diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/Target/Target.td | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/Target/Target.td')
-rw-r--r-- | contrib/libs/llvm12/include/llvm/Target/Target.td | 1689 |
1 files changed, 1689 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/Target/Target.td b/contrib/libs/llvm12/include/llvm/Target/Target.td new file mode 100644 index 0000000000..1c97d70a47 --- /dev/null +++ b/contrib/libs/llvm12/include/llvm/Target/Target.td @@ -0,0 +1,1689 @@ +//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +// This file defines the target-independent interfaces which should be +// implemented by each target which is using a TableGen based code generator. +// +//===----------------------------------------------------------------------===// + +// Include all information about LLVM intrinsics. +include "llvm/IR/Intrinsics.td" + +//===----------------------------------------------------------------------===// +// Register file description - These classes are used to fill in the target +// description classes. + +class RegisterClass; // Forward def + +class HwMode<string FS> { + // A string representing subtarget features that turn on this HW mode. + // For example, "+feat1,-feat2" will indicate that the mode is active + // when "feat1" is enabled and "feat2" is disabled at the same time. + // Any other features are not checked. + // When multiple modes are used, they should be mutually exclusive, + // otherwise the results are unpredictable. + string Features = FS; +} + +// A special mode recognized by tablegen. This mode is considered active +// when no other mode is active. For targets that do not use specific hw +// modes, this is the only mode. +def DefaultMode : HwMode<"">; + +// A class used to associate objects with HW modes. It is only intended to +// be used as a base class, where the derived class should contain a member +// "Objects", which is a list of the same length as the list of modes. +// The n-th element on the Objects list will be associated with the n-th +// element on the Modes list. +class HwModeSelect<list<HwMode> Ms> { + list<HwMode> Modes = Ms; +} + +// A common class that implements a counterpart of ValueType, which is +// dependent on a HW mode. This class inherits from ValueType itself, +// which makes it possible to use objects of this class where ValueType +// objects could be used. This is specifically applicable to selection +// patterns. +class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts> + : HwModeSelect<Ms>, ValueType<0, 0> { + // The length of this list must be the same as the length of Ms. + list<ValueType> Objects = Ts; +} + +// A class representing the register size, spill size and spill alignment +// in bits of a register. +class RegInfo<int RS, int SS, int SA> { + int RegSize = RS; // Register size in bits. + int SpillSize = SS; // Spill slot size in bits. + int SpillAlignment = SA; // Spill slot alignment in bits. +} + +// The register size/alignment information, parameterized by a HW mode. +class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []> + : HwModeSelect<Ms> { + // The length of this list must be the same as the length of Ms. + list<RegInfo> Objects = Ts; +} + +// SubRegIndex - Use instances of SubRegIndex to identify subregisters. +class SubRegIndex<int size, int offset = 0> { + string Namespace = ""; + + // Size - Size (in bits) of the sub-registers represented by this index. + int Size = size; + + // Offset - Offset of the first bit that is part of this sub-register index. + // Set it to -1 if the same index is used to represent sub-registers that can + // be at different offsets (for example when using an index to access an + // element in a register tuple). + int Offset = offset; + + // ComposedOf - A list of two SubRegIndex instances, [A, B]. + // This indicates that this SubRegIndex is the result of composing A and B. + // See ComposedSubRegIndex. + list<SubRegIndex> ComposedOf = []; + + // CoveringSubRegIndices - A list of two or more sub-register indexes that + // cover this sub-register. + // + // This field should normally be left blank as TableGen can infer it. + // + // TableGen automatically detects sub-registers that straddle the registers + // in the SubRegs field of a Register definition. For example: + // + // Q0 = dsub_0 -> D0, dsub_1 -> D1 + // Q1 = dsub_0 -> D2, dsub_1 -> D3 + // D1_D2 = dsub_0 -> D1, dsub_1 -> D2 + // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1 + // + // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given + // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with + // CoveringSubRegIndices = [dsub_1, dsub_2]. + list<SubRegIndex> CoveringSubRegIndices = []; +} + +// ComposedSubRegIndex - A sub-register that is the result of composing A and B. +// Offset is set to the sum of A and B's Offsets. Size is set to B's Size. +class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B> + : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1, + !eq(B.Offset, -1): -1, + true: !add(A.Offset, B.Offset))> { + // See SubRegIndex. + let ComposedOf = [A, B]; +} + +// RegAltNameIndex - The alternate name set to use for register operands of +// this register class when printing. +class RegAltNameIndex { + string Namespace = ""; + + // A set to be used if the name for a register is not defined in this set. + // This allows creating name sets with only a few alternative names. + RegAltNameIndex FallbackRegAltNameIndex = ?; +} +def NoRegAltName : RegAltNameIndex; + +// Register - You should define one instance of this class for each register +// in the target machine. String n will become the "name" of the register. +class Register<string n, list<string> altNames = []> { + string Namespace = ""; + string AsmName = n; + list<string> AltNames = altNames; + + // Aliases - A list of registers that this register overlaps with. A read or + // modification of this register can potentially read or modify the aliased + // registers. + list<Register> Aliases = []; + + // SubRegs - A list of registers that are parts of this register. Note these + // are "immediate" sub-registers and the registers within the list do not + // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX], + // not [AX, AH, AL]. + list<Register> SubRegs = []; + + // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used + // to address it. Sub-sub-register indices are automatically inherited from + // SubRegs. + list<SubRegIndex> SubRegIndices = []; + + // RegAltNameIndices - The alternate name indices which are valid for this + // register. + list<RegAltNameIndex> RegAltNameIndices = []; + + // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. + // These values can be determined by locating the <target>.h file in the + // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The + // order of these names correspond to the enumeration used by gcc. A value of + // -1 indicates that the gcc number is undefined and -2 that register number + // is invalid for this mode/flavour. + list<int> DwarfNumbers = []; + + // CostPerUse - Additional cost of instructions using this register compared + // to other registers in its class. The register allocator will try to + // minimize the number of instructions using a register with a CostPerUse. + // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where + // some registers require larger instruction encodings, by the RISC-V target, + // where some registers preclude using some C instructions. + int CostPerUse = 0; + + // CoveredBySubRegs - When this bit is set, the value of this register is + // completely determined by the value of its sub-registers. For example, the + // x86 register AX is covered by its sub-registers AL and AH, but EAX is not + // covered by its sub-register AX. + bit CoveredBySubRegs = false; + + // HWEncoding - The target specific hardware encoding for this register. + bits<16> HWEncoding = 0; + + bit isArtificial = false; +} + +// RegisterWithSubRegs - This can be used to define instances of Register which +// need to specify sub-registers. +// List "subregs" specifies which registers are sub-registers to this one. This +// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc. +// This allows the code generator to be careful not to put two values with +// overlapping live ranges into registers which alias. +class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> { + let SubRegs = subregs; +} + +// DAGOperand - An empty base class that unifies RegisterClass's and other forms +// of Operand's that are legal as type qualifiers in DAG patterns. This should +// only ever be used for defining multiclasses that are polymorphic over both +// RegisterClass's and other Operand's. +class DAGOperand { + string OperandNamespace = "MCOI"; + string DecoderMethod = ""; +} + +// RegisterClass - Now that all of the registers are defined, and aliases +// between registers are defined, specify which registers belong to which +// register classes. This also defines the default allocation order of +// registers by register allocators. +// +class RegisterClass<string namespace, list<ValueType> regTypes, int alignment, + dag regList, RegAltNameIndex idx = NoRegAltName> + : DAGOperand { + string Namespace = namespace; + + // The register size/alignment information, parameterized by a HW mode. + RegInfoByHwMode RegInfos; + + // RegType - Specify the list ValueType of the registers in this register + // class. Note that all registers in a register class must have the same + // ValueTypes. This is a list because some targets permit storing different + // types in same register, for example vector values with 128-bit total size, + // but different count/size of items, like SSE on x86. + // + list<ValueType> RegTypes = regTypes; + + // Size - Specify the spill size in bits of the registers. A default value of + // zero lets tablegen pick an appropriate size. + int Size = 0; + + // Alignment - Specify the alignment required of the registers when they are + // stored or loaded to memory. + // + int Alignment = alignment; + + // CopyCost - This value is used to specify the cost of copying a value + // between two registers in this register class. The default value is one + // meaning it takes a single instruction to perform the copying. A negative + // value means copying is extremely expensive or impossible. + int CopyCost = 1; + + // MemberList - Specify which registers are in this class. If the + // allocation_order_* method are not specified, this also defines the order of + // allocation used by the register allocator. + // + dag MemberList = regList; + + // AltNameIndex - The alternate register name to use when printing operands + // of this register class. Every register in the register class must have + // a valid alternate name for the given index. + RegAltNameIndex altNameIndex = idx; + + // isAllocatable - Specify that the register class can be used for virtual + // registers and register allocation. Some register classes are only used to + // model instruction operand constraints, and should have isAllocatable = 0. + bit isAllocatable = true; + + // AltOrders - List of alternative allocation orders. The default order is + // MemberList itself, and that is good enough for most targets since the + // register allocators automatically remove reserved registers and move + // callee-saved registers to the end. + list<dag> AltOrders = []; + + // AltOrderSelect - The body of a function that selects the allocation order + // to use in a given machine function. The code will be inserted in a + // function like this: + // + // static inline unsigned f(const MachineFunction &MF) { ... } + // + // The function should return 0 to select the default order defined by + // MemberList, 1 to select the first AltOrders entry and so on. + code AltOrderSelect = [{}]; + + // Specify allocation priority for register allocators using a greedy + // heuristic. Classes with higher priority values are assigned first. This is + // useful as it is sometimes beneficial to assign registers to highly + // constrained classes first. The value has to be in the range [0,63]. + int AllocationPriority = 0; + + // Generate register pressure set for this register class and any class + // synthesized from it. Set to 0 to inhibit unneeded pressure sets. + bit GeneratePressureSet = true; + + // Weight override for register pressure calculation. This is the value + // TargetRegisterClass::getRegClassWeight() will return. The weight is in + // units of pressure for this register class. If unset tablegen will + // calculate a weight based on a number of register units in this register + // class registers. The weight is per register. + int Weight = ?; + + // The diagnostic type to present when referencing this operand in a match + // failure error message. If this is empty, the default Match_InvalidOperand + // diagnostic type will be used. If this is "<name>", a Match_<name> enum + // value will be generated and used for this operand type. The target + // assembly parser is responsible for converting this into a user-facing + // diagnostic message. + string DiagnosticType = ""; + + // A diagnostic message to emit when an invalid value is provided for this + // register class when it is being used an an assembly operand. If this is + // non-empty, an anonymous diagnostic type enum value will be generated, and + // the assembly matcher will provide a function to map from diagnostic types + // to message strings. + string DiagnosticString = ""; +} + +// The memberList in a RegisterClass is a dag of set operations. TableGen +// evaluates these set operations and expand them into register lists. These +// are the most common operation, see test/TableGen/SetTheory.td for more +// examples of what is possible: +// +// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a +// register class, or a sub-expression. This is also the way to simply list +// registers. +// +// (sub GPR, SP) - Set difference. Subtract the last arguments from the first. +// +// (and GPR, CSR) - Set intersection. All registers from the first set that are +// also in the second set. +// +// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of +// numbered registers. Takes an optional 4th operand which is a stride to use +// when generating the sequence. +// +// (shl GPR, 4) - Remove the first N elements. +// +// (trunc GPR, 4) - Truncate after the first N elements. +// +// (rotl GPR, 1) - Rotate N places to the left. +// +// (rotr GPR, 1) - Rotate N places to the right. +// +// (decimate GPR, 2) - Pick every N'th element, starting with the first. +// +// (interleave A, B, ...) - Interleave the elements from each argument list. +// +// All of these operators work on ordered sets, not lists. That means +// duplicates are removed from sub-expressions. + +// Set operators. The rest is defined in TargetSelectionDAG.td. +def sequence; +def decimate; +def interleave; + +// RegisterTuples - Automatically generate super-registers by forming tuples of +// sub-registers. This is useful for modeling register sequence constraints +// with pseudo-registers that are larger than the architectural registers. +// +// The sub-register lists are zipped together: +// +// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>; +// +// Generates the same registers as: +// +// let SubRegIndices = [sube, subo] in { +// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>; +// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>; +// } +// +// The generated pseudo-registers inherit super-classes and fields from their +// first sub-register. Most fields from the Register class are inferred, and +// the AsmName and Dwarf numbers are cleared. +// +// RegisterTuples instances can be used in other set operations to form +// register classes and so on. This is the only way of using the generated +// registers. +// +// RegNames may be specified to supply asm names for the generated tuples. +// If used must have the same size as the list of produced registers. +class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs, + list<string> RegNames = []> { + // SubRegs - N lists of registers to be zipped up. Super-registers are + // synthesized from the first element of each SubRegs list, the second + // element and so on. + list<dag> SubRegs = Regs; + + // SubRegIndices - N SubRegIndex instances. This provides the names of the + // sub-registers in the synthesized super-registers. + list<SubRegIndex> SubRegIndices = Indices; + + // List of asm names for the generated tuple registers. + list<string> RegAsmNames = RegNames; +} + + +//===----------------------------------------------------------------------===// +// DwarfRegNum - This class provides a mapping of the llvm register enumeration +// to the register numbering used by gcc and gdb. These values are used by a +// debug information writer to describe where values may be located during +// execution. +class DwarfRegNum<list<int> Numbers> { + // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register. + // These values can be determined by locating the <target>.h file in the + // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The + // order of these names correspond to the enumeration used by gcc. A value of + // -1 indicates that the gcc number is undefined and -2 that register number + // is invalid for this mode/flavour. + list<int> DwarfNumbers = Numbers; +} + +// DwarfRegAlias - This class declares that a given register uses the same dwarf +// numbers as another one. This is useful for making it clear that the two +// registers do have the same number. It also lets us build a mapping +// from dwarf register number to llvm register. +class DwarfRegAlias<Register reg> { + Register DwarfAlias = reg; +} + +//===----------------------------------------------------------------------===// +// Pull in the common support for MCPredicate (portable scheduling predicates). +// +include "llvm/Target/TargetInstrPredicate.