aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h')
-rw-r--r--contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h2079
1 files changed, 2079 insertions, 0 deletions
diff --git a/contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h b/contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h
new file mode 100644
index 0000000000..85ca4b303c
--- /dev/null
+++ b/contrib/libs/llvm12/include/llvm/CodeGen/BasicTTIImpl.h
@@ -0,0 +1,2079 @@
+#pragma once
+
+#ifdef __GNUC__
+#pragma GCC diagnostic push
+#pragma GCC diagnostic ignored "-Wunused-parameter"
+#endif
+
+//===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+/// \file
+/// This file provides a helper that implements much of the TTI interface in
+/// terms of the target-independent code generator and TargetLowering
+/// interfaces.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_CODEGEN_BASICTTIIMPL_H
+#define LLVM_CODEGEN_BASICTTIIMPL_H
+
+#include "llvm/ADT/APInt.h"
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/TargetTransformInfo.h"
+#include "llvm/Analysis/TargetTransformInfoImpl.h"
+#include "llvm/CodeGen/ISDOpcodes.h"
+#include "llvm/CodeGen/TargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/MachineValueType.h"
+#include "llvm/Support/MathExtras.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <limits>
+#include <utility>
+
+namespace llvm {
+
+class Function;
+class GlobalValue;
+class LLVMContext;
+class ScalarEvolution;
+class SCEV;
+class TargetMachine;
+
+extern cl::opt<unsigned> PartialUnrollingThreshold;
+
+/// Base class which can be used to help build a TTI implementation.
+///
+/// This class provides as much implementation of the TTI interface as is
+/// possible using the target independent parts of the code generator.
+///
+/// In order to subclass it, your class must implement a getST() method to
+/// return the subtarget, and a getTLI() method to return the target lowering.
+/// We need these methods implemented in the derived class so that this class
+/// doesn't have to duplicate storage for them.
+template <typename T>
+class BasicTTIImplBase : public TargetTransformInfoImplCRTPBase<T> {
+private:
+ using BaseT = TargetTransformInfoImplCRTPBase<T>;
+ using TTI = TargetTransformInfo;
+
+ /// Helper function to access this as a T.
+ T *thisT() { return static_cast<T *>(this); }
+
+ /// Estimate a cost of Broadcast as an extract and sequence of insert
+ /// operations.
+ unsigned getBroadcastShuffleOverhead(FixedVectorType *VTy) {
+ unsigned Cost = 0;
+ // Broadcast cost is equal to the cost of extracting the zero'th element
+ // plus the cost of inserting it into every element of the result vector.
+ Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, 0);
+
+ for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
+ Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
+ }
+ return Cost;
+ }
+
+ /// Estimate a cost of shuffle as a sequence of extract and insert
+ /// operations.
+ unsigned getPermuteShuffleOverhead(FixedVectorType *VTy) {
+ unsigned Cost = 0;
+ // Shuffle cost is equal to the cost of extracting element from its argument
+ // plus the cost of inserting them onto the result vector.
+
+ // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
+ // index 0 of first vector, index 1 of second vector,index 2 of first
+ // vector and finally index 3 of second vector and insert them at index
+ // <0,1,2,3> of result vector.
+ for (int i = 0, e = VTy->getNumElements(); i < e; ++i) {
+ Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy, i);
+ Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy, i);
+ }
+ return Cost;
+ }
+
+ /// Estimate a cost of subvector extraction as a sequence of extract and
+ /// insert operations.
+ unsigned getExtractSubvectorOverhead(VectorType *VTy, int Index,
+ FixedVectorType *SubVTy) {
+ assert(VTy && SubVTy &&
+ "Can only extract subvectors from vectors");
+ int NumSubElts = SubVTy->getNumElements();
+ assert((!isa<FixedVectorType>(VTy) ||
+ (Index + NumSubElts) <=
+ (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
+ "SK_ExtractSubvector index out of range");
+
+ unsigned Cost = 0;
+ // Subvector extraction cost is equal to the cost of extracting element from
+ // the source type plus the cost of inserting them into the result vector
+ // type.
+ for (int i = 0; i != NumSubElts; ++i) {
+ Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VTy,
+ i + Index);
+ Cost +=
+ thisT()->getVectorInstrCost(Instruction::InsertElement, SubVTy, i);
+ }
+ return Cost;
+ }
+
+ /// Estimate a cost of subvector insertion as a sequence of extract and
+ /// insert operations.
+ unsigned getInsertSubvectorOverhead(VectorType *VTy, int Index,
+ FixedVectorType *SubVTy) {
+ assert(VTy && SubVTy &&
+ "Can only insert subvectors into vectors");
+ int NumSubElts = SubVTy->getNumElements();
+ assert((!isa<FixedVectorType>(VTy) ||
+ (Index + NumSubElts) <=
+ (int)cast<FixedVectorType>(VTy)->getNumElements()) &&
+ "SK_InsertSubvector index out of range");
+
+ unsigned Cost = 0;
+ // Subvector insertion cost is equal to the cost of extracting element from
+ // the source type plus the cost of inserting them into the result vector
+ // type.
+ for (int i = 0; i != NumSubElts; ++i) {
+ Cost +=
+ thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVTy, i);
+ Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, VTy,
+ i + Index);
+ }
+ return Cost;
+ }
+
+ /// Local query method delegates up to T which *must* implement this!
+ const TargetSubtargetInfo *getST() const {
+ return static_cast<const T *>(this)->getST();
+ }
+
+ /// Local query method delegates up to T which *must* implement this!
+ const TargetLoweringBase *getTLI() const {
+ return static_cast<const T *>(this)->getTLI();
+ }
+
+ static ISD::MemIndexedMode getISDIndexedMode(TTI::MemIndexedMode M) {
+ switch (M) {
+ case TTI::MIM_Unindexed:
+ return ISD::UNINDEXED;
+ case TTI::MIM_PreInc:
+ return ISD::PRE_INC;
+ case TTI::MIM_PreDec:
+ return ISD::PRE_DEC;
+ case TTI::MIM_PostInc:
+ return ISD::POST_INC;
+ case TTI::MIM_PostDec:
+ return ISD::POST_DEC;
+ }
+ llvm_unreachable("Unexpected MemIndexedMode");
+ }
+
+protected:
+ explicit BasicTTIImplBase(const TargetMachine *TM, const DataLayout &DL)
+ : BaseT(DL) {}
+ virtual ~BasicTTIImplBase() = default;
+
+ using TargetTransformInfoImplBase::DL;
+
+public:
+ /// \name Scalar TTI Implementations
+ /// @{
+ bool allowsMisalignedMemoryAccesses(LLVMContext &Context, unsigned BitWidth,
+ unsigned AddressSpace, unsigned Alignment,
+ bool *Fast) const {
+ EVT E = EVT::getIntegerVT(Context, BitWidth);
+ return getTLI()->allowsMisalignedMemoryAccesses(
+ E, AddressSpace, Alignment, MachineMemOperand::MONone, Fast);
+ }
+
+ bool hasBranchDivergence() { return false; }
+
+ bool useGPUDivergenceAnalysis() { return false; }
+
+ bool isSourceOfDivergence(const Value *V) { return false; }
+
+ bool isAlwaysUniform(const Value *V) { return false; }
+
+ unsigned getFlatAddressSpace() {
+ // Return an invalid address space.
+ return -1;
+ }
+
+ bool collectFlatAddressOperands(SmallVectorImpl<int> &OpIndexes,
+ Intrinsic::ID IID) const {
+ return false;
+ }
+
+ bool isNoopAddrSpaceCast(unsigned FromAS, unsigned ToAS) const {
+ return getTLI()->getTargetMachine().isNoopAddrSpaceCast(FromAS, ToAS);
+ }
+
+ unsigned getAssumedAddrSpace(const Value *V) const {
+ return getTLI()->getTargetMachine().getAssumedAddrSpace(V);
+ }
+
+ Value *rewriteIntrinsicWithAddressSpace(IntrinsicInst *II, Value *OldV,
+ Value *NewV) const {
+ return nullptr;
+ }
+
+ bool isLegalAddImmediate(int64_t imm) {
+ return getTLI()->isLegalAddImmediate(imm);
+ }
+
+ bool isLegalICmpImmediate(int64_t imm) {
+ return getTLI()->isLegalICmpImmediate(imm);
+ }
+
+ bool isLegalAddressingMode(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale,
+ unsigned AddrSpace, Instruction *I = nullptr) {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->isLegalAddressingMode(DL, AM, Ty, AddrSpace, I);
+ }
+
+ bool isIndexedLoadLegal(TTI::MemIndexedMode M, Type *Ty,
+ const DataLayout &DL) const {
+ EVT VT = getTLI()->getValueType(DL, Ty);
+ return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M), VT);
+ }
+
+ bool isIndexedStoreLegal(TTI::MemIndexedMode M, Type *Ty,
+ const DataLayout &DL) const {
+ EVT VT = getTLI()->getValueType(DL, Ty);
+ return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M), VT);
+ }
+
+ bool isLSRCostLess(TTI::LSRCost C1, TTI::LSRCost C2) {
+ return TargetTransformInfoImplBase::isLSRCostLess(C1, C2);
+ }
+
+ bool isNumRegsMajorCostOfLSR() {
+ return TargetTransformInfoImplBase::isNumRegsMajorCostOfLSR();
+ }
+
+ bool isProfitableLSRChainElement(Instruction *I) {
+ return TargetTransformInfoImplBase::isProfitableLSRChainElement(I);
+ }
+
+ int getScalingFactorCost(Type *Ty, GlobalValue *BaseGV, int64_t BaseOffset,
+ bool HasBaseReg, int64_t Scale, unsigned AddrSpace) {
+ TargetLoweringBase::AddrMode AM;
+ AM.BaseGV = BaseGV;
+ AM.BaseOffs = BaseOffset;
+ AM.HasBaseReg = HasBaseReg;
+ AM.Scale = Scale;
+ return getTLI()->getScalingFactorCost(DL, AM, Ty, AddrSpace);
+ }
+
+ bool isTruncateFree(Type *Ty1, Type *Ty2) {
+ return getTLI()->isTruncateFree(Ty1, Ty2);
+ }
+
+ bool isProfitableToHoist(Instruction *I) {
+ return getTLI()->isProfitableToHoist(I);
+ }
+
+ bool useAA() const { return getST()->useAA(); }
+
+ bool isTypeLegal(Type *Ty) {
+ EVT VT = getTLI()->getValueType(DL, Ty);
+ return getTLI()->isTypeLegal(VT);
+ }
+
+ unsigned getRegUsageForType(Type *Ty) {
+ return getTLI()->getTypeLegalizationCost(DL, Ty).first;
+ }
+
+ int getGEPCost(Type *PointeeType, const Value *Ptr,
+ ArrayRef<const Value *> Operands) {
+ return BaseT::getGEPCost(PointeeType, Ptr, Operands);
+ }
+
+ unsigned getEstimatedNumberOfCaseClusters(const SwitchInst &SI,
+ unsigned &JumpTableSize,
+ ProfileSummaryInfo *PSI,
+ BlockFrequencyInfo *BFI) {
+ /// Try to find the estimated number of clusters. Note that the number of
+ /// clusters identified in this function could be different from the actual
+ /// numbers found in lowering. This function ignore switches that are
+ /// lowered with a mix of jump table / bit test / BTree. This function was
+ /// initially intended to be used when estimating the cost of switch in
+ /// inline cost heuristic, but it's a generic cost model to be used in other
+ /// places (e.g., in loop unrolling).
