diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h')
-rw-r--r-- | contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h | 1498 |
1 files changed, 1498 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h b/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h new file mode 100644 index 0000000000..0ae41c1a8d --- /dev/null +++ b/contrib/libs/llvm12/include/llvm/CodeGen/GlobalISel/LegalizerInfo.h @@ -0,0 +1,1498 @@ +#pragma once + +#ifdef __GNUC__ +#pragma GCC diagnostic push +#pragma GCC diagnostic ignored "-Wunused-parameter" +#endif + +//===- llvm/CodeGen/GlobalISel/LegalizerInfo.h ------------------*- C++ -*-===// +// +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// +//===----------------------------------------------------------------------===// +// +/// Interface for Targets to specify which operations they can successfully +/// select and how the others should be expanded most efficiently. +// +//===----------------------------------------------------------------------===// + +#ifndef LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H +#define LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H + +#include "llvm/ADT/DenseMap.h" +#include "llvm/ADT/None.h" +#include "llvm/ADT/Optional.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/ADT/SmallBitVector.h" +#include "llvm/ADT/SmallVector.h" +#include "llvm/CodeGen/MachineFunction.h" +#include "llvm/CodeGen/TargetOpcodes.h" +#include "llvm/Support/CommandLine.h" +#include "llvm/Support/LowLevelTypeImpl.h" +#include "llvm/Support/raw_ostream.h" +#include <cassert> +#include <cstdint> +#include <tuple> +#include <unordered_map> +#include <utility> + +namespace llvm { + +extern cl::opt<bool> DisableGISelLegalityCheck; + +class LegalizerHelper; +class MachineInstr; +class MachineRegisterInfo; +class MCInstrInfo; +class GISelChangeObserver; + +namespace LegalizeActions { +enum LegalizeAction : std::uint8_t { + /// The operation is expected to be selectable directly by the target, and + /// no transformation is necessary. + Legal, + + /// The operation should be synthesized from multiple instructions acting on + /// a narrower scalar base-type. For example a 64-bit add might be + /// implemented in terms of 32-bit add-with-carry. + NarrowScalar, + + /// The operation should be implemented in terms of a wider scalar + /// base-type. For example a <2 x s8> add could be implemented as a <2 + /// x s32> add (ignoring the high bits). + WidenScalar, + + /// The (vector) operation should be implemented by splitting it into + /// sub-vectors where the operation is legal. For example a <8 x s64> add + /// might be implemented as 4 separate <2 x s64> adds. + FewerElements, + + /// The (vector) operation should be implemented by widening the input + /// vector and ignoring the lanes added by doing so. For example <2 x i8> is + /// rarely legal, but you might perform an <8 x i8> and then only look at + /// the first two results. + MoreElements, + + /// Perform the operation on a different, but equivalently sized type. + Bitcast, + + /// The operation itself must be expressed in terms of simpler actions on + /// this target. E.g. a SREM replaced by an SDIV and subtraction. + Lower, + + /// The operation should be implemented as a call to some kind of runtime + /// support library. For example this usually happens on machines that don't + /// support floating-point operations natively. + Libcall, + + /// The target wants to do something special with this combination of + /// operand and type. A callback will be issued when it is needed. + Custom, + + /// This operation is completely unsupported on the target. A programming + /// error has occurred. + Unsupported, + + /// Sentinel value for when no action was found in the specified table. + NotFound, + + /// Fall back onto the old rules. + /// TODO: Remove this once we've migrated + UseLegacyRules, +}; +} // end namespace LegalizeActions +raw_ostream &operator<<(raw_ostream &OS, LegalizeActions::LegalizeAction Action); + +using LegalizeActions::LegalizeAction; + +/// Legalization is decided based on an instruction's opcode, which type slot +/// we're considering, and what the existing type is. These aspects are gathered +/// together for convenience in the InstrAspect class. +struct InstrAspect { + unsigned Opcode; + unsigned Idx = 0; + LLT Type; + + InstrAspect(unsigned Opcode, LLT Type) : Opcode(Opcode), Type(Type) {} + InstrAspect(unsigned Opcode, unsigned Idx, LLT Type) + : Opcode(Opcode), Idx(Idx), Type(Type) {} + + bool operator==(const InstrAspect &RHS) const { + return Opcode == RHS.Opcode && Idx == RHS.Idx && Type == RHS.Type; + } +}; + +/// The LegalityQuery object bundles together all the information that's needed +/// to decide whether a given operation is legal or not. +/// For efficiency, it doesn't make a copy of Types so care must be taken not +/// to free it before using the query. +struct LegalityQuery { + unsigned Opcode; + ArrayRef<LLT> Types; + + struct MemDesc { + uint64_t SizeInBits; + uint64_t AlignInBits; + AtomicOrdering Ordering; + }; + + /// Operations which require memory can use this to place requirements on the + /// memory type for each MMO. + ArrayRef<MemDesc> MMODescrs; + + constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types, + const ArrayRef<MemDesc> MMODescrs) + : Opcode(Opcode), Types(Types), MMODescrs(MMODescrs) {} + constexpr LegalityQuery(unsigned Opcode, const ArrayRef<LLT> Types) + : LegalityQuery(Opcode, Types, {}) {} + + raw_ostream &print(raw_ostream &OS) const; +}; + +/// The result of a query. It either indicates a final answer of Legal or +/// Unsupported or describes an action that must be taken to make an operation +/// more legal. +struct LegalizeActionStep { + /// The action to take or the final answer. + LegalizeAction Action; + /// If describing an action, the type index to change. Otherwise zero. + unsigned TypeIdx; + /// If describing an action, the new type for TypeIdx. Otherwise LLT{}. + LLT NewType; + + LegalizeActionStep(LegalizeAction Action, unsigned TypeIdx, + const LLT NewType) + : Action(Action), TypeIdx(TypeIdx), NewType(NewType) {} + + bool operator==(const LegalizeActionStep &RHS) const { + return std::tie(Action, TypeIdx, NewType) == + std::tie(RHS.Action, RHS.TypeIdx, RHS.NewType); + } +}; + +using LegalityPredicate = std::function<bool (const LegalityQuery &)>; +using LegalizeMutation = + std::function<std::pair<unsigned, LLT>(const LegalityQuery &)>; + +namespace LegalityPredicates { +struct TypePairAndMemDesc { + LLT Type0; + LLT Type1; + uint64_t MemSize; + uint64_t Align; + + bool operator==(const TypePairAndMemDesc &Other) const { + return Type0 == Other.Type0 && Type1 == Other.Type1 && + Align == Other.Align && + MemSize == Other.MemSize; + } + + /// \returns true if this memory access is legal with for the access described + /// by \p Other (The alignment is sufficient for the size and result type). + bool isCompatible(const TypePairAndMemDesc &Other) const { + return Type0 == Other.Type0 && Type1 == Other.Type1 && + Align >= Other.Align && + MemSize == Other.MemSize; + } +}; + +/// True iff P0 and P1 are true. +template<typename Predicate> +Predicate all(Predicate P0, Predicate P1) { + return [=](const LegalityQuery &Query) { + return P0(Query) && P1(Query); + }; +} +/// True iff all given predicates are true. +template<typename Predicate, typename... Args> +Predicate all(Predicate P0, Predicate P1, Args... args) { + return all(all(P0, P1), args...); +} + +/// True iff P0 or P1 are true. +template<typename Predicate> +Predicate any(Predicate P0, Predicate P1) { + return [=](const LegalityQuery &Query) { + return P0(Query) || P1(Query); + }; +} +/// True iff any given predicates are true. +template<typename Predicate, typename... Args> +Predicate any(Predicate P0, Predicate P1, Args... args) { + return any(any(P0, P1), args...); +} + +/// True iff the given type index is the specified type. +LegalityPredicate typeIs(unsigned TypeIdx, LLT TypesInit); +/// True iff the given type index is one of the specified types. +LegalityPredicate typeInSet(unsigned TypeIdx, + std::initializer_list<LLT> TypesInit); + +/// True iff the given type index is not the specified type. +inline LegalityPredicate typeIsNot(unsigned TypeIdx, LLT Type) { + return [=](const LegalityQuery &Query) { + return Query.Types[TypeIdx] != Type; + }; +} + +/// True iff the given types for the given pair of type indexes is one of the +/// specified type pairs. +LegalityPredicate +typePairInSet(unsigned TypeIdx0, unsigned TypeIdx1, + std::initializer_list<std::pair<LLT, LLT>> TypesInit); +/// True iff the given types for the given pair of type indexes is one of the +/// specified type pairs. +LegalityPredicate typePairAndMemDescInSet( + unsigned TypeIdx0, unsigned TypeIdx1, unsigned MMOIdx, + std::initializer_list<TypePairAndMemDesc> TypesAndMemDescInit); +/// True iff the specified type index is a scalar. +LegalityPredicate isScalar(unsigned TypeIdx); +/// True iff the specified type index is a vector. +LegalityPredicate isVector(unsigned TypeIdx); +/// True iff the specified type index is a pointer (with any address space). +LegalityPredicate isPointer(unsigned TypeIdx); +/// True iff the specified type index is a pointer with the specified address +/// space. +LegalityPredicate isPointer(unsigned TypeIdx, unsigned AddrSpace); + +/// True if the type index is a vector with element type \p EltTy +LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT EltTy); + +/// True iff the specified type index is a scalar that's narrower than the given +/// size. +LegalityPredicate scalarNarrowerThan(unsigned TypeIdx, unsigned Size); + +/// True iff the specified type index is a scalar that's wider than the given +/// size. +LegalityPredicate scalarWiderThan(unsigned TypeIdx, unsigned Size); + +/// True iff the specified type index is a scalar or vector with an element type +/// that's narrower than the given size. +LegalityPredicate scalarOrEltNarrowerThan(unsigned TypeIdx, unsigned Size); + +/// True iff the specified type index is a scalar or a vector with an element +/// type that's wider than the given size. +LegalityPredicate scalarOrEltWiderThan(unsigned TypeIdx, unsigned Size); + +/// True iff the specified type index is a scalar whose size is not a power of +/// 2. +LegalityPredicate sizeNotPow2(unsigned TypeIdx); + +/// True iff the specified type index is a scalar or vector whose element size +/// is not a power of 2. +LegalityPredicate scalarOrEltSizeNotPow2(unsigned TypeIdx); + +/// True if the total bitwidth of the specified type index is \p Size bits. +LegalityPredicate sizeIs(unsigned TypeIdx, unsigned Size); + +/// True iff the specified type indices are both the same bit size. +LegalityPredicate sameSize(unsigned TypeIdx0, unsigned TypeIdx1); + +/// True iff the first type index has a larger total bit size than second type +/// index. +LegalityPredicate largerThan(unsigned TypeIdx0, unsigned TypeIdx1); + +/// True iff the first type index has a smaller total bit size than second type +/// index. +LegalityPredicate smallerThan(unsigned TypeIdx0, unsigned TypeIdx1); + +/// True iff the specified MMO index has a size that is not a power of 2 +LegalityPredicate memSizeInBytesNotPow2(unsigned MMOIdx); +/// True iff the specified type index is a vector whose element count is not a +/// power of 2. +LegalityPredicate numElementsNotPow2(unsigned TypeIdx); +/// True iff the specified MMO index has at an atomic ordering of at Ordering or +/// stronger. +LegalityPredicate atomicOrderingAtLeastOrStrongerThan(unsigned MMOIdx, + AtomicOrdering Ordering); +} // end namespace LegalityPredicates + +namespace LegalizeMutations { +/// Select this specific type for the given type index. +LegalizeMutation changeTo(unsigned TypeIdx, LLT Ty); + +/// Keep the same type as the given type index. +LegalizeMutation changeTo(unsigned TypeIdx, unsigned FromTypeIdx); + +/// Keep the same scalar or element type as the given type index. +LegalizeMutation changeElementTo(unsigned TypeIdx, unsigned FromTypeIdx); + +/// Keep the same scalar or element type as the given type. +LegalizeMutation changeElementTo(unsigned TypeIdx, LLT Ty); + +/// Change the scalar size or element size to have the same scalar size as type +/// index \p FromIndex. Unlike changeElementTo, this discards pointer types and +/// only changes the size. +LegalizeMutation changeElementSizeTo(unsigned TypeIdx, unsigned FromTypeIdx); + +/// Widen the scalar type or vector element type for the given type index to the +/// next power of 2. +LegalizeMutation widenScalarOrEltToNextPow2(unsigned TypeIdx, unsigned Min = 0); + +/// Add more elements to the type for the given type index to the next power of +/// 2. +LegalizeMutation moreElementsToNextPow2(unsigned TypeIdx, unsigned Min = 0); +/// Break up the vector type for the given type index into the element type. +LegalizeMutation scalarize(unsigned TypeIdx); +} // end namespace LegalizeMutations + +/// A single rule in a legalizer info ruleset. +/// The specified action is chosen when the predicate is true. Where appropriate +/// for the action (e.g. for WidenScalar) the new type is selected using the +/// given mutator. +class LegalizeRule { + LegalityPredicate Predicate; + LegalizeAction Action; + LegalizeMutation Mutation; + +public: + LegalizeRule(LegalityPredicate Predicate, LegalizeAction Action, + LegalizeMutation Mutation = nullptr) + : Predicate(Predicate), Action(Action), Mutation(Mutation) {} + + /// Test whether the LegalityQuery matches. + bool match(const LegalityQuery &Query) const { + return Predicate(Query); + } + + LegalizeAction getAction() const { return Action; } + + /// Determine the change to make. + std::pair<unsigned, LLT> determineMutation(const LegalityQuery &Query) const { + if (Mutation) + return Mutation(Query); + return std::make_pair(0, LLT{}); + } +}; + +class LegalizeRuleSet { + /// When non-zero, the opcode we are an alias of + unsigned AliasOf; + /// If true, there is another opcode that aliases this one + bool IsAliasedByAnother; + SmallVector<LegalizeRule, 2> Rules; + +#ifndef NDEBUG + /// If bit I is set, this rule set contains a rule that may handle (predicate + /// or perform an action upon (or both)) the type index I. The uncertainty + /// comes from free-form rules executing user-provided lambda functions. We + /// conservatively assume such rules do the right thing and cover all type + /// indices. The bitset is intentionally 1 bit wider than it absolutely needs + /// to be to distinguish such cases from the cases where all type indices are + /// individually handled. + SmallBitVector TypeIdxsCovered{MCOI::OPERAND_LAST_GENERIC - + MCOI::OPERAND_FIRST_GENERIC + 2}; + SmallBitVector ImmIdxsCovered{MCOI::OPERAND_LAST_GENERIC_IMM - + MCOI::OPERAND_FIRST_GENERIC_IMM + 2}; +#endif + + unsigned typeIdx(unsigned TypeIdx) { + assert(TypeIdx <= + (MCOI::OPERAND_LAST_GENERIC - MCOI::OPERAND_FIRST_GENERIC) && + "Type Index is out of bounds"); +#ifndef NDEBUG + TypeIdxsCovered.set(TypeIdx); +#endif + return TypeIdx; + } + + unsigned immIdx(unsigned ImmIdx) { + assert(ImmIdx <= (MCOI::OPERAND_LAST_GENERIC_IMM - + MCOI::OPERAND_FIRST_GENERIC_IMM) && + "Imm Index is out of bounds"); +#ifndef NDEBUG + ImmIdxsCovered.set(ImmIdx); +#endif + return ImmIdx; + } + + void markAllIdxsAsCovered() { +#ifndef NDEBUG + TypeIdxsCovered.set(); + ImmIdxsCovered.set(); +#endif + } + + void add(const LegalizeRule &Rule) { + assert(AliasOf == 0 && + "RuleSet is aliased, change the representative opcode instead"); + Rules.push_back(Rule); + } + + static bool always(const LegalityQuery &) { return true; } + + /// Use the given action when the predicate is true. + /// Action should not be an action that requires mutation. + LegalizeRuleSet &actionIf(LegalizeAction Action, + LegalityPredicate Predicate) { + add({Predicate, Action}); + return *this; + } + /// Use the given action when the predicate is true. + /// Action should be an action that requires mutation. + LegalizeRuleSet &actionIf(LegalizeAction Action, LegalityPredicate Predicate, + LegalizeMutation Mutation) { + add({Predicate, Action, Mutation}); + return *this; + } + /// Use the given action when type index 0 is any type in the given list. + /// Action should not be an action that requires mutation. + LegalizeRuleSet &actionFor(LegalizeAction Action, + std::initializer_list<LLT> Types) { + using namespace LegalityPredicates; + return actionIf(Action, typeInSet(typeIdx(0), Types)); + } + /// Use the given action when type index 0 is any type in the given list. + /// Action should be an action that requires mutation. + LegalizeRuleSet &actionFor(LegalizeAction Action, + std::initializer_list<LLT> Types, + LegalizeMutation Mutation) { + using namespace LegalityPredicates; + return actionIf(Action, typeInSet(typeIdx(0), Types), Mutation); + } + /// Use the given action when type indexes 0 and 1 is any type pair in the + /// given list. + /// Action should not be an action that requires mutation. + LegalizeRuleSet &actionFor(LegalizeAction Action, + std::initializer_list<std::pair<LLT, LLT>> Types) { + using namespace LegalityPredicates; + return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); + } + /// Use the given action when type indexes 0 and 1 is any type pair in the + /// given list. + /// Action should be an action that requires mutation. + LegalizeRuleSet &actionFor(LegalizeAction Action, + std::initializer_list<std::pair<LLT, LLT>> Types, + LegalizeMutation Mutation) { + using namespace LegalityPredicates; + return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types), + Mutation); + } + /// Use the given action when type index 0 is any type in the given list and + /// imm index 0 is anything. Action should not be an action that requires + /// mutation. + LegalizeRuleSet &actionForTypeWithAnyImm(LegalizeAction Action, + std::initializer_list<LLT> Types) { + using namespace LegalityPredicates; + immIdx(0); // Inform verifier imm idx 0 is handled. + return actionIf(Action, typeInSet(typeIdx(0), Types)); + } + + LegalizeRuleSet &actionForTypeWithAnyImm( + LegalizeAction Action, std::initializer_list<std::pair<LLT, LLT>> Types) { + using namespace LegalityPredicates; + immIdx(0); // Inform verifier imm idx 0 is handled. + return actionIf(Action, typePairInSet(typeIdx(0), typeIdx(1), Types)); + } + + /// Use the given action when type indexes 0 and 1 are both in the given list. + /// That is, the type pair is in the cartesian product of the list. + /// Action should not be an action that requires mutation. + LegalizeRuleSet &actionForCartesianProduct(LegalizeAction Action, + std::initializer_list<LLT> Types) { + using namespace LegalityPredicates; + return actionIf(Action, all(typeInSet(typeIdx(0), Types), + typeInSet(typeIdx(1), Types))); + } + /// Use the given action when type indexes 0 and 1 are both in their + /// respective lists. + /// That is, the type pair is in the cartesian product of the lists + /// Action should not be an action that requires mutation. + LegalizeRuleSet & + actionForCartesianProduct(LegalizeAction Action, + std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1) { + using namespace LegalityPredicates; + return actionIf(Action, all(typeInSet(typeIdx(0), Types0), + typeInSet(typeIdx(1), Types1))); + } + /// Use the given action when type indexes 0, 1, and 2 are all in their + /// respective lists. + /// That is, the type triple is in the cartesian product of the lists + /// Action should not be an action that requires mutation. + LegalizeRuleSet &actionForCartesianProduct( + LegalizeAction Action, std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1, std::initializer_list<LLT> Types2) { + using namespace LegalityPredicates; + return actionIf(Action, all(typeInSet(typeIdx(0), Types0), + all(typeInSet(typeIdx(1), Types1), + typeInSet(typeIdx(2), Types2)))); + } + +public: + LegalizeRuleSet() : AliasOf(0), IsAliasedByAnother(false), Rules() {} + + bool isAliasedByAnother() { return IsAliasedByAnother; } + void setIsAliasedByAnother() { IsAliasedByAnother = true; } + void aliasTo(unsigned Opcode) { + assert((AliasOf == 0 || AliasOf == Opcode) && + "Opcode is already aliased to another opcode"); + assert(Rules.empty() && "Aliasing will discard rules"); + AliasOf = Opcode; + } + unsigned getAlias() const { return AliasOf; } + + /// The instruction is legal if predicate is true. + LegalizeRuleSet &legalIf(LegalityPredicate Predicate) { + // We have no choice but conservatively assume that the free-form + // user-provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Legal, Predicate); + } + /// The instruction is legal when type index 0 is any type in the given list. + LegalizeRuleSet &legalFor(std::initializer_list<LLT> Types) { + return actionFor(LegalizeAction::Legal, Types); + } + /// The instruction is legal when type indexes 0 and 1 is any type pair in the + /// given list. + LegalizeRuleSet &legalFor(std::initializer_list<std::pair<LLT, LLT>> Types) { + return actionFor(LegalizeAction::Legal, Types); + } + /// The instruction is legal when type index 0 is any type in the given list + /// and imm index 0 is anything. + LegalizeRuleSet &legalForTypeWithAnyImm(std::initializer_list<LLT> Types) { + markAllIdxsAsCovered(); + return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); + } + + LegalizeRuleSet &legalForTypeWithAnyImm( + std::initializer_list<std::pair<LLT, LLT>> Types) { + markAllIdxsAsCovered(); + return actionForTypeWithAnyImm(LegalizeAction::Legal, Types); + } + + /// The instruction is legal when type indexes 0 and 1 along with the memory + /// size and minimum alignment is any type and size tuple in the given list. + LegalizeRuleSet &legalForTypesWithMemDesc( + std::initializer_list<LegalityPredicates::TypePairAndMemDesc> + TypesAndMemDesc) { + return actionIf(LegalizeAction::Legal, + LegalityPredicates::typePairAndMemDescInSet( + typeIdx(0), typeIdx(1), /*MMOIdx*/ 0, TypesAndMemDesc)); + } + /// The instruction is legal when type indexes 0 and 1 are both in the given + /// list. That is, the type pair is in the cartesian product of the list. + LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types) { + return actionForCartesianProduct(LegalizeAction::Legal, Types); + } + /// The instruction is legal when type indexes 0 and 1 are both their + /// respective lists. + LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1) { + return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1); + } + /// The instruction is legal when type indexes 0, 1, and 2 are both their + /// respective lists. + LegalizeRuleSet &legalForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1, + std::initializer_list<LLT> Types2) { + return actionForCartesianProduct(LegalizeAction::Legal, Types0, Types1, + Types2); + } + + LegalizeRuleSet &alwaysLegal() { + using namespace LegalizeMutations; + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Legal, always); + } + + /// The specified type index is coerced if predicate is true. + LegalizeRuleSet &bitcastIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that lowering with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Bitcast, Predicate, Mutation); + } + + /// The instruction is lowered. + LegalizeRuleSet &lower() { + using namespace LegalizeMutations; + // We have no choice but conservatively assume that predicate-less lowering + // properly handles all type indices by design: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Lower, always); + } + /// The instruction is lowered if predicate is true. Keep type index 0 as the + /// same type. + LegalizeRuleSet &lowerIf(LegalityPredicate Predicate) { + using namespace LegalizeMutations; + // We have no choice but conservatively assume that lowering with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Lower, Predicate); + } + /// The instruction is lowered if predicate is true. + LegalizeRuleSet &lowerIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that lowering with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Lower, Predicate, Mutation); + } + /// The instruction is lowered when type index 0 is any type in the given + /// list. Keep type index 0 as the same type. + LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types) { + return actionFor(LegalizeAction::Lower, Types); + } + /// The instruction is lowered when type index 0 is any type in the given + /// list. + LegalizeRuleSet &lowerFor(std::initializer_list<LLT> Types, + LegalizeMutation Mutation) { + return actionFor(LegalizeAction::Lower, Types, Mutation); + } + /// The instruction is lowered when type indexes 0 and 1 is any type pair in + /// the given list. Keep type index 0 as the same type. + LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types) { + return actionFor(LegalizeAction::Lower, Types); + } + /// The instruction is lowered when type indexes 0 and 1 is any type pair in + /// the given list. + LegalizeRuleSet &lowerFor(std::initializer_list<std::pair<LLT, LLT>> Types, + LegalizeMutation Mutation) { + return actionFor(LegalizeAction::Lower, Types, Mutation); + } + /// The instruction is lowered when type indexes 0 and 1 are both in their + /// respective lists. + LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1) { + using namespace LegalityPredicates; + return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1); + } + /// The instruction is lowered when when type indexes 0, 1, and 2 are all in + /// their respective lists. + LegalizeRuleSet &lowerForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1, + std::initializer_list<LLT> Types2) { + using namespace LegalityPredicates; + return actionForCartesianProduct(LegalizeAction::Lower, Types0, Types1, + Types2); + } + + /// The instruction is emitted as a library call. + LegalizeRuleSet &libcall() { + using namespace LegalizeMutations; + // We have no choice but conservatively assume that predicate-less lowering + // properly handles all type indices by design: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Libcall, always); + } + + /// Like legalIf, but for the Libcall action. + LegalizeRuleSet &libcallIf(LegalityPredicate Predicate) { + // We have no choice but conservatively assume that a libcall with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Libcall, Predicate); + } + LegalizeRuleSet &libcallFor(std::initializer_list<LLT> Types) { + return actionFor(LegalizeAction::Libcall, Types); + } + LegalizeRuleSet & + libcallFor(std::initializer_list<std::pair<LLT, LLT>> Types) { + return actionFor(LegalizeAction::Libcall, Types); + } + LegalizeRuleSet & + libcallForCartesianProduct(std::initializer_list<LLT> Types) { + return actionForCartesianProduct(LegalizeAction::Libcall, Types); + } + LegalizeRuleSet & + libcallForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1) { + return actionForCartesianProduct(LegalizeAction::Libcall, Types0, Types1); + } + + /// Widen the scalar to the one selected by the mutation if the predicate is + /// true. + LegalizeRuleSet &widenScalarIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that an action with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::WidenScalar, Predicate, Mutation); + } + /// Narrow the scalar to the one selected by the mutation if the predicate is + /// true. + LegalizeRuleSet &narrowScalarIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that an action with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::NarrowScalar, Predicate, Mutation); + } + /// Narrow the scalar, specified in mutation, when type indexes 0 and 1 is any + /// type pair in the given list. + LegalizeRuleSet & + narrowScalarFor(std::initializer_list<std::pair<LLT, LLT>> Types, + LegalizeMutation Mutation) { + return actionFor(LegalizeAction::NarrowScalar, Types, Mutation); + } + + /// Add more elements to reach the type selected by the mutation if the + /// predicate is true. + LegalizeRuleSet &moreElementsIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that an action with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::MoreElements, Predicate, Mutation); + } + /// Remove elements to reach the type selected by the mutation if the + /// predicate is true. + LegalizeRuleSet &fewerElementsIf(LegalityPredicate Predicate, + LegalizeMutation Mutation) { + // We have no choice but conservatively assume that an action with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::FewerElements, Predicate, Mutation); + } + + /// The instruction is unsupported. + LegalizeRuleSet &unsupported() { + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Unsupported, always); + } + LegalizeRuleSet &unsupportedIf(LegalityPredicate Predicate) { + return actionIf(LegalizeAction::Unsupported, Predicate); + } + + LegalizeRuleSet &unsupportedFor(std::initializer_list<LLT> Types) { + return actionFor(LegalizeAction::Unsupported, Types); + } + + LegalizeRuleSet &unsupportedIfMemSizeNotPow2() { + return actionIf(LegalizeAction::Unsupported, + LegalityPredicates::memSizeInBytesNotPow2(0)); + } + LegalizeRuleSet &lowerIfMemSizeNotPow2() { + return actionIf(LegalizeAction::Lower, + LegalityPredicates::memSizeInBytesNotPow2(0)); + } + + LegalizeRuleSet &customIf(LegalityPredicate Predicate) { + // We have no choice but conservatively assume that a custom action with a + // free-form user provided Predicate properly handles all type indices: + markAllIdxsAsCovered(); + return actionIf(LegalizeAction::Custom, Predicate); + } + LegalizeRuleSet &customFor(std::initializer_list<LLT> Types) { + return actionFor(LegalizeAction::Custom, Types); + } + + /// The instruction is custom when type indexes 0 and 1 is any type pair in the + /// given list. + LegalizeRuleSet &customFor(std::initializer_list<std::pair<LLT, LLT>> Types) { + return actionFor(LegalizeAction::Custom, Types); + } + + LegalizeRuleSet &customForCartesianProduct(std::initializer_list<LLT> Types) { + return actionForCartesianProduct(LegalizeAction::Custom, Types); + } + LegalizeRuleSet & + customForCartesianProduct(std::initializer_list<LLT> Types0, + std::initializer_list<LLT> Types1) { + return actionForCartesianProduct(LegalizeAction::Custom, Types0, Types1); + } + + /// Unconditionally custom lower. + LegalizeRuleSet &custom() { + return customIf(always); + } + + /// Widen the scalar to the next power of two that is at least MinSize. + /// No effect if the type is not a scalar or is a power of two. + LegalizeRuleSet &widenScalarToNextPow2(unsigned TypeIdx, + unsigned MinSize = 0) { + using namespace LegalityPredicates; + return actionIf( + LegalizeAction::WidenScalar, sizeNotPow2(typeIdx(TypeIdx)), + LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); + } + + /// Widen the scalar or vector element type to the next power of two that is + /// at least MinSize. No effect if the scalar size is a power of two. + LegalizeRuleSet &widenScalarOrEltToNextPow2(unsigned TypeIdx, + unsigned MinSize = 0) { + using namespace LegalityPredicates; + return actionIf( + LegalizeAction::WidenScalar, scalarOrEltSizeNotPow2(typeIdx(TypeIdx)), + LegalizeMutations::widenScalarOrEltToNextPow2(TypeIdx, MinSize)); + } + + LegalizeRuleSet &narrowScalar(unsigned TypeIdx, LegalizeMutation Mutation) { + using namespace LegalityPredicates; + return actionIf(LegalizeAction::NarrowScalar, isScalar(typeIdx(TypeIdx)), + Mutation); + } + + LegalizeRuleSet &scalarize(unsigned TypeIdx) { + using namespace LegalityPredicates; + return actionIf(LegalizeAction::FewerElements, isVector(typeIdx(TypeIdx)), + LegalizeMutations::scalarize(TypeIdx)); + } + + LegalizeRuleSet &scalarizeIf(LegalityPredicate Predicate, unsigned TypeIdx) { + using namespace LegalityPredicates; + return actionIf(LegalizeAction::FewerElements, + all(Predicate, isVector(typeIdx(TypeIdx))), + LegalizeMutations::scalarize(TypeIdx)); + } + + /// Ensure the scalar or element is at least as wide as Ty. + LegalizeRuleSet &minScalarOrElt(unsigned TypeIdx, const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf(LegalizeAction::WidenScalar, + scalarOrEltNarrowerThan(TypeIdx, Ty.getScalarSizeInBits()), + changeElementTo(typeIdx(TypeIdx), Ty)); + } + + /// Ensure the scalar or element is at least as wide as Ty. + LegalizeRuleSet &minScalarOrEltIf(LegalityPredicate Predicate, + unsigned TypeIdx, const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf(LegalizeAction::WidenScalar, + all(Predicate, scalarOrEltNarrowerThan( + TypeIdx, Ty.getScalarSizeInBits())), + changeElementTo(typeIdx(TypeIdx), Ty)); + } + + /// Ensure the scalar is at least as wide as Ty. + LegalizeRuleSet &minScalar(unsigned TypeIdx, const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf(LegalizeAction::WidenScalar, + scalarNarrowerThan(TypeIdx, Ty.getSizeInBits()), + changeTo(typeIdx(TypeIdx), Ty)); + } + + /// Ensure the scalar is at most as wide as Ty. + LegalizeRuleSet &maxScalarOrElt(unsigned TypeIdx, const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf(LegalizeAction::NarrowScalar, + scalarOrEltWiderThan(TypeIdx, Ty.getScalarSizeInBits()), + changeElementTo(typeIdx(TypeIdx), Ty)); + } + + /// Ensure the scalar is at most as wide as Ty. + LegalizeRuleSet &maxScalar(unsigned TypeIdx, const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf(LegalizeAction::NarrowScalar, + scalarWiderThan(TypeIdx, Ty.getSizeInBits()), + changeTo(typeIdx(TypeIdx), Ty)); + } + + /// Conditionally limit the maximum size of the scalar. + /// For example, when the maximum size of one type depends on the size of + /// another such as extracting N bits from an M bit container. + LegalizeRuleSet &maxScalarIf(LegalityPredicate Predicate, unsigned TypeIdx, + const LLT Ty) { + using namespace LegalityPredicates; + using namespace LegalizeMutations; + return actionIf( + LegalizeAction::NarrowScalar, + [=](const LegalityQuery &Query) { + const LLT QueryTy = Query.Types[TypeIdx]; + return QueryTy.isScalar() && + QueryTy.getSizeInBits() > Ty.getSizeInBits() && + Predicate(Query); + }, + changeElementTo(typeIdx(TypeIdx), Ty)); + } + + /// Limit the range of scalar sizes to MinTy and MaxTy. + LegalizeRuleSet &clampScalar(unsigned TypeIdx, const LLT MinTy, + const LLT MaxTy) { + assert(MinTy.isScalar() && MaxTy.isScalar() && "Expected scalar types"); + return minScalar(TypeIdx, MinTy).maxScalar(TypeIdx, MaxTy); + } + + /// Limit the range of scalar sizes to MinTy and MaxTy. + LegalizeRuleSet &clampScalarOrElt(unsigned TypeIdx, const LLT MinTy, + const LLT MaxTy) { + return minScalarOrElt(TypeIdx, MinTy).maxScalarOrElt(TypeIdx, MaxTy); + } + + /// Widen the scalar to match the size of another. + LegalizeRuleSet &minScalarSameAs(unsigned TypeIdx, unsigned LargeTypeIdx) { + typeIdx(TypeIdx); + return widenScalarIf( + [=](const LegalityQuery &Query) { + return Query.Types[LargeTypeIdx].getScalarSizeInBits() > + Query.Types[TypeIdx].getSizeInBits(); + }, + LegalizeMutations::changeElementSizeTo(TypeIdx, LargeTypeIdx)); + } + + /// Narrow the scalar to match the size of another. + LegalizeRuleSet &maxScalarSameAs(unsigned TypeIdx, unsigned NarrowTypeIdx) { + typeIdx(TypeIdx); + return narrowScalarIf( + [=](const LegalityQuery &Query) { + return Query.Types[NarrowTypeIdx].getScalarSizeInBits() < + Query.Types[TypeIdx].getSizeInBits(); + }, + LegalizeMutations::changeElementSizeTo(TypeIdx, NarrowTypeIdx)); + } + + /// Change the type \p TypeIdx to have the same scalar size as type \p + /// SameSizeIdx. + LegalizeRuleSet &scalarSameSizeAs(unsigned TypeIdx, unsigned SameSizeIdx) { + return minScalarSameAs(TypeIdx, SameSizeIdx) + .maxScalarSameAs(TypeIdx, SameSizeIdx); + } + + /// Conditionally widen the scalar or elt to match the size of another. + LegalizeRuleSet &minScalarEltSameAsIf(LegalityPredicate Predicate, + unsigned TypeIdx, unsigned LargeTypeIdx) { + typeIdx(TypeIdx); + return widenScalarIf( + [=](const LegalityQuery &Query) { + return Query.Types[LargeTypeIdx].getScalarSizeInBits() > + Query.Types[TypeIdx].getScalarSizeInBits() && + Predicate(Query); + }, + [=](const LegalityQuery &Query) { + LLT T = Query.Types[LargeTypeIdx]; + return std::make_pair(TypeIdx, T); + }); + } + + /// Add more elements to the vector to reach the next power of two. + /// No effect if the type is not a vector or the element count is a power of + /// two. + LegalizeRuleSet &moreElementsToNextPow2(unsigned TypeIdx) { + using namespace LegalityPredicates; + return actionIf(LegalizeAction::MoreElements, + numElementsNotPow2(typeIdx(TypeIdx)), + LegalizeMutations::moreElementsToNextPow2(TypeIdx)); + } + + /// Limit the number of elements in EltTy vectors to at least MinElements. + LegalizeRuleSet &clampMinNumElements(unsigned TypeIdx, const LLT EltTy, + unsigned MinElements) { + // Mark the type index as covered: + typeIdx(TypeIdx); + return actionIf( + LegalizeAction::MoreElements, + [=](const LegalityQuery &Query) { + LLT VecTy = Query.Types[TypeIdx]; + return VecTy.isVector() && VecTy.getElementType() == EltTy && + VecTy.getNumElements() < MinElements; + }, + [=](const LegalityQuery &Query) { + LLT VecTy = Query.Types[TypeIdx]; + return std::make_pair( + TypeIdx, LLT::vector(MinElements, VecTy.getElementType())); + }); + } + /// Limit the number of elements in EltTy vectors to at most MaxElements. + LegalizeRuleSet &clampMaxNumElements(unsigned TypeIdx, const LLT EltTy, + unsigned MaxElements) { + // Mark the type index as covered: + typeIdx(TypeIdx); + return actionIf( + LegalizeAction::FewerElements, + [=](const LegalityQuery &Query) { + LLT VecTy = Query.Types[TypeIdx]; + return VecTy.isVector() && VecTy.getElementType() == EltTy && + VecTy.getNumElements() > MaxElements; + }, + [=](const LegalityQuery &Query) { + LLT VecTy = Query.Types[TypeIdx]; + LLT NewTy = LLT::scalarOrVector(MaxElements, VecTy.getElementType()); + return std::make_pair(TypeIdx, NewTy); + }); + } + /// Limit the number of elements for the given vectors to at least MinTy's + /// number of elements and at most MaxTy's number of elements. + /// + /// No effect if the type is not a vector or does not have the same element + /// type as the constraints. + /// The element type of MinTy and MaxTy must match. + LegalizeRuleSet &clampNumElements(unsigned TypeIdx, const LLT MinTy, + const LLT MaxTy) { + assert(MinTy.getElementType() == MaxTy.getElementType() && + "Expected element types to agree"); + + const LLT EltTy = MinTy.getElementType(); + return clampMinNumElements(TypeIdx, EltTy, MinTy.getNumElements()) + .clampMaxNumElements(TypeIdx, EltTy, MaxTy.getNumElements()); + } + + /// Fallback on the previous implementation. This should only be used while + /// porting a rule. + LegalizeRuleSet &fallback() { + add({always, LegalizeAction::UseLegacyRules}); + return *this; + } + + /// Check if there is no type index which is obviously not handled by the + /// LegalizeRuleSet in any way at all. + /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. + bool verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const; + /// Check if there is no imm index which is obviously not handled by the + /// LegalizeRuleSet in any way at all. + /// \pre Type indices of the opcode form a dense [0, \p NumTypeIdxs) set. + bool verifyImmIdxsCoverage(unsigned NumImmIdxs) const; + + /// Apply the ruleset to the given LegalityQuery. + LegalizeActionStep apply(const LegalityQuery &Query) const; +}; + +class LegalizerInfo { +public: + LegalizerInfo(); + virtual ~LegalizerInfo() = default; + + unsigned getOpcodeIdxForOpcode(unsigned Opcode) const; + unsigned getActionDefinitionsIdx(unsigned Opcode) const; + + /// Compute any ancillary tables needed to quickly decide how an operation + /// should be handled. This must be called after all "set*Action"methods but + /// before any query is made or incorrect results may be returned. + void computeTables(); + + /// Perform simple self-diagnostic and assert if there is anything obviously + /// wrong with the actions set up. + void verify(const MCInstrInfo &MII) const; + + static bool needsLegalizingToDifferentSize(const LegalizeAction Action) { + using namespace LegalizeActions; + switch (Action) { + case NarrowScalar: + case WidenScalar: + case FewerElements: + case MoreElements: + case Unsupported: + return true; + default: + return false; + } + } + + using SizeAndAction = std::pair<uint16_t, LegalizeAction>; + using SizeAndActionsVec = std::vector<SizeAndAction>; + using SizeChangeStrategy = + std::function<SizeAndActionsVec(const SizeAndActionsVec &v)>; + + /// More friendly way to set an action for common types that have an LLT + /// representation. + /// The LegalizeAction must be one for which NeedsLegalizingToDifferentSize + /// returns false. + void setAction(const InstrAspect &Aspect, LegalizeAction Action) { + assert(!needsLegalizingToDifferentSize(Action)); + TablesInitialized = false; + const unsigned OpcodeIdx = Aspect.Opcode - FirstOp; + if (SpecifiedActions[OpcodeIdx].size() <= Aspect.Idx) + SpecifiedActions[OpcodeIdx].resize(Aspect.Idx + 1); + SpecifiedActions[OpcodeIdx][Aspect.Idx][Aspect.Type] = Action; + } + + /// The setAction calls record the non-size-changing legalization actions + /// to take on specificly-sized types. The SizeChangeStrategy defines what + /// to do when the size of the type needs to be changed to reach a legally + /// sized type (i.e., one that was defined through a setAction call). + /// e.g. + /// setAction ({G_ADD, 0, LLT::scalar(32)}, Legal); + /// setLegalizeScalarToDifferentSizeStrategy( + /// G_ADD, 0, widenToLargerTypesAndNarrowToLargest); + /// will end up defining getAction({G_ADD, 0, T}) to return the following + /// actions for different scalar types T: + /// LLT::scalar(1)..LLT::scalar(31): {WidenScalar, 0, LLT::scalar(32)} + /// LLT::scalar(32): {Legal, 0, LLT::scalar(32)} + /// LLT::scalar(33)..: {NarrowScalar, 0, LLT::scalar(32)} + /// + /// If no SizeChangeAction gets defined, through this function, + /// the default is unsupportedForDifferentSizes. + void setLegalizeScalarToDifferentSizeStrategy(const unsigned Opcode, + const unsigned TypeIdx, + SizeChangeStrategy S) { + const unsigned OpcodeIdx = Opcode - FirstOp; + if (ScalarSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) + ScalarSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); + ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; + } + + /// See also setLegalizeScalarToDifferentSizeStrategy. + /// This function allows to set the SizeChangeStrategy for vector elements. + void setLegalizeVectorElementToDifferentSizeStrategy(const unsigned Opcode, + const unsigned TypeIdx, + SizeChangeStrategy S) { + const unsigned OpcodeIdx = Opcode - FirstOp; + if (VectorElementSizeChangeStrategies[OpcodeIdx].size() <= TypeIdx) + VectorElementSizeChangeStrategies[OpcodeIdx].resize(TypeIdx + 1); + VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] = S; + } + + /// A SizeChangeStrategy for the common case where legalization for a + /// particular operation consists of only supporting a specific set of type + /// sizes. E.g. + /// setAction ({G_DIV, 0, LLT::scalar(32)}, Legal); + /// setAction ({G_DIV, 0, LLT::scalar(64)}, Legal); + /// setLegalizeScalarToDifferentSizeStrategy( + /// G_DIV, 0, unsupportedForDifferentSizes); + /// will result in getAction({G_DIV, 0, T}) to return Legal for s32 and s64, + /// and Unsupported for all other scalar types T. + static SizeAndActionsVec + unsupportedForDifferentSizes(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + return increaseToLargerTypesAndDecreaseToLargest(v, Unsupported, + Unsupported); + } + + /// A SizeChangeStrategy for the common case where legalization for a + /// particular operation consists of widening the type to a large legal type, + /// unless there is no such type and then instead it should be narrowed to the + /// largest legal type. + static SizeAndActionsVec + widenToLargerTypesAndNarrowToLargest(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + assert(v.size() > 0 && + "At least one size that can be legalized towards is needed" + " for this SizeChangeStrategy"); + return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, + NarrowScalar); + } + + static SizeAndActionsVec + widenToLargerTypesUnsupportedOtherwise(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + return increaseToLargerTypesAndDecreaseToLargest(v, WidenScalar, + Unsupported); + } + + static SizeAndActionsVec + narrowToSmallerAndUnsupportedIfTooSmall(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, + Unsupported); + } + + static SizeAndActionsVec + narrowToSmallerAndWidenToSmallest(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + assert(v.size() > 0 && + "At least one size that can be legalized towards is needed" + " for this SizeChangeStrategy"); + return decreaseToSmallerTypesAndIncreaseToSmallest(v, NarrowScalar, + WidenScalar); + } + + /// A SizeChangeStrategy for the common case where legalization for a + /// particular vector operation consists of having more elements in the + /// vector, to a type that is legal. Unless there is no such type and then + /// instead it should be legalized towards the widest vector that's still + /// legal. E.g. + /// setAction({G_ADD, LLT::vector(8, 8)}, Legal); + /// setAction({G_ADD, LLT::vector(16, 8)}, Legal); + /// setAction({G_ADD, LLT::vector(2, 32)}, Legal); + /// setAction({G_ADD, LLT::vector(4, 32)}, Legal); + /// setLegalizeVectorElementToDifferentSizeStrategy( + /// G_ADD, 0, moreToWiderTypesAndLessToWidest); + /// will result in the following getAction results: + /// * getAction({G_ADD, LLT::vector(8,8)}) returns + /// (Legal, vector(8,8)). + /// * getAction({G_ADD, LLT::vector(9,8)}) returns + /// (MoreElements, vector(16,8)). + /// * getAction({G_ADD, LLT::vector(8,32)}) returns + /// (FewerElements, vector(4,32)). + static SizeAndActionsVec + moreToWiderTypesAndLessToWidest(const SizeAndActionsVec &v) { + using namespace LegalizeActions; + return increaseToLargerTypesAndDecreaseToLargest(v, MoreElements, + FewerElements); + } + + /// Helper function to implement many typical SizeChangeStrategy functions. + static SizeAndActionsVec + increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec &v, + LegalizeAction IncreaseAction, + LegalizeAction DecreaseAction); + /// Helper function to implement many typical SizeChangeStrategy functions. + static SizeAndActionsVec + decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec &v, + LegalizeAction DecreaseAction, + LegalizeAction IncreaseAction); + + /// Get the action definitions for the given opcode. Use this to run a + /// LegalityQuery through the definitions. + const LegalizeRuleSet &getActionDefinitions(unsigned Opcode) const; + + /// Get the action definition builder for the given opcode. Use this to define + /// the action definitions. + /// + /// It is an error to request an opcode that has already been requested by the + /// multiple-opcode variant. + LegalizeRuleSet &getActionDefinitionsBuilder(unsigned Opcode); + + /// Get the action definition builder for the given set of opcodes. Use this + /// to define the action definitions for multiple opcodes at once. The first + /// opcode given will be considered the representative opcode and will hold + /// the definitions whereas the other opcodes will be configured to refer to + /// the representative opcode. This lowers memory requirements and very + /// slightly improves performance. + /// + /// It would be very easy to introduce unexpected side-effects as a result of + /// this aliasing if it were permitted to request different but intersecting + /// sets of opcodes but that is difficult to keep track of. It is therefore an + /// error to request the same opcode twice using this API, to request an + /// opcode that already has definitions, or to use the single-opcode API on an + /// opcode that has already been requested by this API. + LegalizeRuleSet & + getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes); + void aliasActionDefinitions(unsigned OpcodeTo, unsigned OpcodeFrom); + + /// Determine what action should be taken to legalize the described + /// instruction. Requires computeTables to have been called. + /// + /// \returns a description of the next legalization step to perform. + LegalizeActionStep getAction(const LegalityQuery &Query) const; + + /// Determine what action should be taken to legalize the given generic + /// instruction. + /// + /// \returns a description of the next legalization step to perform. + LegalizeActionStep getAction(const MachineInstr &MI, + const MachineRegisterInfo &MRI) const; + + bool isLegal(const LegalityQuery &Query) const { + return getAction(Query).Action == LegalizeAction::Legal; + } + + bool isLegalOrCustom(const LegalityQuery &Query) const { + auto Action = getAction(Query).Action; + return Action == LegalizeAction::Legal || Action == LegalizeAction::Custom; + } + + bool isLegal(const MachineInstr &MI, const MachineRegisterInfo &MRI) const; + bool isLegalOrCustom(const MachineInstr &MI, + const MachineRegisterInfo &MRI) const; + + /// Called for instructions with the Custom LegalizationAction. + virtual bool legalizeCustom(LegalizerHelper &Helper, + MachineInstr &MI) const { + llvm_unreachable("must implement this if custom action is used"); + } + + /// \returns true if MI is either legal or has been legalized and false if not + /// legal. + /// Return true if MI is either legal or has been legalized and false + /// if not legal. + virtual bool legalizeIntrinsic(LegalizerHelper &Helper, + MachineInstr &MI) const { + return true; + } + + /// Return the opcode (SEXT/ZEXT/ANYEXT) that should be performed while + /// widening a constant of type SmallTy which targets can override. + /// For eg, the DAG does (SmallTy.isByteSized() ? G_SEXT : G_ZEXT) which + /// will be the default. + virtual unsigned getExtOpcodeForWideningConstant(LLT SmallTy) const; + +private: + /// Determine what action should be taken to legalize the given generic + /// instruction opcode, type-index and type. Requires computeTables to have + /// been called. + /// + /// \returns a pair consisting of the kind of legalization that should be + /// performed and the destination type. + std::pair<LegalizeAction, LLT> + getAspectAction(const InstrAspect &Aspect) const; + + /// The SizeAndActionsVec is a representation mapping between all natural + /// numbers and an Action. The natural number represents the bit size of + /// the InstrAspect. For example, for a target with native support for 32-bit + /// and 64-bit additions, you'd express that as: + /// setScalarAction(G_ADD, 0, + /// {{1, WidenScalar}, // bit sizes [ 1, 31[ + /// {32, Legal}, // bit sizes [32, 33[ + /// {33, WidenScalar}, // bit sizes [33, 64[ + /// {64, Legal}, // bit sizes [64, 65[ + /// {65, NarrowScalar} // bit sizes [65, +inf[ + /// }); + /// It may be that only 64-bit pointers are supported on your target: + /// setPointerAction(G_PTR_ADD, 0, LLT:pointer(1), + /// {{1, Unsupported}, // bit sizes [ 1, 63[ + /// {64, Legal}, // bit sizes [64, 65[ + /// {65, Unsupported}, // bit sizes [65, +inf[ + /// }); + void setScalarAction(const unsigned Opcode, const unsigned TypeIndex, + const SizeAndActionsVec &SizeAndActions) { + const unsigned OpcodeIdx = Opcode - FirstOp; + SmallVector<SizeAndActionsVec, 1> &Actions = ScalarActions[OpcodeIdx]; + setActions(TypeIndex, Actions, SizeAndActions); + } + void setPointerAction(const unsigned Opcode, const unsigned TypeIndex, + const unsigned AddressSpace, + const SizeAndActionsVec &SizeAndActions) { + const unsigned OpcodeIdx = Opcode - FirstOp; + if (AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace) == + AddrSpace2PointerActions[OpcodeIdx].end()) + AddrSpace2PointerActions[OpcodeIdx][AddressSpace] = {{}}; + SmallVector<SizeAndActionsVec, 1> &Actions = + AddrSpace2PointerActions[OpcodeIdx].find(AddressSpace)->second; + setActions(TypeIndex, Actions, SizeAndActions); + } + + /// If an operation on a given vector type (say <M x iN>) isn't explicitly + /// specified, we proceed in 2 stages. First we legalize the underlying scalar + /// (so that there's at least one legal vector with that scalar), then we + /// adjust the number of elements in the vector so that it is legal. The + /// desired action in the first step is controlled by this function. + void setScalarInVectorAction(const unsigned Opcode, const unsigned TypeIndex, + const SizeAndActionsVec &SizeAndActions) { + unsigned OpcodeIdx = Opcode - FirstOp; + SmallVector<SizeAndActionsVec, 1> &Actions = + ScalarInVectorActions[OpcodeIdx]; + setActions(TypeIndex, Actions, SizeAndActions); + } + + /// See also setScalarInVectorAction. + /// This function let's you specify the number of elements in a vector that + /// are legal for a legal element size. + void setVectorNumElementAction(const unsigned Opcode, + const unsigned TypeIndex, + const unsigned ElementSize, + const SizeAndActionsVec &SizeAndActions) { + const unsigned OpcodeIdx = Opcode - FirstOp; + if (NumElements2Actions[OpcodeIdx].find(ElementSize) == + NumElements2Actions[OpcodeIdx].end()) + NumElements2Actions[OpcodeIdx][ElementSize] = {{}}; + SmallVector<SizeAndActionsVec, 1> &Actions = + NumElements2Actions[OpcodeIdx].find(ElementSize)->second; + setActions(TypeIndex, Actions, SizeAndActions); + } + + /// A partial SizeAndActionsVec potentially doesn't cover all bit sizes, + /// i.e. it's OK if it doesn't start from size 1. + static void checkPartialSizeAndActionsVector(const SizeAndActionsVec& v) { + using namespace LegalizeActions; +#ifndef NDEBUG + // The sizes should be in increasing order + int prev_size = -1; + for(auto SizeAndAction: v) { + assert(SizeAndAction.first > prev_size); + prev_size = SizeAndAction.first; + } + // - for every Widen action, there should be a larger bitsize that + // can be legalized towards (e.g. Legal, Lower, Libcall or Custom + // action). + // - for every Narrow action, there should be a smaller bitsize that + // can be legalized towards. + int SmallestNarrowIdx = -1; + int LargestWidenIdx = -1; + int SmallestLegalizableToSameSizeIdx = -1; + int LargestLegalizableToSameSizeIdx = -1; + for(size_t i=0; i<v.size(); ++i) { + switch (v[i].second) { + case FewerElements: + case NarrowScalar: + if (SmallestNarrowIdx == -1) + SmallestNarrowIdx = i; + break; + case WidenScalar: + case MoreElements: + LargestWidenIdx = i; + break; + case Unsupported: + break; + default: + if (SmallestLegalizableToSameSizeIdx == -1) + SmallestLegalizableToSameSizeIdx = i; + LargestLegalizableToSameSizeIdx = i; + } + } + if (SmallestNarrowIdx != -1) { + assert(SmallestLegalizableToSameSizeIdx != -1); + assert(SmallestNarrowIdx > SmallestLegalizableToSameSizeIdx); + } + if (LargestWidenIdx != -1) + assert(LargestWidenIdx < LargestLegalizableToSameSizeIdx); +#endif + } + + /// A full SizeAndActionsVec must cover all bit sizes, i.e. must start with + /// from size 1. + static void checkFullSizeAndActionsVector(const SizeAndActionsVec& v) { +#ifndef NDEBUG + // Data structure invariant: The first bit size must be size 1. + assert(v.size() >= 1); + assert(v[0].first == 1); + checkPartialSizeAndActionsVector(v); +#endif + } + + /// Sets actions for all bit sizes on a particular generic opcode, type + /// index and scalar or pointer type. + void setActions(unsigned TypeIndex, + SmallVector<SizeAndActionsVec, 1> &Actions, + const SizeAndActionsVec &SizeAndActions) { + checkFullSizeAndActionsVector(SizeAndActions); + if (Actions.size() <= TypeIndex) + Actions.resize(TypeIndex + 1); + Actions[TypeIndex] = SizeAndActions; + } + + static SizeAndAction findAction(const SizeAndActionsVec &Vec, + const uint32_t Size); + + /// Returns the next action needed to get the scalar or pointer type closer + /// to being legal + /// E.g. findLegalAction({G_REM, 13}) should return + /// (WidenScalar, 32). After that, findLegalAction({G_REM, 32}) will + /// probably be called, which should return (Lower, 32). + /// This is assuming the setScalarAction on G_REM was something like: + /// setScalarAction(G_REM, 0, + /// {{1, WidenScalar}, // bit sizes [ 1, 31[ + /// {32, Lower}, // bit sizes [32, 33[ + /// {33, NarrowScalar} // bit sizes [65, +inf[ + /// }); + std::pair<LegalizeAction, LLT> + findScalarLegalAction(const InstrAspect &Aspect) const; + + /// Returns the next action needed towards legalizing the vector type. + std::pair<LegalizeAction, LLT> + findVectorLegalAction(const InstrAspect &Aspect) const; + + static const int FirstOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_START; + static const int LastOp = TargetOpcode::PRE_ISEL_GENERIC_OPCODE_END; + + // Data structures used temporarily during construction of legality data: + using TypeMap = DenseMap<LLT, LegalizeAction>; + SmallVector<TypeMap, 1> SpecifiedActions[LastOp - FirstOp + 1]; + SmallVector<SizeChangeStrategy, 1> + ScalarSizeChangeStrategies[LastOp - FirstOp + 1]; + SmallVector<SizeChangeStrategy, 1> + VectorElementSizeChangeStrategies[LastOp - FirstOp + 1]; + bool TablesInitialized; + + // Data structures used by getAction: + SmallVector<SizeAndActionsVec, 1> ScalarActions[LastOp - FirstOp + 1]; + SmallVector<SizeAndActionsVec, 1> ScalarInVectorActions[LastOp - FirstOp + 1]; + std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> + AddrSpace2PointerActions[LastOp - FirstOp + 1]; + std::unordered_map<uint16_t, SmallVector<SizeAndActionsVec, 1>> + NumElements2Actions[LastOp - FirstOp + 1]; + + LegalizeRuleSet RulesForOpcode[LastOp - FirstOp + 1]; +}; + +#ifndef NDEBUG +/// Checks that MIR is fully legal, returns an illegal instruction if it's not, +/// nullptr otherwise +const MachineInstr *machineFunctionIsIllegal(const MachineFunction &MF); +#endif + +} // end namespace llvm. + +#endif // LLVM_CODEGEN_GLOBALISEL_LEGALIZERINFO_H + +#ifdef __GNUC__ +#pragma GCC diagnostic pop +#endif |