aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h
diff options
context:
space:
mode:
authorAnton Samokhvalov <pg83@yandex.ru>2022-02-10 16:45:15 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:15 +0300
commit72cb13b4aff9bc9cf22e49251bc8fd143f82538f (patch)
treeda2c34829458c7d4e74bdfbdf85dff449e9e7fb8 /contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h
parent778e51ba091dc39e7b7fcab2b9cf4dbedfb6f2b5 (diff)
downloadydb-72cb13b4aff9bc9cf22e49251bc8fd143f82538f.tar.gz
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h')
-rw-r--r--contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h914
1 files changed, 457 insertions, 457 deletions
diff --git a/contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h b/contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h
index 68d562eec4..45d873f75c 100644
--- a/contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h
+++ b/contrib/libs/libunwind/include/mach-o/compact_unwind_encoding.h
@@ -1,477 +1,477 @@
//===----------------------------------------------------------------------===//
-//
+//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//
+//
+//
// Darwin's alternative to DWARF based unwind encodings.
-//
-//===----------------------------------------------------------------------===//
-
-
-#ifndef __COMPACT_UNWIND_ENCODING__
-#define __COMPACT_UNWIND_ENCODING__
-
-#include <stdint.h>
-
-//
+//
+//===----------------------------------------------------------------------===//
+
+
+#ifndef __COMPACT_UNWIND_ENCODING__
+#define __COMPACT_UNWIND_ENCODING__
+
+#include <stdint.h>
+
+//
// Compilers can emit standard DWARF FDEs in the __TEXT,__eh_frame section
-// of object files. Or compilers can emit compact unwind information in
-// the __LD,__compact_unwind section.
-//
-// When the linker creates a final linked image, it will create a
-// __TEXT,__unwind_info section. This section is a small and fast way for the
-// runtime to access unwind info for any given function. If the compiler
-// emitted compact unwind info for the function, that compact unwind info will
-// be encoded in the __TEXT,__unwind_info section. If the compiler emitted
+// of object files. Or compilers can emit compact unwind information in
+// the __LD,__compact_unwind section.
+//
+// When the linker creates a final linked image, it will create a
+// __TEXT,__unwind_info section. This section is a small and fast way for the
+// runtime to access unwind info for any given function. If the compiler
+// emitted compact unwind info for the function, that compact unwind info will
+// be encoded in the __TEXT,__unwind_info section. If the compiler emitted
// DWARF unwind info, the __TEXT,__unwind_info section will contain the offset
-// of the FDE in the __TEXT,__eh_frame section in the final linked image.
-//
+// of the FDE in the __TEXT,__eh_frame section in the final linked image.
+//
// Note: Previously, the linker would transform some DWARF unwind infos into
-// compact unwind info. But that is fragile and no longer done.
-
-
-//
-// The compact unwind endoding is a 32-bit value which encoded in an
-// architecture specific way, which registers to restore from where, and how
-// to unwind out of the function.
-//
-typedef uint32_t compact_unwind_encoding_t;
-
-
-// architecture independent bits
-enum {
- UNWIND_IS_NOT_FUNCTION_START = 0x80000000,
- UNWIND_HAS_LSDA = 0x40000000,
- UNWIND_PERSONALITY_MASK = 0x30000000,
-};
-
-
-
-
-//
-// x86
-//
-// 1-bit: start
-// 1-bit: has lsda
-// 2-bit: personality index
-//
+// compact unwind info. But that is fragile and no longer done.
+
+
+//
+// The compact unwind endoding is a 32-bit value which encoded in an
+// architecture specific way, which registers to restore from where, and how
+// to unwind out of the function.
+//
+typedef uint32_t compact_unwind_encoding_t;
+
+
+// architecture independent bits
+enum {
+ UNWIND_IS_NOT_FUNCTION_START = 0x80000000,
+ UNWIND_HAS_LSDA = 0x40000000,
+ UNWIND_PERSONALITY_MASK = 0x30000000,
+};
+
+
+
+
+//
+// x86
+//
+// 1-bit: start
+// 1-bit: has lsda
+// 2-bit: personality index
+//
// 4-bits: 0=old, 1=ebp based, 2=stack-imm, 3=stack-ind, 4=DWARF
-// ebp based:
-// 15-bits (5*3-bits per reg) register permutation
-// 8-bits for stack offset
-// frameless:
-// 8-bits stack size
-// 3-bits stack adjust
-// 3-bits register count
-// 10-bits register permutation
-//
-enum {
- UNWIND_X86_MODE_MASK = 0x0F000000,
- UNWIND_X86_MODE_EBP_FRAME = 0x01000000,
- UNWIND_X86_MODE_STACK_IMMD = 0x02000000,
- UNWIND_X86_MODE_STACK_IND = 0x03000000,
- UNWIND_X86_MODE_DWARF = 0x04000000,
-
- UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF,
- UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000,
-
- UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000,
- UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000,
- UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
- UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
-
- UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF,
-};
-
-enum {
- UNWIND_X86_REG_NONE = 0,
- UNWIND_X86_REG_EBX = 1,
- UNWIND_X86_REG_ECX = 2,
- UNWIND_X86_REG_EDX = 3,
- UNWIND_X86_REG_EDI = 4,
- UNWIND_X86_REG_ESI = 5,
- UNWIND_X86_REG_EBP = 6,
-};
-
-//
-// For x86 there are four modes for the compact unwind encoding:
-// UNWIND_X86_MODE_EBP_FRAME:
-// EBP based frame where EBP is push on stack immediately after return address,
-// then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
-// EPB value, then EBP is restored by popping off the stack, and the return
-// is done by popping the stack once more into the pc.
-// All non-volatile registers that need to be restored must have been saved
-// in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4
-// is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved
-// are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
-// Each entry contains which register to restore.
-// UNWIND_X86_MODE_STACK_IMMD:
-// A "frameless" (EBP not used as frame pointer) function with a small
-// constant stack size. To return, a constant (encoded in the compact
-// unwind encoding) is added to the ESP. Then the return is done by
-// popping the stack into the pc.
-// All non-volatile registers that need to be restored must have been saved
-// on the stack immediately after the return address. The stack_size/4 is
-// encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
-// The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
-// UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
-// saved and their order.
-// UNWIND_X86_MODE_STACK_IND:
-// A "frameless" (EBP not used as frame pointer) function large constant
-// stack size. This case is like the previous, except the stack size is too
-// large to encode in the compact unwind encoding. Instead it requires that
-// the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact
-// encoding contains the offset to the nnnnnnnn value in the function in
-// UNWIND_X86_FRAMELESS_STACK_SIZE.
-// UNWIND_X86_MODE_DWARF:
-// No compact unwind encoding is available. Instead the low 24-bits of the
+// ebp based:
+// 15-bits (5*3-bits per reg) register permutation
+// 8-bits for stack offset
+// frameless:
+// 8-bits stack size
+// 3-bits stack adjust
+// 3-bits register count
+// 10-bits register permutation
+//
+enum {
+ UNWIND_X86_MODE_MASK = 0x0F000000,
+ UNWIND_X86_MODE_EBP_FRAME = 0x01000000,
+ UNWIND_X86_MODE_STACK_IMMD = 0x02000000,
+ UNWIND_X86_MODE_STACK_IND = 0x03000000,
+ UNWIND_X86_MODE_DWARF = 0x04000000,
+
+ UNWIND_X86_EBP_FRAME_REGISTERS = 0x00007FFF,
+ UNWIND_X86_EBP_FRAME_OFFSET = 0x00FF0000,
+
+ UNWIND_X86_FRAMELESS_STACK_SIZE = 0x00FF0000,
+ UNWIND_X86_FRAMELESS_STACK_ADJUST = 0x0000E000,
+ UNWIND_X86_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
+ UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
+
+ UNWIND_X86_DWARF_SECTION_OFFSET = 0x00FFFFFF,
+};
+
+enum {
+ UNWIND_X86_REG_NONE = 0,
+ UNWIND_X86_REG_EBX = 1,
+ UNWIND_X86_REG_ECX = 2,
+ UNWIND_X86_REG_EDX = 3,
+ UNWIND_X86_REG_EDI = 4,
+ UNWIND_X86_REG_ESI = 5,
+ UNWIND_X86_REG_EBP = 6,
+};
+
+//
+// For x86 there are four modes for the compact unwind encoding:
+// UNWIND_X86_MODE_EBP_FRAME:
+// EBP based frame where EBP is push on stack immediately after return address,
+// then ESP is moved to EBP. Thus, to unwind ESP is restored with the current
+// EPB value, then EBP is restored by popping off the stack, and the return
+// is done by popping the stack once more into the pc.
