diff options
author | shadchin <shadchin@yandex-team.ru> | 2022-02-10 16:44:30 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:44:30 +0300 |
commit | 2598ef1d0aee359b4b6d5fdd1758916d5907d04f (patch) | |
tree | 012bb94d777798f1f56ac1cec429509766d05181 /contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp | |
parent | 6751af0b0c1b952fede40b19b71da8025b5d8bcf (diff) | |
download | ydb-2598ef1d0aee359b4b6d5fdd1758916d5907d04f.tar.gz |
Restoring authorship annotation for <shadchin@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp')
-rw-r--r-- | contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp | 3832 |
1 files changed, 1916 insertions, 1916 deletions
diff --git a/contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp b/contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp index a9353bdfb7..8ea55b6abd 100644 --- a/contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp +++ b/contrib/libs/llvm12/lib/CodeGen/GlobalISel/CombinerHelper.cpp @@ -16,7 +16,7 @@ #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineInstr.h" -#include "llvm/CodeGen/MachineMemOperand.h" +#include "llvm/CodeGen/MachineMemOperand.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/TargetInstrInfo.h" #include "llvm/CodeGen/TargetLowering.h" @@ -44,75 +44,75 @@ CombinerHelper::CombinerHelper(GISelChangeObserver &Observer, (void)this->KB; } -const TargetLowering &CombinerHelper::getTargetLowering() const { - return *Builder.getMF().getSubtarget().getTargetLowering(); -} - -/// \returns The little endian in-memory byte position of byte \p I in a -/// \p ByteWidth bytes wide type. -/// -/// E.g. Given a 4-byte type x, x[0] -> byte 0 -static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { - assert(I < ByteWidth && "I must be in [0, ByteWidth)"); - return I; -} - -/// \returns The big endian in-memory byte position of byte \p I in a -/// \p ByteWidth bytes wide type. -/// -/// E.g. Given a 4-byte type x, x[0] -> byte 3 -static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { - assert(I < ByteWidth && "I must be in [0, ByteWidth)"); - return ByteWidth - I - 1; -} - -/// Given a map from byte offsets in memory to indices in a load/store, -/// determine if that map corresponds to a little or big endian byte pattern. -/// -/// \param MemOffset2Idx maps memory offsets to address offsets. -/// \param LowestIdx is the lowest index in \p MemOffset2Idx. -/// -/// \returns true if the map corresponds to a big endian byte pattern, false -/// if it corresponds to a little endian byte pattern, and None otherwise. -/// -/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns -/// are as follows: -/// -/// AddrOffset Little endian Big endian -/// 0 0 3 -/// 1 1 2 -/// 2 2 1 -/// 3 3 0 -static Optional<bool> -isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, - int64_t LowestIdx) { - // Need at least two byte positions to decide on endianness. - unsigned Width = MemOffset2Idx.size(); - if (Width < 2) - return None; - bool BigEndian = true, LittleEndian = true; - for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { - auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); - if (MemOffsetAndIdx == MemOffset2Idx.end()) - return None; - const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; - assert(Idx >= 0 && "Expected non-negative byte offset?"); - LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); - BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); - if (!BigEndian && !LittleEndian) - return None; - } - - assert((BigEndian != LittleEndian) && - "Pattern cannot be both big and little endian!"); - return BigEndian; -} - -bool CombinerHelper::isLegalOrBeforeLegalizer( - const LegalityQuery &Query) const { - return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; -} - +const TargetLowering &CombinerHelper::getTargetLowering() const { + return *Builder.getMF().getSubtarget().getTargetLowering(); +} + +/// \returns The little endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 0 +static unsigned littleEndianByteAt(const unsigned ByteWidth, const unsigned I) { + assert(I < ByteWidth && "I must be in [0, ByteWidth)"); + return I; +} + +/// \returns The big endian in-memory byte position of byte \p I in a +/// \p ByteWidth bytes wide type. +/// +/// E.g. Given a 4-byte type x, x[0] -> byte 3 +static unsigned bigEndianByteAt(const unsigned ByteWidth, const unsigned I) { + assert(I < ByteWidth && "I must be in [0, ByteWidth)"); + return ByteWidth - I - 1; +} + +/// Given a map from byte offsets in memory to indices in a load/store, +/// determine if that map corresponds to a little or big endian byte pattern. +/// +/// \param MemOffset2Idx maps memory offsets to address offsets. +/// \param LowestIdx is the lowest index in \p MemOffset2Idx. +/// +/// \returns true if the map corresponds to a big endian byte pattern, false +/// if it corresponds to a little endian byte pattern, and None otherwise. +/// +/// E.g. given a 32-bit type x, and x[AddrOffset], the in-memory byte patterns +/// are as follows: +/// +/// AddrOffset Little endian Big endian +/// 0 0 3 +/// 1 1 2 +/// 2 2 1 +/// 3 3 0 +static Optional<bool> +isBigEndian(const SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, + int64_t LowestIdx) { + // Need at least two byte positions to decide on endianness. + unsigned Width = MemOffset2Idx.size(); + if (Width < 2) + return None; + bool BigEndian = true, LittleEndian = true; + for (unsigned MemOffset = 0; MemOffset < Width; ++ MemOffset) { + auto MemOffsetAndIdx = MemOffset2Idx.find(MemOffset); + if (MemOffsetAndIdx == MemOffset2Idx.end()) + return None; + const int64_t Idx = MemOffsetAndIdx->second - LowestIdx; + assert(Idx >= 0 && "Expected non-negative byte offset?"); + LittleEndian &= Idx == littleEndianByteAt(Width, MemOffset); + BigEndian &= Idx == bigEndianByteAt(Width, MemOffset); + if (!BigEndian && !LittleEndian) + return None; + } + + assert((BigEndian != LittleEndian) && + "Pattern cannot be both big and little endian!"); + return BigEndian; +} + +bool CombinerHelper::isLegalOrBeforeLegalizer( + const LegalityQuery &Query) const { + return !LI || LI->getAction(Query).Action == LegalizeActions::Legal; +} + void CombinerHelper::replaceRegWith(MachineRegisterInfo &MRI, Register FromReg, Register ToReg) const { Observer.changingAllUsesOfReg(MRI, FromReg); @@ -624,13 +624,13 @@ bool CombinerHelper::isPredecessor(const MachineInstr &DefMI, assert(DefMI.getParent() == UseMI.getParent()); if (&DefMI == &UseMI) return false; - const MachineBasicBlock &MBB = *DefMI.getParent(); - auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { - return &MI == &DefMI || &MI == &UseMI; - }); - if (DefOrUse == MBB.end()) - llvm_unreachable("Block must contain both DefMI and UseMI!"); - return &*DefOrUse == &DefMI; + const MachineBasicBlock &MBB = *DefMI.getParent(); + auto DefOrUse = find_if(MBB, [&DefMI, &UseMI](const MachineInstr &MI) { + return &MI == &DefMI || &MI == &UseMI; + }); + if (DefOrUse == MBB.end()) + llvm_unreachable("Block must contain both DefMI and UseMI!"); + return &*DefOrUse == &DefMI; } bool CombinerHelper::dominates(const MachineInstr &DefMI, @@ -645,101 +645,101 @@ bool CombinerHelper::dominates(const MachineInstr &DefMI, return isPredecessor(DefMI, UseMI); } -bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); - Register SrcReg = MI.getOperand(1).getReg(); - Register LoadUser = SrcReg; - - if (MRI.getType(SrcReg).isVector()) - return false; - - Register TruncSrc; - if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) - LoadUser = TruncSrc; - - uint64_t SizeInBits = MI.getOperand(2).getImm(); - // If the source is a G_SEXTLOAD from the same bit width, then we don't - // need any extend at all, just a truncate. - if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { - const auto &MMO = **LoadMI->memoperands_begin(); - // If truncating more than the original extended value, abort. - if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) - return false; - if (MMO.getSizeInBits() == SizeInBits) - return true; - } - return false; -} - -bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); - Builder.setInstrAndDebugLoc(MI); - Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchSextInRegOfLoad( - MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { +bool CombinerHelper::matchSextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); - - // Only supports scalars for now. - if (MRI.getType(MI.getOperand(0).getReg()).isVector()) - return false; - Register SrcReg = MI.getOperand(1).getReg(); - MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); - if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) - return false; - - // If the sign extend extends from a narrower width than the load's width, - // then we can narrow the load width when we combine to a G_SEXTLOAD. - auto &MMO = **LoadDef->memoperands_begin(); - // Don't do this for non-simple loads. - if (MMO.isAtomic() || MMO.isVolatile()) - return false; - - // Avoid widening the load at all. - unsigned NewSizeBits = - std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); - - // Don't generate G_SEXTLOADs with a < 1 byte width. - if (NewSizeBits < 8) - return false; - // Don't bother creating a non-power-2 sextload, it will likely be broken up - // anyway for most targets. - if (!isPowerOf2_32(NewSizeBits)) - return false; - MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); - return true; -} - -bool CombinerHelper::applySextInRegOfLoad( - MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + Register LoadUser = SrcReg; + + if (MRI.getType(SrcReg).isVector()) + return false; + + Register TruncSrc; + if (mi_match(SrcReg, MRI, m_GTrunc(m_Reg(TruncSrc)))) + LoadUser = TruncSrc; + + uint64_t SizeInBits = MI.getOperand(2).getImm(); + // If the source is a G_SEXTLOAD from the same bit width, then we don't + // need any extend at all, just a truncate. + if (auto *LoadMI = getOpcodeDef(TargetOpcode::G_SEXTLOAD, LoadUser, MRI)) { + const auto &MMO = **LoadMI->memoperands_begin(); + // If truncating more than the original extended value, abort. + if (TruncSrc && MRI.getType(TruncSrc).getSizeInBits() < MMO.getSizeInBits()) + return false; + if (MMO.getSizeInBits() == SizeInBits) + return true; + } + return false; +} + +bool CombinerHelper::applySextTruncSextLoad(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); - Register LoadReg; - unsigned ScalarSizeBits; - std::tie(LoadReg, ScalarSizeBits) = MatchInfo; - auto *LoadDef = MRI.getVRegDef(LoadReg); - assert(LoadDef && "Expected a load reg"); - - // If we have the following: - // %ld = G_LOAD %ptr, (load 2) - // %ext = G_SEXT_INREG %ld, 8 - // ==> - // %ld = G_SEXTLOAD %ptr (load 1) - - auto &MMO = **LoadDef->memoperands_begin(); - Builder.setInstrAndDebugLoc(MI); - auto &MF = Builder.getMF(); - auto PtrInfo = MMO.getPointerInfo(); - auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); - Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), - LoadDef->getOperand(1).getReg(), *NewMMO); + Builder.setInstrAndDebugLoc(MI); + Builder.buildCopy(MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); MI.eraseFromParent(); return true; } +bool CombinerHelper::matchSextInRegOfLoad( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + + // Only supports scalars for now. + if (MRI.getType(MI.getOperand(0).getReg()).isVector()) + return false; + + Register SrcReg = MI.getOperand(1).getReg(); + MachineInstr *LoadDef = getOpcodeDef(TargetOpcode::G_LOAD, SrcReg, MRI); + if (!LoadDef || !MRI.hasOneNonDBGUse(LoadDef->getOperand(0).getReg())) + return false; + + // If the sign extend extends from a narrower width than the load's width, + // then we can narrow the load width when we combine to a G_SEXTLOAD. + auto &MMO = **LoadDef->memoperands_begin(); + // Don't do this for non-simple loads. + if (MMO.isAtomic() || MMO.isVolatile()) + return false; + + // Avoid widening the load at all. + unsigned NewSizeBits = + std::min((uint64_t)MI.getOperand(2).getImm(), MMO.getSizeInBits()); + + // Don't generate G_SEXTLOADs with a < 1 byte width. + if (NewSizeBits < 8) + return false; + // Don't bother creating a non-power-2 sextload, it will likely be broken up + // anyway for most targets. + if (!isPowerOf2_32(NewSizeBits)) + return false; + MatchInfo = std::make_tuple(LoadDef->getOperand(0).getReg(), NewSizeBits); + return true; +} + +bool CombinerHelper::applySextInRegOfLoad( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG); + Register LoadReg; + unsigned ScalarSizeBits; + std::tie(LoadReg, ScalarSizeBits) = MatchInfo; + auto *LoadDef = MRI.getVRegDef(LoadReg); + assert(LoadDef && "Expected a load reg"); + + // If we have the following: + // %ld = G_LOAD %ptr, (load 2) + // %ext = G_SEXT_INREG %ld, 8 + // ==> + // %ld = G_SEXTLOAD %ptr (load 1) + + auto &MMO = **LoadDef->memoperands_begin(); + Builder.setInstrAndDebugLoc(MI); + auto &MF = Builder.getMF(); + auto PtrInfo = MMO.getPointerInfo(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, ScalarSizeBits / 8); + Builder.buildLoadInstr(TargetOpcode::G_SEXTLOAD, MI.getOperand(0).getReg(), + LoadDef->getOperand(1).getReg(), *NewMMO); + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, Register &Base, Register &Offset) { auto &MF = *MI.getParent()->getParent(); @@ -757,7 +757,7 @@ bool CombinerHelper::findPostIndexCandidate(MachineInstr &MI, Register &Addr, return false; LLVM_DEBUG(dbgs() << "Searching for post-indexing opportunity for: " << MI); - // FIXME: The following use traversal needs a bail out for patholigical cases. + // FIXME: The following use traversal needs a bail out for patholigical cases. for (auto &Use : MRI.use_nodbg_instructions(Base)) { if (Use.getOpcode() != TargetOpcode::G_PTR_ADD) continue; @@ -884,11 +884,11 @@ bool CombinerHelper::matchCombineIndexedLoadStore(MachineInstr &MI, IndexedLoadS Opcode != TargetOpcode::G_ZEXTLOAD && Opcode != TargetOpcode::G_STORE) return false; - // For now, no targets actually support these opcodes so don't waste time - // running these unless we're forced to for testing. - if (!ForceLegalIndexing) - return false; - + // For now, no targets actually support these opcodes so don't waste time + // running these unless we're forced to for testing. + if (!ForceLegalIndexing) + return false; + MatchInfo.IsPre = findPreIndexCandidate(MI, MatchInfo.Addr, MatchInfo.Base, MatchInfo.Offset); if (!MatchInfo.IsPre && @@ -941,7 +941,7 @@ void CombinerHelper::applyCombineIndexedLoadStore( LLVM_DEBUG(dbgs() << " Combinined to indexed operation"); } -bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { +bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { if (MI.getOpcode() != TargetOpcode::G_BR) return false; @@ -956,7 +956,7 @@ bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { // The above pattern does not have a fall through to the successor bb2, always // resulting in a branch no matter which path is taken. Here we try to find // and replace that pattern with conditional branch to bb3 and otherwise - // fallthrough to bb2. This is generally better for branch predictors. + // fallthrough to bb2. This is generally better for branch predictors. MachineBasicBlock *MBB = MI.getParent(); MachineBasicBlock::iterator BrIt(MI); @@ -968,36 +968,36 @@ bool CombinerHelper::matchOptBrCondByInvertingCond(MachineInstr &MI) { if (BrCond->getOpcode() != TargetOpcode::G_BRCOND) return false; - // Check that the next block is the conditional branch target. Also make sure - // that it isn't the same as the G_BR's target (otherwise, this will loop.) - MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); - return BrCondTarget != MI.getOperand(0).getMBB() && - MBB->isLayoutSuccessor(BrCondTarget); + // Check that the next block is the conditional branch target. Also make sure + // that it isn't the same as the G_BR's target (otherwise, this will loop.) + MachineBasicBlock *BrCondTarget = BrCond->getOperand(1).getMBB(); + return BrCondTarget != MI.getOperand(0).getMBB() && + MBB->isLayoutSuccessor(BrCondTarget); } -void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { +void CombinerHelper::applyOptBrCondByInvertingCond(MachineInstr &MI) { MachineBasicBlock *BrTarget = MI.getOperand(0).getMBB(); MachineBasicBlock::iterator BrIt(MI); MachineInstr *BrCond = &*std::prev(BrIt); - Builder.setInstrAndDebugLoc(*BrCond); - LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); - // FIXME: Does int/fp matter for this? If so, we might need to restrict - // this to i1 only since we might not know for sure what kind of - // compare generated the condition value. - auto True = Builder.buildConstant( - Ty, getICmpTrueVal(getTargetLowering(), false, false)); - auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); - - auto *FallthroughBB = BrCond->getOperand(1).getMBB(); - Observer.changingInstr(MI); - MI.getOperand(0).setMBB(FallthroughBB); - Observer.changedInstr(MI); - - // Change the conditional branch to use the inverted condition and - // new target block. + Builder.setInstrAndDebugLoc(*BrCond); + LLT Ty = MRI.getType(BrCond->getOperand(0).getReg()); + // FIXME: Does int/fp matter for this? If so, we might need to restrict + // this to i1 only since we might not know for sure what kind of + // compare generated the condition value. + auto True = Builder.buildConstant( + Ty, getICmpTrueVal(getTargetLowering(), false, false)); + auto Xor = Builder.buildXor(Ty, BrCond->getOperand(0), True); + + auto *FallthroughBB = BrCond->getOperand(1).getMBB(); + Observer.changingInstr(MI); + MI.getOperand(0).setMBB(FallthroughBB); + Observer.changedInstr(MI); + + // Change the conditional branch to use the inverted condition and + // new target block. Observer.changingInstr(*BrCond); - BrCond->getOperand(0).setReg(Xor.getReg(0)); + BrCond->getOperand(0).setReg(Xor.getReg(0)); BrCond->getOperand(1).setMBB(BrTarget); Observer.changedInstr(*BrCond); } @@ -1090,7 +1090,7 @@ static Register getMemsetValue(Register Val, LLT Ty, MachineIRBuilder &MIB) { unsigned NumBits = Ty.getScalarSizeInBits(); auto ValVRegAndVal = getConstantVRegValWithLookThrough(Val, MRI); if (!Ty.isVector() && ValVRegAndVal) { - APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); + APInt Scalar = ValVRegAndVal->Value.truncOrSelf(8); APInt SplatVal = APInt::getSplat(NumBits, Scalar); return MIB.buildConstant(Ty, SplatVal).getReg(0); } @@ -1442,11 +1442,11 @@ bool CombinerHelper::optimizeMemmove(MachineInstr &MI, Register Dst, } bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { - const unsigned Opc = MI.getOpcode(); + const unsigned Opc = MI.getOpcode(); // This combine is fairly complex so it's not written with a separate // matcher function. - assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || - Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); + assert((Opc == TargetOpcode::G_MEMCPY || Opc == TargetOpcode::G_MEMMOVE || + Opc == TargetOpcode::G_MEMSET) && "Expected memcpy like instruction"); auto MMOIt = MI.memoperands_begin(); const MachineMemOperand *MemOp = *MMOIt; @@ -1457,11 +1457,11 @@ bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { Align DstAlign = MemOp->getBaseAlign(); Align SrcAlign; - Register Dst = MI.getOperand(0).getReg(); - Register Src = MI.getOperand(1).getReg(); - Register Len = MI.getOperand(2).getReg(); + Register Dst = MI.getOperand(0).getReg(); + Register Src = MI.getOperand(1).getReg(); + Register Len = MI.getOperand(2).getReg(); - if (Opc != TargetOpcode::G_MEMSET) { + if (Opc != TargetOpcode::G_MEMSET) { assert(MMOIt != MI.memoperands_end() && "Expected a second MMO on MI"); MemOp = *(++MMOIt); SrcAlign = MemOp->getBaseAlign(); @@ -1471,7 +1471,7 @@ bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { auto LenVRegAndVal = getConstantVRegValWithLookThrough(Len, MRI); if (!LenVRegAndVal) return false; // Leave it to the legalizer to lower it to a libcall. - unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); + unsigned KnownLen = LenVRegAndVal->Value.getZExtValue(); if (KnownLen == 0) { MI.eraseFromParent(); @@ -1481,78 +1481,78 @@ bool CombinerHelper::tryCombineMemCpyFamily(MachineInstr &MI, unsigned MaxLen) { if (MaxLen && KnownLen > MaxLen) return false; - if (Opc == TargetOpcode::G_MEMCPY) + if (Opc == TargetOpcode::G_MEMCPY) return optimizeMemcpy(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); - if (Opc == TargetOpcode::G_MEMMOVE) + if (Opc == TargetOpcode::G_MEMMOVE) return optimizeMemmove(MI, Dst, Src, KnownLen, DstAlign, SrcAlign, IsVolatile); - if (Opc == TargetOpcode::G_MEMSET) + if (Opc == TargetOpcode::G_MEMSET) return optimizeMemset(MI, Dst, Src, KnownLen, DstAlign, IsVolatile); return false; } -static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, - const Register Op, - const MachineRegisterInfo &MRI) { - const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); - if (!MaybeCst) - return None; - - APFloat V = MaybeCst->getValueAPF(); - switch (Opcode) { - default: - llvm_unreachable("Unexpected opcode!"); - case TargetOpcode::G_FNEG: { - V.changeSign(); - return V; - } - case TargetOpcode::G_FABS: { - V.clearSign(); - return V; - } - case TargetOpcode::G_FPTRUNC: - break; - case TargetOpcode::G_FSQRT: { - bool Unused; - V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); - V = APFloat(sqrt(V.convertToDouble())); - break; - } - case TargetOpcode::G_FLOG2: { - bool Unused; - V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); - V = APFloat(log2(V.convertToDouble())); - break; - } - } - // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, - // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, - // and `G_FLOG2` reach here. - bool Unused; - V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); - return V; -} - -bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, - Optional<APFloat> &Cst) { - Register DstReg = MI.getOperand(0).getReg(); - Register SrcReg = MI.getOperand(1).getReg(); - LLT DstTy = MRI.getType(DstReg); - Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); - return Cst.hasValue(); -} - -bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, - Optional<APFloat> &Cst) { - assert(Cst.hasValue() && "Optional is unexpectedly empty!"); - Builder.setInstrAndDebugLoc(MI); - MachineFunction &MF = Builder.getMF(); - auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); - Register DstReg = MI.getOperand(0).getReg(); - Builder.buildFConstant(DstReg, *FPVal); - MI.eraseFromParent(); - return true; -} - +static Optional<APFloat> constantFoldFpUnary(unsigned Opcode, LLT DstTy, + const Register Op, + const MachineRegisterInfo &MRI) { + const ConstantFP *MaybeCst = getConstantFPVRegVal(Op, MRI); + if (!MaybeCst) + return None; + + APFloat V = MaybeCst->getValueAPF(); + switch (Opcode) { + default: + llvm_unreachable("Unexpected opcode!"); + case TargetOpcode::G_FNEG: { + V.changeSign(); + return V; + } + case TargetOpcode::G_FABS: { + V.clearSign(); + return V; + } + case TargetOpcode::G_FPTRUNC: + break; + case TargetOpcode::G_FSQRT: { + bool Unused; + V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); + V = APFloat(sqrt(V.convertToDouble())); + break; + } + case TargetOpcode::G_FLOG2: { + bool Unused; + V.convert(APFloat::IEEEdouble(), APFloat::rmNearestTiesToEven, &Unused); + V = APFloat(log2(V.convertToDouble())); + break; + } + } + // Convert `APFloat` to appropriate IEEE type depending on `DstTy`. Otherwise, + // `buildFConstant` will assert on size mismatch. Only `G_FPTRUNC`, `G_FSQRT`, + // and `G_FLOG2` reach here. + bool Unused; + V.convert(getFltSemanticForLLT(DstTy), APFloat::rmNearestTiesToEven, &Unused); + return V; +} + +bool CombinerHelper::matchCombineConstantFoldFpUnary(MachineInstr &MI, + Optional<APFloat> &Cst) { + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + Cst = constantFoldFpUnary(MI.getOpcode(), DstTy, SrcReg, MRI); + return Cst.hasValue(); +} + +bool CombinerHelper::applyCombineConstantFoldFpUnary(MachineInstr &MI, + Optional<APFloat> &Cst) { + assert(Cst.hasValue() && "Optional is unexpectedly empty!"); + Builder.setInstrAndDebugLoc(MI); + MachineFunction &MF = Builder.getMF(); + auto *FPVal = ConstantFP::get(MF.getFunction().getContext(), *Cst); + Register DstReg = MI.getOperand(0).getReg(); + Builder.buildFConstant(DstReg, *FPVal); + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, PtrAddChain &MatchInfo) { // We're trying to match the following pattern: @@ -1581,7 +1581,7 @@ bool CombinerHelper::matchPtrAddImmedChain(MachineInstr &MI, return false; // Pass the combined immediate to the apply function. - MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); + MatchInfo.Imm = (MaybeImmVal->Value + MaybeImm2Val->Value).getSExtValue(); MatchInfo.Base = Base; return true; } @@ -1599,211 +1599,211 @@ bool CombinerHelper::applyPtrAddImmedChain(MachineInstr &MI, return true; } -bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, - RegisterImmPair &MatchInfo) { - // We're trying to match the following pattern with any of - // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: - // %t1 = SHIFT %base, G_CONSTANT imm1 - // %root = SHIFT %t1, G_CONSTANT imm2 - // --> - // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) - - unsigned Opcode = MI.getOpcode(); - assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || - Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || - Opcode == TargetOpcode::G_USHLSAT) && - "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); - - Register Shl2 = MI.getOperand(1).getReg(); - Register Imm1 = MI.getOperand(2).getReg(); - auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); - if (!MaybeImmVal) - return false; - - MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); - if (Shl2Def->getOpcode() != Opcode) - return false; - - Register Base = Shl2Def->getOperand(1).getReg(); - Register Imm2 = Shl2Def->getOperand(2).getReg(); - auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); - if (!MaybeImm2Val) - return false; - - // Pass the combined immediate to the apply function. - MatchInfo.Imm = - (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); - MatchInfo.Reg = Base; - - // There is no simple replacement for a saturating unsigned left shift that - // exceeds the scalar size. - if (Opcode == TargetOpcode::G_USHLSAT && - MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) - return false; - - return true; -} - -bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, - RegisterImmPair &MatchInfo) { - unsigned Opcode = MI.getOpcode(); - assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || - Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || - Opcode == TargetOpcode::G_USHLSAT) && - "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); - - Builder.setInstrAndDebugLoc(MI); - LLT Ty = MRI.getType(MI.getOperand(1).getReg()); - unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); - auto Imm = MatchInfo.Imm; - - if (Imm >= ScalarSizeInBits) { - // Any logical shift that exceeds scalar size will produce zero. - if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { - Builder.buildConstant(MI.getOperand(0), 0); - MI.eraseFromParent(); - return true; - } - // Arithmetic shift and saturating signed left shift have no effect beyond - // scalar size. - Imm = ScalarSizeInBits - 1; - } - - LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); - Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); - Observer.changingInstr(MI); - MI.getOperand(1).setReg(MatchInfo.Reg); - MI.getOperand(2).setReg(NewImm); - Observer.changedInstr(MI); - return true; -} - -bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, - ShiftOfShiftedLogic &MatchInfo) { - // We're trying to match the following pattern with any of - // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination - // with any of G_AND/G_OR/G_XOR logic instructions. - // %t1 = SHIFT %X, G_CONSTANT C0 - // %t2 = LOGIC %t1, %Y - // %root = SHIFT %t2, G_CONSTANT C1 - // --> - // %t3 = SHIFT %X, G_CONSTANT (C0+C1) - // %t4 = SHIFT %Y, G_CONSTANT C1 - // %root = LOGIC %t3, %t4 - unsigned ShiftOpcode = MI.getOpcode(); - assert((ShiftOpcode == TargetOpcode::G_SHL || - ShiftOpcode == TargetOpcode::G_ASHR || - ShiftOpcode == TargetOpcode::G_LSHR || - ShiftOpcode == TargetOpcode::G_USHLSAT || - ShiftOpcode == TargetOpcode::G_SSHLSAT) && - "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); - - // Match a one-use bitwise logic op. - Register LogicDest = MI.getOperand(1).getReg(); - if (!MRI.hasOneNonDBGUse(LogicDest)) - return false; - - MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); - unsigned LogicOpcode = LogicMI->getOpcode(); - if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && - LogicOpcode != TargetOpcode::G_XOR) - return false; - - // Find a matching one-use shift by constant. - const Register C1 = MI.getOperand(2).getReg(); - auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); - if (!MaybeImmVal) - return false; - - const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); - - auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { - // Shift should match previous one and should be a one-use. - if (MI->getOpcode() != ShiftOpcode || - !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) - return false; - - // Must be a constant. - auto MaybeImmVal = - getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); - if (!MaybeImmVal) - return false; - - ShiftVal = MaybeImmVal->Value.getSExtValue(); - return true; - }; - - // Logic ops are commutative, so check each operand for a match. - Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); - MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); - Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); - MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); - uint64_t C0Val; - - if (matchFirstShift(LogicMIOp1, C0Val)) { - MatchInfo.LogicNonShiftReg = LogicMIReg2; - MatchInfo.Shift2 = LogicMIOp1; - } else if (matchFirstShift(LogicMIOp2, C0Val)) { - MatchInfo.LogicNonShiftReg = LogicMIReg1; - MatchInfo.Shift2 = LogicMIOp2; - } else - return false; - - MatchInfo.ValSum = C0Val + C1Val; - - // The fold is not valid if the sum of the shift values exceeds bitwidth. - if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) - return false; - - MatchInfo.Logic = LogicMI; - return true; -} - -bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, - ShiftOfShiftedLogic &MatchInfo) { - unsigned Opcode = MI.getOpcode(); - assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || - Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || - Opcode == TargetOpcode::G_SSHLSAT) && - "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); - - LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); - LLT DestType = MRI.getType(MI.getOperand(0).getReg()); - Builder.setInstrAndDebugLoc(MI); - - Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); - - Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); - Register Shift1 = - Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); - - Register Shift2Const = MI.getOperand(2).getReg(); - Register Shift2 = Builder - .buildInstr(Opcode, {DestType}, - {MatchInfo.LogicNonShiftReg, Shift2Const}) - .getReg(0); - - Register Dest = MI.getOperand(0).getReg(); - Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); - - // These were one use so it's safe to remove them. - MatchInfo.Shift2->eraseFromParent(); - MatchInfo.Logic->eraseFromParent(); - - MI.eraseFromParent(); - return true; -} - +bool CombinerHelper::matchShiftImmedChain(MachineInstr &MI, + RegisterImmPair &MatchInfo) { + // We're trying to match the following pattern with any of + // G_SHL/G_ASHR/G_LSHR/G_SSHLSAT/G_USHLSAT shift instructions: + // %t1 = SHIFT %base, G_CONSTANT imm1 + // %root = SHIFT %t1, G_CONSTANT imm2 + // --> + // %root = SHIFT %base, G_CONSTANT (imm1 + imm2) + + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || + Opcode == TargetOpcode::G_USHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + + Register Shl2 = MI.getOperand(1).getReg(); + Register Imm1 = MI.getOperand(2).getReg(); + auto MaybeImmVal = getConstantVRegValWithLookThrough(Imm1, MRI); + if (!MaybeImmVal) + return false; + + MachineInstr *Shl2Def = MRI.getUniqueVRegDef(Shl2); + if (Shl2Def->getOpcode() != Opcode) + return false; + + Register Base = Shl2Def->getOperand(1).getReg(); + Register Imm2 = Shl2Def->getOperand(2).getReg(); + auto MaybeImm2Val = getConstantVRegValWithLookThrough(Imm2, MRI); + if (!MaybeImm2Val) + return false; + + // Pass the combined immediate to the apply function. + MatchInfo.Imm = + (MaybeImmVal->Value.getSExtValue() + MaybeImm2Val->Value).getSExtValue(); + MatchInfo.Reg = Base; + + // There is no simple replacement for a saturating unsigned left shift that + // exceeds the scalar size. + if (Opcode == TargetOpcode::G_USHLSAT && + MatchInfo.Imm >= MRI.getType(Shl2).getScalarSizeInBits()) + return false; + + return true; +} + +bool CombinerHelper::applyShiftImmedChain(MachineInstr &MI, + RegisterImmPair &MatchInfo) { + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_SSHLSAT || + Opcode == TargetOpcode::G_USHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_SSHLSAT or G_USHLSAT"); + + Builder.setInstrAndDebugLoc(MI); + LLT Ty = MRI.getType(MI.getOperand(1).getReg()); + unsigned const ScalarSizeInBits = Ty.getScalarSizeInBits(); + auto Imm = MatchInfo.Imm; + + if (Imm >= ScalarSizeInBits) { + // Any logical shift that exceeds scalar size will produce zero. + if (Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_LSHR) { + Builder.buildConstant(MI.getOperand(0), 0); + MI.eraseFromParent(); + return true; + } + // Arithmetic shift and saturating signed left shift have no effect beyond + // scalar size. + Imm = ScalarSizeInBits - 1; + } + + LLT ImmTy = MRI.getType(MI.getOperand(2).getReg()); + Register NewImm = Builder.buildConstant(ImmTy, Imm).getReg(0); + Observer.changingInstr(MI); + MI.getOperand(1).setReg(MatchInfo.Reg); + MI.getOperand(2).setReg(NewImm); + Observer.changedInstr(MI); + return true; +} + +bool CombinerHelper::matchShiftOfShiftedLogic(MachineInstr &MI, + ShiftOfShiftedLogic &MatchInfo) { + // We're trying to match the following pattern with any of + // G_SHL/G_ASHR/G_LSHR/G_USHLSAT/G_SSHLSAT shift instructions in combination + // with any of G_AND/G_OR/G_XOR logic instructions. + // %t1 = SHIFT %X, G_CONSTANT C0 + // %t2 = LOGIC %t1, %Y + // %root = SHIFT %t2, G_CONSTANT C1 + // --> + // %t3 = SHIFT %X, G_CONSTANT (C0+C1) + // %t4 = SHIFT %Y, G_CONSTANT C1 + // %root = LOGIC %t3, %t4 + unsigned ShiftOpcode = MI.getOpcode(); + assert((ShiftOpcode == TargetOpcode::G_SHL || + ShiftOpcode == TargetOpcode::G_ASHR || + ShiftOpcode == TargetOpcode::G_LSHR || + ShiftOpcode == TargetOpcode::G_USHLSAT || + ShiftOpcode == TargetOpcode::G_SSHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + + // Match a one-use bitwise logic op. + Register LogicDest = MI.getOperand(1).getReg(); + if (!MRI.hasOneNonDBGUse(LogicDest)) + return false; + + MachineInstr *LogicMI = MRI.getUniqueVRegDef(LogicDest); + unsigned LogicOpcode = LogicMI->getOpcode(); + if (LogicOpcode != TargetOpcode::G_AND && LogicOpcode != TargetOpcode::G_OR && + LogicOpcode != TargetOpcode::G_XOR) + return false; + + // Find a matching one-use shift by constant. + const Register C1 = MI.getOperand(2).getReg(); + auto MaybeImmVal = getConstantVRegValWithLookThrough(C1, MRI); + if (!MaybeImmVal) + return false; + + const uint64_t C1Val = MaybeImmVal->Value.getZExtValue(); + + auto matchFirstShift = [&](const MachineInstr *MI, uint64_t &ShiftVal) { + // Shift should match previous one and should be a one-use. + if (MI->getOpcode() != ShiftOpcode || + !MRI.hasOneNonDBGUse(MI->getOperand(0).getReg())) + return false; + + // Must be a constant. + auto MaybeImmVal = + getConstantVRegValWithLookThrough(MI->getOperand(2).getReg(), MRI); + if (!MaybeImmVal) + return false; + + ShiftVal = MaybeImmVal->Value.getSExtValue(); + return true; + }; + + // Logic ops are commutative, so check each operand for a match. + Register LogicMIReg1 = LogicMI->getOperand(1).getReg(); + MachineInstr *LogicMIOp1 = MRI.getUniqueVRegDef(LogicMIReg1); + Register LogicMIReg2 = LogicMI->getOperand(2).getReg(); + MachineInstr *LogicMIOp2 = MRI.getUniqueVRegDef(LogicMIReg2); + uint64_t C0Val; + + if (matchFirstShift(LogicMIOp1, C0Val)) { + MatchInfo.LogicNonShiftReg = LogicMIReg2; + MatchInfo.Shift2 = LogicMIOp1; + } else if (matchFirstShift(LogicMIOp2, C0Val)) { + MatchInfo.LogicNonShiftReg = LogicMIReg1; + MatchInfo.Shift2 = LogicMIOp2; + } else + return false; + + MatchInfo.ValSum = C0Val + C1Val; + + // The fold is not valid if the sum of the shift values exceeds bitwidth. + if (MatchInfo.ValSum >= MRI.getType(LogicDest).getScalarSizeInBits()) + return false; + + MatchInfo.Logic = LogicMI; + return true; +} + +bool CombinerHelper::applyShiftOfShiftedLogic(MachineInstr &MI, + ShiftOfShiftedLogic &MatchInfo) { + unsigned Opcode = MI.getOpcode(); + assert((Opcode == TargetOpcode::G_SHL || Opcode == TargetOpcode::G_ASHR || + Opcode == TargetOpcode::G_LSHR || Opcode == TargetOpcode::G_USHLSAT || + Opcode == TargetOpcode::G_SSHLSAT) && + "Expected G_SHL, G_ASHR, G_LSHR, G_USHLSAT and G_SSHLSAT"); + + LLT ShlType = MRI.getType(MI.getOperand(2).getReg()); + LLT DestType = MRI.getType(MI.getOperand(0).getReg()); + Builder.setInstrAndDebugLoc(MI); + + Register Const = Builder.buildConstant(ShlType, MatchInfo.ValSum).getReg(0); + + Register Shift1Base = MatchInfo.Shift2->getOperand(1).getReg(); + Register Shift1 = + Builder.buildInstr(Opcode, {DestType}, {Shift1Base, Const}).getReg(0); + + Register Shift2Const = MI.getOperand(2).getReg(); + Register Shift2 = Builder + .buildInstr(Opcode, {DestType}, + {MatchInfo.LogicNonShiftReg, Shift2Const}) + .getReg(0); + + Register Dest = MI.getOperand(0).getReg(); + Builder.buildInstr(MatchInfo.Logic->getOpcode(), {Dest}, {Shift1, Shift2}); + + // These were one use so it's safe to remove them. + MatchInfo.Shift2->eraseFromParent(); + MatchInfo.Logic->eraseFromParent(); + + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::matchCombineMulToShl(MachineInstr &MI, unsigned &ShiftVal) { assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); auto MaybeImmVal = getConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI); - if (!MaybeImmVal) + if (!MaybeImmVal) return false; - - ShiftVal = MaybeImmVal->Value.exactLogBase2(); - return (static_cast<int32_t>(ShiftVal) != -1); + + ShiftVal = MaybeImmVal->Value.exactLogBase2(); + return (static_cast<int32_t>(ShiftVal) != -1); } bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, @@ -1819,254 +1819,254 @@ bool CombinerHelper::applyCombineMulToShl(MachineInstr &MI, return true; } -// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source -bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, - RegisterImmPair &MatchData) { - assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); - - Register LHS = MI.getOperand(1).getReg(); - - Register ExtSrc; - if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && - !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && - !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) - return false; - - // TODO: Should handle vector splat. - Register RHS = MI.getOperand(2).getReg(); - auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); - if (!MaybeShiftAmtVal) - return false; - - if (LI) { - LLT SrcTy = MRI.getType(ExtSrc); - - // We only really care about the legality with the shifted value. We can - // pick any type the constant shift amount, so ask the target what to - // use. Otherwise we would have to guess and hope it is reported as legal. - LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); - if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) - return false; - } - - int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); - MatchData.Reg = ExtSrc; - MatchData.Imm = ShiftAmt; - - unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); - return MinLeadingZeros >= ShiftAmt; -} - -bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, - const RegisterImmPair &MatchData) { - Register ExtSrcReg = MatchData.Reg; - int64_t ShiftAmtVal = MatchData.Imm; - - LLT ExtSrcTy = MRI.getType(ExtSrcReg); - Builder.setInstrAndDebugLoc(MI); - auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); - auto NarrowShift = - Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); - Builder.buildZExt(MI.getOperand(0), NarrowShift); - MI.eraseFromParent(); - return true; -} - -static Register peekThroughBitcast(Register Reg, - const MachineRegisterInfo &MRI) { - while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) - ; - - return Reg; -} - -bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( - MachineInstr &MI, SmallVectorImpl<Register> &Operands) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - Register SrcReg = - peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); - - MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); - if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && - SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && - SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) - return false; - - // Check the source type of the merge. - LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); - LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); - bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); - if (SrcMergeTy != Dst0Ty && !SameSize) - return false; - // They are the same now (modulo a bitcast). - // We can collect all the src registers. - for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; - ++Idx) - Operands.push_back(SrcInstr->getOperand(Idx).getReg()); - return true; -} - -bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( - MachineInstr &MI, SmallVectorImpl<Register> &Operands) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - assert((MI.getNumOperands() - 1 == Operands.size()) && - "Not enough operands to replace all defs"); - unsigned NumElems = MI.getNumOperands() - 1; - - LLT SrcTy = MRI.getType(Operands[0]); - LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); - bool CanReuseInputDirectly = DstTy == SrcTy; - Builder.setInstrAndDebugLoc(MI); - for (unsigned Idx = 0; Idx < NumElems; ++Idx) { - Register DstReg = MI.getOperand(Idx).getReg(); - Register SrcReg = Operands[Idx]; - if (CanReuseInputDirectly) - replaceRegWith(MRI, DstReg, SrcReg); - else - Builder.buildCast(DstReg, SrcReg); - } - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, - SmallVectorImpl<APInt> &Csts) { - unsigned SrcIdx = MI.getNumOperands() - 1; - Register SrcReg = MI.getOperand(SrcIdx).getReg(); - MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); - if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && - SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) - return false; - // Break down the big constant in smaller ones. - const MachineOperand &CstVal = SrcInstr->getOperand(1); - APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT - ? CstVal.getCImm()->getValue() - : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); - - LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); - unsigned ShiftAmt = Dst0Ty.getSizeInBits(); - // Unmerge a constant. - for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { - Csts.emplace_back(Val.trunc(ShiftAmt)); - Val = Val.lshr(ShiftAmt); - } - - return true; -} - -bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, - SmallVectorImpl<APInt> &Csts) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - assert((MI.getNumOperands() - 1 == Csts.size()) && - "Not enough operands to replace all defs"); - unsigned NumElems = MI.getNumOperands() - 1; - Builder.setInstrAndDebugLoc(MI); - for (unsigned Idx = 0; Idx < NumElems; ++Idx) { - Register DstReg = MI.getOperand(Idx).getReg(); - Builder.buildConstant(DstReg, Csts[Idx]); - } - - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - // Check that all the lanes are dead except the first one. - for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { - if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) - return false; - } - return true; -} - -bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { - Builder.setInstrAndDebugLoc(MI); - Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); - // Truncating a vector is going to truncate every single lane, - // whereas we want the full lowbits. - // Do the operation on a scalar instead. - LLT SrcTy = MRI.getType(SrcReg); - if (SrcTy.isVector()) - SrcReg = - Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); - - Register Dst0Reg = MI.getOperand(0).getReg(); - LLT Dst0Ty = MRI.getType(Dst0Reg); - if (Dst0Ty.isVector()) { - auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); - Builder.buildCast(Dst0Reg, MIB); - } else - Builder.buildTrunc(Dst0Reg, SrcReg); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - Register Dst0Reg = MI.getOperand(0).getReg(); - LLT Dst0Ty = MRI.getType(Dst0Reg); - // G_ZEXT on vector applies to each lane, so it will - // affect all destinations. Therefore we won't be able - // to simplify the unmerge to just the first definition. - if (Dst0Ty.isVector()) - return false; - Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); - LLT SrcTy = MRI.getType(SrcReg); - if (SrcTy.isVector()) - return false; - - Register ZExtSrcReg; - if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) - return false; - - // Finally we can replace the first definition with - // a zext of the source if the definition is big enough to hold - // all of ZExtSrc bits. - LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); - return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); -} - -bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && - "Expected an unmerge"); - - Register Dst0Reg = MI.getOperand(0).getReg(); - - MachineInstr *ZExtInstr = - MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); - assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && - "Expecting a G_ZEXT"); - - Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); - LLT Dst0Ty = MRI.getType(Dst0Reg); - LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); - - Builder.setInstrAndDebugLoc(MI); - - if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { - Builder.buildZExt(Dst0Reg, ZExtSrcReg); - } else { - assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && - "ZExt src doesn't fit in destination"); - replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); - } - - Register ZeroReg; - for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { - if (!ZeroReg) - ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); - replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); - } - MI.eraseFromParent(); - return true; -} - +// shl ([sza]ext x), y => zext (shl x, y), if shift does not overflow source +bool CombinerHelper::matchCombineShlOfExtend(MachineInstr &MI, + RegisterImmPair &MatchData) { + assert(MI.getOpcode() == TargetOpcode::G_SHL && KB); + + Register LHS = MI.getOperand(1).getReg(); + + Register ExtSrc; + if (!mi_match(LHS, MRI, m_GAnyExt(m_Reg(ExtSrc))) && + !mi_match(LHS, MRI, m_GZExt(m_Reg(ExtSrc))) && + !mi_match(LHS, MRI, m_GSExt(m_Reg(ExtSrc)))) + return false; + + // TODO: Should handle vector splat. + Register RHS = MI.getOperand(2).getReg(); + auto MaybeShiftAmtVal = getConstantVRegValWithLookThrough(RHS, MRI); + if (!MaybeShiftAmtVal) + return false; + + if (LI) { + LLT SrcTy = MRI.getType(ExtSrc); + + // We only really care about the legality with the shifted value. We can + // pick any type the constant shift amount, so ask the target what to + // use. Otherwise we would have to guess and hope it is reported as legal. + LLT ShiftAmtTy = getTargetLowering().getPreferredShiftAmountTy(SrcTy); + if (!isLegalOrBeforeLegalizer({TargetOpcode::G_SHL, {SrcTy, ShiftAmtTy}})) + return false; + } + + int64_t ShiftAmt = MaybeShiftAmtVal->Value.getSExtValue(); + MatchData.Reg = ExtSrc; + MatchData.Imm = ShiftAmt; + + unsigned MinLeadingZeros = KB->getKnownZeroes(ExtSrc).countLeadingOnes(); + return MinLeadingZeros >= ShiftAmt; +} + +bool CombinerHelper::applyCombineShlOfExtend(MachineInstr &MI, + const RegisterImmPair &MatchData) { + Register ExtSrcReg = MatchData.Reg; + int64_t ShiftAmtVal = MatchData.Imm; + + LLT ExtSrcTy = MRI.getType(ExtSrcReg); + Builder.setInstrAndDebugLoc(MI); + auto ShiftAmt = Builder.buildConstant(ExtSrcTy, ShiftAmtVal); + auto NarrowShift = + Builder.buildShl(ExtSrcTy, ExtSrcReg, ShiftAmt, MI.getFlags()); + Builder.buildZExt(MI.getOperand(0), NarrowShift); + MI.eraseFromParent(); + return true; +} + +static Register peekThroughBitcast(Register Reg, + const MachineRegisterInfo &MRI) { + while (mi_match(Reg, MRI, m_GBitcast(m_Reg(Reg)))) + ; + + return Reg; +} + +bool CombinerHelper::matchCombineUnmergeMergeToPlainValues( + MachineInstr &MI, SmallVectorImpl<Register> &Operands) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + Register SrcReg = + peekThroughBitcast(MI.getOperand(MI.getNumOperands() - 1).getReg(), MRI); + + MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); + if (SrcInstr->getOpcode() != TargetOpcode::G_MERGE_VALUES && + SrcInstr->getOpcode() != TargetOpcode::G_BUILD_VECTOR && + SrcInstr->getOpcode() != TargetOpcode::G_CONCAT_VECTORS) + return false; + + // Check the source type of the merge. + LLT SrcMergeTy = MRI.getType(SrcInstr->getOperand(1).getReg()); + LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); + bool SameSize = Dst0Ty.getSizeInBits() == SrcMergeTy.getSizeInBits(); + if (SrcMergeTy != Dst0Ty && !SameSize) + return false; + // They are the same now (modulo a bitcast). + // We can collect all the src registers. + for (unsigned Idx = 1, EndIdx = SrcInstr->getNumOperands(); Idx != EndIdx; + ++Idx) + Operands.push_back(SrcInstr->getOperand(Idx).getReg()); + return true; +} + +bool CombinerHelper::applyCombineUnmergeMergeToPlainValues( + MachineInstr &MI, SmallVectorImpl<Register> &Operands) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + assert((MI.getNumOperands() - 1 == Operands.size()) && + "Not enough operands to replace all defs"); + unsigned NumElems = MI.getNumOperands() - 1; + + LLT SrcTy = MRI.getType(Operands[0]); + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + bool CanReuseInputDirectly = DstTy == SrcTy; + Builder.setInstrAndDebugLoc(MI); + for (unsigned Idx = 0; Idx < NumElems; ++Idx) { + Register DstReg = MI.getOperand(Idx).getReg(); + Register SrcReg = Operands[Idx]; + if (CanReuseInputDirectly) + replaceRegWith(MRI, DstReg, SrcReg); + else + Builder.buildCast(DstReg, SrcReg); + } + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineUnmergeConstant(MachineInstr &MI, + SmallVectorImpl<APInt> &Csts) { + unsigned SrcIdx = MI.getNumOperands() - 1; + Register SrcReg = MI.getOperand(SrcIdx).getReg(); + MachineInstr *SrcInstr = MRI.getVRegDef(SrcReg); + if (SrcInstr->getOpcode() != TargetOpcode::G_CONSTANT && + SrcInstr->getOpcode() != TargetOpcode::G_FCONSTANT) + return false; + // Break down the big constant in smaller ones. + const MachineOperand &CstVal = SrcInstr->getOperand(1); + APInt Val = SrcInstr->getOpcode() == TargetOpcode::G_CONSTANT + ? CstVal.getCImm()->getValue() + : CstVal.getFPImm()->getValueAPF().bitcastToAPInt(); + + LLT Dst0Ty = MRI.getType(MI.getOperand(0).getReg()); + unsigned ShiftAmt = Dst0Ty.getSizeInBits(); + // Unmerge a constant. + for (unsigned Idx = 0; Idx != SrcIdx; ++Idx) { + Csts.emplace_back(Val.trunc(ShiftAmt)); + Val = Val.lshr(ShiftAmt); + } + + return true; +} + +bool CombinerHelper::applyCombineUnmergeConstant(MachineInstr &MI, + SmallVectorImpl<APInt> &Csts) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + assert((MI.getNumOperands() - 1 == Csts.size()) && + "Not enough operands to replace all defs"); + unsigned NumElems = MI.getNumOperands() - 1; + Builder.setInstrAndDebugLoc(MI); + for (unsigned Idx = 0; Idx < NumElems; ++Idx) { + Register DstReg = MI.getOperand(Idx).getReg(); + Builder.buildConstant(DstReg, Csts[Idx]); + } + + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + // Check that all the lanes are dead except the first one. + for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { + if (!MRI.use_nodbg_empty(MI.getOperand(Idx).getReg())) + return false; + } + return true; +} + +bool CombinerHelper::applyCombineUnmergeWithDeadLanesToTrunc(MachineInstr &MI) { + Builder.setInstrAndDebugLoc(MI); + Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); + // Truncating a vector is going to truncate every single lane, + // whereas we want the full lowbits. + // Do the operation on a scalar instead. + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + SrcReg = + Builder.buildCast(LLT::scalar(SrcTy.getSizeInBits()), SrcReg).getReg(0); + + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + if (Dst0Ty.isVector()) { + auto MIB = Builder.buildTrunc(LLT::scalar(Dst0Ty.getSizeInBits()), SrcReg); + Builder.buildCast(Dst0Reg, MIB); + } else + Builder.buildTrunc(Dst0Reg, SrcReg); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineUnmergeZExtToZExt(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + Register Dst0Reg = MI.getOperand(0).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + // G_ZEXT on vector applies to each lane, so it will + // affect all destinations. Therefore we won't be able + // to simplify the unmerge to just the first definition. + if (Dst0Ty.isVector()) + return false; + Register SrcReg = MI.getOperand(MI.getNumDefs()).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + if (SrcTy.isVector()) + return false; + + Register ZExtSrcReg; + if (!mi_match(SrcReg, MRI, m_GZExt(m_Reg(ZExtSrcReg)))) + return false; + + // Finally we can replace the first definition with + // a zext of the source if the definition is big enough to hold + // all of ZExtSrc bits. + LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); + return ZExtSrcTy.getSizeInBits() <= Dst0Ty.getSizeInBits(); +} + +bool CombinerHelper::applyCombineUnmergeZExtToZExt(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && + "Expected an unmerge"); + + Register Dst0Reg = MI.getOperand(0).getReg(); + + MachineInstr *ZExtInstr = + MRI.getVRegDef(MI.getOperand(MI.getNumDefs()).getReg()); + assert(ZExtInstr && ZExtInstr->getOpcode() == TargetOpcode::G_ZEXT && + "Expecting a G_ZEXT"); + + Register ZExtSrcReg = ZExtInstr->getOperand(1).getReg(); + LLT Dst0Ty = MRI.getType(Dst0Reg); + LLT ZExtSrcTy = MRI.getType(ZExtSrcReg); + + Builder.setInstrAndDebugLoc(MI); + + if (Dst0Ty.getSizeInBits() > ZExtSrcTy.getSizeInBits()) { + Builder.buildZExt(Dst0Reg, ZExtSrcReg); + } else { + assert(Dst0Ty.getSizeInBits() == ZExtSrcTy.getSizeInBits() && + "ZExt src doesn't fit in destination"); + replaceRegWith(MRI, Dst0Reg, ZExtSrcReg); + } + + Register ZeroReg; + for (unsigned Idx = 1, EndIdx = MI.getNumDefs(); Idx != EndIdx; ++Idx) { + if (!ZeroReg) + ZeroReg = Builder.buildConstant(Dst0Ty, 0).getReg(0); + replaceRegWith(MRI, MI.getOperand(Idx).getReg(), ZeroReg); + } + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, unsigned TargetShiftSize, unsigned &ShiftVal) { @@ -2088,7 +2088,7 @@ bool CombinerHelper::matchCombineShiftToUnmerge(MachineInstr &MI, if (!MaybeImmVal) return false; - ShiftVal = MaybeImmVal->Value.getSExtValue(); + ShiftVal = MaybeImmVal->Value.getSExtValue(); return ShiftVal >= Size / 2 && ShiftVal < Size; } @@ -2177,296 +2177,296 @@ bool CombinerHelper::tryCombineShiftToUnmerge(MachineInstr &MI, return false; } -bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); - Register DstReg = MI.getOperand(0).getReg(); - LLT DstTy = MRI.getType(DstReg); - Register SrcReg = MI.getOperand(1).getReg(); - return mi_match(SrcReg, MRI, - m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); -} - -bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); - Register DstReg = MI.getOperand(0).getReg(); - Builder.setInstr(MI); - Builder.buildCopy(DstReg, Reg); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); - Register SrcReg = MI.getOperand(1).getReg(); - return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); -} - -bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); - Register DstReg = MI.getOperand(0).getReg(); - Builder.setInstr(MI); - Builder.buildZExtOrTrunc(DstReg, Reg); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineAddP2IToPtrAdd( - MachineInstr &MI, std::pair<Register, bool> &PtrReg) { - assert(MI.getOpcode() == TargetOpcode::G_ADD); - Register LHS = MI.getOperand(1).getReg(); - Register RHS = MI.getOperand(2).getReg(); - LLT IntTy = MRI.getType(LHS); - - // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the - // instruction. - PtrReg.second = false; - for (Register SrcReg : {LHS, RHS}) { - if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { - // Don't handle cases where the integer is implicitly converted to the - // pointer width. - LLT PtrTy = MRI.getType(PtrReg.first); - if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) - return true; - } - - PtrReg.second = true; - } - - return false; -} - -bool CombinerHelper::applyCombineAddP2IToPtrAdd( - MachineInstr &MI, std::pair<Register, bool> &PtrReg) { - Register Dst = MI.getOperand(0).getReg(); - Register LHS = MI.getOperand(1).getReg(); - Register RHS = MI.getOperand(2).getReg(); - - const bool DoCommute = PtrReg.second; - if (DoCommute) - std::swap(LHS, RHS); - LHS = PtrReg.first; - - LLT PtrTy = MRI.getType(LHS); - - Builder.setInstrAndDebugLoc(MI); - auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); - Builder.buildPtrToInt(Dst, PtrAdd); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, - int64_t &NewCst) { - assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); - Register LHS = MI.getOperand(1).getReg(); - Register RHS = MI.getOperand(2).getReg(); - MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); - - if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { - int64_t Cst; - if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { - NewCst = Cst + *RHSCst; - return true; - } - } - - return false; -} - -bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, - int64_t &NewCst) { - assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); - Register Dst = MI.getOperand(0).getReg(); - - Builder.setInstrAndDebugLoc(MI); - Builder.buildConstant(Dst, NewCst); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); - Register DstReg = MI.getOperand(0).getReg(); - Register SrcReg = MI.getOperand(1).getReg(); - LLT DstTy = MRI.getType(DstReg); - return mi_match(SrcReg, MRI, - m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); -} - -bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); - Register DstReg = MI.getOperand(0).getReg(); - MI.eraseFromParent(); - replaceRegWith(MRI, DstReg, Reg); - return true; -} - -bool CombinerHelper::matchCombineExtOfExt( - MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { - assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || - MI.getOpcode() == TargetOpcode::G_SEXT || - MI.getOpcode() == TargetOpcode::G_ZEXT) && - "Expected a G_[ASZ]EXT"); - Register SrcReg = MI.getOperand(1).getReg(); - MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); - // Match exts with the same opcode, anyext([sz]ext) and sext(zext). - unsigned Opc = MI.getOpcode(); - unsigned SrcOpc = SrcMI->getOpcode(); - if (Opc == SrcOpc || - (Opc == TargetOpcode::G_ANYEXT && - (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || - (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { - MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); - return true; - } - return false; -} - -bool CombinerHelper::applyCombineExtOfExt( - MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { - assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || - MI.getOpcode() == TargetOpcode::G_SEXT || - MI.getOpcode() == TargetOpcode::G_ZEXT) && - "Expected a G_[ASZ]EXT"); - - Register Reg = std::get<0>(MatchInfo); - unsigned SrcExtOp = std::get<1>(MatchInfo); - - // Combine exts with the same opcode. - if (MI.getOpcode() == SrcExtOp) { - Observer.changingInstr(MI); - MI.getOperand(1).setReg(Reg); - Observer.changedInstr(MI); - return true; - } - - // Combine: - // - anyext([sz]ext x) to [sz]ext x - // - sext(zext x) to zext x - if (MI.getOpcode() == TargetOpcode::G_ANYEXT || - (MI.getOpcode() == TargetOpcode::G_SEXT && - SrcExtOp == TargetOpcode::G_ZEXT)) { - Register DstReg = MI.getOperand(0).getReg(); - Builder.setInstrAndDebugLoc(MI); - Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); - MI.eraseFromParent(); - return true; - } - - return false; -} - -bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); - Register DstReg = MI.getOperand(0).getReg(); - Register SrcReg = MI.getOperand(1).getReg(); - LLT DstTy = MRI.getType(DstReg); - - Builder.setInstrAndDebugLoc(MI); - Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, - MI.getFlags()); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { - assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); - Register SrcReg = MI.getOperand(1).getReg(); - return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); -} - -bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { - assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); - Src = MI.getOperand(1).getReg(); - Register AbsSrc; - return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); -} - -bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { - assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); - Register Dst = MI.getOperand(0).getReg(); - MI.eraseFromParent(); - replaceRegWith(MRI, Dst, Src); - return true; -} - -bool CombinerHelper::matchCombineTruncOfExt( - MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); - Register SrcReg = MI.getOperand(1).getReg(); - MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); - unsigned SrcOpc = SrcMI->getOpcode(); - if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || - SrcOpc == TargetOpcode::G_ZEXT) { - MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); - return true; - } - return false; -} - -bool CombinerHelper::applyCombineTruncOfExt( - MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); - Register SrcReg = MatchInfo.first; - unsigned SrcExtOp = MatchInfo.second; - Register DstReg = MI.getOperand(0).getReg(); - LLT SrcTy = MRI.getType(SrcReg); - LLT DstTy = MRI.getType(DstReg); - if (SrcTy == DstTy) { - MI.eraseFromParent(); - replaceRegWith(MRI, DstReg, SrcReg); - return true; - } - Builder.setInstrAndDebugLoc(MI); - if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) - Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); - else - Builder.buildTrunc(DstReg, SrcReg); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchCombineTruncOfShl( - MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); - Register DstReg = MI.getOperand(0).getReg(); - Register SrcReg = MI.getOperand(1).getReg(); - LLT DstTy = MRI.getType(DstReg); - Register ShiftSrc; - Register ShiftAmt; - - if (MRI.hasOneNonDBGUse(SrcReg) && - mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && - isLegalOrBeforeLegalizer( - {TargetOpcode::G_SHL, - {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { - KnownBits Known = KB->getKnownBits(ShiftAmt); - unsigned Size = DstTy.getSizeInBits(); - if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { - MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); - return true; - } - } - return false; -} - -bool CombinerHelper::applyCombineTruncOfShl( - MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); - Register DstReg = MI.getOperand(0).getReg(); - Register SrcReg = MI.getOperand(1).getReg(); - LLT DstTy = MRI.getType(DstReg); - MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); - - Register ShiftSrc = MatchInfo.first; - Register ShiftAmt = MatchInfo.second; - Builder.setInstrAndDebugLoc(MI); - auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); - Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); - MI.eraseFromParent(); - return true; -} - +bool CombinerHelper::matchCombineI2PToP2I(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + Register SrcReg = MI.getOperand(1).getReg(); + return mi_match(SrcReg, MRI, + m_GPtrToInt(m_all_of(m_SpecificType(DstTy), m_Reg(Reg)))); +} + +bool CombinerHelper::applyCombineI2PToP2I(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_INTTOPTR && "Expected a G_INTTOPTR"); + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstr(MI); + Builder.buildCopy(DstReg, Reg); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineP2IToI2P(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); + Register SrcReg = MI.getOperand(1).getReg(); + return mi_match(SrcReg, MRI, m_GIntToPtr(m_Reg(Reg))); +} + +bool CombinerHelper::applyCombineP2IToI2P(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_PTRTOINT && "Expected a G_PTRTOINT"); + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstr(MI); + Builder.buildZExtOrTrunc(DstReg, Reg); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineAddP2IToPtrAdd( + MachineInstr &MI, std::pair<Register, bool> &PtrReg) { + assert(MI.getOpcode() == TargetOpcode::G_ADD); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + LLT IntTy = MRI.getType(LHS); + + // G_PTR_ADD always has the pointer in the LHS, so we may need to commute the + // instruction. + PtrReg.second = false; + for (Register SrcReg : {LHS, RHS}) { + if (mi_match(SrcReg, MRI, m_GPtrToInt(m_Reg(PtrReg.first)))) { + // Don't handle cases where the integer is implicitly converted to the + // pointer width. + LLT PtrTy = MRI.getType(PtrReg.first); + if (PtrTy.getScalarSizeInBits() == IntTy.getScalarSizeInBits()) + return true; + } + + PtrReg.second = true; + } + + return false; +} + +bool CombinerHelper::applyCombineAddP2IToPtrAdd( + MachineInstr &MI, std::pair<Register, bool> &PtrReg) { + Register Dst = MI.getOperand(0).getReg(); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + + const bool DoCommute = PtrReg.second; + if (DoCommute) + std::swap(LHS, RHS); + LHS = PtrReg.first; + + LLT PtrTy = MRI.getType(LHS); + + Builder.setInstrAndDebugLoc(MI); + auto PtrAdd = Builder.buildPtrAdd(PtrTy, LHS, RHS); + Builder.buildPtrToInt(Dst, PtrAdd); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineConstPtrAddToI2P(MachineInstr &MI, + int64_t &NewCst) { + assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + MachineRegisterInfo &MRI = Builder.getMF().getRegInfo(); + + if (auto RHSCst = getConstantVRegSExtVal(RHS, MRI)) { + int64_t Cst; + if (mi_match(LHS, MRI, m_GIntToPtr(m_ICst(Cst)))) { + NewCst = Cst + *RHSCst; + return true; + } + } + + return false; +} + +bool CombinerHelper::applyCombineConstPtrAddToI2P(MachineInstr &MI, + int64_t &NewCst) { + assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD && "Expected a G_PTR_ADD"); + Register Dst = MI.getOperand(0).getReg(); + + Builder.setInstrAndDebugLoc(MI); + Builder.buildConstant(Dst, NewCst); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + return mi_match(SrcReg, MRI, + m_GTrunc(m_all_of(m_Reg(Reg), m_SpecificType(DstTy)))); +} + +bool CombinerHelper::applyCombineAnyExtTrunc(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_ANYEXT && "Expected a G_ANYEXT"); + Register DstReg = MI.getOperand(0).getReg(); + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, Reg); + return true; +} + +bool CombinerHelper::matchCombineExtOfExt( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || + MI.getOpcode() == TargetOpcode::G_SEXT || + MI.getOpcode() == TargetOpcode::G_ZEXT) && + "Expected a G_[ASZ]EXT"); + Register SrcReg = MI.getOperand(1).getReg(); + MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); + // Match exts with the same opcode, anyext([sz]ext) and sext(zext). + unsigned Opc = MI.getOpcode(); + unsigned SrcOpc = SrcMI->getOpcode(); + if (Opc == SrcOpc || + (Opc == TargetOpcode::G_ANYEXT && + (SrcOpc == TargetOpcode::G_SEXT || SrcOpc == TargetOpcode::G_ZEXT)) || + (Opc == TargetOpcode::G_SEXT && SrcOpc == TargetOpcode::G_ZEXT)) { + MatchInfo = std::make_tuple(SrcMI->getOperand(1).getReg(), SrcOpc); + return true; + } + return false; +} + +bool CombinerHelper::applyCombineExtOfExt( + MachineInstr &MI, std::tuple<Register, unsigned> &MatchInfo) { + assert((MI.getOpcode() == TargetOpcode::G_ANYEXT || + MI.getOpcode() == TargetOpcode::G_SEXT || + MI.getOpcode() == TargetOpcode::G_ZEXT) && + "Expected a G_[ASZ]EXT"); + + Register Reg = std::get<0>(MatchInfo); + unsigned SrcExtOp = std::get<1>(MatchInfo); + + // Combine exts with the same opcode. + if (MI.getOpcode() == SrcExtOp) { + Observer.changingInstr(MI); + MI.getOperand(1).setReg(Reg); + Observer.changedInstr(MI); + return true; + } + + // Combine: + // - anyext([sz]ext x) to [sz]ext x + // - sext(zext x) to zext x + if (MI.getOpcode() == TargetOpcode::G_ANYEXT || + (MI.getOpcode() == TargetOpcode::G_SEXT && + SrcExtOp == TargetOpcode::G_ZEXT)) { + Register DstReg = MI.getOperand(0).getReg(); + Builder.setInstrAndDebugLoc(MI); + Builder.buildInstr(SrcExtOp, {DstReg}, {Reg}); + MI.eraseFromParent(); + return true; + } + + return false; +} + +bool CombinerHelper::applyCombineMulByNegativeOne(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_MUL && "Expected a G_MUL"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + + Builder.setInstrAndDebugLoc(MI); + Builder.buildSub(DstReg, Builder.buildConstant(DstTy, 0), SrcReg, + MI.getFlags()); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineFNegOfFNeg(MachineInstr &MI, Register &Reg) { + assert(MI.getOpcode() == TargetOpcode::G_FNEG && "Expected a G_FNEG"); + Register SrcReg = MI.getOperand(1).getReg(); + return mi_match(SrcReg, MRI, m_GFNeg(m_Reg(Reg))); +} + +bool CombinerHelper::matchCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { + assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); + Src = MI.getOperand(1).getReg(); + Register AbsSrc; + return mi_match(Src, MRI, m_GFabs(m_Reg(AbsSrc))); +} + +bool CombinerHelper::applyCombineFAbsOfFAbs(MachineInstr &MI, Register &Src) { + assert(MI.getOpcode() == TargetOpcode::G_FABS && "Expected a G_FABS"); + Register Dst = MI.getOperand(0).getReg(); + MI.eraseFromParent(); + replaceRegWith(MRI, Dst, Src); + return true; +} + +bool CombinerHelper::matchCombineTruncOfExt( + MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register SrcReg = MI.getOperand(1).getReg(); + MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); + unsigned SrcOpc = SrcMI->getOpcode(); + if (SrcOpc == TargetOpcode::G_ANYEXT || SrcOpc == TargetOpcode::G_SEXT || + SrcOpc == TargetOpcode::G_ZEXT) { + MatchInfo = std::make_pair(SrcMI->getOperand(1).getReg(), SrcOpc); + return true; + } + return false; +} + +bool CombinerHelper::applyCombineTruncOfExt( + MachineInstr &MI, std::pair<Register, unsigned> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register SrcReg = MatchInfo.first; + unsigned SrcExtOp = MatchInfo.second; + Register DstReg = MI.getOperand(0).getReg(); + LLT SrcTy = MRI.getType(SrcReg); + LLT DstTy = MRI.getType(DstReg); + if (SrcTy == DstTy) { + MI.eraseFromParent(); + replaceRegWith(MRI, DstReg, SrcReg); + return true; + } + Builder.setInstrAndDebugLoc(MI); + if (SrcTy.getSizeInBits() < DstTy.getSizeInBits()) + Builder.buildInstr(SrcExtOp, {DstReg}, {SrcReg}); + else + Builder.buildTrunc(DstReg, SrcReg); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchCombineTruncOfShl( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + Register ShiftSrc; + Register ShiftAmt; + + if (MRI.hasOneNonDBGUse(SrcReg) && + mi_match(SrcReg, MRI, m_GShl(m_Reg(ShiftSrc), m_Reg(ShiftAmt))) && + isLegalOrBeforeLegalizer( + {TargetOpcode::G_SHL, + {DstTy, getTargetLowering().getPreferredShiftAmountTy(DstTy)}})) { + KnownBits Known = KB->getKnownBits(ShiftAmt); + unsigned Size = DstTy.getSizeInBits(); + if (Known.getBitWidth() - Known.countMinLeadingZeros() <= Log2_32(Size)) { + MatchInfo = std::make_pair(ShiftSrc, ShiftAmt); + return true; + } + } + return false; +} + +bool CombinerHelper::applyCombineTruncOfShl( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_TRUNC && "Expected a G_TRUNC"); + Register DstReg = MI.getOperand(0).getReg(); + Register SrcReg = MI.getOperand(1).getReg(); + LLT DstTy = MRI.getType(DstReg); + MachineInstr *SrcMI = MRI.getVRegDef(SrcReg); + + Register ShiftSrc = MatchInfo.first; + Register ShiftAmt = MatchInfo.second; + Builder.setInstrAndDebugLoc(MI); + auto TruncShiftSrc = Builder.buildTrunc(DstTy, ShiftSrc); + Builder.buildShl(DstReg, TruncShiftSrc, ShiftAmt, SrcMI->getFlags()); + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::matchAnyExplicitUseIsUndef(MachineInstr &MI) { return any_of(MI.explicit_uses(), [this](const MachineOperand &MO) { return MO.isReg() && @@ -2493,22 +2493,22 @@ bool CombinerHelper::matchUndefStore(MachineInstr &MI) { MRI); } -bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_SELECT); - return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), - MRI); -} - -bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { - assert(MI.getOpcode() == TargetOpcode::G_SELECT); - if (auto MaybeCstCmp = - getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { - OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; - return true; - } - return false; -} - +bool CombinerHelper::matchUndefSelectCmp(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_SELECT); + return getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MI.getOperand(1).getReg(), + MRI); +} + +bool CombinerHelper::matchConstantSelectCmp(MachineInstr &MI, unsigned &OpIdx) { + assert(MI.getOpcode() == TargetOpcode::G_SELECT); + if (auto MaybeCstCmp = + getConstantVRegValWithLookThrough(MI.getOperand(1).getReg(), MRI)) { + OpIdx = MaybeCstCmp->Value.isNullValue() ? 3 : 2; + return true; + } + return false; +} + bool CombinerHelper::eraseInst(MachineInstr &MI) { MI.eraseFromParent(); return true; @@ -2605,16 +2605,16 @@ bool CombinerHelper::replaceSingleDefInstWithOperand(MachineInstr &MI, return true; } -bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, - Register Replacement) { - assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); - Register OldReg = MI.getOperand(0).getReg(); - assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); - MI.eraseFromParent(); - replaceRegWith(MRI, OldReg, Replacement); - return true; -} - +bool CombinerHelper::replaceSingleDefInstWithReg(MachineInstr &MI, + Register Replacement) { + assert(MI.getNumExplicitDefs() == 1 && "Expected one explicit def?"); + Register OldReg = MI.getOperand(0).getReg(); + assert(canReplaceReg(OldReg, Replacement, MRI) && "Cannot replace register?"); + MI.eraseFromParent(); + replaceRegWith(MRI, OldReg, Replacement); + return true; +} + bool CombinerHelper::matchSelectSameVal(MachineInstr &MI) { assert(MI.getOpcode() == TargetOpcode::G_SELECT); // Match (cond ? x : x) @@ -2635,18 +2635,18 @@ bool CombinerHelper::matchOperandIsZero(MachineInstr &MI, unsigned OpIdx) { MRI); } -bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { - MachineOperand &MO = MI.getOperand(OpIdx); - return MO.isReg() && - getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); -} - -bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, - unsigned OpIdx) { - MachineOperand &MO = MI.getOperand(OpIdx); - return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); -} - +bool CombinerHelper::matchOperandIsUndef(MachineInstr &MI, unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + return MO.isReg() && + getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, MO.getReg(), MRI); +} + +bool CombinerHelper::matchOperandIsKnownToBeAPowerOfTwo(MachineInstr &MI, + unsigned OpIdx) { + MachineOperand &MO = MI.getOperand(OpIdx); + return isKnownToBeAPowerOfTwo(MO.getReg(), MRI, KB); +} + bool CombinerHelper::replaceInstWithFConstant(MachineInstr &MI, double C) { assert(MI.getNumDefs() == 1 && "Expected only one def?"); Builder.setInstr(MI); @@ -2682,7 +2682,7 @@ bool CombinerHelper::matchSimplifyAddToSub( // ((0-A) + B) -> B - A // (A + (0-B)) -> A - B auto CheckFold = [&](Register &MaybeSub, Register &MaybeNewLHS) { - if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) + if (!mi_match(MaybeSub, MRI, m_Neg(m_Reg(NewRHS)))) return false; NewLHS = MaybeNewLHS; return true; @@ -2691,67 +2691,67 @@ bool CombinerHelper::matchSimplifyAddToSub( return CheckFold(LHS, RHS) || CheckFold(RHS, LHS); } -bool CombinerHelper::matchCombineInsertVecElts( - MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && - "Invalid opcode"); - Register DstReg = MI.getOperand(0).getReg(); - LLT DstTy = MRI.getType(DstReg); - assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); - unsigned NumElts = DstTy.getNumElements(); - // If this MI is part of a sequence of insert_vec_elts, then - // don't do the combine in the middle of the sequence. - if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == - TargetOpcode::G_INSERT_VECTOR_ELT) - return false; - MachineInstr *CurrInst = &MI; - MachineInstr *TmpInst; - int64_t IntImm; - Register TmpReg; - MatchInfo.resize(NumElts); - while (mi_match( - CurrInst->getOperand(0).getReg(), MRI, - m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { - if (IntImm >= NumElts) - return false; - if (!MatchInfo[IntImm]) - MatchInfo[IntImm] = TmpReg; - CurrInst = TmpInst; - } - // Variable index. - if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) - return false; - if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { - for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { - if (!MatchInfo[I - 1].isValid()) - MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); - } - return true; - } - // If we didn't end in a G_IMPLICIT_DEF, bail out. - return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; -} - -bool CombinerHelper::applyCombineInsertVecElts( - MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { - Builder.setInstr(MI); - Register UndefReg; - auto GetUndef = [&]() { - if (UndefReg) - return UndefReg; - LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); - UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); - return UndefReg; - }; - for (unsigned I = 0; I < MatchInfo.size(); ++I) { - if (!MatchInfo[I]) - MatchInfo[I] = GetUndef(); - } - Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); - MI.eraseFromParent(); - return true; -} - +bool CombinerHelper::matchCombineInsertVecElts( + MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT && + "Invalid opcode"); + Register DstReg = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(DstReg); + assert(DstTy.isVector() && "Invalid G_INSERT_VECTOR_ELT?"); + unsigned NumElts = DstTy.getNumElements(); + // If this MI is part of a sequence of insert_vec_elts, then + // don't do the combine in the middle of the sequence. + if (MRI.hasOneUse(DstReg) && MRI.use_instr_begin(DstReg)->getOpcode() == + TargetOpcode::G_INSERT_VECTOR_ELT) + return false; + MachineInstr *CurrInst = &MI; + MachineInstr *TmpInst; + int64_t IntImm; + Register TmpReg; + MatchInfo.resize(NumElts); + while (mi_match( + CurrInst->getOperand(0).getReg(), MRI, + m_GInsertVecElt(m_MInstr(TmpInst), m_Reg(TmpReg), m_ICst(IntImm)))) { + if (IntImm >= NumElts) + return false; + if (!MatchInfo[IntImm]) + MatchInfo[IntImm] = TmpReg; + CurrInst = TmpInst; + } + // Variable index. + if (CurrInst->getOpcode() == TargetOpcode::G_INSERT_VECTOR_ELT) + return false; + if (TmpInst->getOpcode() == TargetOpcode::G_BUILD_VECTOR) { + for (unsigned I = 1; I < TmpInst->getNumOperands(); ++I) { + if (!MatchInfo[I - 1].isValid()) + MatchInfo[I - 1] = TmpInst->getOperand(I).getReg(); + } + return true; + } + // If we didn't end in a G_IMPLICIT_DEF, bail out. + return TmpInst->getOpcode() == TargetOpcode::G_IMPLICIT_DEF; +} + +bool CombinerHelper::applyCombineInsertVecElts( + MachineInstr &MI, SmallVectorImpl<Register> &MatchInfo) { + Builder.setInstr(MI); + Register UndefReg; + auto GetUndef = [&]() { + if (UndefReg) + return UndefReg; + LLT DstTy = MRI.getType(MI.getOperand(0).getReg()); + UndefReg = Builder.buildUndef(DstTy.getScalarType()).getReg(0); + return UndefReg; + }; + for (unsigned I = 0; I < MatchInfo.size(); ++I) { + if (!MatchInfo[I]) + MatchInfo[I] = GetUndef(); + } + Builder.buildBuildVector(MI.getOperand(0).getReg(), MatchInfo); + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::applySimplifyAddToSub( MachineInstr &MI, std::tuple<Register, Register> &MatchInfo) { Builder.setInstr(MI); @@ -2762,812 +2762,812 @@ bool CombinerHelper::applySimplifyAddToSub( return true; } -bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( - MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { - // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... - // - // Creates the new hand + logic instruction (but does not insert them.) - // - // On success, MatchInfo is populated with the new instructions. These are - // inserted in applyHoistLogicOpWithSameOpcodeHands. - unsigned LogicOpcode = MI.getOpcode(); - assert(LogicOpcode == TargetOpcode::G_AND || - LogicOpcode == TargetOpcode::G_OR || - LogicOpcode == TargetOpcode::G_XOR); - MachineIRBuilder MIB(MI); - Register Dst = MI.getOperand(0).getReg(); - Register LHSReg = MI.getOperand(1).getReg(); - Register RHSReg = MI.getOperand(2).getReg(); - - // Don't recompute anything. - if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) - return false; - - // Make sure we have (hand x, ...), (hand y, ...) - MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); - MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); - if (!LeftHandInst || !RightHandInst) - return false; - unsigned HandOpcode = LeftHandInst->getOpcode(); - if (HandOpcode != RightHandInst->getOpcode()) - return false; - if (!LeftHandInst->getOperand(1).isReg() || - !RightHandInst->getOperand(1).isReg()) - return false; - - // Make sure the types match up, and if we're doing this post-legalization, - // we end up with legal types. - Register X = LeftHandInst->getOperand(1).getReg(); - Register Y = RightHandInst->getOperand(1).getReg(); - LLT XTy = MRI.getType(X); - LLT YTy = MRI.getType(Y); - if (XTy != YTy) - return false; - if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) - return false; - - // Optional extra source register. - Register ExtraHandOpSrcReg; - switch (HandOpcode) { - default: - return false; - case TargetOpcode::G_ANYEXT: - case TargetOpcode::G_SEXT: - case TargetOpcode::G_ZEXT: { - // Match: logic (ext X), (ext Y) --> ext (logic X, Y) - break; - } - case TargetOpcode::G_AND: - case TargetOpcode::G_ASHR: - case TargetOpcode::G_LSHR: - case TargetOpcode::G_SHL: { - // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z - MachineOperand &ZOp = LeftHandInst->getOperand(2); - if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) - return false; - ExtraHandOpSrcReg = ZOp.getReg(); - break; - } - } - - // Record the steps to build the new instructions. - // - // Steps to build (logic x, y) - auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); - OperandBuildSteps LogicBuildSteps = { - [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, - [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, - [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; - InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); - - // Steps to build hand (logic x, y), ...z - OperandBuildSteps HandBuildSteps = { - [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, - [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; - if (ExtraHandOpSrcReg.isValid()) - HandBuildSteps.push_back( - [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); - InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); - - MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); - return true; -} - -bool CombinerHelper::applyBuildInstructionSteps( - MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { - assert(MatchInfo.InstrsToBuild.size() && - "Expected at least one instr to build?"); - Builder.setInstr(MI); - for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { - assert(InstrToBuild.Opcode && "Expected a valid opcode?"); - assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); - MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); - for (auto &OperandFn : InstrToBuild.OperandFns) - OperandFn(Instr); - } - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchAshrShlToSextInreg( - MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_ASHR); - int64_t ShlCst, AshrCst; - Register Src; - // FIXME: detect splat constant vectors. - if (!mi_match(MI.getOperand(0).getReg(), MRI, - m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) - return false; - if (ShlCst != AshrCst) - return false; - if (!isLegalOrBeforeLegalizer( - {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) - return false; - MatchInfo = std::make_tuple(Src, ShlCst); - return true; -} -bool CombinerHelper::applyAshShlToSextInreg( - MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_ASHR); - Register Src; - int64_t ShiftAmt; - std::tie(Src, ShiftAmt) = MatchInfo; - unsigned Size = MRI.getType(Src).getScalarSizeInBits(); - Builder.setInstrAndDebugLoc(MI); - Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, - Register &Replacement) { - // Given - // - // %y:_(sN) = G_SOMETHING - // %x:_(sN) = G_SOMETHING - // %res:_(sN) = G_AND %x, %y - // - // Eliminate the G_AND when it is known that x & y == x or x & y == y. - // - // Patterns like this can appear as a result of legalization. E.g. - // - // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y - // %one:_(s32) = G_CONSTANT i32 1 - // %and:_(s32) = G_AND %cmp, %one - // - // In this case, G_ICMP only produces a single bit, so x & 1 == x. - assert(MI.getOpcode() == TargetOpcode::G_AND); - if (!KB) - return false; - - Register AndDst = MI.getOperand(0).getReg(); - LLT DstTy = MRI.getType(AndDst); - - // FIXME: This should be removed once GISelKnownBits supports vectors. - if (DstTy.isVector()) - return false; - - Register LHS = MI.getOperand(1).getReg(); - Register RHS = MI.getOperand(2).getReg(); - KnownBits LHSBits = KB->getKnownBits(LHS); - KnownBits RHSBits = KB->getKnownBits(RHS); - - // Check that x & Mask == x. - // x & 1 == x, always - // x & 0 == x, only if x is also 0 - // Meaning Mask has no effect if every bit is either one in Mask or zero in x. - // - // Check if we can replace AndDst with the LHS of the G_AND - if (canReplaceReg(AndDst, LHS, MRI) && - (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { - Replacement = LHS; - return true; - } - - // Check if we can replace AndDst with the RHS of the G_AND - if (canReplaceReg(AndDst, RHS, MRI) && - (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { - Replacement = RHS; - return true; - } - - return false; -} - -bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { - // Given - // - // %y:_(sN) = G_SOMETHING - // %x:_(sN) = G_SOMETHING - // %res:_(sN) = G_OR %x, %y - // - // Eliminate the G_OR when it is known that x | y == x or x | y == y. - assert(MI.getOpcode() == TargetOpcode::G_OR); - if (!KB) - return false; - - Register OrDst = MI.getOperand(0).getReg(); - LLT DstTy = MRI.getType(OrDst); - - // FIXME: This should be removed once GISelKnownBits supports vectors. - if (DstTy.isVector()) - return false; - - Register LHS = MI.getOperand(1).getReg(); - Register RHS = MI.getOperand(2).getReg(); - KnownBits LHSBits = KB->getKnownBits(LHS); - KnownBits RHSBits = KB->getKnownBits(RHS); - - // Check that x | Mask == x. - // x | 0 == x, always - // x | 1 == x, only if x is also 1 - // Meaning Mask has no effect if every bit is either zero in Mask or one in x. - // - // Check if we can replace OrDst with the LHS of the G_OR - if (canReplaceReg(OrDst, LHS, MRI) && - (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { - Replacement = LHS; - return true; - } - - // Check if we can replace OrDst with the RHS of the G_OR - if (canReplaceReg(OrDst, RHS, MRI) && - (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { - Replacement = RHS; - return true; - } - - return false; -} - -bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { - // If the input is already sign extended, just drop the extension. - Register Src = MI.getOperand(1).getReg(); - unsigned ExtBits = MI.getOperand(2).getImm(); - unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); - return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); -} - -static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, - int64_t Cst, bool IsVector, bool IsFP) { - // For i1, Cst will always be -1 regardless of boolean contents. - return (ScalarSizeBits == 1 && Cst == -1) || - isConstTrueVal(TLI, Cst, IsVector, IsFP); -} - -bool CombinerHelper::matchNotCmp(MachineInstr &MI, - SmallVectorImpl<Register> &RegsToNegate) { - assert(MI.getOpcode() == TargetOpcode::G_XOR); - LLT Ty = MRI.getType(MI.getOperand(0).getReg()); - const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); - Register XorSrc; - Register CstReg; - // We match xor(src, true) here. - if (!mi_match(MI.getOperand(0).getReg(), MRI, - m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) - return false; - - if (!MRI.hasOneNonDBGUse(XorSrc)) - return false; - - // Check that XorSrc is the root of a tree of comparisons combined with ANDs - // and ORs. The suffix of RegsToNegate starting from index I is used a work - // list of tree nodes to visit. - RegsToNegate.push_back(XorSrc); - // Remember whether the comparisons are all integer or all floating point. - bool IsInt = false; - bool IsFP = false; - for (unsigned I = 0; I < RegsToNegate.size(); ++I) { - Register Reg = RegsToNegate[I]; - if (!MRI.hasOneNonDBGUse(Reg)) - return false; - MachineInstr *Def = MRI.getVRegDef(Reg); - switch (Def->getOpcode()) { - default: - // Don't match if the tree contains anything other than ANDs, ORs and - // comparisons. - return false; - case TargetOpcode::G_ICMP: - if (IsFP) - return false; - IsInt = true; - // When we apply the combine we will invert the predicate. - break; - case TargetOpcode::G_FCMP: - if (IsInt) - return false; - IsFP = true; - // When we apply the combine we will invert the predicate. - break; - case TargetOpcode::G_AND: - case TargetOpcode::G_OR: - // Implement De Morgan's laws: - // ~(x & y) -> ~x | ~y - // ~(x | y) -> ~x & ~y - // When we apply the combine we will change the opcode and recursively - // negate the operands. - RegsToNegate.push_back(Def->getOperand(1).getReg()); - RegsToNegate.push_back(Def->getOperand(2).getReg()); - break; - } - } - - // Now we know whether the comparisons are integer or floating point, check - // the constant in the xor. - int64_t Cst; - if (Ty.isVector()) { - MachineInstr *CstDef = MRI.getVRegDef(CstReg); - auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); - if (!MaybeCst) - return false; - if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) - return false; - } else { - if (!mi_match(CstReg, MRI, m_ICst(Cst))) - return false; - if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) - return false; - } - - return true; -} - -bool CombinerHelper::applyNotCmp(MachineInstr &MI, - SmallVectorImpl<Register> &RegsToNegate) { - for (Register Reg : RegsToNegate) { - MachineInstr *Def = MRI.getVRegDef(Reg); - Observer.changingInstr(*Def); - // For each comparison, invert the opcode. For each AND and OR, change the - // opcode. - switch (Def->getOpcode()) { - default: - llvm_unreachable("Unexpected opcode"); - case TargetOpcode::G_ICMP: - case TargetOpcode::G_FCMP: { - MachineOperand &PredOp = Def->getOperand(1); - CmpInst::Predicate NewP = CmpInst::getInversePredicate( - (CmpInst::Predicate)PredOp.getPredicate()); - PredOp.setPredicate(NewP); - break; - } - case TargetOpcode::G_AND: - Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); - break; - case TargetOpcode::G_OR: - Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); - break; - } - Observer.changedInstr(*Def); - } - - replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); - MI.eraseFromParent(); - return true; -} - -bool CombinerHelper::matchXorOfAndWithSameReg( - MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { - // Match (xor (and x, y), y) (or any of its commuted cases) - assert(MI.getOpcode() == TargetOpcode::G_XOR); - Register &X = MatchInfo.first; - Register &Y = MatchInfo.second; - Register AndReg = MI.getOperand(1).getReg(); - Register SharedReg = MI.getOperand(2).getReg(); - - // Find a G_AND on either side of the G_XOR. - // Look for one of - // - // (xor (and x, y), SharedReg) - // (xor SharedReg, (and x, y)) - if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { - std::swap(AndReg, SharedReg); - if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) - return false; - } - - // Only do this if we'll eliminate the G_AND. - if (!MRI.hasOneNonDBGUse(AndReg)) - return false; - - // We can combine if SharedReg is the same as either the LHS or RHS of the - // G_AND. - if (Y != SharedReg) - std::swap(X, Y); - return Y == SharedReg; -} - -bool CombinerHelper::applyXorOfAndWithSameReg( - MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { - // Fold (xor (and x, y), y) -> (and (not x), y) - Builder.setInstrAndDebugLoc(MI); - Register X, Y; - std::tie(X, Y) = MatchInfo; - auto Not = Builder.buildNot(MRI.getType(X), X); - Observer.changingInstr(MI); - MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); - MI.getOperand(1).setReg(Not->getOperand(0).getReg()); - MI.getOperand(2).setReg(Y); - Observer.changedInstr(MI); - return true; -} - -bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { - Register DstReg = MI.getOperand(0).getReg(); - LLT Ty = MRI.getType(DstReg); - const DataLayout &DL = Builder.getMF().getDataLayout(); - - if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) - return false; - - if (Ty.isPointer()) { - auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); - return ConstVal && *ConstVal == 0; - } - - assert(Ty.isVector() && "Expecting a vector type"); - const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); - return isBuildVectorAllZeros(*VecMI, MRI); -} - -bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { - assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); - Builder.setInstrAndDebugLoc(MI); - Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); - MI.eraseFromParent(); - return true; -} - -/// The second source operand is known to be a power of 2. -bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { - Register DstReg = MI.getOperand(0).getReg(); - Register Src0 = MI.getOperand(1).getReg(); - Register Pow2Src1 = MI.getOperand(2).getReg(); - LLT Ty = MRI.getType(DstReg); - Builder.setInstrAndDebugLoc(MI); - - // Fold (urem x, pow2) -> (and x, pow2-1) - auto NegOne = Builder.buildConstant(Ty, -1); - auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); - Builder.buildAnd(DstReg, Src0, Add); - MI.eraseFromParent(); - return true; -} - -Optional<SmallVector<Register, 8>> -CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { - assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); - // We want to detect if Root is part of a tree which represents a bunch - // of loads being merged into a larger load. We'll try to recognize patterns - // like, for example: - // - // Reg Reg - // \ / - // OR_1 Reg - // \ / - // OR_2 - // \ Reg - // .. / - // Root - // - // Reg Reg Reg Reg - // \ / \ / - // OR_1 OR_2 - // \ / - // \ / - // ... - // Root - // - // Each "Reg" may have been produced by a load + some arithmetic. This - // function will save each of them. - SmallVector<Register, 8> RegsToVisit; - SmallVector<const MachineInstr *, 7> Ors = {Root}; - - // In the "worst" case, we're dealing with a load for each byte. So, there - // are at most #bytes - 1 ORs. - const unsigned MaxIter = - MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; - for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { - if (Ors.empty()) - break; - const MachineInstr *Curr = Ors.pop_back_val(); - Register OrLHS = Curr->getOperand(1).getReg(); - Register OrRHS = Curr->getOperand(2).getReg(); - - // In the combine, we want to elimate the entire tree. - if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) - return None; - - // If it's a G_OR, save it and continue to walk. If it's not, then it's - // something that may be a load + arithmetic. - if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) - Ors.push_back(Or); - else - RegsToVisit.push_back(OrLHS); - if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) - Ors.push_back(Or); - else - RegsToVisit.push_back(OrRHS); - } - - // We're going to try and merge each register into a wider power-of-2 type, - // so we ought to have an even number of registers. - if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) - return None; - return RegsToVisit; -} - -/// Helper function for findLoadOffsetsForLoadOrCombine. -/// -/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, -/// and then moving that value into a specific byte offset. -/// -/// e.g. x[i] << 24 -/// -/// \returns The load instruction and the byte offset it is moved into. -static Optional<std::pair<MachineInstr *, int64_t>> -matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, - const MachineRegisterInfo &MRI) { - assert(MRI.hasOneNonDBGUse(Reg) && - "Expected Reg to only have one non-debug use?"); - Register MaybeLoad; - int64_t Shift; - if (!mi_match(Reg, MRI, - m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { - Shift = 0; - MaybeLoad = Reg; - } - - if (Shift % MemSizeInBits != 0) - return None; - - // TODO: Handle other types of loads. - auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); - if (!Load) - return None; - - const auto &MMO = **Load->memoperands_begin(); - if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) - return None; - - return std::make_pair(Load, Shift / MemSizeInBits); -} - -Optional<std::pair<MachineInstr *, int64_t>> -CombinerHelper::findLoadOffsetsForLoadOrCombine( - SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, - const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { - - // Each load found for the pattern. There should be one for each RegsToVisit. - SmallSetVector<const MachineInstr *, 8> Loads; - - // The lowest index used in any load. (The lowest "i" for each x[i].) - int64_t LowestIdx = INT64_MAX; - - // The load which uses the lowest index. - MachineInstr *LowestIdxLoad = nullptr; - - // Keeps track of the load indices we see. We shouldn't see any indices twice. - SmallSet<int64_t, 8> SeenIdx; - - // Ensure each load is in the same MBB. - // TODO: Support multiple MachineBasicBlocks. - MachineBasicBlock *MBB = nullptr; - const MachineMemOperand *MMO = nullptr; - - // Earliest instruction-order load in the pattern. - MachineInstr *EarliestLoad = nullptr; - - // Latest instruction-order load in the pattern. - MachineInstr *LatestLoad = nullptr; - - // Base pointer which every load should share. - Register BasePtr; - - // We want to find a load for each register. Each load should have some - // appropriate bit twiddling arithmetic. During this loop, we will also keep - // track of the load which uses the lowest index. Later, we will check if we - // can use its pointer in the final, combined load. - for (auto Reg : RegsToVisit) { - // Find the load, and find the position that it will end up in (e.g. a - // shifted) value. - auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); - if (!LoadAndPos) - return None; - MachineInstr *Load; - int64_t DstPos; - std::tie(Load, DstPos) = *LoadAndPos; - - // TODO: Handle multiple MachineBasicBlocks. Currently not handled because - // it is difficult to check for stores/calls/etc between loads. - MachineBasicBlock *LoadMBB = Load->getParent(); - if (!MBB) - MBB = LoadMBB; - if (LoadMBB != MBB) - return None; - - // Make sure that the MachineMemOperands of every seen load are compatible. - const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); - if (!MMO) - MMO = LoadMMO; - if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) - return None; - - // Find out what the base pointer and index for the load is. - Register LoadPtr; - int64_t Idx; - if (!mi_match(Load->getOperand(1).getReg(), MRI, - m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { - LoadPtr = Load->getOperand(1).getReg(); - Idx = 0; - } - - // Don't combine things like a[i], a[i] -> a bigger load. - if (!SeenIdx.insert(Idx).second) - return None; - - // Every load must share the same base pointer; don't combine things like: - // - // a[i], b[i + 1] -> a bigger load. - if (!BasePtr.isValid()) - BasePtr = LoadPtr; - if (BasePtr != LoadPtr) - return None; - - if (Idx < LowestIdx) { - LowestIdx = Idx; - LowestIdxLoad = Load; - } - - // Keep track of the byte offset that this load ends up at. If we have seen - // the byte offset, then stop here. We do not want to combine: - // - // a[i] << 16, a[i + k] << 16 -> a bigger load. - if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) - return None; - Loads.insert(Load); - - // Keep track of the position of the earliest/latest loads in the pattern. - // We will check that there are no load fold barriers between them later - // on. - // - // FIXME: Is there a better way to check for load fold barriers? - if (!EarliestLoad || dominates(*Load, *EarliestLoad)) - EarliestLoad = Load; - if (!LatestLoad || dominates(*LatestLoad, *Load)) - LatestLoad = Load; - } - - // We found a load for each register. Let's check if each load satisfies the - // pattern. - assert(Loads.size() == RegsToVisit.size() && - "Expected to find a load for each register?"); - assert(EarliestLoad != LatestLoad && EarliestLoad && - LatestLoad && "Expected at least two loads?"); - - // Check if there are any stores, calls, etc. between any of the loads. If - // there are, then we can't safely perform the combine. - // - // MaxIter is chosen based off the (worst case) number of iterations it - // typically takes to succeed in the LLVM test suite plus some padding. - // - // FIXME: Is there a better way to check for load fold barriers? - const unsigned MaxIter = 20; - unsigned Iter = 0; - for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), - LatestLoad->getIterator())) { - if (Loads.count(&MI)) - continue; - if (MI.isLoadFoldBarrier()) - return None; - if (Iter++ == MaxIter) - return None; - } - - return std::make_pair(LowestIdxLoad, LowestIdx); -} - -bool CombinerHelper::matchLoadOrCombine( - MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { - assert(MI.getOpcode() == TargetOpcode::G_OR); - MachineFunction &MF = *MI.getMF(); - // Assuming a little-endian target, transform: - // s8 *a = ... - // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) - // => - // s32 val = *((i32)a) - // - // s8 *a = ... - // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] - // => - // s32 val = BSWAP(*((s32)a)) - Register Dst = MI.getOperand(0).getReg(); - LLT Ty = MRI.getType(Dst); - if (Ty.isVector()) - return false; - - // We need to combine at least two loads into this type. Since the smallest - // possible load is into a byte, we need at least a 16-bit wide type. - const unsigned WideMemSizeInBits = Ty.getSizeInBits(); - if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) - return false; - - // Match a collection of non-OR instructions in the pattern. - auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); - if (!RegsToVisit) - return false; - - // We have a collection of non-OR instructions. Figure out how wide each of - // the small loads should be based off of the number of potential loads we - // found. - const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); - if (NarrowMemSizeInBits % 8 != 0) - return false; - - // Check if each register feeding into each OR is a load from the same - // base pointer + some arithmetic. - // - // e.g. a[0], a[1] << 8, a[2] << 16, etc. - // - // Also verify that each of these ends up putting a[i] into the same memory - // offset as a load into a wide type would. - SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; - MachineInstr *LowestIdxLoad; - int64_t LowestIdx; - auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( - MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); - if (!MaybeLoadInfo) - return false; - std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; - - // We have a bunch of loads being OR'd together. Using the addresses + offsets - // we found before, check if this corresponds to a big or little endian byte - // pattern. If it does, then we can represent it using a load + possibly a - // BSWAP. - bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); - Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); - if (!IsBigEndian.hasValue()) - return false; - bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; - if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) - return false; - - // Make sure that the load from the lowest index produces offset 0 in the - // final value. - // - // This ensures that we won't combine something like this: - // - // load x[i] -> byte 2 - // load x[i+1] -> byte 0 ---> wide_load x[i] - // load x[i+2] -> byte 1 - const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; - const unsigned ZeroByteOffset = - *IsBigEndian - ? bigEndianByteAt(NumLoadsInTy, 0) - : littleEndianByteAt(NumLoadsInTy, 0); - auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); - if (ZeroOffsetIdx == MemOffset2Idx.end() || - ZeroOffsetIdx->second != LowestIdx) - return false; - - // We wil reuse the pointer from the load which ends up at byte offset 0. It - // may not use index 0. - Register Ptr = LowestIdxLoad->getOperand(1).getReg(); - const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); - LegalityQuery::MemDesc MMDesc; - MMDesc.SizeInBits = WideMemSizeInBits; - MMDesc.AlignInBits = MMO.getAlign().value() * 8; - MMDesc.Ordering = MMO.getOrdering(); - if (!isLegalOrBeforeLegalizer( - {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) - return false; - auto PtrInfo = MMO.getPointerInfo(); - auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); - - // Load must be allowed and fast on the target. - LLVMContext &C = MF.getFunction().getContext(); - auto &DL = MF.getDataLayout(); - bool Fast = false; - if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || - !Fast) - return false; - - MatchInfo = [=](MachineIRBuilder &MIB) { - Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; - MIB.buildLoad(LoadDst, Ptr, *NewMMO); - if (NeedsBSwap) - MIB.buildBSwap(Dst, LoadDst); - }; - return true; -} - -bool CombinerHelper::applyLoadOrCombine( - MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { - Builder.setInstrAndDebugLoc(MI); - MatchInfo(Builder); - MI.eraseFromParent(); - return true; -} - +bool CombinerHelper::matchHoistLogicOpWithSameOpcodeHands( + MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { + // Matches: logic (hand x, ...), (hand y, ...) -> hand (logic x, y), ... + // + // Creates the new hand + logic instruction (but does not insert them.) + // + // On success, MatchInfo is populated with the new instructions. These are + // inserted in applyHoistLogicOpWithSameOpcodeHands. + unsigned LogicOpcode = MI.getOpcode(); + assert(LogicOpcode == TargetOpcode::G_AND || + LogicOpcode == TargetOpcode::G_OR || + LogicOpcode == TargetOpcode::G_XOR); + MachineIRBuilder MIB(MI); + Register Dst = MI.getOperand(0).getReg(); + Register LHSReg = MI.getOperand(1).getReg(); + Register RHSReg = MI.getOperand(2).getReg(); + + // Don't recompute anything. + if (!MRI.hasOneNonDBGUse(LHSReg) || !MRI.hasOneNonDBGUse(RHSReg)) + return false; + + // Make sure we have (hand x, ...), (hand y, ...) + MachineInstr *LeftHandInst = getDefIgnoringCopies(LHSReg, MRI); + MachineInstr *RightHandInst = getDefIgnoringCopies(RHSReg, MRI); + if (!LeftHandInst || !RightHandInst) + return false; + unsigned HandOpcode = LeftHandInst->getOpcode(); + if (HandOpcode != RightHandInst->getOpcode()) + return false; + if (!LeftHandInst->getOperand(1).isReg() || + !RightHandInst->getOperand(1).isReg()) + return false; + + // Make sure the types match up, and if we're doing this post-legalization, + // we end up with legal types. + Register X = LeftHandInst->getOperand(1).getReg(); + Register Y = RightHandInst->getOperand(1).getReg(); + LLT XTy = MRI.getType(X); + LLT YTy = MRI.getType(Y); + if (XTy != YTy) + return false; + if (!isLegalOrBeforeLegalizer({LogicOpcode, {XTy, YTy}})) + return false; + + // Optional extra source register. + Register ExtraHandOpSrcReg; + switch (HandOpcode) { + default: + return false; + case TargetOpcode::G_ANYEXT: + case TargetOpcode::G_SEXT: + case TargetOpcode::G_ZEXT: { + // Match: logic (ext X), (ext Y) --> ext (logic X, Y) + break; + } + case TargetOpcode::G_AND: + case TargetOpcode::G_ASHR: + case TargetOpcode::G_LSHR: + case TargetOpcode::G_SHL: { + // Match: logic (binop x, z), (binop y, z) -> binop (logic x, y), z + MachineOperand &ZOp = LeftHandInst->getOperand(2); + if (!matchEqualDefs(ZOp, RightHandInst->getOperand(2))) + return false; + ExtraHandOpSrcReg = ZOp.getReg(); + break; + } + } + + // Record the steps to build the new instructions. + // + // Steps to build (logic x, y) + auto NewLogicDst = MRI.createGenericVirtualRegister(XTy); + OperandBuildSteps LogicBuildSteps = { + [=](MachineInstrBuilder &MIB) { MIB.addDef(NewLogicDst); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(X); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(Y); }}; + InstructionBuildSteps LogicSteps(LogicOpcode, LogicBuildSteps); + + // Steps to build hand (logic x, y), ...z + OperandBuildSteps HandBuildSteps = { + [=](MachineInstrBuilder &MIB) { MIB.addDef(Dst); }, + [=](MachineInstrBuilder &MIB) { MIB.addReg(NewLogicDst); }}; + if (ExtraHandOpSrcReg.isValid()) + HandBuildSteps.push_back( + [=](MachineInstrBuilder &MIB) { MIB.addReg(ExtraHandOpSrcReg); }); + InstructionBuildSteps HandSteps(HandOpcode, HandBuildSteps); + + MatchInfo = InstructionStepsMatchInfo({LogicSteps, HandSteps}); + return true; +} + +bool CombinerHelper::applyBuildInstructionSteps( + MachineInstr &MI, InstructionStepsMatchInfo &MatchInfo) { + assert(MatchInfo.InstrsToBuild.size() && + "Expected at least one instr to build?"); + Builder.setInstr(MI); + for (auto &InstrToBuild : MatchInfo.InstrsToBuild) { + assert(InstrToBuild.Opcode && "Expected a valid opcode?"); + assert(InstrToBuild.OperandFns.size() && "Expected at least one operand?"); + MachineInstrBuilder Instr = Builder.buildInstr(InstrToBuild.Opcode); + for (auto &OperandFn : InstrToBuild.OperandFns) + OperandFn(Instr); + } + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchAshrShlToSextInreg( + MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ASHR); + int64_t ShlCst, AshrCst; + Register Src; + // FIXME: detect splat constant vectors. + if (!mi_match(MI.getOperand(0).getReg(), MRI, + m_GAShr(m_GShl(m_Reg(Src), m_ICst(ShlCst)), m_ICst(AshrCst)))) + return false; + if (ShlCst != AshrCst) + return false; + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_SEXT_INREG, {MRI.getType(Src)}})) + return false; + MatchInfo = std::make_tuple(Src, ShlCst); + return true; +} +bool CombinerHelper::applyAshShlToSextInreg( + MachineInstr &MI, std::tuple<Register, int64_t> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_ASHR); + Register Src; + int64_t ShiftAmt; + std::tie(Src, ShiftAmt) = MatchInfo; + unsigned Size = MRI.getType(Src).getScalarSizeInBits(); + Builder.setInstrAndDebugLoc(MI); + Builder.buildSExtInReg(MI.getOperand(0).getReg(), Src, Size - ShiftAmt); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchRedundantAnd(MachineInstr &MI, + Register &Replacement) { + // Given + // + // %y:_(sN) = G_SOMETHING + // %x:_(sN) = G_SOMETHING + // %res:_(sN) = G_AND %x, %y + // + // Eliminate the G_AND when it is known that x & y == x or x & y == y. + // + // Patterns like this can appear as a result of legalization. E.g. + // + // %cmp:_(s32) = G_ICMP intpred(pred), %x(s32), %y + // %one:_(s32) = G_CONSTANT i32 1 + // %and:_(s32) = G_AND %cmp, %one + // + // In this case, G_ICMP only produces a single bit, so x & 1 == x. + assert(MI.getOpcode() == TargetOpcode::G_AND); + if (!KB) + return false; + + Register AndDst = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(AndDst); + + // FIXME: This should be removed once GISelKnownBits supports vectors. + if (DstTy.isVector()) + return false; + + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + KnownBits LHSBits = KB->getKnownBits(LHS); + KnownBits RHSBits = KB->getKnownBits(RHS); + + // Check that x & Mask == x. + // x & 1 == x, always + // x & 0 == x, only if x is also 0 + // Meaning Mask has no effect if every bit is either one in Mask or zero in x. + // + // Check if we can replace AndDst with the LHS of the G_AND + if (canReplaceReg(AndDst, LHS, MRI) && + (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { + Replacement = LHS; + return true; + } + + // Check if we can replace AndDst with the RHS of the G_AND + if (canReplaceReg(AndDst, RHS, MRI) && + (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { + Replacement = RHS; + return true; + } + + return false; +} + +bool CombinerHelper::matchRedundantOr(MachineInstr &MI, Register &Replacement) { + // Given + // + // %y:_(sN) = G_SOMETHING + // %x:_(sN) = G_SOMETHING + // %res:_(sN) = G_OR %x, %y + // + // Eliminate the G_OR when it is known that x | y == x or x | y == y. + assert(MI.getOpcode() == TargetOpcode::G_OR); + if (!KB) + return false; + + Register OrDst = MI.getOperand(0).getReg(); + LLT DstTy = MRI.getType(OrDst); + + // FIXME: This should be removed once GISelKnownBits supports vectors. + if (DstTy.isVector()) + return false; + + Register LHS = MI.getOperand(1).getReg(); + Register RHS = MI.getOperand(2).getReg(); + KnownBits LHSBits = KB->getKnownBits(LHS); + KnownBits RHSBits = KB->getKnownBits(RHS); + + // Check that x | Mask == x. + // x | 0 == x, always + // x | 1 == x, only if x is also 1 + // Meaning Mask has no effect if every bit is either zero in Mask or one in x. + // + // Check if we can replace OrDst with the LHS of the G_OR + if (canReplaceReg(OrDst, LHS, MRI) && + (LHSBits.One | RHSBits.Zero).isAllOnesValue()) { + Replacement = LHS; + return true; + } + + // Check if we can replace OrDst with the RHS of the G_OR + if (canReplaceReg(OrDst, RHS, MRI) && + (LHSBits.Zero | RHSBits.One).isAllOnesValue()) { + Replacement = RHS; + return true; + } + + return false; +} + +bool CombinerHelper::matchRedundantSExtInReg(MachineInstr &MI) { + // If the input is already sign extended, just drop the extension. + Register Src = MI.getOperand(1).getReg(); + unsigned ExtBits = MI.getOperand(2).getImm(); + unsigned TypeSize = MRI.getType(Src).getScalarSizeInBits(); + return KB->computeNumSignBits(Src) >= (TypeSize - ExtBits + 1); +} + +static bool isConstValidTrue(const TargetLowering &TLI, unsigned ScalarSizeBits, + int64_t Cst, bool IsVector, bool IsFP) { + // For i1, Cst will always be -1 regardless of boolean contents. + return (ScalarSizeBits == 1 && Cst == -1) || + isConstTrueVal(TLI, Cst, IsVector, IsFP); +} + +bool CombinerHelper::matchNotCmp(MachineInstr &MI, + SmallVectorImpl<Register> &RegsToNegate) { + assert(MI.getOpcode() == TargetOpcode::G_XOR); + LLT Ty = MRI.getType(MI.getOperand(0).getReg()); + const auto &TLI = *Builder.getMF().getSubtarget().getTargetLowering(); + Register XorSrc; + Register CstReg; + // We match xor(src, true) here. + if (!mi_match(MI.getOperand(0).getReg(), MRI, + m_GXor(m_Reg(XorSrc), m_Reg(CstReg)))) + return false; + + if (!MRI.hasOneNonDBGUse(XorSrc)) + return false; + + // Check that XorSrc is the root of a tree of comparisons combined with ANDs + // and ORs. The suffix of RegsToNegate starting from index I is used a work + // list of tree nodes to visit. + RegsToNegate.push_back(XorSrc); + // Remember whether the comparisons are all integer or all floating point. + bool IsInt = false; + bool IsFP = false; + for (unsigned I = 0; I < RegsToNegate.size(); ++I) { + Register Reg = RegsToNegate[I]; + if (!MRI.hasOneNonDBGUse(Reg)) + return false; + MachineInstr *Def = MRI.getVRegDef(Reg); + switch (Def->getOpcode()) { + default: + // Don't match if the tree contains anything other than ANDs, ORs and + // comparisons. + return false; + case TargetOpcode::G_ICMP: + if (IsFP) + return false; + IsInt = true; + // When we apply the combine we will invert the predicate. + break; + case TargetOpcode::G_FCMP: + if (IsInt) + return false; + IsFP = true; + // When we apply the combine we will invert the predicate. + break; + case TargetOpcode::G_AND: + case TargetOpcode::G_OR: + // Implement De Morgan's laws: + // ~(x & y) -> ~x | ~y + // ~(x | y) -> ~x & ~y + // When we apply the combine we will change the opcode and recursively + // negate the operands. + RegsToNegate.push_back(Def->getOperand(1).getReg()); + RegsToNegate.push_back(Def->getOperand(2).getReg()); + break; + } + } + + // Now we know whether the comparisons are integer or floating point, check + // the constant in the xor. + int64_t Cst; + if (Ty.isVector()) { + MachineInstr *CstDef = MRI.getVRegDef(CstReg); + auto MaybeCst = getBuildVectorConstantSplat(*CstDef, MRI); + if (!MaybeCst) + return false; + if (!isConstValidTrue(TLI, Ty.getScalarSizeInBits(), *MaybeCst, true, IsFP)) + return false; + } else { + if (!mi_match(CstReg, MRI, m_ICst(Cst))) + return false; + if (!isConstValidTrue(TLI, Ty.getSizeInBits(), Cst, false, IsFP)) + return false; + } + + return true; +} + +bool CombinerHelper::applyNotCmp(MachineInstr &MI, + SmallVectorImpl<Register> &RegsToNegate) { + for (Register Reg : RegsToNegate) { + MachineInstr *Def = MRI.getVRegDef(Reg); + Observer.changingInstr(*Def); + // For each comparison, invert the opcode. For each AND and OR, change the + // opcode. + switch (Def->getOpcode()) { + default: + llvm_unreachable("Unexpected opcode"); + case TargetOpcode::G_ICMP: + case TargetOpcode::G_FCMP: { + MachineOperand &PredOp = Def->getOperand(1); + CmpInst::Predicate NewP = CmpInst::getInversePredicate( + (CmpInst::Predicate)PredOp.getPredicate()); + PredOp.setPredicate(NewP); + break; + } + case TargetOpcode::G_AND: + Def->setDesc(Builder.getTII().get(TargetOpcode::G_OR)); + break; + case TargetOpcode::G_OR: + Def->setDesc(Builder.getTII().get(TargetOpcode::G_AND)); + break; + } + Observer.changedInstr(*Def); + } + + replaceRegWith(MRI, MI.getOperand(0).getReg(), MI.getOperand(1).getReg()); + MI.eraseFromParent(); + return true; +} + +bool CombinerHelper::matchXorOfAndWithSameReg( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + // Match (xor (and x, y), y) (or any of its commuted cases) + assert(MI.getOpcode() == TargetOpcode::G_XOR); + Register &X = MatchInfo.first; + Register &Y = MatchInfo.second; + Register AndReg = MI.getOperand(1).getReg(); + Register SharedReg = MI.getOperand(2).getReg(); + + // Find a G_AND on either side of the G_XOR. + // Look for one of + // + // (xor (and x, y), SharedReg) + // (xor SharedReg, (and x, y)) + if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) { + std::swap(AndReg, SharedReg); + if (!mi_match(AndReg, MRI, m_GAnd(m_Reg(X), m_Reg(Y)))) + return false; + } + + // Only do this if we'll eliminate the G_AND. + if (!MRI.hasOneNonDBGUse(AndReg)) + return false; + + // We can combine if SharedReg is the same as either the LHS or RHS of the + // G_AND. + if (Y != SharedReg) + std::swap(X, Y); + return Y == SharedReg; +} + +bool CombinerHelper::applyXorOfAndWithSameReg( + MachineInstr &MI, std::pair<Register, Register> &MatchInfo) { + // Fold (xor (and x, y), y) -> (and (not x), y) + Builder.setInstrAndDebugLoc(MI); + Register X, Y; + std::tie(X, Y) = MatchInfo; + auto Not = Builder.buildNot(MRI.getType(X), X); + Observer.changingInstr(MI); + MI.setDesc(Builder.getTII().get(TargetOpcode::G_AND)); + MI.getOperand(1).setReg(Not->getOperand(0).getReg()); + MI.getOperand(2).setReg(Y); + Observer.changedInstr(MI); + return true; +} + +bool CombinerHelper::matchPtrAddZero(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(DstReg); + const DataLayout &DL = Builder.getMF().getDataLayout(); + + if (DL.isNonIntegralAddressSpace(Ty.getScalarType().getAddressSpace())) + return false; + + if (Ty.isPointer()) { + auto ConstVal = getConstantVRegVal(MI.getOperand(1).getReg(), MRI); + return ConstVal && *ConstVal == 0; + } + + assert(Ty.isVector() && "Expecting a vector type"); + const MachineInstr *VecMI = MRI.getVRegDef(MI.getOperand(1).getReg()); + return isBuildVectorAllZeros(*VecMI, MRI); +} + +bool CombinerHelper::applyPtrAddZero(MachineInstr &MI) { + assert(MI.getOpcode() == TargetOpcode::G_PTR_ADD); + Builder.setInstrAndDebugLoc(MI); + Builder.buildIntToPtr(MI.getOperand(0), MI.getOperand(2)); + MI.eraseFromParent(); + return true; +} + +/// The second source operand is known to be a power of 2. +bool CombinerHelper::applySimplifyURemByPow2(MachineInstr &MI) { + Register DstReg = MI.getOperand(0).getReg(); + Register Src0 = MI.getOperand(1).getReg(); + Register Pow2Src1 = MI.getOperand(2).getReg(); + LLT Ty = MRI.getType(DstReg); + Builder.setInstrAndDebugLoc(MI); + + // Fold (urem x, pow2) -> (and x, pow2-1) + auto NegOne = Builder.buildConstant(Ty, -1); + auto Add = Builder.buildAdd(Ty, Pow2Src1, NegOne); + Builder.buildAnd(DstReg, Src0, Add); + MI.eraseFromParent(); + return true; +} + +Optional<SmallVector<Register, 8>> +CombinerHelper::findCandidatesForLoadOrCombine(const MachineInstr *Root) const { + assert(Root->getOpcode() == TargetOpcode::G_OR && "Expected G_OR only!"); + // We want to detect if Root is part of a tree which represents a bunch + // of loads being merged into a larger load. We'll try to recognize patterns + // like, for example: + // + // Reg Reg + // \ / + // OR_1 Reg + // \ / + // OR_2 + // \ Reg + // .. / + // Root + // + // Reg Reg Reg Reg + // \ / \ / + // OR_1 OR_2 + // \ / + // \ / + // ... + // Root + // + // Each "Reg" may have been produced by a load + some arithmetic. This + // function will save each of them. + SmallVector<Register, 8> RegsToVisit; + SmallVector<const MachineInstr *, 7> Ors = {Root}; + + // In the "worst" case, we're dealing with a load for each byte. So, there + // are at most #bytes - 1 ORs. + const unsigned MaxIter = + MRI.getType(Root->getOperand(0).getReg()).getSizeInBytes() - 1; + for (unsigned Iter = 0; Iter < MaxIter; ++Iter) { + if (Ors.empty()) + break; + const MachineInstr *Curr = Ors.pop_back_val(); + Register OrLHS = Curr->getOperand(1).getReg(); + Register OrRHS = Curr->getOperand(2).getReg(); + + // In the combine, we want to elimate the entire tree. + if (!MRI.hasOneNonDBGUse(OrLHS) || !MRI.hasOneNonDBGUse(OrRHS)) + return None; + + // If it's a G_OR, save it and continue to walk. If it's not, then it's + // something that may be a load + arithmetic. + if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrLHS, MRI)) + Ors.push_back(Or); + else + RegsToVisit.push_back(OrLHS); + if (const MachineInstr *Or = getOpcodeDef(TargetOpcode::G_OR, OrRHS, MRI)) + Ors.push_back(Or); + else + RegsToVisit.push_back(OrRHS); + } + + // We're going to try and merge each register into a wider power-of-2 type, + // so we ought to have an even number of registers. + if (RegsToVisit.empty() || RegsToVisit.size() % 2 != 0) + return None; + return RegsToVisit; +} + +/// Helper function for findLoadOffsetsForLoadOrCombine. +/// +/// Check if \p Reg is the result of loading a \p MemSizeInBits wide value, +/// and then moving that value into a specific byte offset. +/// +/// e.g. x[i] << 24 +/// +/// \returns The load instruction and the byte offset it is moved into. +static Optional<std::pair<MachineInstr *, int64_t>> +matchLoadAndBytePosition(Register Reg, unsigned MemSizeInBits, + const MachineRegisterInfo &MRI) { + assert(MRI.hasOneNonDBGUse(Reg) && + "Expected Reg to only have one non-debug use?"); + Register MaybeLoad; + int64_t Shift; + if (!mi_match(Reg, MRI, + m_OneNonDBGUse(m_GShl(m_Reg(MaybeLoad), m_ICst(Shift))))) { + Shift = 0; + MaybeLoad = Reg; + } + + if (Shift % MemSizeInBits != 0) + return None; + + // TODO: Handle other types of loads. + auto *Load = getOpcodeDef(TargetOpcode::G_ZEXTLOAD, MaybeLoad, MRI); + if (!Load) + return None; + + const auto &MMO = **Load->memoperands_begin(); + if (!MMO.isUnordered() || MMO.getSizeInBits() != MemSizeInBits) + return None; + + return std::make_pair(Load, Shift / MemSizeInBits); +} + +Optional<std::pair<MachineInstr *, int64_t>> +CombinerHelper::findLoadOffsetsForLoadOrCombine( + SmallDenseMap<int64_t, int64_t, 8> &MemOffset2Idx, + const SmallVector<Register, 8> &RegsToVisit, const unsigned MemSizeInBits) { + + // Each load found for the pattern. There should be one for each RegsToVisit. + SmallSetVector<const MachineInstr *, 8> Loads; + + // The lowest index used in any load. (The lowest "i" for each x[i].) + int64_t LowestIdx = INT64_MAX; + + // The load which uses the lowest index. + MachineInstr *LowestIdxLoad = nullptr; + + // Keeps track of the load indices we see. We shouldn't see any indices twice. + SmallSet<int64_t, 8> SeenIdx; + + // Ensure each load is in the same MBB. + // TODO: Support multiple MachineBasicBlocks. + MachineBasicBlock *MBB = nullptr; + const MachineMemOperand *MMO = nullptr; + + // Earliest instruction-order load in the pattern. + MachineInstr *EarliestLoad = nullptr; + + // Latest instruction-order load in the pattern. + MachineInstr *LatestLoad = nullptr; + + // Base pointer which every load should share. + Register BasePtr; + + // We want to find a load for each register. Each load should have some + // appropriate bit twiddling arithmetic. During this loop, we will also keep + // track of the load which uses the lowest index. Later, we will check if we + // can use its pointer in the final, combined load. + for (auto Reg : RegsToVisit) { + // Find the load, and find the position that it will end up in (e.g. a + // shifted) value. + auto LoadAndPos = matchLoadAndBytePosition(Reg, MemSizeInBits, MRI); + if (!LoadAndPos) + return None; + MachineInstr *Load; + int64_t DstPos; + std::tie(Load, DstPos) = *LoadAndPos; + + // TODO: Handle multiple MachineBasicBlocks. Currently not handled because + // it is difficult to check for stores/calls/etc between loads. + MachineBasicBlock *LoadMBB = Load->getParent(); + if (!MBB) + MBB = LoadMBB; + if (LoadMBB != MBB) + return None; + + // Make sure that the MachineMemOperands of every seen load are compatible. + const MachineMemOperand *LoadMMO = *Load->memoperands_begin(); + if (!MMO) + MMO = LoadMMO; + if (MMO->getAddrSpace() != LoadMMO->getAddrSpace()) + return None; + + // Find out what the base pointer and index for the load is. + Register LoadPtr; + int64_t Idx; + if (!mi_match(Load->getOperand(1).getReg(), MRI, + m_GPtrAdd(m_Reg(LoadPtr), m_ICst(Idx)))) { + LoadPtr = Load->getOperand(1).getReg(); + Idx = 0; + } + + // Don't combine things like a[i], a[i] -> a bigger load. + if (!SeenIdx.insert(Idx).second) + return None; + + // Every load must share the same base pointer; don't combine things like: + // + // a[i], b[i + 1] -> a bigger load. + if (!BasePtr.isValid()) + BasePtr = LoadPtr; + if (BasePtr != LoadPtr) + return None; + + if (Idx < LowestIdx) { + LowestIdx = Idx; + LowestIdxLoad = Load; + } + + // Keep track of the byte offset that this load ends up at. If we have seen + // the byte offset, then stop here. We do not want to combine: + // + // a[i] << 16, a[i + k] << 16 -> a bigger load. + if (!MemOffset2Idx.try_emplace(DstPos, Idx).second) + return None; + Loads.insert(Load); + + // Keep track of the position of the earliest/latest loads in the pattern. + // We will check that there are no load fold barriers between them later + // on. + // + // FIXME: Is there a better way to check for load fold barriers? + if (!EarliestLoad || dominates(*Load, *EarliestLoad)) + EarliestLoad = Load; + if (!LatestLoad || dominates(*LatestLoad, *Load)) + LatestLoad = Load; + } + + // We found a load for each register. Let's check if each load satisfies the + // pattern. + assert(Loads.size() == RegsToVisit.size() && + "Expected to find a load for each register?"); + assert(EarliestLoad != LatestLoad && EarliestLoad && + LatestLoad && "Expected at least two loads?"); + + // Check if there are any stores, calls, etc. between any of the loads. If + // there are, then we can't safely perform the combine. + // + // MaxIter is chosen based off the (worst case) number of iterations it + // typically takes to succeed in the LLVM test suite plus some padding. + // + // FIXME: Is there a better way to check for load fold barriers? + const unsigned MaxIter = 20; + unsigned Iter = 0; + for (const auto &MI : instructionsWithoutDebug(EarliestLoad->getIterator(), + LatestLoad->getIterator())) { + if (Loads.count(&MI)) + continue; + if (MI.isLoadFoldBarrier()) + return None; + if (Iter++ == MaxIter) + return None; + } + + return std::make_pair(LowestIdxLoad, LowestIdx); +} + +bool CombinerHelper::matchLoadOrCombine( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + assert(MI.getOpcode() == TargetOpcode::G_OR); + MachineFunction &MF = *MI.getMF(); + // Assuming a little-endian target, transform: + // s8 *a = ... + // s32 val = a[0] | (a[1] << 8) | (a[2] << 16) | (a[3] << 24) + // => + // s32 val = *((i32)a) + // + // s8 *a = ... + // s32 val = (a[0] << 24) | (a[1] << 16) | (a[2] << 8) | a[3] + // => + // s32 val = BSWAP(*((s32)a)) + Register Dst = MI.getOperand(0).getReg(); + LLT Ty = MRI.getType(Dst); + if (Ty.isVector()) + return false; + + // We need to combine at least two loads into this type. Since the smallest + // possible load is into a byte, we need at least a 16-bit wide type. + const unsigned WideMemSizeInBits = Ty.getSizeInBits(); + if (WideMemSizeInBits < 16 || WideMemSizeInBits % 8 != 0) + return false; + + // Match a collection of non-OR instructions in the pattern. + auto RegsToVisit = findCandidatesForLoadOrCombine(&MI); + if (!RegsToVisit) + return false; + + // We have a collection of non-OR instructions. Figure out how wide each of + // the small loads should be based off of the number of potential loads we + // found. + const unsigned NarrowMemSizeInBits = WideMemSizeInBits / RegsToVisit->size(); + if (NarrowMemSizeInBits % 8 != 0) + return false; + + // Check if each register feeding into each OR is a load from the same + // base pointer + some arithmetic. + // + // e.g. a[0], a[1] << 8, a[2] << 16, etc. + // + // Also verify that each of these ends up putting a[i] into the same memory + // offset as a load into a wide type would. + SmallDenseMap<int64_t, int64_t, 8> MemOffset2Idx; + MachineInstr *LowestIdxLoad; + int64_t LowestIdx; + auto MaybeLoadInfo = findLoadOffsetsForLoadOrCombine( + MemOffset2Idx, *RegsToVisit, NarrowMemSizeInBits); + if (!MaybeLoadInfo) + return false; + std::tie(LowestIdxLoad, LowestIdx) = *MaybeLoadInfo; + + // We have a bunch of loads being OR'd together. Using the addresses + offsets + // we found before, check if this corresponds to a big or little endian byte + // pattern. If it does, then we can represent it using a load + possibly a + // BSWAP. + bool IsBigEndianTarget = MF.getDataLayout().isBigEndian(); + Optional<bool> IsBigEndian = isBigEndian(MemOffset2Idx, LowestIdx); + if (!IsBigEndian.hasValue()) + return false; + bool NeedsBSwap = IsBigEndianTarget != *IsBigEndian; + if (NeedsBSwap && !isLegalOrBeforeLegalizer({TargetOpcode::G_BSWAP, {Ty}})) + return false; + + // Make sure that the load from the lowest index produces offset 0 in the + // final value. + // + // This ensures that we won't combine something like this: + // + // load x[i] -> byte 2 + // load x[i+1] -> byte 0 ---> wide_load x[i] + // load x[i+2] -> byte 1 + const unsigned NumLoadsInTy = WideMemSizeInBits / NarrowMemSizeInBits; + const unsigned ZeroByteOffset = + *IsBigEndian + ? bigEndianByteAt(NumLoadsInTy, 0) + : littleEndianByteAt(NumLoadsInTy, 0); + auto ZeroOffsetIdx = MemOffset2Idx.find(ZeroByteOffset); + if (ZeroOffsetIdx == MemOffset2Idx.end() || + ZeroOffsetIdx->second != LowestIdx) + return false; + + // We wil reuse the pointer from the load which ends up at byte offset 0. It + // may not use index 0. + Register Ptr = LowestIdxLoad->getOperand(1).getReg(); + const MachineMemOperand &MMO = **LowestIdxLoad->memoperands_begin(); + LegalityQuery::MemDesc MMDesc; + MMDesc.SizeInBits = WideMemSizeInBits; + MMDesc.AlignInBits = MMO.getAlign().value() * 8; + MMDesc.Ordering = MMO.getOrdering(); + if (!isLegalOrBeforeLegalizer( + {TargetOpcode::G_LOAD, {Ty, MRI.getType(Ptr)}, {MMDesc}})) + return false; + auto PtrInfo = MMO.getPointerInfo(); + auto *NewMMO = MF.getMachineMemOperand(&MMO, PtrInfo, WideMemSizeInBits / 8); + + // Load must be allowed and fast on the target. + LLVMContext &C = MF.getFunction().getContext(); + auto &DL = MF.getDataLayout(); + bool Fast = false; + if (!getTargetLowering().allowsMemoryAccess(C, DL, Ty, *NewMMO, &Fast) || + !Fast) + return false; + + MatchInfo = [=](MachineIRBuilder &MIB) { + Register LoadDst = NeedsBSwap ? MRI.cloneVirtualRegister(Dst) : Dst; + MIB.buildLoad(LoadDst, Ptr, *NewMMO); + if (NeedsBSwap) + MIB.buildBSwap(Dst, LoadDst); + }; + return true; +} + +bool CombinerHelper::applyLoadOrCombine( + MachineInstr &MI, std::function<void(MachineIRBuilder &)> &MatchInfo) { + Builder.setInstrAndDebugLoc(MI); + MatchInfo(Builder); + MI.eraseFromParent(); + return true; +} + bool CombinerHelper::tryCombine(MachineInstr &MI) { if (tryCombineCopy(MI)) return true; |