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for scheduling +// +include "llvm/Target/TargetSchedule.td" + +class Predicate; // Forward def + +class InstructionEncoding { + // Size of encoded instruction. + int Size; + + // The "namespace" in which this instruction exists, on targets like ARM + // which multiple ISA namespaces exist. + string DecoderNamespace = ""; + + // List of predicates which will be turned into isel matching code. + list<Predicate> Predicates = []; + + string DecoderMethod = ""; + + // Is the instruction decoder method able to completely determine if the + // given instruction is valid or not. If the TableGen definition of the + // instruction specifies bitpattern A??B where A and B are static bits, the + // hasCompleteDecoder flag says whether the decoder method fully handles the + // ?? space, i.e. if it is a final arbiter for the instruction validity. + // If not then the decoder attempts to continue decoding when the decoder + // method fails. + // + // This allows to handle situations where the encoding is not fully + // orthogonal. Example: + // * InstA with bitpattern 0b0000????, + // * InstB with bitpattern 0b000000?? but the associated decoder method + // DecodeInstB() returns Fail when ?? is 0b00 or 0b11. + // + // The decoder tries to decode a bitpattern that matches both InstA and + // InstB bitpatterns first as InstB (because it is the most specific + // encoding). In the default case (hasCompleteDecoder = 1), when + // DecodeInstB() returns Fail the bitpattern gets rejected. By setting + // hasCompleteDecoder = 0 in InstB, the decoder is informed that + // DecodeInstB() is not able to determine if all possible values of ?? are + // valid or not. If DecodeInstB() returns Fail the decoder will attempt to + // decode the bitpattern as InstA too. + bit hasCompleteDecoder = true; +} + +// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies +// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used +// to encode and decode based on HwMode. +class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []> + : HwModeSelect<Ms> { + // The length of this list must be the same as the length of Ms. + list<InstructionEncoding> Objects = Ts; +} + +//===----------------------------------------------------------------------===// +// Instruction set description - These classes correspond to the C++ classes in +// the Target/TargetInstrInfo.h file. +// +class Instruction : InstructionEncoding { + string Namespace = ""; + + dag OutOperandList; // An dag containing the MI def operand list. + dag InOperandList; // An dag containing the MI use operand list. + string AsmString = ""; // The .s format to print the instruction with. + + // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty, + // the Inst member of this Instruction is ignored. + EncodingByHwMode EncodingInfos; + + // Pattern - Set to the DAG pattern for this instruction, if we know of one, + // otherwise, uninitialized. + list<dag> Pattern; + + // The follow state will eventually be inferred automatically from the + // instruction pattern. + + list<Register> Uses = []; // Default to using no non-operand registers + list<Register> Defs = []; // Default to modifying no non-operand registers + + // Predicates - List of predicates which will be turned into isel matching + // code. + list<Predicate> Predicates = []; + + // Size - Size of encoded instruction, or zero if the size cannot be determined + // from the opcode. + int Size = 0; + + // Code size, for instruction selection. + // FIXME: What does this actually mean? + int CodeSize = 0; + + // Added complexity passed onto matching pattern. + int AddedComplexity = 0; + + // Indicates if this is a pre-isel opcode that should be + // legalized/regbankselected/selected. + bit isPreISelOpcode = false; + + // These bits capture information about the high-level semantics of the + // instruction. + bit isReturn = false; // Is this instruction a return instruction? + bit isBranch = false; // Is this instruction a branch instruction? + bit isEHScopeReturn = false; // Does this instruction end an EH scope? + bit isIndirectBranch = false; // Is this instruction an indirect branch? + bit isCompare = false; // Is this instruction a comparison instruction? + bit isMoveImm = false; // Is this instruction a move immediate instruction? + bit isMoveReg = false; // Is this instruction a move register instruction? + bit isBitcast = false; // Is this instruction a bitcast instruction? + bit isSelect = false; // Is this instruction a select instruction? + bit isBarrier = false; // Can control flow fall through this instruction? + bit isCall = false; // Is this instruction a call instruction? + bit isAdd = false; // Is this instruction an add instruction? + bit isTrap = false; // Is this instruction a trap instruction? + bit canFoldAsLoad = false; // Can this be folded as a simple memory operand? + bit mayLoad = ?; // Is it possible for this inst to read memory? + bit mayStore = ?; // Is it possible for this inst to write memory? + bit mayRaiseFPException = false; // Can this raise a floating-point exception? + bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote? + bit isCommutable = false; // Is this 3 operand instruction commutable? + bit isTerminator = false; // Is this part of the terminator for a basic block? + bit isReMaterializable = false; // Is this instruction re-materializable? + bit isPredicable = false; // 1 means this instruction is predicable + // even if it does not have any operand + // tablegen can identify as a predicate + bit isUnpredicable = false; // 1 means this instruction is not predicable + // even if it _does_ have a predicate operand + bit hasDelaySlot = false; // Does this instruction have an delay slot? + bit usesCustomInserter = false; // Pseudo instr needing special help. + bit hasPostISelHook = false; // To be *adjusted* after isel by target hook. + bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains? + bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction? + bit isConvergent = false; // Is this instruction convergent? + bit isAuthenticated = false; // Does this instruction authenticate a pointer? + bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction. + bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement? + bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement? + bit isRegSequence = false; // Is this instruction a kind of reg sequence? + // If so, make sure to override + // TargetInstrInfo::getRegSequenceLikeInputs. + bit isPseudo = false; // Is this instruction a pseudo-instruction? + // If so, won't have encoding information for + // the [MC]CodeEmitter stuff. + bit isExtractSubreg = false; // Is this instruction a kind of extract subreg? + // If so, make sure to override + // TargetInstrInfo::getExtractSubregLikeInputs. + bit isInsertSubreg = false; // Is this instruction a kind of insert subreg? + // If so, make sure to override + // TargetInstrInfo::getInsertSubregLikeInputs. + bit variadicOpsAreDefs = false; // Are variadic operands definitions? + + // Does the instruction have side effects that are not captured by any + // operands of the instruction or other flags? + bit hasSideEffects = ?; + + // Is this