aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/IR/DataLayout.h
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/IR/DataLayout.h
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/IR/DataLayout.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/IR/DataLayout.h725
1 files changed, 725 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/IR/DataLayout.h b/contrib/libs/llvm12/include/llvm/IR/DataLayout.h
new file mode 100644
index 0000000000..7f44dc23bf
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/IR/DataLayout.h
@@ -0,0 +1,725 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines layout properties related to datatype size/offset/alignment
+// information. It uses lazy annotations to cache information about how
+// structure types are laid out and used.
+//
+// This structure should be created once, filled in if the defaults are not
+// correct and then passed around by const&. None of the members functions
+// require modification to the object.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_IR_DATALAYOUT_H
+#define LLVM_IR_DATALAYOUT_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Type.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Support/TypeSize.h"
+#include <cassert>
+#include <cstdint>
+#include <string>
+
+// This needs to be outside of the namespace, to avoid conflict with llvm-c
+// decl.
+using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
+
+namespace llvm {
+
+class GlobalVariable;
+class LLVMContext;
+class Module;
+class StructLayout;
+class Triple;
+class Value;
+
+/// Enum used to categorize the alignment types stored by LayoutAlignElem
+enum AlignTypeEnum {
+ INVALID_ALIGN = 0,
+ INTEGER_ALIGN = 'i',
+ VECTOR_ALIGN = 'v',
+ FLOAT_ALIGN = 'f',
+ AGGREGATE_ALIGN = 'a'
+};
+
+// FIXME: Currently the DataLayout string carries a "preferred alignment"
+// for types. As the DataLayout is module/global, this should likely be
+// sunk down to an FTTI element that is queried rather than a global
+// preference.
+
+/// Layout alignment element.
+///
+/// Stores the alignment data associated with a given alignment type (integer,
+/// vector, float) and type bit width.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct LayoutAlignElem {
+ /// Alignment type from \c AlignTypeEnum
+ unsigned AlignType : 8;
+ unsigned TypeBitWidth : 24;
+ Align ABIAlign;
+ Align PrefAlign;
+
+ static LayoutAlignElem get(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width);
+
+ bool operator==(const LayoutAlignElem &rhs) const;
+};
+
+/// Layout pointer alignment element.
+///
+/// Stores the alignment data associated with a given pointer and address space.
+///
+/// \note The unusual order of elements in the structure attempts to reduce
+/// padding and make the structure slightly more cache friendly.
+struct PointerAlignElem {
+ Align ABIAlign;
+ Align PrefAlign;
+ uint32_t TypeByteWidth;
+ uint32_t AddressSpace;
+ uint32_t IndexWidth;
+
+ /// Initializer
+ static PointerAlignElem get(uint32_t AddressSpace, Align ABIAlign,
+ Align PrefAlign, uint32_t TypeByteWidth,
+ uint32_t IndexWidth);
+
+ bool operator==(const PointerAlignElem &rhs) const;
+};
+
+/// A parsed version of the target data layout string in and methods for
+/// querying it.
+///
+/// The target data layout string is specified *by the target* - a frontend
+/// generating LLVM IR is required to generate the right target data for the
+/// target being codegen'd to.
+class DataLayout {
+public:
+ enum class FunctionPtrAlignType {
+ /// The function pointer alignment is independent of the function alignment.
+ Independent,
+ /// The function pointer alignment is a multiple of the function alignment.
+ MultipleOfFunctionAlign,
+ };
+private:
+ /// Defaults to false.
+ bool BigEndian;
+
+ unsigned AllocaAddrSpace;
+ MaybeAlign StackNaturalAlign;
+ unsigned ProgramAddrSpace;
+ unsigned DefaultGlobalsAddrSpace;
+
+ MaybeAlign FunctionPtrAlign;
+ FunctionPtrAlignType TheFunctionPtrAlignType;
+
+ enum ManglingModeT {
+ MM_None,
+ MM_ELF,
+ MM_MachO,
+ MM_WinCOFF,
+ MM_WinCOFFX86,
+ MM_Mips,
+ MM_XCOFF
+ };
+ ManglingModeT ManglingMode;
+
+ SmallVector<unsigned char, 8> LegalIntWidths;
+
+ /// Primitive type alignment data. This is sorted by type and bit
+ /// width during construction.
+ using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
+ AlignmentsTy Alignments;
+
+ AlignmentsTy::const_iterator
+ findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
+ return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
+ BitWidth);
+ }
+
+ AlignmentsTy::iterator
+ findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
+
+ /// The string representation used to create this DataLayout
+ std::string StringRepresentation;
+
+ using PointersTy = SmallVector<PointerAlignElem, 8>;
+ PointersTy Pointers;
+
+ const PointerAlignElem &getPointerAlignElem(uint32_t AddressSpace) const;
+
+ // The StructType -> StructLayout map.
+ mutable void *LayoutMap = nullptr;
+
+ /// Pointers in these address spaces are non-integral, and don't have a
+ /// well-defined bitwise representation.
+ SmallVector<unsigned, 8> NonIntegralAddressSpaces;
+
+ /// Attempts to set the alignment of the given type. Returns an error
+ /// description on failure.
+ Error setAlignment(AlignTypeEnum align_type, Align abi_align,
+ Align pref_align, uint32_t bit_width);
+
+ /// Attempts to set the alignment of a pointer in the given address space.
+ /// Returns an error description on failure.
+ Error setPointerAlignment(uint32_t AddrSpace, Align ABIAlign, Align PrefAlign,
+ uint32_t TypeByteWidth, uint32_t IndexWidth);
+
+ /// Internal helper to get alignment for integer of given bitwidth.
+ Align getIntegerAlignment(uint32_t BitWidth, bool abi_or_pref) const;
+
+ /// Internal helper method that returns requested alignment for type.
+ Align getAlignment(Type *Ty, bool abi_or_pref) const;
+
+ /// Attempts to parse a target data specification string and reports an error
+ /// if the string is malformed.
+ Error parseSpecifier(StringRef Desc);
+
+ // Free all internal data structures.
+ void clear();
+
+public:
+ /// Constructs a DataLayout from a specification string. See reset().
+ explicit DataLayout(StringRef LayoutDescription) {
+ reset(LayoutDescription);
+ }
+
+ /// Initialize target data from properties stored in the module.
+ explicit DataLayout(const Module *M);
+
+ DataLayout(const DataLayout &DL) { *this = DL; }
+
+ ~DataLayout(); // Not virtual, do not subclass this class
+
+ DataLayout &operator=(const DataLayout &DL) {
+ clear();
+ StringRepresentation = DL.StringRepresentation;
+ BigEndian = DL.isBigEndian();
+ AllocaAddrSpace = DL.AllocaAddrSpace;
+ StackNaturalAlign = DL.StackNaturalAlign;
+ FunctionPtrAlign = DL.FunctionPtrAlign;
+ TheFunctionPtrAlignType = DL.TheFunctionPtrAlignType;
+ ProgramAddrSpace = DL.ProgramAddrSpace;
+ DefaultGlobalsAddrSpace = DL.DefaultGlobalsAddrSpace;
+ ManglingMode = DL.ManglingMode;
+ LegalIntWidths = DL.LegalIntWidths;
+ Alignments = DL.Alignments;
+ Pointers = DL.Pointers;
+ NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
+ return *this;
+ }
+
+ bool operator==(const DataLayout &Other) const;
+ bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
+
+ void init(const Module *M);
+
+ /// Parse a data layout string (with fallback to default values).
+ void reset(StringRef LayoutDescription);
+
+ /// Parse a data layout string and return the layout. Return an error
+ /// description on failure.
+ static Expected<DataLayout> parse(StringRef LayoutDescription);
+
+ /// Layout endianness...
+ bool isLittleEndian() const { return !BigEndian; }
+ bool isBigEndian() const { return BigEndian; }
+
+ /// Returns the string representation of the DataLayout.
+ ///
+ /// This representation is in the same format accepted by the string
+ /// constructor above. This should not be used to compare two DataLayout as
+ /// different string can represent the same layout.
+ const std::string &getStringRepresentation() const {
+ return StringRepresentation;
+ }
+
+ /// Test if the DataLayout was constructed from an empty string.
+ bool isDefault() const { return StringRepresentation.empty(); }
+
+ /// Returns true if the specified type is known to be a native integer
+ /// type supported by the CPU.
+ ///
+ /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
+ /// on any known one. This returns false if the integer width is not legal.
+ ///
+ /// The width is specified in bits.
+ bool isLegalInteger(uint64_t Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (LegalIntWidth == Width)
+ return true;
+ return false;
+ }
+
+ bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
+
+ /// Returns true if the given alignment exceeds the natural stack alignment.
+ bool exceedsNaturalStackAlignment(Align Alignment) const {
+ return StackNaturalAlign && (Alignment > *StackNaturalAlign);
+ }
+
+ Align getStackAlignment() const {
+ assert(StackNaturalAlign && "StackNaturalAlign must be defined");
+ return *StackNaturalAlign;
+ }
+
+ unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
+
+ /// Returns the alignment of function pointers, which may or may not be
+ /// related to the alignment of functions.
+ /// \see getFunctionPtrAlignType
+ MaybeAlign getFunctionPtrAlign() const { return FunctionPtrAlign; }
+
+ /// Return the type of function pointer alignment.
+ /// \see getFunctionPtrAlign
+ FunctionPtrAlignType getFunctionPtrAlignType() const {
+ return TheFunctionPtrAlignType;
+ }
+
+ unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
+ unsigned getDefaultGlobalsAddressSpace() const {
+ return DefaultGlobalsAddrSpace;
+ }
+
+ bool hasMicrosoftFastStdCallMangling() const {
+ return ManglingMode == MM_WinCOFFX86;
+ }
+
+ /// Returns true if symbols with leading question marks should not receive IR
+ /// mangling. True for Windows mangling modes.
+ bool doNotMangleLeadingQuestionMark() const {
+ return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
+ }
+
+ bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
+
+ StringRef getLinkerPrivateGlobalPrefix() const {
+ if (ManglingMode == MM_MachO)
+ return "l";
+ return "";
+ }
+
+ char getGlobalPrefix() const {
+ switch (ManglingMode) {
+ case MM_None:
+ case MM_ELF:
+ case MM_Mips:
+ case MM_WinCOFF:
+ case MM_XCOFF:
+ return '\0';
+ case MM_MachO:
+ case MM_WinCOFFX86:
+ return '_';
+ }
+ llvm_unreachable("invalid mangling mode");
+ }
+
+ StringRef getPrivateGlobalPrefix() const {
+ switch (ManglingMode) {
+ case MM_None:
+ return "";
+ case MM_ELF:
+ case MM_WinCOFF:
+ return ".L";
+ case MM_Mips:
+ return "$";
+ case MM_MachO:
+ case MM_WinCOFFX86:
+ return "L";
+ case MM_XCOFF:
+ return "L..";
+ }
+ llvm_unreachable("invalid mangling mode");
+ }
+
+ static const char *getManglingComponent(const Triple &T);
+
+ /// Returns true if the specified type fits in a native integer type
+ /// supported by the CPU.
+ ///
+ /// For example, if the CPU only supports i32 as a native integer type, then
+ /// i27 fits in a legal integer type but i45 does not.
+ bool fitsInLegalInteger(unsigned Width) const {
+ for (unsigned LegalIntWidth : LegalIntWidths)
+ if (Width <= LegalIntWidth)
+ return true;
+ return false;
+ }
+
+ /// Layout pointer alignment
+ Align getPointerABIAlignment(unsigned AS) const;
+
+ /// Return target's alignment for stack-based pointers
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ Align getPointerPrefAlignment(unsigned AS = 0) const;
+
+ /// Layout pointer size
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ unsigned getPointerSize(unsigned AS = 0) const;
+
+ /// Returns the maximum pointer size over all address spaces.
+ unsigned getMaxPointerSize() const;
+
+ // Index size used for address calculation.
+ unsigned getIndexSize(unsigned AS) const;
+
+ /// Return the address spaces containing non-integral pointers. Pointers in
+ /// this address space don't have a well-defined bitwise representation.
+ ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
+ return NonIntegralAddressSpaces;
+ }
+
+ bool isNonIntegralAddressSpace(unsigned AddrSpace) const {
+ ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
+ return is_contained(NonIntegralSpaces, AddrSpace);
+ }
+
+ bool isNonIntegralPointerType(PointerType *PT) const {
+ return isNonIntegralAddressSpace(PT->getAddressSpace());
+ }
+
+ bool isNonIntegralPointerType(Type *Ty) const {
+ auto *PTy = dyn_cast<PointerType>(Ty);
+ return PTy && isNonIntegralPointerType(PTy);
+ }
+
+ /// Layout pointer size, in bits
+ /// FIXME: The defaults need to be removed once all of
+ /// the backends/clients are updated.
+ unsigned getPointerSizeInBits(unsigned AS = 0) const {
+ return getPointerSize(AS) * 8;
+ }
+
+ /// Returns the maximum pointer size over all address spaces.
+ unsigned getMaxPointerSizeInBits() const {
+ return getMaxPointerSize() * 8;
+ }
+
+ /// Size in bits of index used for address calculation in getelementptr.
+ unsigned getIndexSizeInBits(unsigned AS) const {
+ return getIndexSize(AS) * 8;
+ }
+
+ /// Layout pointer size, in bits, based on the type. If this function is
+ /// called with a pointer type, then the type size of the pointer is returned.
+ /// If this function is called with a vector of pointers, then the type size
+ /// of the pointer is returned. This should only be called with a pointer or
+ /// vector of pointers.
+ unsigned getPointerTypeSizeInBits(Type *) const;
+
+ /// Layout size of the index used in GEP calculation.
+ /// The function should be called with pointer or vector of pointers type.
+ unsigned getIndexTypeSizeInBits(Type *Ty) const;
+
+ unsigned getPointerTypeSize(Type *Ty) const {
+ return getPointerTypeSizeInBits(Ty) / 8;
+ }
+
+ /// Size examples:
+ ///
+ /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
+ /// ---- ---------- --------------- ---------------
+ /// i1 1 8 8
+ /// i8 8 8 8
+ /// i19 19 24 32
+ /// i32 32 32 32
+ /// i100 100 104 128
+ /// i128 128 128 128
+ /// Float 32 32 32
+ /// Double 64 64 64
+ /// X86_FP80 80 80 96
+ ///
+ /// [*] The alloc size depends on the alignment, and thus on the target.
+ /// These values are for x86-32 linux.
+
+ /// Returns the number of bits necessary to hold the specified type.
+ ///
+ /// If Ty is a scalable vector type, the scalable property will be set and
+ /// the runtime size will be a positive integer multiple of the base size.
+ ///
+ /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
+ /// have a size (Type::isSized() must return true).
+ TypeSize getTypeSizeInBits(Type *Ty) const;
+
+ /// Returns the maximum number of bytes that may be overwritten by
+ /// storing the specified type.
+ ///
+ /// If Ty is a scalable vector type, the scalable property will be set and
+ /// the runtime size will be a positive integer multiple of the base size.
+ ///
+ /// For example, returns 5 for i36 and 10 for x86_fp80.
+ TypeSize getTypeStoreSize(Type *Ty) const {
+ TypeSize BaseSize = getTypeSizeInBits(Ty);
+ return { (BaseSize.getKnownMinSize() + 7) / 8, BaseSize.isScalable() };
+ }
+
+ /// Returns the maximum number of bits that may be overwritten by
+ /// storing the specified type; always a multiple of 8.
+ ///
+ /// If Ty is a scalable vector type, the scalable property will be set and
+ /// the runtime size will be a positive integer multiple of the base size.
+ ///
+ /// For example, returns 40 for i36 and 80 for x86_fp80.
+ TypeSize getTypeStoreSizeInBits(Type *Ty) const {
+ return 8 * getTypeStoreSize(Ty);
+ }
+
+ /// Returns true if no extra padding bits are needed when storing the
+ /// specified type.
+ ///
+ /// For example, returns false for i19 that has a 24-bit store size.
+ bool typeSizeEqualsStoreSize(Type *Ty) const {
+ return getTypeSizeInBits(Ty) == getTypeStoreSizeInBits(Ty);
+ }
+
+ /// Returns the offset in bytes between successive objects of the
+ /// specified type, including alignment padding.
+ ///
+ /// If Ty is a scalable vector type, the scalable property will be set and
+ /// the runtime size will be a positive integer multiple of the base size.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 12 or 16 for x86_fp80, depending on alignment.
+ TypeSize getTypeAllocSize(Type *Ty) const {
+ // Round up to the next alignment boundary.
+ return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
+ }
+
+ /// Returns the offset in bits between successive objects of the
+ /// specified type, including alignment padding; always a multiple of 8.
+ ///
+ /// If Ty is a scalable vector type, the scalable property will be set and
+ /// the runtime size will be a positive integer multiple of the base size.
+ ///
+ /// This is the amount that alloca reserves for this type. For example,
+ /// returns 96 or 128 for x86_fp80, depending on alignment.
+ TypeSize getTypeAllocSizeInBits(Type *Ty) const {
+ return 8 * getTypeAllocSize(Ty);
+ }
+
+ /// Returns the minimum ABI-required alignment for the specified type.
+ /// FIXME: Deprecate this function once migration to Align is over.
+ unsigned getABITypeAlignment(Type *Ty) const;
+
+ /// Returns the minimum ABI-required alignment for the specified type.
+ Align getABITypeAlign(Type *Ty) const;
+
+ /// Helper function to return `Alignment` if it's set or the result of
+ /// `getABITypeAlignment(Ty)`, in any case the result is a valid alignment.
+ inline Align getValueOrABITypeAlignment(MaybeAlign Alignment,
+ Type *Ty) const {
+ return Alignment ? *Alignment : getABITypeAlign(Ty);
+ }
+
+ /// Returns the minimum ABI-required alignment for an integer type of
+ /// the specified bitwidth.
+ Align getABIIntegerTypeAlignment(unsigned BitWidth) const {
+ return getIntegerAlignment(BitWidth, /* abi_or_pref */ true);
+ }
+
+ /// Returns the preferred stack/global alignment for the specified
+ /// type.
+ ///
+ /// This is always at least as good as the ABI alignment.
+ /// FIXME: Deprecate this function once migration to Align is over.
+ unsigned getPrefTypeAlignment(Type *Ty) const;
+
+ /// Returns the preferred stack/global alignment for the specified
+ /// type.
+ ///
+ /// This is always at least as good as the ABI alignment.
+ Align getPrefTypeAlign(Type *Ty) const;
+
+ /// Returns an integer type with size at least as big as that of a
+ /// pointer in the given address space.
+ IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
+
+ /// Returns an integer (vector of integer) type with size at least as
+ /// big as that of a pointer of the given pointer (vector of pointer) type.
+ Type *getIntPtrType(Type *) const;
+
+ /// Returns the smallest integer type with size at least as big as
+ /// Width bits.
+ Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
+
+ /// Returns the largest legal integer type, or null if none are set.
+ Type *getLargestLegalIntType(LLVMContext &C) const {
+ unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
+ return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
+ }
+
+ /// Returns the size of largest legal integer type size, or 0 if none
+ /// are set.
+ unsigned getLargestLegalIntTypeSizeInBits() const;
+
+ /// Returns the type of a GEP index.
+ /// If it was not specified explicitly, it will be the integer type of the
+ /// pointer width - IntPtrType.
+ Type *getIndexType(Type *PtrTy) const;
+
+ /// Returns the offset from the beginning of the type for the specified
+ /// indices.
+ ///
+ /// Note that this takes the element type, not the pointer type.
+ /// This is used to implement getelementptr.
+ int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
+
+ /// Returns a StructLayout object, indicating the alignment of the
+ /// struct, its size, and the offsets of its fields.
+ ///
+ /// Note that this information is lazily cached.
+ const StructLayout *getStructLayout(StructType *Ty) const;
+
+ /// Returns the preferred alignment of the specified global.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
+ Align getPreferredAlign(const GlobalVariable *GV) const;
+
+ /// Returns the preferred alignment of the specified global.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
+ LLVM_ATTRIBUTE_DEPRECATED(
+ inline unsigned getPreferredAlignment(const GlobalVariable *GV) const,
+ "Use getPreferredAlign instead") {
+ return getPreferredAlign(GV).value();
+ }
+
+ /// Returns the preferred alignment of the specified global, returned
+ /// in log form.
