aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h548
1 files changed, 548 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h b/contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h
new file mode 100644
index 0000000000..bbf491aa5b
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/CodeGen/RegAllocPBQP.h
@@ -0,0 +1,548 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- RegAllocPBQP.h -------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the PBQPBuilder interface, for classes which build PBQP
+// instances to represent register allocation problems, and the RegAllocPBQP
+// interface.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_REGALLOCPBQP_H
+#define LLVM_CODEGEN_REGALLOCPBQP_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/CodeGen/PBQP/CostAllocator.h"
+#include "llvm/CodeGen/PBQP/Graph.h"
+#include "llvm/CodeGen/PBQP/Math.h"
+#include "llvm/CodeGen/PBQP/ReductionRules.h"
+#include "llvm/CodeGen/PBQP/Solution.h"
+#include "llvm/CodeGen/Register.h"
+#include "llvm/MC/MCRegister.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <limits>
+#include <memory>
+#include <set>
+#include <vector>
+
+namespace llvm {
+
+class FunctionPass;
+class LiveIntervals;
+class MachineBlockFrequencyInfo;
+class MachineFunction;
+class raw_ostream;
+
+namespace PBQP {
+namespace RegAlloc {
+
+/// Spill option index.
+inline unsigned getSpillOptionIdx() { return 0; }
+
+/// Metadata to speed allocatability test.
+///
+/// Keeps track of the number of infinities in each row and column.
+class MatrixMetadata {
+public:
+ MatrixMetadata(const Matrix& M)
+ : UnsafeRows(new bool[M.getRows() - 1]()),
+ UnsafeCols(new bool[M.getCols() - 1]()) {
+ unsigned* ColCounts = new unsigned[M.getCols() - 1]();
+
+ for (unsigned i = 1; i < M.getRows(); ++i) {
+ unsigned RowCount = 0;
+ for (unsigned j = 1; j < M.getCols(); ++j) {
+ if (M[i][j] == std::numeric_limits<PBQPNum>::infinity()) {
+ ++RowCount;
+ ++ColCounts[j - 1];
+ UnsafeRows[i - 1] = true;
+ UnsafeCols[j - 1] = true;
+ }
+ }
+ WorstRow = std::max(WorstRow, RowCount);
+ }
+ unsigned WorstColCountForCurRow =
+ *std::max_element(ColCounts, ColCounts + M.getCols() - 1);
+ WorstCol = std::max(WorstCol, WorstColCountForCurRow);
+ delete[] ColCounts;
+ }
+
+ MatrixMetadata(const MatrixMetadata &) = delete;
+ MatrixMetadata &operator=(const MatrixMetadata &) = delete;
+
+ unsigned getWorstRow() const { return WorstRow; }
+ unsigned getWorstCol() const { return WorstCol; }
+ const bool* getUnsafeRows() const { return UnsafeRows.get(); }
+ const bool* getUnsafeCols() const { return UnsafeCols.get(); }
+
+private:
+ unsigned WorstRow = 0;
+ unsigned WorstCol = 0;
+ std::unique_ptr<bool[]> UnsafeRows;
+ std::unique_ptr<bool[]> UnsafeCols;
+};
+
+/// Holds a vector of the allowed physical regs for a vreg.
+class AllowedRegVector {
+ friend hash_code hash_value(const AllowedRegVector &);
+
+public:
+ AllowedRegVector() = default;
+ AllowedRegVector(AllowedRegVector &&) = default;
+
+ AllowedRegVector(const std::vector<MCRegister> &OptVec)
+ : NumOpts(OptVec.size()), Opts(new MCRegister[NumOpts]) {
+ std::copy(OptVec.begin(), OptVec.end(), Opts.get());
+ }
+
+ unsigned size() const { return NumOpts; }
+ MCRegister operator[](size_t I) const { return Opts[I]; }
+
+ bool operator==(const AllowedRegVector &Other) const {
+ if (NumOpts != Other.NumOpts)
+ return false;
+ return std::equal(Opts.get(), Opts.get() + NumOpts, Other.Opts.get());
+ }
+
+ bool operator!=(const AllowedRegVector &Other) const {
+ return !(*this == Other);
+ }
+
+private:
+ unsigned NumOpts = 0;
+ std::unique_ptr<MCRegister[]> Opts;
+};
+
+inline hash_code hash_value(const AllowedRegVector &OptRegs) {
+ MCRegister *OStart = OptRegs.Opts.get();
+ MCRegister *OEnd = OptRegs.Opts.get() + OptRegs.NumOpts;
+ return hash_combine(OptRegs.NumOpts,
+ hash_combine_range(OStart, OEnd));
+}
+
+/// Holds graph-level metadata relevant to PBQP RA problems.
+class GraphMetadata {
+private:
+ using AllowedRegVecPool = ValuePool<AllowedRegVector>;
+
+public:
+ using AllowedRegVecRef = AllowedRegVecPool::PoolRef;
+
+ GraphMetadata(MachineFunction &MF,
+ LiveIntervals &LIS,
+ MachineBlockFrequencyInfo &MBFI)
+ : MF(MF), LIS(LIS), MBFI(MBFI) {}
+
+ MachineFunction &MF;
+ LiveIntervals &LIS;
+ MachineBlockFrequencyInfo &MBFI;
+
+ void setNodeIdForVReg(Register VReg, GraphBase::NodeId NId) {
+ VRegToNodeId[VReg.id()] = NId;
+ }
+
+ GraphBase::NodeId getNodeIdForVReg(Register VReg) const {
+ auto VRegItr = VRegToNodeId.find(VReg);
+ if (VRegItr == VRegToNodeId.end())
+ return GraphBase::invalidNodeId();
+ return VRegItr->second;
+ }
+
+ AllowedRegVecRef getAllowedRegs(AllowedRegVector Allowed) {
+ return AllowedRegVecs.getValue(std::move(Allowed));
+ }
+
+private:
+ DenseMap<Register, GraphBase::NodeId> VRegToNodeId;
+ AllowedRegVecPool AllowedRegVecs;
+};
+
+/// Holds solver state and other metadata relevant to each PBQP RA node.
+class NodeMetadata {
+public:
+ using AllowedRegVector = RegAlloc::AllowedRegVector;
+
+ // The node's reduction state. The order in this enum is important,
+ // as it is assumed nodes can only progress up (i.e. towards being
+ // optimally reducible) when reducing the graph.
+ using ReductionState = enum {
+ Unprocessed,
+ NotProvablyAllocatable,
+ ConservativelyAllocatable,
+ OptimallyReducible
+ };
+
+ NodeMetadata() = default;
+
+ NodeMetadata(const NodeMetadata &Other)
+ : RS(Other.RS), NumOpts(Other.NumOpts), DeniedOpts(Other.DeniedOpts),
+ OptUnsafeEdges(new unsigned[NumOpts]), VReg(Other.VReg),
+ AllowedRegs(Other.AllowedRegs)
+#ifndef NDEBUG
+ , everConservativelyAllocatable(Other.everConservativelyAllocatable)
+#endif
+ {
+ if (NumOpts > 0) {
+ std::copy(&Other.OptUnsafeEdges[0], &Other.OptUnsafeEdges[NumOpts],
+ &OptUnsafeEdges[0]);
+ }
+ }
+
+ NodeMetadata(NodeMetadata &&) = default;
+ NodeMetadata& operator=(NodeMetadata &&) = default;
+
+ void setVReg(Register VReg) { this->VReg = VReg; }
+ Register getVReg() const { return VReg; }
+
+ void setAllowedRegs(GraphMetadata::AllowedRegVecRef AllowedRegs) {
+ this->AllowedRegs = std::move(AllowedRegs);
+ }
+ const AllowedRegVector& getAllowedRegs() const { return *AllowedRegs; }
+
+ void setup(const Vector& Costs) {
+ NumOpts = Costs.getLength() - 1;
+ OptUnsafeEdges = std::unique_ptr<unsigned[]>(new unsigned[NumOpts]());
+ }
+
+ ReductionState getReductionState() const { return RS; }
+ void setReductionState(ReductionState RS) {
+ assert(RS >= this->RS && "A node's reduction state can not be downgraded");
+ this->RS = RS;
+
+#ifndef NDEBUG
+ // Remember this state to assert later that a non-infinite register
+ // option was available.
+ if (RS == ConservativelyAllocatable)
+ everConservativelyAllocatable = true;
+#endif
+ }
+
+ void handleAddEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts += Transpose ? MD.getWorstRow() : MD.getWorstCol();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] += UnsafeOpts[i];
+ }
+
+ void handleRemoveEdge(const MatrixMetadata& MD, bool Transpose) {
+ DeniedOpts -= Transpose ? MD.getWorstRow() : MD.getWorstCol();
+ const bool* UnsafeOpts =
+ Transpose ? MD.getUnsafeCols() : MD.getUnsafeRows();
+ for (unsigned i = 0; i < NumOpts; ++i)
+ OptUnsafeEdges[i] -= UnsafeOpts[i];
+ }
+
+ bool isConservativelyAllocatable() const {
+ return (DeniedOpts < NumOpts) ||
+ (std::find(&OptUnsafeEdges[0], &OptUnsafeEdges[NumOpts], 0) !=
+ &OptUnsafeEdges[NumOpts]);
+ }
+
+#ifndef NDEBUG
+ bool wasConservativelyAllocatable() const {
+ return everConservativelyAllocatable;
+ }
+#endif
+
+private:
+ ReductionState RS = Unprocessed;
+ unsigned NumOpts = 0;
+ unsigned DeniedOpts = 0;
+ std::unique_ptr<unsigned[]> OptUnsafeEdges;
+ Register VReg;
+ GraphMetadata::AllowedRegVecRef AllowedRegs;
+
+#ifndef NDEBUG
+ bool everConservativelyAllocatable = false;
+#endif
+};
+
+class RegAllocSolverImpl {
+private:
+ using RAMatrix = MDMatrix<MatrixMetadata>;
+
+public:
+ using RawVector = PBQP::Vector;
+ using RawMatrix = PBQP::Matrix;
+ using Vector = PBQP::Vector;
+ using Matrix = RAMatrix;
+ using CostAllocator = PBQP::PoolCostAllocator<Vector, Matrix>;
+
+ using NodeId = GraphBase::NodeId;
+ using EdgeId = GraphBase::EdgeId;
+
+ using NodeMetadata = RegAlloc::NodeMetadata;
+ struct EdgeMetadata {};
+ using GraphMetadata = RegAlloc::GraphMetadata;
+
+ using Graph = PBQP::Graph<RegAllocSolverImpl>;
+
+ RegAllocSolverImpl(Graph &G) : G(G) {}
+
+ Solution solve() {
+ G.setSolver(*this);
+ Solution S;
+ setup();
+ S = backpropagate(G, reduce());
+ G.unsetSolver();
+ return S;
+ }
+
+ void handleAddNode(NodeId NId) {
+ assert(G.getNodeCosts(NId).getLength() > 1 &&
+ "PBQP Graph should not contain single or zero-option nodes");
+ G.getNodeMetadata(NId).setup(G.getNodeCosts(NId));
+ }
+
+ void handleRemoveNode(NodeId NId) {}
+ void handleSetNodeCosts(NodeId NId, const Vector& newCosts) {}
+
+ void handleAddEdge(EdgeId EId) {
+ handleReconnectEdge(EId, G.getEdgeNode1Id(EId));
+ handleReconnectEdge(EId, G.getEdgeNode2Id(EId));
+ }
+
+ void handleDisconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleRemoveEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ promote(NId, NMd);
+ }
+
+ void handleReconnectEdge(EdgeId EId, NodeId NId) {
+ NodeMetadata& NMd = G.getNodeMetadata(NId);
+ const MatrixMetadata& MMd = G.getEdgeCosts(EId).getMetadata();
+ NMd.handleAddEdge(MMd, NId == G.getEdgeNode2Id(EId));
+ }
+
+ void handleUpdateCosts(EdgeId EId, const Matrix& NewCosts) {
+ NodeId N1Id = G.getEdgeNode1Id(EId);
+ NodeId N2Id = G.getEdgeNode2Id(EId);
+ NodeMetadata& N1Md = G.getNodeMetadata(N1Id);
+ NodeMetadata& N2Md = G.getNodeMetadata(N2Id);
+ bool Transpose = N1Id != G.getEdgeNode1Id(EId);
+
+ // Metadata are computed incrementally. First, update them
+ // by removing the old cost.
+ const MatrixMetadata& OldMMd = G.getEdgeCosts(EId).getMetadata();
+ N1Md.handleRemoveEdge(OldMMd, Transpose);
+ N2Md.handleRemoveEdge(OldMMd, !Transpose);
+
+ // And update now the metadata with the new cost.
+ const MatrixMetadata& MMd = NewCosts.getMetadata();
+ N1Md.handleAddEdge(MMd, Transpose);
+ N2Md.handleAddEdge(MMd, !Transpose);
+
+ // As the metadata may have changed with the update, the nodes may have
+ // become ConservativelyAllocatable or OptimallyReducible.
+ promote(N1Id, N1Md);
+ promote(N2Id, N2Md);
+ }
+
+private:
+ void promote(NodeId NId, NodeMetadata& NMd) {
+ if (G.getNodeDegree(NId) == 3) {
+ // This node is becoming optimally reducible.
+ moveToOptimallyReducibleNodes(NId);
+ } else if (NMd.getReductionState() ==
+ NodeMetadata::NotProvablyAllocatable &&
+ NMd.isConservativelyAllocatable()) {
+ // This node just became conservatively allocatable.
+ moveToConservativelyAllocatableNodes(NId);
+ }
+ }
+
+ void removeFromCurrentSet(NodeId NId) {
+ switch (G.getNodeMetadata(NId).getReductionState()) {
+ case NodeMetadata::Unprocessed: break;
+ case NodeMetadata::OptimallyReducible:
+ assert(OptimallyReducibleNodes.find(NId) !=
+ OptimallyReducibleNodes.end() &&
+ "Node not in optimally reducible set.");
+ OptimallyReducibleNodes.erase(NId);
+ break;
+ case NodeMetadata::ConservativelyAllocatable:
+ assert(ConservativelyAllocatableNodes.find(NId) !=
+ ConservativelyAllocatableNodes.end() &&
+ "Node not in conservatively allocatable set.");
+ ConservativelyAllocatableNodes.erase(NId);
+ break;
+ case NodeMetadata::NotProvablyAllocatable:
+ assert(NotProvablyAllocatableNodes.find(NId) !=
+ NotProvablyAllocatableNodes.end() &&
+ "Node not in not-provably-allocatable set.");
+ NotProvablyAllocatableNodes.erase(NId);
+ break;
+ }
+ }
+
+ void moveToOptimallyReducibleNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ OptimallyReducibleNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::OptimallyReducible);
+ }
+
+ void moveToConservativelyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ ConservativelyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::ConservativelyAllocatable);
+ }
+
+ void moveToNotProvablyAllocatableNodes(NodeId NId) {
+ removeFromCurrentSet(NId);
+ NotProvablyAllocatableNodes.insert(NId);
+ G.getNodeMetadata(NId).setReductionState(
+ NodeMetadata::NotProvablyAllocatable);
+ }
+
+ void setup() {
+ // Set up worklists.
+ for (auto NId : G.nodeIds()) {
+ if (G.getNodeDegree(NId) < 3)
+ moveToOptimallyReducibleNodes(NId);
+ else if (G.getNodeMetadata(NId).isConservativelyAllocatable())
+ moveToConservativelyAllocatableNodes(NId);
+ else
+ moveToNotProvablyAllocatableNodes(NId);
+ }
+ }
+
+ // Compute a reduction order for the graph by iteratively applying PBQP
+ // reduction rules. Locally optimal rules are applied whenever possible (R0,
+ // R1, R2). If no locally-optimal rules apply then any conservatively
+ // allocatable node is reduced. Finally, if no conservatively allocatable
+ // node exists then the node with the lowest spill-cost:degree ratio is
+ // selected.
+ std::vector<GraphBase::NodeId> reduce() {
+ assert(!G.empty() && "Cannot reduce empty graph.");
+
+ using NodeId = GraphBase::NodeId;
+ std::vector<NodeId> NodeStack;
+
+ // Consume worklists.
+ while (true) {
+ if (!OptimallyReducibleNodes.empty()) {
+ NodeSet::iterator NItr = OptimallyReducibleNodes.begin();
+ NodeId NId = *NItr;
+ OptimallyReducibleNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ switch (G.getNodeDegree(NId)) {
+ case 0:
+ break;
+ case 1:
+ applyR1(G, NId);
+ break;
+ case 2:
+ applyR2(G, NId);
+ break;
+ default: llvm_unreachable("Not an optimally reducible node.");
+ }
+ } else if (!ConservativelyAllocatableNodes.empty()) {
+ // Conservatively allocatable nodes will never spill. For now just
+ // take the first node in the set and push it on the stack. When we
+ // start optimizing more heavily for register preferencing, it may
+ // would be better to push nodes with lower 'expected' or worst-case
+ // register costs first (since early nodes are the most
+ // constrained).
+ NodeSet::iterator NItr = ConservativelyAllocatableNodes.begin();
+ NodeId NId = *NItr;
+ ConservativelyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+ } else if (!NotProvablyAllocatableNodes.empty()) {
+ NodeSet::iterator NItr =
+ std::min_element(NotProvablyAllocatableNodes.begin(),
+ NotProvablyAllocatableNodes.end(),
+ SpillCostComparator(G));
+ NodeId NId = *NItr;
+ NotProvablyAllocatableNodes.erase(NItr);
+ NodeStack.push_back(NId);
+ G.disconnectAllNeighborsFromNode(NId);
+ } else
+ break;
+ }
+
+ return NodeStack;
+ }
+
+ class SpillCostComparator {
+ public:
+ SpillCostComparator(const Graph& G) : G(G) {}
+
+ bool operator()(NodeId N1Id, NodeId N2Id) {
+ PBQPNum N1SC = G.getNodeCosts(N1Id)[0];
+ PBQPNum N2SC = G.getNodeCosts(N2Id)[0];
+ if (N1SC == N2SC)
+ return G.getNodeDegree(N1Id) < G.getNodeDegree(N2Id);
+ return N1SC < N2SC;
+ }
+
+ private:
+ const Graph& G;
+ };
+
+ Graph& G;
+ using NodeSet = std::set<NodeId>;
+ NodeSet OptimallyReducibleNodes;
+ NodeSet ConservativelyAllocatableNodes;
+ NodeSet NotProvablyAllocatableNodes;
+};
+
+class PBQPRAGraph : public PBQP::Graph<RegAllocSolverImpl> {
+private:
+ using BaseT = PBQP::Graph<RegAllocSolverImpl>;
+
+public:
+ PBQPRAGraph(GraphMetadata Metadata) : BaseT(std::move(Metadata)) {}
+
+ /// Dump this graph to dbgs().
+ void dump() const;
+
+ /// Dump this graph to an output stream.
+ /// @param OS Output stream to print on.
+ void dump(raw_ostream &OS) const;
+
+ /// Print a representation of this graph in DOT format.
+ /// @param OS Output stream to print on.
+ void printDot(raw_ostream &OS) const;
+};
+
+inline Solution solve(PBQPRAGraph& G) {
+ if (G.empty())
+ return Solution();
+ RegAllocSolverImpl RegAllocSolver(G);
+ return RegAllocSolver.solve();
+}
+
+} // end namespace RegAlloc
+} // end namespace PBQP
+
+/// Create a PBQP register allocator instance.
+FunctionPass *
+createPBQPRegisterAllocator(char *customPassID = nullptr);
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_REGALLOCPBQP_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif