diff options
author | dldmitry <dldmitry@yandex-team.ru> | 2022-02-10 16:47:17 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:47:17 +0300 |
commit | 10129030876638368b8965c627671fe44be079bc (patch) | |
tree | 681c849a324535feff6f07677873c9ffc4c51520 /contrib/libs/libevent/minheap-internal.h | |
parent | 5c1eb9f48fd0ac41fd72519a8284ded6f0358f6f (diff) | |
download | ydb-10129030876638368b8965c627671fe44be079bc.tar.gz |
Restoring authorship annotation for <dldmitry@yandex-team.ru>. Commit 1 of 2.
Diffstat (limited to 'contrib/libs/libevent/minheap-internal.h')
-rw-r--r-- | contrib/libs/libevent/minheap-internal.h | 256 |
1 files changed, 128 insertions, 128 deletions
diff --git a/contrib/libs/libevent/minheap-internal.h b/contrib/libs/libevent/minheap-internal.h index b3a0eb1fb5..ab33dee575 100644 --- a/contrib/libs/libevent/minheap-internal.h +++ b/contrib/libs/libevent/minheap-internal.h @@ -1,47 +1,47 @@ -/* - * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson - * - * Copyright (c) 2006 Maxim Yegorushkin <maxim.yegorushkin@gmail.com> - * - * Redistribution and use in source and binary forms, with or without - * modification, are permitted provided that the following conditions - * are met: - * 1. Redistributions of source code must retain the above copyright - * notice, this list of conditions and the following disclaimer. - * 2. Redistributions in binary form must reproduce the above copyright - * notice, this list of conditions and the following disclaimer in the - * documentation and/or other materials provided with the distribution. - * 3. The name of the author may not be used to endorse or promote products - * derived from this software without specific prior written permission. - * - * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR - * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES - * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. - * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, - * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT - * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, - * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY - * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF - * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - */ +/* + * Copyright (c) 2007-2012 Niels Provos and Nick Mathewson + * + * Copyright (c) 2006 Maxim Yegorushkin <maxim.yegorushkin@gmail.com> + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * 1. Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * 2. Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * 3. The name of the author may not be used to endorse or promote products + * derived from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR + * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES + * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. + * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, + * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT + * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF + * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ #ifndef MINHEAP_INTERNAL_H_INCLUDED_ #define MINHEAP_INTERNAL_H_INCLUDED_ - -#include "event2/event-config.h" + +#include "event2/event-config.h" #include "evconfig-private.h" -#include "event2/event.h" -#include "event2/event_struct.h" -#include "event2/util.h" -#include "util-internal.h" -#include "mm-internal.h" - -typedef struct min_heap -{ - struct event** p; - unsigned n, a; -} min_heap_t; - +#include "event2/event.h" +#include "event2/event_struct.h" +#include "event2/util.h" +#include "util-internal.h" +#include "mm-internal.h" + +typedef struct min_heap +{ + struct event** p; + unsigned n, a; +} min_heap_t; + static inline void min_heap_ctor_(min_heap_t* s); static inline void min_heap_dtor_(min_heap_t* s); static inline void min_heap_elem_init_(struct event* e); @@ -54,68 +54,68 @@ static inline int min_heap_push_(min_heap_t* s, struct event* e); static inline struct event* min_heap_pop_(min_heap_t* s); static inline int min_heap_adjust_(min_heap_t *s, struct event* e); static inline int min_heap_erase_(min_heap_t* s, struct event* e); -static inline void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e); +static inline void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e); static inline void min_heap_shift_up_unconditional_(min_heap_t* s, unsigned hole_index, struct event* e); -static inline void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e); - +static inline void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e); + #define min_heap_elem_greater(a, b) \ (evutil_timercmp(&(a)->ev_timeout, &(b)->ev_timeout, >)) - + void min_heap_ctor_(min_heap_t* s) { s->p = 0; s->n = 0; s->a = 0; } void min_heap_dtor_(min_heap_t* s) { if (s->p) mm_free(s->p); } void min_heap_elem_init_(struct event* e) { e->ev_timeout_pos.min_heap_idx = -1; } int min_heap_empty_(min_heap_t* s) { return 0u == s->n; } unsigned min_heap_size_(min_heap_t* s) { return s->n; } struct event* min_heap_top_(min_heap_t* s) { return s->n ? *s->p : 0; } - + int min_heap_push_(min_heap_t* s, struct event* e) -{ +{ if (s->n == UINT32_MAX || min_heap_reserve_(s, s->n + 1)) - return -1; - min_heap_shift_up_(s, s->n++, e); - return 0; -} - + return -1; + min_heap_shift_up_(s, s->n++, e); + return 0; +} + struct event* min_heap_pop_(min_heap_t* s) -{ - if (s->n) - { - struct event* e = *s->p; - min_heap_shift_down_(s, 0u, s->p[--s->n]); - e->ev_timeout_pos.min_heap_idx = -1; - return e; - } - return 0; -} - +{ + if (s->n) + { + struct event* e = *s->p; + min_heap_shift_down_(s, 0u, s->p[--s->n]); + e->ev_timeout_pos.min_heap_idx = -1; + return e; + } + return 0; +} + int min_heap_elt_is_top_(const struct event *e) -{ - return e->ev_timeout_pos.min_heap_idx == 0; -} - +{ + return e->ev_timeout_pos.min_heap_idx == 0; +} + int min_heap_erase_(min_heap_t* s, struct event* e) -{ - if (-1 != e->ev_timeout_pos.min_heap_idx) - { - struct event *last = s->p[--s->n]; - unsigned parent = (e->ev_timeout_pos.min_heap_idx - 1) / 2; - /* we replace e with the last element in the heap. We might need to - shift it upward if it is less than its parent, or downward if it is - greater than one or both its children. Since the children are known - to be less than the parent, it can't need to shift both up and - down. */ - if (e->ev_timeout_pos.min_heap_idx > 0 && min_heap_elem_greater(s->p[parent], last)) +{ + if (-1 != e->ev_timeout_pos.min_heap_idx) + { + struct event *last = s->p[--s->n]; + unsigned parent = (e->ev_timeout_pos.min_heap_idx - 1) / 2; + /* we replace e with the last element in the heap. We might need to + shift it upward if it is less than its parent, or downward if it is + greater than one or both its children. Since the children are known + to be less than the parent, it can't need to shift both up and + down. */ + if (e->ev_timeout_pos.min_heap_idx > 0 && min_heap_elem_greater(s->p[parent], last)) min_heap_shift_up_unconditional_(s, e->ev_timeout_pos.min_heap_idx, last); - else - min_heap_shift_down_(s, e->ev_timeout_pos.min_heap_idx, last); - e->ev_timeout_pos.min_heap_idx = -1; - return 0; - } - return -1; -} - + else + min_heap_shift_down_(s, e->ev_timeout_pos.min_heap_idx, last); + e->ev_timeout_pos.min_heap_idx = -1; + return 0; + } + return -1; +} + int min_heap_adjust_(min_heap_t *s, struct event *e) -{ +{ if (-1 == e->ev_timeout_pos.min_heap_idx) { return min_heap_push_(s, e); } else { @@ -132,24 +132,24 @@ int min_heap_adjust_(min_heap_t *s, struct event *e) int min_heap_reserve_(min_heap_t* s, unsigned n) { - if (s->a < n) - { - struct event** p; - unsigned a = s->a ? s->a * 2 : 8; - if (a < n) - a = n; + if (s->a < n) + { + struct event** p; + unsigned a = s->a ? s->a * 2 : 8; + if (a < n) + a = n; #if (SIZE_MAX == UINT32_MAX) if (a > SIZE_MAX / sizeof *p) return -1; #endif - if (!(p = (struct event**)mm_realloc(s->p, a * sizeof *p))) - return -1; - s->p = p; - s->a = a; - } - return 0; -} - + if (!(p = (struct event**)mm_realloc(s->p, a * sizeof *p))) + return -1; + s->p = p; + s->a = a; + } + return 0; +} + void min_heap_shift_up_unconditional_(min_heap_t* s, unsigned hole_index, struct event* e) { unsigned parent = (hole_index - 1) / 2; @@ -162,31 +162,31 @@ void min_heap_shift_up_unconditional_(min_heap_t* s, unsigned hole_index, struct (s->p[hole_index] = e)->ev_timeout_pos.min_heap_idx = hole_index; } -void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e) -{ - unsigned parent = (hole_index - 1) / 2; - while (hole_index && min_heap_elem_greater(s->p[parent], e)) - { - (s->p[hole_index] = s->p[parent])->ev_timeout_pos.min_heap_idx = hole_index; - hole_index = parent; - parent = (hole_index - 1) / 2; - } - (s->p[hole_index] = e)->ev_timeout_pos.min_heap_idx = hole_index; -} - -void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e) -{ - unsigned min_child = 2 * (hole_index + 1); - while (min_child <= s->n) - { - min_child -= min_child == s->n || min_heap_elem_greater(s->p[min_child], s->p[min_child - 1]); - if (!(min_heap_elem_greater(e, s->p[min_child]))) - break; - (s->p[hole_index] = s->p[min_child])->ev_timeout_pos.min_heap_idx = hole_index; - hole_index = min_child; - min_child = 2 * (hole_index + 1); - } - (s->p[hole_index] = e)->ev_timeout_pos.min_heap_idx = hole_index; -} - +void min_heap_shift_up_(min_heap_t* s, unsigned hole_index, struct event* e) +{ + unsigned parent = (hole_index - 1) / 2; + while (hole_index && min_heap_elem_greater(s->p[parent], e)) + { + (s->p[hole_index] = s->p[parent])->ev_timeout_pos.min_heap_idx = hole_index; + hole_index = parent; + parent = (hole_index - 1) / 2; + } + (s->p[hole_index] = e)->ev_timeout_pos.min_heap_idx = hole_index; +} + +void min_heap_shift_down_(min_heap_t* s, unsigned hole_index, struct event* e) +{ + unsigned min_child = 2 * (hole_index + 1); + while (min_child <= s->n) + { + min_child -= min_child == s->n || min_heap_elem_greater(s->p[min_child], s->p[min_child - 1]); + if (!(min_heap_elem_greater(e, s->p[min_child]))) + break; + (s->p[hole_index] = s->p[min_child])->ev_timeout_pos.min_heap_idx = hole_index; + hole_index = min_child; + min_child = 2 * (hole_index + 1); + } + (s->p[hole_index] = e)->ev_timeout_pos.min_heap_idx = hole_index; +} + #endif /* MINHEAP_INTERNAL_H_INCLUDED_ */ |