+// All non-volatile registers that need to be restored must have been saved
+// in a small range in the stack that starts EBP-4 to EBP-1020. The offset/4
+// is encoded in the UNWIND_X86_EBP_FRAME_OFFSET bits. The registers saved
+// are encoded in the UNWIND_X86_EBP_FRAME_REGISTERS bits as five 3-bit entries.
+// Each entry contains which register to restore.
+// UNWIND_X86_MODE_STACK_IMMD:
+// A "frameless" (EBP not used as frame pointer) function with a small
+// constant stack size. To return, a constant (encoded in the compact
+// unwind encoding) is added to the ESP. Then the return is done by
+// popping the stack into the pc.
+// All non-volatile registers that need to be restored must have been saved
+// on the stack immediately after the return address. The stack_size/4 is
+// encoded in the UNWIND_X86_FRAMELESS_STACK_SIZE (max stack size is 1024).
+// The number of registers saved is encoded in UNWIND_X86_FRAMELESS_STACK_REG_COUNT.
+// UNWIND_X86_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
+// saved and their order.
+// UNWIND_X86_MODE_STACK_IND:
+// A "frameless" (EBP not used as frame pointer) function large constant
+// stack size. This case is like the previous, except the stack size is too
+// large to encode in the compact unwind encoding. Instead it requires that
+// the function contains "subl $nnnnnnnn,ESP" in its prolog. The compact
+// encoding contains the offset to the nnnnnnnn value in the function in
+// UNWIND_X86_FRAMELESS_STACK_SIZE.
+// UNWIND_X86_MODE_DWARF:
+// No compact unwind encoding is available. Instead the low 24-bits of the
// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
-// This mode is never used in object files. It is only generated by the
+// This mode is never used in object files. It is only generated by the
// linker in final linked images which have only DWARF unwind info for a
-// function.
-//
-// The permutation encoding is a Lehmer code sequence encoded into a
-// single variable-base number so we can encode the ordering of up to
-// six registers in a 10-bit space.
-//
-// The following is the algorithm used to create the permutation encoding used
-// with frameless stacks. It is passed the number of registers to be saved and
-// an array of the register numbers saved.
-//
-//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
-//{
-// uint32_t renumregs[6];
-// for (int i=6-registerCount; i < 6; ++i) {
-// int countless = 0;
-// for (int j=6-registerCount; j < i; ++j) {
-// if ( registers[j] < registers[i] )
-// ++countless;
-// }
-// renumregs[i] = registers[i] - countless -1;
-// }
-// uint32_t permutationEncoding = 0;
-// switch ( registerCount ) {
-// case 6:
-// permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
-// + 6*renumregs[2] + 2*renumregs[3]
-// + renumregs[4]);
-// break;
-// case 5:
-// permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
-// + 6*renumregs[3] + 2*renumregs[4]
-// + renumregs[5]);
-// break;
-// case 4:
-// permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
-// + 3*renumregs[4] + renumregs[5]);
-// break;
-// case 3:
-// permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
-// + renumregs[5]);
-// break;
-// case 2:
-// permutationEncoding |= (5*renumregs[4] + renumregs[5]);
-// break;
-// case 1:
-// permutationEncoding |= (renumregs[5]);
-// break;
-// }
-// return permutationEncoding;
-//}
-//
-
-
-
-
-//
-// x86_64
-//
-// 1-bit: start
-// 1-bit: has lsda
-// 2-bit: personality index
-//
+// function.
+//
+// The permutation encoding is a Lehmer code sequence encoded into a
+// single variable-base number so we can encode the ordering of up to
+// six registers in a 10-bit space.
+//
+// The following is the algorithm used to create the permutation encoding used
+// with frameless stacks. It is passed the number of registers to be saved and
+// an array of the register numbers saved.
+//
+//uint32_t permute_encode(uint32_t registerCount, const uint32_t registers[6])
+//{
+// uint32_t renumregs[6];
+// for (int i=6-registerCount; i < 6; ++i) {
+// int countless = 0;
+// for (int j=6-registerCount; j < i; ++j) {
+// if ( registers[j] < registers[i] )
+// ++countless;
+// }
+// renumregs[i] = registers[i] - countless -1;
+// }
+// uint32_t permutationEncoding = 0;
+// switch ( registerCount ) {
+// case 6:
+// permutationEncoding |= (120*renumregs[0] + 24*renumregs[1]
+// + 6*renumregs[2] + 2*renumregs[3]
+// + renumregs[4]);
+// break;
+// case 5:
+// permutationEncoding |= (120*renumregs[1] + 24*renumregs[2]
+// + 6*renumregs[3] + 2*renumregs[4]
+// + renumregs[5]);
+// break;
+// case 4:
+// permutationEncoding |= (60*renumregs[2] + 12*renumregs[3]
+// + 3*renumregs[4] + renumregs[5]);
+// break;
+// case 3:
+// permutationEncoding |= (20*renumregs[3] + 4*renumregs[4]
+// + renumregs[5]);
+// break;
+// case 2:
+// permutationEncoding |= (5*renumregs[4] + renumregs[5]);
+// break;
+// case 1:
+// permutationEncoding |= (renumregs[5]);
+// break;
+// }
+// return permutationEncoding;
+//}
+//
+
+
+
+
+//
+// x86_64
+//
+// 1-bit: start
+// 1-bit: has lsda
+// 2-bit: personality index
+//
// 4-bits: 0=old, 1=rbp based, 2=stack-imm, 3=stack-ind, 4=DWARF
-// rbp based:
-// 15-bits (5*3-bits per reg) register permutation
-// 8-bits for stack offset
-// frameless:
-// 8-bits stack size
-// 3-bits stack adjust
-// 3-bits register count
-// 10-bits register permutation
-//
-enum {
- UNWIND_X86_64_MODE_MASK = 0x0F000000,
- UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000,
- UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000,
- UNWIND_X86_64_MODE_STACK_IND = 0x03000000,
- UNWIND_X86_64_MODE_DWARF = 0x04000000,
-
- UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF,
- UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000,
-
- UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000,
- UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000,
- UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
- UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
-
- UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
-};
-
-enum {
- UNWIND_X86_64_REG_NONE = 0,
- UNWIND_X86_64_REG_RBX = 1,
- UNWIND_X86_64_REG_R12 = 2,
- UNWIND_X86_64_REG_R13 = 3,
- UNWIND_X86_64_REG_R14 = 4,
- UNWIND_X86_64_REG_R15 = 5,
- UNWIND_X86_64_REG_RBP = 6,
-};
-//
-// For x86_64 there are four modes for the compact unwind encoding:
-// UNWIND_X86_64_MODE_RBP_FRAME:
-// RBP based frame where RBP is push on stack immediately after return address,
-// then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
-// EPB value, then RBP is restored by popping off the stack, and the return
-// is done by popping the stack once more into the pc.
-// All non-volatile registers that need to be restored must have been saved
-// in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8
-// is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved
-// are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
-// Each entry contains which register to restore.
-// UNWIND_X86_64_MODE_STACK_IMMD:
-// A "frameless" (RBP not used as frame pointer) function with a small
-// constant stack size. To return, a constant (encoded in the compact
-// unwind encoding) is added to the RSP. Then the return is done by
-// popping the stack into the pc.
-// All non-volatile registers that need to be restored must have been saved
-// on the stack immediately after the return address. The stack_size/8 is
-// encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
-// The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
-// UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
-// saved and their order.
-// UNWIND_X86_64_MODE_STACK_IND:
-// A "frameless" (RBP not used as frame pointer) function large constant
-// stack size. This case is like the previous, except the stack size is too
-// large to encode in the compact unwind encoding. Instead it requires that
-// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
-// encoding contains the offset to the nnnnnnnn value in the function in
-// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
-// UNWIND_X86_64_MODE_DWARF:
-// No compact unwind encoding is available. Instead the low 24-bits of the
+// rbp based:
+// 15-bits (5*3-bits per reg) register permutation
+// 8-bits for stack offset
+// frameless:
+// 8-bits stack size
+// 3-bits stack adjust
+// 3-bits register count
+// 10-bits register permutation
+//
+enum {
+ UNWIND_X86_64_MODE_MASK = 0x0F000000,
+ UNWIND_X86_64_MODE_RBP_FRAME = 0x01000000,
+ UNWIND_X86_64_MODE_STACK_IMMD = 0x02000000,
+ UNWIND_X86_64_MODE_STACK_IND = 0x03000000,
+ UNWIND_X86_64_MODE_DWARF = 0x04000000,
+
+ UNWIND_X86_64_RBP_FRAME_REGISTERS = 0x00007FFF,
+ UNWIND_X86_64_RBP_FRAME_OFFSET = 0x00FF0000,
+
+ UNWIND_X86_64_FRAMELESS_STACK_SIZE = 0x00FF0000,
+ UNWIND_X86_64_FRAMELESS_STACK_ADJUST = 0x0000E000,
+ UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT = 0x00001C00,
+ UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION = 0x000003FF,
+
+ UNWIND_X86_64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
+};
+
+enum {
+ UNWIND_X86_64_REG_NONE = 0,
+ UNWIND_X86_64_REG_RBX = 1,
+ UNWIND_X86_64_REG_R12 = 2,
+ UNWIND_X86_64_REG_R13 = 3,
+ UNWIND_X86_64_REG_R14 = 4,
+ UNWIND_X86_64_REG_R15 = 5,
+ UNWIND_X86_64_REG_RBP = 6,
+};
+//
+// For x86_64 there are four modes for the compact unwind encoding:
+// UNWIND_X86_64_MODE_RBP_FRAME:
+// RBP based frame where RBP is push on stack immediately after return address,
+// then RSP is moved to RBP. Thus, to unwind RSP is restored with the current
+// EPB value, then RBP is restored by popping off the stack, and the return
+// is done by popping the stack once more into the pc.
+// All non-volatile registers that need to be restored must have been saved
+// in a small range in the stack that starts RBP-8 to RBP-2040. The offset/8
+// is encoded in the UNWIND_X86_64_RBP_FRAME_OFFSET bits. The registers saved
+// are encoded in the UNWIND_X86_64_RBP_FRAME_REGISTERS bits as five 3-bit entries.
+// Each entry contains which register to restore.
+// UNWIND_X86_64_MODE_STACK_IMMD:
+// A "frameless" (RBP not used as frame pointer) function with a small
+// constant stack size. To return, a constant (encoded in the compact
+// unwind encoding) is added to the RSP. Then the return is done by
+// popping the stack into the pc.
+// All non-volatile registers that need to be restored must have been saved
+// on the stack immediately after the return address. The stack_size/8 is
+// encoded in the UNWIND_X86_64_FRAMELESS_STACK_SIZE (max stack size is 2048).
+// The number of registers saved is encoded in UNWIND_X86_64_FRAMELESS_STACK_REG_COUNT.
+// UNWIND_X86_64_FRAMELESS_STACK_REG_PERMUTATION constains which registers were
+// saved and their order.
+// UNWIND_X86_64_MODE_STACK_IND:
+// A "frameless" (RBP not used as frame pointer) function large constant
+// stack size. This case is like the previous, except the stack size is too
+// large to encode in the compact unwind encoding. Instead it requires that
+// the function contains "subq $nnnnnnnn,RSP" in its prolog. The compact
+// encoding contains the offset to the nnnnnnnn value in the function in
+// UNWIND_X86_64_FRAMELESS_STACK_SIZE.
+// UNWIND_X86_64_MODE_DWARF:
+// No compact unwind encoding is available. Instead the low 24-bits of the
// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
-// This mode is never used in object files. It is only generated by the
+// This mode is never used in object files. It is only generated by the
// linker in final linked images which have only DWARF unwind info for a
-// function.
-//
-
-
-// ARM64
-//
-// 1-bit: start
-// 1-bit: has lsda
-// 2-bit: personality index
-//
+// function.
+//
+
+
+// ARM64
+//
+// 1-bit: start
+// 1-bit: has lsda
+// 2-bit: personality index
+//
// 4-bits: 4=frame-based, 3=DWARF, 2=frameless
-// frameless:
-// 12-bits of stack size
-// frame-based:
-// 4-bits D reg pairs saved
-// 5-bits X reg pairs saved
+// frameless:
+// 12-bits of stack size
+// frame-based:
+// 4-bits D reg pairs saved
+// 5-bits X reg pairs saved
// DWARF:
// 24-bits offset of DWARF FDE in __eh_frame section
-//
-enum {
- UNWIND_ARM64_MODE_MASK = 0x0F000000,
- UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
- UNWIND_ARM64_MODE_DWARF = 0x03000000,
- UNWIND_ARM64_MODE_FRAME = 0x04000000,
-
- UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
- UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
- UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
- UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
- UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
- UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
- UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
- UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
- UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800,
-
- UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000,
- UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
-};
-// For arm64 there are three modes for the compact unwind encoding:
-// UNWIND_ARM64_MODE_FRAME:
-// This is a standard arm64 prolog where FP/LR are immediately pushed on the
-// stack, then SP is copied to FP. If there are any non-volatile registers
-// saved, then are copied into the stack frame in pairs in a contiguous
-// range right below the saved FP/LR pair. Any subset of the five X pairs
-// and four D pairs can be saved, but the memory layout must be in register
-// number order.
-// UNWIND_ARM64_MODE_FRAMELESS:
-// A "frameless" leaf function, where FP/LR are not saved. The return address
-// remains in LR throughout the function. If any non-volatile registers
-// are saved, they must be pushed onto the stack before any stack space is
-// allocated for local variables. The stack sized (including any saved
-// non-volatile registers) divided by 16 is encoded in the bits
-// UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
-// UNWIND_ARM64_MODE_DWARF:
-// No compact unwind encoding is available. Instead the low 24-bits of the
+//
+enum {
+ UNWIND_ARM64_MODE_MASK = 0x0F000000,
+ UNWIND_ARM64_MODE_FRAMELESS = 0x02000000,
+ UNWIND_ARM64_MODE_DWARF = 0x03000000,
+ UNWIND_ARM64_MODE_FRAME = 0x04000000,
+
+ UNWIND_ARM64_FRAME_X19_X20_PAIR = 0x00000001,
+ UNWIND_ARM64_FRAME_X21_X22_PAIR = 0x00000002,
+ UNWIND_ARM64_FRAME_X23_X24_PAIR = 0x00000004,
+ UNWIND_ARM64_FRAME_X25_X26_PAIR = 0x00000008,
+ UNWIND_ARM64_FRAME_X27_X28_PAIR = 0x00000010,
+ UNWIND_ARM64_FRAME_D8_D9_PAIR = 0x00000100,
+ UNWIND_ARM64_FRAME_D10_D11_PAIR = 0x00000200,
+ UNWIND_ARM64_FRAME_D12_D13_PAIR = 0x00000400,
+ UNWIND_ARM64_FRAME_D14_D15_PAIR = 0x00000800,
+
+ UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK = 0x00FFF000,
+ UNWIND_ARM64_DWARF_SECTION_OFFSET = 0x00FFFFFF,
+};
+// For arm64 there are three modes for the compact unwind encoding:
+// UNWIND_ARM64_MODE_FRAME:
+// This is a standard arm64 prolog where FP/LR are immediately pushed on the
+// stack, then SP is copied to FP. If there are any non-volatile registers
+// saved, then are copied into the stack frame in pairs in a contiguous
+// range right below the saved FP/LR pair. Any subset of the five X pairs
+// and four D pairs can be saved, but the memory layout must be in register
+// number order.
+// UNWIND_ARM64_MODE_FRAMELESS:
+// A "frameless" leaf function, where FP/LR are not saved. The return address
+// remains in LR throughout the function. If any non-volatile registers
+// are saved, they must be pushed onto the stack before any stack space is
+// allocated for local variables. The stack sized (including any saved
+// non-volatile registers) divided by 16 is encoded in the bits
+// UNWIND_ARM64_FRAMELESS_STACK_SIZE_MASK.
+// UNWIND_ARM64_MODE_DWARF:
+// No compact unwind encoding is available. Instead the low 24-bits of the
// compact encoding is the offset of the DWARF FDE in the __eh_frame section.
-// This mode is never used in object files. It is only generated by the
+// This mode is never used in object files. It is only generated by the
// linker in final linked images which have only DWARF unwind info for a
-// function.
-//
-
-
-
-
-
-////////////////////////////////////////////////////////////////////////////////
-//
-// Relocatable Object Files: __LD,__compact_unwind
-//
-////////////////////////////////////////////////////////////////////////////////
-
-//
-// A compiler can generated compact unwind information for a function by adding
-// a "row" to the __LD,__compact_unwind section. This section has the
-// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
-// It is removed by the new linker, so never ends up in final executables.
-// This section is a table, initially with one row per function (that needs
-// unwind info). The table columns and some conceptual entries are:
-//
-// range-start pointer to start of function/range
-// range-length
-// compact-unwind-encoding 32-bit encoding
-// personality-function or zero if no personality function
-// lsda or zero if no LSDA data
-//
-// The length and encoding fields are 32-bits. The other are all pointer sized.
-//
-// In x86_64 assembly, these entry would look like:
-//
-// .section __LD,__compact_unwind,regular,debug
-//
-// #compact unwind for _foo
-// .quad _foo
-// .set L1,LfooEnd-_foo
-// .long L1
-// .long 0x01010001
-// .quad 0
-// .quad 0
-//
-// #compact unwind for _bar
-// .quad _bar
-// .set L2,LbarEnd-_bar
-// .long L2
-// .long 0x01020011
-// .quad __gxx_personality
-// .quad except_tab1
-//
-//
-// Notes: There is no need for any labels in the the __compact_unwind section.
-// The use of the .set directive is to force the evaluation of the
-// range-length at assembly time, instead of generating relocations.
-//
-// To support future compiler optimizations where which non-volatile registers
-// are saved changes within a function (e.g. delay saving non-volatiles until
-// necessary), there can by multiple lines in the __compact_unwind table for one
-// function, each with a different (non-overlapping) range and each with
-// different compact unwind encodings that correspond to the non-volatiles
-// saved at that range of the function.
-//
-// If a particular function is so wacky that there is no compact unwind way
+// function.
+//
+
+
+
+
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Relocatable Object Files: __LD,__compact_unwind
+//
+////////////////////////////////////////////////////////////////////////////////
+
+//
+// A compiler can generated compact unwind information for a function by adding
+// a "row" to the __LD,__compact_unwind section. This section has the
+// S_ATTR_DEBUG bit set, so the section will be ignored by older linkers.
+// It is removed by the new linker, so never ends up in final executables.
+// This section is a table, initially with one row per function (that needs
+// unwind info). The table columns and some conceptual entries are:
+//
+// range-start pointer to start of function/range
+// range-length
+// compact-unwind-encoding 32-bit encoding
+// personality-function or zero if no personality function
+// lsda or zero if no LSDA data
+//
+// The length and encoding fields are 32-bits. The other are all pointer sized.
+//
+// In x86_64 assembly, these entry would look like:
+//
+// .section __LD,__compact_unwind,regular,debug
+//
+// #compact unwind for _foo
+// .quad _foo
+// .set L1,LfooEnd-_foo
+// .long L1
+// .long 0x01010001
+// .quad 0
+// .quad 0
+//
+// #compact unwind for _bar
+// .quad _bar
+// .set L2,LbarEnd-_bar
+// .long L2
+// .long 0x01020011
+// .quad __gxx_personality
+// .quad except_tab1
+//
+//
+// Notes: There is no need for any labels in the the __compact_unwind section.
+// The use of the .set directive is to force the evaluation of the
+// range-length at assembly time, instead of generating relocations.
+//
+// To support future compiler optimizations where which non-volatile registers
+// are saved changes within a function (e.g. delay saving non-volatiles until
+// necessary), there can by multiple lines in the __compact_unwind table for one
+// function, each with a different (non-overlapping) range and each with
+// different compact unwind encodings that correspond to the non-volatiles
+// saved at that range of the function.
+//
+// If a particular function is so wacky that there is no compact unwind way
// to encode it, then the compiler can emit traditional DWARF unwind info.
-// The runtime will use which ever is available.
-//
-// Runtime support for compact unwind encodings are only available on 10.6
-// and later. So, the compiler should not generate it when targeting pre-10.6.
-
-
-
-
-////////////////////////////////////////////////////////////////////////////////
-//
-// Final Linked Images: __TEXT,__unwind_info
-//
-////////////////////////////////////////////////////////////////////////////////
-
-//
-// The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
-// The header of the section contains a coarse index that maps function address
-// to the page (4096 byte block) containing the unwind info for that function.
-//
-
-#define UNWIND_SECTION_VERSION 1
-struct unwind_info_section_header
-{
- uint32_t version; // UNWIND_SECTION_VERSION
- uint32_t commonEncodingsArraySectionOffset;
- uint32_t commonEncodingsArrayCount;
- uint32_t personalityArraySectionOffset;
- uint32_t personalityArrayCount;
- uint32_t indexSectionOffset;
- uint32_t indexCount;
- // compact_unwind_encoding_t[]
- // uint32_t personalities[]
- // unwind_info_section_header_index_entry[]
- // unwind_info_section_header_lsda_index_entry[]
-};
-
-struct unwind_info_section_header_index_entry
-{
- uint32_t functionOffset;
- uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page
- uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range
-};
-
-struct unwind_info_section_header_lsda_index_entry
-{
- uint32_t functionOffset;
- uint32_t lsdaOffset;
-};
-
-//
-// There are two kinds of second level index pages: regular and compressed.
-// A compressed page can hold up to 1021 entries, but it cannot be used
-// if too many different encoding types are used. The regular page holds
-// 511 entries.
-//
-
-struct unwind_info_regular_second_level_entry
-{
- uint32_t functionOffset;
- compact_unwind_encoding_t encoding;
-};
-
-#define UNWIND_SECOND_LEVEL_REGULAR 2
-struct unwind_info_regular_second_level_page_header
-{
- uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR
- uint16_t entryPageOffset;
- uint16_t entryCount;
- // entry array
-};
-
-#define UNWIND_SECOND_LEVEL_COMPRESSED 3
-struct unwind_info_compressed_second_level_page_header
-{
- uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED
- uint16_t entryPageOffset;
- uint16_t entryCount;
- uint16_t encodingsPageOffset;
- uint16_t encodingsCount;
- // 32-bit entry array
- // encodings array
-};
-
-#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF)
-#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF)
-
-
-
-#endif
-
+// The runtime will use which ever is available.
+//
+// Runtime support for compact unwind encodings are only available on 10.6
+// and later. So, the compiler should not generate it when targeting pre-10.6.
+
+
+
+
+////////////////////////////////////////////////////////////////////////////////
+//
+// Final Linked Images: __TEXT,__unwind_info
+//
+////////////////////////////////////////////////////////////////////////////////
+
+//
+// The __TEXT,__unwind_info section is laid out for an efficient two level lookup.
+// The header of the section contains a coarse index that maps function address
+// to the page (4096 byte block) containing the unwind info for that function.
+//
+
+#define UNWIND_SECTION_VERSION 1
+struct unwind_info_section_header
+{
+ uint32_t version; // UNWIND_SECTION_VERSION
+ uint32_t commonEncodingsArraySectionOffset;
+ uint32_t commonEncodingsArrayCount;
+ uint32_t personalityArraySectionOffset;
+ uint32_t personalityArrayCount;
+ uint32_t indexSectionOffset;
+ uint32_t indexCount;
+ // compact_unwind_encoding_t[]
+ // uint32_t personalities[]
+ // unwind_info_section_header_index_entry[]
+ // unwind_info_section_header_lsda_index_entry[]
+};
+
+struct unwind_info_section_header_index_entry
+{
+ uint32_t functionOffset;
+ uint32_t secondLevelPagesSectionOffset; // section offset to start of regular or compress page
+ uint32_t lsdaIndexArraySectionOffset; // section offset to start of lsda_index array for this range
+};
+
+struct unwind_info_section_header_lsda_index_entry
+{
+ uint32_t functionOffset;
+ uint32_t lsdaOffset;
+};
+
+//
+// There are two kinds of second level index pages: regular and compressed.
+// A compressed page can hold up to 1021 entries, but it cannot be used
+// if too many different encoding types are used. The regular page holds
+// 511 entries.
+//
+
+struct unwind_info_regular_second_level_entry
+{
+ uint32_t functionOffset;
+ compact_unwind_encoding_t encoding;
+};
+
+#define UNWIND_SECOND_LEVEL_REGULAR 2
+struct unwind_info_regular_second_level_page_header
+{
+ uint32_t kind; // UNWIND_SECOND_LEVEL_REGULAR
+ uint16_t entryPageOffset;
+ uint16_t entryCount;
+ // entry array
+};
+
+#define UNWIND_SECOND_LEVEL_COMPRESSED 3
+struct unwind_info_compressed_second_level_page_header
+{
+ uint32_t kind; // UNWIND_SECOND_LEVEL_COMPRESSED
+ uint16_t entryPageOffset;
+ uint16_t entryCount;
+ uint16_t encodingsPageOffset;
+ uint16_t encodingsCount;
+ // 32-bit entry array
+ // encodings array
+};
+
+#define UNWIND_INFO_COMPRESSED_ENTRY_FUNC_OFFSET(entry) (entry & 0x00FFFFFF)
+#define UNWIND_INFO_COMPRESSED_ENTRY_ENCODING_INDEX(entry) ((entry >> 24) & 0xFF)
+
+
+
+#endif
+