aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h1498
1 files changed, 1498 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h b/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h
new file mode 100644
index 0000000000..0ae41c1a8d
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h
@@ -0,0 +1,1498 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// Interface for Targets to specify which operations they can successfully
+/// select and how the others should be expanded most efficiently.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
+#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/None.h"
+#include "llvm/ADT/Optional.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/TargetOpcodes.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/LowLevelTypeImpl.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <tuple>
+#include <unordered_map>
+#include <utility>
+
+namespace llvm {
+
+extern cl::opt<bool> DisableGISelLegalityCheck;
+
+class LegalizerHelper;
+class MachineInstr;
+class MachineRegisterInfo;
+class MCInstrInfo;
+class GISelChangeObserver;
+
+namespace LegalizeActions {
+enum LegalizeAction : std::uint8_t {
+ /// The operation is expected to be selectable directly by the target, and
+ /// no transformation is necessary.
+ Legal,
+
+ /// The operation should be synthesized from multiple instructions acting on
+ /// a narrower scalar base-type. For example a 64-bit add might be
+ /// implemented in terms of 32-bit add-with-carry.
+ NarrowScalar,
+
+ /// The operation should be implemented in terms of a wider scalar
+ /// base-type. For example a <2 x s8> add could be implemented as a <2
+ /// x s32> add (ignoring the high bits).
+ WidenScalar,
+
+ /// The (vector) operation should be implemented by splitting it into
+ /// sub-vectors where the operation is legal. For example a <8 x s64> add
+ /// might be implemented as 4 separate <2 x s64> adds.
+ FewerElements,
+
+ /// The (vector) operation should be implemented by widening the input
+ /// vector and ignoring the lanes added by doing so. For example <2 x i8> is
+ /// rarely legal, but you might perform an <8 x i8> and then only look at
+ /// the first two results.
+ MoreElements,
+
+ /// Perform the operation on a different, but equivalently sized type.
+ Bitcast,
+
+ /// The operation itself must be expressed in terms of simpler actions on
+ /// this target. E.g. a SREM replaced by an SDIV and subtraction.
+ Lower,
+
+ /// The operation should be implemented as a call to some kind of runtime
+ /// support library. For example this usually happens on machines that don't
+ /// support floating-point operations natively.
+ Libcall,
+
+ /// The target wants to do something special with this combination of
+ /// operand and type. A callback will be issued when it is needed.
+ Custom,
+
+ /// This operation is completely unsupported on the target. A programming
+ /// error has occurred.
+ Unsupported,
+
+ /// Sentinel value for when no action was found in the specified table.
+ NotFound,
+
+ /// Fall back onto the old rules.
+ /// TODO: Remove this once we've migrated
+ UseLegacyRules,
+};
+} // end namespace LegalizeActions
+raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action);
+
+using LegalizeActions::LegalizeAction;
+
+/// Legalization is decided based on an instruction's opcode, which type slot
+/// we're considering, and what the existing type is. These aspects are gathered
+/// together for convenience in the InstrAspect class.
+struct InstrAspect {
+ unsigned Opcode;
+ unsigned Idx = 0;
+ LLT Type;
+
+ InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {}
+ InstrAspect(unsigned Opcode, unsigned Idx, LLT Type)
+ : Opcode(Opcode), Idx(Idx), Type(Type) {}
+
+ bool operator==(const InstrAspect &RHS) const {
+ return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type;
+ }
+};
+
+/// The LegalityQuery object bundles together all the information that's needed
+/// to decide whether a given operation is legal or not.
+/// For efficiency, it doesn't make a copy of Types so care must be taken not
+/// to free it before using the query.
+struct LegalityQuery {
+ unsigned Opcode;
+ ArrayRef<LLT> Types;
+
+ struct MemDesc {
+ uint64_t SizeInBits;
+ uint64_t AlignInBits;
+ AtomicOrdering Ordering;
+ };
+
+ /// Operations which require memory can use this to place requirements on the
+ /// memory type for each MMO.
+ ArrayRef<MemDesc> MMODescrs;
+
+ constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types,
+ const ArrayRef<MemDesc> MMODescrs)
+ : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {}
+ constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types)
+ : LegalityQuery(Opcode, Types, {}) {}
+
+ raw_ostream &print(raw_ostream &OS) const;
+};
+
+/// The result of a query. It either indicates a final answer of Legal or
+/// Unsupported or describes an action that must be taken to make an operation
+/// more legal.
+struct LegalizeActionStep {
+ /// The action to take or the final answer.
+ LegalizeAction Action;
+ /// If describing an action, the type index to change. Otherwise zero.
+ unsigned TypeIdx;
+ /// If describing an action, the new type for TypeIdx. Otherwise LLT{}.
+ LLT NewType;
+
+ LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx,
+ const LLT NewType)
+ : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {}
+
+ bool operator==(const LegalizeActionStep &RHS) const {
+ return std::tie(Action, TypeIdx, NewType) ==
+ std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType);
+ }
+};
+
+using LegalityPredicate = std::function<bool (const LegalityQuery &)>;
+using LegalizeMutation =
+ std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>;
+
+namespace LegalityPredicates {
+struct TypePairAndMemDesc {
+ LLT Type0;
+ LLT Type1;
+ uint64_t MemSize;
+ uint64_t Align;
+
+ bool operator==(const TypePairAndMemDesc &Other) const {
+ return Type0 == Other.Type0 && Type1 == Other.Type1 &&
+ Align == Other.Align &&
+ MemSize == Other.MemSize;
+ }
+
+ /// \returns true if this memory access is legal with for the access described
+ /// by \p Other (The alignment is sufficient for the size and result type).
+ bool isCompatible(const TypePairAndMemDesc &Other) const {
+ return Type0 == Other.Type0 && Type1 == Other.Type1 &&
+ Align >= Other.Align &&
+ MemSize == Other.MemSize;
+ }
+};
+
+/// True iff P0 and P1 are true.
+template<typename Predicate>
+Predicate all(Predicate P0, Predicate P1) {
+ return [=](const LegalityQuery &Query) {
+ return P0(Query) && P1(Query);
+ };
+}
+/// True iff all given predicates are true.
+template<typename Predicate, typename... Args>
+Predicate all(Predicate P0, Predicate P1, Args... args) {
+ return all(all(P0, P1), args...);
+}
+
+/// True iff P0 or P1 are true.
+template<typename Predicate>
+Predicate any(Predicate P0, Predicate P1) {
+ return [=](const LegalityQuery &Query) {
+ return P0(Query) || P1(Query);
+ };
+}
+/// True iff any given predicates are true.
+template<typename Predicate, typename... Args>
+Predicate any(Predicate P0, Predicate P1, Args... args) {
+ return any(any(P0, P1), args...);
+}
+
+/// True iff the given type index is the specified type.
+LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit);
+/// True iff the given type index is one of the specified types.
+LegalityPredicate typeInSet(unsigned TypeIdx,
+ std::initializer_list<LLT> TypesInit);
+
+/// True iff the given type index is not the specified type.
+inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) {
+ return [=](const LegalityQuery &Query) {
+ return Query.Types[TypeIdx] != Type;
+ };
+}
+
+/// True iff the given types for the given pair of type indexes is one of the
+/// specified type pairs.
+LegalityPredicate
+typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1,
+ std::initializer_list<std::pair<LLT, LLT>> TypesInit);
+/// True iff the given types for the given pair of type indexes is one of the
+/// specified type pairs.
+LegalityPredicate typePairAndMemDescInSet(
+ unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx,
+ std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit);
+/// True iff the specified type index is a scalar.
+LegalityPredicate isScalar(unsigned TypeIdx);
+/// True iff the specified type index is a vector.
+LegalityPredicate isVector(unsigned TypeIdx);
+/// True iff the specified type index is a pointer (with any address space).
+LegalityPredicate isPointer(unsigned TypeIdx);
+/// True iff the specified type index is a pointer with the specified address
+/// space.
+LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace);
+
+/// True if the type index is a vector with element type \p EltTy
+LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy);
+
+/// True iff the specified type index is a scalar that's narrower than the given
+/// size.
+LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size);
+
+/// True iff the specified type index is a scalar that's wider than the given
+/// size.
+LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size);
+
+/// True iff the specified type index is a scalar or vector with an element type
+/// that's narrower than the given size.
+LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size);
+
+/// True iff the specified type index is a scalar or a vector with an element
+/// type that's wider than the given size.
+LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size);
+
+/// True iff the specified type index is a scalar whose size is not a power of
+/// 2.
+LegalityPredicate sizeNotPow2(unsigned TypeIdx);
+
+/// True iff the specified type index is a scalar or vector whose element size
+/// is not a power of 2.
+LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx);
+
+/// True if the total bitwidth of the specified type index is \p Size bits.
+LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size);
+
+/// True iff the specified type indices are both the same bit size.
+LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1);
+
+/// True iff the first type index has a larger total bit size than second type
+/// index.
+LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1);
+
+/// True iff the first type index has a smaller total bit size than second type
+/// index.
+LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1);
+
+/// True iff the specified MMO index has a size that is not a power of 2
+LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx);
+/// True iff the specified type index is a vector whose element count is not a
+/// power of 2.
+LegalityPredicate numElementsNotPow2(unsigned TypeIdx);
+/// True iff the specified MMO index has at an atomic ordering of at Ordering or
+/// stronger.
+LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx,
+ AtomicOrdering Ordering);
+} // end namespace LegalityPredicates
+
+namespace LegalizeMutations {
+/// Select this specific type for the given type index.
+LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty);
+
+/// Keep the same type as the given type index.
+LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx);
+
+/// Keep the same scalar or element type as the given type index.
+LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx);
+
+/// Keep the same scalar or element type as the given type.
+LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty);
+
+/// Change the scalar size or element size to have the same scalar size as type
+/// index \p FromIndex. Unlike changeElementTo, this discards pointer types and
+/// only changes the size.
+LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx);
+
+/// Widen the scalar type or vector element type for the given type index to the
+/// next power of 2.
+LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0);
+
+/// Add more elements to the type for the given type index to the next power of
+/// 2.
+LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0);
+/// Break up the vector type for the given type index into the element type.
+LegalizeMutation scalarize(unsigned TypeIdx);
+} // end namespace LegalizeMutations
+
+/// A single rule in a legalizer info ruleset.
+/// The specified action is chosen when the predicate is true. Where appropriate
+/// for the action (e.g. for WidenScalar) the new type is selected using the
+/// given mutator.
+class LegalizeRule {
+ LegalityPredicate Predicate;
+ LegalizeAction Action;
+ LegalizeMutation Mutation;
+
+public:
+ LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action,
+ LegalizeMutation Mutation = nullptr)
+ : Predicate(Predicate), Action(Action), Mutation(Mutation) {}
+
+ /// Test whether the LegalityQuery matches.
+ bool match(const LegalityQuery &Query) const {
+ return Predicate(Query);
+ }
+
+ LegalizeAction getAction() const { return Action; }
+
+ /// Determine the change to make.
+ std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const {
+ if (Mutation)
+ return Mutation(Query);
+ return std::make_pair(0, LLT{});
+ }
+};
+
+class LegalizeRuleSet {
+ /// When non-zero, the opcode we are an alias of
+ unsigned AliasOf;
+ /// If true, there is another opcode that aliases this one
+ bool IsAliasedByAnother;
+ SmallVector<LegalizeRule, 2> Rules;
+
+#ifndef NDEBUG
+ /// If bit I is set, this rule set contains a rule that may handle (predicate
+ /// or perform an action upon (or both)) the type index I. The uncertainty
+ /// comes from free-form rules executing user-provided lambda functions. We
+ /// conservatively assume such rules do the right thing and cover all type
+ /// indices. The bitset is intentionally 1 bit wider than it absolutely needs
+ /// to be to distinguish such cases from the cases where all type indices are
+ /// individually handled.
+ SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC -
+ MCOI::OPERAND_FIRST_GENERIC + 2};
+ SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM -
+ MCOI::OPERAND_FIRST_GENERIC_IMM + 2};
+#endif
+
+ unsigned typeIdx(unsigned TypeIdx) {
+ assert(TypeIdx <=
+ (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) &&
+ "Type Index is out of bounds");
+#ifndef NDEBUG
+ TypeIdxsCovered.set(TypeIdx);
+#endif
+ return TypeIdx;
+ }
+
+ unsigned immIdx(unsigned ImmIdx) {
+ assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM -
+ MCOI::OPERAND_FIRST_GENERIC_IMM) &&
+ "Imm Index is out of bounds");
+#ifndef NDEBUG
+ ImmIdxsCovered.set(ImmIdx);
+#endif
+ return ImmIdx;
+ }
+
+ void markAllIdxsAsCovered() {
+#ifndef NDEBUG
+ TypeIdxsCovered.set();
+ ImmIdxsCovered.set();
+#endif
+ }
+
+ void add(const LegalizeRule &Rule) {
+ assert(AliasOf == 0 &&
+ "RuleSet is aliased, change the representative opcode instead");
+ Rules.push_back(Rule);
+ }
+
+ static bool always(const LegalityQuery &) { return true; }
+
+ /// Use the given action when the predicate is true.
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &actionIf(LegalizeAction Action,
+ LegalityPredicate Predicate) {
+ add({Predicate, Action});
+ return *this;
+ }
+ /// Use the given action when the predicate is true.
+ /// Action should be an action that requires mutation.
+ LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ add({Predicate, Action, Mutation});
+ return *this;
+ }
+ /// Use the given action when type index 0 is any type in the given list.
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &actionFor(LegalizeAction Action,
+ std::initializer_list<LLT> Types) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, typeInSet(typeIdx(0), Types));
+ }
+ /// Use the given action when type index 0 is any type in the given list.
+ /// Action should be an action that requires mutation.
+ LegalizeRuleSet &actionFor(LegalizeAction Action,
+ std::initializer_list<LLT> Types,
+ LegalizeMutation Mutation) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation);
+ }
+ /// Use the given action when type indexes 0 and 1 is any type pair in the
+ /// given list.
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &actionFor(LegalizeAction Action,
+ std::initializer_list<std::pair<LLT, LLT>> Types) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
+ }
+ /// Use the given action when type indexes 0 and 1 is any type pair in the
+ /// given list.
+ /// Action should be an action that requires mutation.
+ LegalizeRuleSet &actionFor(LegalizeAction Action,
+ std::initializer_list<std::pair<LLT, LLT>> Types,
+ LegalizeMutation Mutation) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types),
+ Mutation);
+ }
+ /// Use the given action when type index 0 is any type in the given list and
+ /// imm index 0 is anything. Action should not be an action that requires
+ /// mutation.
+ LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action,
+ std::initializer_list<LLT> Types) {
+ using namespace LegalityPredicates;
+ immIdx(0); // Inform verifier imm idx 0 is handled.
+ return actionIf(Action, typeInSet(typeIdx(0), Types));
+ }
+
+ LegalizeRuleSet &actionForTypeWithAnyImm(
+ LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) {
+ using namespace LegalityPredicates;
+ immIdx(0); // Inform verifier imm idx 0 is handled.
+ return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types));
+ }
+
+ /// Use the given action when type indexes 0 and 1 are both in the given list.
+ /// That is, the type pair is in the cartesian product of the list.
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action,
+ std::initializer_list<LLT> Types) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, all(typeInSet(typeIdx(0), Types),
+ typeInSet(typeIdx(1), Types)));
+ }
+ /// Use the given action when type indexes 0 and 1 are both in their
+ /// respective lists.
+ /// That is, the type pair is in the cartesian product of the lists
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &
+ actionForCartesianProduct(LegalizeAction Action,
+ std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
+ typeInSet(typeIdx(1), Types1)));
+ }
+ /// Use the given action when type indexes 0, 1, and 2 are all in their
+ /// respective lists.
+ /// That is, the type triple is in the cartesian product of the lists
+ /// Action should not be an action that requires mutation.
+ LegalizeRuleSet &actionForCartesianProduct(
+ LegalizeAction Action, std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) {
+ using namespace LegalityPredicates;
+ return actionIf(Action, all(typeInSet(typeIdx(0), Types0),
+ all(typeInSet(typeIdx(1), Types1),
+ typeInSet(typeIdx(2), Types2))));
+ }
+
+public:
+ LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {}
+
+ bool isAliasedByAnother() { return IsAliasedByAnother; }
+ void setIsAliasedByAnother() { IsAliasedByAnother = true; }
+ void aliasTo(unsigned Opcode) {
+ assert((AliasOf == 0 || AliasOf == Opcode) &&
+ "Opcode is already aliased to another opcode");
+ assert(Rules.empty() && "Aliasing will discard rules");
+ AliasOf = Opcode;
+ }
+ unsigned getAlias() const { return AliasOf; }
+
+ /// The instruction is legal if predicate is true.
+ LegalizeRuleSet &legalIf(LegalityPredicate Predicate) {
+ // We have no choice but conservatively assume that the free-form
+ // user-provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Legal, Predicate);
+ }
+ /// The instruction is legal when type index 0 is any type in the given list.
+ LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) {
+ return actionFor(LegalizeAction::Legal, Types);
+ }
+ /// The instruction is legal when type indexes 0 and 1 is any type pair in the
+ /// given list.
+ LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
+ return actionFor(LegalizeAction::Legal, Types);
+ }
+ /// The instruction is legal when type index 0 is any type in the given list
+ /// and imm index 0 is anything.
+ LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) {
+ markAllIdxsAsCovered();
+ return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
+ }
+
+ LegalizeRuleSet &legalForTypeWithAnyImm(
+ std::initializer_list<std::pair<LLT, LLT>> Types) {
+ markAllIdxsAsCovered();
+ return actionForTypeWithAnyImm(LegalizeAction::Legal, Types);
+ }
+
+ /// The instruction is legal when type indexes 0 and 1 along with the memory
+ /// size and minimum alignment is any type and size tuple in the given list.
+ LegalizeRuleSet &legalForTypesWithMemDesc(
+ std::initializer_list<LegalityPredicates::TypePairAndMemDesc>
+ TypesAndMemDesc) {
+ return actionIf(LegalizeAction::Legal,
+ LegalityPredicates::typePairAndMemDescInSet(
+ typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc));
+ }
+ /// The instruction is legal when type indexes 0 and 1 are both in the given
+ /// list. That is, the type pair is in the cartesian product of the list.
+ LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) {
+ return actionForCartesianProduct(LegalizeAction::Legal, Types);
+ }
+ /// The instruction is legal when type indexes 0 and 1 are both their
+ /// respective lists.
+ LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1) {
+ return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1);
+ }
+ /// The instruction is legal when type indexes 0, 1, and 2 are both their
+ /// respective lists.
+ LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1,
+ std::initializer_list<LLT> Types2) {
+ return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1,
+ Types2);
+ }
+
+ LegalizeRuleSet &alwaysLegal() {
+ using namespace LegalizeMutations;
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Legal, always);
+ }
+
+ /// The specified type index is coerced if predicate is true.
+ LegalizeRuleSet &bitcastIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that lowering with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Bitcast, Predicate, Mutation);
+ }
+
+ /// The instruction is lowered.
+ LegalizeRuleSet &lower() {
+ using namespace LegalizeMutations;
+ // We have no choice but conservatively assume that predicate-less lowering
+ // properly handles all type indices by design:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Lower, always);
+ }
+ /// The instruction is lowered if predicate is true. Keep type index 0 as the
+ /// same type.
+ LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) {
+ using namespace LegalizeMutations;
+ // We have no choice but conservatively assume that lowering with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Lower, Predicate);
+ }
+ /// The instruction is lowered if predicate is true.
+ LegalizeRuleSet &lowerIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that lowering with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Lower, Predicate, Mutation);
+ }
+ /// The instruction is lowered when type index 0 is any type in the given
+ /// list. Keep type index 0 as the same type.
+ LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) {
+ return actionFor(LegalizeAction::Lower, Types);
+ }
+ /// The instruction is lowered when type index 0 is any type in the given
+ /// list.
+ LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types,
+ LegalizeMutation Mutation) {
+ return actionFor(LegalizeAction::Lower, Types, Mutation);
+ }
+ /// The instruction is lowered when type indexes 0 and 1 is any type pair in
+ /// the given list. Keep type index 0 as the same type.
+ LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
+ return actionFor(LegalizeAction::Lower, Types);
+ }
+ /// The instruction is lowered when type indexes 0 and 1 is any type pair in
+ /// the given list.
+ LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types,
+ LegalizeMutation Mutation) {
+ return actionFor(LegalizeAction::Lower, Types, Mutation);
+ }
+ /// The instruction is lowered when type indexes 0 and 1 are both in their
+ /// respective lists.
+ LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1) {
+ using namespace LegalityPredicates;
+ return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1);
+ }
+ /// The instruction is lowered when when type indexes 0, 1, and 2 are all in
+ /// their respective lists.
+ LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1,
+ std::initializer_list<LLT> Types2) {
+ using namespace LegalityPredicates;
+ return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1,
+ Types2);
+ }
+
+ /// The instruction is emitted as a library call.
+ LegalizeRuleSet &libcall() {
+ using namespace LegalizeMutations;
+ // We have no choice but conservatively assume that predicate-less lowering
+ // properly handles all type indices by design:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Libcall, always);
+ }
+
+ /// Like legalIf, but for the Libcall action.
+ LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) {
+ // We have no choice but conservatively assume that a libcall with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Libcall, Predicate);
+ }
+ LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) {
+ return actionFor(LegalizeAction::Libcall, Types);
+ }
+ LegalizeRuleSet &
+ libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
+ return actionFor(LegalizeAction::Libcall, Types);
+ }
+ LegalizeRuleSet &
+ libcallForCartesianProduct(std::initializer_list<LLT> Types) {
+ return actionForCartesianProduct(LegalizeAction::Libcall, Types);
+ }
+ LegalizeRuleSet &
+ libcallForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1) {
+ return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1);
+ }
+
+ /// Widen the scalar to the one selected by the mutation if the predicate is
+ /// true.
+ LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that an action with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation);
+ }
+ /// Narrow the scalar to the one selected by the mutation if the predicate is
+ /// true.
+ LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that an action with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation);
+ }
+ /// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any
+ /// type pair in the given list.
+ LegalizeRuleSet &
+ narrowScalarFor(std::initializer_list<std::pair<LLT, LLT>> Types,
+ LegalizeMutation Mutation) {
+ return actionFor(LegalizeAction::NarrowScalar, Types, Mutation);
+ }
+
+ /// Add more elements to reach the type selected by the mutation if the
+ /// predicate is true.
+ LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that an action with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::MoreElements, Predicate, Mutation);
+ }
+ /// Remove elements to reach the type selected by the mutation if the
+ /// predicate is true.
+ LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate,
+ LegalizeMutation Mutation) {
+ // We have no choice but conservatively assume that an action with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::FewerElements, Predicate, Mutation);
+ }
+
+ /// The instruction is unsupported.
+ LegalizeRuleSet &unsupported() {
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Unsupported, always);
+ }
+ LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) {
+ return actionIf(LegalizeAction::Unsupported, Predicate);
+ }
+
+ LegalizeRuleSet &unsupportedFor(std::initializer_list<LLT> Types) {
+ return actionFor(LegalizeAction::Unsupported, Types);
+ }
+
+ LegalizeRuleSet &unsupportedIfMemSizeNotPow2() {
+ return actionIf(LegalizeAction::Unsupported,
+ LegalityPredicates::memSizeInBytesNotPow2(0));
+ }
+ LegalizeRuleSet &lowerIfMemSizeNotPow2() {
+ return actionIf(LegalizeAction::Lower,
+ LegalityPredicates::memSizeInBytesNotPow2(0));
+ }
+
+ LegalizeRuleSet &customIf(LegalityPredicate Predicate) {
+ // We have no choice but conservatively assume that a custom action with a
+ // free-form user provided Predicate properly handles all type indices:
+ markAllIdxsAsCovered();
+ return actionIf(LegalizeAction::Custom, Predicate);
+ }
+ LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) {
+ return actionFor(LegalizeAction::Custom, Types);
+ }
+
+ /// The instruction is custom when type indexes 0 and 1 is any type pair in the
+ /// given list.
+ LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) {
+ return actionFor(LegalizeAction::Custom, Types);
+ }
+
+ LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) {
+ return actionForCartesianProduct(LegalizeAction::Custom, Types);
+ }
+ LegalizeRuleSet &
+ customForCartesianProduct(std::initializer_list<LLT> Types0,
+ std::initializer_list<LLT> Types1) {
+ return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1);
+ }
+
+ /// Unconditionally custom lower.
+ LegalizeRuleSet &custom() {
+ return customIf(always);
+ }
+
+ /// Widen the scalar to the next power of two that is at least MinSize.
+ /// No effect if the type is not a scalar or is a power of two.
+ LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx,
+ unsigned MinSize = 0) {
+ using namespace LegalityPredicates;
+ return actionIf(
+ LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)),
+ LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
+ }
+
+ /// Widen the scalar or vector element type to the next power of two that is
+ /// at least MinSize. No effect if the scalar size is a power of two.
+ LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx,
+ unsigned MinSize = 0) {
+ using namespace LegalityPredicates;
+ return actionIf(
+ LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)),
+ LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize));
+ }
+
+ LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) {
+ using namespace LegalityPredicates;
+ return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)),
+ Mutation);
+ }
+
+ LegalizeRuleSet &scalarize(unsigned TypeIdx) {
+ using namespace LegalityPredicates;
+ return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)),
+ LegalizeMutations::scalarize(TypeIdx));
+ }
+
+ LegalizeRuleSet &scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx) {
+ using namespace LegalityPredicates;
+ return actionIf(LegalizeAction::FewerElements,
+ all(Predicate, isVector(typeIdx(TypeIdx))),
+ LegalizeMutations::scalarize(TypeIdx));
+ }
+
+ /// Ensure the scalar or element is at least as wide as Ty.
+ LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(LegalizeAction::WidenScalar,
+ scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()),
+ changeElementTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Ensure the scalar or element is at least as wide as Ty.
+ LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate,
+ unsigned TypeIdx, const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(LegalizeAction::WidenScalar,
+ all(Predicate, scalarOrEltNarrowerThan(
+ TypeIdx, Ty.getScalarSizeInBits())),
+ changeElementTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Ensure the scalar is at least as wide as Ty.
+ LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(LegalizeAction::WidenScalar,
+ scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()),
+ changeTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Ensure the scalar is at most as wide as Ty.
+ LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(LegalizeAction::NarrowScalar,
+ scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()),
+ changeElementTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Ensure the scalar is at most as wide as Ty.
+ LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(LegalizeAction::NarrowScalar,
+ scalarWiderThan(TypeIdx, Ty.getSizeInBits()),
+ changeTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Conditionally limit the maximum size of the scalar.
+ /// For example, when the maximum size of one type depends on the size of
+ /// another such as extracting N bits from an M bit container.
+ LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx,
+ const LLT Ty) {
+ using namespace LegalityPredicates;
+ using namespace LegalizeMutations;
+ return actionIf(
+ LegalizeAction::NarrowScalar,
+ [=](const LegalityQuery &Query) {
+ const LLT QueryTy = Query.Types[TypeIdx];
+ return QueryTy.isScalar() &&
+ QueryTy.getSizeInBits() > Ty.getSizeInBits() &&
+ Predicate(Query);
+ },
+ changeElementTo(typeIdx(TypeIdx), Ty));
+ }
+
+ /// Limit the range of scalar sizes to MinTy and MaxTy.
+ LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy,
+ const LLT MaxTy) {
+ assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types");
+ return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy);
+ }
+
+ /// Limit the range of scalar sizes to MinTy and MaxTy.
+ LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy,
+ const LLT MaxTy) {
+ return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy);
+ }
+
+ /// Widen the scalar to match the size of another.
+ LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) {
+ typeIdx(TypeIdx);
+ return widenScalarIf(
+ [=](const LegalityQuery &Query) {
+ return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
+ Query.Types[TypeIdx].getSizeInBits();
+ },
+ LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx));
+ }
+
+ /// Narrow the scalar to match the size of another.
+ LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) {
+ typeIdx(TypeIdx);
+ return narrowScalarIf(
+ [=](const LegalityQuery &Query) {
+ return Query.Types[NarrowTypeIdx].getScalarSizeInBits() <
+ Query.Types[TypeIdx].getSizeInBits();
+ },
+ LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx));
+ }
+
+ /// Change the type \p TypeIdx to have the same scalar size as type \p
+ /// SameSizeIdx.
+ LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) {
+ return minScalarSameAs(TypeIdx, SameSizeIdx)
+ .maxScalarSameAs(TypeIdx, SameSizeIdx);
+ }
+
+ /// Conditionally widen the scalar or elt to match the size of another.
+ LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate,
+ unsigned TypeIdx, unsigned LargeTypeIdx) {
+ typeIdx(TypeIdx);
+ return widenScalarIf(
+ [=](const LegalityQuery &Query) {
+ return Query.Types[LargeTypeIdx].getScalarSizeInBits() >
+ Query.Types[TypeIdx].getScalarSizeInBits() &&
+ Predicate(Query);
+ },
+ [=](const LegalityQuery &Query) {
+ LLT T = Query.Types[LargeTypeIdx];
+ return std::make_pair(TypeIdx, T);
+ });
+ }
+
+ /// Add more elements to the vector to reach the next power of two.
+ /// No effect if the type is not a vector or the element count is a power of
+ /// two.
+ LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) {
+ using namespace LegalityPredicates;
+ return actionIf(LegalizeAction::MoreElements,
+ numElementsNotPow2(typeIdx(TypeIdx)),
+ LegalizeMutations::moreElementsToNextPow2(TypeIdx));
+ }
+
+ /// Limit the number of elements in EltTy vectors to at least MinElements.
+ LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy,
+ unsigned MinElements) {
+ // Mark the type index as covered:
+ typeIdx(TypeIdx);
+ return actionIf(
+ LegalizeAction::MoreElements,
+ [=](const LegalityQuery &Query) {
+ LLT VecTy = Query.Types[TypeIdx];
+ return VecTy.isVector() && VecTy.getElementType() == EltTy &&
+ VecTy.getNumElements() < MinElements;
+ },
+ [=](const LegalityQuery &Query) {
+ LLT VecTy = Query.Types[TypeIdx];
+ return std::make_pair(
+ TypeIdx, LLT::vector(MinElements, VecTy.getElementType()));
+ });
+ }
+ /// Limit the number of elements in EltTy vectors to at most MaxElements.
+ LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy,
+ unsigned MaxElements) {
+ // Mark the type index as covered:
+ typeIdx(TypeIdx);
+ return actionIf(
+ LegalizeAction::FewerElements,
+ [=](const LegalityQuery &Query) {
+ LLT VecTy = Query.Types[TypeIdx];
+ return VecTy.isVector() && VecTy.getElementType() == EltTy &&
+ VecTy.getNumElements() > MaxElements;
+ },
+ [=](const LegalityQuery &Query) {
+ LLT VecTy = Query.Types[TypeIdx];
+ LLT NewTy = LLT::scalarOrVector(MaxElements, VecTy.getElementType());
+ return std::make_pair(TypeIdx, NewTy);
+ });
+ }
+ /// Limit the number of elements for the given vectors to at least MinTy's
+ /// number of elements and at most MaxTy's number of elements.
+ ///
+ /// No effect if the type is not a vector or does not have the same element
+ /// type as the constraints.
+ /// The element type of MinTy and MaxTy must match.
+ LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy,
+ const LLT MaxTy) {
+ assert(MinTy.getElementType() == MaxTy.getElementType() &&
+ "Expected element types to agree");
+
+ const LLT EltTy = MinTy.getElementType();
+ return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements())
+ .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements());
+ }
+
+ /// Fallback on the previous implementation. This should only be used while
+ /// porting a rule.
+ LegalizeRuleSet &fallback() {
+ add({always, LegalizeAction::UseLegacyRules});
+ return *this;
+ }
+
+ /// Check if there is no type index which is obviously not handled by the
+ /// LegalizeRuleSet in any way at all.
+ /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
+ bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const;
+ /// Check if there is no imm index which is obviously not handled by the
+ /// LegalizeRuleSet in any way at all.
+ /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set.
+ bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const;
+
+ /// Apply the ruleset to the given LegalityQuery.
+ LegalizeActionStep apply(const LegalityQuery &Query) const;
+};
+
+class LegalizerInfo {
+public:
+ LegalizerInfo();
+ virtual ~LegalizerInfo() = default;
+
+ unsigned getOpcodeIdxForOpcode(unsigned Opcode) const;
+ unsigned getActionDefinitionsIdx(unsigned Opcode) const;
+
+ /// Compute any ancillary tables needed to quickly decide how an operation
+ /// should be handled. This must be called after all "set*Action"methods but
+ /// before any query is made or incorrect results may be returned.
+ void computeTables();
+
+ /// Perform simple self-diagnostic and assert if there is anything obviously
+ /// wrong with the actions set up.
+ void verify(const MCInstrInfo &MII) const;
+
+ static bool needsLegalizingToDifferentSize(const LegalizeAction Action) {
+ using namespace LegalizeActions;
+ switch (Action) {
+ case NarrowScalar:
+ case WidenScalar:
+ case FewerElements:
+ case MoreElements:
+ case Unsupported:
+ return true;
+ default:
+ return false;
+ }
+ }
+
+ using SizeAndAction = std::pair<uint16_t, LegalizeAction>;
+ using SizeAndActionsVec = std::vector<SizeAndAction>;
+ using SizeChangeStrategy =
+ std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>;
+
+ /// More friendly way to set an action for common types that have an LLT
+ /// representation.
+ /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize
+ /// returns false.
+ void setAction(const InstrAspect &Aspect, LegalizeAction Action) {
+ assert(!needsLegalizingToDifferentSize(Action));
+ TablesInitialized = false;
+ const unsigned OpcodeIdx = Aspect.Opcode - FirstOp;
+ if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx)
+ SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1);
+ SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action;
+ }
+
+ /// The setAction calls record the non-size-changing legalization actions
+ /// to take on specificly-sized types. The SizeChangeStrategy defines what
+ /// to do when the size of the type needs to be changed to reach a legally
+ /// sized type (i.e., one that was defined through a setAction call).
+ /// e.g.
+ /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal);
+ /// setLegalizeScalarToDifferentSizeStrategy(
+ /// G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
+ /// will end up defining getAction({G_ADD, 0, T}) to return the following
+ /// actions for different scalar types T:
+ /// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)}
+ /// LLT::scalar(32): {Legal, 0, LLT::scalar(32)}
+ /// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)}
+ ///
+ /// If no SizeChangeAction gets defined, through this function,
+ /// the default is unsupportedForDifferentSizes.
+ void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode,
+ const unsigned TypeIdx,
+ SizeChangeStrategy S) {
+ const unsigned OpcodeIdx = Opcode - FirstOp;
+ if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
+ ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
+ ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
+ }
+
+ /// See also setLegalizeScalarToDifferentSizeStrategy.
+ /// This function allows to set the SizeChangeStrategy for vector elements.
+ void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode,
+ const unsigned TypeIdx,
+ SizeChangeStrategy S) {
+ const unsigned OpcodeIdx = Opcode - FirstOp;
+ if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx)
+ VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1);
+ VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S;
+ }
+
+ /// A SizeChangeStrategy for the common case where legalization for a
+ /// particular operation consists of only supporting a specific set of type
+ /// sizes. E.g.
+ /// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal);
+ /// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal);
+ /// setLegalizeScalarToDifferentSizeStrategy(
+ /// G_DIV, 0, unsupportedForDifferentSizes);
+ /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64,
+ /// and Unsupported for all other scalar types T.
+ static SizeAndActionsVec
+ unsupportedForDifferentSizes(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported,
+ Unsupported);
+ }
+
+ /// A SizeChangeStrategy for the common case where legalization for a
+ /// particular operation consists of widening the type to a large legal type,
+ /// unless there is no such type and then instead it should be narrowed to the
+ /// largest legal type.
+ static SizeAndActionsVec
+ widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ assert(v.size() > 0 &&
+ "At least one size that can be legalized towards is needed"
+ " for this SizeChangeStrategy");
+ return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
+ NarrowScalar);
+ }
+
+ static SizeAndActionsVec
+ widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar,
+ Unsupported);
+ }
+
+ static SizeAndActionsVec
+ narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
+ Unsupported);
+ }
+
+ static SizeAndActionsVec
+ narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ assert(v.size() > 0 &&
+ "At least one size that can be legalized towards is needed"
+ " for this SizeChangeStrategy");
+ return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar,
+ WidenScalar);
+ }
+
+ /// A SizeChangeStrategy for the common case where legalization for a
+ /// particular vector operation consists of having more elements in the
+ /// vector, to a type that is legal. Unless there is no such type and then
+ /// instead it should be legalized towards the widest vector that's still
+ /// legal. E.g.
+ /// setAction({G_ADD, LLT::vector(8, 8)}, Legal);
+ /// setAction({G_ADD, LLT::vector(16, 8)}, Legal);
+ /// setAction({G_ADD, LLT::vector(2, 32)}, Legal);
+ /// setAction({G_ADD, LLT::vector(4, 32)}, Legal);
+ /// setLegalizeVectorElementToDifferentSizeStrategy(
+ /// G_ADD, 0, moreToWiderTypesAndLessToWidest);
+ /// will result in the following getAction results:
+ /// * getAction({G_ADD, LLT::vector(8,8)}) returns
+ /// (Legal, vector(8,8)).
+ /// * getAction({G_ADD, LLT::vector(9,8)}) returns
+ /// (MoreElements, vector(16,8)).
+ /// * getAction({G_ADD, LLT::vector(8,32)}) returns
+ /// (FewerElements, vector(4,32)).
+ static SizeAndActionsVec
+ moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) {
+ using namespace LegalizeActions;
+ return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements,
+ FewerElements);
+ }
+
+ /// Helper function to implement many typical SizeChangeStrategy functions.
+ static SizeAndActionsVec
+ increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v,
+ LegalizeAction IncreaseAction,
+ LegalizeAction DecreaseAction);
+ /// Helper function to implement many typical SizeChangeStrategy functions.
+ static SizeAndActionsVec
+ decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v,
+ LegalizeAction DecreaseAction,
+ LegalizeAction IncreaseAction);
+
+ /// Get the action definitions for the given opcode. Use this to run a
+ /// LegalityQuery through the definitions.
+ const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const;
+
+ /// Get the action definition builder for the given opcode. Use this to define
+ /// the action definitions.
+ ///
+ /// It is an error to request an opcode that has already been requested by the
+ /// multiple-opcode variant.
+ LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode);
+
+ /// Get the action definition builder for the given set of opcodes. Use this
+ /// to define the action definitions for multiple opcodes at once. The first
+ /// opcode given will be considered the representative opcode and will hold
+ /// the definitions whereas the other opcodes will be configured to refer to
+ /// the representative opcode. This lowers memory requirements and very
+ /// slightly improves performance.
+ ///
+ /// It would be very easy to introduce unexpected side-effects as a result of
+ /// this aliasing if it were permitted to request different but intersecting
+ /// sets of opcodes but that is difficult to keep track of. It is therefore an
+ /// error to request the same opcode twice using this API, to request an
+ /// opcode that already has definitions, or to use the single-opcode API on an
+ /// opcode that has already been requested by this API.
+ LegalizeRuleSet &
+ getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes);
+ void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom);
+
+ /// Determine what action should be taken to legalize the described
+ /// instruction. Requires computeTables to have been called.
+ ///
+ /// \returns a description of the next legalization step to perform.
+ LegalizeActionStep getAction(const LegalityQuery &Query) const;
+
+ /// Determine what action should be taken to legalize the given generic
+ /// instruction.
+ ///
+ /// \returns a description of the next legalization step to perform.
+ LegalizeActionStep getAction(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const;
+
+ bool isLegal(const LegalityQuery &Query) const {
+ return getAction(Query).Action == LegalizeAction::Legal;
+ }
+
+ bool isLegalOrCustom(const LegalityQuery &Query) const {
+ auto Action = getAction(Query).Action;
+ return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom;
+ }
+
+ bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const;
+ bool isLegalOrCustom(const MachineInstr &MI,
+ const MachineRegisterInfo &MRI) const;
+
+ /// Called for instructions with the Custom LegalizationAction.
+ virtual bool legalizeCustom(LegalizerHelper &Helper,
+ MachineInstr &MI) const {
+ llvm_unreachable("must implement this if custom action is used");
+ }
+
+ /// \returns true if MI is either legal or has been legalized and false if not
+ /// legal.
+ /// Return true if MI is either legal or has been legalized and false
+ /// if not legal.
+ virtual bool legalizeIntrinsic(LegalizerHelper &Helper,
+ MachineInstr &MI) const {
+ return true;
+ }
+
+ /// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while
+ /// widening a constant of type SmallTy which targets can override.
+ /// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which
+ /// will be the default.
+ virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const;
+
+private:
+ /// Determine what action should be taken to legalize the given generic
+ /// instruction opcode, type-index and type. Requires computeTables to have
+ /// been called.
+ ///
+ /// \returns a pair consisting of the kind of legalization that should be
+ /// performed and the destination type.
+ std::pair<LegalizeAction, LLT>
+ getAspectAction(const InstrAspect &Aspect) const;
+
+ /// The SizeAndActionsVec is a representation mapping between all natural
+ /// numbers and an Action. The natural number represents the bit size of
+ /// the InstrAspect. For example, for a target with native support for 32-bit
+ /// and 64-bit additions, you'd express that as:
+ /// setScalarAction(G_ADD, 0,
+ /// {{1, WidenScalar}, // bit sizes [ 1, 31[
+ /// {32, Legal}, // bit sizes [32, 33[
+ /// {33, WidenScalar}, // bit sizes [33, 64[
+ /// {64, Legal}, // bit sizes [64, 65[
+ /// {65, NarrowScalar} // bit sizes [65, +inf[
+ /// });
+ /// It may be that only 64-bit pointers are supported on your target:
+ /// setPointerAction(G_PTR_ADD, 0, LLT:pointer(1),
+ /// {{1, Unsupported}, // bit sizes [ 1, 63[
+ /// {64, Legal}, // bit sizes [64, 65[
+ /// {65, Unsupported}, // bit sizes [65, +inf[
+ /// });
+ void setScalarAction(const unsigned Opcode, const unsigned TypeIndex,
+ const SizeAndActionsVec &SizeAndActions) {
+ const unsigned OpcodeIdx = Opcode - FirstOp;
+ SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx];
+ setActions(TypeIndex, Actions, SizeAndActions);
+ }
+ void setPointerAction(const unsigned Opcode, const unsigned TypeIndex,
+ const unsigned AddressSpace,
+ const SizeAndActionsVec &SizeAndActions) {
+ const unsigned OpcodeIdx = Opcode - FirstOp;
+ if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) ==
+ AddrSpace2PointerActions[OpcodeIdx].end())
+ AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}};
+ SmallVector<SizeAndActionsVec, 1> &Actions =
+ AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second;
+ setActions(TypeIndex, Actions, SizeAndActions);
+ }
+
+ /// If an operation on a given vector type (say <M x iN>) isn't explicitly
+ /// specified, we proceed in 2 stages. First we legalize the underlying scalar
+ /// (so that there's at least one legal vector with that scalar), then we
+ /// adjust the number of elements in the vector so that it is legal. The
+ /// desired action in the first step is controlled by this function.
+ void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex,
+ const SizeAndActionsVec &SizeAndActions) {
+ unsigned OpcodeIdx = Opcode - FirstOp;
+ SmallVector<SizeAndActionsVec, 1> &Actions =
+ ScalarInVectorActions[OpcodeIdx];
+ setActions(TypeIndex, Actions, SizeAndActions);
+ }
+
+ /// See also setScalarInVectorAction.
+ /// This function let's you specify the number of elements in a vector that
+ /// are legal for a legal element size.
+ void setVectorNumElementAction(const unsigned Opcode,
+ const unsigned TypeIndex,
+ const unsigned ElementSize,
+ const SizeAndActionsVec &SizeAndActions) {
+ const unsigned OpcodeIdx = Opcode - FirstOp;
+ if (NumElements2Actions[OpcodeIdx].find(ElementSize) ==
+ NumElements2Actions[OpcodeIdx].end())
+ NumElements2Actions[OpcodeIdx][ElementSize] = {{}};
+ SmallVector<SizeAndActionsVec, 1> &Actions =
+ NumElements2Actions[OpcodeIdx].find(ElementSize)->second;
+ setActions(TypeIndex, Actions, SizeAndActions);
+ }
+
+ /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes,
+ /// i.e. it's OK if it doesn't start from size 1.
+ static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) {
+ using namespace LegalizeActions;
+#ifndef NDEBUG
+ // The sizes should be in increasing order
+ int prev_size = -1;
+ for(auto SizeAndAction: v) {
+ assert(SizeAndAction.first > prev_size);
+ prev_size = SizeAndAction.first;
+ }
+ // - for every Widen action, there should be a larger bitsize that
+ // can be legalized towards (e.g. Legal, Lower, Libcall or Custom
+ // action).
+ // - for every Narrow action, there should be a smaller bitsize that
+ // can be legalized towards.
+ int SmallestNarrowIdx = -1;
+ int LargestWidenIdx = -1;
+ int SmallestLegalizableToSameSizeIdx = -1;
+ int LargestLegalizableToSameSizeIdx = -1;
+ for(size_t i=0; i<v.size(); ++i) {
+ switch (v[i].second) {
+ case FewerElements:
+ case NarrowScalar:
+ if (SmallestNarrowIdx == -1)
+ SmallestNarrowIdx = i;
+ break;
+ case WidenScalar:
+ case MoreElements:
+ LargestWidenIdx = i;
+ break;
+ case Unsupported:
+ break;
+ default:
+ if (SmallestLegalizableToSameSizeIdx == -1)
+ SmallestLegalizableToSameSizeIdx = i;
+ LargestLegalizableToSameSizeIdx = i;
+ }
+ }
+ if (SmallestNarrowIdx != -1) {
+ assert(SmallestLegalizableToSameSizeIdx != -1);
+ assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx);
+ }
+ if (LargestWidenIdx != -1)
+ assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx);
+#endif
+ }
+
+ /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with
+ /// from size 1.
+ static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) {
+#ifndef NDEBUG
+ // Data structure invariant: The first bit size must be size 1.
+ assert(v.size() >= 1);
+ assert(v[0].first == 1);
+ checkPartialSizeAndActionsVector(v);
+#endif
+ }
+
+ /// Sets actions for all bit sizes on a particular generic opcode, type
+ /// index and scalar or pointer type.
+ void setActions(unsigned TypeIndex,
+ SmallVector<SizeAndActionsVec, 1> &Actions,
+ const SizeAndActionsVec &SizeAndActions) {
+ checkFullSizeAndActionsVector(SizeAndActions);
+ if (Actions.size() <= TypeIndex)
+ Actions.resize(TypeIndex + 1);
+ Actions[TypeIndex] = SizeAndActions;
+ }
+
+ static SizeAndAction findAction(const SizeAndActionsVec &Vec,
+ const uint32_t Size);
+
+ /// Returns the next action needed to get the scalar or pointer type closer
+ /// to being legal
+ /// E.g. findLegalAction({G_REM, 13}) should return
+ /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will
+ /// probably be called, which should return (Lower, 32).
+ /// This is assuming the setScalarAction on G_REM was something like:
+ /// setScalarAction(G_REM, 0,
+ /// {{1, WidenScalar}, // bit sizes [ 1, 31[
+ /// {32, Lower}, // bit sizes [32, 33[
+ /// {33, NarrowScalar} // bit sizes [65, +inf[
+ /// });
+ std::pair<LegalizeAction, LLT>
+ findScalarLegalAction(const InstrAspect &Aspect) const;
+
+ /// Returns the next action needed towards legalizing the vector type.
+ std::pair<LegalizeAction, LLT>
+ findVectorLegalAction(const InstrAspect &Aspect) const;
+
+ static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START;
+ static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END;
+
+ // Data structures used temporarily during construction of legality data:
+ using TypeMap = DenseMap<LLT, LegalizeAction>;
+ SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1];
+ SmallVector<SizeChangeStrategy, 1>
+ ScalarSizeChangeStrategies[LastOp - FirstOp + 1];
+ SmallVector<SizeChangeStrategy, 1>
+ VectorElementSizeChangeStrategies[LastOp - FirstOp + 1];
+ bool TablesInitialized;
+
+ // Data structures used by getAction:
+ SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1];
+ SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1];
+ std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
+ AddrSpace2PointerActions[LastOp - FirstOp + 1];
+ std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>>
+ NumElements2Actions[LastOp - FirstOp + 1];
+
+ LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1];
+};
+
+#ifndef NDEBUG
+/// Checks that MIR is fully legal, returns an illegal instruction if it's not,
+/// nullptr otherwise
+const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF);
+#endif
+
+} // end namespace llvm.
+
+#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif