diff options
author | mcheshkov <mcheshkov@yandex-team.ru> | 2022-02-10 16:46:16 +0300 |
---|---|---|
committer | Daniil Cherednik <dcherednik@yandex-team.ru> | 2022-02-10 16:46:16 +0300 |
commit | 1312621288956f199a5bd5342b0133d4395fa725 (patch) | |
tree | 1a2c5ffcf89eb53ecd79dbc9bc0a195c27404d0c /contrib/libs/icu/i18n/double-conversion-ieee.h | |
parent | e9d19cec64684c9c1e6b0c98297e5b895cf904fe (diff) | |
download | ydb-1312621288956f199a5bd5342b0133d4395fa725.tar.gz |
Restoring authorship annotation for <mcheshkov@yandex-team.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/icu/i18n/double-conversion-ieee.h')
-rw-r--r-- | contrib/libs/icu/i18n/double-conversion-ieee.h | 880 |
1 files changed, 440 insertions, 440 deletions
diff --git a/contrib/libs/icu/i18n/double-conversion-ieee.h b/contrib/libs/icu/i18n/double-conversion-ieee.h index 8cfe2e755a..31c35867de 100644 --- a/contrib/libs/icu/i18n/double-conversion-ieee.h +++ b/contrib/libs/icu/i18n/double-conversion-ieee.h @@ -1,440 +1,440 @@ -// © 2018 and later: Unicode, Inc. and others. -// License & terms of use: http://www.unicode.org/copyright.html -// -// From the double-conversion library. Original license: -// -// Copyright 2012 the V8 project authors. All rights reserved. -// Redistribution and use in source and binary forms, with or without -// modification, are permitted provided that the following conditions are -// met: -// -// * Redistributions of source code must retain the above copyright -// notice, this list of conditions and the following disclaimer. -// * Redistributions in binary form must reproduce the above -// copyright notice, this list of conditions and the following -// disclaimer in the documentation and/or other materials provided -// with the distribution. -// * Neither the name of Google Inc. nor the names of its -// contributors may be used to endorse or promote products derived -// from this software without specific prior written permission. -// -// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS -// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT -// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR -// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT -// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, -// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT -// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, -// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY -// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT -// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE -// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. - -// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING -#include "unicode/utypes.h" -#if !UCONFIG_NO_FORMATTING - -#ifndef DOUBLE_CONVERSION_DOUBLE_H_ -#define DOUBLE_CONVERSION_DOUBLE_H_ - -// ICU PATCH: Customize header file paths for ICU. - -#include "double-conversion-diy-fp.h" - -// ICU PATCH: Wrap in ICU namespace -U_NAMESPACE_BEGIN - -namespace double_conversion { - -// We assume that doubles and uint64_t have the same endianness. -static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } -static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } -static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } -static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } - -// Helper functions for doubles. -class Double { - public: - static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000); - static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); - static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); - static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); - static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000); - static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. - static const int kSignificandSize = 53; - static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; - static const int kMaxExponent = 0x7FF - kExponentBias; - - Double() : d64_(0) {} - explicit Double(double d) : d64_(double_to_uint64(d)) {} - explicit Double(uint64_t d64) : d64_(d64) {} - explicit Double(DiyFp diy_fp) - : d64_(DiyFpToUint64(diy_fp)) {} - - // The value encoded by this Double must be greater or equal to +0.0. - // It must not be special (infinity, or NaN). - DiyFp AsDiyFp() const { - DOUBLE_CONVERSION_ASSERT(Sign() > 0); - DOUBLE_CONVERSION_ASSERT(!IsSpecial()); - return DiyFp(Significand(), Exponent()); - } - - // The value encoded by this Double must be strictly greater than 0. - DiyFp AsNormalizedDiyFp() const { - DOUBLE_CONVERSION_ASSERT(value() > 0.0); - uint64_t f = Significand(); - int e = Exponent(); - - // The current double could be a denormal. - while ((f & kHiddenBit) == 0) { - f <<= 1; - e--; - } - // Do the final shifts in one go. - f <<= DiyFp::kSignificandSize - kSignificandSize; - e -= DiyFp::kSignificandSize - kSignificandSize; - return DiyFp(f, e); - } - - // Returns the double's bit as uint64. - uint64_t AsUint64() const { - return d64_; - } - - // Returns the next greater double. Returns +infinity on input +infinity. - double NextDouble() const { - if (d64_ == kInfinity) return Double(kInfinity).value(); - if (Sign() < 0 && Significand() == 0) { - // -0.0 - return 0.0; - } - if (Sign() < 0) { - return Double(d64_ - 1).value(); - } else { - return Double(d64_ + 1).value(); - } - } - - double PreviousDouble() const { - if (d64_ == (kInfinity | kSignMask)) return -Infinity(); - if (Sign() < 0) { - return Double(d64_ + 1).value(); - } else { - if (Significand() == 0) return -0.0; - return Double(d64_ - 1).value(); - } - } - - int Exponent() const { - if (IsDenormal()) return kDenormalExponent; - - uint64_t d64 = AsUint64(); - int biased_e = - static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); - return biased_e - kExponentBias; - } - - uint64_t Significand() const { - uint64_t d64 = AsUint64(); - uint64_t significand = d64 & kSignificandMask; - if (!IsDenormal()) { - return significand + kHiddenBit; - } else { - return significand; - } - } - - // Returns true if the double is a denormal. - bool IsDenormal() const { - uint64_t d64 = AsUint64(); - return (d64 & kExponentMask) == 0; - } - - // We consider denormals not to be special. - // Hence only Infinity and NaN are special. - bool IsSpecial() const { - uint64_t d64 = AsUint64(); - return (d64 & kExponentMask) == kExponentMask; - } - - bool IsNan() const { - uint64_t d64 = AsUint64(); - return ((d64 & kExponentMask) == kExponentMask) && - ((d64 & kSignificandMask) != 0); - } - - bool IsQuietNan() const { - return IsNan() && ((AsUint64() & kQuietNanBit) != 0); - } - - bool IsSignalingNan() const { - return IsNan() && ((AsUint64() & kQuietNanBit) == 0); - } - - - bool IsInfinite() const { - uint64_t d64 = AsUint64(); - return ((d64 & kExponentMask) == kExponentMask) && - ((d64 & kSignificandMask) == 0); - } - - int Sign() const { - uint64_t d64 = AsUint64(); - return (d64 & kSignMask) == 0? 1: -1; - } - - // Precondition: the value encoded by this Double must be greater or equal - // than +0.0. - DiyFp UpperBoundary() const { - DOUBLE_CONVERSION_ASSERT(Sign() > 0); - return DiyFp(Significand() * 2 + 1, Exponent() - 1); - } - - // Computes the two boundaries of this. - // The bigger boundary (m_plus) is normalized. The lower boundary has the same - // exponent as m_plus. - // Precondition: the value encoded by this Double must be greater than 0. - void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { - DOUBLE_CONVERSION_ASSERT(value() > 0.0); - DiyFp v = this->AsDiyFp(); - DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); - DiyFp m_minus; - if (LowerBoundaryIsCloser()) { - m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); - } else { - m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); - } - m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); - m_minus.set_e(m_plus.e()); - *out_m_plus = m_plus; - *out_m_minus = m_minus; - } - - bool LowerBoundaryIsCloser() const { - // The boundary is closer if the significand is of the form f == 2^p-1 then - // the lower boundary is closer. - // Think of v = 1000e10 and v- = 9999e9. - // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but - // at a distance of 1e8. - // The only exception is for the smallest normal: the largest denormal is - // at the same distance as its successor. - // Note: denormals have the same exponent as the smallest normals. - bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); - return physical_significand_is_zero && (Exponent() != kDenormalExponent); - } - - double value() const { return uint64_to_double(d64_); } - - // Returns the significand size for a given order of magnitude. - // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. - // This function returns the number of significant binary digits v will have - // once it's encoded into a double. In almost all cases this is equal to - // kSignificandSize. The only exceptions are denormals. They start with - // leading zeroes and their effective significand-size is hence smaller. - static int SignificandSizeForOrderOfMagnitude(int order) { - if (order >= (kDenormalExponent + kSignificandSize)) { - return kSignificandSize; - } - if (order <= kDenormalExponent) return 0; - return order - kDenormalExponent; - } - - static double Infinity() { - return Double(kInfinity).value(); - } - - static double NaN() { - return Double(kNaN).value(); - } - - private: - static const int kDenormalExponent = -kExponentBias + 1; - static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); - static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000); - - const uint64_t d64_; - - static uint64_t DiyFpToUint64(DiyFp diy_fp) { - uint64_t significand = diy_fp.f(); - int exponent = diy_fp.e(); - while (significand > kHiddenBit + kSignificandMask) { - significand >>= 1; - exponent++; - } - if (exponent >= kMaxExponent) { - return kInfinity; - } - if (exponent < kDenormalExponent) { - return 0; - } - while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { - significand <<= 1; - exponent--; - } - uint64_t biased_exponent; - if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { - biased_exponent = 0; - } else { - biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); - } - return (significand & kSignificandMask) | - (biased_exponent << kPhysicalSignificandSize); - } - - DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double); -}; - -class Single { - public: - static const uint32_t kSignMask = 0x80000000; - static const uint32_t kExponentMask = 0x7F800000; - static const uint32_t kSignificandMask = 0x007FFFFF; - static const uint32_t kHiddenBit = 0x00800000; - static const uint32_t kQuietNanBit = 0x00400000; - static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. - static const int kSignificandSize = 24; - - Single() : d32_(0) {} - explicit Single(float f) : d32_(float_to_uint32(f)) {} - explicit Single(uint32_t d32) : d32_(d32) {} - - // The value encoded by this Single must be greater or equal to +0.0. - // It must not be special (infinity, or NaN). - DiyFp AsDiyFp() const { - DOUBLE_CONVERSION_ASSERT(Sign() > 0); - DOUBLE_CONVERSION_ASSERT(!IsSpecial()); - return DiyFp(Significand(), Exponent()); - } - - // Returns the single's bit as uint64. - uint32_t AsUint32() const { - return d32_; - } - - int Exponent() const { - if (IsDenormal()) return kDenormalExponent; - - uint32_t d32 = AsUint32(); - int biased_e = - static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); - return biased_e - kExponentBias; - } - - uint32_t Significand() const { - uint32_t d32 = AsUint32(); - uint32_t significand = d32 & kSignificandMask; - if (!IsDenormal()) { - return significand + kHiddenBit; - } else { - return significand; - } - } - - // Returns true if the single is a denormal. - bool IsDenormal() const { - uint32_t d32 = AsUint32(); - return (d32 & kExponentMask) == 0; - } - - // We consider denormals not to be special. - // Hence only Infinity and NaN are special. - bool IsSpecial() const { - uint32_t d32 = AsUint32(); - return (d32 & kExponentMask) == kExponentMask; - } - - bool IsNan() const { - uint32_t d32 = AsUint32(); - return ((d32 & kExponentMask) == kExponentMask) && - ((d32 & kSignificandMask) != 0); - } - - bool IsQuietNan() const { - return IsNan() && ((AsUint32() & kQuietNanBit) != 0); - } - - bool IsSignalingNan() const { - return IsNan() && ((AsUint32() & kQuietNanBit) == 0); - } - - - bool IsInfinite() const { - uint32_t d32 = AsUint32(); - return ((d32 & kExponentMask) == kExponentMask) && - ((d32 & kSignificandMask) == 0); - } - - int Sign() const { - uint32_t d32 = AsUint32(); - return (d32 & kSignMask) == 0? 1: -1; - } - - // Computes the two boundaries of this. - // The bigger boundary (m_plus) is normalized. The lower boundary has the same - // exponent as m_plus. - // Precondition: the value encoded by this Single must be greater than 0. - void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { - DOUBLE_CONVERSION_ASSERT(value() > 0.0); - DiyFp v = this->AsDiyFp(); - DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); - DiyFp m_minus; - if (LowerBoundaryIsCloser()) { - m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); - } else { - m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); - } - m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); - m_minus.set_e(m_plus.e()); - *out_m_plus = m_plus; - *out_m_minus = m_minus; - } - - // Precondition: the value encoded by this Single must be greater or equal - // than +0.0. - DiyFp UpperBoundary() const { - DOUBLE_CONVERSION_ASSERT(Sign() > 0); - return DiyFp(Significand() * 2 + 1, Exponent() - 1); - } - - bool LowerBoundaryIsCloser() const { - // The boundary is closer if the significand is of the form f == 2^p-1 then - // the lower boundary is closer. - // Think of v = 1000e10 and v- = 9999e9. - // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but - // at a distance of 1e8. - // The only exception is for the smallest normal: the largest denormal is - // at the same distance as its successor. - // Note: denormals have the same exponent as the smallest normals. - bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); - return physical_significand_is_zero && (Exponent() != kDenormalExponent); - } - - float value() const { return uint32_to_float(d32_); } - - static float Infinity() { - return Single(kInfinity).value(); - } - - static float NaN() { - return Single(kNaN).value(); - } - - private: - static const int kExponentBias = 0x7F + kPhysicalSignificandSize; - static const int kDenormalExponent = -kExponentBias + 1; - static const int kMaxExponent = 0xFF - kExponentBias; - static const uint32_t kInfinity = 0x7F800000; - static const uint32_t kNaN = 0x7FC00000; - - const uint32_t d32_; - - DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single); -}; - -} // namespace double_conversion - -// ICU PATCH: Close ICU namespace -U_NAMESPACE_END - -#endif // DOUBLE_CONVERSION_DOUBLE_H_ -#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING +// © 2018 and later: Unicode, Inc. and others. +// License & terms of use: http://www.unicode.org/copyright.html +// +// From the double-conversion library. Original license: +// +// Copyright 2012 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +// ICU PATCH: ifdef around UCONFIG_NO_FORMATTING +#include "unicode/utypes.h" +#if !UCONFIG_NO_FORMATTING + +#ifndef DOUBLE_CONVERSION_DOUBLE_H_ +#define DOUBLE_CONVERSION_DOUBLE_H_ + +// ICU PATCH: Customize header file paths for ICU. + +#include "double-conversion-diy-fp.h" + +// ICU PATCH: Wrap in ICU namespace +U_NAMESPACE_BEGIN + +namespace double_conversion { + +// We assume that doubles and uint64_t have the same endianness. +static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); } +static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); } +static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); } +static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); } + +// Helper functions for doubles. +class Double { + public: + static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000); + static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); + static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF); + static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000); + static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000); + static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. + static const int kSignificandSize = 53; + static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; + static const int kMaxExponent = 0x7FF - kExponentBias; + + Double() : d64_(0) {} + explicit Double(double d) : d64_(double_to_uint64(d)) {} + explicit Double(uint64_t d64) : d64_(d64) {} + explicit Double(DiyFp diy_fp) + : d64_(DiyFpToUint64(diy_fp)) {} + + // The value encoded by this Double must be greater or equal to +0.0. + // It must not be special (infinity, or NaN). + DiyFp AsDiyFp() const { + DOUBLE_CONVERSION_ASSERT(Sign() > 0); + DOUBLE_CONVERSION_ASSERT(!IsSpecial()); + return DiyFp(Significand(), Exponent()); + } + + // The value encoded by this Double must be strictly greater than 0. + DiyFp AsNormalizedDiyFp() const { + DOUBLE_CONVERSION_ASSERT(value() > 0.0); + uint64_t f = Significand(); + int e = Exponent(); + + // The current double could be a denormal. + while ((f & kHiddenBit) == 0) { + f <<= 1; + e--; + } + // Do the final shifts in one go. + f <<= DiyFp::kSignificandSize - kSignificandSize; + e -= DiyFp::kSignificandSize - kSignificandSize; + return DiyFp(f, e); + } + + // Returns the double's bit as uint64. + uint64_t AsUint64() const { + return d64_; + } + + // Returns the next greater double. Returns +infinity on input +infinity. + double NextDouble() const { + if (d64_ == kInfinity) return Double(kInfinity).value(); + if (Sign() < 0 && Significand() == 0) { + // -0.0 + return 0.0; + } + if (Sign() < 0) { + return Double(d64_ - 1).value(); + } else { + return Double(d64_ + 1).value(); + } + } + + double PreviousDouble() const { + if (d64_ == (kInfinity | kSignMask)) return -Infinity(); + if (Sign() < 0) { + return Double(d64_ + 1).value(); + } else { + if (Significand() == 0) return -0.0; + return Double(d64_ - 1).value(); + } + } + + int Exponent() const { + if (IsDenormal()) return kDenormalExponent; + + uint64_t d64 = AsUint64(); + int biased_e = + static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); + return biased_e - kExponentBias; + } + + uint64_t Significand() const { + uint64_t d64 = AsUint64(); + uint64_t significand = d64 & kSignificandMask; + if (!IsDenormal()) { + return significand + kHiddenBit; + } else { + return significand; + } + } + + // Returns true if the double is a denormal. + bool IsDenormal() const { + uint64_t d64 = AsUint64(); + return (d64 & kExponentMask) == 0; + } + + // We consider denormals not to be special. + // Hence only Infinity and NaN are special. + bool IsSpecial() const { + uint64_t d64 = AsUint64(); + return (d64 & kExponentMask) == kExponentMask; + } + + bool IsNan() const { + uint64_t d64 = AsUint64(); + return ((d64 & kExponentMask) == kExponentMask) && + ((d64 & kSignificandMask) != 0); + } + + bool IsQuietNan() const { + return IsNan() && ((AsUint64() & kQuietNanBit) != 0); + } + + bool IsSignalingNan() const { + return IsNan() && ((AsUint64() & kQuietNanBit) == 0); + } + + + bool IsInfinite() const { + uint64_t d64 = AsUint64(); + return ((d64 & kExponentMask) == kExponentMask) && + ((d64 & kSignificandMask) == 0); + } + + int Sign() const { + uint64_t d64 = AsUint64(); + return (d64 & kSignMask) == 0? 1: -1; + } + + // Precondition: the value encoded by this Double must be greater or equal + // than +0.0. + DiyFp UpperBoundary() const { + DOUBLE_CONVERSION_ASSERT(Sign() > 0); + return DiyFp(Significand() * 2 + 1, Exponent() - 1); + } + + // Computes the two boundaries of this. + // The bigger boundary (m_plus) is normalized. The lower boundary has the same + // exponent as m_plus. + // Precondition: the value encoded by this Double must be greater than 0. + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { + DOUBLE_CONVERSION_ASSERT(value() > 0.0); + DiyFp v = this->AsDiyFp(); + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); + DiyFp m_minus; + if (LowerBoundaryIsCloser()) { + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); + } else { + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); + } + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); + m_minus.set_e(m_plus.e()); + *out_m_plus = m_plus; + *out_m_minus = m_minus; + } + + bool LowerBoundaryIsCloser() const { + // The boundary is closer if the significand is of the form f == 2^p-1 then + // the lower boundary is closer. + // Think of v = 1000e10 and v- = 9999e9. + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but + // at a distance of 1e8. + // The only exception is for the smallest normal: the largest denormal is + // at the same distance as its successor. + // Note: denormals have the same exponent as the smallest normals. + bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0); + return physical_significand_is_zero && (Exponent() != kDenormalExponent); + } + + double value() const { return uint64_to_double(d64_); } + + // Returns the significand size for a given order of magnitude. + // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. + // This function returns the number of significant binary digits v will have + // once it's encoded into a double. In almost all cases this is equal to + // kSignificandSize. The only exceptions are denormals. They start with + // leading zeroes and their effective significand-size is hence smaller. + static int SignificandSizeForOrderOfMagnitude(int order) { + if (order >= (kDenormalExponent + kSignificandSize)) { + return kSignificandSize; + } + if (order <= kDenormalExponent) return 0; + return order - kDenormalExponent; + } + + static double Infinity() { + return Double(kInfinity).value(); + } + + static double NaN() { + return Double(kNaN).value(); + } + + private: + static const int kDenormalExponent = -kExponentBias + 1; + static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000); + static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000); + + const uint64_t d64_; + + static uint64_t DiyFpToUint64(DiyFp diy_fp) { + uint64_t significand = diy_fp.f(); + int exponent = diy_fp.e(); + while (significand > kHiddenBit + kSignificandMask) { + significand >>= 1; + exponent++; + } + if (exponent >= kMaxExponent) { + return kInfinity; + } + if (exponent < kDenormalExponent) { + return 0; + } + while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { + significand <<= 1; + exponent--; + } + uint64_t biased_exponent; + if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { + biased_exponent = 0; + } else { + biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); + } + return (significand & kSignificandMask) | + (biased_exponent << kPhysicalSignificandSize); + } + + DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double); +}; + +class Single { + public: + static const uint32_t kSignMask = 0x80000000; + static const uint32_t kExponentMask = 0x7F800000; + static const uint32_t kSignificandMask = 0x007FFFFF; + static const uint32_t kHiddenBit = 0x00800000; + static const uint32_t kQuietNanBit = 0x00400000; + static const int kPhysicalSignificandSize = 23; // Excludes the hidden bit. + static const int kSignificandSize = 24; + + Single() : d32_(0) {} + explicit Single(float f) : d32_(float_to_uint32(f)) {} + explicit Single(uint32_t d32) : d32_(d32) {} + + // The value encoded by this Single must be greater or equal to +0.0. + // It must not be special (infinity, or NaN). + DiyFp AsDiyFp() const { + DOUBLE_CONVERSION_ASSERT(Sign() > 0); + DOUBLE_CONVERSION_ASSERT(!IsSpecial()); + return DiyFp(Significand(), Exponent()); + } + + // Returns the single's bit as uint64. + uint32_t AsUint32() const { + return d32_; + } + + int Exponent() const { + if (IsDenormal()) return kDenormalExponent; + + uint32_t d32 = AsUint32(); + int biased_e = + static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize); + return biased_e - kExponentBias; + } + + uint32_t Significand() const { + uint32_t d32 = AsUint32(); + uint32_t significand = d32 & kSignificandMask; + if (!IsDenormal()) { + return significand + kHiddenBit; + } else { + return significand; + } + } + + // Returns true if the single is a denormal. + bool IsDenormal() const { + uint32_t d32 = AsUint32(); + return (d32 & kExponentMask) == 0; + } + + // We consider denormals not to be special. + // Hence only Infinity and NaN are special. + bool IsSpecial() const { + uint32_t d32 = AsUint32(); + return (d32 & kExponentMask) == kExponentMask; + } + + bool IsNan() const { + uint32_t d32 = AsUint32(); + return ((d32 & kExponentMask) == kExponentMask) && + ((d32 & kSignificandMask) != 0); + } + + bool IsQuietNan() const { + return IsNan() && ((AsUint32() & kQuietNanBit) != 0); + } + + bool IsSignalingNan() const { + return IsNan() && ((AsUint32() & kQuietNanBit) == 0); + } + + + bool IsInfinite() const { + uint32_t d32 = AsUint32(); + return ((d32 & kExponentMask) == kExponentMask) && + ((d32 & kSignificandMask) == 0); + } + + int Sign() const { + uint32_t d32 = AsUint32(); + return (d32 & kSignMask) == 0? 1: -1; + } + + // Computes the two boundaries of this. + // The bigger boundary (m_plus) is normalized. The lower boundary has the same + // exponent as m_plus. + // Precondition: the value encoded by this Single must be greater than 0. + void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { + DOUBLE_CONVERSION_ASSERT(value() > 0.0); + DiyFp v = this->AsDiyFp(); + DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); + DiyFp m_minus; + if (LowerBoundaryIsCloser()) { + m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); + } else { + m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); + } + m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); + m_minus.set_e(m_plus.e()); + *out_m_plus = m_plus; + *out_m_minus = m_minus; + } + + // Precondition: the value encoded by this Single must be greater or equal + // than +0.0. + DiyFp UpperBoundary() const { + DOUBLE_CONVERSION_ASSERT(Sign() > 0); + return DiyFp(Significand() * 2 + 1, Exponent() - 1); + } + + bool LowerBoundaryIsCloser() const { + // The boundary is closer if the significand is of the form f == 2^p-1 then + // the lower boundary is closer. + // Think of v = 1000e10 and v- = 9999e9. + // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but + // at a distance of 1e8. + // The only exception is for the smallest normal: the largest denormal is + // at the same distance as its successor. + // Note: denormals have the same exponent as the smallest normals. + bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0); + return physical_significand_is_zero && (Exponent() != kDenormalExponent); + } + + float value() const { return uint32_to_float(d32_); } + + static float Infinity() { + return Single(kInfinity).value(); + } + + static float NaN() { + return Single(kNaN).value(); + } + + private: + static const int kExponentBias = 0x7F + kPhysicalSignificandSize; + static const int kDenormalExponent = -kExponentBias + 1; + static const int kMaxExponent = 0xFF - kExponentBias; + static const uint32_t kInfinity = 0x7F800000; + static const uint32_t kNaN = 0x7FC00000; + + const uint32_t d32_; + + DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single); +}; + +} // namespace double_conversion + +// ICU PATCH: Close ICU namespace +U_NAMESPACE_END + +#endif // DOUBLE_CONVERSION_DOUBLE_H_ +#endif // ICU PATCH: close #if !UCONFIG_NO_FORMATTING |