aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/Target/Target.td
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/Target/Target.td
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/Target/Target.td')
-rw-r--r--contrib/libs/llvm12/include/llvm/Target/Target.td1689
1 files changed, 1689 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/Target/Target.td b/contrib/libs/llvm12/include/llvm/Target/Target.td
new file mode 100644
index 0000000000..1c97d70a47
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/Target/Target.td
@@ -0,0 +1,1689 @@
+//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the target-independent interfaces which should be
+// implemented by each target which is using a TableGen based code generator.
+//
+//===----------------------------------------------------------------------===//
+
+// Include all information about LLVM intrinsics.
+include "llvm/IR/Intrinsics.td"
+
+//===----------------------------------------------------------------------===//
+// Register file description - These classes are used to fill in the target
+// description classes.
+
+class RegisterClass; // Forward def
+
+class HwMode<string FS> {
+ // A string representing subtarget features that turn on this HW mode.
+ // For example, "+feat1,-feat2" will indicate that the mode is active
+ // when "feat1" is enabled and "feat2" is disabled at the same time.
+ // Any other features are not checked.
+ // When multiple modes are used, they should be mutually exclusive,
+ // otherwise the results are unpredictable.
+ string Features = FS;
+}
+
+// A special mode recognized by tablegen. This mode is considered active
+// when no other mode is active. For targets that do not use specific hw
+// modes, this is the only mode.
+def DefaultMode : HwMode<"">;
+
+// A class used to associate objects with HW modes. It is only intended to
+// be used as a base class, where the derived class should contain a member
+// "Objects", which is a list of the same length as the list of modes.
+// The n-th element on the Objects list will be associated with the n-th
+// element on the Modes list.
+class HwModeSelect<list<HwMode> Ms> {
+ list<HwMode> Modes = Ms;
+}
+
+// A common class that implements a counterpart of ValueType, which is
+// dependent on a HW mode. This class inherits from ValueType itself,
+// which makes it possible to use objects of this class where ValueType
+// objects could be used. This is specifically applicable to selection
+// patterns.
+class ValueTypeByHwMode<list<HwMode> Ms, list<ValueType> Ts>
+ : HwModeSelect<Ms>, ValueType<0, 0> {
+ // The length of this list must be the same as the length of Ms.
+ list<ValueType> Objects = Ts;
+}
+
+// A class representing the register size, spill size and spill alignment
+// in bits of a register.
+class RegInfo<int RS, int SS, int SA> {
+ int RegSize = RS; // Register size in bits.
+ int SpillSize = SS; // Spill slot size in bits.
+ int SpillAlignment = SA; // Spill slot alignment in bits.
+}
+
+// The register size/alignment information, parameterized by a HW mode.
+class RegInfoByHwMode<list<HwMode> Ms = [], list<RegInfo> Ts = []>
+ : HwModeSelect<Ms> {
+ // The length of this list must be the same as the length of Ms.
+ list<RegInfo> Objects = Ts;
+}
+
+// SubRegIndex - Use instances of SubRegIndex to identify subregisters.
+class SubRegIndex<int size, int offset = 0> {
+ string Namespace = "";
+
+ // Size - Size (in bits) of the sub-registers represented by this index.
+ int Size = size;
+
+ // Offset - Offset of the first bit that is part of this sub-register index.
+ // Set it to -1 if the same index is used to represent sub-registers that can
+ // be at different offsets (for example when using an index to access an
+ // element in a register tuple).
+ int Offset = offset;
+
+ // ComposedOf - A list of two SubRegIndex instances, [A, B].
+ // This indicates that this SubRegIndex is the result of composing A and B.
+ // See ComposedSubRegIndex.
+ list<SubRegIndex> ComposedOf = [];
+
+ // CoveringSubRegIndices - A list of two or more sub-register indexes that
+ // cover this sub-register.
+ //
+ // This field should normally be left blank as TableGen can infer it.
+ //
+ // TableGen automatically detects sub-registers that straddle the registers
+ // in the SubRegs field of a Register definition. For example:
+ //
+ // Q0 = dsub_0 -> D0, dsub_1 -> D1
+ // Q1 = dsub_0 -> D2, dsub_1 -> D3
+ // D1_D2 = dsub_0 -> D1, dsub_1 -> D2
+ // QQ0 = qsub_0 -> Q0, qsub_1 -> Q1
+ //
+ // TableGen will infer that D1_D2 is a sub-register of QQ0. It will be given
+ // the synthetic index dsub_1_dsub_2 unless some SubRegIndex is defined with
+ // CoveringSubRegIndices = [dsub_1, dsub_2].
+ list<SubRegIndex> CoveringSubRegIndices = [];
+}
+
+// ComposedSubRegIndex - A sub-register that is the result of composing A and B.
+// Offset is set to the sum of A and B's Offsets. Size is set to B's Size.
+class ComposedSubRegIndex<SubRegIndex A, SubRegIndex B>
+ : SubRegIndex<B.Size, !cond(!eq(A.Offset, -1): -1,
+ !eq(B.Offset, -1): -1,
+ true: !add(A.Offset, B.Offset))> {
+ // See SubRegIndex.
+ let ComposedOf = [A, B];
+}
+
+// RegAltNameIndex - The alternate name set to use for register operands of
+// this register class when printing.
+class RegAltNameIndex {
+ string Namespace = "";
+
+ // A set to be used if the name for a register is not defined in this set.
+ // This allows creating name sets with only a few alternative names.
+ RegAltNameIndex FallbackRegAltNameIndex = ?;
+}
+def NoRegAltName : RegAltNameIndex;
+
+// Register - You should define one instance of this class for each register
+// in the target machine. String n will become the "name" of the register.
+class Register<string n, list<string> altNames = []> {
+ string Namespace = "";
+ string AsmName = n;
+ list<string> AltNames = altNames;
+
+ // Aliases - A list of registers that this register overlaps with. A read or
+ // modification of this register can potentially read or modify the aliased
+ // registers.
+ list<Register> Aliases = [];
+
+ // SubRegs - A list of registers that are parts of this register. Note these
+ // are "immediate" sub-registers and the registers within the list do not
+ // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
+ // not [AX, AH, AL].
+ list<Register> SubRegs = [];
+
+ // SubRegIndices - For each register in SubRegs, specify the SubRegIndex used
+ // to address it. Sub-sub-register indices are automatically inherited from
+ // SubRegs.
+ list<SubRegIndex> SubRegIndices = [];
+
+ // RegAltNameIndices - The alternate name indices which are valid for this
+ // register.
+ list<RegAltNameIndex> RegAltNameIndices = [];
+
+ // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
+ // These values can be determined by locating the <target>.h file in the
+ // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
+ // order of these names correspond to the enumeration used by gcc. A value of
+ // -1 indicates that the gcc number is undefined and -2 that register number
+ // is invalid for this mode/flavour.
+ list<int> DwarfNumbers = [];
+
+ // CostPerUse - Additional cost of instructions using this register compared
+ // to other registers in its class. The register allocator will try to
+ // minimize the number of instructions using a register with a CostPerUse.
+ // This is used by the ARC target, by the ARM Thumb and x86-64 targets, where
+ // some registers require larger instruction encodings, by the RISC-V target,
+ // where some registers preclude using some C instructions.
+ int CostPerUse = 0;
+
+ // CoveredBySubRegs - When this bit is set, the value of this register is
+ // completely determined by the value of its sub-registers. For example, the
+ // x86 register AX is covered by its sub-registers AL and AH, but EAX is not
+ // covered by its sub-register AX.
+ bit CoveredBySubRegs = false;
+
+ // HWEncoding - The target specific hardware encoding for this register.
+ bits<16> HWEncoding = 0;
+
+ bit isArtificial = false;
+}
+
+// RegisterWithSubRegs - This can be used to define instances of Register which
+// need to specify sub-registers.
+// List "subregs" specifies which registers are sub-registers to this one. This
+// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
+// This allows the code generator to be careful not to put two values with
+// overlapping live ranges into registers which alias.
+class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
+ let SubRegs = subregs;
+}
+
+// DAGOperand - An empty base class that unifies RegisterClass's and other forms
+// of Operand's that are legal as type qualifiers in DAG patterns. This should
+// only ever be used for defining multiclasses that are polymorphic over both
+// RegisterClass's and other Operand's.
+class DAGOperand {
+ string OperandNamespace = "MCOI";
+ string DecoderMethod = "";
+}
+
+// RegisterClass - Now that all of the registers are defined, and aliases
+// between registers are defined, specify which registers belong to which
+// register classes. This also defines the default allocation order of
+// registers by register allocators.
+//
+class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
+ dag regList, RegAltNameIndex idx = NoRegAltName>
+ : DAGOperand {
+ string Namespace = namespace;
+
+ // The register size/alignment information, parameterized by a HW mode.
+ RegInfoByHwMode RegInfos;
+
+ // RegType - Specify the list ValueType of the registers in this register
+ // class. Note that all registers in a register class must have the same
+ // ValueTypes. This is a list because some targets permit storing different
+ // types in same register, for example vector values with 128-bit total size,
+ // but different count/size of items, like SSE on x86.
+ //
+ list<ValueType> RegTypes = regTypes;
+
+ // Size - Specify the spill size in bits of the registers. A default value of
+ // zero lets tablegen pick an appropriate size.
+ int Size = 0;
+
+ // Alignment - Specify the alignment required of the registers when they are
+ // stored or loaded to memory.
+ //
+ int Alignment = alignment;
+
+ // CopyCost - This value is used to specify the cost of copying a value
+ // between two registers in this register class. The default value is one
+ // meaning it takes a single instruction to perform the copying. A negative
+ // value means copying is extremely expensive or impossible.
+ int CopyCost = 1;
+
+ // MemberList - Specify which registers are in this class. If the
+ // allocation_order_* method are not specified, this also defines the order of
+ // allocation used by the register allocator.
+ //
+ dag MemberList = regList;
+
+ // AltNameIndex - The alternate register name to use when printing operands
+ // of this register class. Every register in the register class must have
+ // a valid alternate name for the given index.
+ RegAltNameIndex altNameIndex = idx;
+
+ // isAllocatable - Specify that the register class can be used for virtual
+ // registers and register allocation. Some register classes are only used to
+ // model instruction operand constraints, and should have isAllocatable = 0.
+ bit isAllocatable = true;
+
+ // AltOrders - List of alternative allocation orders. The default order is
+ // MemberList itself, and that is good enough for most targets since the
+ // register allocators automatically remove reserved registers and move
+ // callee-saved registers to the end.
+ list<dag> AltOrders = [];
+
+ // AltOrderSelect - The body of a function that selects the allocation order
+ // to use in a given machine function. The code will be inserted in a
+ // function like this:
+ //
+ // static inline unsigned f(const MachineFunction &MF) { ... }
+ //
+ // The function should return 0 to select the default order defined by
+ // MemberList, 1 to select the first AltOrders entry and so on.
+ code AltOrderSelect = [{}];
+
+ // Specify allocation priority for register allocators using a greedy
+ // heuristic. Classes with higher priority values are assigned first. This is
+ // useful as it is sometimes beneficial to assign registers to highly
+ // constrained classes first. The value has to be in the range [0,63].
+ int AllocationPriority = 0;
+
+ // Generate register pressure set for this register class and any class
+ // synthesized from it. Set to 0 to inhibit unneeded pressure sets.
+ bit GeneratePressureSet = true;
+
+ // Weight override for register pressure calculation. This is the value
+ // TargetRegisterClass::getRegClassWeight() will return. The weight is in
+ // units of pressure for this register class. If unset tablegen will
+ // calculate a weight based on a number of register units in this register
+ // class registers. The weight is per register.
+ int Weight = ?;
+
+ // The diagnostic type to present when referencing this operand in a match
+ // failure error message. If this is empty, the default Match_InvalidOperand
+ // diagnostic type will be used. If this is "<name>", a Match_<name> enum
+ // value will be generated and used for this operand type. The target
+ // assembly parser is responsible for converting this into a user-facing
+ // diagnostic message.
+ string DiagnosticType = "";
+
+ // A diagnostic message to emit when an invalid value is provided for this
+ // register class when it is being used an an assembly operand. If this is
+ // non-empty, an anonymous diagnostic type enum value will be generated, and
+ // the assembly matcher will provide a function to map from diagnostic types
+ // to message strings.
+ string DiagnosticString = "";
+}
+
+// The memberList in a RegisterClass is a dag of set operations. TableGen
+// evaluates these set operations and expand them into register lists. These
+// are the most common operation, see test/TableGen/SetTheory.td for more
+// examples of what is possible:
+//
+// (add R0, R1, R2) - Set Union. Each argument can be an individual register, a
+// register class, or a sub-expression. This is also the way to simply list
+// registers.
+//
+// (sub GPR, SP) - Set difference. Subtract the last arguments from the first.
+//
+// (and GPR, CSR) - Set intersection. All registers from the first set that are
+// also in the second set.
+//
+// (sequence "R%u", 0, 15) -> [R0, R1, ..., R15]. Generate a sequence of
+// numbered registers. Takes an optional 4th operand which is a stride to use
+// when generating the sequence.
+//
+// (shl GPR, 4) - Remove the first N elements.
+//
+// (trunc GPR, 4) - Truncate after the first N elements.
+//
+// (rotl GPR, 1) - Rotate N places to the left.
+//
+// (rotr GPR, 1) - Rotate N places to the right.
+//
+// (decimate GPR, 2) - Pick every N'th element, starting with the first.
+//
+// (interleave A, B, ...) - Interleave the elements from each argument list.
+//
+// All of these operators work on ordered sets, not lists. That means
+// duplicates are removed from sub-expressions.
+
+// Set operators. The rest is defined in TargetSelectionDAG.td.
+def sequence;
+def decimate;
+def interleave;
+
+// RegisterTuples - Automatically generate super-registers by forming tuples of
+// sub-registers. This is useful for modeling register sequence constraints
+// with pseudo-registers that are larger than the architectural registers.
+//
+// The sub-register lists are zipped together:
+//
+// def EvenOdd : RegisterTuples<[sube, subo], [(add R0, R2), (add R1, R3)]>;
+//
+// Generates the same registers as:
+//
+// let SubRegIndices = [sube, subo] in {
+// def R0_R1 : RegisterWithSubRegs<"", [R0, R1]>;
+// def R2_R3 : RegisterWithSubRegs<"", [R2, R3]>;
+// }
+//
+// The generated pseudo-registers inherit super-classes and fields from their
+// first sub-register. Most fields from the Register class are inferred, and
+// the AsmName and Dwarf numbers are cleared.
+//
+// RegisterTuples instances can be used in other set operations to form
+// register classes and so on. This is the only way of using the generated
+// registers.
+//
+// RegNames may be specified to supply asm names for the generated tuples.
+// If used must have the same size as the list of produced registers.
+class RegisterTuples<list<SubRegIndex> Indices, list<dag> Regs,
+ list<string> RegNames = []> {
+ // SubRegs - N lists of registers to be zipped up. Super-registers are
+ // synthesized from the first element of each SubRegs list, the second
+ // element and so on.
+ list<dag> SubRegs = Regs;
+
+ // SubRegIndices - N SubRegIndex instances. This provides the names of the
+ // sub-registers in the synthesized super-registers.
+ list<SubRegIndex> SubRegIndices = Indices;
+
+ // List of asm names for the generated tuple registers.
+ list<string> RegAsmNames = RegNames;
+}
+
+
+//===----------------------------------------------------------------------===//
+// DwarfRegNum - This class provides a mapping of the llvm register enumeration
+// to the register numbering used by gcc and gdb. These values are used by a
+// debug information writer to describe where values may be located during
+// execution.
+class DwarfRegNum<list<int> Numbers> {
+ // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
+ // These values can be determined by locating the <target>.h file in the
+ // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
+ // order of these names correspond to the enumeration used by gcc. A value of
+ // -1 indicates that the gcc number is undefined and -2 that register number
+ // is invalid for this mode/flavour.
+ list<int> DwarfNumbers = Numbers;
+}
+
+// DwarfRegAlias - This class declares that a given register uses the same dwarf
+// numbers as another one. This is useful for making it clear that the two
+// registers do have the same number. It also lets us build a mapping
+// from dwarf register number to llvm register.
+class DwarfRegAlias<Register reg> {
+ Register DwarfAlias = reg;
+}
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for MCPredicate (portable scheduling predicates).
+//
+include "llvm/Target/TargetInstrPredicate.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for scheduling
+//
+include "llvm/Target/TargetSchedule.td"
+
+class Predicate; // Forward def
+
+class InstructionEncoding {
+ // Size of encoded instruction.
+ int Size;
+
+ // The "namespace" in which this instruction exists, on targets like ARM
+ // which multiple ISA namespaces exist.
+ string DecoderNamespace = "";
+
+ // List of predicates which will be turned into isel matching code.
+ list<Predicate> Predicates = [];
+
+ string DecoderMethod = "";
+
+ // Is the instruction decoder method able to completely determine if the
+ // given instruction is valid or not. If the TableGen definition of the
+ // instruction specifies bitpattern A??B where A and B are static bits, the
+ // hasCompleteDecoder flag says whether the decoder method fully handles the
+ // ?? space, i.e. if it is a final arbiter for the instruction validity.
+ // If not then the decoder attempts to continue decoding when the decoder
+ // method fails.
+ //
+ // This allows to handle situations where the encoding is not fully
+ // orthogonal. Example:
+ // * InstA with bitpattern 0b0000????,
+ // * InstB with bitpattern 0b000000?? but the associated decoder method
+ // DecodeInstB() returns Fail when ?? is 0b00 or 0b11.
+ //
+ // The decoder tries to decode a bitpattern that matches both InstA and
+ // InstB bitpatterns first as InstB (because it is the most specific
+ // encoding). In the default case (hasCompleteDecoder = 1), when
+ // DecodeInstB() returns Fail the bitpattern gets rejected. By setting
+ // hasCompleteDecoder = 0 in InstB, the decoder is informed that
+ // DecodeInstB() is not able to determine if all possible values of ?? are
+ // valid or not. If DecodeInstB() returns Fail the decoder will attempt to
+ // decode the bitpattern as InstA too.
+ bit hasCompleteDecoder = true;
+}
+
+// Allows specifying an InstructionEncoding by HwMode. If an Instruction specifies
+// an EncodingByHwMode, its Inst and Size members are ignored and Ts are used
+// to encode and decode based on HwMode.
+class EncodingByHwMode<list<HwMode> Ms = [], list<InstructionEncoding> Ts = []>
+ : HwModeSelect<Ms> {
+ // The length of this list must be the same as the length of Ms.
+ list<InstructionEncoding> Objects = Ts;
+}
+
+//===----------------------------------------------------------------------===//
+// Instruction set description - These classes correspond to the C++ classes in
+// the Target/TargetInstrInfo.h file.
+//
+class Instruction : InstructionEncoding {
+ string Namespace = "";
+
+ dag OutOperandList; // An dag containing the MI def operand list.
+ dag InOperandList; // An dag containing the MI use operand list.
+ string AsmString = ""; // The .s format to print the instruction with.
+
+ // Allows specifying a canonical InstructionEncoding by HwMode. If non-empty,
+ // the Inst member of this Instruction is ignored.
+ EncodingByHwMode EncodingInfos;
+
+ // Pattern - Set to the DAG pattern for this instruction, if we know of one,
+ // otherwise, uninitialized.
+ list<dag> Pattern;
+
+ // The follow state will eventually be inferred automatically from the
+ // instruction pattern.
+
+ list<Register> Uses = []; // Default to using no non-operand registers
+ list<Register> Defs = []; // Default to modifying no non-operand registers
+
+ // Predicates - List of predicates which will be turned into isel matching
+ // code.
+ list<Predicate> Predicates = [];
+
+ // Size - Size of encoded instruction, or zero if the size cannot be determined
+ // from the opcode.
+ int Size = 0;
+
+ // Code size, for instruction selection.
+ // FIXME: What does this actually mean?
+ int CodeSize = 0;
+
+ // Added complexity passed onto matching pattern.
+ int AddedComplexity = 0;
+
+ // Indicates if this is a pre-isel opcode that should be
+ // legalized/regbankselected/selected.
+ bit isPreISelOpcode = false;
+
+ // These bits capture information about the high-level semantics of the
+ // instruction.
+ bit isReturn = false; // Is this instruction a return instruction?
+ bit isBranch = false; // Is this instruction a branch instruction?
+ bit isEHScopeReturn = false; // Does this instruction end an EH scope?
+ bit isIndirectBranch = false; // Is this instruction an indirect branch?
+ bit isCompare = false; // Is this instruction a comparison instruction?
+ bit isMoveImm = false; // Is this instruction a move immediate instruction?
+ bit isMoveReg = false; // Is this instruction a move register instruction?
+ bit isBitcast = false; // Is this instruction a bitcast instruction?
+ bit isSelect = false; // Is this instruction a select instruction?
+ bit isBarrier = false; // Can control flow fall through this instruction?
+ bit isCall = false; // Is this instruction a call instruction?
+ bit isAdd = false; // Is this instruction an add instruction?
+ bit isTrap = false; // Is this instruction a trap instruction?
+ bit canFoldAsLoad = false; // Can this be folded as a simple memory operand?
+ bit mayLoad = ?; // Is it possible for this inst to read memory?
+ bit mayStore = ?; // Is it possible for this inst to write memory?
+ bit mayRaiseFPException = false; // Can this raise a floating-point exception?
+ bit isConvertibleToThreeAddress = false; // Can this 2-addr instruction promote?
+ bit isCommutable = false; // Is this 3 operand instruction commutable?
+ bit isTerminator = false; // Is this part of the terminator for a basic block?
+ bit isReMaterializable = false; // Is this instruction re-materializable?
+ bit isPredicable = false; // 1 means this instruction is predicable
+ // even if it does not have any operand
+ // tablegen can identify as a predicate
+ bit isUnpredicable = false; // 1 means this instruction is not predicable
+ // even if it _does_ have a predicate operand
+ bit hasDelaySlot = false; // Does this instruction have an delay slot?
+ bit usesCustomInserter = false; // Pseudo instr needing special help.
+ bit hasPostISelHook = false; // To be *adjusted* after isel by target hook.
+ bit hasCtrlDep = false; // Does this instruction r/w ctrl-flow chains?
+ bit isNotDuplicable = false; // Is it unsafe to duplicate this instruction?
+ bit isConvergent = false; // Is this instruction convergent?
+ bit isAuthenticated = false; // Does this instruction authenticate a pointer?
+ bit isAsCheapAsAMove = false; // As cheap (or cheaper) than a move instruction.
+ bit hasExtraSrcRegAllocReq = false; // Sources have special regalloc requirement?
+ bit hasExtraDefRegAllocReq = false; // Defs have special regalloc requirement?
+ bit isRegSequence = false; // Is this instruction a kind of reg sequence?
+ // If so, make sure to override
+ // TargetInstrInfo::getRegSequenceLikeInputs.
+ bit isPseudo = false; // Is this instruction a pseudo-instruction?
+ // If so, won't have encoding information for
+ // the [MC]CodeEmitter stuff.
+ bit isExtractSubreg = false; // Is this instruction a kind of extract subreg?
+ // If so, make sure to override
+ // TargetInstrInfo::getExtractSubregLikeInputs.
+ bit isInsertSubreg = false; // Is this instruction a kind of insert subreg?
+ // If so, make sure to override
+ // TargetInstrInfo::getInsertSubregLikeInputs.
+ bit variadicOpsAreDefs = false; // Are variadic operands definitions?
+
+ // Does the instruction have side effects that are not captured by any
+ // operands of the instruction or other flags?
+ bit hasSideEffects = ?;
+
+ // Is this instruction a "real" instruction (with a distinct machine
+ // encoding), or is it a pseudo instruction used for codegen modeling
+ // purposes.
+ // FIXME: For now this is distinct from isPseudo, above, as code-gen-only
+ // instructions can (and often do) still have encoding information
+ // associated with them. Once we've migrated all of them over to true
+ // pseudo-instructions that are lowered to real instructions prior to
+ // the printer/emitter, we can remove this attribute and just use isPseudo.
+ //
+ // The intended use is:
+ // isPseudo: Does not have encoding information and should be expanded,
+ // at the latest, during lowering to MCInst.
+ //
+ // isCodeGenOnly: Does have encoding information and can go through to the
+ // CodeEmitter unchanged, but duplicates a canonical instruction
+ // definition's encoding and should be ignored when constructing the
+ // assembler match tables.
+ bit isCodeGenOnly = false;
+
+ // Is this instruction a pseudo instruction for use by the assembler parser.
+ bit isAsmParserOnly = false;
+
+ // This instruction is not expected to be queried for scheduling latencies
+ // and therefore needs no scheduling information even for a complete
+ // scheduling model.
+ bit hasNoSchedulingInfo = false;
+
+ InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
+
+ // Scheduling information from TargetSchedule.td.
+ list<SchedReadWrite> SchedRW;
+
+ string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
+
+ /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
+ /// be encoded into the output machineinstr.
+ string DisableEncoding = "";
+
+ string PostEncoderMethod = "";
+
+ /// Target-specific flags. This becomes the TSFlags field in TargetInstrDesc.
+ bits<64> TSFlags = 0;
+
+ ///@name Assembler Parser Support
+ ///@{
+
+ string AsmMatchConverter = "";
+
+ /// TwoOperandAliasConstraint - Enable TableGen to auto-generate a
+ /// two-operand matcher inst-alias for a three operand instruction.
+ /// For example, the arm instruction "add r3, r3, r5" can be written
+ /// as "add r3, r5". The constraint is of the same form as a tied-operand
+ /// constraint. For example, "$Rn = $Rd".
+ string TwoOperandAliasConstraint = "";
+
+ /// Assembler variant name to use for this instruction. If specified then
+ /// instruction will be presented only in MatchTable for this variant. If
+ /// not specified then assembler variants will be determined based on
+ /// AsmString
+ string AsmVariantName = "";
+
+ ///@}
+
+ /// UseNamedOperandTable - If set, the operand indices of this instruction
+ /// can be queried via the getNamedOperandIdx() function which is generated
+ /// by TableGen.
+ bit UseNamedOperandTable = false;
+
+ /// Should FastISel ignore this instruction. For certain ISAs, they have
+ /// instructions which map to the same ISD Opcode, value type operands and
+ /// instruction selection predicates. FastISel cannot handle such cases, but
+ /// SelectionDAG can.
+ bit FastISelShouldIgnore = false;
+}
+
+/// Defines an additional encoding that disassembles to the given instruction
+/// Like Instruction, the Inst and SoftFail fields are omitted to allow targets
+// to specify their size.
+class AdditionalEncoding<Instruction I> : InstructionEncoding {
+ Instruction AliasOf = I;
+}
+
+/// PseudoInstExpansion - Expansion information for a pseudo-instruction.
+/// Which instruction it expands to and how the operands map from the
+/// pseudo.
+class PseudoInstExpansion<dag Result> {
+ dag ResultInst = Result; // The instruction to generate.
+ bit isPseudo = true;
+}
+
+/// Predicates - These are extra conditionals which are turned into instruction
+/// selector matching code. Currently each predicate is just a string.
+class Predicate<string cond> {
+ string CondString = cond;
+
+ /// AssemblerMatcherPredicate - If this feature can be used by the assembler
+ /// matcher, this is true. Targets should set this by inheriting their
+ /// feature from the AssemblerPredicate class in addition to Predicate.
+ bit AssemblerMatcherPredicate = false;
+
+ /// AssemblerCondDag - Set of subtarget features being tested used
+ /// as alternative condition string used for assembler matcher. Must be used
+ /// with (all_of) to indicate that all features must be present, or (any_of)
+ /// to indicate that at least one must be. The required lack of presence of
+ /// a feature can be tested using a (not) node including the feature.
+ /// e.g. "(all_of ModeThumb)" is translated to "(Bits & ModeThumb) != 0".
+ /// "(all_of (not ModeThumb))" is translated to
+ /// "(Bits & ModeThumb) == 0".
+ /// "(all_of ModeThumb, FeatureThumb2)" is translated to
+ /// "(Bits & ModeThumb) != 0 && (Bits & FeatureThumb2) != 0".
+ /// "(any_of ModeTumb, FeatureThumb2)" is translated to
+ /// "(Bits & ModeThumb) != 0 || (Bits & FeatureThumb2) != 0".
+ /// all_of and any_of cannot be combined in a single dag, instead multiple
+ /// predicates can be placed onto Instruction definitions.
+ dag AssemblerCondDag;
+
+ /// PredicateName - User-level name to use for the predicate. Mainly for use
+ /// in diagnostics such as missing feature errors in the asm matcher.
+ string PredicateName = "";
+
+ /// Setting this to '1' indicates that the predicate must be recomputed on
+ /// every function change. Most predicates can leave this at '0'.
+ ///
+ /// Ignored by SelectionDAG, it always recomputes the predicate on every use.
+ bit RecomputePerFunction = false;
+}
+
+/// NoHonorSignDependentRounding - This predicate is true if support for
+/// sign-dependent-rounding is not enabled.
+def NoHonorSignDependentRounding
+ : Predicate<"!TM.Options.HonorSignDependentRoundingFPMath()">;
+
+class Requires<list<Predicate> preds> {
+ list<Predicate> Predicates = preds;
+}
+
+/// ops definition - This is just a simple marker used to identify the operand
+/// list for an instruction. outs and ins are identical both syntactically and
+/// semantically; they are used to define def operands and use operands to
+/// improve readability. This should be used like this:
+/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
+def ops;
+def outs;
+def ins;
+
+/// variable_ops definition - Mark this instruction as taking a variable number
+/// of operands.
+def variable_ops;
+
+
+/// PointerLikeRegClass - Values that are designed to have pointer width are
+/// derived from this. TableGen treats the register class as having a symbolic
+/// type that it doesn't know, and resolves the actual regclass to use by using
+/// the TargetRegisterInfo::getPointerRegClass() hook at codegen time.
+class PointerLikeRegClass<int Kind> {
+ int RegClassKind = Kind;
+}
+
+
+/// ptr_rc definition - Mark this operand as being a pointer value whose
+/// register class is resolved dynamically via a callback to TargetInstrInfo.
+/// FIXME: We should probably change this to a class which contain a list of
+/// flags. But currently we have but one flag.
+def ptr_rc : PointerLikeRegClass<0>;
+
+/// unknown definition - Mark this operand as being of unknown type, causing
+/// it to be resolved by inference in the context it is used.
+class unknown_class;
+def unknown : unknown_class;
+
+/// AsmOperandClass - Representation for the kinds of operands which the target
+/// specific parser can create and the assembly matcher may need to distinguish.
+///
+/// Operand classes are used to define the order in which instructions are
+/// matched, to ensure that the instruction which gets matched for any
+/// particular list of operands is deterministic.
+///
+/// The target specific parser must be able to classify a parsed operand into a
+/// unique class which does not partially overlap with any other classes. It can
+/// match a subset of some other class, in which case the super class field
+/// should be defined.
+class AsmOperandClass {
+ /// The name to use for this class, which should be usable as an enum value.
+ string Name = ?;
+
+ /// The super classes of this operand.
+ list<AsmOperandClass> SuperClasses = [];
+
+ /// The name of the method on the target specific operand to call to test
+ /// whether the operand is an instance of this class. If not set, this will
+ /// default to "isFoo", where Foo is the AsmOperandClass name. The method
+ /// signature should be:
+ /// bool isFoo() const;
+ string PredicateMethod = ?;
+
+ /// The name of the method on the target specific operand to call to add the
+ /// target specific operand to an MCInst. If not set, this will default to
+ /// "addFooOperands", where Foo is the AsmOperandClass name. The method
+ /// signature should be:
+ /// void addFooOperands(MCInst &Inst, unsigned N) const;
+ string RenderMethod = ?;
+
+ /// The name of the method on the target specific operand to call to custom
+ /// handle the operand parsing. This is useful when the operands do not relate
+ /// to immediates or registers and are very instruction specific (as flags to
+ /// set in a processor register, coprocessor number, ...).
+ string ParserMethod = ?;
+
+ // The diagnostic type to present when referencing this operand in a
+ // match failure error message. By default, use a generic "invalid operand"
+ // diagnostic. The target AsmParser maps these codes to text.
+ string DiagnosticType = "";
+
+ /// A diagnostic message to emit when an invalid value is provided for this
+ /// operand.
+ string DiagnosticString = "";
+
+ /// Set to 1 if this operand is optional and not always required. Typically,
+ /// the AsmParser will emit an error when it finishes parsing an
+ /// instruction if it hasn't matched all the operands yet. However, this
+ /// error will be suppressed if all of the remaining unmatched operands are
+ /// marked as IsOptional.
+ ///
+ /// Optional arguments must be at the end of the operand list.
+ bit IsOptional = false;
+
+ /// The name of the method on the target specific asm parser that returns the
+ /// default operand for this optional operand. This method is only used if
+ /// IsOptional == 1. If not set, this will default to "defaultFooOperands",
+ /// where Foo is the AsmOperandClass name. The method signature should be:
+ /// std::unique_ptr<MCParsedAsmOperand> defaultFooOperands() const;
+ string DefaultMethod = ?;
+}
+
+def ImmAsmOperand : AsmOperandClass {
+ let Name = "Imm";
+}
+
+/// Operand Types - These provide the built-in operand types that may be used
+/// by a target. Targets can optionally provide their own operand types as
+/// needed, though this should not be needed for RISC targets.
+class Operand<ValueType ty> : DAGOperand {
+ ValueType Type = ty;
+ string PrintMethod = "printOperand";
+ string EncoderMethod = "";
+ bit hasCompleteDecoder = true;
+ string OperandType = "OPERAND_UNKNOWN";
+ dag MIOperandInfo = (ops);
+
+ // MCOperandPredicate - Optionally, a code fragment operating on
+ // const MCOperand &MCOp, and returning a bool, to indicate if
+ // the value of MCOp is valid for the specific subclass of Operand
+ code MCOperandPredicate;
+
+ // ParserMatchClass - The "match class" that operands of this type fit
+ // in. Match classes are used to define the order in which instructions are
+ // match, to ensure that which instructions gets matched is deterministic.
+ //
+ // The target specific parser must be able to classify an parsed operand into
+ // a unique class, which does not partially overlap with any other classes. It
+ // can match a subset of some other class, in which case the AsmOperandClass
+ // should declare the other operand as one of its super classes.
+ AsmOperandClass ParserMatchClass = ImmAsmOperand;
+}
+
+class RegisterOperand<RegisterClass regclass, string pm = "printOperand">
+ : DAGOperand {
+ // RegClass - The register class of the operand.
+ RegisterClass RegClass = regclass;
+ // PrintMethod - The target method to call to print register operands of
+ // this type. The method normally will just use an alt-name index to look
+ // up the name to print. Default to the generic printOperand().
+ string PrintMethod = pm;
+
+ // EncoderMethod - The target method name to call to encode this register
+ // operand.
+ string EncoderMethod = "";
+
+ // ParserMatchClass - The "match class" that operands of this type fit
+ // in. Match classes are used to define the order in which instructions are
+ // match, to ensure that which instructions gets matched is deterministic.
+ //
+ // The target specific parser must be able to classify an parsed operand into
+ // a unique class, which does not partially overlap with any other classes. It
+ // can match a subset of some other class, in which case the AsmOperandClass
+ // should declare the other operand as one of its super classes.
+ AsmOperandClass ParserMatchClass;
+
+ string OperandType = "OPERAND_REGISTER";
+
+ // When referenced in the result of a CodeGen pattern, GlobalISel will
+ // normally copy the matched operand to the result. When this is set, it will
+ // emit a special copy that will replace zero-immediates with the specified
+ // zero-register.
+ Register GIZeroRegister = ?;
+}
+
+let OperandType = "OPERAND_IMMEDIATE" in {
+def i1imm : Operand<i1>;
+def i8imm : Operand<i8>;
+def i16imm : Operand<i16>;
+def i32imm : Operand<i32>;
+def i64imm : Operand<i64>;
+
+def f32imm : Operand<f32>;
+def f64imm : Operand<f64>;
+}
+
+// Register operands for generic instructions don't have an MVT, but do have
+// constraints linking the operands (e.g. all operands of a G_ADD must
+// have the same LLT).
+class TypedOperand<string Ty> : Operand<untyped> {
+ let OperandType = Ty;
+ bit IsPointer = false;
+ bit IsImmediate = false;
+}
+
+def type0 : TypedOperand<"OPERAND_GENERIC_0">;
+def type1 : TypedOperand<"OPERAND_GENERIC_1">;
+def type2 : TypedOperand<"OPERAND_GENERIC_2">;
+def type3 : TypedOperand<"OPERAND_GENERIC_3">;
+def type4 : TypedOperand<"OPERAND_GENERIC_4">;
+def type5 : TypedOperand<"OPERAND_GENERIC_5">;
+
+let IsPointer = true in {
+ def ptype0 : TypedOperand<"OPERAND_GENERIC_0">;
+ def ptype1 : TypedOperand<"OPERAND_GENERIC_1">;
+ def ptype2 : TypedOperand<"OPERAND_GENERIC_2">;
+ def ptype3 : TypedOperand<"OPERAND_GENERIC_3">;
+ def ptype4 : TypedOperand<"OPERAND_GENERIC_4">;
+ def ptype5 : TypedOperand<"OPERAND_GENERIC_5">;
+}
+
+// untyped_imm is for operands where isImm() will be true. It currently has no
+// special behaviour and is only used for clarity.
+def untyped_imm_0 : TypedOperand<"OPERAND_GENERIC_IMM_0"> {
+ let IsImmediate = true;
+}
+
+/// zero_reg definition - Special node to stand for the zero register.
+///
+def zero_reg;
+
+/// undef_tied_input - Special node to indicate an input register tied
+/// to an output which defaults to IMPLICIT_DEF.
+def undef_tied_input;
+
+/// All operands which the MC layer classifies as predicates should inherit from
+/// this class in some manner. This is already handled for the most commonly
+/// used PredicateOperand, but may be useful in other circumstances.
+class PredicateOp;
+
+/// OperandWithDefaultOps - This Operand class can be used as the parent class
+/// for an Operand that needs to be initialized with a default value if
+/// no value is supplied in a pattern. This class can be used to simplify the
+/// pattern definitions for instructions that have target specific flags
+/// encoded as immediate operands.
+class OperandWithDefaultOps<ValueType ty, dag defaultops>
+ : Operand<ty> {
+ dag DefaultOps = defaultops;
+}
+
+/// PredicateOperand - This can be used to define a predicate operand for an
+/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
+/// AlwaysVal specifies the value of this predicate when set to "always
+/// execute".
+class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
+ : OperandWithDefaultOps<ty, AlwaysVal>, PredicateOp {
+ let MIOperandInfo = OpTypes;
+}
+
+/// OptionalDefOperand - This is used to define a optional definition operand
+/// for an instruction. DefaultOps is the register the operand represents if
+/// none is supplied, e.g. zero_reg.
+class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
+ : OperandWithDefaultOps<ty, defaultops> {
+ let MIOperandInfo = OpTypes;
+}
+
+
+// InstrInfo - This class should only be instantiated once to provide parameters
+// which are global to the target machine.
+//
+class InstrInfo {
+ // Target can specify its instructions in either big or little-endian formats.
+ // For instance, while both Sparc and PowerPC are big-endian platforms, the
+ // Sparc manual specifies its instructions in the format [31..0] (big), while
+ // PowerPC specifies them using the format [0..31] (little).
+ bit isLittleEndianEncoding = false;
+
+ // The instruction properties mayLoad, mayStore, and hasSideEffects are unset
+ // by default, and TableGen will infer their value from the instruction
+ // pattern when possible.
+ //
+ // Normally, TableGen will issue an error it it can't infer the value of a
+ // property that hasn't been set explicitly. When guessInstructionProperties
+ // is set, it will guess a safe value instead.
+ //
+ // This option is a temporary migration help. It will go away.
+ bit guessInstructionProperties = true;
+
+ // TableGen's instruction encoder generator has support for matching operands
+ // to bit-field variables both by name and by position. While matching by
+ // name is preferred, this is currently not possible for complex operands,
+ // and some targets still reply on the positional encoding rules. When
+ // generating a decoder for such targets, the positional encoding rules must
+ // be used by the decoder generator as well.
+ //
+ // This option is temporary; it will go away once the TableGen decoder
+ // generator has better support for complex operands and targets have
+ // migrated away from using positionally encoded operands.
+ bit decodePositionallyEncodedOperands = false;
+
+ // When set, this indicates that there will be no overlap between those
+ // operands that are matched by ordering (positional operands) and those
+ // matched by name.
+ //
+ // This option is temporary; it will go away once the TableGen decoder
+ // generator has better support for complex operands and targets have
+ // migrated away from using positionally encoded operands.
+ bit noNamedPositionallyEncodedOperands = false;
+}
+
+// Standard Pseudo Instructions.
+// This list must match TargetOpcodes.def.
+// Only these instructions are allowed in the TargetOpcode namespace.
+// Ensure mayLoad and mayStore have a default value, so as not to break
+// targets that set guessInstructionProperties=0. Any local definition of
+// mayLoad/mayStore takes precedence over these default values.
+class StandardPseudoInstruction : Instruction {
+ let mayLoad = false;
+ let mayStore = false;
+ let isCodeGenOnly = true;
+ let isPseudo = true;
+ let hasNoSchedulingInfo = true;
+ let Namespace = "TargetOpcode";
+}
+def PHI : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "PHINODE";
+ let hasSideEffects = false;
+}
+def INLINEASM : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "";
+ let hasSideEffects = false; // Note side effect is encoded in an operand.
+}
+def INLINEASM_BR : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "";
+ // Unlike INLINEASM, this is always treated as having side-effects.
+ let hasSideEffects = true;
+ // Despite potentially branching, this instruction is intentionally _not_
+ // marked as a terminator or a branch.
+}
+def CFI_INSTRUCTION : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "";
+ let hasCtrlDep = true;
+ let hasSideEffects = false;
+ let isNotDuplicable = true;
+}
+def EH_LABEL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "";
+ let hasCtrlDep = true;
+ let hasSideEffects = false;
+ let isNotDuplicable = true;
+}
+def GC_LABEL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "";
+ let hasCtrlDep = true;
+ let hasSideEffects = false;
+ let isNotDuplicable = true;
+}
+def ANNOTATION_LABEL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "";
+ let hasCtrlDep = true;
+ let hasSideEffects = false;
+ let isNotDuplicable = true;
+}
+def KILL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "";
+ let hasSideEffects = false;
+}
+def EXTRACT_SUBREG : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$supersrc, i32imm:$subidx);
+ let AsmString = "";
+ let hasSideEffects = false;
+}
+def INSERT_SUBREG : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$supersrc, unknown:$subsrc, i32imm:$subidx);
+ let AsmString = "";
+ let hasSideEffects = false;
+ let Constraints = "$supersrc = $dst";
+}
+def IMPLICIT_DEF : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins);
+ let AsmString = "";
+ let hasSideEffects = false;
+ let isReMaterializable = true;
+ let isAsCheapAsAMove = true;
+}
+def SUBREG_TO_REG : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$implsrc, unknown:$subsrc, i32imm:$subidx);
+ let AsmString = "";
+ let hasSideEffects = false;
+}
+def COPY_TO_REGCLASS : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$src, i32imm:$regclass);
+ let AsmString = "";
+ let hasSideEffects = false;
+ let isAsCheapAsAMove = true;
+}
+def DBG_VALUE : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "DBG_VALUE";
+ let hasSideEffects = false;
+}
+def DBG_INSTR_REF : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "DBG_INSTR_REF";
+ let hasSideEffects = false;
+}
+def DBG_LABEL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins unknown:$label);
+ let AsmString = "DBG_LABEL";
+ let hasSideEffects = false;
+}
+def REG_SEQUENCE : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$supersrc, variable_ops);
+ let AsmString = "";
+ let hasSideEffects = false;
+ let isAsCheapAsAMove = true;
+}
+def COPY : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins unknown:$src);
+ let AsmString = "";
+ let hasSideEffects = false;
+ let isAsCheapAsAMove = true;
+ let hasNoSchedulingInfo = false;
+}
+def BUNDLE : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "BUNDLE";
+ let hasSideEffects = false;
+}
+def LIFETIME_START : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "LIFETIME_START";
+ let hasSideEffects = false;
+}
+def LIFETIME_END : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$id);
+ let AsmString = "LIFETIME_END";
+ let hasSideEffects = false;
+}
+def PSEUDO_PROBE : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i64imm:$guid, i64imm:$index, i8imm:$type, i32imm:$attr);
+ let AsmString = "PSEUDO_PROBE";
+ let hasSideEffects = 1;
+}
+
+def STACKMAP : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i64imm:$id, i32imm:$nbytes, variable_ops);
+ let hasSideEffects = true;
+ let isCall = true;
+ let mayLoad = true;
+ let usesCustomInserter = true;
+}
+def PATCHPOINT : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins i64imm:$id, i32imm:$nbytes, unknown:$callee,
+ i32imm:$nargs, i32imm:$cc, variable_ops);
+ let hasSideEffects = true;
+ let isCall = true;
+ let mayLoad = true;
+ let usesCustomInserter = true;
+}
+def STATEPOINT : StandardPseudoInstruction {
+ let OutOperandList = (outs variable_ops);
+ let InOperandList = (ins variable_ops);
+ let usesCustomInserter = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let hasSideEffects = true;
+ let isCall = true;
+}
+def LOAD_STACK_GUARD : StandardPseudoInstruction {
+ let OutOperandList = (outs ptr_rc:$dst);
+ let InOperandList = (ins);
+ let mayLoad = true;
+ bit isReMaterializable = true;
+ let hasSideEffects = false;
+ bit isPseudo = true;
+}
+def PREALLOCATED_SETUP : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins i32imm:$a);
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+}
+def PREALLOCATED_ARG : StandardPseudoInstruction {
+ let OutOperandList = (outs ptr_rc:$loc);
+ let InOperandList = (ins i32imm:$a, i32imm:$b);
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+}
+def LOCAL_ESCAPE : StandardPseudoInstruction {
+ // This instruction is really just a label. It has to be part of the chain so
+ // that it doesn't get dropped from the DAG, but it produces nothing and has
+ // no side effects.
+ let OutOperandList = (outs);
+ let InOperandList = (ins ptr_rc:$symbol, i32imm:$id);
+ let hasSideEffects = false;
+ let hasCtrlDep = true;
+}
+def FAULTING_OP : StandardPseudoInstruction {
+ let OutOperandList = (outs unknown:$dst);
+ let InOperandList = (ins variable_ops);
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let isTerminator = true;
+ let isBranch = true;
+}
+def PATCHABLE_OP : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let usesCustomInserter = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let hasSideEffects = true;
+}
+def PATCHABLE_FUNCTION_ENTER : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins);
+ let AsmString = "# XRay Function Enter.";
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+}
+def PATCHABLE_RET : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "# XRay Function Patchable RET.";
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+ let isTerminator = true;
+ let isReturn = true;
+}
+def PATCHABLE_FUNCTION_EXIT : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins);
+ let AsmString = "# XRay Function Exit.";
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+ let isReturn = false; // Original return instruction will follow
+}
+def PATCHABLE_TAIL_CALL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "# XRay Tail Call Exit.";
+ let usesCustomInserter = true;
+ let hasSideEffects = true;
+ let isReturn = true;
+}
+def PATCHABLE_EVENT_CALL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins ptr_rc:$event, unknown:$size);
+ let AsmString = "# XRay Custom Event Log.";
+ let usesCustomInserter = true;
+ let isCall = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let hasSideEffects = true;
+}
+def PATCHABLE_TYPED_EVENT_CALL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins unknown:$type, ptr_rc:$event, unknown:$size);
+ let AsmString = "# XRay Typed Event Log.";
+ let usesCustomInserter = true;
+ let isCall = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let hasSideEffects = true;
+}
+def FENTRY_CALL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins);
+ let AsmString = "# FEntry call";
+ let usesCustomInserter = true;
+ let isCall = true;
+ let mayLoad = true;
+ let mayStore = true;
+ let hasSideEffects = true;
+}
+def ICALL_BRANCH_FUNNEL : StandardPseudoInstruction {
+ let OutOperandList = (outs);
+ let InOperandList = (ins variable_ops);
+ let AsmString = "";
+ let hasSideEffects = true;
+}
+
+// Generic opcodes used in GlobalISel.
+include "llvm/Target/GenericOpcodes.td"
+
+//===----------------------------------------------------------------------===//
+// AsmParser - This class can be implemented by targets that wish to implement
+// .s file parsing.
+//
+// Subtargets can have multiple different assembly parsers (e.g. AT&T vs Intel
+// syntax on X86 for example).
+//
+class AsmParser {
+ // AsmParserClassName - This specifies the suffix to use for the asmparser
+ // class. Generated AsmParser classes are always prefixed with the target
+ // name.
+ string AsmParserClassName = "AsmParser";
+
+ // AsmParserInstCleanup - If non-empty, this is the name of a custom member
+ // function of the AsmParser class to call on every matched instruction.
+ // This can be used to perform target specific instruction post-processing.
+ string AsmParserInstCleanup = "";
+
+ // ShouldEmitMatchRegisterName - Set to false if the target needs a hand
+ // written register name matcher
+ bit ShouldEmitMatchRegisterName = true;
+
+ // Set to true if the target needs a generated 'alternative register name'
+ // matcher.
+ //
+ // This generates a function which can be used to lookup registers from
+ // their aliases. This function will fail when called on targets where
+ // several registers share the same alias (i.e. not a 1:1 mapping).
+ bit ShouldEmitMatchRegisterAltName = false;
+
+ // Set to true if MatchRegisterName and MatchRegisterAltName functions
+ // should be generated even if there are duplicate register names. The
+ // target is responsible for coercing aliased registers as necessary
+ // (e.g. in validateTargetOperandClass), and there are no guarantees about
+ // which numeric register identifier will be returned in the case of
+ // multiple matches.
+ bit AllowDuplicateRegisterNames = false;
+
+ // HasMnemonicFirst - Set to false if target instructions don't always
+ // start with a mnemonic as the first token.
+ bit HasMnemonicFirst = true;
+
+ // ReportMultipleNearMisses -
+ // When 0, the assembly matcher reports an error for one encoding or operand
+ // that did not match the parsed instruction.
+ // When 1, the assembly matcher returns a list of encodings that were close
+ // to matching the parsed instruction, so to allow more detailed error
+ // messages.
+ bit ReportMultipleNearMisses = false;
+}
+def DefaultAsmParser : AsmParser;
+
+//===----------------------------------------------------------------------===//
+// AsmParserVariant - Subtargets can have multiple different assembly parsers
+// (e.g. AT&T vs Intel syntax on X86 for example). This class can be
+// implemented by targets to describe such variants.
+//
+class AsmParserVariant {
+ // Variant - AsmParsers can be of multiple different variants. Variants are
+ // used to support targets that need to parse multiple formats for the
+ // assembly language.
+ int Variant = 0;
+
+ // Name - The AsmParser variant name (e.g., AT&T vs Intel).
+ string Name = "";
+
+ // CommentDelimiter - If given, the delimiter string used to recognize
+ // comments which are hard coded in the .td assembler strings for individual
+ // instructions.
+ string CommentDelimiter = "";
+
+ // RegisterPrefix - If given, the token prefix which indicates a register
+ // token. This is used by the matcher to automatically recognize hard coded
+ // register tokens as constrained registers, instead of tokens, for the
+ // purposes of matching.
+ string RegisterPrefix = "";
+
+ // TokenizingCharacters - Characters that are standalone tokens
+ string TokenizingCharacters = "[]*!";
+
+ // SeparatorCharacters - Characters that are not tokens
+ string SeparatorCharacters = " \t,";
+
+ // BreakCharacters - Characters that start new identifiers
+ string BreakCharacters = "";
+}
+def DefaultAsmParserVariant : AsmParserVariant;
+
+// Operators for combining SubtargetFeatures in AssemblerPredicates
+def any_of;
+def all_of;
+
+/// AssemblerPredicate - This is a Predicate that can be used when the assembler
+/// matches instructions and aliases.
+class AssemblerPredicate<dag cond, string name = ""> {
+ bit AssemblerMatcherPredicate = true;
+ dag AssemblerCondDag = cond;
+ string PredicateName = name;
+}
+
+/// TokenAlias - This class allows targets to define assembler token
+/// operand aliases. That is, a token literal operand which is equivalent
+/// to another, canonical, token literal. For example, ARM allows:
+/// vmov.u32 s4, #0 -> vmov.i32, #0
+/// 'u32' is a more specific designator for the 32-bit integer type specifier
+/// and is legal for any instruction which accepts 'i32' as a datatype suffix.
+/// def : TokenAlias<".u32", ".i32">;
+///
+/// This works by marking the match class of 'From' as a subclass of the
+/// match class of 'To'.
+class TokenAlias<string From, string To> {
+ string FromToken = From;
+ string ToToken = To;
+}
+
+/// MnemonicAlias - This class allows targets to define assembler mnemonic
+/// aliases. This should be used when all forms of one mnemonic are accepted
+/// with a different mnemonic. For example, X86 allows:
+/// sal %al, 1 -> shl %al, 1
+/// sal %ax, %cl -> shl %ax, %cl
+/// sal %eax, %cl -> shl %eax, %cl
+/// etc. Though "sal" is accepted with many forms, all of them are directly
+/// translated to a shl, so it can be handled with (in the case of X86, it
+/// actually has one for each suffix as well):
+/// def : MnemonicAlias<"sal", "shl">;
+///
+/// Mnemonic aliases are mapped before any other translation in the match phase,
+/// and do allow Requires predicates, e.g.:
+///
+/// def : MnemonicAlias<"pushf", "pushfq">, Requires<[In64BitMode]>;
+/// def : MnemonicAlias<"pushf", "pushfl">, Requires<[In32BitMode]>;
+///
+/// Mnemonic aliases can also be constrained to specific variants, e.g.:
+///
+/// def : MnemonicAlias<"pushf", "pushfq", "att">, Requires<[In64BitMode]>;
+///
+/// If no variant (e.g., "att" or "intel") is specified then the alias is
+/// applied unconditionally.
+class MnemonicAlias<string From, string To, string VariantName = ""> {
+ string FromMnemonic = From;
+ string ToMnemonic = To;
+ string AsmVariantName = VariantName;
+
+ // Predicates - Predicates that must be true for this remapping to happen.
+ list<Predicate> Predicates = [];
+}
+
+/// InstAlias - This defines an alternate assembly syntax that is allowed to
+/// match an instruction that has a different (more canonical) assembly
+/// representation.
+class InstAlias<string Asm, dag Result, int Emit = 1, string VariantName = ""> {
+ string AsmString = Asm; // The .s format to match the instruction with.
+ dag ResultInst = Result; // The MCInst to generate.
+
+ // This determines which order the InstPrinter detects aliases for
+ // printing. A larger value makes the alias more likely to be
+ // emitted. The Instruction's own definition is notionally 0.5, so 0
+ // disables printing and 1 enables it if there are no conflicting aliases.
+ int EmitPriority = Emit;
+
+ // Predicates - Predicates that must be true for this to match.
+ list<Predicate> Predicates = [];
+
+ // If the instruction specified in Result has defined an AsmMatchConverter
+ // then setting this to 1 will cause the alias to use the AsmMatchConverter
+ // function when converting the OperandVector into an MCInst instead of the
+ // function that is generated by the dag Result.
+ // Setting this to 0 will cause the alias to ignore the Result instruction's
+ // defined AsmMatchConverter and instead use the function generated by the
+ // dag Result.
+ bit UseInstAsmMatchConverter = true;
+
+ // Assembler variant name to use for this alias. If not specified then
+ // assembler variants will be determined based on AsmString
+ string AsmVariantName = VariantName;
+}
+
+//===----------------------------------------------------------------------===//
+// AsmWriter - This class can be implemented by targets that need to customize
+// the format of the .s file writer.
+//
+// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
+// on X86 for example).
+//
+class AsmWriter {
+ // AsmWriterClassName - This specifies the suffix to use for the asmwriter
+ // class. Generated AsmWriter classes are always prefixed with the target
+ // name.
+ string AsmWriterClassName = "InstPrinter";
+
+ // PassSubtarget - Determines whether MCSubtargetInfo should be passed to
+ // the various print methods.
+ // FIXME: Remove after all ports are updated.
+ int PassSubtarget = 0;
+
+ // Variant - AsmWriters can be of multiple different variants. Variants are
+ // used to support targets that need to emit assembly code in ways that are
+ // mostly the same for different targets, but have minor differences in
+ // syntax. If the asmstring contains {|} characters in them, this integer
+ // will specify which alternative to use. For example "{x|y|z}" with Variant
+ // == 1, will expand to "y".
+ int Variant = 0;
+}
+def DefaultAsmWriter : AsmWriter;
+
+
+//===----------------------------------------------------------------------===//
+// Target - This class contains the "global" target information
+//
+class Target {
+ // InstructionSet - Instruction set description for this target.
+ InstrInfo InstructionSet;
+
+ // AssemblyParsers - The AsmParser instances available for this target.
+ list<AsmParser> AssemblyParsers = [DefaultAsmParser];
+
+ /// AssemblyParserVariants - The AsmParserVariant instances available for
+ /// this target.
+ list<AsmParserVariant> AssemblyParserVariants = [DefaultAsmParserVariant];
+
+ // AssemblyWriters - The AsmWriter instances available for this target.
+ list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
+
+ // AllowRegisterRenaming - Controls whether this target allows
+ // post-register-allocation renaming of registers. This is done by
+ // setting hasExtraDefRegAllocReq and hasExtraSrcRegAllocReq to 1
+ // for all opcodes if this flag is set to 0.
+ int AllowRegisterRenaming = 0;
+}
+
+//===----------------------------------------------------------------------===//
+// SubtargetFeature - A characteristic of the chip set.
+//
+class SubtargetFeature<string n, string a, string v, string d,
+ list<SubtargetFeature> i = []> {
+ // Name - Feature name. Used by command line (-mattr=) to determine the
+ // appropriate target chip.
+ //
+ string Name = n;
+
+ // Attribute - Attribute to be set by feature.
+ //
+ string Attribute = a;
+
+ // Value - Value the attribute to be set to by feature.
+ //
+ string Value = v;
+
+ // Desc - Feature description. Used by command line (-mattr=) to display help
+ // information.
+ //
+ string Desc = d;
+
+ // Implies - Features that this feature implies are present. If one of those
+ // features isn't set, then this one shouldn't be set either.
+ //
+ list<SubtargetFeature> Implies = i;
+}
+
+/// Specifies a Subtarget feature that this instruction is deprecated on.
+class Deprecated<SubtargetFeature dep> {
+ SubtargetFeature DeprecatedFeatureMask = dep;
+}
+
+/// A custom predicate used to determine if an instruction is
+/// deprecated or not.
+class ComplexDeprecationPredicate<string dep> {
+ string ComplexDeprecationPredicate = dep;
+}
+
+//===----------------------------------------------------------------------===//
+// Processor chip sets - These values represent each of the chip sets supported
+// by the scheduler. Each Processor definition requires corresponding
+// instruction itineraries.
+//
+class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f,
+ list<SubtargetFeature> tunef = []> {
+ // Name - Chip set name. Used by command line (-mcpu=) to determine the
+ // appropriate target chip.
+ //
+ string Name = n;
+
+ // SchedModel - The machine model for scheduling and instruction cost.
+ //
+ SchedMachineModel SchedModel = NoSchedModel;
+
+ // ProcItin - The scheduling information for the target processor.
+ //
+ ProcessorItineraries ProcItin = pi;
+
+ // Features - list of
+ list<SubtargetFeature> Features = f;
+
+ // TuneFeatures - list of features for tuning for this CPU. If the target
+ // supports -mtune, this should contain the list of features used to make
+ // microarchitectural optimization decisions for a given processor. While
+ // Features should contain the architectural features for the processor.
+ list<SubtargetFeature> TuneFeatures = tunef;
+}
+
+// ProcessorModel allows subtargets to specify the more general
+// SchedMachineModel instead if a ProcessorItinerary. Subtargets will
+// gradually move to this newer form.
+//
+// Although this class always passes NoItineraries to the Processor
+// class, the SchedMachineModel may still define valid Itineraries.
+class ProcessorModel<string n, SchedMachineModel m, list<SubtargetFeature> f,
+ list<SubtargetFeature> tunef = []>
+ : Processor<n, NoItineraries, f, tunef> {
+ let SchedModel = m;
+}
+
+//===----------------------------------------------------------------------===//
+// InstrMapping - This class is used to create mapping tables to relate
+// instructions with each other based on the values specified in RowFields,
+// ColFields, KeyCol and ValueCols.
+//
+class InstrMapping {
+ // FilterClass - Used to limit search space only to the instructions that
+ // define the relationship modeled by this InstrMapping record.
+ string FilterClass;
+
+ // RowFields - List of fields/attributes that should be same for all the
+ // instructions in a row of the relation table. Think of this as a set of
+ // properties shared by all the instructions related by this relationship
+ // model and is used to categorize instructions into subgroups. For instance,
+ // if we want to define a relation that maps 'Add' instruction to its
+ // predicated forms, we can define RowFields like this:
+ //
+ // let RowFields = BaseOp
+ // All add instruction predicated/non-predicated will have to set their BaseOp
+ // to the same value.
+ //
+ // def Add: { let BaseOp = 'ADD'; let predSense = 'nopred' }
+ // def Add_predtrue: { let BaseOp = 'ADD'; let predSense = 'true' }
+ // def Add_predfalse: { let BaseOp = 'ADD'; let predSense = 'false' }
+ list<string> RowFields = [];
+
+ // List of fields/attributes that are same for all the instructions
+ // in a column of the relation table.
+ // Ex: let ColFields = 'predSense' -- It means that the columns are arranged
+ // based on the 'predSense' values. All the instruction in a specific
+ // column have the same value and it is fixed for the column according
+ // to the values set in 'ValueCols'.
+ list<string> ColFields = [];
+
+ // Values for the fields/attributes listed in 'ColFields'.
+ // Ex: let KeyCol = 'nopred' -- It means that the key instruction (instruction
+ // that models this relation) should be non-predicated.
+ // In the example above, 'Add' is the key instruction.
+ list<string> KeyCol = [];
+
+ // List of values for the fields/attributes listed in 'ColFields', one for
+ // each column in the relation table.
+ //
+ // Ex: let ValueCols = [['true'],['false']] -- It adds two columns in the
+ // table. First column requires all the instructions to have predSense
+ // set to 'true' and second column requires it to be 'false'.
+ list<list<string> > ValueCols = [];
+}
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for calling conventions.
+//
+include "llvm/Target/TargetCallingConv.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for DAG isel generation.
+//
+include "llvm/Target/TargetSelectionDAG.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for Global ISel register bank info generation.
+//
+include "llvm/Target/GlobalISel/RegisterBank.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for DAG isel generation.
+//
+include "llvm/Target/GlobalISel/Target.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for the Global ISel DAG-based selector generation.
+//
+include "llvm/Target/GlobalISel/SelectionDAGCompat.td"
+
+//===----------------------------------------------------------------------===//
+// Pull in the common support for Pfm Counters generation.
+//
+include "llvm/Target/TargetPfmCounters.td"