+ unsigned N = SI.getNumCases();
+ const TargetLoweringBase *TLI = getTLI();
+ const DataLayout &DL = this->getDataLayout();
+
+ JumpTableSize = 0;
+ bool IsJTAllowed = TLI->areJTsAllowed(SI.getParent()->getParent());
+
+ // Early exit if both a jump table and bit test are not allowed.
+ if (N < 1 || (!IsJTAllowed && DL.getIndexSizeInBits(0u) < N))
+ return N;
+
+ APInt MaxCaseVal = SI.case_begin()->getCaseValue()->getValue();
+ APInt MinCaseVal = MaxCaseVal;
+ for (auto CI : SI.cases()) {
+ const APInt &CaseVal = CI.getCaseValue()->getValue();
+ if (CaseVal.sgt(MaxCaseVal))
+ MaxCaseVal = CaseVal;
+ if (CaseVal.slt(MinCaseVal))
+ MinCaseVal = CaseVal;
+ }
+
+ // Check if suitable for a bit test
+ if (N <= DL.getIndexSizeInBits(0u)) {
+ SmallPtrSet<const BasicBlock *, 4> Dests;
+ for (auto I : SI.cases())
+ Dests.insert(I.getCaseSuccessor());
+
+ if (TLI->isSuitableForBitTests(Dests.size(), N, MinCaseVal, MaxCaseVal,
+ DL))
+ return 1;
+ }
+
+ // Check if suitable for a jump table.
+ if (IsJTAllowed) {
+ if (N < 2 || N < TLI->getMinimumJumpTableEntries())
+ return N;
+ uint64_t Range =
+ (MaxCaseVal - MinCaseVal)
+ .getLimitedValue(std::numeric_limits<uint64_t>::max() - 1) + 1;
+ // Check whether a range of clusters is dense enough for a jump table
+ if (TLI->isSuitableForJumpTable(&SI, N, Range, PSI, BFI)) {
+ JumpTableSize = Range;
+ return 1;
+ }
+ }
+ return N;
+ }
+
+ bool shouldBuildLookupTables() {
+ const TargetLoweringBase *TLI = getTLI();
+ return TLI->isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
+ TLI->isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
+ }
+
+ bool haveFastSqrt(Type *Ty) {
+ const TargetLoweringBase *TLI = getTLI();
+ EVT VT = TLI->getValueType(DL, Ty);
+ return TLI->isTypeLegal(VT) &&
+ TLI->isOperationLegalOrCustom(ISD::FSQRT, VT);
+ }
+
+ bool isFCmpOrdCheaperThanFCmpZero(Type *Ty) {
+ return true;
+ }
+
+ unsigned getFPOpCost(Type *Ty) {
+ // Check whether FADD is available, as a proxy for floating-point in
+ // general.
+ const TargetLoweringBase *TLI = getTLI();
+ EVT VT = TLI->getValueType(DL, Ty);
+ if (TLI->isOperationLegalOrCustomOrPromote(ISD::FADD, VT))
+ return TargetTransformInfo::TCC_Basic;
+ return TargetTransformInfo::TCC_Expensive;
+ }
+
+ unsigned getInliningThresholdMultiplier() { return 1; }
+ unsigned adjustInliningThreshold(const CallBase *CB) { return 0; }
+
+ int getInlinerVectorBonusPercent() { return 150; }
+
+ void getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::UnrollingPreferences &UP) {
+ // This unrolling functionality is target independent, but to provide some
+ // motivation for its intended use, for x86:
+
+ // According to the Intel 64 and IA-32 Architectures Optimization Reference
+ // Manual, Intel Core models and later have a loop stream detector (and
+ // associated uop queue) that can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have no more than 4 (8 for Nehalem and later) branches
+ // taken, and none of them may be calls.
+ // - The loop can have no more than 18 (28 for Nehalem and later) uops.
+
+ // According to the Software Optimization Guide for AMD Family 15h
+ // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
+ // and loop buffer which can benefit from partial unrolling.
+ // The relevant requirements are:
+ // - The loop must have fewer than 16 branches
+ // - The loop must have less than 40 uops in all executed loop branches
+
+ // The number of taken branches in a loop is hard to estimate here, and
+ // benchmarking has revealed that it is better not to be conservative when
+ // estimating the branch count. As a result, we'll ignore the branch limits
+ // until someone finds a case where it matters in practice.
+
+ unsigned MaxOps;
+ const TargetSubtargetInfo *ST = getST();
+ if (PartialUnrollingThreshold.getNumOccurrences() > 0)
+ MaxOps = PartialUnrollingThreshold;
+ else if (ST->getSchedModel().LoopMicroOpBufferSize > 0)
+ MaxOps = ST->getSchedModel().LoopMicroOpBufferSize;
+ else
+ return;
+
+ // Scan the loop: don't unroll loops with calls.
+ for (BasicBlock *BB : L->blocks()) {
+ for (Instruction &I : *BB) {
+ if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
+ if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
+ if (!thisT()->isLoweredToCall(F))
+ continue;
+ }
+
+ return;
+ }
+ }
+ }
+
+ // Enable runtime and partial unrolling up to the specified size.
+ // Enable using trip count upper bound to unroll loops.
+ UP.Partial = UP.Runtime = UP.UpperBound = true;
+ UP.PartialThreshold = MaxOps;
+
+ // Avoid unrolling when optimizing for size.
+ UP.OptSizeThreshold = 0;
+ UP.PartialOptSizeThreshold = 0;
+
+ // Set number of instructions optimized when "back edge"
+ // becomes "fall through" to default value of 2.
+ UP.BEInsns = 2;
+ }
+
+ void getPeelingPreferences(Loop *L, ScalarEvolution &SE,
+ TTI::PeelingPreferences &PP) {
+ PP.PeelCount = 0;
+ PP.AllowPeeling = true;
+ PP.AllowLoopNestsPeeling = false;
+ PP.PeelProfiledIterations = true;
+ }
+
+ bool isHardwareLoopProfitable(Loop *L, ScalarEvolution &SE,
+ AssumptionCache &AC,
+ TargetLibraryInfo *LibInfo,
+ HardwareLoopInfo &HWLoopInfo) {
+ return BaseT::isHardwareLoopProfitable(L, SE, AC, LibInfo, HWLoopInfo);
+ }
+
+ bool preferPredicateOverEpilogue(Loop *L, LoopInfo *LI, ScalarEvolution &SE,
+ AssumptionCache &AC, TargetLibraryInfo *TLI,
+ DominatorTree *DT,
+ const LoopAccessInfo *LAI) {
+ return BaseT::preferPredicateOverEpilogue(L, LI, SE, AC, TLI, DT, LAI);
+ }
+
+ bool emitGetActiveLaneMask() {
+ return BaseT::emitGetActiveLaneMask();
+ }
+
+ Optional<Instruction *> instCombineIntrinsic(InstCombiner &IC,
+ IntrinsicInst &II) {
+ return BaseT::instCombineIntrinsic(IC, II);
+ }
+
+ Optional<Value *> simplifyDemandedUseBitsIntrinsic(InstCombiner &IC,
+ IntrinsicInst &II,
+ APInt DemandedMask,
+ KnownBits &Known,
+ bool &KnownBitsComputed) {
+ return BaseT::simplifyDemandedUseBitsIntrinsic(IC, II, DemandedMask, Known,
+ KnownBitsComputed);
+ }
+
+ Optional<Value *> simplifyDemandedVectorEltsIntrinsic(
+ InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
+ APInt &UndefElts2, APInt &UndefElts3,
+ std::function<void(Instruction *, unsigned, APInt, APInt &)>
+ SimplifyAndSetOp) {
+ return BaseT::simplifyDemandedVectorEltsIntrinsic(
+ IC, II, DemandedElts, UndefElts, UndefElts2, UndefElts3,
+ SimplifyAndSetOp);
+ }
+
+ int getInstructionLatency(const Instruction *I) {
+ if (isa<LoadInst>(I))
+ return getST()->getSchedModel().DefaultLoadLatency;
+
+ return BaseT::getInstructionLatency(I);
+ }
+
+ virtual Optional<unsigned>
+ getCacheSize(TargetTransformInfo::CacheLevel Level) const {
+ return Optional<unsigned>(
+ getST()->getCacheSize(static_cast<unsigned>(Level)));
+ }
+
+ virtual Optional<unsigned>
+ getCacheAssociativity(TargetTransformInfo::CacheLevel Level) const {
+ Optional<unsigned> TargetResult =
+ getST()->getCacheAssociativity(static_cast<unsigned>(Level));
+
+ if (TargetResult)
+ return TargetResult;
+
+ return BaseT::getCacheAssociativity(Level);
+ }
+
+ virtual unsigned getCacheLineSize() const {
+ return getST()->getCacheLineSize();
+ }
+
+ virtual unsigned getPrefetchDistance() const {
+ return getST()->getPrefetchDistance();
+ }
+
+ virtual unsigned getMinPrefetchStride(unsigned NumMemAccesses,
+ unsigned NumStridedMemAccesses,
+ unsigned NumPrefetches,
+ bool HasCall) const {
+ return getST()->getMinPrefetchStride(NumMemAccesses, NumStridedMemAccesses,
+ NumPrefetches, HasCall);
+ }
+
+ virtual unsigned getMaxPrefetchIterationsAhead() const {
+ return getST()->getMaxPrefetchIterationsAhead();
+ }
+
+ virtual bool enableWritePrefetching() const {
+ return getST()->enableWritePrefetching();
+ }
+
+ /// @}
+
+ /// \name Vector TTI Implementations
+ /// @{
+
+ unsigned getRegisterBitWidth(bool Vector) const { return 32; }
+
+ Optional<unsigned> getMaxVScale() const { return None; }
+
+ /// Estimate the overhead of scalarizing an instruction. Insert and Extract
+ /// are set if the demanded result elements need to be inserted and/or
+ /// extracted from vectors.
+ unsigned getScalarizationOverhead(VectorType *InTy, const APInt &DemandedElts,
+ bool Insert, bool Extract) {
+ /// FIXME: a bitfield is not a reasonable abstraction for talking about
+ /// which elements are needed from a scalable vector
+ auto *Ty = cast<FixedVectorType>(InTy);
+
+ assert(DemandedElts.getBitWidth() == Ty->getNumElements() &&
+ "Vector size mismatch");
+
+ unsigned Cost = 0;
+
+ for (int i = 0, e = Ty->getNumElements(); i < e; ++i) {
+ if (!DemandedElts[i])
+ continue;
+ if (Insert)
+ Cost += thisT()->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ if (Extract)
+ Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, i);
+ }
+
+ return Cost;
+ }
+
+ /// Helper wrapper for the DemandedElts variant of getScalarizationOverhead.
+ unsigned getScalarizationOverhead(VectorType *InTy, bool Insert,
+ bool Extract) {
+ auto *Ty = cast<FixedVectorType>(InTy);
+
+ APInt DemandedElts = APInt::getAllOnesValue(Ty->getNumElements());
+ return thisT()->getScalarizationOverhead(Ty, DemandedElts, Insert, Extract);
+ }
+
+ /// Estimate the overhead of scalarizing an instruction's unique
+ /// non-constant operands. The types of the arguments are ordinarily
+ /// scalar, in which case the costs are multiplied with VF.
+ unsigned getOperandsScalarizationOverhead(ArrayRef<const Value *> Args,
+ unsigned VF) {
+ unsigned Cost = 0;
+ SmallPtrSet<const Value*, 4> UniqueOperands;
+ for (const Value *A : Args) {
+ // Disregard things like metadata arguments.
+ Type *Ty = A->getType();
+ if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy() &&
+ !Ty->isPtrOrPtrVectorTy())
+ continue;
+
+ if (!isa<Constant>(A) && UniqueOperands.insert(A).second) {
+ auto *VecTy = dyn_cast<VectorType>(Ty);
+ if (VecTy) {
+ // If A is a vector operand, VF should be 1 or correspond to A.
+ assert((VF == 1 ||
+ VF == cast<FixedVectorType>(VecTy)->getNumElements()) &&
+ "Vector argument does not match VF");
+ }
+ else
+ VecTy = FixedVectorType::get(Ty, VF);
+
+ Cost += getScalarizationOverhead(VecTy, false, true);
+ }
+ }
+
+ return Cost;
+ }
+
+ unsigned getScalarizationOverhead(VectorType *InTy,
+ ArrayRef<const Value *> Args) {
+ auto *Ty = cast<FixedVectorType>(InTy);
+
+ unsigned Cost = 0;
+
+ Cost += getScalarizationOverhead(Ty, true, false);
+ if (!Args.empty())
+ Cost += getOperandsScalarizationOverhead(Args, Ty->getNumElements());
+ else
+ // When no information on arguments is provided, we add the cost
+ // associated with one argument as a heuristic.
+ Cost += getScalarizationOverhead(Ty, false, true);
+
+ return Cost;
+ }
+
+ unsigned getMaxInterleaveFactor(unsigned VF) { return 1; }
+
+ unsigned getArithmeticInstrCost(
+ unsigned Opcode, Type *Ty,
+ TTI::TargetCostKind CostKind = TTI::TCK_RecipThroughput,
+ TTI::OperandValueKind Opd1Info = TTI::OK_AnyValue,
+ TTI::OperandValueKind Opd2Info = TTI::OK_AnyValue,
+ TTI::OperandValueProperties Opd1PropInfo = TTI::OP_None,
+ TTI::OperandValueProperties Opd2PropInfo = TTI::OP_None,
+ ArrayRef<const Value *> Args = ArrayRef<const Value *>(),
+ const Instruction *CxtI = nullptr) {
+ // Check if any of the operands are vector operands.
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // TODO: Handle more cost kinds.
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind,
+ Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo,
+ Args, CxtI);
+
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, Ty);
+
+ bool IsFloat = Ty->isFPOrFPVectorTy();
+ // Assume that floating point arithmetic operations cost twice as much as
+ // integer operations.
+ unsigned OpCost = (IsFloat ? 2 : 1);
+
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ return LT.first * OpCost;
+ }
+
+ if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered, then assume that the code is twice
+ // as expensive.
+ return LT.first * 2 * OpCost;
+ }
+
+ // Else, assume that we need to scalarize this op.
+ // TODO: If one of the types get legalized by splitting, handle this
+ // similarly to what getCastInstrCost() does.
+ if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ unsigned Num = cast<FixedVectorType>(VTy)->getNumElements();
+ unsigned Cost = thisT()->getArithmeticInstrCost(
+ Opcode, VTy->getScalarType(), CostKind, Opd1Info, Opd2Info,
+ Opd1PropInfo, Opd2PropInfo, Args, CxtI);
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ return getScalarizationOverhead(VTy, Args) + Num * Cost;
+ }
+
+ // We don't know anything about this scalar instruction.
+ return OpCost;
+ }
+
+ unsigned getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp, int Index,
+ VectorType *SubTp) {
+
+ switch (Kind) {
+ case TTI::SK_Broadcast:
+ return getBroadcastShuffleOverhead(cast<FixedVectorType>(Tp));
+ case TTI::SK_Select:
+ case TTI::SK_Reverse:
+ case TTI::SK_Transpose:
+ case TTI::SK_PermuteSingleSrc:
+ case TTI::SK_PermuteTwoSrc:
+ return getPermuteShuffleOverhead(cast<FixedVectorType>(Tp));
+ case TTI::SK_ExtractSubvector:
+ return getExtractSubvectorOverhead(Tp, Index,
+ cast<FixedVectorType>(SubTp));
+ case TTI::SK_InsertSubvector:
+ return getInsertSubvectorOverhead(Tp, Index,
+ cast<FixedVectorType>(SubTp));
+ }
+ llvm_unreachable("Unknown TTI::ShuffleKind");
+ }
+
+ unsigned getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
+ TTI::CastContextHint CCH,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I = nullptr) {
+ if (BaseT::getCastInstrCost(Opcode, Dst, Src, CCH, CostKind, I) == 0)
+ return 0;
+
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+ std::pair<unsigned, MVT> SrcLT = TLI->getTypeLegalizationCost(DL, Src);
+ std::pair<unsigned, MVT> DstLT = TLI->getTypeLegalizationCost(DL, Dst);
+
+ TypeSize SrcSize = SrcLT.second.getSizeInBits();
+ TypeSize DstSize = DstLT.second.getSizeInBits();
+ bool IntOrPtrSrc = Src->isIntegerTy() || Src->isPointerTy();
+ bool IntOrPtrDst = Dst->isIntegerTy() || Dst->isPointerTy();
+
+ switch (Opcode) {
+ default:
+ break;
+ case Instruction::Trunc:
+ // Check for NOOP conversions.
+ if (TLI->isTruncateFree(SrcLT.second, DstLT.second))
+ return 0;
+ LLVM_FALLTHROUGH;
+ case Instruction::BitCast:
+ // Bitcast between types that are legalized to the same type are free and
+ // assume int to/from ptr of the same size is also free.
+ if (SrcLT.first == DstLT.first && IntOrPtrSrc == IntOrPtrDst &&
+ SrcSize == DstSize)
+ return 0;
+ break;
+ case Instruction::FPExt:
+ if (I && getTLI()->isExtFree(I))
+ return 0;
+ break;
+ case Instruction::ZExt:
+ if (TLI->isZExtFree(SrcLT.second, DstLT.second))
+ return 0;
+ LLVM_FALLTHROUGH;
+ case Instruction::SExt:
+ if (I && getTLI()->isExtFree(I))
+ return 0;
+
+ // If this is a zext/sext of a load, return 0 if the corresponding
+ // extending load exists on target.
+ if (CCH == TTI::CastContextHint::Normal) {
+ EVT ExtVT = EVT::getEVT(Dst);
+ EVT LoadVT = EVT::getEVT(Src);
+ unsigned LType =
+ ((Opcode == Instruction::ZExt) ? ISD::ZEXTLOAD : ISD::SEXTLOAD);
+ if (TLI->isLoadExtLegal(LType, ExtVT, LoadVT))
+ return 0;
+ }
+ break;
+ case Instruction::AddrSpaceCast:
+ if (TLI->isFreeAddrSpaceCast(Src->getPointerAddressSpace(),
+ Dst->getPointerAddressSpace()))
+ return 0;
+ break;
+ }
+
+ auto *SrcVTy = dyn_cast<VectorType>(Src);
+ auto *DstVTy = dyn_cast<VectorType>(Dst);
+
+ // If the cast is marked as legal (or promote) then assume low cost.
+ if (SrcLT.first == DstLT.first &&
+ TLI->isOperationLegalOrPromote(ISD, DstLT.second))
+ return SrcLT.first;
+
+ // Handle scalar conversions.
+ if (!SrcVTy && !DstVTy) {
+ // Just check the op cost. If the operation is legal then assume it costs
+ // 1.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return 1;
+
+ // Assume that illegal scalar instruction are expensive.
+ return 4;
+ }
+
+ // Check vector-to-vector casts.
+ if (DstVTy && SrcVTy) {
+ // If the cast is between same-sized registers, then the check is simple.
+ if (SrcLT.first == DstLT.first && SrcSize == DstSize) {
+
+ // Assume that Zext is done using AND.
+ if (Opcode == Instruction::ZExt)
+ return SrcLT.first;
+
+ // Assume that sext is done using SHL and SRA.
+ if (Opcode == Instruction::SExt)
+ return SrcLT.first * 2;
+
+ // Just check the op cost. If the operation is legal then assume it
+ // costs
+ // 1 and multiply by the type-legalization overhead.
+ if (!TLI->isOperationExpand(ISD, DstLT.second))
+ return SrcLT.first * 1;
+ }
+
+ // If we are legalizing by splitting, query the concrete TTI for the cost
+ // of casting the original vector twice. We also need to factor in the
+ // cost of the split itself. Count that as 1, to be consistent with
+ // TLI->getTypeLegalizationCost().
+ bool SplitSrc =
+ TLI->getTypeAction(Src->getContext(), TLI->getValueType(DL, Src)) ==
+ TargetLowering::TypeSplitVector;
+ bool SplitDst =
+ TLI->getTypeAction(Dst->getContext(), TLI->getValueType(DL, Dst)) ==
+ TargetLowering::TypeSplitVector;
+ if ((SplitSrc || SplitDst) &&
+ cast<FixedVectorType>(SrcVTy)->getNumElements() > 1 &&
+ cast<FixedVectorType>(DstVTy)->getNumElements() > 1) {
+ Type *SplitDstTy = VectorType::getHalfElementsVectorType(DstVTy);
+ Type *SplitSrcTy = VectorType::getHalfElementsVectorType(SrcVTy);
+ T *TTI = static_cast<T *>(this);
+ // If both types need to be split then the split is free.
+ unsigned SplitCost =
+ (!SplitSrc || !SplitDst) ? TTI->getVectorSplitCost() : 0;
+ return SplitCost +
+ (2 * TTI->getCastInstrCost(Opcode, SplitDstTy, SplitSrcTy, CCH,
+ CostKind, I));
+ }
+
+ // In other cases where the source or destination are illegal, assume
+ // the operation will get scalarized.
+ unsigned Num = cast<FixedVectorType>(DstVTy)->getNumElements();
+ unsigned Cost = thisT()->getCastInstrCost(
+ Opcode, Dst->getScalarType(), Src->getScalarType(), CCH, CostKind, I);
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ return getScalarizationOverhead(DstVTy, true, true) + Num * Cost;
+ }
+
+ // We already handled vector-to-vector and scalar-to-scalar conversions.
+ // This
+ // is where we handle bitcast between vectors and scalars. We need to assume
+ // that the conversion is scalarized in one way or another.
+ if (Opcode == Instruction::BitCast) {
+ // Illegal bitcasts are done by storing and loading from a stack slot.
+ return (SrcVTy ? getScalarizationOverhead(SrcVTy, false, true) : 0) +
+ (DstVTy ? getScalarizationOverhead(DstVTy, true, false) : 0);
+ }
+
+ llvm_unreachable("Unhandled cast");
+ }
+
+ unsigned getExtractWithExtendCost(unsigned Opcode, Type *Dst,
+ VectorType *VecTy, unsigned Index) {
+ return thisT()->getVectorInstrCost(Instruction::ExtractElement, VecTy,
+ Index) +
+ thisT()->getCastInstrCost(Opcode, Dst, VecTy->getElementType(),
+ TTI::CastContextHint::None, TTI::TCK_RecipThroughput);
+ }
+
+ unsigned getCFInstrCost(unsigned Opcode, TTI::TargetCostKind CostKind) {
+ return BaseT::getCFInstrCost(Opcode, CostKind);
+ }
+
+ unsigned getCmpSelInstrCost(unsigned Opcode, Type *ValTy, Type *CondTy,
+ CmpInst::Predicate VecPred,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I = nullptr) {
+ const TargetLoweringBase *TLI = getTLI();
+ int ISD = TLI->InstructionOpcodeToISD(Opcode);
+ assert(ISD && "Invalid opcode");
+
+ // TODO: Handle other cost kinds.
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, VecPred, CostKind,
+ I);
+
+ // Selects on vectors are actually vector selects.
+ if (ISD == ISD::SELECT) {
+ assert(CondTy && "CondTy must exist");
+ if (CondTy->isVectorTy())
+ ISD = ISD::VSELECT;
+ }
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, ValTy);
+
+ if (!(ValTy->isVectorTy() && !LT.second.isVector()) &&
+ !TLI->isOperationExpand(ISD, LT.second)) {
+ // The operation is legal. Assume it costs 1. Multiply
+ // by the type-legalization overhead.
+ return LT.first * 1;
+ }
+
+ // Otherwise, assume that the cast is scalarized.
+ // TODO: If one of the types get legalized by splitting, handle this
+ // similarly to what getCastInstrCost() does.
+ if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
+ unsigned Num = cast<FixedVectorType>(ValVTy)->getNumElements();
+ if (CondTy)
+ CondTy = CondTy->getScalarType();
+ unsigned Cost = thisT()->getCmpSelInstrCost(
+ Opcode, ValVTy->getScalarType(), CondTy, VecPred, CostKind, I);
+
+ // Return the cost of multiple scalar invocation plus the cost of
+ // inserting and extracting the values.
+ return getScalarizationOverhead(ValVTy, true, false) + Num * Cost;
+ }
+
+ // Unknown scalar opcode.
+ return 1;
+ }
+
+ unsigned getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
+ std::pair<unsigned, MVT> LT =
+ getTLI()->getTypeLegalizationCost(DL, Val->getScalarType());
+
+ return LT.first;
+ }
+
+ unsigned getMemoryOpCost(unsigned Opcode, Type *Src, MaybeAlign Alignment,
+ unsigned AddressSpace,
+ TTI::TargetCostKind CostKind,
+ const Instruction *I = nullptr) {
+ assert(!Src->isVoidTy() && "Invalid type");
+ // Assume types, such as structs, are expensive.
+ if (getTLI()->getValueType(DL, Src, true) == MVT::Other)
+ return 4;
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Src);
+
+ // Assuming that all loads of legal types cost 1.
+ unsigned Cost = LT.first;
+ if (CostKind != TTI::TCK_RecipThroughput)
+ return Cost;
+
+ if (Src->isVectorTy() &&
+ // In practice it's not currently possible to have a change in lane
+ // length for extending loads or truncating stores so both types should
+ // have the same scalable property.
+ TypeSize::isKnownLT(Src->getPrimitiveSizeInBits(),
+ LT.second.getSizeInBits())) {
+ // This is a vector load that legalizes to a larger type than the vector
+ // itself. Unless the corresponding extending load or truncating store is
+ // legal, then this will scalarize.
+ TargetLowering::LegalizeAction LA = TargetLowering::Expand;
+ EVT MemVT = getTLI()->getValueType(DL, Src);
+ if (Opcode == Instruction::Store)
+ LA = getTLI()->getTruncStoreAction(LT.second, MemVT);
+ else
+ LA = getTLI()->getLoadExtAction(ISD::EXTLOAD, LT.second, MemVT);
+
+ if (LA != TargetLowering::Legal && LA != TargetLowering::Custom) {
+ // This is a vector load/store for some illegal type that is scalarized.
+ // We must account for the cost of building or decomposing the vector.
+ Cost += getScalarizationOverhead(cast<VectorType>(Src),
+ Opcode != Instruction::Store,
+ Opcode == Instruction::Store);
+ }
+ }
+
+ return Cost;
+ }
+
+ unsigned getGatherScatterOpCost(unsigned Opcode, Type *DataTy,
+ const Value *Ptr, bool VariableMask,
+ Align Alignment, TTI::TargetCostKind CostKind,
+ const Instruction *I = nullptr) {
+ auto *VT = cast<FixedVectorType>(DataTy);
+ // Assume the target does not have support for gather/scatter operations
+ // and provide a rough estimate.
+ //
+ // First, compute the cost of extracting the individual addresses and the
+ // individual memory operations.
+ int LoadCost =
+ VT->getNumElements() *
+ (getVectorInstrCost(
+ Instruction::ExtractElement,
+ FixedVectorType::get(PointerType::get(VT->getElementType(), 0),
+ VT->getNumElements()),
+ -1) +
+ getMemoryOpCost(Opcode, VT->getElementType(), Alignment, 0, CostKind));
+
+ // Next, compute the cost of packing the result in a vector.
+ int PackingCost = getScalarizationOverhead(VT, Opcode != Instruction::Store,
+ Opcode == Instruction::Store);
+
+ int ConditionalCost = 0;
+ if (VariableMask) {
+ // Compute the cost of conditionally executing the memory operations with
+ // variable masks. This includes extracting the individual conditions, a
+ // branches and PHIs to combine the results.
+ // NOTE: Estimating the cost of conditionally executing the memory
+ // operations accurately is quite difficult and the current solution
+ // provides a very rough estimate only.
+ ConditionalCost =
+ VT->getNumElements() *
+ (getVectorInstrCost(
+ Instruction::ExtractElement,
+ FixedVectorType::get(Type::getInt1Ty(DataTy->getContext()),
+ VT->getNumElements()),
+ -1) +
+ getCFInstrCost(Instruction::Br, CostKind) +
+ getCFInstrCost(Instruction::PHI, CostKind));
+ }
+
+ return LoadCost + PackingCost + ConditionalCost;
+ }
+
+ unsigned getInterleavedMemoryOpCost(
+ unsigned Opcode, Type *VecTy, unsigned Factor, ArrayRef<unsigned> Indices,
+ Align Alignment, unsigned AddressSpace, TTI::TargetCostKind CostKind,
+ bool UseMaskForCond = false, bool UseMaskForGaps = false) {
+ auto *VT = cast<FixedVectorType>(VecTy);
+
+ unsigned NumElts = VT->getNumElements();
+ assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
+
+ unsigned NumSubElts = NumElts / Factor;
+ auto *SubVT = FixedVectorType::get(VT->getElementType(), NumSubElts);
+
+ // Firstly, the cost of load/store operation.
+ unsigned Cost;
+ if (UseMaskForCond || UseMaskForGaps)
+ Cost = thisT()->getMaskedMemoryOpCost(Opcode, VecTy, Alignment,
+ AddressSpace, CostKind);
+ else
+ Cost = thisT()->getMemoryOpCost(Opcode, VecTy, Alignment, AddressSpace,
+ CostKind);
+
+ // Legalize the vector type, and get the legalized and unlegalized type
+ // sizes.
+ MVT VecTyLT = getTLI()->getTypeLegalizationCost(DL, VecTy).second;
+ unsigned VecTySize = thisT()->getDataLayout().getTypeStoreSize(VecTy);
+ unsigned VecTyLTSize = VecTyLT.getStoreSize();
+
+ // Return the ceiling of dividing A by B.
+ auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
+
+ // Scale the cost of the memory operation by the fraction of legalized
+ // instructions that will actually be used. We shouldn't account for the
+ // cost of dead instructions since they will be removed.
+ //
+ // E.g., An interleaved load of factor 8:
+ // %vec = load <16 x i64>, <16 x i64>* %ptr
+ // %v0 = shufflevector %vec, undef, <0, 8>
+ //
+ // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
+ // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
+ // type). The other loads are unused.
+ //
+ // We only scale the cost of loads since interleaved store groups aren't
+ // allowed to have gaps.
+ if (Opcode == Instruction::Load && VecTySize > VecTyLTSize) {
+ // The number of loads of a legal type it will take to represent a load
+ // of the unlegalized vector type.
+ unsigned NumLegalInsts = ceil(VecTySize, VecTyLTSize);
+
+ // The number of elements of the unlegalized type that correspond to a
+ // single legal instruction.
+ unsigned NumEltsPerLegalInst = ceil(NumElts, NumLegalInsts);
+
+ // Determine which legal instructions will be used.
+ BitVector UsedInsts(NumLegalInsts, false);
+ for (unsigned Index : Indices)
+ for (unsigned Elt = 0; Elt < NumSubElts; ++Elt)
+ UsedInsts.set((Index + Elt * Factor) / NumEltsPerLegalInst);
+
+ // Scale the cost of the load by the fraction of legal instructions that
+ // will be used.
+ Cost *= UsedInsts.count() / NumLegalInsts;
+ }
+
+ // Then plus the cost of interleave operation.
+ if (Opcode == Instruction::Load) {
+ // The interleave cost is similar to extract sub vectors' elements
+ // from the wide vector, and insert them into sub vectors.
+ //
+ // E.g. An interleaved load of factor 2 (with one member of index 0):
+ // %vec = load <8 x i32>, <8 x i32>* %ptr
+ // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
+ // The cost is estimated as extract elements at 0, 2, 4, 6 from the
+ // <8 x i32> vector and insert them into a <4 x i32> vector.
+
+ assert(Indices.size() <= Factor &&
+ "Interleaved memory op has too many members");
+
+ for (unsigned Index : Indices) {
+ assert(Index < Factor && "Invalid index for interleaved memory op");
+
+ // Extract elements from loaded vector for each sub vector.
+ for (unsigned i = 0; i < NumSubElts; i++)
+ Cost += thisT()->getVectorInstrCost(Instruction::ExtractElement, VT,
+ Index + i * Factor);
+ }
+
+ unsigned InsSubCost = 0;
+ for (unsigned i = 0; i < NumSubElts; i++)
+ InsSubCost +=
+ thisT()->getVectorInstrCost(Instruction::InsertElement, SubVT, i);
+
+ Cost += Indices.size() * InsSubCost;
+ } else {
+ // The interleave cost is extract all elements from sub vectors, and
+ // insert them into the wide vector.
+ //
+ // E.g. An interleaved store of factor 2:
+ // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
+ // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
+ // The cost is estimated as extract all elements from both <4 x i32>
+ // vectors and insert into the <8 x i32> vector.
+
+ unsigned ExtSubCost = 0;
+ for (unsigned i = 0; i < NumSubElts; i++)
+ ExtSubCost +=
+ thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
+ Cost += ExtSubCost * Factor;
+
+ for (unsigned i = 0; i < NumElts; i++)
+ Cost += static_cast<T *>(this)
+ ->getVectorInstrCost(Instruction::InsertElement, VT, i);
+ }
+
+ if (!UseMaskForCond)
+ return Cost;
+
+ Type *I8Type = Type::getInt8Ty(VT->getContext());
+ auto *MaskVT = FixedVectorType::get(I8Type, NumElts);
+ SubVT = FixedVectorType::get(I8Type, NumSubElts);
+
+ // The Mask shuffling cost is extract all the elements of the Mask
+ // and insert each of them Factor times into the wide vector:
+ //
+ // E.g. an interleaved group with factor 3:
+ // %mask = icmp ult <8 x i32> %vec1, %vec2
+ // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
+ // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
+ // The cost is estimated as extract all mask elements from the <8xi1> mask
+ // vector and insert them factor times into the <24xi1> shuffled mask
+ // vector.
+ for (unsigned i = 0; i < NumSubElts; i++)
+ Cost +=
+ thisT()->getVectorInstrCost(Instruction::ExtractElement, SubVT, i);
+
+ for (unsigned i = 0; i < NumElts; i++)
+ Cost +=
+ thisT()->getVectorInstrCost(Instruction::InsertElement, MaskVT, i);
+
+ // The Gaps mask is invariant and created outside the loop, therefore the
+ // cost of creating it is not accounted for here. However if we have both
+ // a MaskForGaps and some other mask that guards the execution of the
+ // memory access, we need to account for the cost of And-ing the two masks
+ // inside the loop.
+ if (UseMaskForGaps)
+ Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, MaskVT,
+ CostKind);
+
+ return Cost;
+ }
+
+ /// Get intrinsic cost based on arguments.
+ unsigned getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
+ TTI::TargetCostKind CostKind) {
+ // Check for generically free intrinsics.
+ if (BaseT::getIntrinsicInstrCost(ICA, CostKind) == 0)
+ return 0;
+
+ // Assume that target intrinsics are cheap.
+ Intrinsic::ID IID = ICA.getID();
+ if (Function::isTargetIntrinsic(IID))
+ return TargetTransformInfo::TCC_Basic;
+
+ if (ICA.isTypeBasedOnly())
+ return getTypeBasedIntrinsicInstrCost(ICA, CostKind);
+
+ Type *RetTy = ICA.getReturnType();
+
+ ElementCount VF = ICA.getVectorFactor();
+ ElementCount RetVF =
+ (RetTy->isVectorTy() ? cast<VectorType>(RetTy)->getElementCount()
+ : ElementCount::getFixed(1));
+ assert((RetVF.isScalar() || VF.isScalar()) &&
+ "VF > 1 and RetVF is a vector type");
+ const IntrinsicInst *I = ICA.getInst();
+ const SmallVectorImpl<const Value *> &Args = ICA.getArgs();
+ FastMathFlags FMF = ICA.getFlags();
+ switch (IID) {
+ default:
+ break;
+
+ case Intrinsic::cttz:
+ // FIXME: If necessary, this should go in target-specific overrides.
+ if (VF.isScalar() && RetVF.isScalar() &&
+ getTLI()->isCheapToSpeculateCttz())
+ return TargetTransformInfo::TCC_Basic;
+ break;
+
+ case Intrinsic::ctlz:
+ // FIXME: If necessary, this should go in target-specific overrides.
+ if (VF.isScalar() && RetVF.isScalar() &&
+ getTLI()->isCheapToSpeculateCtlz())
+ return TargetTransformInfo::TCC_Basic;
+ break;
+
+ case Intrinsic::memcpy:
+ return thisT()->getMemcpyCost(ICA.getInst());
+
+ case Intrinsic::masked_scatter: {
+ assert(VF.isScalar() && "Can't vectorize types here.");
+ const Value *Mask = Args[3];
+ bool VarMask = !isa<Constant>(Mask);
+ Align Alignment = cast<ConstantInt>(Args[2])->getAlignValue();
+ return thisT()->getGatherScatterOpCost(Instruction::Store,
+ Args[0]->getType(), Args[1],
+ VarMask, Alignment, CostKind, I);
+ }
+ case Intrinsic::masked_gather: {
+ assert(VF.isScalar() && "Can't vectorize types here.");
+ const Value *Mask = Args[2];
+ bool VarMask = !isa<Constant>(Mask);
+ Align Alignment = cast<ConstantInt>(Args[1])->getAlignValue();
+ return thisT()->getGatherScatterOpCost(Instruction::Load, RetTy, Args[0],
+ VarMask, Alignment, CostKind, I);
+ }
+ case Intrinsic::experimental_vector_extract: {
+ // FIXME: Handle case where a scalable vector is extracted from a scalable
+ // vector
+ if (isa<ScalableVectorType>(RetTy))
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+ unsigned Index = cast<ConstantInt>(Args[1])->getZExtValue();
+ return thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
+ cast<VectorType>(Args[0]->getType()),
+ Index, cast<VectorType>(RetTy));
+ }
+ case Intrinsic::experimental_vector_insert: {
+ // FIXME: Handle case where a scalable vector is inserted into a scalable
+ // vector
+ if (isa<ScalableVectorType>(Args[1]->getType()))
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+ unsigned Index = cast<ConstantInt>(Args[2])->getZExtValue();
+ return thisT()->getShuffleCost(
+ TTI::SK_InsertSubvector, cast<VectorType>(Args[0]->getType()), Index,
+ cast<VectorType>(Args[1]->getType()));
+ }
+ case Intrinsic::vector_reduce_add:
+ case Intrinsic::vector_reduce_mul:
+ case Intrinsic::vector_reduce_and:
+ case Intrinsic::vector_reduce_or:
+ case Intrinsic::vector_reduce_xor:
+ case Intrinsic::vector_reduce_smax:
+ case Intrinsic::vector_reduce_smin:
+ case Intrinsic::vector_reduce_fmax:
+ case Intrinsic::vector_reduce_fmin:
+ case Intrinsic::vector_reduce_umax:
+ case Intrinsic::vector_reduce_umin: {
+ IntrinsicCostAttributes Attrs(IID, RetTy, Args[0]->getType(), FMF, 1, I);
+ return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
+ }
+ case Intrinsic::vector_reduce_fadd:
+ case Intrinsic::vector_reduce_fmul: {
+ IntrinsicCostAttributes Attrs(
+ IID, RetTy, {Args[0]->getType(), Args[1]->getType()}, FMF, 1, I);
+ return getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
+ }
+ case Intrinsic::fshl:
+ case Intrinsic::fshr: {
+ if (isa<ScalableVectorType>(RetTy))
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+ const Value *X = Args[0];
+ const Value *Y = Args[1];
+ const Value *Z = Args[2];
+ TTI::OperandValueProperties OpPropsX, OpPropsY, OpPropsZ, OpPropsBW;
+ TTI::OperandValueKind OpKindX = TTI::getOperandInfo(X, OpPropsX);
+ TTI::OperandValueKind OpKindY = TTI::getOperandInfo(Y, OpPropsY);
+ TTI::OperandValueKind OpKindZ = TTI::getOperandInfo(Z, OpPropsZ);
+ TTI::OperandValueKind OpKindBW = TTI::OK_UniformConstantValue;
+ OpPropsBW = isPowerOf2_32(RetTy->getScalarSizeInBits()) ? TTI::OP_PowerOf2
+ : TTI::OP_None;
+ // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
+ // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
+ unsigned Cost = 0;
+ Cost +=
+ thisT()->getArithmeticInstrCost(BinaryOperator::Or, RetTy, CostKind);
+ Cost +=
+ thisT()->getArithmeticInstrCost(BinaryOperator::Sub, RetTy, CostKind);
+ Cost += thisT()->getArithmeticInstrCost(
+ BinaryOperator::Shl, RetTy, CostKind, OpKindX, OpKindZ, OpPropsX);
+ Cost += thisT()->getArithmeticInstrCost(
+ BinaryOperator::LShr, RetTy, CostKind, OpKindY, OpKindZ, OpPropsY);
+ // Non-constant shift amounts requires a modulo.
