlocks.begin(), AssignBlocks.end());
+
+ // We also need to propagate variable values through any artificial blocks
+ // that immediately follow blocks in scope.
+ DenseSet<const MachineBasicBlock *> ToAdd;
+
+ // Helper lambda: For a given block in scope, perform a depth first search
+ // of all the artificial successors, adding them to the ToAdd collection.
+ auto AccumulateArtificialBlocks =
+ [this, &ToAdd, &BlocksToExplore,
+ &InScopeBlocks](const MachineBasicBlock *MBB) {
+ // Depth-first-search state: each node is a block and which successor
+ // we're currently exploring.
+ SmallVector<std::pair<const MachineBasicBlock *,
+ MachineBasicBlock::const_succ_iterator>,
+ 8>
+ DFS;
+
+ // Find any artificial successors not already tracked.
+ for (auto *succ : MBB->successors()) {
+ if (BlocksToExplore.count(succ) || InScopeBlocks.count(succ))
+ continue;
+ if (!ArtificialBlocks.count(succ))
+ continue;
+ DFS.push_back(std::make_pair(succ, succ->succ_begin()));
+ ToAdd.insert(succ);
+ }
+
+ // Search all those blocks, depth first.
+ while (!DFS.empty()) {
+ const MachineBasicBlock *CurBB = DFS.back().first;
+ MachineBasicBlock::const_succ_iterator &CurSucc = DFS.back().second;
+ // Walk back if we've explored this blocks successors to the end.
+ if (CurSucc == CurBB->succ_end()) {
+ DFS.pop_back();
+ continue;
+ }
+
+ // If the current successor is artificial and unexplored, descend into
+ // it.
+ if (!ToAdd.count(*CurSucc) && ArtificialBlocks.count(*CurSucc)) {
+ DFS.push_back(std::make_pair(*CurSucc, (*CurSucc)->succ_begin()));
+ ToAdd.insert(*CurSucc);
+ continue;
+ }
+
+ ++CurSucc;
+ }
+ };
+
+ // Search in-scope blocks and those containing a DBG_VALUE from this scope
+ // for artificial successors.
+ for (auto *MBB : BlocksToExplore)
+ AccumulateArtificialBlocks(MBB);
+ for (auto *MBB : InScopeBlocks)
+ AccumulateArtificialBlocks(MBB);
+
+ BlocksToExplore.insert(ToAdd.begin(), ToAdd.end());
+ InScopeBlocks.insert(ToAdd.begin(), ToAdd.end());
+
+ // Single block scope: not interesting! No propagation at all. Note that
+ // this could probably go above ArtificialBlocks without damage, but
+ // that then produces output differences from original-live-debug-values,
+ // which propagates from a single block into many artificial ones.
+ if (BlocksToExplore.size() == 1)
+ return;
+
+ // Picks out relevants blocks RPO order and sort them.
+ for (auto *MBB : BlocksToExplore)
+ BlockOrders.push_back(const_cast<MachineBasicBlock *>(MBB));
+
+ llvm::sort(BlockOrders, Cmp);
+ unsigned NumBlocks = BlockOrders.size();
+
+ // Allocate some vectors for storing the live ins and live outs. Large.
+ SmallVector<DenseMap<DebugVariable, DbgValue>, 32> LiveIns, LiveOuts;
+ LiveIns.resize(NumBlocks);
+ LiveOuts.resize(NumBlocks);
+
+ // Produce by-MBB indexes of live-in/live-outs, to ease lookup within
+ // vlocJoin.
+ LiveIdxT LiveOutIdx, LiveInIdx;
+ LiveOutIdx.reserve(NumBlocks);
+ LiveInIdx.reserve(NumBlocks);
+ for (unsigned I = 0; I < NumBlocks; ++I) {
+ LiveOutIdx[BlockOrders[I]] = &LiveOuts[I];
+ LiveInIdx[BlockOrders[I]] = &LiveIns[I];
+ }
+
+ for (auto *MBB : BlockOrders) {
+ Worklist.push(BBToOrder[MBB]);
+ OnWorklist.insert(MBB);
+ }
+
+ // Iterate over all the blocks we selected, propagating variable values.
+ bool FirstTrip = true;
+ SmallPtrSet<const MachineBasicBlock *, 16> VLOCVisited;
+ while (!Worklist.empty() || !Pending.empty()) {
+ while (!Worklist.empty()) {
+ auto *MBB = OrderToBB[Worklist.top()];
+ CurBB = MBB->getNumber();
+ Worklist.pop();
+
+ DenseMap<DebugVariable, DbgValue> JoinedInLocs;
+
+ // Join values from predecessors. Updates LiveInIdx, and writes output
+ // into JoinedInLocs.
+ bool InLocsChanged, DowngradeOccurred;
+ std::tie(InLocsChanged, DowngradeOccurred) = vlocJoin(
+ *MBB, LiveOutIdx, LiveInIdx, (FirstTrip) ? &VLOCVisited : nullptr,
+ CurBB, VarsWeCareAbout, MOutLocs, MInLocs, InScopeBlocks,
+ BlocksToExplore, JoinedInLocs);
+
+ bool FirstVisit = VLOCVisited.insert(MBB).second;
+
+ // Always explore transfer function if inlocs changed, or if we've not
+ // visited this block before.
+ InLocsChanged |= FirstVisit;
+
+ // If a downgrade occurred, book us in for re-examination on the next
+ // iteration.
+ if (DowngradeOccurred && OnPending.insert(MBB).second)
+ Pending.push(BBToOrder[MBB]);
+
+ if (!InLocsChanged)
+ continue;
+
+ // Do transfer function.
+ auto &VTracker = AllTheVLocs[MBB->getNumber()];
+ for (auto &Transfer : VTracker.Vars) {
+ // Is this var we're mangling in this scope?
+ if (VarsWeCareAbout.count(Transfer.first)) {
+ // Erase on empty transfer (DBG_VALUE $noreg).
+ if (Transfer.second.Kind == DbgValue::Undef) {
+ JoinedInLocs.erase(Transfer.first);
+ } else {
+ // Insert new variable value; or overwrite.
+ auto NewValuePair = std::make_pair(Transfer.first, Transfer.second);
+ auto Result = JoinedInLocs.insert(NewValuePair);
+ if (!Result.second)
+ Result.first->second = Transfer.second;
+ }
+ }
+ }
+
+ // Did the live-out locations change?
+ bool OLChanged = JoinedInLocs != *LiveOutIdx[MBB];
+
+ // If they haven't changed, there's no need to explore further.
+ if (!OLChanged)
+ continue;
+
+ // Commit to the live-out record.
+ *LiveOutIdx[MBB] = JoinedInLocs;
+
+ // We should visit all successors. Ensure we'll visit any non-backedge
+ // successors during this dataflow iteration; book backedge successors
+ // to be visited next time around.
+ for (auto s : MBB->successors()) {
+ // Ignore out of scope / not-to-be-explored successors.
+ if (LiveInIdx.find(s) == LiveInIdx.end())
+ continue;
+
+ if (BBToOrder[s] > BBToOrder[MBB]) {
+ if (OnWorklist.insert(s).second)
+ Worklist.push(BBToOrder[s]);
+ } else if (OnPending.insert(s).second && (FirstTrip || OLChanged)) {
+ Pending.push(BBToOrder[s]);
+ }
+ }
+ }
+ Worklist.swap(Pending);
+ std::swap(OnWorklist, OnPending);
+ OnPending.clear();
+ assert(Pending.empty());
+ FirstTrip = false;
+ }
+
+ // Dataflow done. Now what? Save live-ins. Ignore any that are still marked
+ // as being variable-PHIs, because those did not have their machine-PHI
+ // value confirmed. Such variable values are places that could have been
+ // PHIs, but are not.
+ for (auto *MBB : BlockOrders) {
+ auto &VarMap = *LiveInIdx[MBB];
+ for (auto &P : VarMap) {
+ if (P.second.Kind == DbgValue::Proposed ||
+ P.second.Kind == DbgValue::NoVal)
+ continue;
+ Output[MBB->getNumber()].push_back(P);
+ }
+ }
+
+ BlockOrders.clear();
+ BlocksToExplore.clear();
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void InstrRefBasedLDV::dump_mloc_transfer(
+ const MLocTransferMap &mloc_transfer) const {
+ for (auto &P : mloc_transfer) {
+ std::string foo = MTracker->LocIdxToName(P.first);
+ std::string bar = MTracker->IDAsString(P.second);
+ dbgs() << "Loc " << foo << " --> " << bar << "\n";
+ }
+}
+#endif
+
+void InstrRefBasedLDV::emitLocations(
+ MachineFunction &MF, LiveInsT SavedLiveIns, ValueIDNum **MInLocs,
+ DenseMap<DebugVariable, unsigned> &AllVarsNumbering) {
+ TTracker = new TransferTracker(TII, MTracker, MF, *TRI, CalleeSavedRegs);
+ unsigned NumLocs = MTracker->getNumLocs();
+
+ // For each block, load in the machine value locations and variable value
+ // live-ins, then step through each instruction in the block. New DBG_VALUEs
+ // to be inserted will be created along the way.
+ for (MachineBasicBlock &MBB : MF) {
+ unsigned bbnum = MBB.getNumber();
+ MTracker->reset();
+ MTracker->loadFromArray(MInLocs[bbnum], bbnum);
+ TTracker->loadInlocs(MBB, MInLocs[bbnum], SavedLiveIns[MBB.getNumber()],
+ NumLocs);
+
+ CurBB = bbnum;
+ CurInst = 1;
+ for (auto &MI : MBB) {
+ process(MI);
+ TTracker->checkInstForNewValues(CurInst, MI.getIterator());
+ ++CurInst;
+ }
+ }
+
+ // We have to insert DBG_VALUEs in a consistent order, otherwise they appeaer
+ // in DWARF in different orders. Use the order that they appear when walking
+ // through each block / each instruction, stored in AllVarsNumbering.
+ auto OrderDbgValues = [&](const MachineInstr *A,
+ const MachineInstr *B) -> bool {
+ DebugVariable VarA(A->getDebugVariable(), A->getDebugExpression(),
+ A->getDebugLoc()->getInlinedAt());
+ DebugVariable VarB(B->getDebugVariable(), B->getDebugExpression(),
+ B->getDebugLoc()->getInlinedAt());
+ return AllVarsNumbering.find(VarA)->second <
+ AllVarsNumbering.find(VarB)->second;
+ };
+
+ // Go through all the transfers recorded in the TransferTracker -- this is
+ // both the live-ins to a block, and any movements of values that happen
+ // in the middle.
+ for (auto &P : TTracker->Transfers) {
+ // Sort them according to appearance order.
+ llvm::sort(P.Insts, OrderDbgValues);
+ // Insert either before or after the designated point...
+ if (P.MBB) {
+ MachineBasicBlock &MBB = *P.MBB;
+ for (auto *MI : P.Insts) {
+ MBB.insert(P.Pos, MI);
+ }
+ } else {
+ MachineBasicBlock &MBB = *P.Pos->getParent();
+ for (auto *MI : P.Insts) {
+ MBB.insertAfter(P.Pos, MI);
+ }
+ }
+ }
+}
+
+void InstrRefBasedLDV::initialSetup(MachineFunction &MF) {
+ // Build some useful data structures.
+ auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
+ if (const DebugLoc &DL = MI.getDebugLoc())
+ return DL.getLine() != 0;
+ return false;
+ };
+ // Collect a set of all the artificial blocks.
+ for (auto &MBB : MF)
+ if (none_of(MBB.instrs(), hasNonArtificialLocation))
+ ArtificialBlocks.insert(&MBB);
+
+ // Compute mappings of block <=> RPO order.
+ ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
+ unsigned int RPONumber = 0;
+ for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
+ OrderToBB[RPONumber] = *RI;
+ BBToOrder[*RI] = RPONumber;
+ BBNumToRPO[(*RI)->getNumber()] = RPONumber;
+ ++RPONumber;
+ }
+}
+
+/// Calculate the liveness information for the given machine function and
+/// extend ranges across basic blocks.
+bool InstrRefBasedLDV::ExtendRanges(MachineFunction &MF,
+ TargetPassConfig *TPC) {
+ // No subprogram means this function contains no debuginfo.
+ if (!MF.getFunction().getSubprogram())
+ return false;
+
+ LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
+ this->TPC = TPC;
+
+ TRI = MF.getSubtarget().getRegisterInfo();
+ TII = MF.getSubtarget().getInstrInfo();
+ TFI = MF.getSubtarget().getFrameLowering();
+ TFI->getCalleeSaves(MF, CalleeSavedRegs);
+ LS.initialize(MF);
+
+ MTracker =
+ new MLocTracker(MF, *TII, *TRI, *MF.getSubtarget().getTargetLowering());
+ VTracker = nullptr;
+ TTracker = nullptr;
+
+ SmallVector<MLocTransferMap, 32> MLocTransfer;
+ SmallVector<VLocTracker, 8> vlocs;
+ LiveInsT SavedLiveIns;
+
+ int MaxNumBlocks = -1;
+ for (auto &MBB : MF)
+ MaxNumBlocks = std::max(MBB.getNumber(), MaxNumBlocks);
+ assert(MaxNumBlocks >= 0);
+ ++MaxNumBlocks;
+
+ MLocTransfer.resize(MaxNumBlocks);
+ vlocs.resize(MaxNumBlocks);
+ SavedLiveIns.resize(MaxNumBlocks);
+
+ initialSetup(MF);
+
+ produceMLocTransferFunction(MF, MLocTransfer, MaxNumBlocks);
+
+ // Allocate and initialize two array-of-arrays for the live-in and live-out
+ // machine values. The outer dimension is the block number; while the inner
+ // dimension is a LocIdx from MLocTracker.
+ ValueIDNum **MOutLocs = new ValueIDNum *[MaxNumBlocks];
+ ValueIDNum **MInLocs = new ValueIDNum *[MaxNumBlocks];
+ unsigned NumLocs = MTracker->getNumLocs();
+ for (int i = 0; i < MaxNumBlocks; ++i) {
+ MOutLocs[i] = new ValueIDNum[NumLocs];
+ MInLocs[i] = new ValueIDNum[NumLocs];
+ }
+
+ // Solve the machine value dataflow problem using the MLocTransfer function,
+ // storing the computed live-ins / live-outs into the array-of-arrays. We use
+ // both live-ins and live-outs for decision making in the variable value
+ // dataflow problem.
+ mlocDataflow(MInLocs, MOutLocs, MLocTransfer);
+
+ // Walk back through each block / instruction, collecting DBG_VALUE
+ // instructions and recording what machine value their operands refer to.
+ for (auto &OrderPair : OrderToBB) {
+ MachineBasicBlock &MBB = *OrderPair.second;
+ CurBB = MBB.getNumber();
+ VTracker = &vlocs[CurBB];
+ VTracker->MBB = &MBB;
+ MTracker->loadFromArray(MInLocs[CurBB], CurBB);
+ CurInst = 1;
+ for (auto &MI : MBB) {
+ process(MI);
+ ++CurInst;
+ }
+ MTracker->reset();
+ }
+
+ // Number all variables in the order that they appear, to be used as a stable
+ // insertion order later.
+ DenseMap<DebugVariable, unsigned> AllVarsNumbering;
+
+ // Map from one LexicalScope to all the variables in that scope.
+ DenseMap<const LexicalScope *, SmallSet<DebugVariable, 4>> ScopeToVars;
+
+ // Map from One lexical scope to all blocks in that scope.
+ DenseMap<const LexicalScope *, SmallPtrSet<MachineBasicBlock *, 4>>
+ ScopeToBlocks;
+
+ // Store a DILocation that describes a scope.
+ DenseMap<const LexicalScope *, const DILocation *> ScopeToDILocation;
+
+ // To mirror old LiveDebugValues, enumerate variables in RPOT order. Otherwise
+ // the order is unimportant, it just has to be stable.
+ for (unsigned int I = 0; I < OrderToBB.size(); ++I) {
+ auto *MBB = OrderToBB[I];
+ auto *VTracker = &vlocs[MBB->getNumber()];
+ // Collect each variable with a DBG_VALUE in this block.
+ for (auto &idx : VTracker->Vars) {
+ const auto &Var = idx.first;
+ const DILocation *ScopeLoc = VTracker->Scopes[Var];
+ assert(ScopeLoc != nullptr);
+ auto *Scope = LS.findLexicalScope(ScopeLoc);
+
+ // No insts in scope -> shouldn't have been recorded.
+ assert(Scope != nullptr);
+
+ AllVarsNumbering.insert(std::make_pair(Var, AllVarsNumbering.size()));
+ ScopeToVars[Scope].insert(Var);
+ ScopeToBlocks[Scope].insert(VTracker->MBB);
+ ScopeToDILocation[Scope] = ScopeLoc;
+ }
+ }
+
+ // OK. Iterate over scopes: there might be something to be said for
+ // ordering them by size/locality, but that's for the future. For each scope,
+ // solve the variable value problem, producing a map of variables to values
+ // in SavedLiveIns.
+ for (auto &P : ScopeToVars) {
+ vlocDataflow(P.first, ScopeToDILocation[P.first], P.second,
+ ScopeToBlocks[P.first], SavedLiveIns, MOutLocs, MInLocs,
+ vlocs);
+ }
+
+ // Using the computed value locations and variable values for each block,
+ // create the DBG_VALUE instructions representing the extended variable
+ // locations.
+ emitLocations(MF, SavedLiveIns, MInLocs, AllVarsNumbering);
+
+ for (int Idx = 0; Idx < MaxNumBlocks; ++Idx) {
+ delete[] MOutLocs[Idx];
+ delete[] MInLocs[Idx];
+ }
+ delete[] MOutLocs;
+ delete[] MInLocs;
+
+ // Did we actually make any changes? If we created any DBG_VALUEs, then yes.
+ bool Changed = TTracker->Transfers.size() != 0;
+
+ delete MTracker;
+ delete TTracker;
+ MTracker = nullptr;
+ VTracker = nullptr;
+ TTracker = nullptr;
+
+ ArtificialBlocks.clear();
+ OrderToBB.clear();
+ BBToOrder.clear();
+ BBNumToRPO.clear();
+ DebugInstrNumToInstr.clear();
+
+ return Changed;
+}
+
+LDVImpl *llvm::makeInstrRefBasedLiveDebugValues() {
+ return new InstrRefBasedLDV();
+}