aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/hyperscan/src/nfa/limex_compile.cpp
diff options
context:
space:
mode:
authorDevtools Arcadia <arcadia-devtools@yandex-team.ru>2022-02-07 18:08:42 +0300
committerDevtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net>2022-02-07 18:08:42 +0300
commit1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch)
treee26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/hyperscan/src/nfa/limex_compile.cpp
downloadydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/hyperscan/src/nfa/limex_compile.cpp')
-rw-r--r--contrib/libs/hyperscan/src/nfa/limex_compile.cpp2671
1 files changed, 2671 insertions, 0 deletions
diff --git a/contrib/libs/hyperscan/src/nfa/limex_compile.cpp b/contrib/libs/hyperscan/src/nfa/limex_compile.cpp
new file mode 100644
index 0000000000..9233ae515e
--- /dev/null
+++ b/contrib/libs/hyperscan/src/nfa/limex_compile.cpp
@@ -0,0 +1,2671 @@
+/*
+ * Copyright (c) 2015-2020, Intel Corporation
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Intel Corporation nor the names of its contributors
+ * may be used to endorse or promote products derived from this software
+ * without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/**
+ * \file
+ * \brief Main NFA build code.
+ */
+
+#include "limex_compile.h"
+
+#include "accel.h"
+#include "accelcompile.h"
+#include "grey.h"
+#include "limex_internal.h"
+#include "limex_limits.h"
+#include "nfa_build_util.h"
+#include "nfagraph/ng_dominators.h"
+#include "nfagraph/ng_holder.h"
+#include "nfagraph/ng_limex_accel.h"
+#include "nfagraph/ng_repeat.h"
+#include "nfagraph/ng_squash.h"
+#include "nfagraph/ng_util.h"
+#include "ue2common.h"
+#include "repeatcompile.h"
+#include "util/alloc.h"
+#include "util/bitutils.h"
+#include "util/bytecode_ptr.h"
+#include "util/charreach.h"
+#include "util/compile_context.h"
+#include "util/container.h"
+#include "util/flat_containers.h"
+#include "util/graph.h"
+#include "util/graph_range.h"
+#include "util/graph_small_color_map.h"
+#include "util/order_check.h"
+#include "util/unordered.h"
+#include "util/verify_types.h"
+
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <cstdlib>
+#include <cstring>
+#include <map>
+#include <set>
+#include <vector>
+
+#include <boost/graph/breadth_first_search.hpp>
+#include <boost/graph/depth_first_search.hpp>
+#include <boost/range/adaptor/map.hpp>
+
+using namespace std;
+using boost::adaptors::map_values;
+
+namespace ue2 {
+
+/**
+ * \brief Special state index value meaning that the vertex will not
+ * participate in an (NFA/DFA/etc) implementation.
+ */
+static constexpr u32 NO_STATE = ~0;
+
+/* Maximum number of states taken as a small NFA */
+static constexpr u32 MAX_SMALL_NFA_STATES = 64;
+
+/* Maximum bounded repeat upper bound to consider as a fast NFA */
+static constexpr u64a MAX_REPEAT_SIZE = 200;
+
+/* Maximum bounded repeat char reach size to consider as a fast NFA */
+static constexpr u32 MAX_REPEAT_CHAR_REACH = 26;
+
+/* Minimum bounded repeat trigger distance to consider as a fast NFA */
+static constexpr u8 MIN_REPEAT_TRIGGER_DISTANCE = 6;
+
+namespace {
+
+struct precalcAccel {
+ precalcAccel() : single_offset(0), double_offset(0) {}
+ CharReach single_cr;
+ u32 single_offset;
+
+ CharReach double_cr;
+ flat_set<pair<u8, u8>> double_lits; /* double-byte accel stop literals */
+ u32 double_offset;
+};
+
+struct limex_accel_info {
+ unordered_set<NFAVertex> accelerable;
+ map<NFAStateSet, precalcAccel> precalc;
+ unordered_map<NFAVertex, flat_set<NFAVertex>> friends;
+ unordered_map<NFAVertex, AccelScheme> accel_map;
+};
+
+static
+unordered_map<NFAVertex, NFAStateSet>
+reindexByStateId(const unordered_map<NFAVertex, NFAStateSet> &in,
+ const NGHolder &g,
+ const unordered_map<NFAVertex, u32> &state_ids,
+ const u32 num_states) {
+ unordered_map<NFAVertex, NFAStateSet> out;
+ out.reserve(in.size());
+
+ vector<u32> indexToState(num_vertices(g), NO_STATE);
+ for (const auto &m : state_ids) {
+ u32 vert_id = g[m.first].index;
+ assert(vert_id < indexToState.size());
+ indexToState[vert_id] = m.second;
+ }
+
+ for (const auto &m : in) {
+ NFAVertex v = m.first;
+ assert(m.second.size() <= indexToState.size());
+
+ NFAStateSet mask(num_states);
+ for (size_t i = m.second.find_first(); i != m.second.npos;
+ i = m.second.find_next(i)) {
+ u32 state_id = indexToState[i];
+ if (state_id == NO_STATE) {
+ continue;
+ }
+ mask.set(state_id);
+ }
+ out.emplace(v, mask);
+ }
+
+ return out;
+}
+
+struct build_info {
+ build_info(NGHolder &hi,
+ const unordered_map<NFAVertex, u32> &states_in,
+ const vector<BoundedRepeatData> &ri,
+ const unordered_map<NFAVertex, NFAStateSet> &rsmi,
+ const unordered_map<NFAVertex, NFAStateSet> &smi,
+ const map<u32, set<NFAVertex>> &ti, const set<NFAVertex> &zi,
+ bool dai, bool sci, const CompileContext &cci, u32 nsi)
+ : h(hi), state_ids(states_in), repeats(ri), tops(ti), tugs(nsi),
+ zombies(zi), do_accel(dai), stateCompression(sci), cc(cci),
+ num_states(nsi) {
+ for (const auto &br : repeats) {
+ for (auto v : br.tug_triggers) {
+ assert(state_ids.at(v) != NO_STATE);
+ tugs.set(state_ids.at(v));
+ }
+ br_cyclic[br.cyclic] =
+ BoundedRepeatSummary(br.repeatMin, br.repeatMax);
+ }
+
+ // Convert squash maps to be indexed by state index rather than
+ // vertex_index.
+ squashMap = reindexByStateId(smi, h, state_ids, num_states);
+ reportSquashMap = reindexByStateId(rsmi, h, state_ids, num_states);
+ }
+
+ NGHolder &h;
+ const unordered_map<NFAVertex, u32> &state_ids;
+ const vector<BoundedRepeatData> &repeats;
+
+ // Squash maps; state sets are indexed by state_id.
+ unordered_map<NFAVertex, NFAStateSet> reportSquashMap;
+ unordered_map<NFAVertex, NFAStateSet> squashMap;
+
+ const map<u32, set<NFAVertex>> &tops;
+ NFAStateSet tugs;
+ map<NFAVertex, BoundedRepeatSummary> br_cyclic;
+ const set<NFAVertex> &zombies;
+ bool do_accel;
+ bool stateCompression;
+ const CompileContext &cc;
+ u32 num_states;
+ limex_accel_info accel;
+};
+
+#define LAST_LIMEX_NFA LIMEX_NFA_512
+
+// Constants for scoring mechanism
+const int SHIFT_COST = 10; // limex: cost per shift mask
+const int EXCEPTION_COST = 4; // limex: per exception
+
+template<NFAEngineType t> struct NFATraits { };
+
+template<template<NFAEngineType t> class sfunc, typename rv_t, typename arg_t,
+ NFAEngineType lb>
+struct DISPATCH_BY_LIMEX_TYPE_INT {
+ static rv_t doOp(NFAEngineType i, const arg_t &arg) {
+ if (i == lb) {
+ return sfunc<lb>::call(arg);
+ } else {
+ return DISPATCH_BY_LIMEX_TYPE_INT<sfunc, rv_t, arg_t,
+ (NFAEngineType)(lb + 1)>
+ ::doOp(i, arg);
+ }
+ }
+};
+
+template<template<NFAEngineType t> class sfunc, typename rv_t, typename arg_t>
+struct DISPATCH_BY_LIMEX_TYPE_INT<sfunc, rv_t, arg_t,
+ (NFAEngineType)(LAST_LIMEX_NFA + 1)> {
+ // dummy
+ static rv_t doOp(NFAEngineType, const arg_t &) {
+ assert(0);
+ throw std::logic_error("Unreachable");
+ }
+};
+
+#define DISPATCH_BY_LIMEX_TYPE(i, op, arg) \
+ DISPATCH_BY_LIMEX_TYPE_INT<op, decltype(op<(NFAEngineType)0>::call(arg)), \
+ decltype(arg), (NFAEngineType)0>::doOp(i, arg)
+
+// Given a number of states, find the size of the smallest container NFA it
+// will fit in. We support NFAs of the following sizes: 32, 64, 128, 256, 384,
+// 512.
+size_t findContainerSize(size_t states) {
+ if (states > 256 && states <= 384) {
+ return 384;
+ }
+ return 1ULL << (lg2(states - 1) + 1);
+}
+
+bool isLimitedTransition(int from, int to, int maxshift) {
+ int diff = to - from;
+
+ // within our shift?
+ if (diff < 0 || diff > maxshift) {
+ return false;
+ }
+
+ // can't jump over a bollard
+ return (from & ~63) == (to & ~63);
+}
+
+// Fill a bit mask
+template<class Mask>
+void maskFill(Mask &m, u8 c) {
+ memset(&m, c, sizeof(m));
+}
+
+// Clear a bit mask.
+template<class Mask>
+void maskClear(Mask &m) {
+ memset(&m, 0, sizeof(m));
+}
+
+template<class Mask>
+u8 *maskGetByte(Mask &m, u32 bit) {
+ assert(bit < sizeof(m)*8);
+ u8 *m8 = (u8 *)&m;
+
+ return m8 + bit/8;
+}
+
+// Set a bit in a mask, starting from the little end.
+template<class Mask>
+void maskSetBit(Mask &m, const unsigned int bit) {
+ u8 *byte = maskGetByte(m, bit);
+ *byte |= 1U << (bit % 8);
+}
+
+template<class Mask>
+void maskSetBits(Mask &m, const NFAStateSet &bits) {
+ for (size_t i = bits.find_first(); i != bits.npos; i = bits.find_next(i)) {
+ maskSetBit(m, i);
+ }
+}
+
+template<class Mask>
+bool isMaskZero(Mask &m) {
+ u8 *m8 = (u8 *)&m;
+ for (u32 i = 0; i < sizeof(m); i++) {
+ if (m8[i]) {
+ return false;
+ }
+ }
+ return true;
+}
+
+// Sets an entire byte in a mask to the given value
+template<class Mask>
+void maskSetByte(Mask &m, const unsigned int idx, const char val) {
+ assert(idx < sizeof(m));
+ char *m8 = (char *)&m;
+ char &byte = m8[idx];
+ byte = val;
+}
+
+// Clear a bit in the mask, starting from the little end.
+template<class Mask>
+void maskClearBit(Mask &m, const u32 bit) {
+ u8 *byte = maskGetByte(m, bit);
+ *byte &= ~(1U << (bit % 8));
+}
+
+/*
+ * Common code: the following code operates on parts of the NFA that are common
+ * to both the (defunct) General and the LimEx models.
+ */
+
+static
+void buildReachMapping(const build_info &args, vector<NFAStateSet> &reach,
+ vector<u8> &reachMap) {
+ const NGHolder &h = args.h;
+ const auto &state_ids = args.state_ids;
+
+ // Build a list of vertices with a state index assigned.
+ vector<NFAVertex> verts;
+ verts.reserve(args.num_states);
+ for (auto v : vertices_range(h)) {
+ if (state_ids.at(v) != NO_STATE) {
+ verts.push_back(v);
+ }
+ }
+
+ // Build a mapping from set-of-states -> reachability.
+ map<NFAStateSet, CharReach> mapping;
+ NFAStateSet states(args.num_states);
+ for (size_t i = 0; i < N_CHARS; i++) {
+ states.reset();
+ for (auto v : verts) {
+ const CharReach &cr = h[v].char_reach;
+ if (cr.test(i)) {
+ u32 state_id = state_ids.at(v);
+ states.set(state_id);
+ }
+ }
+ mapping[states].set(i);
+ }
+
+ DEBUG_PRINTF("%zu distinct reachability entries\n", mapping.size());
+ assert(!mapping.empty());
+
+ // Build a vector of distinct reachability entries and a mapping from every
+ // character to one of those entries.
+
+ reach.reserve(mapping.size());
+ reachMap.assign(N_CHARS, 0);
+
+ u8 num = 0;
+ for (auto mi = mapping.begin(), me = mapping.end(); mi != me; ++mi, ++num) {
+ // Reach entry.
+ reach.push_back(mi->first);
+
+ // Character mapping.
+ const CharReach &cr = mi->second;
+ for (size_t i = cr.find_first(); i != CharReach::npos;
+ i = cr.find_next(i)) {
+ reachMap[i] = num;
+ }
+ }
+}
+
+struct AccelBuild {
+ AccelBuild() : v(NGHolder::null_vertex()), state(0), offset(0) {}
+ NFAVertex v;
+ u32 state;
+ u32 offset; // offset correction to apply
+ CharReach stop1; // single-byte accel stop literals
+ flat_set<pair<u8, u8>> stop2; // double-byte accel stop literals
+};
+
+static
+void findStopLiterals(const build_info &bi, NFAVertex v, AccelBuild &build) {
+ u32 state = bi.state_ids.at(v);
+ build.v = v;
+ build.state = state;
+ NFAStateSet ss(bi.num_states);
+ ss.set(state);
+
+ if (!contains(bi.accel.precalc, ss)) {
+ build.stop1 = CharReach::dot();
+ } else {
+ const precalcAccel &precalc = bi.accel.precalc.at(ss);
+ if (precalc.double_lits.empty()) {
+ build.stop1 = precalc.single_cr;
+ build.offset = precalc.single_offset;
+ } else {
+ build.stop1 = precalc.double_cr;
+ build.stop2 = precalc.double_lits;
+ build.offset = precalc.double_offset;
+ }
+ }
+
+#ifdef DEBUG
+ printf("state %u stop1:", state);
+ for (size_t j = build.stop1.find_first(); j != build.stop1.npos;
+ j = build.stop1.find_next(j)) {
+ printf(" 0x%02x", (u32)j);
+ }
+ printf("\n");
+ printf("state %u stop2:", state);
+ for (auto it = build.stop2.begin(); it != build.stop2.end(); ++it) {
+ printf(" 0x%02hhx%02hhx", it->first, it->second);
+ }
+ printf("\n");
+#endif
+}
+
+// Generate all the data we need for at most NFA_MAX_ACCEL_STATES accelerable
+// states.
+static
+void gatherAccelStates(const build_info &bi, vector<AccelBuild> &accelStates) {
+ for (auto v : bi.accel.accelerable) {
+ DEBUG_PRINTF("state %u is accelerable\n", bi.state_ids.at(v));
+ AccelBuild a;
+ findStopLiterals(bi, v, a);
+ accelStates.push_back(a);
+ }
+
+ // AccelStates should be sorted by state number, so that we build our accel
+ // masks correctly.
+ sort(accelStates.begin(), accelStates.end(),
+ [](const AccelBuild &a, const AccelBuild &b) {
+ return a.state < b.state;
+ });
+
+ // Our caller shouldn't have fed us too many accel states.
+ assert(accelStates.size() <= NFA_MAX_ACCEL_STATES);
+ if (accelStates.size() > NFA_MAX_ACCEL_STATES) {
+ accelStates.resize(NFA_MAX_ACCEL_STATES);
+ }
+}
+
+static
+void combineAccel(const AccelBuild &in, AccelBuild &out) {
+ // stop1 and stop2 union
+ out.stop1 |= in.stop1;
+ out.stop2.insert(in.stop2.begin(), in.stop2.end());
+ // offset is maximum of the two
+ out.offset = max(out.offset, in.offset);
+}
+
+static
+void minimiseAccel(AccelBuild &build) {
+ flat_set<pair<u8, u8>> new_stop2;
+ // Any two-byte accels beginning with a one-byte accel should be removed
+ for (const auto &si : build.stop2) {
+ if (!build.stop1.test(si.first)) {
+ new_stop2.insert(si);
+ }
+ }
+ build.stop2 = new_stop2;
+}
+
+struct AccelAuxCmp {
+ explicit AccelAuxCmp(const AccelAux &aux_in) : aux(aux_in) {}
+ bool operator()(const AccelAux &a) const {
+ return !memcmp(&a, &aux, sizeof(AccelAux));
+ }
+private:
+ const AccelAux &aux;
+};
+
+static
+bool allow_wide_accel(NFAVertex v, const NGHolder &g, NFAVertex sds_or_proxy) {
+ return v == sds_or_proxy || edge(g.start, v, g).second;
+}
+
+static
+bool allow_wide_accel(const vector<NFAVertex> &vv, const NGHolder &g,
+ NFAVertex sds_or_proxy) {
+ for (auto v : vv) {
+ if (allow_wide_accel(v, g, sds_or_proxy)) {
+ return true;
+ }
+ }
+
+ return false;
+}
+
+// identify and mark states that we feel are accelerable (for a limex NFA)
+/* Note: leftfix nfas allow accepts to be accelerated */
+static
+void nfaFindAccelSchemes(const NGHolder &g,
+ const map<NFAVertex, BoundedRepeatSummary> &br_cyclic,
+ unordered_map<NFAVertex, AccelScheme> *out) {
+ vector<CharReach> refined_cr = reduced_cr(g, br_cyclic);
+
+ NFAVertex sds_or_proxy = get_sds_or_proxy(g);
+
+ for (auto v : vertices_range(g)) {
+ // We want to skip any vertices that don't lead to at least one other
+ // (self-loops don't count) vertex.
+ if (!has_proper_successor(v, g)) {
+ DEBUG_PRINTF("skipping vertex %zu\n", g[v].index);
+ continue;
+ }
+
+ bool allow_wide = allow_wide_accel(v, g, sds_or_proxy);
+
+ AccelScheme as;
+ if (nfaCheckAccel(g, v, refined_cr, br_cyclic, &as, allow_wide)) {
+ DEBUG_PRINTF("graph vertex %zu is accelerable with offset %u.\n",
+ g[v].index, as.offset);
+ (*out)[v] = as;
+ }
+ }
+}
+
+struct fas_visitor : public boost::default_bfs_visitor {
+ fas_visitor(const unordered_map<NFAVertex, AccelScheme> &am_in,
+ unordered_map<NFAVertex, AccelScheme> *out_in)
+ : accel_map(am_in), out(out_in) {}
+
+ void discover_vertex(NFAVertex v, const NGHolder &) {
+ if (accel_map.find(v) != accel_map.end()) {
+ (*out)[v] = accel_map.find(v)->second;
+ }
+ if (out->size() >= NFA_MAX_ACCEL_STATES) {
+ throw this; /* done */
+ }
+ }
+ const unordered_map<NFAVertex, AccelScheme> &accel_map;
+ unordered_map<NFAVertex, AccelScheme> *out;
+};
+
+static
+void filterAccelStates(NGHolder &g, const map<u32, set<NFAVertex>> &tops,
+ unordered_map<NFAVertex, AccelScheme> *accel_map) {
+ /* We want the NFA_MAX_ACCEL_STATES best acceleration states, everything
+ * else should be ditched. We use a simple BFS to choose accel states near
+ * the start. */
+
+ vector<NFAEdge> tempEdges;
+ for (const auto &vv : tops | map_values) {
+ for (NFAVertex v : vv) {
+ if (!edge(g.start, v, g).second) {
+ tempEdges.push_back(add_edge(g.start, v, g).first);
+ }
+ }
+ }
+
+ // Similarly, connect (start, startDs) if necessary.
+ if (!edge(g.start, g.startDs, g).second) {
+ NFAEdge e = add_edge(g.start, g.startDs, g);
+ tempEdges.push_back(e); // Remove edge later.
+ }
+
+ unordered_map<NFAVertex, AccelScheme> out;
+
+ try {
+ boost::breadth_first_search(g, g.start,
+ visitor(fas_visitor(*accel_map, &out))
+ .color_map(make_small_color_map(g)));
+ } catch (fas_visitor *) {
+ ; /* found max accel_states */
+ }
+
+ remove_edges(tempEdges, g);
+
+ assert(out.size() <= NFA_MAX_ACCEL_STATES);
+ accel_map->swap(out);
+}
+
+static
+bool containsBadSubset(const limex_accel_info &accel,
+ const NFAStateSet &state_set, const u32 effective_sds) {
+ NFAStateSet subset(state_set.size());
+ for (size_t j = state_set.find_first(); j != state_set.npos;
+ j = state_set.find_next(j)) {
+ subset = state_set;
+ subset.reset(j);
+
+ if (effective_sds != NO_STATE && subset.count() == 1 &&
+ subset.test(effective_sds)) {
+ continue;
+ }
+
+ if (subset.any() && !contains(accel.precalc, subset)) {
+ return true;
+ }
+ }
+ return false;
+}
+
+static
+bool is_too_wide(const AccelScheme &as) {
+ return as.cr.count() > MAX_MERGED_ACCEL_STOPS;
+}
+
+static
+void fillAccelInfo(build_info &bi) {
+ if (!bi.do_accel) {
+ return;
+ }
+
+ NGHolder &g = bi.h;
+ limex_accel_info &accel = bi.accel;
+ unordered_map<NFAVertex, AccelScheme> &accel_map = accel.accel_map;
+ const map<NFAVertex, BoundedRepeatSummary> &br_cyclic = bi.br_cyclic;
+ const unordered_map<NFAVertex, u32> &state_ids = bi.state_ids;
+ const u32 num_states = bi.num_states;
+
+ nfaFindAccelSchemes(g, br_cyclic, &accel_map);
+ filterAccelStates(g, bi.tops, &accel_map);
+
+ assert(accel_map.size() <= NFA_MAX_ACCEL_STATES);
+
+ vector<CharReach> refined_cr = reduced_cr(g, br_cyclic);
+
+ vector<NFAVertex> astates;
+ for (const auto &m : accel_map) {
+ astates.push_back(m.first);
+ }
+
+ NFAStateSet useful(num_states);
+ NFAStateSet state_set(num_states);
+ vector<NFAVertex> states;
+
+ NFAVertex sds_or_proxy = get_sds_or_proxy(g);
+ const u32 effective_sds = state_ids.at(sds_or_proxy);
+
+ /* for each subset of the accel keys need to find an accel scheme */
+ assert(astates.size() < 32);
+ sort(astates.begin(), astates.end());
+
+ for (u32 i = 1, i_end = 1U << astates.size(); i < i_end; i++) {
+ DEBUG_PRINTF("saving info for accel %u\n", i);
+ states.clear();
+ state_set.reset();
+ for (u32 j = 0, j_end = astates.size(); j < j_end; j++) {
+ if (i & (1U << j)) {
+ NFAVertex v = astates[j];
+ states.push_back(v);
+ state_set.set(state_ids.at(v));
+ }
+ }
+
+ if (containsBadSubset(accel, state_set, effective_sds)) {
+ DEBUG_PRINTF("accel %u has bad subset\n", i);
+ continue; /* if a subset failed to build we would too */
+ }
+
+ const bool allow_wide = allow_wide_accel(states, g, sds_or_proxy);
+
+ AccelScheme as = nfaFindAccel(g, states, refined_cr, br_cyclic,
+ allow_wide, true);
+ if (is_too_wide(as)) {
+ DEBUG_PRINTF("accel %u too wide (%zu, %d)\n", i,
+ as.cr.count(), MAX_MERGED_ACCEL_STOPS);
+ continue;
+ }
+
+ DEBUG_PRINTF("accel %u ok with offset s%u, d%u\n", i, as.offset,
+ as.double_offset);
+
+ precalcAccel &pa = accel.precalc[state_set];
+ pa.single_offset = as.offset;
+ pa.single_cr = as.cr;
+
+ if (as.double_byte.size() != 0) {
+ pa.double_offset = as.double_offset;
+ pa.double_lits = as.double_byte;
+ pa.double_cr = as.double_cr;
+ }
+
+ useful |= state_set;
+ }
+
+ for (const auto &m : accel_map) {
+ NFAVertex v = m.first;
+ const u32 state_id = state_ids.at(v);
+
+ /* if we we unable to make a scheme out of the state in any context,
+ * there is not point marking it as accelerable */
+ if (!useful.test(state_id)) {
+ continue;
+ }
+
+ u32 offset = 0;
+ state_set.reset();
+ state_set.set(state_id);
+
+ accel.accelerable.insert(v);
+ findAccelFriends(g, v, br_cyclic, offset, &accel.friends[v]);
+ }
+}
+
+/** The AccelAux structure has large alignment specified, and this makes some
+ * compilers do odd things unless we specify a custom allocator. */
+typedef vector<AccelAux, AlignedAllocator<AccelAux, alignof(AccelAux)>>
+ AccelAuxVector;
+
+#define IMPOSSIBLE_ACCEL_MASK (~0U)
+
+static
+u32 getEffectiveAccelStates(const build_info &args,
+ const unordered_map<NFAVertex, NFAVertex> &dom_map,
+ u32 active_accel_mask,
+ const vector<AccelBuild> &accelStates) {
+ /* accelStates is indexed by the acceleration bit index and contains a
+ * reference to the original vertex & state_id */
+
+ /* Cases to consider:
+ *
+ * 1: Accel states a and b are on and b can squash a
+ * --> we can ignore a. This will result in a no longer being accurately
+ * modelled - we may miss escapes turning it off and we may also miss
+ * its successors being activated.
+ *
+ * 2: Accel state b is on but accel state a is off and a is .* and must be
+ * seen before b is reached (and would not be covered by (1))
+ * --> if a is squashable (or may die unexpectedly) we should continue
+ * as is
+ * --> if a is not squashable we can treat this as a+b or as a no accel,
+ * impossible case
+ * --> this case could be extended to handle non dot reaches by
+ * effectively creating something similar to squash masks for the
+ * reverse graph
+ *
+ *
+ * Other cases:
+ *
+ * 3: Accel states a and b are on but have incompatible reaches
+ * --> we should treat this as an impossible case. Actually, this case
+ * is unlikely to arise as we pick states with wide reaches to
+ * accelerate so an empty intersection is unlikely.
+ *
+ * Note: we need to be careful when dealing with accel states corresponding
+ * to bounded repeat cyclics - they may 'turn off' based on a max bound and
+ * so we may still require on earlier states to be accurately modelled.
+ */
+ const NGHolder &h = args.h;
+
+ /* map from accel_id to mask of accel_ids that it is dominated by */
+ vector<u32> dominated_by(accelStates.size());
+
+ map<NFAVertex, u32> accel_id_map;
+ for (u32 accel_id = 0; accel_id < accelStates.size(); accel_id++) {
+ NFAVertex v = accelStates[accel_id].v;
+ accel_id_map[v] = accel_id;
+ }
+
+ /* Note: we want a slightly less strict defn of dominate as skip edges
+ * prevent .* 'truly' dominating */
+ for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) {
+ u32 accel_id = findAndClearLSB_32(&local_accel_mask);
+ assert(accel_id < accelStates.size());
+ NFAVertex v = accelStates[accel_id].v;
+ while (contains(dom_map, v) && dom_map.at(v)) {
+ v = dom_map.at(v);
+ if (contains(accel_id_map, v)) {
+ dominated_by[accel_id] |= 1U << accel_id_map[v];
+ }
+ /* TODO: could also look at inv_adj vertices to handle fan-in */
+ for (NFAVertex a : adjacent_vertices_range(v, h)) {
+ if (a == v || !contains(accel_id_map, a)
+ || a == accelStates[accel_id].v /* not likely */) {
+ continue;
+ }
+ if (!is_subset_of(h[v].reports, h[a].reports)) {
+ continue;
+ }
+ auto v_succ = succs(v, h);
+ auto a_succ = succs(a, h);
+ if (is_subset_of(v_succ, a_succ)) {
+ dominated_by[accel_id] |= 1U << accel_id_map[a];
+ }
+ }
+ }
+ }
+
+ u32 may_turn_off = 0; /* BR with max bound, non-dots, squashed, etc */
+ for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) {
+ u32 accel_id = findAndClearLSB_32(&local_accel_mask);
+ NFAVertex v = accelStates[accel_id].v;
+ u32 state_id = accelStates[accel_id].state;
+ assert(contains(args.accel.accelerable, v));
+ if (!h[v].char_reach.all()) {
+ may_turn_off |= 1U << accel_id;
+ continue;
+ }
+ if (contains(args.br_cyclic, v)
+ && args.br_cyclic.at(v).repeatMax != depth::infinity()) {
+ may_turn_off |= 1U << accel_id;
+ continue;
+ }
+ for (const auto &s_mask : args.squashMap | map_values) {
+ if (!s_mask.test(state_id)) {
+ may_turn_off |= 1U << accel_id;
+ break;
+ }
+ }
+ for (const auto &s_mask : args.reportSquashMap | map_values) {
+ if (!s_mask.test(state_id)) {
+ may_turn_off |= 1U << accel_id;
+ break;
+ }
+ }
+ }
+
+ /* Case 1: */
+ u32 ignored = 0;
+ for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) {
+ u32 accel_id_b = findAndClearLSB_32(&local_accel_mask);
+ NFAVertex v = accelStates[accel_id_b].v;
+ if (!contains(args.squashMap, v)) {
+ continue;
+ }
+ assert(!contains(args.br_cyclic, v)
+ || args.br_cyclic.at(v).repeatMax == depth::infinity());
+ NFAStateSet squashed = args.squashMap.at(v);
+ squashed.flip(); /* default sense for mask of survivors */
+
+ for (u32 local_accel_mask2 = active_accel_mask; local_accel_mask2; ) {
+ u32 accel_id_a = findAndClearLSB_32(&local_accel_mask2);
+ if (squashed.test(accelStates[accel_id_a].state)) {
+ ignored |= 1U << accel_id_a;
+ }
+ }
+ }
+
+ /* Case 2: */
+ for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) {
+ u32 accel_id = findAndClearLSB_32(&local_accel_mask);
+
+ u32 stuck_dominators = dominated_by[accel_id] & ~may_turn_off;
+ if ((stuck_dominators & active_accel_mask) != stuck_dominators) {
+ DEBUG_PRINTF("only %08x on, but we require %08x\n",
+ active_accel_mask, stuck_dominators);
+ return IMPOSSIBLE_ACCEL_MASK;
+ }
+ }
+
+ if (ignored) {
+ DEBUG_PRINTF("in %08x, ignoring %08x\n", active_accel_mask, ignored);
+ }
+
+ return active_accel_mask & ~ignored;
+}
+
+static
+void buildAccel(const build_info &args, NFAStateSet &accelMask,
+ NFAStateSet &accelFriendsMask, AccelAuxVector &auxvec,
+ vector<u8> &accelTable) {
+ const limex_accel_info &accel = args.accel;
+
+ // Init, all zeroes.
+ accelMask.resize(args.num_states);
+ accelFriendsMask.resize(args.num_states);
+
+ if (!args.do_accel) {
+ return;
+ }
+
+ vector<AccelBuild> accelStates;
+ gatherAccelStates(args, accelStates);
+
+ if (accelStates.empty()) {
+ DEBUG_PRINTF("no accelerable states\n");
+ return;
+ }
+
+ const auto dom_map = findDominators(args.h);
+
+ // We have 2^n different accel entries, one for each possible
+ // combination of accelerable states.
+ assert(accelStates.size() < 32);
+ const u32 accelCount = 1U << accelStates.size();
+ assert(accelCount <= 256);
+
+ // Set up a unioned AccelBuild for every possible combination of the set
+ // bits in accelStates.
+ vector<AccelBuild> accelOuts(accelCount);
+ vector<u32> effective_accel_set;
+ effective_accel_set.push_back(0); /* empty is effectively empty */
+
+ for (u32 i = 1; i < accelCount; i++) {
+ u32 effective_i = getEffectiveAccelStates(args, dom_map, i,
+ accelStates);
+ effective_accel_set.push_back(effective_i);
+
+ if (effective_i == IMPOSSIBLE_ACCEL_MASK) {
+ DEBUG_PRINTF("this combination of accel states is not possible\n");
+ accelOuts[i].stop1 = CharReach::dot();
+ continue;
+ }
+
+ while (effective_i) {
+ u32 base_accel_state = findAndClearLSB_32(&effective_i);
+ combineAccel(accelStates[base_accel_state], accelOuts[i]);
+ }
+ minimiseAccel(accelOuts[i]);
+ }
+
+ accelTable.resize(accelCount);
+
+ // We dedupe our AccelAux structures here, so that we only write one copy
+ // of each unique accel scheme into the bytecode, using the accelTable as
+ // an index.
+
+ // Start with the NONE case.
+ auxvec.push_back(AccelAux());
+ memset(&auxvec[0], 0, sizeof(AccelAux));
+ auxvec[0].accel_type = ACCEL_NONE; // no states on.
+
+ AccelAux aux;
+ for (u32 i = 1; i < accelCount; i++) {
+ memset(&aux, 0, sizeof(aux));
+
+ NFAStateSet effective_states(args.num_states);
+ u32 effective_i = effective_accel_set[i];
+
+ AccelInfo ainfo;
+ ainfo.double_offset = accelOuts[i].offset;
+ ainfo.double_stop1 = accelOuts[i].stop1;
+ ainfo.double_stop2 = accelOuts[i].stop2;
+
+ if (effective_i != IMPOSSIBLE_ACCEL_MASK) {
+ while (effective_i) {
+ u32 base_accel_id = findAndClearLSB_32(&effective_i);
+ effective_states.set(accelStates[base_accel_id].state);
+ }
+
+ if (contains(accel.precalc, effective_states)) {
+ const auto &precalc = accel.precalc.at(effective_states);
+ ainfo.single_offset = precalc.single_offset;
+ ainfo.single_stops = precalc.single_cr;
+ }
+ }
+
+ buildAccelAux(ainfo, &aux);
+
+ // FIXME: We may want a faster way to find AccelAux structures that
+ // we've already built before.
+ auto it = find_if(auxvec.begin(), auxvec.end(), AccelAuxCmp(aux));
+ if (it == auxvec.end()) {
+ accelTable[i] = verify_u8(auxvec.size());
+ auxvec.push_back(aux);
+ } else {
+ accelTable[i] = verify_u8(it - auxvec.begin());
+ }
+ }
+
+ DEBUG_PRINTF("%zu unique accel schemes (of max %u)\n", auxvec.size(),
+ accelCount);
+
+ // XXX: ACCEL_NONE?
+ for (const auto &as : accelStates) {
+ NFAVertex v = as.v;
+ assert(v && args.state_ids.at(v) == as.state);
+
+ accelMask.set(as.state);
+ accelFriendsMask.set(as.state);
+
+ if (!contains(accel.friends, v)) {
+ continue;
+ }
+ // Add the friends of this state to the friends mask.
+ const flat_set<NFAVertex> &friends = accel.friends.at(v);
+ DEBUG_PRINTF("%u has %zu friends\n", as.state, friends.size());
+ for (auto friend_v : friends) {
+ u32 state_id = args.state_ids.at(friend_v);
+ DEBUG_PRINTF("--> %u\n", state_id);
+ accelFriendsMask.set(state_id);
+ }
+ }
+}
+
+static
+u32 addSquashMask(const build_info &args, const NFAVertex &v,
+ vector<NFAStateSet> &squash) {
+ auto sit = args.reportSquashMap.find(v);
+ if (sit == args.reportSquashMap.end()) {
+ return MO_INVALID_IDX;
+ }
+
+ // This state has a squash mask. Paw through the existing vector to
+ // see if we've already seen it, otherwise add a new one.
+ auto it = find(squash.begin(), squash.end(), sit->second);
+ if (it != squash.end()) {
+ return verify_u32(std::distance(squash.begin(), it));
+ }
+ u32 idx = verify_u32(squash.size());
+ squash.push_back(sit->second);
+ return idx;
+}
+
+using ReportListCache = ue2_unordered_map<vector<ReportID>, u32>;
+
+static
+u32 addReports(const flat_set<ReportID> &r, vector<ReportID> &reports,
+ ReportListCache &reports_cache) {
+ assert(!r.empty());
+
+ vector<ReportID> my_reports(begin(r), end(r));
+ my_reports.push_back(MO_INVALID_IDX); // sentinel
+
+ auto cache_it = reports_cache.find(my_reports);
+ if (cache_it != end(reports_cache)) {
+ u32 offset = cache_it->second;
+ DEBUG_PRINTF("reusing cached report list at %u\n", offset);
+ return offset;
+ }
+
+ auto it = search(begin(reports), end(reports), begin(my_reports),
+ end(my_reports));
+ if (it != end(reports)) {
+ u32 offset = verify_u32(std::distance(begin(reports), it));
+ DEBUG_PRINTF("reusing found report list at %u\n", offset);
+ return offset;
+ }
+
+ u32 offset = verify_u32(reports.size());
+ insert(&reports, reports.end(), my_reports);
+ reports_cache.emplace(move(my_reports), offset);
+ return offset;
+}
+
+static
+void buildAcceptsList(const build_info &args, ReportListCache &reports_cache,
+ vector<NFAVertex> &verts, vector<NFAAccept> &accepts,
+ vector<ReportID> &reports, vector<NFAStateSet> &squash) {
+ if (verts.empty()) {
+ return;
+ }
+
+ DEBUG_PRINTF("building accept lists for %zu states\n", verts.size());
+
+ auto cmp_state_id = [&args](NFAVertex a, NFAVertex b) {
+ u32 a_state = args.state_ids.at(a);
+ u32 b_state = args.state_ids.at(b);
+ assert(a_state != b_state || a == b);
+ return a_state < b_state;
+ };
+
+ sort(begin(verts), end(verts), cmp_state_id);
+
+ const NGHolder &h = args.h;
+ for (const auto &v : verts) {
+ DEBUG_PRINTF("state=%u, reports: [%s]\n", args.state_ids.at(v),
+ as_string_list(h[v].reports).c_str());
+ NFAAccept a;
+ memset(&a, 0, sizeof(a));
+ assert(!h[v].reports.empty());
+ if (h[v].reports.size() == 1) {
+ a.single_report = 1;
+ a.reports = *h[v].reports.begin();
+ } else {
+ a.single_report = 0;
+ a.reports = addReports(h[v].reports, reports, reports_cache);
+ }
+ a.squash = addSquashMask(args, v, squash);
+ accepts.push_back(move(a));
+ }
+}
+
+static
+void buildAccepts(const build_info &args, ReportListCache &reports_cache,
+ NFAStateSet &acceptMask, NFAStateSet &acceptEodMask,
+ vector<NFAAccept> &accepts, vector<NFAAccept> &acceptsEod,
+ vector<ReportID> &reports, vector<NFAStateSet> &squash) {
+ const NGHolder &h = args.h;
+
+ acceptMask.resize(args.num_states);
+ acceptEodMask.resize(args.num_states);
+
+ vector<NFAVertex> verts_accept, verts_accept_eod;
+
+ for (auto v : vertices_range(h)) {
+ u32 state_id = args.state_ids.at(v);
+
+ if (state_id == NO_STATE || !is_match_vertex(v, h)) {
+ continue;
+ }
+
+ if (edge(v, h.accept, h).second) {
+ acceptMask.set(state_id);
+ verts_accept.push_back(v);
+ } else {
+ assert(edge(v, h.acceptEod, h).second);
+ acceptEodMask.set(state_id);
+ verts_accept_eod.push_back(v);
+ }
+ }
+
+ buildAcceptsList(args, reports_cache, verts_accept, accepts, reports,
+ squash);
+ buildAcceptsList(args, reports_cache, verts_accept_eod, acceptsEod, reports,
+ squash);
+}
+
+static
+void buildTopMasks(const build_info &args, vector<NFAStateSet> &topMasks) {
+ if (args.tops.empty()) {
+ return; // No tops, probably an outfix NFA.
+ }
+
+ u32 numMasks = args.tops.rbegin()->first + 1; // max mask index
+ DEBUG_PRINTF("we have %u top masks\n", numMasks);
+
+ topMasks.assign(numMasks, NFAStateSet(args.num_states)); // all zeroes
+
+ for (const auto &m : args.tops) {
+ u32 mask_idx = m.first;
+ for (NFAVertex v : m.second) {
+ u32 state_id = args.state_ids.at(v);
+ DEBUG_PRINTF("state %u is in top mask %u\n", state_id, mask_idx);
+
+ assert(mask_idx < numMasks);
+ assert(state_id != NO_STATE);
+
+ topMasks[mask_idx].set(state_id);
+ }
+ }
+}
+
+static
+u32 uncompressedStateSize(u32 num_states) {
+ // Number of bytes required to store all our states.
+ return ROUNDUP_N(num_states, 8)/8;
+}
+
+static
+u32 compressedStateSize(const NGHolder &h, const NFAStateSet &maskedStates,
+ const unordered_map<NFAVertex, u32> &state_ids) {
+ // Shrink state requirement to enough to fit the compressed largest reach.
+ vector<u32> allreach(N_CHARS, 0);
+
+ for (auto v : vertices_range(h)) {
+ u32 i = state_ids.at(v);
+ if (i == NO_STATE || maskedStates.test(i)) {
+ continue;
+ }
+ const CharReach &cr = h[v].char_reach;
+ for (size_t j = cr.find_first(); j != cr.npos; j = cr.find_next(j)) {
+ allreach[j]++; // state 'i' can reach character 'j'.
+ }
+ }
+
+ u32 maxreach = *max_element(allreach.begin(), allreach.end());
+ DEBUG_PRINTF("max reach is %u\n", maxreach);
+ return (maxreach + 7) / 8;
+}
+
+static
+bool hasSquashableInitDs(const build_info &args) {
+ const NGHolder &h = args.h;
+
+ if (args.squashMap.empty()) {
+ DEBUG_PRINTF("squash map is empty\n");
+ return false;
+ }
+
+ NFAStateSet initDs(args.num_states);
+ u32 sds_state = args.state_ids.at(h.startDs);
+ if (sds_state == NO_STATE) {
+ DEBUG_PRINTF("no states in initds\n");
+ return false;
+ }
+
+ initDs.set(sds_state);
+
+ /* TODO: simplify */
+
+ // Check normal squash map.
+ for (const auto &m : args.squashMap) {
+ DEBUG_PRINTF("checking squash mask for state %u\n",
+ args.state_ids.at(m.first));
+ NFAStateSet squashed = ~(m.second); // flip mask
+ assert(squashed.size() == initDs.size());
+ if (squashed.intersects(initDs)) {
+ DEBUG_PRINTF("state %u squashes initds states\n",
+ args.state_ids.at(m.first));
+ return true;
+ }
+ }
+
+ // Check report squash map.
+ for (const auto &m : args.reportSquashMap) {
+ DEBUG_PRINTF("checking report squash mask for state %u\n",
+ args.state_ids.at(m.first));
+ NFAStateSet squashed = ~(m.second); // flip mask
+ assert(squashed.size() == initDs.size());
+ if (squashed.intersects(initDs)) {
+ DEBUG_PRINTF("state %u squashes initds states\n",
+ args.state_ids.at(m.first));
+ return true;
+ }
+ }
+
+ return false;
+}
+
+static
+bool hasInitDsStates(const NGHolder &h,
+ const unordered_map<NFAVertex, u32> &state_ids) {
+ if (state_ids.at(h.startDs) != NO_STATE) {
+ return true;
+ }
+
+ if (is_triggered(h) && state_ids.at(h.start) != NO_STATE) {
+ return true;
+ }
+
+ return false;
+}
+
+static
+void findMaskedCompressionStates(const build_info &args,
+ NFAStateSet &maskedStates) {
+ const NGHolder &h = args.h;
+ if (!generates_callbacks(h)) {
+ // Rose leftfixes can mask out initds, which is worth doing if it will
+ // stay on forever (i.e. it's not squashable).
+ u32 sds_i = args.state_ids.at(h.startDs);
+ if (sds_i != NO_STATE && !hasSquashableInitDs(args)) {
+ maskedStates.set(sds_i);
+ DEBUG_PRINTF("masking out initds state\n");
+ }
+ }
+
+ // Suffixes and outfixes can mask out leaf states, which should all be
+ // accepts. Right now we can only do this when there is nothing in initDs,
+ // as we switch that on unconditionally in the expand call.
+ if (!inspects_states_for_accepts(h)
+ && !hasInitDsStates(h, args.state_ids)) {
+ NFAStateSet nonleaf(args.num_states);
+ for (const auto &e : edges_range(h)) {
+ u32 from = args.state_ids.at(source(e, h));
+ u32 to = args.state_ids.at(target(e, h));
+ if (from == NO_STATE) {
+ continue;
+ }
+
+ // We cannot mask out EOD accepts, as they have to perform an
+ // action after they're switched on that may be delayed until the
+ // next stream write.
+ if (to == NO_STATE && target(e, h) != h.acceptEod) {
+ continue;
+ }
+
+ nonleaf.set(from);
+ }
+
+ for (u32 i = 0; i < args.num_states; i++) {
+ if (!nonleaf.test(i)) {
+ maskedStates.set(i);
+ }
+ }
+
+ DEBUG_PRINTF("masking out %zu leaf states\n", maskedStates.count());
+ }
+}
+
+/** \brief Sets a given flag in the LimEx structure. */
+template<class implNFA_t>
+static
+void setLimexFlag(implNFA_t *limex, u32 flag) {
+ assert(flag);
+ assert((flag & (flag - 1)) == 0);
+ limex->flags |= flag;
+}
+
+/** \brief Sets a given flag in the NFA structure */
+static
+void setNfaFlag(NFA *nfa, u32 flag) {
+ assert(flag);
+ assert((flag & (flag - 1)) == 0);
+ nfa->flags |= flag;
+}
+
+// Some of our NFA types support compressing the state down if we're not using
+// all of it.
+template<class implNFA_t>
+static
+void findStateSize(const build_info &args, implNFA_t *limex) {
+ // Nothing is masked off by default.
+ maskFill(limex->compressMask, 0xff);
+
+ u32 sizeUncompressed = uncompressedStateSize(args.num_states);
+ assert(sizeUncompressed <= sizeof(limex->compressMask));
+
+ if (!args.stateCompression) {
+ DEBUG_PRINTF("compression disabled, uncompressed state size %u\n",
+ sizeUncompressed);
+ limex->stateSize = sizeUncompressed;
+ return;
+ }
+
+ NFAStateSet maskedStates(args.num_states);
+ findMaskedCompressionStates(args, maskedStates);
+
+ u32 sizeCompressed = compressedStateSize(args.h, maskedStates, args.state_ids);
+ assert(sizeCompressed <= sizeof(limex->compressMask));
+
+ DEBUG_PRINTF("compressed=%u, uncompressed=%u\n", sizeCompressed,
+ sizeUncompressed);
+
+ // Must be at least a 10% saving.
+ if ((sizeCompressed * 100) <= (sizeUncompressed * 90)) {
+ DEBUG_PRINTF("using compression, state size %u\n",
+ sizeCompressed);
+ setLimexFlag(limex, LIMEX_FLAG_COMPRESS_STATE);
+ limex->stateSize = sizeCompressed;
+
+ if (maskedStates.any()) {
+ DEBUG_PRINTF("masking %zu states\n", maskedStates.count());
+ setLimexFlag(limex, LIMEX_FLAG_COMPRESS_MASKED);
+ for (size_t i = maskedStates.find_first(); i != NFAStateSet::npos;
+ i = maskedStates.find_next(i)) {
+ maskClearBit(limex->compressMask, i);
+ }
+ }
+ } else {
+ DEBUG_PRINTF("not using compression, state size %u\n",
+ sizeUncompressed);
+ limex->stateSize = sizeUncompressed;
+ }
+}
+
+/*
+ * LimEx NFA: code for building NFAs in the Limited+Exceptional model. Most
+ * transitions are limited, with transitions outside the constraints of our
+ * shifts taken care of as 'exceptions'. Exceptions are also used to handle
+ * accepts and squash behaviour.
+ */
+
+/**
+ * \brief Prototype exception class.
+ *
+ * Used to build up the map of exceptions before being converted to real
+ * NFAException32 (etc) structures.
+ */
+struct ExceptionProto {
+ u32 reports_index = MO_INVALID_IDX;
+ NFAStateSet succ_states;
+ NFAStateSet squash_states;
+ u32 repeat_index = MO_INVALID_IDX;
+ enum LimExTrigger trigger = LIMEX_TRIGGER_NONE;
+ enum LimExSquash squash = LIMEX_SQUASH_NONE;
+
+ explicit ExceptionProto(u32 num_states)
+ : succ_states(num_states), squash_states(num_states) {
+ // Squash states are represented as the set of states to leave on,
+ // so we start with all-ones.
+ squash_states.set();
+ }
+
+ bool operator<(const ExceptionProto &b) const {
+ const ExceptionProto &a = *this;
+
+ ORDER_CHECK(reports_index);
+ ORDER_CHECK(repeat_index);
+ ORDER_CHECK(trigger);
+ ORDER_CHECK(squash);
+ ORDER_CHECK(succ_states);
+ ORDER_CHECK(squash_states);
+
+ return false;
+ }
+};
+
+static
+u32 buildExceptionMap(const build_info &args, ReportListCache &reports_cache,
+ const unordered_set<NFAEdge> &exceptional,
+ map<ExceptionProto, vector<u32>> &exceptionMap,
+ vector<ReportID> &reportList) {
+ const NGHolder &h = args.h;
+ const u32 num_states = args.num_states;
+ u32 exceptionCount = 0;
+
+ unordered_map<NFAVertex, u32> pos_trigger;
+ unordered_map<NFAVertex, u32> tug_trigger;
+
+ for (u32 i = 0; i < args.repeats.size(); i++) {
+ const BoundedRepeatData &br = args.repeats[i];
+ assert(!contains(pos_trigger, br.pos_trigger));
+ pos_trigger[br.pos_trigger] = i;
+ for (auto v : br.tug_triggers) {
+ assert(!contains(tug_trigger, v));
+ tug_trigger[v] = i;
+ }
+ }
+
+ for (auto v : vertices_range(h)) {
+ const u32 i = args.state_ids.at(v);
+
+ if (i == NO_STATE) {
+ continue;
+ }
+
+ bool addMe = false;
+ ExceptionProto e(num_states);
+
+ if (edge(v, h.accept, h).second && generates_callbacks(h)) {
+ /* if nfa is never used to produce callbacks, no need to mark
+ * states as exceptional */
+ const auto &reports = h[v].reports;
+
+ DEBUG_PRINTF("state %u is exceptional due to accept "
+ "(%zu reports)\n", i, reports.size());
+
+ if (reports.empty()) {
+ e.reports_index = MO_INVALID_IDX;
+ } else {
+ e.reports_index =
+ addReports(reports, reportList, reports_cache);
+ }
+
+ // We may be applying a report squash too.
+ auto mi = args.reportSquashMap.find(v);
+ if (mi != args.reportSquashMap.end()) {
+ DEBUG_PRINTF("report squashes states\n");
+ assert(e.squash_states.size() == mi->second.size());
+ e.squash_states = mi->second;
+ e.squash = LIMEX_SQUASH_REPORT;
+ }
+
+ addMe = true;
+ }
+
+ if (contains(pos_trigger, v)) {
+ u32 repeat_index = pos_trigger[v];
+ assert(e.trigger == LIMEX_TRIGGER_NONE);
+ e.trigger = LIMEX_TRIGGER_POS;
+ e.repeat_index = repeat_index;
+ DEBUG_PRINTF("state %u has pos trigger for repeat %u\n", i,
+ repeat_index);
+ addMe = true;
+ }
+
+ if (contains(tug_trigger, v)) {
+ u32 repeat_index = tug_trigger[v];
+ assert(e.trigger == LIMEX_TRIGGER_NONE);
+ e.trigger = LIMEX_TRIGGER_TUG;
+ e.repeat_index = repeat_index;
+
+ // TUG triggers can squash the preceding cyclic state.
+ u32 cyclic = args.state_ids.at(args.repeats[repeat_index].cyclic);
+ e.squash_states.reset(cyclic);
+ e.squash = LIMEX_SQUASH_TUG;
+ DEBUG_PRINTF("state %u has tug trigger for repeat %u, can squash "
+ "state %u\n", i, repeat_index, cyclic);
+ addMe = true;
+ }
+
+ // are we a non-limited transition?
+ for (const auto &oe : out_edges_range(v, h)) {
+ if (contains(exceptional, oe)) {
+ NFAVertex w = target(oe, h);
+ u32 w_idx = args.state_ids.at(w);
+ assert(w_idx != NO_STATE);
+ e.succ_states.set(w_idx);
+ DEBUG_PRINTF("exceptional transition %u->%u\n", i, w_idx);
+ addMe = true;
+ }
+ }
+
+ // do we lead SOLELY to a squasher state? (we use the successors as
+ // a proxy for the out-edge here, so there must be only one for us
+ // to do this safely)
+ /* The above comment is IMHO bogus and would result in all squashing
+ * being disabled around stars */
+ if (e.trigger != LIMEX_TRIGGER_TUG) {
+ for (auto w : adjacent_vertices_range(v, h)) {
+ if (w == v) {
+ continue;
+ }
+ u32 j = args.state_ids.at(w);
+ if (j == NO_STATE) {
+ continue;
+ }
+ DEBUG_PRINTF("we are checking if succ %u is a squasher\n", j);
+ auto mi = args.squashMap.find(w);
+ if (mi != args.squashMap.end()) {
+ DEBUG_PRINTF("squasher edge (%u, %u)\n", i, j);
+ DEBUG_PRINTF("e.squash_states.size() == %zu, "
+ "mi->second.size() = %zu\n",
+ e.squash_states.size(), mi->second.size());
+ assert(e.squash_states.size() == mi->second.size());
+ e.squash_states = mi->second;
+
+ // NOTE: this might be being combined with the report
+ // squashing above.
+
+ e.squash = LIMEX_SQUASH_CYCLIC;
+ DEBUG_PRINTF("squashing succ %u (turns off %zu states)\n",
+ j, mi->second.size() - mi->second.count());
+ addMe = true;
+ }
+ }
+ }
+
+ if (addMe) {
+ // Add 'e' if it isn't in the map, and push state i on to its list
+ // of states.
+ assert(e.succ_states.size() == num_states);
+ assert(e.squash_states.size() == num_states);
+ exceptionMap[e].push_back(i);
+ exceptionCount++;
+ }
+ }
+
+ DEBUG_PRINTF("%u exceptions found (%zu unique)\n", exceptionCount,
+ exceptionMap.size());
+ return exceptionCount;
+}
+
+static
+u32 depth_to_u32(const depth &d) {
+ assert(d.is_reachable());
+ if (d.is_infinite()) {
+ return REPEAT_INF;
+ }
+
+ u32 d_val = d;
+ assert(d_val < REPEAT_INF);
+ return d_val;
+}
+
+static
+bool isExceptionalTransition(u32 from, u32 to, const build_info &args,
+ u32 maxShift) {
+ if (!isLimitedTransition(from, to, maxShift)) {
+ return true;
+ }
+
+ // All transitions out of a tug trigger are exceptional.
+ if (args.tugs.test(from)) {
+ return true;
+ }
+ return false;
+}
+
+static
+u32 findMaxVarShift(const build_info &args, u32 nShifts) {
+ const NGHolder &h = args.h;
+ u32 shiftMask = 0;
+ for (const auto &e : edges_range(h)) {
+ u32 from = args.state_ids.at(source(e, h));
+ u32 to = args.state_ids.at(target(e, h));
+ if (from == NO_STATE || to == NO_STATE) {
+ continue;
+ }
+ if (!isExceptionalTransition(from, to, args, MAX_SHIFT_AMOUNT)) {
+ shiftMask |= (1UL << (to - from));
+ }
+ }
+
+ u32 maxVarShift = 0;
+ for (u32 shiftCnt = 0; shiftMask != 0 && shiftCnt < nShifts; shiftCnt++) {
+ maxVarShift = findAndClearLSB_32(&shiftMask);
+ }
+
+ return maxVarShift;
+}
+
+static
+int getLimexScore(const build_info &args, u32 nShifts) {
+ const NGHolder &h = args.h;
+ u32 maxVarShift = nShifts;
+ int score = 0;
+
+ score += SHIFT_COST * nShifts;
+ maxVarShift = findMaxVarShift(args, nShifts);
+
+ NFAStateSet exceptionalStates(args.num_states);
+ for (const auto &e : edges_range(h)) {
+ u32 from = args.state_ids.at(source(e, h));
+ u32 to = args.state_ids.at(target(e, h));
+ if (from == NO_STATE || to == NO_STATE) {
+ continue;
+ }
+ if (isExceptionalTransition(from, to, args, maxVarShift)) {
+ exceptionalStates.set(from);
+ }
+ }
+ score += EXCEPTION_COST * exceptionalStates.count();
+ return score;
+}
+
+// This function finds the best shift scheme with highest score
+// Returns number of shifts and score calculated for appropriate scheme
+// Returns zero if no appropriate scheme was found
+static
+u32 findBestNumOfVarShifts(const build_info &args,
+ int *bestScoreRet = nullptr) {
+ u32 bestNumOfVarShifts = 0;
+ int bestScore = INT_MAX;
+ for (u32 shiftCount = 1; shiftCount <= MAX_SHIFT_COUNT; shiftCount++) {
+ int score = getLimexScore(args, shiftCount);
+ if (score < bestScore) {
+ bestScore = score;
+ bestNumOfVarShifts = shiftCount;
+ }
+ }
+ if (bestScoreRet != nullptr) {
+ *bestScoreRet = bestScore;
+ }
+ return bestNumOfVarShifts;
+}
+
+static
+bool cannotDie(const build_info &args, const set<NFAVertex> &tops) {
+ const auto &h = args.h;
+
+ // When this top is activated, all of the vertices in 'tops' are switched
+ // on. If any of those lead to a graph that cannot die, then this top
+ // cannot die.
+
+ // For each top, we use a depth-first search to traverse the graph from the
+ // top, looking for a cyclic path consisting of vertices of dot reach. If
+ // one exists, than the NFA cannot die after this top is triggered.
+
+ auto colour_map = make_small_color_map(h);
+
+ struct CycleFound {};
+ struct CannotDieVisitor : public boost::default_dfs_visitor {
+ void back_edge(const NFAEdge &e, const NGHolder &g) const {
+ DEBUG_PRINTF("back-edge %zu,%zu\n", g[source(e, g)].index,
+ g[target(e, g)].index);
+ if (g[target(e, g)].char_reach.all()) {
+ assert(g[source(e, g)].char_reach.all());
+ throw CycleFound();
+ }
+ }
+ };
+
+ try {
+ for (const auto &top : tops) {
+ DEBUG_PRINTF("checking top vertex %zu\n", h[top].index);
+
+ // Constrain the search to the top vertices and any dot vertices it
+ // can reach.
+ auto term_func = [&](NFAVertex v, const NGHolder &g) {
+ if (v == top) {
+ return false;
+ }
+ if (!g[v].char_reach.all()) {
+ return true;
+ }
+ if (contains(args.br_cyclic, v) &&
+ args.br_cyclic.at(v).repeatMax != depth::infinity()) {
+ // Bounded repeat vertices without inf max can be turned
+ // off.
+ return true;
+ }
+ return false;
+ };
+
+ boost::depth_first_visit(h, top, CannotDieVisitor(), colour_map,
+ term_func);
+ }
+ } catch (const CycleFound &) {
+ DEBUG_PRINTF("cycle found\n");
+ return true;
+ }
+
+ return false;
+}
+
+/** \brief True if this NFA cannot ever be in no states at all. */
+static
+bool cannotDie(const build_info &args) {
+ const auto &h = args.h;
+ const auto &state_ids = args.state_ids;
+
+ // If we have a startDs we're actually using, we can't die.
+ if (state_ids.at(h.startDs) != NO_STATE) {
+ DEBUG_PRINTF("is using startDs\n");
+ return true;
+ }
+
+ return all_of_in(args.tops | map_values, [&](const set<NFAVertex> &verts) {
+ return cannotDie(args, verts);
+ });
+}
+
+template<NFAEngineType dtype>
+struct Factory {
+ // typedefs for readability, for types derived from traits
+ typedef typename NFATraits<dtype>::exception_t exception_t;
+ typedef typename NFATraits<dtype>::implNFA_t implNFA_t;
+ typedef typename NFATraits<dtype>::tableRow_t tableRow_t;
+
+ static
+ void allocState(NFA *nfa, u32 repeatscratchStateSize,
+ u32 repeatStreamState) {
+ implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa);
+
+ // LimEx NFAs now store the following in state:
+ // 1. state bitvector (always present)
+ // 2. space associated with repeats
+ // This function just needs to size these correctly.
+
+ u32 stateSize = limex->stateSize;
+
+ DEBUG_PRINTF("bitvector=%zu/%u, repeat full=%u, stream=%u\n",
+ sizeof(limex->init), stateSize, repeatscratchStateSize,
+ repeatStreamState);
+
+ size_t scratchStateSize = NFATraits<dtype>::scratch_state_size;
+
+ if (repeatscratchStateSize) {
+ scratchStateSize
+ = ROUNDUP_N(scratchStateSize, alignof(RepeatControl));
+ scratchStateSize += repeatscratchStateSize;
+ }
+ size_t streamStateSize = stateSize + repeatStreamState;
+
+ nfa->scratchStateSize = verify_u32(scratchStateSize);
+ nfa->streamStateSize = verify_u32(streamStateSize);
+ }
+
+ static
+ size_t repeatAllocSize(const BoundedRepeatData &br, u32 *tableOffset,
+ u32 *tugMaskOffset) {
+ size_t len = sizeof(NFARepeatInfo) + sizeof(RepeatInfo);
+
+ // sparse lookup table.
+ if (br.type == REPEAT_SPARSE_OPTIMAL_P) {
+ len = ROUNDUP_N(len, alignof(u64a));
+ *tableOffset = verify_u32(len);
+ len += sizeof(u64a) * (br.repeatMax + 1);
+ } else {
+ *tableOffset = 0;
+ }
+
+ // tug mask.
+ len = ROUNDUP_N(len, alignof(tableRow_t));
+ *tugMaskOffset = verify_u32(len);
+ len += sizeof(tableRow_t);
+
+ // to simplify layout.
+ len = ROUNDUP_CL(len);
+
+ return len;
+ }
+
+ static
+ void buildRepeats(const build_info &args,
+ vector<bytecode_ptr<NFARepeatInfo>> &out,
+ u32 *scratchStateSize, u32 *streamState) {
+ out.reserve(args.repeats.size());
+
+ u32 repeat_idx = 0;
+ for (auto it = args.repeats.begin(), ite = args.repeats.end();
+ it != ite; ++it, ++repeat_idx) {
+ const BoundedRepeatData &br = *it;
+ assert(args.state_ids.at(br.cyclic) != NO_STATE);
+
+ u32 tableOffset, tugMaskOffset;
+ size_t len = repeatAllocSize(br, &tableOffset, &tugMaskOffset);
+ auto info = make_zeroed_bytecode_ptr<NFARepeatInfo>(len);
+ char *info_ptr = (char *)info.get();
+
+ // Collect state space info.
+ RepeatStateInfo rsi(br.type, br.repeatMin, br.repeatMax, br.minPeriod);
+ u32 streamStateLen = rsi.packedCtrlSize + rsi.stateSize;
+
+ // Fill the NFARepeatInfo structure.
+ info->cyclicState = args.state_ids.at(br.cyclic);
+ info->ctrlIndex = repeat_idx;
+ info->packedCtrlOffset = *streamState;
+ info->stateOffset = *streamState + rsi.packedCtrlSize;
+ info->stateSize = streamStateLen;
+ info->tugMaskOffset = tugMaskOffset;
+
+ // Fill the RepeatInfo structure.
+ RepeatInfo *repeat =
+ (RepeatInfo *)(info_ptr + sizeof(NFARepeatInfo));
+ repeat->type = br.type;
+ repeat->repeatMin = depth_to_u32(br.repeatMin);
+ repeat->repeatMax = depth_to_u32(br.repeatMax);
+ repeat->horizon = rsi.horizon;
+ repeat->packedCtrlSize = rsi.packedCtrlSize;
+ repeat->stateSize = rsi.stateSize;
+ copy_bytes(repeat->packedFieldSizes, rsi.packedFieldSizes);
+ repeat->patchCount = rsi.patchCount;
+ repeat->patchSize = rsi.patchSize;
+ repeat->encodingSize = rsi.encodingSize;
+ repeat->patchesOffset = rsi.patchesOffset;
+
+ u32 repeat_len = sizeof(RepeatInfo);
+ if (br.type == REPEAT_SPARSE_OPTIMAL_P) {
+ repeat_len += sizeof(u64a) * (rsi.patchSize + 1);
+ }
+ repeat->length = repeat_len;
+
+ // Copy in the sparse lookup table.
+ if (br.type == REPEAT_SPARSE_OPTIMAL_P) {
+ assert(!rsi.table.empty());
+ copy_bytes(info_ptr + tableOffset, rsi.table);
+ }
+
+ // Fill the tug mask.
+ tableRow_t *tugMask = (tableRow_t *)(info_ptr + tugMaskOffset);
+ for (auto v : br.tug_triggers) {
+ u32 state_id = args.state_ids.at(v);
+ assert(state_id != NO_STATE);
+ maskSetBit(*tugMask, state_id);
+ }
+
+ assert(streamStateLen);
+ *streamState += streamStateLen;
+ *scratchStateSize += sizeof(RepeatControl);
+
+ out.emplace_back(move(info));
+ }
+ }
+
+ static
+ void writeLimexMasks(const build_info &args, implNFA_t *limex) {
+ const NGHolder &h = args.h;
+
+ // Init masks.
+ u32 s_i = args.state_ids.at(h.start);
+ u32 sds_i = args.state_ids.at(h.startDs);
+
+ if (s_i != NO_STATE) {
+ maskSetBit(limex->init, s_i);
+ if (is_triggered(h)) {
+ maskSetBit(limex->initDS, s_i);
+ }
+ }
+
+ if (sds_i != NO_STATE) {
+ maskSetBit(limex->init, sds_i);
+ maskSetBit(limex->initDS, sds_i);
+ }
+
+ // Zombie mask.
+ for (auto v : args.zombies) {
+ u32 state_id = args.state_ids.at(v);
+ assert(state_id != NO_STATE);
+ maskSetBit(limex->zombieMask, state_id);
+ }
+
+ // Repeat cyclic mask.
+ for (const auto &br : args.repeats) {
+ u32 cyclic = args.state_ids.at(br.cyclic);
+ assert(cyclic != NO_STATE);
+ maskSetBit(limex->repeatCyclicMask, cyclic);
+ }
+ /* also include tugs in repeat cyclic mask */
+ for (size_t i = args.tugs.find_first(); i != args.tugs.npos;
+ i = args.tugs.find_next(i)) {
+ maskSetBit(limex->repeatCyclicMask, i);
+ }
+ }
+
+ static
+ void writeShiftMasks(const build_info &args, implNFA_t *limex) {
+ const NGHolder &h = args.h;
+ u32 maxShift = findMaxVarShift(args, limex->shiftCount);
+ u32 shiftMask = 0;
+ int shiftMaskIdx = 0;
+
+ for (const auto &e : edges_range(h)) {
+ u32 from = args.state_ids.at(source(e, h));
+ u32 to = args.state_ids.at(target(e, h));
+ if (from == NO_STATE || to == NO_STATE) {
+ continue;
+ }
+
+ // We check for exceptional transitions here, as we don't want tug
+ // trigger transitions emitted as limited transitions (even if they
+ // could be in this model).
+ if (!isExceptionalTransition(from, to, args, maxShift)) {
+ u32 shift = to - from;
+ if ((shiftMask & (1UL << shift)) == 0UL) {
+ shiftMask |= (1UL << shift);
+ limex->shiftAmount[shiftMaskIdx++] = (u8)shift;
+ }
+ assert(limex->shiftCount <= MAX_SHIFT_COUNT);
+ for (u32 i = 0; i < limex->shiftCount; i++) {
+ if (limex->shiftAmount[i] == (u8)shift) {
+ maskSetBit(limex->shift[i], from);
+ break;
+ }
+ }
+ }
+ }
+ if (maxShift && limex->shiftCount > 1) {
+ for (u32 i = 0; i < limex->shiftCount; i++) {
+ assert(!isMaskZero(limex->shift[i]));
+ }
+ }
+ }
+
+ static
+ void findExceptionalTransitions(const build_info &args,
+ unordered_set<NFAEdge> &exceptional,
+ u32 maxShift) {
+ const NGHolder &h = args.h;
+
+ for (const auto &e : edges_range(h)) {
+ u32 from = args.state_ids.at(source(e, h));
+ u32 to = args.state_ids.at(target(e, h));
+ if (from == NO_STATE || to == NO_STATE) {
+ continue;
+ }
+
+ if (isExceptionalTransition(from, to, args, maxShift)) {
+ exceptional.insert(e);
+ }
+ }
+ }
+
+ static
+ void writeExceptions(const build_info &args,
+ const map<ExceptionProto, vector<u32>> &exceptionMap,
+ const vector<u32> &repeatOffsets, implNFA_t *limex,
+ const u32 exceptionsOffset,
+ const u32 reportListOffset) {
+ DEBUG_PRINTF("exceptionsOffset=%u\n", exceptionsOffset);
+
+ exception_t *etable = (exception_t *)((char *)limex + exceptionsOffset);
+ assert(ISALIGNED(etable));
+
+ map<u32, ExceptionProto> exception_by_state;
+ for (const auto &m : exceptionMap) {
+ const ExceptionProto &proto = m.first;
+ const vector<u32> &states = m.second;
+ for (u32 i : states) {
+ assert(!contains(exception_by_state, i));
+ exception_by_state.emplace(i, proto);
+ }
+ }
+
+ u32 ecount = 0;
+ for (const auto &m : exception_by_state) {
+ const ExceptionProto &proto = m.second;
+ u32 state_id = m.first;
+ DEBUG_PRINTF("exception %u, triggered by state %u\n", ecount,
+ state_id);
+
+ // Write the exception entry.
+ exception_t &e = etable[ecount];
+ maskSetBits(e.squash, proto.squash_states);
+ maskSetBits(e.successors, proto.succ_states);
+ if (proto.reports_index == MO_INVALID_IDX) {
+ e.reports = MO_INVALID_IDX;
+ } else {
+ e.reports = reportListOffset +
+ proto.reports_index * sizeof(ReportID);
+ }
+ e.hasSquash = verify_u8(proto.squash);
+ e.trigger = verify_u8(proto.trigger);
+ u32 repeat_offset = proto.repeat_index == MO_INVALID_IDX
+ ? MO_INVALID_IDX
+ : repeatOffsets[proto.repeat_index];
+ e.repeatOffset = repeat_offset;
+
+ // for the state that can switch it on
+ // set this bit in the exception mask
+ maskSetBit(limex->exceptionMask, state_id);
+
+ ecount++;
+ }
+
+ limex->exceptionOffset = exceptionsOffset;
+ limex->exceptionCount = ecount;
+
+ if (args.num_states > 64 && args.cc.target_info.has_avx512vbmi()) {
+ const u8 *exceptionMask = (const u8 *)(&limex->exceptionMask);
+ u8 *shufMask = (u8 *)&limex->exceptionShufMask;
+ u8 *bitMask = (u8 *)&limex->exceptionBitMask;
+ u8 *andMask = (u8 *)&limex->exceptionAndMask;
+
+ u32 tot_cnt = 0;
+ u32 pos = 0;
+ bool valid = true;
+ size_t tot = sizeof(limex->exceptionMask);
+ size_t base = 0;
+
+ // We normally have up to 64 exceptions to handle,
+ // but treat 384 state Limex differently to simplify operations
+ size_t limit = 64;
+ if (args.num_states > 256 && args.num_states <= 384) {
+ limit = 48;
+ }
+
+ for (size_t i = 0; i < tot; i++) {
+ if (!exceptionMask[i]) {
+ continue;
+ }
+ u32 bit_cnt = popcount32(exceptionMask[i]);
+
+ tot_cnt += bit_cnt;
+ if (tot_cnt > limit) {
+ valid = false;
+ break;
+ }
+
+ u32 emsk = exceptionMask[i];
+ while (emsk) {
+ u32 t = findAndClearLSB_32(&emsk);
+ bitMask[pos] = 1U << t;
+ andMask[pos] = 1U << t;
+ shufMask[pos++] = i + base;
+
+ if (pos == 32 &&
+ (args.num_states > 128 && args.num_states <= 256)) {
+ base += 32;
+ }
+ }
+ }
+ // Avoid matching unused bytes
+ for (u32 i = pos; i < 64; i++) {
+ bitMask[i] = 0xff;
+ }
+ if (valid) {
+ setLimexFlag(limex, LIMEX_FLAG_EXTRACT_EXP);
+ }
+ }
+ }
+
+ static
+ void writeReachMapping(const vector<NFAStateSet> &reach,
+ const vector<u8> &reachMap, implNFA_t *limex,
+ const u32 reachOffset) {
+ DEBUG_PRINTF("reachOffset=%u\n", reachOffset);
+
+ // Reach mapping is inside the LimEx structure.
+ copy(reachMap.begin(), reachMap.end(), &limex->reachMap[0]);
+
+ // Reach table is right after the LimEx structure.
+ tableRow_t *reachMask = (tableRow_t *)((char *)limex + reachOffset);
+ assert(ISALIGNED(reachMask));
+ for (size_t i = 0, end = reach.size(); i < end; i++) {
+ maskSetBits(reachMask[i], reach[i]);
+ }
+ limex->reachSize = verify_u32(reach.size());
+ }
+
+ static
+ void writeTopMasks(const vector<NFAStateSet> &tops, implNFA_t *limex,
+ const u32 topsOffset) {
+ DEBUG_PRINTF("topsOffset=%u\n", topsOffset);
+
+ limex->topOffset = topsOffset;
+ tableRow_t *topMasks = (tableRow_t *)((char *)limex + topsOffset);
+ assert(ISALIGNED(topMasks));
+
+ for (size_t i = 0, end = tops.size(); i < end; i++) {
+ maskSetBits(topMasks[i], tops[i]);
+ }
+
+ limex->topCount = verify_u32(tops.size());
+ }
+
+ static
+ void writeAccelSsse3Masks(const NFAStateSet &accelMask, implNFA_t *limex) {
+ char *perm_base = (char *)&limex->accelPermute;
+ char *comp_base = (char *)&limex->accelCompare;
+
+ u32 num = 0; // index in accel table.
+ for (size_t i = accelMask.find_first(); i != accelMask.npos;
+ i = accelMask.find_next(i), ++num) {
+ u32 state_id = verify_u32(i);
+ DEBUG_PRINTF("accel num=%u, state=%u\n", num, state_id);
+
+ // PSHUFB permute and compare masks
+ size_t mask_idx = sizeof(u_128) * (state_id / 128U);
+ DEBUG_PRINTF("mask_idx=%zu\n", mask_idx);
+ u_128 *perm = (u_128 *)(perm_base + mask_idx);
+ u_128 *comp = (u_128 *)(comp_base + mask_idx);
+ maskSetByte(*perm, num, ((state_id % 128U) / 8U));
+ maskSetByte(*comp, num, ~(1U << (state_id % 8U)));
+ }
+ }
+
+ static
+ void writeAccel(const NFAStateSet &accelMask,
+ const NFAStateSet &accelFriendsMask,
+ const AccelAuxVector &accelAux,
+ const vector<u8> &accelTable, implNFA_t *limex,
+ const u32 accelTableOffset, const u32 accelAuxOffset) {
+ DEBUG_PRINTF("accelTableOffset=%u, accelAuxOffset=%u\n",
+ accelTableOffset, accelAuxOffset);
+
+ // Write accel lookup table.
+ limex->accelTableOffset = accelTableOffset;
+ copy(accelTable.begin(), accelTable.end(),
+ (u8 *)((char *)limex + accelTableOffset));
+
+ // Write accel aux structures.
+ limex->accelAuxOffset = accelAuxOffset;
+ AccelAux *auxTable = (AccelAux *)((char *)limex + accelAuxOffset);
+ assert(ISALIGNED(auxTable));
+ copy(accelAux.begin(), accelAux.end(), auxTable);
+
+ // Write LimEx structure members.
+ limex->accelCount = verify_u32(accelTable.size());
+ // FIXME: accelAuxCount is unused?
+ limex->accelAuxCount = verify_u32(accelAux.size());
+
+ // Write LimEx masks.
+ maskSetBits(limex->accel, accelMask);
+ maskSetBits(limex->accel_and_friends, accelFriendsMask);
+
+ // We can use PSHUFB-based shuffles for models >= 128 states. These
+ // require some additional masks in the bytecode.
+ maskClear(limex->accelCompare);
+ maskFill(limex->accelPermute, (char)0x80);
+ if (NFATraits<dtype>::maxStates >= 128) {
+ writeAccelSsse3Masks(accelMask, limex);
+ }
+ }
+
+ static
+ void writeAccepts(const NFAStateSet &acceptMask,
+ const NFAStateSet &acceptEodMask,
+ const vector<NFAAccept> &accepts,
+ const vector<NFAAccept> &acceptsEod,
+ const vector<NFAStateSet> &squash, implNFA_t *limex,
+ const u32 acceptsOffset, const u32 acceptsEodOffset,
+ const u32 squashOffset, const u32 reportListOffset) {
+ char *limex_base = (char *)limex;
+
+ DEBUG_PRINTF("acceptsOffset=%u, acceptsEodOffset=%u, squashOffset=%u\n",
+ acceptsOffset, acceptsEodOffset, squashOffset);
+
+ // LimEx masks (in structure)
+ maskSetBits(limex->accept, acceptMask);
+ maskSetBits(limex->acceptAtEOD, acceptEodMask);
+
+ // Transforms the indices (report list, squash mask) into offsets
+ // relative to the base of the limex.
+ auto transform_offset_fn = [&](NFAAccept a) {
+ if (!a.single_report) {
+ a.reports = reportListOffset + a.reports * sizeof(ReportID);
+ }
+ a.squash = squashOffset + a.squash * sizeof(tableRow_t);
+ return a;
+ };
+
+ // Write accept table.
+ limex->acceptOffset = acceptsOffset;
+ limex->acceptCount = verify_u32(accepts.size());
+ DEBUG_PRINTF("NFA has %zu accepts\n", accepts.size());
+ NFAAccept *acceptsTable = (NFAAccept *)(limex_base + acceptsOffset);
+ assert(ISALIGNED(acceptsTable));
+ transform(accepts.begin(), accepts.end(), acceptsTable,
+ transform_offset_fn);
+
+ // Write eod accept table.
+ limex->acceptEodOffset = acceptsEodOffset;
+ limex->acceptEodCount = verify_u32(acceptsEod.size());
+ DEBUG_PRINTF("NFA has %zu EOD accepts\n", acceptsEod.size());
+ NFAAccept *acceptsEodTable = (NFAAccept *)(limex_base + acceptsEodOffset);
+ assert(ISALIGNED(acceptsEodTable));
+ transform(acceptsEod.begin(), acceptsEod.end(), acceptsEodTable,
+ transform_offset_fn);
+
+ // Write squash mask table.
+ limex->squashCount = verify_u32(squash.size());
+ limex->squashOffset = squashOffset;
+ DEBUG_PRINTF("NFA has %zu report squash masks\n", squash.size());
+ tableRow_t *mask = (tableRow_t *)(limex_base + squashOffset);
+ assert(ISALIGNED(mask));
+ for (size_t i = 0, end = squash.size(); i < end; i++) {
+ maskSetBits(mask[i], squash[i]);
+ }
+ }
+
+ static
+ void writeRepeats(const vector<bytecode_ptr<NFARepeatInfo>> &repeats,
+ vector<u32> &repeatOffsets, implNFA_t *limex,
+ const u32 repeatOffsetsOffset, const u32 repeatOffset) {
+ const u32 num_repeats = verify_u32(repeats.size());
+
+ DEBUG_PRINTF("repeatOffsetsOffset=%u, repeatOffset=%u\n",
+ repeatOffsetsOffset, repeatOffset);
+
+ repeatOffsets.resize(num_repeats);
+ u32 offset = repeatOffset;
+
+ for (u32 i = 0; i < num_repeats; i++) {
+ repeatOffsets[i] = offset;
+ assert(repeats[i]);
+ memcpy((char *)limex + offset, repeats[i].get(), repeats[i].size());
+ offset += repeats[i].size();
+ }
+
+ // Write repeat offset lookup table.
+ assert(ISALIGNED_N((char *)limex + repeatOffsetsOffset, alignof(u32)));
+ copy_bytes((char *)limex + repeatOffsetsOffset, repeatOffsets);
+
+ limex->repeatOffset = repeatOffsetsOffset;
+ limex->repeatCount = num_repeats;
+ }
+
+ static
+ void writeReportList(const vector<ReportID> &reports, implNFA_t *limex,
+ const u32 reportListOffset) {
+ DEBUG_PRINTF("reportListOffset=%u\n", reportListOffset);
+ assert(ISALIGNED_N((char *)limex + reportListOffset,
+ alignof(ReportID)));
+ copy_bytes((char *)limex + reportListOffset, reports);
+ }
+
+ static
+ bytecode_ptr<NFA> generateNfa(const build_info &args) {
+ if (args.num_states > NFATraits<dtype>::maxStates) {
+ return nullptr;
+ }
+
+ // Build bounded repeat structures.
+ vector<bytecode_ptr<NFARepeatInfo>> repeats;
+ u32 repeats_full_state = 0;
+ u32 repeats_stream_state = 0;
+ buildRepeats(args, repeats, &repeats_full_state, &repeats_stream_state);
+ size_t repeatSize = 0;
+ for (size_t i = 0; i < repeats.size(); i++) {
+ repeatSize += repeats[i].size();
+ }
+
+ // We track report lists that have already been written into the global
+ // list in case we can reuse them.
+ ReportListCache reports_cache;
+
+ unordered_set<NFAEdge> exceptional;
+ u32 shiftCount = findBestNumOfVarShifts(args);
+ assert(shiftCount);
+ u32 maxShift = findMaxVarShift(args, shiftCount);
+ findExceptionalTransitions(args, exceptional, maxShift);
+
+ map<ExceptionProto, vector<u32>> exceptionMap;
+ vector<ReportID> reportList;
+
+ u32 exceptionCount = buildExceptionMap(args, reports_cache, exceptional,
+ exceptionMap, reportList);
+
+ assert(exceptionCount <= args.num_states);
+
+ // Build reach table and character mapping.
+ vector<NFAStateSet> reach;
+ vector<u8> reachMap;
+ buildReachMapping(args, reach, reachMap);
+
+ // Build top masks.
+ vector<NFAStateSet> tops;
+ buildTopMasks(args, tops);
+
+ // Build all our accept info.
+ NFAStateSet acceptMask, acceptEodMask;
+ vector<NFAAccept> accepts, acceptsEod;
+ vector<NFAStateSet> squash;
+ buildAccepts(args, reports_cache, acceptMask, acceptEodMask, accepts,
+ acceptsEod, reportList, squash);
+
+ // Build all our accel info.
+ NFAStateSet accelMask, accelFriendsMask;
+ AccelAuxVector accelAux;
+ vector<u8> accelTable;
+ buildAccel(args, accelMask, accelFriendsMask, accelAux, accelTable);
+
+ // Compute the offsets in the bytecode for this LimEx NFA for all of
+ // our structures. First, the NFA and LimEx structures. All other
+ // offsets are relative to the start of the LimEx struct, starting with
+ // the reach table.
+ u32 offset = sizeof(implNFA_t);
+
+ const u32 reachOffset = offset;
+ offset += sizeof(tableRow_t) * reach.size();
+
+ const u32 topsOffset = offset;
+ offset += sizeof(tableRow_t) * tops.size();
+
+ const u32 accelTableOffset = offset;
+ offset += sizeof(u8) * accelTable.size();
+
+ offset = ROUNDUP_N(offset, alignof(AccelAux));
+ const u32 accelAuxOffset = offset;
+ offset += sizeof(AccelAux) * accelAux.size();
+
+ offset = ROUNDUP_N(offset, alignof(NFAAccept));
+ const u32 acceptsOffset = offset;
+ offset += sizeof(NFAAccept) * accepts.size();
+ const u32 acceptsEodOffset = offset;
+ offset += sizeof(NFAAccept) * acceptsEod.size();
+
+ offset = ROUNDUP_CL(offset);
+ const u32 squashOffset = offset;
+ offset += sizeof(tableRow_t) * squash.size();
+
+ offset = ROUNDUP_CL(offset);
+ const u32 exceptionsOffset = offset;
+ offset += sizeof(exception_t) * exceptionCount;
+
+ const u32 reportListOffset = offset;
+ offset += sizeof(ReportID) * reportList.size();
+
+ const u32 repeatOffsetsOffset = offset;
+ offset += sizeof(u32) * args.repeats.size();
+
+ offset = ROUNDUP_CL(offset);
+ const u32 repeatsOffset = offset;
+ offset += repeatSize;
+
+ // Now we can allocate space for the NFA and get to work on layout.
+
+ size_t nfaSize = sizeof(NFA) + offset;
+ DEBUG_PRINTF("nfa size %zu\n", nfaSize);
+ auto nfa = make_zeroed_bytecode_ptr<NFA>(nfaSize);
+ assert(nfa); // otherwise we would have thrown std::bad_alloc
+
+ implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa.get());
+ assert(ISALIGNED(limex));
+
+ writeReachMapping(reach, reachMap, limex, reachOffset);
+
+ writeTopMasks(tops, limex, topsOffset);
+
+ writeAccel(accelMask, accelFriendsMask, accelAux, accelTable,
+ limex, accelTableOffset, accelAuxOffset);
+
+ writeAccepts(acceptMask, acceptEodMask, accepts, acceptsEod, squash,
+ limex, acceptsOffset, acceptsEodOffset, squashOffset,
+ reportListOffset);
+
+ limex->shiftCount = shiftCount;
+ writeShiftMasks(args, limex);
+
+ if (cannotDie(args)) {
+ DEBUG_PRINTF("nfa cannot die\n");
+ setLimexFlag(limex, LIMEX_FLAG_CANNOT_DIE);
+ }
+
+ // Determine the state required for our state vector.
+ findStateSize(args, limex);
+
+ writeReportList(reportList, limex, reportListOffset);
+
+ // Repeat structures and offset table.
+ vector<u32> repeatOffsets;
+ writeRepeats(repeats, repeatOffsets, limex, repeatOffsetsOffset,
+ repeatsOffset);
+
+ writeExceptions(args, exceptionMap, repeatOffsets, limex, exceptionsOffset,
+ reportListOffset);
+
+ writeLimexMasks(args, limex);
+
+ allocState(nfa.get(), repeats_full_state, repeats_stream_state);
+
+ nfa->type = dtype;
+ nfa->length = verify_u32(nfaSize);
+ nfa->nPositions = args.num_states;
+
+ if (!args.zombies.empty()) {
+ setNfaFlag(nfa.get(), NFA_ZOMBIE);
+ }
+ if (!acceptsEod.empty()) {
+ setNfaFlag(nfa.get(), NFA_ACCEPTS_EOD);
+ }
+
+ return nfa;
+ }
+
+ static int score(const build_info &args) {
+ // LimEx NFAs are available in sizes from 32 to 512-bit.
+ size_t num_states = args.num_states;
+
+ size_t sz = findContainerSize(num_states);
+ if (sz < 32) {
+ sz = 32;
+ }
+
+ if (args.cc.grey.nfaForceSize) {
+ sz = args.cc.grey.nfaForceSize;
+ }
+
+ if (sz != NFATraits<dtype>::maxStates) {
+ return -1; // fail, size not appropriate
+ }
+
+ // We are of the right size, calculate a score based on the number
+ // of exceptions and the number of shifts used by this LimEx.
+ int score;
+ u32 shiftCount = findBestNumOfVarShifts(args, &score);
+ if (shiftCount == 0) {
+ return -1;
+ }
+ return score;
+ }
+};
+
+template<NFAEngineType dtype>
+struct generateNfa {
+ static bytecode_ptr<NFA> call(const build_info &args) {
+ return Factory<dtype>::generateNfa(args);
+ }
+};
+
+template<NFAEngineType dtype>
+struct scoreNfa {
+ static int call(const build_info &args) {
+ return Factory<dtype>::score(args);
+ }
+};
+
+#define MAKE_LIMEX_TRAITS(mlt_size) \
+ template<> struct NFATraits<LIMEX_NFA_##mlt_size> { \
+ typedef LimExNFA##mlt_size implNFA_t; \
+ typedef u_##mlt_size tableRow_t; \
+ typedef NFAException##mlt_size exception_t; \
+ static const size_t maxStates = mlt_size; \
+ static const size_t scratch_state_size = mlt_size == 64 ? sizeof(m128) \
+ : sizeof(tableRow_t); \
+ };
+
+MAKE_LIMEX_TRAITS(32)
+MAKE_LIMEX_TRAITS(64)
+MAKE_LIMEX_TRAITS(128)
+MAKE_LIMEX_TRAITS(256)
+MAKE_LIMEX_TRAITS(384)
+MAKE_LIMEX_TRAITS(512)
+
+} // namespace
+
+#ifndef NDEBUG
+// Some sanity tests, called by an assertion in generate().
+static UNUSED
+bool isSane(const NGHolder &h, const map<u32, set<NFAVertex>> &tops,
+ const unordered_map<NFAVertex, u32> &state_ids,
+ u32 num_states) {
+ unordered_set<u32> seen;
+ unordered_set<NFAVertex> top_starts;
+ for (const auto &vv : tops | map_values) {
+ insert(&top_starts, vv);
+ }
+
+ for (auto v : vertices_range(h)) {
+ if (!contains(state_ids, v)) {
+ DEBUG_PRINTF("no entry for vertex %zu in state map\n", h[v].index);
+ return false;
+ }
+ const u32 i = state_ids.at(v);
+ if (i == NO_STATE) {
+ continue;
+ }
+
+ DEBUG_PRINTF("checking vertex %zu (state %u)\n", h[v].index, i);
+
+ if (i >= num_states || contains(seen, i)) {
+ DEBUG_PRINTF("vertex %u/%u has invalid state\n", i, num_states);
+ return false;
+ }
+ seen.insert(i);
+
+ // All our states should be reachable and have a state assigned.
+ if (h[v].char_reach.none()) {
+ DEBUG_PRINTF("vertex %zu has empty reachability\n", h[v].index);
+ return false;
+ }
+
+ // Every state that isn't a start state (or top, in triggered NFAs)
+ // must have at least one predecessor that is not itself.
+ if (v != h.start && v != h.startDs && !contains(top_starts, v)
+ && !proper_in_degree(v, h)) {
+ DEBUG_PRINTF("vertex %zu has no pred\n", h[v].index);
+ return false;
+ }
+ }
+
+ if (seen.size() != num_states) {
+ return false;
+ }
+
+ return true;
+}
+#endif // NDEBUG
+
+static
+bool isFast(const build_info &args) {
+ const NGHolder &h = args.h;
+ const u32 num_states = args.num_states;
+
+ if (num_states > MAX_SMALL_NFA_STATES) {
+ return false;
+ }
+
+ unordered_map<NFAVertex, bool> pos_trigger;
+ for (u32 i = 0; i < args.repeats.size(); i++) {
+ const BoundedRepeatData &br = args.repeats[i];
+ assert(!contains(pos_trigger, br.pos_trigger));
+ pos_trigger[br.pos_trigger] = br.repeatMax <= MAX_REPEAT_SIZE;
+ }
+
+ // Small NFA without bounded repeat should be fast.
+ if (pos_trigger.empty()) {
+ return true;
+ }
+
+ vector<NFAVertex> cur;
+ unordered_set<NFAVertex> visited;
+ for (const auto &m : args.tops) {
+ for (NFAVertex v : m.second) {
+ cur.push_back(v);
+ visited.insert(v);
+ }
+ }
+
+ u8 pos_dist = 0;
+ while (!cur.empty()) {
+ vector<NFAVertex> next;
+ for (const auto &v : cur) {
+ if (contains(pos_trigger, v)) {
+ const CharReach &cr = h[v].char_reach;
+ if (!pos_trigger[v] && cr.count() > MAX_REPEAT_CHAR_REACH) {
+ return false;
+ }
+ }
+ for (const auto &w : adjacent_vertices_range(v, h)) {
+ if (w == v) {
+ continue;
+ }
+ u32 j = args.state_ids.at(w);
+ if (j == NO_STATE) {
+ continue;
+ }
+ if (!contains(visited, w)) {
+ next.push_back(w);
+ visited.insert(w);
+ }
+ }
+ }
+ if (++pos_dist >= MIN_REPEAT_TRIGGER_DISTANCE) {
+ break;
+ }
+ swap(cur, next);
+ }
+ return true;
+}
+
+static
+u32 max_state(const unordered_map<NFAVertex, u32> &state_ids) {
+ u32 rv = 0;
+ for (const auto &m : state_ids) {
+ DEBUG_PRINTF("state %u\n", m.second);
+ if (m.second != NO_STATE) {
+ rv = max(m.second, rv);
+ }
+ }
+ DEBUG_PRINTF("max %u\n", rv);
+ return rv;
+}
+
+bytecode_ptr<NFA> generate(NGHolder &h,
+ const unordered_map<NFAVertex, u32> &states,
+ const vector<BoundedRepeatData> &repeats,
+ const unordered_map<NFAVertex, NFAStateSet> &reportSquashMap,
+ const unordered_map<NFAVertex, NFAStateSet> &squashMap,
+ const map<u32, set<NFAVertex>> &tops,
+ const set<NFAVertex> &zombies, bool do_accel,
+ bool stateCompression, bool &fast, u32 hint,
+ const CompileContext &cc) {
+ const u32 num_states = max_state(states) + 1;
+ DEBUG_PRINTF("total states: %u\n", num_states);
+
+ if (!cc.grey.allowLimExNFA) {
+ DEBUG_PRINTF("limex not allowed\n");
+ return nullptr;
+ }
+
+ // If you ask for a particular type, it had better be an NFA.
+ assert(hint == INVALID_NFA || hint <= LAST_LIMEX_NFA);
+ DEBUG_PRINTF("hint=%u\n", hint);
+
+ // Sanity check the input data.
+ assert(isSane(h, tops, states, num_states));
+
+ // Build arguments used in the rest of this file.
+ build_info arg(h, states, repeats, reportSquashMap, squashMap, tops,
+ zombies, do_accel, stateCompression, cc, num_states);
+
+ // Acceleration analysis.
+ fillAccelInfo(arg);
+
+ vector<pair<int, NFAEngineType>> scores;
+
+ if (hint != INVALID_NFA) {
+ // The caller has told us what to (attempt to) build.
+ scores.emplace_back(0, (NFAEngineType)hint);
+ } else {
+ for (size_t i = 0; i <= LAST_LIMEX_NFA; i++) {
+ NFAEngineType ntype = (NFAEngineType)i;
+ int score = DISPATCH_BY_LIMEX_TYPE(ntype, scoreNfa, arg);
+ if (score >= 0) {
+ DEBUG_PRINTF("%s scores %d\n", nfa_type_name(ntype), score);
+ scores.emplace_back(score, ntype);
+ }
+ }
+ }
+
+ if (scores.empty()) {
+ DEBUG_PRINTF("No NFA returned a valid score for this case.\n");
+ return nullptr;
+ }
+
+ // Sort acceptable models in priority order, lowest score first.
+ sort(scores.begin(), scores.end());
+
+ for (const auto &elem : scores) {
+ assert(elem.first >= 0);
+ NFAEngineType limex_model = elem.second;
+ auto nfa = DISPATCH_BY_LIMEX_TYPE(limex_model, generateNfa, arg);
+ if (nfa) {
+ DEBUG_PRINTF("successful build with NFA engine: %s\n",
+ nfa_type_name(limex_model));
+ fast = isFast(arg);
+ return nfa;
+ }
+ }
+
+ DEBUG_PRINTF("NFA build failed.\n");
+ return nullptr;
+}
+
+u32 countAccelStates(NGHolder &h,
+ const unordered_map<NFAVertex, u32> &states,
+ const vector<BoundedRepeatData> &repeats,
+ const unordered_map<NFAVertex, NFAStateSet> &reportSquashMap,
+ const unordered_map<NFAVertex, NFAStateSet> &squashMap,
+ const map<u32, set<NFAVertex>> &tops,
+ const set<NFAVertex> &zombies,
+ const CompileContext &cc) {
+ const u32 num_states = max_state(states) + 1;
+ DEBUG_PRINTF("total states: %u\n", num_states);
+
+ if (!cc.grey.allowLimExNFA) {
+ DEBUG_PRINTF("limex not allowed\n");
+ return 0;
+ }
+
+ // Sanity check the input data.
+ assert(isSane(h, tops, states, num_states));
+
+ const bool do_accel = true;
+ const bool state_compression = false;
+
+ // Build arguments used in the rest of this file.
+ build_info bi(h, states, repeats, reportSquashMap, squashMap, tops, zombies,
+ do_accel, state_compression, cc, num_states);
+
+ // Acceleration analysis.
+ nfaFindAccelSchemes(bi.h, bi.br_cyclic, &bi.accel.accel_map);
+
+ u32 num_accel = verify_u32(bi.accel.accel_map.size());
+ DEBUG_PRINTF("found %u accel states\n", num_accel);
+ return num_accel;
+}
+
+} // namespace ue2