instruction a "real" instruction (with a distinct machine + // encoding), or is it a pseudo instruction used for codegen modeling + // purposes. + // FIXME: For now this is distinct from isPseudo, above, as code-gen-only + // instructions can (and often do) still have encoding information + // associated with them. Once we've migrated all of them over to true + // pseudo-instructions that are lowered to real instructions prior to + // the printer/emitter, we can remove this attribute and just use isPseudo. + // + // The intended use is: + // isPseudo: Does not have encoding information and should be expanded, + // at the latest, during lowering to MCInst. + // + // isCodeGenOnly: Does have encoding information and can go through to the + // CodeEmitter unchanged, but duplicates a canonical instruction + // definition's encoding and should be ignored when constructing the + // assembler match tables. + bit isCodeGenOnly = false; + + // Is this instruction a pseudo instruction for use by the assembler parser. + bit isAsmParserOnly = false; + + // This instruction is not expected to be queried for scheduling latencies + // and therefore needs no scheduling information even for a complete + // scheduling model. + bit hasNoSchedulingInfo = false; + + InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling. + + // Scheduling information from TargetSchedule.td. + list<SchedReadWrite> SchedRW; + + string Constraints = ""; // OperandConstraint, e.g. $src = $dst. + + /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not + /// be encoded into the output machineinstr. + string DisableEncoding = ""; + + string PostEncoderMethod = ""; + + /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc. + bits<64> TSFlags = 0; + + ///@name Assembler Parser Support + ///@{ + + string AsmMatchConverter = ""; + + /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a + /// two-operand matcher inst-alias for a three operand instruction. + /// For example, the arm instruction "add r3, r3, r5" can be written + /// as "add r3, r5". The constraint is of the same form as a tied-operand + /// constraint. For example, "$Rn = $Rd". + string TwoOperandAliasConstraint = ""; + + /// Assembler variant name to use for this instruction. If specified then + /// instruction will be presented only in MatchTable for this variant. If + /// not specified then assembler variants will be determined based on + /// AsmString + string AsmVariantName = ""; + + ///@} + + /// UseNamedOperandTable - If set, the operand indices of this instruction + /// can be queried via the getNamedOperandIdx() function which is generated + /// by TableGen. + bit UseNamedOperandTable = false; + + /// Should FastISel ignore this instruction. For certain ISAs, they have + /// instructions which map to the same ISD Opcode, value type operands and + /// instruction selection predicates. FastISel cannot handle such cases, but + /// SelectionDAG can. + bit FastISelShouldIgnore = false; +} + +/// Defines an additional encoding that disassembles to the given instruction +/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets +// to specify their size. +class AdditionalEncoding<Instruction I> : InstructionEncoding { + Instruction AliasOf = I; +} + +/// PseudoInstExpansion - Expansion information for a pseudo-instruction. +/// Which instruction it expands to and how the operands map from the +/// pseudo. +class PseudoInstExpansion<dag Result> { + dag ResultInst = Result; // The instruction to generate. + bit isPseudo = true; +} + +/// Predicates - These are extra conditionals which are turned into instruction +/// selector matching code. Currently each predicate is just a string. +class Predicate<string cond> { + string CondString = cond; + + /// AssemblerMatcherPredicate - If this feature can be used by the assembler + /// matcher, this is true. Targets should set this by inheriting their + /// feature from the AssemblerPredicate class in addition to Predicate. + bit AssemblerMatcherPredicate = false; + + /// AssemblerCondDag - Set of subtarget features being tested used + /// as alternative condition string used for assembler matcher. Must be used + /// with (all_of) to indicate that all features must be present, or (any_of) + /// to indicate that at least one must be. The required lack of presence of + /// a feature can be tested using a (not) node including the feature. + /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0". + /// "(all_of (not ModeThumb))" is translated to + /// "(Bits & ModeThumb) == 0". + /// "(all_of ModeThumb, FeatureThumb2)" is translated to + /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0". + /// "(any_of ModeTumb, FeatureThumb2)" is translated to + /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0". + /// all_of and any_of cannot be combined in a single dag, instead multiple + /// predicates can be placed onto Instruction definitions. + dag AssemblerCondDag; + + /// PredicateName - User-level name to use for the predicate. Mainly for use + /// in diagnostics such as missing feature errors in the asm matcher. + string PredicateName = ""; + + /// Setting this to '1' indicates that the predicate must be recomputed on + /// every function change. Most predicates can leave this at '0'. + /// + /// Ignored by SelectionDAG, it always recomputes the predicate on every use. + bit RecomputePerFunction = false; +} + +/// NoHonorSignDependentRounding - This predicate is true if support for +/// sign-dependent-rounding is not enabled. +def NoHonorSignDependentRounding + : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">; + +class Requires<list<Predicate> preds> { + list<Predicate> Predicates = preds; +} + +/// ops definition - This is just a simple marker used to identify the operand +/// list for an instruction. outs and ins are identical both syntactically and +/// semantically; they are used to define def operands and use operands to +/// improve readability. This should be used like this: +/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar. +def ops; +def outs; +def ins; + +/// variable_ops definition - Mark this instruction as taking a variable number +/// of operands. +def variable_ops; + + +/// PointerLikeRegClass - Values that are designed to have pointer width are +/// derived from this. TableGen treats the register class as having a symbolic +/// type that it doesn't know, and resolves the actual regclass to use by using +/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time. +class PointerLikeRegClass<int Kind> { + int RegClassKind = Kind; +} + + +/// ptr_rc definition - Mark this operand as being a pointer value whose +/// register class is resolved dynamically via a callback to TargetInstrInfo. +/// FIXME: We should probably change this to a class which contain a list of +/// flags. But currently we have but one flag. +def ptr_rc : PointerLikeRegClass<0>; + +/// unknown definition - Mark this operand as being of unknown type, causing +/// it to be resolved by inference in the context it is used. +class unknown_class; +def unknown : unknown_class; + +/// AsmOperandClass - Representation for the kinds of operands which the target +/// specific parser can create and the assembly matcher may need to distinguish. +/// +/// Operand classes are used to define the order in which instructions are +/// matched, to ensure that the instruction which gets matched for any +/// particular list of operands is deterministic. +/// +/// The target specific parser must be able to classify a parsed operand into a +/// unique class which does not partially overlap with any other classes. It can +/// match a subset of some other class, in which case the super class field +/// should be defined. +class AsmOperandClass { + /// The name to use for this class, which should be usable as an enum value. + string Name = ?; + + /// The super classes of this operand. + list<AsmOperandClass> SuperClasses = []; + + /// The name of the method on the target specific operand to call to test + /// whether the operand is an instance of this class. If not set, this will + /// default to "isFoo", where Foo is the AsmOperandClass name. The method + /// signature should be: + /// bool isFoo() const; + string PredicateMethod = ?; + + /// The name of the method on the target specific operand to call to add the + /// target specific operand to an MCInst. If not set, this will default to + /// "addFooOperands", where Foo is the AsmOperandClass name. The method + /// signature should be: + /// void addFooOperands(MCInst &Inst, unsigned N) const; + string RenderMethod = ?; + + /// The name of the method on the target specific operand to call to custom + /// handle the operand parsing. This is useful when the operands do not relate + /// to immediates or registers and are very instruction specific (as flags to + /// set in a processor register, coprocessor number, ...). + string ParserMethod = ?; + + // The diagnostic type to present when referencing this operand in a + // match failure error message. By default, use a generic "invalid operand" + // diagnostic. The target AsmParser maps these codes to text. + string DiagnosticType = ""; + + /// A diagnostic message to emit when an invalid value is provided for this + /// operand. + string DiagnosticString = ""; + + /// Set to 1 if this operand is optional and not always required. Typically, + /// the AsmParser will emit an error when it finishes parsing an + /// instruction if it hasn't matched all the operands yet. However, this + /// error will be suppressed if all of the remaining unmatched operands are + /// marked as IsOptional. + /// + /// Optional arguments must be at the end of the operand list. + bit IsOptional = false; + + /// The name of the method on the target specific asm parser that returns the + /// default operand for this optional operand. This method is only used if + /// IsOptional == 1. If not set, this will default to "defaultFooOperands", + /// where Foo is the AsmOperandClass name. The method signature should be: + /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const; + string DefaultMethod = ?; +} + +def ImmAsmOperand : AsmOperandClass { + let Name = "Imm"; +} + +/// Operand Types - These provide the built-in operand types that may be used +/// by a target. Targets can optionally provide their own operand types as +/// needed, though this should not be needed for RISC targets. +class Operand<ValueType ty> : DAGOperand { + ValueType Type = ty; + string PrintMethod = "printOperand"; + string EncoderMethod = ""; + bit hasCompleteDecoder = true; + string OperandType = "OPERAND_UNKNOWN"; + dag MIOperandInfo = (ops); + + // MCOperandPredicate - Optionally, a code fragment operating on + // const MCOperand &MCOp, and returning a bool, to indicate if + // the value of MCOp is valid for the specific subclass of Operand + code MCOperandPredicate; + + // ParserMatchClass - The "match class" that operands of this type fit + // in. Match classes are used to define the order in which instructions are + // match, to ensure that which instructions gets matched is deterministic. + // + // The target specific parser must be able to classify an parsed operand into + // a unique class, which does not partially overlap with any other classes. It + // can match a subset of some other class, in which case the AsmOperandClass + // should declare the other operand as one of its super classes. + AsmOperandClass ParserMatchClass = ImmAsmOperand; +} + +class RegisterOperand<RegisterClass regclass, string pm = "printOperand"> + : DAGOperand { + // RegClass - The register class of the operand. + RegisterClass RegClass = regclass; + // PrintMethod - The target method to call to print register operands of + // this type. The method normally will just use an alt-name index to look + // up the name to print. Default to the generic printOperand(). + string PrintMethod = pm; + + // EncoderMethod - The target method name to call to encode this register + // operand. + string EncoderMethod = ""; + + // ParserMatchClass - The "match class" that operands of this type fit + // in. Match classes are used to define the order in which instructions are + // match, to ensure that which instructions gets matched is deterministic. + // + // The target specific parser must be able to classify an parsed operand into + // a unique class, which does not partially overlap with any other classes. It + // can match a subset of some other class, in which case the AsmOperandClass + // should declare the other operand as one of its super classes. + AsmOperandClass ParserMatchClass; + + string OperandType = "OPERAND_REGISTER"; + + // When referenced in the result of a CodeGen pattern, GlobalISel will + // normally copy the matched operand to the result. When this is set, it will + // emit a special copy that will replace zero-immediates with the specified + // zero-register. + Register GIZeroRegister = ?; +} + +let OperandType = "OPERAND_IMMEDIATE" in { +def i1imm : Operand<i1>; +def i8imm : Operand<i8>; +def i16imm : Operand<i16>; +def i32imm : Operand<i32>; +def i64imm : Operand<i64>; + +def f32imm : Operand<f32>; +def f64imm : Operand<f64>; +} + +// Register operands for generic instructions don't have an MVT, but do have +// constraints linking the operands (e.g. all operands of a G_ADD must +// have the same LLT). +class TypedOperand<string Ty> : Operand<untyped> { + let OperandType = Ty; + bit IsPointer = false; + bit IsImmediate = false; +} + +def type0 : TypedOperand<"OPERAND_GENERIC_0">; +def type1 : TypedOperand<"OPERAND_GENERIC_1">; +def type2 : TypedOperand<"OPERAND_GENERIC_2">; +def type3 : TypedOperand<"OPERAND_GENERIC_3">; +def type4 : TypedOperand<"OPERAND_GENERIC_4">; +def type5 : TypedOperand<"OPERAND_GENERIC_5">; + +let IsPointer = true in { + def ptype0 : TypedOperand<"OPERAND_GENERIC_0">; + def ptype1 : TypedOperand<"OPERAND_GENERIC_1">; + def ptype2 : TypedOperand<"OPERAND_GENERIC_2">; + def ptype3 : TypedOperand<"OPERAND_GENERIC_3">; + def ptype4 : TypedOperand<"OPERAND_GENERIC_4">; + def ptype5 : TypedOperand<"OPERAND_GENERIC_5">; +} + +// untyped_imm is for operands where isImm() will be true. It currently has no +// special behaviour and is only used for clarity. +def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> { + let IsImmediate = true; +} + +/// zero_reg definition - Special node to stand for the zero register. +/// +def zero_reg; + +/// undef_tied_input - Special node to indicate an input register tied +/// to an output which defaults to IMPLICIT_DEF. +def undef_tied_input; + +/// All operands which the MC layer classifies as predicates should inherit from +/// this class in some manner. This is already handled for the most commonly +/// used PredicateOperand, but may be useful in other circumstances. +class PredicateOp; + +/// OperandWithDefaultOps - This Operand class can be used as the parent class +/// for an Operand that needs to be initialized with a default value if +/// no value is supplied in a pattern. This class can be used to simplify the +/// pattern definitions for instructions that have target specific flags +/// encoded as immediate operands. +class OperandWithDefaultOps<ValueType ty, dag defaultops> + : Operand<ty> { + dag DefaultOps = defaultops; +} + +/// PredicateOperand - This can be used to define a predicate operand for an +/// instruction. OpTypes specifies the MIOperandInfo for the operand, and +/// AlwaysVal specifies the value of this predicate when set to "always +/// execute". +class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal> + : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp { + let MIOperandInfo = OpTypes; +} + +/// OptionalDefOperand - This is used to define a optional definition operand +/// for an instruction. DefaultOps is the register the operand represents if +/// none is supplied, e.g. zero_reg. +class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops> + : OperandWithDefaultOps<ty, defaultops> { + let MIOperandInfo = OpTypes; +} + + +// InstrInfo - This class should only be instantiated once to provide parameters +// which are global to the target machine. +// +class InstrInfo { + // Target can specify its instructions in either big or little-endian formats. + // For instance, while both Sparc and PowerPC are big-endian platforms, the + // Sparc manual specifies its instructions in the format [31..0] (big), while + // PowerPC specifies them using the format [0..31] (little). + bit isLittleEndianEncoding = false; + + // The instruction properties mayLoad, mayStore, and hasSideEffects are unset + // by default, and TableGen will infer their value from the instruction + // pattern when possible. + // + // Normally, TableGen will issue an error it it can't infer the value of a + // property that hasn't been set explicitly. When guessInstructionProperties + // is set, it will guess a safe value instead. + // + // This option is a temporary migration help. It will go away. + bit guessInstructionProperties = true; + + // TableGen's instruction encoder generator has support for matching operands + // to bit-field variables both by name and by position. While matching by + // name is preferred, this is currently not possible for complex operands, + // and some targets still reply on the positional encoding rules. When + // generating a decoder for such targets, the positional encoding rules must + // be used by the decoder generator as well. + // + // This option is temporary; it will go away once the TableGen decoder + // generator has better support for complex operands and targets have + // migrated away from using positionally encoded operands. + bit decodePositionallyEncodedOperands = false; + + // When set, this indicates that there will be no overlap between those + // operands that are matched by ordering (positional operands) and those + // matched by name. + // + // This option is temporary; it will go away once the TableGen decoder + // generator has better support for complex operands and targets have + // migrated away from using positionally encoded operands. + bit noNamedPositionallyEncodedOperands = false; +} + +// Standard Pseudo Instructions. +// This list must match TargetOpcodes.def. +// Only these instructions are allowed in the TargetOpcode namespace. +// Ensure mayLoad and mayStore have a default value, so as not to break +// targets that set guessInstructionProperties=0. Any local definition of +// mayLoad/mayStore takes precedence over these default values. +class StandardPseudoInstruction : Instruction { + let mayLoad = false; + let mayStore = false; + let isCodeGenOnly = true; + let isPseudo = true; + let hasNoSchedulingInfo = true; + let Namespace = "TargetOpcode"; +} +def PHI : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins variable_ops); + let AsmString = "PHINODE"; + let hasSideEffects = false; +} +def INLINEASM : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = ""; + let hasSideEffects = false; // Note side effect is encoded in an operand. +} +def INLINEASM_BR : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = ""; + // Unlike INLINEASM, this is always treated as having side-effects. + let hasSideEffects = true; + // Despite potentially branching, this instruction is intentionally _not_ + // marked as a terminator or a branch. +} +def CFI_INSTRUCTION : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = ""; + let hasCtrlDep = true; + let hasSideEffects = false; + let isNotDuplicable = true; +} +def EH_LABEL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = ""; + let hasCtrlDep = true; + let hasSideEffects = false; + let isNotDuplicable = true; +} +def GC_LABEL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = ""; + let hasCtrlDep = true; + let hasSideEffects = false; + let isNotDuplicable = true; +} +def ANNOTATION_LABEL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = ""; + let hasCtrlDep = true; + let hasSideEffects = false; + let isNotDuplicable = true; +} +def KILL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = ""; + let hasSideEffects = false; +} +def EXTRACT_SUBREG : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$supersrc, i32imm:$subidx); + let AsmString = ""; + let hasSideEffects = false; +} +def INSERT_SUBREG : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx); + let AsmString = ""; + let hasSideEffects = false; + let Constraints = "$supersrc = $dst"; +} +def IMPLICIT_DEF : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins); + let AsmString = ""; + let hasSideEffects = false; + let isReMaterializable = true; + let isAsCheapAsAMove = true; +} +def SUBREG_TO_REG : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx); + let AsmString = ""; + let hasSideEffects = false; +} +def COPY_TO_REGCLASS : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$src, i32imm:$regclass); + let AsmString = ""; + let hasSideEffects = false; + let isAsCheapAsAMove = true; +} +def DBG_VALUE : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = "DBG_VALUE"; + let hasSideEffects = false; +} +def DBG_INSTR_REF : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = "DBG_INSTR_REF"; + let hasSideEffects = false; +} +def DBG_LABEL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins unknown:$label); + let AsmString = "DBG_LABEL"; + let hasSideEffects = false; +} +def REG_SEQUENCE : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$supersrc, variable_ops); + let AsmString = ""; + let hasSideEffects = false; + let isAsCheapAsAMove = true; +} +def COPY : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins unknown:$src); + let AsmString = ""; + let hasSideEffects = false; + let isAsCheapAsAMove = true; + let hasNoSchedulingInfo = false; +} +def BUNDLE : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = "BUNDLE"; + let hasSideEffects = false; +} +def LIFETIME_START : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = "LIFETIME_START"; + let hasSideEffects = false; +} +def LIFETIME_END : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$id); + let AsmString = "LIFETIME_END"; + let hasSideEffects = false; +} +def PSEUDO_PROBE : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr); + let AsmString = "PSEUDO_PROBE"; + let hasSideEffects = 1; +} + +def STACKMAP : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops); + let hasSideEffects = true; + let isCall = true; + let mayLoad = true; + let usesCustomInserter = true; +} +def PATCHPOINT : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee, + i32imm:$nargs, i32imm:$cc, variable_ops); + let hasSideEffects = true; + let isCall = true; + let mayLoad = true; + let usesCustomInserter = true; +} +def STATEPOINT : StandardPseudoInstruction { + let OutOperandList = (outs variable_ops); + let InOperandList = (ins variable_ops); + let usesCustomInserter = true; + let mayLoad = true; + let mayStore = true; + let hasSideEffects = true; + let isCall = true; +} +def LOAD_STACK_GUARD : StandardPseudoInstruction { + let OutOperandList = (outs ptr_rc:$dst); + let InOperandList = (ins); + let mayLoad = true; + bit isReMaterializable = true; + let hasSideEffects = false; + bit isPseudo = true; +} +def PREALLOCATED_SETUP : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins i32imm:$a); + let usesCustomInserter = true; + let hasSideEffects = true; +} +def PREALLOCATED_ARG : StandardPseudoInstruction { + let OutOperandList = (outs ptr_rc:$loc); + let InOperandList = (ins i32imm:$a, i32imm:$b); + let usesCustomInserter = true; + let hasSideEffects = true; +} +def LOCAL_ESCAPE : StandardPseudoInstruction { + // This instruction is really just a label. It has to be part of the chain so + // that it doesn't get dropped from the DAG, but it produces nothing and has + // no side effects. + let OutOperandList = (outs); + let InOperandList = (ins ptr_rc:$symbol, i32imm:$id); + let hasSideEffects = false; + let hasCtrlDep = true; +} +def FAULTING_OP : StandardPseudoInstruction { + let OutOperandList = (outs unknown:$dst); + let InOperandList = (ins variable_ops); + let usesCustomInserter = true; + let hasSideEffects = true; + let mayLoad = true; + let mayStore = true; + let isTerminator = true; + let isBranch = true; +} +def PATCHABLE_OP : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let usesCustomInserter = true; + let mayLoad = true; + let mayStore = true; + let hasSideEffects = true; +} +def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins); + let AsmString = "# XRay Function Enter."; + let usesCustomInserter = true; + let hasSideEffects = true; +} +def PATCHABLE_RET : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = "# XRay Function Patchable RET."; + let usesCustomInserter = true; + let hasSideEffects = true; + let isTerminator = true; + let isReturn = true; +} +def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins); + let AsmString = "# XRay Function Exit."; + let usesCustomInserter = true; + let hasSideEffects = true; + let isReturn = false; // Original return instruction will follow +} +def PATCHABLE_TAIL_CALL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = "# XRay Tail Call Exit."; + let usesCustomInserter = true; + let hasSideEffects = true; + let isReturn = true; +} +def PATCHABLE_EVENT_CALL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins ptr_rc:$event, unknown:$size); + let AsmString = "# XRay Custom Event Log."; + let usesCustomInserter = true; + let isCall = true; + let mayLoad = true; + let mayStore = true; + let hasSideEffects = true; +} +def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size); + let AsmString = "# XRay Typed Event Log."; + let usesCustomInserter = true; + let isCall = true; + let mayLoad = true; + let mayStore = true; + let hasSideEffects = true; +} +def FENTRY_CALL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins); + let AsmString = "# FEntry call"; + let usesCustomInserter = true; + let isCall = true; + let mayLoad = true; + let mayStore = true; + let hasSideEffects = true; +} +def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction { + let OutOperandList = (outs); + let InOperandList = (ins variable_ops); + let AsmString = ""; + let hasSideEffects = true; +} + +// Generic opcodes used in GlobalISel. +include "llvm/Target/GenericOpcodes.td" + +//===----------------------------------------------------------------------===// +// AsmParser - This class can be implemented by targets that wish to implement +// .s file parsing. +// +// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel +// syntax on X86 for example). +// +class AsmParser { + // AsmParserClassName - This specifies the suffix to use for the asmparser + // class. Generated AsmParser classes are always prefixed with the target + // name. + string AsmParserClassName = "AsmParser"; + + // AsmParserInstCleanup - If non-empty, this is the name of a custom member + // function of the AsmParser class to call on every matched instruction. + // This can be used to perform target specific instruction post-processing. + string AsmParserInstCleanup = ""; + + // ShouldEmitMatchRegisterName - Set to false if the target needs a hand + // written register name matcher + bit ShouldEmitMatchRegisterName = true; + + // Set to true if the target needs a generated 'alternative register name' + // matcher. + // + // This generates a function which can be used to lookup registers from + // their aliases. This function will fail when called on targets where + // several registers share the same alias (i.e. not a 1:1 mapping). + bit ShouldEmitMatchRegisterAltName = false; + + // Set to true if MatchRegisterName and MatchRegisterAltName functions + // should be generated even if there are duplicate register names. The + // target is responsible for coercing aliased registers as necessary + // (e.g. in validateTargetOperandClass), and there are no guarantees about + // which numeric register identifier will be returned in the case of + // multiple matches. + bit AllowDuplicateRegisterNames = false; + + // HasMnemonicFirst - Set to false if target instructions don't always + // start with a mnemonic as the first token. + bit HasMnemonicFirst = true; + + // ReportMultipleNearMisses - + // When 0, the assembly matcher reports an error for one encoding or operand + // that did not match the parsed instruction. + // When 1, the assembly matcher returns a list of encodings that were close + // to matching the parsed instruction, so to allow more detailed error + // messages. + bit ReportMultipleNearMisses = false; +} +def DefaultAsmParser : AsmParser; + +//===----------------------------------------------------------------------===// +// AsmParserVariant - Subtargets can have multiple different assembly parsers +// (e.g. AT&T vs Intel syntax on X86 for example). This class can be +// implemented by targets to describe such variants. +// +class AsmParserVariant { + // Variant - AsmParsers can be of multiple different variants. Variants are + // used to support targets that need to parse multiple formats for the + // assembly language. + int Variant = 0; + + // Name - The AsmParser variant name (e.g., AT&T vs Intel). + string Name = ""; + + // CommentDelimiter - If given, the delimiter string used to recognize + // comments which are hard coded in the .td assembler strings for individual + // instructions. + string CommentDelimiter = ""; + + // RegisterPrefix - If given, the token prefix which indicates a register + // token. This is used by the matcher to automatically recognize hard coded + // register tokens as constrained registers, instead of tokens, for the + // purposes of matching. + string RegisterPrefix = ""; + + // TokenizingCharacters - Characters that are standalone tokens + string TokenizingCharacters = "[]*!"; + + // SeparatorCharacters - Characters that are not tokens + string SeparatorCharacters = " \t,"; + + // BreakCharacters - Characters that start new identifiers + string BreakCharacters = ""; +} +def DefaultAsmParserVariant : AsmParserVariant; + +// Operators for combining SubtargetFeatures in AssemblerPredicates +def any_of; +def all_of; + +/// AssemblerPredicate - This is a Predicate that can be used when the assembler +/// matches instructions and aliases. +class AssemblerPredicate<dag cond, string name = ""> { + bit AssemblerMatcherPredicate = true; + dag AssemblerCondDag = cond; + string PredicateName = name; +} + +/// TokenAlias - This class allows targets to define assembler token +/// operand aliases. That is, a token literal operand which is equivalent +/// to another, canonical, token literal. For example, ARM allows: +/// vmov.u32 s4, #0 -> vmov.i32, #0 +/// 'u32' is a more specific designator for the 32-bit integer type specifier +/// and is legal for any instruction which accepts 'i32' as a datatype suffix. +/// def : TokenAlias<".u32", ".i32">; +/// +/// This works by marking the match class of 'From' as a subclass of the +/// match class of 'To'. +class TokenAlias<string From, string To> { + string FromToken = From; + string ToToken = To; +} + +/// MnemonicAlias - This class allows targets to define assembler mnemonic +/// aliases. This should be used when all forms of one mnemonic are accepted +/// with a different mnemonic. For example, X86 allows: +/// sal %al, 1 -> shl %al, 1 +/// sal %ax, %cl -> shl %ax, %cl +/// sal %eax, %cl -> shl %eax, %cl +/// etc. Though "sal" is accepted with many forms, all of them are directly +/// translated to a shl, so it can be handled with (in the case of X86, it +/// actually has one for each suffix as well): +/// def : MnemonicAlias<"sal", "shl">; +/// +/// Mnemonic aliases are mapped before any other translation in the match phase, +/// and do allow Requires predicates, e.g.: +/// +/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>; +/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>; +/// +/// Mnemonic aliases can also be constrained to specific variants, e.g.: +/// +/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>; +/// +/// If no variant (e.g., "att" or "intel") is specified then the alias is +/// applied unconditionally. +class MnemonicAlias<string From, string To, string VariantName = ""> { + string FromMnemonic = From; + string ToMnemonic = To; + string AsmVariantName = VariantName; + + // Predicates - Predicates that must be true for this remapping to happen. + list<Predicate> Predicates = []; +} + +/// InstAlias - This defines an alternate assembly syntax that is allowed to +/// match an instruction that has a different (more canonical) assembly +/// representation. +class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> { + string AsmString = Asm; // The .s format to match the instruction with. + dag ResultInst = Result; // The MCInst to generate. + + // This determines which order the InstPrinter detects aliases for + // printing. A larger value makes the alias more likely to be + // emitted. The Instruction's own definition is notionally 0.5, so 0 + // disables printing and 1 enables it if there are no conflicting aliases. + int EmitPriority = Emit; + + // Predicates - Predicates that must be true for this to match. + list<Predicate> Predicates = []; + + // If the instruction specified in Result has defined an AsmMatchConverter + // then setting this to 1 will cause the alias to use the AsmMatchConverter + // function when converting the OperandVector into an MCInst instead of the + // function that is generated by the dag Result. + // Setting this to 0 will cause the alias to ignore the Result instruction's + // defined AsmMatchConverter and instead use the function generated by the + // dag Result. + bit UseInstAsmMatchConverter = true; + + // Assembler variant name to use for this alias. If not specified then + // assembler variants will be determined based on AsmString + string AsmVariantName = VariantName; +} + +//===----------------------------------------------------------------------===// +// AsmWriter - This class can be implemented by targets that need to customize +// the format of the .s file writer. +// +// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax +// on X86 for example). +// +class AsmWriter { + // AsmWriterClassName - This specifies the suffix to use for the asmwriter + // class. Generated AsmWriter classes are always prefixed with the target + // name. + string AsmWriterClassName = "InstPrinter"; + + // PassSubtarget - Determines whether MCSubtargetInfo should be passed to + // the various print methods. + // FIXME: Remove after all ports are updated. + int PassSubtarget = 0; + + // Variant - AsmWriters can be of multiple different variants. Variants are + // used to support targets that need to emit assembly code in ways that are + // mostly the same for different targets, but have minor differences in + // syntax. If the asmstring contains {|} characters in them, this integer + // will specify which alternative to use. For example "{x|y|z}" with Variant + // == 1, will expand to "y". + int Variant = 0; +} +def DefaultAsmWriter : AsmWriter; + + +//===----------------------------------------------------------------------===// +// Target - This class contains the "global" target information +// +class Target { + // InstructionSet - Instruction set description for this target. + InstrInfo InstructionSet; + + // AssemblyParsers - The AsmParser instances available for this target. + list<AsmParser> AssemblyParsers = [DefaultAsmParser]; + + /// AssemblyParserVariants - The AsmParserVariant instances available for + /// this target. + list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant]; + + // AssemblyWriters - The AsmWriter instances available for this target. + list<AsmWriter> AssemblyWriters = [DefaultAsmWriter]; + + // AllowRegisterRenaming - Controls whether this target allows + // post-register-allocation renaming of registers. This is done by + // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1 + // for all opcodes if this flag is set to 0. + int AllowRegisterRenaming = 0; +} + +//===----------------------------------------------------------------------===// +// SubtargetFeature - A characteristic of the chip set. +// +class SubtargetFeature<string n, string a, string v, string d, + list<SubtargetFeature> i = []> { + // Name - Feature name. Used by command line (-mattr=) to determine the + // appropriate target chip. + // + string Name = n; + + // Attribute - Attribute to be set by feature. + // + string Attribute = a; + + // Value - Value the attribute to be set to by feature. + // + string Value = v; + + // Desc - Feature description. Used by command line (-mattr=) to display help + // information. + // + string Desc = d; + + // Implies - Features that this feature implies are present. If one of those + // features isn't set, then this one shouldn't be set either. + // + list<SubtargetFeature> Implies = i; +} + +/// Specifies a Subtarget feature that this instruction is deprecated on. +class Deprecated<SubtargetFeature dep> { + SubtargetFeature DeprecatedFeatureMask = dep; +} + +/// A custom predicate used to determine if an instruction is +/// deprecated or not. +class ComplexDeprecationPredicate<string dep> { + string ComplexDeprecationPredicate = dep; +} + +//===----------------------------------------------------------------------===// +// Processor chip sets - These values represent each of the chip sets supported +// by the scheduler. Each Processor definition requires corresponding +// instruction itineraries. +// +class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f, + list<SubtargetFeature> tunef = []> { + // Name - Chip set name. Used by command line (-mcpu=) to determine the + // appropriate target chip. + // + string Name = n; + + // SchedModel - The machine model for scheduling and instruction cost. + // + SchedMachineModel SchedModel = NoSchedModel; + + // ProcItin - The scheduling information for the target processor. + // + ProcessorItineraries ProcItin = pi; + + // Features - list of + list<SubtargetFeature> Features = f; + + // TuneFeatures - list of features for tuning for this CPU. If the target + // supports -mtune, this should contain the list of features used to make + // microarchitectural optimization decisions for a given processor. While + // Features should contain the architectural features for the processor. + list<SubtargetFeature> TuneFeatures = tunef; +} + +// ProcessorModel allows subtargets to specify the more general +// SchedMachineModel instead if a ProcessorItinerary. Subtargets will +// gradually move to this newer form. +// +// Although this class always passes NoItineraries to the Processor +// class, the SchedMachineModel may still define valid Itineraries. +class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f, + list<SubtargetFeature> tunef = []> + : Processor<n, NoItineraries, f, tunef> { + let SchedModel = m; +} + +//===----------------------------------------------------------------------===// +// InstrMapping - This class is used to create mapping tables to relate +// instructions with each other based on the values specified in RowFields, +// ColFields, KeyCol and ValueCols. +// +class InstrMapping { + // FilterClass - Used to limit search space only to the instructions that + // define the relationship modeled by this InstrMapping record. + string FilterClass; + + // RowFields - List of fields/attributes that should be same for all the + // instructions in a row of the relation table. Think of this as a set of + // properties shared by all the instructions related by this relationship + // model and is used to categorize instructions into subgroups. For instance, + // if we want to define a relation that maps 'Add' instruction to its + // predicated forms, we can define RowFields like this: + // + // let RowFields = BaseOp + // All add instruction predicated/non-predicated will have to set their BaseOp + // to the same value. + // + // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' } + // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' } + // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' } + list<string> RowFields = []; + + // List of fields/attributes that are same for all the instructions + // in a column of the relation table. + // Ex: let ColFields = 'predSense' -- It means that the columns are arranged + // based on the 'predSense' values. All the instruction in a specific + // column have the same value and it is fixed for the column according + // to the values set in 'ValueCols'. + list<string> ColFields = []; + + // Values for the fields/attributes listed in 'ColFields'. + // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction + // that models this relation) should be non-predicated. + // In the example above, 'Add' is the key instruction. + list<string> KeyCol = []; + + // List of values for the fields/attributes listed in 'ColFields', one for + // each column in the relation table. + // + // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the + // table. First column requires all the instructions to have predSense + // set to 'true' and second column requires it to be 'false'. + list<list<string> > ValueCols = []; +} + +//===----------------------------------------------------------------------===// +// Pull in the common support for calling conventions. +// +include "llvm/Target/TargetCallingConv.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for DAG isel generation. +// +include "llvm/Target/TargetSelectionDAG.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for Global ISel register bank info generation. +// +include "llvm/Target/GlobalISel/RegisterBank.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for DAG isel generation. +// +include "llvm/Target/GlobalISel/Target.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for the Global ISel DAG-based selector generation. +// +include "llvm/Target/GlobalISel/SelectionDAGCompat.td" + +//===----------------------------------------------------------------------===// +// Pull in the common support for Pfm Counters generation. +// +include "llvm/Target/TargetPfmCounters.td" |