+ if (OpKindZ != TTI::OK_UniformConstantValue &&
+ OpKindZ != TTI::OK_NonUniformConstantValue)
+ Cost += thisT()->getArithmeticInstrCost(BinaryOperator::URem, RetTy,
+ CostKind, OpKindZ, OpKindBW,
+ OpPropsZ, OpPropsBW);
+ // For non-rotates (X != Y) we must add shift-by-zero handling costs.
+ if (X != Y) {
+ Type *CondTy = RetTy->getWithNewBitWidth(1);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ }
+ return Cost;
+ }
+ }
+ // TODO: Handle the remaining intrinsic with scalable vector type
+ if (isa<ScalableVectorType>(RetTy))
+ return BaseT::getIntrinsicInstrCost(ICA, CostKind);
+
+ // Assume that we need to scalarize this intrinsic.
+ SmallVector<Type *, 4> Types;
+ for (const Value *Op : Args) {
+ Type *OpTy = Op->getType();
+ assert(VF.isScalar() || !OpTy->isVectorTy());
+ Types.push_back(VF.isScalar()
+ ? OpTy
+ : FixedVectorType::get(OpTy, VF.getKnownMinValue()));
+ }
+
+ if (VF.isVector() && !RetTy->isVoidTy())
+ RetTy = FixedVectorType::get(RetTy, VF.getKnownMinValue());
+
+ // Compute the scalarization overhead based on Args for a vector
+ // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
+ // CostModel will pass a vector RetTy and VF is 1.
+ unsigned ScalarizationCost = std::numeric_limits<unsigned>::max();
+ if (RetVF.isVector() || VF.isVector()) {
+ ScalarizationCost = 0;
+ if (!RetTy->isVoidTy())
+ ScalarizationCost +=
+ getScalarizationOverhead(cast<VectorType>(RetTy), true, false);
+ ScalarizationCost +=
+ getOperandsScalarizationOverhead(Args, VF.getKnownMinValue());
+ }
+
+ IntrinsicCostAttributes Attrs(IID, RetTy, Types, FMF, ScalarizationCost, I);
+ return thisT()->getTypeBasedIntrinsicInstrCost(Attrs, CostKind);
+ }
+
+ /// Get intrinsic cost based on argument types.
+ /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
+ /// cost of scalarizing the arguments and the return value will be computed
+ /// based on types.
+ unsigned getTypeBasedIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
+ TTI::TargetCostKind CostKind) {
+ Intrinsic::ID IID = ICA.getID();
+ Type *RetTy = ICA.getReturnType();
+ const SmallVectorImpl<Type *> &Tys = ICA.getArgTypes();
+ FastMathFlags FMF = ICA.getFlags();
+ unsigned ScalarizationCostPassed = ICA.getScalarizationCost();
+ bool SkipScalarizationCost = ICA.skipScalarizationCost();
+
+ VectorType *VecOpTy = nullptr;
+ if (!Tys.empty()) {
+ // The vector reduction operand is operand 0 except for fadd/fmul.
+ // Their operand 0 is a scalar start value, so the vector op is operand 1.
+ unsigned VecTyIndex = 0;
+ if (IID == Intrinsic::vector_reduce_fadd ||
+ IID == Intrinsic::vector_reduce_fmul)
+ VecTyIndex = 1;
+ assert(Tys.size() > VecTyIndex && "Unexpected IntrinsicCostAttributes");
+ VecOpTy = dyn_cast<VectorType>(Tys[VecTyIndex]);
+ }
+
+ // Library call cost - other than size, make it expensive.
+ unsigned SingleCallCost = CostKind == TTI::TCK_CodeSize ? 1 : 10;
+ SmallVector<unsigned, 2> ISDs;
+ switch (IID) {
+ default: {
+ // Assume that we need to scalarize this intrinsic.
+ unsigned ScalarizationCost = ScalarizationCostPassed;
+ unsigned ScalarCalls = 1;
+ Type *ScalarRetTy = RetTy;
+ if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
+ if (!SkipScalarizationCost)
+ ScalarizationCost = getScalarizationOverhead(RetVTy, true, false);
+ ScalarCalls = std::max(ScalarCalls,
+ cast<FixedVectorType>(RetVTy)->getNumElements());
+ ScalarRetTy = RetTy->getScalarType();
+ }
+ SmallVector<Type *, 4> ScalarTys;
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+ Type *Ty = Tys[i];
+ if (auto *VTy = dyn_cast<VectorType>(Ty)) {
+ if (!SkipScalarizationCost)
+ ScalarizationCost += getScalarizationOverhead(VTy, false, true);
+ ScalarCalls = std::max(ScalarCalls,
+ cast<FixedVectorType>(VTy)->getNumElements());
+ Ty = Ty->getScalarType();
+ }
+ ScalarTys.push_back(Ty);
+ }
+ if (ScalarCalls == 1)
+ return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
+
+ IntrinsicCostAttributes ScalarAttrs(IID, ScalarRetTy, ScalarTys, FMF);
+ unsigned ScalarCost =
+ thisT()->getIntrinsicInstrCost(ScalarAttrs, CostKind);
+
+ return ScalarCalls * ScalarCost + ScalarizationCost;
+ }
+ // Look for intrinsics that can be lowered directly or turned into a scalar
+ // intrinsic call.
+ case Intrinsic::sqrt:
+ ISDs.push_back(ISD::FSQRT);
+ break;
+ case Intrinsic::sin:
+ ISDs.push_back(ISD::FSIN);
+ break;
+ case Intrinsic::cos:
+ ISDs.push_back(ISD::FCOS);
+ break;
+ case Intrinsic::exp:
+ ISDs.push_back(ISD::FEXP);
+ break;
+ case Intrinsic::exp2:
+ ISDs.push_back(ISD::FEXP2);
+ break;
+ case Intrinsic::log:
+ ISDs.push_back(ISD::FLOG);
+ break;
+ case Intrinsic::log10:
+ ISDs.push_back(ISD::FLOG10);
+ break;
+ case Intrinsic::log2:
+ ISDs.push_back(ISD::FLOG2);
+ break;
+ case Intrinsic::fabs:
+ ISDs.push_back(ISD::FABS);
+ break;
+ case Intrinsic::canonicalize:
+ ISDs.push_back(ISD::FCANONICALIZE);
+ break;
+ case Intrinsic::minnum:
+ ISDs.push_back(ISD::FMINNUM);
+ break;
+ case Intrinsic::maxnum:
+ ISDs.push_back(ISD::FMAXNUM);
+ break;
+ case Intrinsic::minimum:
+ ISDs.push_back(ISD::FMINIMUM);
+ break;
+ case Intrinsic::maximum:
+ ISDs.push_back(ISD::FMAXIMUM);
+ break;
+ case Intrinsic::copysign:
+ ISDs.push_back(ISD::FCOPYSIGN);
+ break;
+ case Intrinsic::floor:
+ ISDs.push_back(ISD::FFLOOR);
+ break;
+ case Intrinsic::ceil:
+ ISDs.push_back(ISD::FCEIL);
+ break;
+ case Intrinsic::trunc:
+ ISDs.push_back(ISD::FTRUNC);
+ break;
+ case Intrinsic::nearbyint:
+ ISDs.push_back(ISD::FNEARBYINT);
+ break;
+ case Intrinsic::rint:
+ ISDs.push_back(ISD::FRINT);
+ break;
+ case Intrinsic::round:
+ ISDs.push_back(ISD::FROUND);
+ break;
+ case Intrinsic::roundeven:
+ ISDs.push_back(ISD::FROUNDEVEN);
+ break;
+ case Intrinsic::pow:
+ ISDs.push_back(ISD::FPOW);
+ break;
+ case Intrinsic::fma:
+ ISDs.push_back(ISD::FMA);
+ break;
+ case Intrinsic::fmuladd:
+ ISDs.push_back(ISD::FMA);
+ break;
+ case Intrinsic::experimental_constrained_fmuladd:
+ ISDs.push_back(ISD::STRICT_FMA);
+ break;
+ // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
+ case Intrinsic::lifetime_start:
+ case Intrinsic::lifetime_end:
+ case Intrinsic::sideeffect:
+ case Intrinsic::pseudoprobe:
+ return 0;
+ case Intrinsic::masked_store: {
+ Type *Ty = Tys[0];
+ Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
+ return thisT()->getMaskedMemoryOpCost(Instruction::Store, Ty, TyAlign, 0,
+ CostKind);
+ }
+ case Intrinsic::masked_load: {
+ Type *Ty = RetTy;
+ Align TyAlign = thisT()->DL.getABITypeAlign(Ty);
+ return thisT()->getMaskedMemoryOpCost(Instruction::Load, Ty, TyAlign, 0,
+ CostKind);
+ }
+ case Intrinsic::vector_reduce_add:
+ return thisT()->getArithmeticReductionCost(Instruction::Add, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_mul:
+ return thisT()->getArithmeticReductionCost(Instruction::Mul, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_and:
+ return thisT()->getArithmeticReductionCost(Instruction::And, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_or:
+ return thisT()->getArithmeticReductionCost(Instruction::Or, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_xor:
+ return thisT()->getArithmeticReductionCost(Instruction::Xor, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_fadd:
+ // FIXME: Add new flag for cost of strict reductions.
+ return thisT()->getArithmeticReductionCost(Instruction::FAdd, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_fmul:
+ // FIXME: Add new flag for cost of strict reductions.
+ return thisT()->getArithmeticReductionCost(Instruction::FMul, VecOpTy,
+ /*IsPairwiseForm=*/false,
+ CostKind);
+ case Intrinsic::vector_reduce_smax:
+ case Intrinsic::vector_reduce_smin:
+ case Intrinsic::vector_reduce_fmax:
+ case Intrinsic::vector_reduce_fmin:
+ return thisT()->getMinMaxReductionCost(
+ VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
+ /*IsPairwiseForm=*/false,
+ /*IsUnsigned=*/false, CostKind);
+ case Intrinsic::vector_reduce_umax:
+ case Intrinsic::vector_reduce_umin:
+ return thisT()->getMinMaxReductionCost(
+ VecOpTy, cast<VectorType>(CmpInst::makeCmpResultType(VecOpTy)),
+ /*IsPairwiseForm=*/false,
+ /*IsUnsigned=*/true, CostKind);
+ case Intrinsic::abs:
+ case Intrinsic::smax:
+ case Intrinsic::smin:
+ case Intrinsic::umax:
+ case Intrinsic::umin: {
+ // abs(X) = select(icmp(X,0),X,sub(0,X))
+ // minmax(X,Y) = select(icmp(X,Y),X,Y)
+ Type *CondTy = RetTy->getWithNewBitWidth(1);
+ unsigned Cost = 0;
+ // TODO: Ideally getCmpSelInstrCost would accept an icmp condition code.
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ // TODO: Should we add an OperandValueProperties::OP_Zero property?
+ if (IID == Intrinsic::abs)
+ Cost += thisT()->getArithmeticInstrCost(
+ BinaryOperator::Sub, RetTy, CostKind, TTI::OK_UniformConstantValue);
+ return Cost;
+ }
+ case Intrinsic::sadd_sat:
+ case Intrinsic::ssub_sat: {
+ Type *CondTy = RetTy->getWithNewBitWidth(1);
+
+ Type *OpTy = StructType::create({RetTy, CondTy});
+ Intrinsic::ID OverflowOp = IID == Intrinsic::sadd_sat
+ ? Intrinsic::sadd_with_overflow
+ : Intrinsic::ssub_with_overflow;
+
+ // SatMax -> Overflow && SumDiff < 0
+ // SatMin -> Overflow && SumDiff >= 0
+ unsigned Cost = 0;
+ IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
+ ScalarizationCostPassed);
+ Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Cost += 2 * thisT()->getCmpSelInstrCost(
+ BinaryOperator::Select, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ return Cost;
+ }
+ case Intrinsic::uadd_sat:
+ case Intrinsic::usub_sat: {
+ Type *CondTy = RetTy->getWithNewBitWidth(1);
+
+ Type *OpTy = StructType::create({RetTy, CondTy});
+ Intrinsic::ID OverflowOp = IID == Intrinsic::uadd_sat
+ ? Intrinsic::uadd_with_overflow
+ : Intrinsic::usub_with_overflow;
+
+ unsigned Cost = 0;
+ IntrinsicCostAttributes Attrs(OverflowOp, OpTy, {RetTy, RetTy}, FMF,
+ ScalarizationCostPassed);
+ Cost += thisT()->getIntrinsicInstrCost(Attrs, CostKind);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::Select, RetTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ return Cost;
+ }
+ case Intrinsic::smul_fix:
+ case Intrinsic::umul_fix: {
+ unsigned ExtSize = RetTy->getScalarSizeInBits() * 2;
+ Type *ExtTy = RetTy->getWithNewBitWidth(ExtSize);
+
+ unsigned ExtOp =
+ IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
+ TTI::CastContextHint CCH = TTI::CastContextHint::None;
+
+ unsigned Cost = 0;
+ Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, RetTy, CCH, CostKind);
+ Cost +=
+ thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
+ Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, RetTy, ExtTy,
+ CCH, CostKind);
+ Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, RetTy,
+ CostKind, TTI::OK_AnyValue,
+ TTI::OK_UniformConstantValue);
+ Cost += thisT()->getArithmeticInstrCost(Instruction::Shl, RetTy, CostKind,
+ TTI::OK_AnyValue,
+ TTI::OK_UniformConstantValue);
+ Cost += thisT()->getArithmeticInstrCost(Instruction::Or, RetTy, CostKind);
+ return Cost;
+ }
+ case Intrinsic::sadd_with_overflow:
+ case Intrinsic::ssub_with_overflow: {
+ Type *SumTy = RetTy->getContainedType(0);
+ Type *OverflowTy = RetTy->getContainedType(1);
+ unsigned Opcode = IID == Intrinsic::sadd_with_overflow
+ ? BinaryOperator::Add
+ : BinaryOperator::Sub;
+
+ // LHSSign -> LHS >= 0
+ // RHSSign -> RHS >= 0
+ // SumSign -> Sum >= 0
+ //
+ // Add:
+ // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
+ // Sub:
+ // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
+ unsigned Cost = 0;
+ Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
+ Cost += 3 * thisT()->getCmpSelInstrCost(
+ Instruction::ICmp, SumTy, OverflowTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Cost += 2 * thisT()->getCmpSelInstrCost(
+ Instruction::Select, OverflowTy, OverflowTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Cost += thisT()->getArithmeticInstrCost(BinaryOperator::And, OverflowTy,
+ CostKind);
+ return Cost;
+ }
+ case Intrinsic::uadd_with_overflow:
+ case Intrinsic::usub_with_overflow: {
+ Type *SumTy = RetTy->getContainedType(0);
+ Type *OverflowTy = RetTy->getContainedType(1);
+ unsigned Opcode = IID == Intrinsic::uadd_with_overflow
+ ? BinaryOperator::Add
+ : BinaryOperator::Sub;
+
+ unsigned Cost = 0;
+ Cost += thisT()->getArithmeticInstrCost(Opcode, SumTy, CostKind);
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, SumTy, OverflowTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ return Cost;
+ }
+ case Intrinsic::smul_with_overflow:
+ case Intrinsic::umul_with_overflow: {
+ Type *MulTy = RetTy->getContainedType(0);
+ Type *OverflowTy = RetTy->getContainedType(1);
+ unsigned ExtSize = MulTy->getScalarSizeInBits() * 2;
+ Type *ExtTy = MulTy->getWithNewBitWidth(ExtSize);
+
+ unsigned ExtOp =
+ IID == Intrinsic::smul_fix ? Instruction::SExt : Instruction::ZExt;
+ TTI::CastContextHint CCH = TTI::CastContextHint::None;
+
+ unsigned Cost = 0;
+ Cost += 2 * thisT()->getCastInstrCost(ExtOp, ExtTy, MulTy, CCH, CostKind);
+ Cost +=
+ thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
+ Cost += 2 * thisT()->getCastInstrCost(Instruction::Trunc, MulTy, ExtTy,
+ CCH, CostKind);
+ Cost += thisT()->getArithmeticInstrCost(Instruction::LShr, MulTy,
+ CostKind, TTI::OK_AnyValue,
+ TTI::OK_UniformConstantValue);
+
+ if (IID == Intrinsic::smul_with_overflow)
+ Cost += thisT()->getArithmeticInstrCost(Instruction::AShr, MulTy,
+ CostKind, TTI::OK_AnyValue,
+ TTI::OK_UniformConstantValue);
+
+ Cost +=
+ thisT()->getCmpSelInstrCost(BinaryOperator::ICmp, MulTy, OverflowTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ return Cost;
+ }
+ case Intrinsic::ctpop:
+ ISDs.push_back(ISD::CTPOP);
+ // In case of legalization use TCC_Expensive. This is cheaper than a
+ // library call but still not a cheap instruction.
+ SingleCallCost = TargetTransformInfo::TCC_Expensive;
+ break;
+ case Intrinsic::ctlz:
+ ISDs.push_back(ISD::CTLZ);
+ break;
+ case Intrinsic::cttz:
+ ISDs.push_back(ISD::CTTZ);
+ break;
+ case Intrinsic::bswap:
+ ISDs.push_back(ISD::BSWAP);
+ break;
+ case Intrinsic::bitreverse:
+ ISDs.push_back(ISD::BITREVERSE);
+ break;
+ }
+
+ const TargetLoweringBase *TLI = getTLI();
+ std::pair<unsigned, MVT> LT = TLI->getTypeLegalizationCost(DL, RetTy);
+
+ SmallVector<unsigned, 2> LegalCost;
+ SmallVector<unsigned, 2> CustomCost;
+ for (unsigned ISD : ISDs) {
+ if (TLI->isOperationLegalOrPromote(ISD, LT.second)) {
+ if (IID == Intrinsic::fabs && LT.second.isFloatingPoint() &&
+ TLI->isFAbsFree(LT.second)) {
+ return 0;
+ }
+
+ // The operation is legal. Assume it costs 1.
+ // If the type is split to multiple registers, assume that there is some
+ // overhead to this.
+ // TODO: Once we have extract/insert subvector cost we need to use them.
+ if (LT.first > 1)
+ LegalCost.push_back(LT.first * 2);
+ else
+ LegalCost.push_back(LT.first * 1);
+ } else if (!TLI->isOperationExpand(ISD, LT.second)) {
+ // If the operation is custom lowered then assume
+ // that the code is twice as expensive.
+ CustomCost.push_back(LT.first * 2);
+ }
+ }
+
+ auto *MinLegalCostI = std::min_element(LegalCost.begin(), LegalCost.end());
+ if (MinLegalCostI != LegalCost.end())
+ return *MinLegalCostI;
+
+ auto MinCustomCostI =
+ std::min_element(CustomCost.begin(), CustomCost.end());
+ if (MinCustomCostI != CustomCost.end())
+ return *MinCustomCostI;
+
+ // If we can't lower fmuladd into an FMA estimate the cost as a floating
+ // point mul followed by an add.
+ if (IID == Intrinsic::fmuladd)
+ return thisT()->getArithmeticInstrCost(BinaryOperator::FMul, RetTy,
+ CostKind) +
+ thisT()->getArithmeticInstrCost(BinaryOperator::FAdd, RetTy,
+ CostKind);
+ if (IID == Intrinsic::experimental_constrained_fmuladd) {
+ IntrinsicCostAttributes FMulAttrs(
+ Intrinsic::experimental_constrained_fmul, RetTy, Tys);
+ IntrinsicCostAttributes FAddAttrs(
+ Intrinsic::experimental_constrained_fadd, RetTy, Tys);
+ return thisT()->getIntrinsicInstrCost(FMulAttrs, CostKind) +
+ thisT()->getIntrinsicInstrCost(FAddAttrs, CostKind);
+ }
+
+ // Else, assume that we need to scalarize this intrinsic. For math builtins
+ // this will emit a costly libcall, adding call overhead and spills. Make it
+ // very expensive.
+ if (auto *RetVTy = dyn_cast<VectorType>(RetTy)) {
+ unsigned ScalarizationCost = SkipScalarizationCost ?
+ ScalarizationCostPassed : getScalarizationOverhead(RetVTy, true, false);
+
+ unsigned ScalarCalls = cast<FixedVectorType>(RetVTy)->getNumElements();
+ SmallVector<Type *, 4> ScalarTys;
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+ Type *Ty = Tys[i];
+ if (Ty->isVectorTy())
+ Ty = Ty->getScalarType();
+ ScalarTys.push_back(Ty);
+ }
+ IntrinsicCostAttributes Attrs(IID, RetTy->getScalarType(), ScalarTys, FMF);
+ unsigned ScalarCost = thisT()->getIntrinsicInstrCost(Attrs, CostKind);
+ for (unsigned i = 0, ie = Tys.size(); i != ie; ++i) {
+ if (auto *VTy = dyn_cast<VectorType>(Tys[i])) {
+ if (!ICA.skipScalarizationCost())
+ ScalarizationCost += getScalarizationOverhead(VTy, false, true);
+ ScalarCalls = std::max(ScalarCalls,
+ cast<FixedVectorType>(VTy)->getNumElements());
+ }
+ }
+ return ScalarCalls * ScalarCost + ScalarizationCost;
+ }
+
+ // This is going to be turned into a library call, make it expensive.
+ return SingleCallCost;
+ }
+
+ /// Compute a cost of the given call instruction.
+ ///
+ /// Compute the cost of calling function F with return type RetTy and
+ /// argument types Tys. F might be nullptr, in this case the cost of an
+ /// arbitrary call with the specified signature will be returned.
+ /// This is used, for instance, when we estimate call of a vector
+ /// counterpart of the given function.
+ /// \param F Called function, might be nullptr.
+ /// \param RetTy Return value types.
+ /// \param Tys Argument types.
+ /// \returns The cost of Call instruction.
+ unsigned getCallInstrCost(Function *F, Type *RetTy, ArrayRef<Type *> Tys,
+ TTI::TargetCostKind CostKind = TTI::TCK_SizeAndLatency) {
+ return 10;
+ }
+
+ unsigned getNumberOfParts(Type *Tp) {
+ std::pair<unsigned, MVT> LT = getTLI()->getTypeLegalizationCost(DL, Tp);
+ return LT.first;
+ }
+
+ unsigned getAddressComputationCost(Type *Ty, ScalarEvolution *,
+ const SCEV *) {
+ return 0;
+ }
+
+ /// Try to calculate arithmetic and shuffle op costs for reduction operations.
+ /// We're assuming that reduction operation are performing the following way:
+ /// 1. Non-pairwise reduction
+ /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
+ /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
+ /// \----------------v-------------/ \----------v------------/
+ /// n/2 elements n/2 elements
+ /// %red1 = op <n x t> %val, <n x t> val1
+ /// After this operation we have a vector %red1 where only the first n/2
+ /// elements are meaningful, the second n/2 elements are undefined and can be
+ /// dropped. All other operations are actually working with the vector of
+ /// length n/2, not n, though the real vector length is still n.
+ /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
+ /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
+ /// \----------------v-------------/ \----------v------------/
+ /// n/4 elements 3*n/4 elements
+ /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
+ /// length n/2, the resulting vector has length n/4 etc.
+ /// 2. Pairwise reduction:
+ /// Everything is the same except for an additional shuffle operation which
+ /// is used to produce operands for pairwise kind of reductions.
+ /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
+ /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
+ /// \-------------v----------/ \----------v------------/
+ /// n/2 elements n/2 elements
+ /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
+ /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
+ /// \-------------v----------/ \----------v------------/
+ /// n/2 elements n/2 elements
+ /// %red1 = op <n x t> %val1, <n x t> val2
+ /// Again, the operation is performed on <n x t> vector, but the resulting
+ /// vector %red1 is <n/2 x t> vector.
+ ///
+ /// The cost model should take into account that the actual length of the
+ /// vector is reduced on each iteration.
+ unsigned getArithmeticReductionCost(unsigned Opcode, VectorType *Ty,
+ bool IsPairwise,
+ TTI::TargetCostKind CostKind) {
+ Type *ScalarTy = Ty->getElementType();
+ unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
+ unsigned NumReduxLevels = Log2_32(NumVecElts);
+ unsigned ArithCost = 0;
+ unsigned ShuffleCost = 0;
+ std::pair<unsigned, MVT> LT =
+ thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
+ unsigned LongVectorCount = 0;
+ unsigned MVTLen =
+ LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
+ while (NumVecElts > MVTLen) {
+ NumVecElts /= 2;
+ VectorType *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
+ // Assume the pairwise shuffles add a cost.
+ ShuffleCost +=
+ (IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
+ Ty, NumVecElts, SubTy);
+ ArithCost += thisT()->getArithmeticInstrCost(Opcode, SubTy, CostKind);
+ Ty = SubTy;
+ ++LongVectorCount;
+ }
+
+ NumReduxLevels -= LongVectorCount;
+
+ // The minimal length of the vector is limited by the real length of vector
+ // operations performed on the current platform. That's why several final
+ // reduction operations are performed on the vectors with the same
+ // architecture-dependent length.
+
+ // Non pairwise reductions need one shuffle per reduction level. Pairwise
+ // reductions need two shuffles on every level, but the last one. On that
+ // level one of the shuffles is <0, u, u, ...> which is identity.
+ unsigned NumShuffles = NumReduxLevels;
+ if (IsPairwise && NumReduxLevels >= 1)
+ NumShuffles += NumReduxLevels - 1;
+ ShuffleCost += NumShuffles *
+ thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
+ ArithCost += NumReduxLevels * thisT()->getArithmeticInstrCost(Opcode, Ty);
+ return ShuffleCost + ArithCost +
+ thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
+ }
+
+ /// Try to calculate op costs for min/max reduction operations.
+ /// \param CondTy Conditional type for the Select instruction.
+ unsigned getMinMaxReductionCost(VectorType *Ty, VectorType *CondTy,
+ bool IsPairwise, bool IsUnsigned,
+ TTI::TargetCostKind CostKind) {
+ Type *ScalarTy = Ty->getElementType();
+ Type *ScalarCondTy = CondTy->getElementType();
+ unsigned NumVecElts = cast<FixedVectorType>(Ty)->getNumElements();
+ unsigned NumReduxLevels = Log2_32(NumVecElts);
+ unsigned CmpOpcode;
+ if (Ty->isFPOrFPVectorTy()) {
+ CmpOpcode = Instruction::FCmp;
+ } else {
+ assert(Ty->isIntOrIntVectorTy() &&
+ "expecting floating point or integer type for min/max reduction");
+ CmpOpcode = Instruction::ICmp;
+ }
+ unsigned MinMaxCost = 0;
+ unsigned ShuffleCost = 0;
+ std::pair<unsigned, MVT> LT =
+ thisT()->getTLI()->getTypeLegalizationCost(DL, Ty);
+ unsigned LongVectorCount = 0;
+ unsigned MVTLen =
+ LT.second.isVector() ? LT.second.getVectorNumElements() : 1;
+ while (NumVecElts > MVTLen) {
+ NumVecElts /= 2;
+ auto *SubTy = FixedVectorType::get(ScalarTy, NumVecElts);
+ CondTy = FixedVectorType::get(ScalarCondTy, NumVecElts);
+
+ // Assume the pairwise shuffles add a cost.
+ ShuffleCost +=
+ (IsPairwise + 1) * thisT()->getShuffleCost(TTI::SK_ExtractSubvector,
+ Ty, NumVecElts, SubTy);
+ MinMaxCost +=
+ thisT()->getCmpSelInstrCost(CmpOpcode, SubTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind) +
+ thisT()->getCmpSelInstrCost(Instruction::Select, SubTy, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind);
+ Ty = SubTy;
+ ++LongVectorCount;
+ }
+
+ NumReduxLevels -= LongVectorCount;
+
+ // The minimal length of the vector is limited by the real length of vector
+ // operations performed on the current platform. That's why several final
+ // reduction opertions are perfomed on the vectors with the same
+ // architecture-dependent length.
+
+ // Non pairwise reductions need one shuffle per reduction level. Pairwise
+ // reductions need two shuffles on every level, but the last one. On that
+ // level one of the shuffles is <0, u, u, ...> which is identity.
+ unsigned NumShuffles = NumReduxLevels;
+ if (IsPairwise && NumReduxLevels >= 1)
+ NumShuffles += NumReduxLevels - 1;
+ ShuffleCost += NumShuffles *
+ thisT()->getShuffleCost(TTI::SK_PermuteSingleSrc, Ty, 0, Ty);
+ MinMaxCost +=
+ NumReduxLevels *
+ (thisT()->getCmpSelInstrCost(CmpOpcode, Ty, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind) +
+ thisT()->getCmpSelInstrCost(Instruction::Select, Ty, CondTy,
+ CmpInst::BAD_ICMP_PREDICATE, CostKind));
+ // The last min/max should be in vector registers and we counted it above.
+ // So just need a single extractelement.
+ return ShuffleCost + MinMaxCost +
+ thisT()->getVectorInstrCost(Instruction::ExtractElement, Ty, 0);
+ }
+
+ InstructionCost getExtendedAddReductionCost(bool IsMLA, bool IsUnsigned,
+ Type *ResTy, VectorType *Ty,
+ TTI::TargetCostKind CostKind) {
+ // Without any native support, this is equivalent to the cost of
+ // vecreduce.add(ext) or if IsMLA vecreduce.add(mul(ext, ext))
+ VectorType *ExtTy = VectorType::get(ResTy, Ty);
+ unsigned RedCost = thisT()->getArithmeticReductionCost(
+ Instruction::Add, ExtTy, false, CostKind);
+ unsigned MulCost = 0;
+ unsigned ExtCost = thisT()->getCastInstrCost(
+ IsUnsigned ? Instruction::ZExt : Instruction::SExt, ExtTy, Ty,
+ TTI::CastContextHint::None, CostKind);
+ if (IsMLA) {
+ MulCost =
+ thisT()->getArithmeticInstrCost(Instruction::Mul, ExtTy, CostKind);
+ ExtCost *= 2;
+ }
+
+ return RedCost + MulCost + ExtCost;
+ }
+
+ unsigned getVectorSplitCost() { return 1; }
+
+ /// @}
+};
+
+/// Concrete BasicTTIImpl that can be used if no further customization
+/// is needed.
+class BasicTTIImpl : public BasicTTIImplBase<BasicTTIImpl> {
+ using BaseT = BasicTTIImplBase<BasicTTIImpl>;
+
+ friend class BasicTTIImplBase<BasicTTIImpl>;
+
+ const TargetSubtargetInfo *ST;
+ const TargetLoweringBase *TLI;
+
+ const TargetSubtargetInfo *getST() const { return ST; }
+ const TargetLoweringBase *getTLI() const { return TLI; }
+
+public:
+ explicit BasicTTIImpl(const TargetMachine *TM, const Function &F);
+};
+
+} // end namespace llvm
+
+#endif // LLVM_CODEGEN_BASICTTIIMPL_H
+
+#ifdef __GNUC__
+#pragma GCC diagnostic pop
+#endif