+ ///
+ /// This includes an explicitly requested alignment (if the global has one).
+ LLVM_ATTRIBUTE_DEPRECATED(
+ inline unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const,
+ "Inline where needed") {
+ return Log2(getPreferredAlign(GV));
+ }
+};
+
+inline DataLayout *unwrap(LLVMTargetDataRef P) {
+ return reinterpret_cast<DataLayout *>(P);
+}
+
+inline LLVMTargetDataRef wrap(const DataLayout *P) {
+ return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
+}
+
+/// Used to lazily calculate structure layout information for a target machine,
+/// based on the DataLayout structure.
+class StructLayout {
+ uint64_t StructSize;
+ Align StructAlignment;
+ unsigned IsPadded : 1;
+ unsigned NumElements : 31;
+ uint64_t MemberOffsets[1]; // variable sized array!
+
+public:
+ uint64_t getSizeInBytes() const { return StructSize; }
+
+ uint64_t getSizeInBits() const { return 8 * StructSize; }
+
+ Align getAlignment() const { return StructAlignment; }
+
+ /// Returns whether the struct has padding or not between its fields.
+ /// NB: Padding in nested element is not taken into account.
+ bool hasPadding() const { return IsPadded; }
+
+ /// Given a valid byte offset into the structure, returns the structure
+ /// index that contains it.
+ unsigned getElementContainingOffset(uint64_t Offset) const;
+
+ uint64_t getElementOffset(unsigned Idx) const {
+ assert(Idx < NumElements && "Invalid element idx!");
+ return MemberOffsets[Idx];
+ }
+
+ uint64_t getElementOffsetInBits(unsigned Idx) const {
+ return getElementOffset(Idx) * 8;
+ }
+
+private:
+ friend class DataLayout; // Only DataLayout can create this class
+
+ StructLayout(StructType *ST, const DataLayout &DL);
+};
+
+// The implementation of this method is provided inline as it is particularly
+// well suited to constant folding when called on a specific Type subclass.
+inline TypeSize DataLayout::getTypeSizeInBits(Type *Ty) const {
+ assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
+ switch (Ty->getTypeID()) {
+ case Type::LabelTyID:
+ return TypeSize::Fixed(getPointerSizeInBits(0));
+ case Type::PointerTyID:
+ return TypeSize::Fixed(getPointerSizeInBits(Ty->getPointerAddressSpace()));
+ case Type::ArrayTyID: {
+ ArrayType *ATy = cast<ArrayType>(Ty);
+ return ATy->getNumElements() *
+ getTypeAllocSizeInBits(ATy->getElementType());
+ }
+ case Type::StructTyID:
+ // Get the layout annotation... which is lazily created on demand.
+ return TypeSize::Fixed(
+ getStructLayout(cast<StructType>(Ty))->getSizeInBits());
+ case Type::IntegerTyID:
+ return TypeSize::Fixed(Ty->getIntegerBitWidth());
+ case Type::HalfTyID:
+ case Type::BFloatTyID:
+ return TypeSize::Fixed(16);
+ case Type::FloatTyID:
+ return TypeSize::Fixed(32);
+ case Type::DoubleTyID:
+ case Type::X86_MMXTyID:
+ return TypeSize::Fixed(64);
+ case Type::PPC_FP128TyID:
+ case Type::FP128TyID:
+ return TypeSize::Fixed(128);
+ case Type::X86_AMXTyID:
+ return TypeSize::Fixed(8192);
+ // In memory objects this is always aligned to a higher boundary, but
+ // only 80 bits contain information.
+ case Type::X86_FP80TyID:
+ return TypeSize::Fixed(80);
+ case Type::FixedVectorTyID:
+ case Type::ScalableVectorTyID: {
+ VectorType *VTy = cast<VectorType>(Ty);
+ auto EltCnt = VTy->getElementCount();
+ uint64_t MinBits = EltCnt.getKnownMinValue() *
+ getTypeSizeInBits(VTy->getElementType()).getFixedSize();
+ return TypeSize(MinBits, EltCnt.isScalable());
+ }
+ default:
+ llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
+ }
+}
+
+} // end namespace llvm
+
+#endif // LLVM_IR_DATALAYOUT_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif