diff options
author | Devtools Arcadia <arcadia-devtools@yandex-team.ru> | 2022-02-07 18:08:42 +0300 |
---|---|---|
committer | Devtools Arcadia <arcadia-devtools@mous.vla.yp-c.yandex.net> | 2022-02-07 18:08:42 +0300 |
commit | 1110808a9d39d4b808aef724c861a2e1a38d2a69 (patch) | |
tree | e26c9fed0de5d9873cce7e00bc214573dc2195b7 /contrib/libs/hyperscan/src/nfa/limex_compile.cpp | |
download | ydb-1110808a9d39d4b808aef724c861a2e1a38d2a69.tar.gz |
intermediate changes
ref:cde9a383711a11544ce7e107a78147fb96cc4029
Diffstat (limited to 'contrib/libs/hyperscan/src/nfa/limex_compile.cpp')
-rw-r--r-- | contrib/libs/hyperscan/src/nfa/limex_compile.cpp | 2671 |
1 files changed, 2671 insertions, 0 deletions
diff --git a/contrib/libs/hyperscan/src/nfa/limex_compile.cpp b/contrib/libs/hyperscan/src/nfa/limex_compile.cpp new file mode 100644 index 0000000000..9233ae515e --- /dev/null +++ b/contrib/libs/hyperscan/src/nfa/limex_compile.cpp @@ -0,0 +1,2671 @@ +/* + * Copyright (c) 2015-2020, Intel Corporation + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions are met: + * + * * Redistributions of source code must retain the above copyright notice, + * this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in the + * documentation and/or other materials provided with the distribution. + * * Neither the name of Intel Corporation nor the names of its contributors + * may be used to endorse or promote products derived from this software + * without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR + * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF + * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS + * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN + * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) + * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE + * POSSIBILITY OF SUCH DAMAGE. + */ + +/** + * \file + * \brief Main NFA build code. + */ + +#include "limex_compile.h" + +#include "accel.h" +#include "accelcompile.h" +#include "grey.h" +#include "limex_internal.h" +#include "limex_limits.h" +#include "nfa_build_util.h" +#include "nfagraph/ng_dominators.h" +#include "nfagraph/ng_holder.h" +#include "nfagraph/ng_limex_accel.h" +#include "nfagraph/ng_repeat.h" +#include "nfagraph/ng_squash.h" +#include "nfagraph/ng_util.h" +#include "ue2common.h" +#include "repeatcompile.h" +#include "util/alloc.h" +#include "util/bitutils.h" +#include "util/bytecode_ptr.h" +#include "util/charreach.h" +#include "util/compile_context.h" +#include "util/container.h" +#include "util/flat_containers.h" +#include "util/graph.h" +#include "util/graph_range.h" +#include "util/graph_small_color_map.h" +#include "util/order_check.h" +#include "util/unordered.h" +#include "util/verify_types.h" + +#include <algorithm> +#include <cassert> +#include <cstddef> +#include <cstdlib> +#include <cstring> +#include <map> +#include <set> +#include <vector> + +#include <boost/graph/breadth_first_search.hpp> +#include <boost/graph/depth_first_search.hpp> +#include <boost/range/adaptor/map.hpp> + +using namespace std; +using boost::adaptors::map_values; + +namespace ue2 { + +/** + * \brief Special state index value meaning that the vertex will not + * participate in an (NFA/DFA/etc) implementation. + */ +static constexpr u32 NO_STATE = ~0; + +/* Maximum number of states taken as a small NFA */ +static constexpr u32 MAX_SMALL_NFA_STATES = 64; + +/* Maximum bounded repeat upper bound to consider as a fast NFA */ +static constexpr u64a MAX_REPEAT_SIZE = 200; + +/* Maximum bounded repeat char reach size to consider as a fast NFA */ +static constexpr u32 MAX_REPEAT_CHAR_REACH = 26; + +/* Minimum bounded repeat trigger distance to consider as a fast NFA */ +static constexpr u8 MIN_REPEAT_TRIGGER_DISTANCE = 6; + +namespace { + +struct precalcAccel { + precalcAccel() : single_offset(0), double_offset(0) {} + CharReach single_cr; + u32 single_offset; + + CharReach double_cr; + flat_set<pair<u8, u8>> double_lits; /* double-byte accel stop literals */ + u32 double_offset; +}; + +struct limex_accel_info { + unordered_set<NFAVertex> accelerable; + map<NFAStateSet, precalcAccel> precalc; + unordered_map<NFAVertex, flat_set<NFAVertex>> friends; + unordered_map<NFAVertex, AccelScheme> accel_map; +}; + +static +unordered_map<NFAVertex, NFAStateSet> +reindexByStateId(const unordered_map<NFAVertex, NFAStateSet> &in, + const NGHolder &g, + const unordered_map<NFAVertex, u32> &state_ids, + const u32 num_states) { + unordered_map<NFAVertex, NFAStateSet> out; + out.reserve(in.size()); + + vector<u32> indexToState(num_vertices(g), NO_STATE); + for (const auto &m : state_ids) { + u32 vert_id = g[m.first].index; + assert(vert_id < indexToState.size()); + indexToState[vert_id] = m.second; + } + + for (const auto &m : in) { + NFAVertex v = m.first; + assert(m.second.size() <= indexToState.size()); + + NFAStateSet mask(num_states); + for (size_t i = m.second.find_first(); i != m.second.npos; + i = m.second.find_next(i)) { + u32 state_id = indexToState[i]; + if (state_id == NO_STATE) { + continue; + } + mask.set(state_id); + } + out.emplace(v, mask); + } + + return out; +} + +struct build_info { + build_info(NGHolder &hi, + const unordered_map<NFAVertex, u32> &states_in, + const vector<BoundedRepeatData> &ri, + const unordered_map<NFAVertex, NFAStateSet> &rsmi, + const unordered_map<NFAVertex, NFAStateSet> &smi, + const map<u32, set<NFAVertex>> &ti, const set<NFAVertex> &zi, + bool dai, bool sci, const CompileContext &cci, u32 nsi) + : h(hi), state_ids(states_in), repeats(ri), tops(ti), tugs(nsi), + zombies(zi), do_accel(dai), stateCompression(sci), cc(cci), + num_states(nsi) { + for (const auto &br : repeats) { + for (auto v : br.tug_triggers) { + assert(state_ids.at(v) != NO_STATE); + tugs.set(state_ids.at(v)); + } + br_cyclic[br.cyclic] = + BoundedRepeatSummary(br.repeatMin, br.repeatMax); + } + + // Convert squash maps to be indexed by state index rather than + // vertex_index. + squashMap = reindexByStateId(smi, h, state_ids, num_states); + reportSquashMap = reindexByStateId(rsmi, h, state_ids, num_states); + } + + NGHolder &h; + const unordered_map<NFAVertex, u32> &state_ids; + const vector<BoundedRepeatData> &repeats; + + // Squash maps; state sets are indexed by state_id. + unordered_map<NFAVertex, NFAStateSet> reportSquashMap; + unordered_map<NFAVertex, NFAStateSet> squashMap; + + const map<u32, set<NFAVertex>> &tops; + NFAStateSet tugs; + map<NFAVertex, BoundedRepeatSummary> br_cyclic; + const set<NFAVertex> &zombies; + bool do_accel; + bool stateCompression; + const CompileContext &cc; + u32 num_states; + limex_accel_info accel; +}; + +#define LAST_LIMEX_NFA LIMEX_NFA_512 + +// Constants for scoring mechanism +const int SHIFT_COST = 10; // limex: cost per shift mask +const int EXCEPTION_COST = 4; // limex: per exception + +template<NFAEngineType t> struct NFATraits { }; + +template<template<NFAEngineType t> class sfunc, typename rv_t, typename arg_t, + NFAEngineType lb> +struct DISPATCH_BY_LIMEX_TYPE_INT { + static rv_t doOp(NFAEngineType i, const arg_t &arg) { + if (i == lb) { + return sfunc<lb>::call(arg); + } else { + return DISPATCH_BY_LIMEX_TYPE_INT<sfunc, rv_t, arg_t, + (NFAEngineType)(lb + 1)> + ::doOp(i, arg); + } + } +}; + +template<template<NFAEngineType t> class sfunc, typename rv_t, typename arg_t> +struct DISPATCH_BY_LIMEX_TYPE_INT<sfunc, rv_t, arg_t, + (NFAEngineType)(LAST_LIMEX_NFA + 1)> { + // dummy + static rv_t doOp(NFAEngineType, const arg_t &) { + assert(0); + throw std::logic_error("Unreachable"); + } +}; + +#define DISPATCH_BY_LIMEX_TYPE(i, op, arg) \ + DISPATCH_BY_LIMEX_TYPE_INT<op, decltype(op<(NFAEngineType)0>::call(arg)), \ + decltype(arg), (NFAEngineType)0>::doOp(i, arg) + +// Given a number of states, find the size of the smallest container NFA it +// will fit in. We support NFAs of the following sizes: 32, 64, 128, 256, 384, +// 512. +size_t findContainerSize(size_t states) { + if (states > 256 && states <= 384) { + return 384; + } + return 1ULL << (lg2(states - 1) + 1); +} + +bool isLimitedTransition(int from, int to, int maxshift) { + int diff = to - from; + + // within our shift? + if (diff < 0 || diff > maxshift) { + return false; + } + + // can't jump over a bollard + return (from & ~63) == (to & ~63); +} + +// Fill a bit mask +template<class Mask> +void maskFill(Mask &m, u8 c) { + memset(&m, c, sizeof(m)); +} + +// Clear a bit mask. +template<class Mask> +void maskClear(Mask &m) { + memset(&m, 0, sizeof(m)); +} + +template<class Mask> +u8 *maskGetByte(Mask &m, u32 bit) { + assert(bit < sizeof(m)*8); + u8 *m8 = (u8 *)&m; + + return m8 + bit/8; +} + +// Set a bit in a mask, starting from the little end. +template<class Mask> +void maskSetBit(Mask &m, const unsigned int bit) { + u8 *byte = maskGetByte(m, bit); + *byte |= 1U << (bit % 8); +} + +template<class Mask> +void maskSetBits(Mask &m, const NFAStateSet &bits) { + for (size_t i = bits.find_first(); i != bits.npos; i = bits.find_next(i)) { + maskSetBit(m, i); + } +} + +template<class Mask> +bool isMaskZero(Mask &m) { + u8 *m8 = (u8 *)&m; + for (u32 i = 0; i < sizeof(m); i++) { + if (m8[i]) { + return false; + } + } + return true; +} + +// Sets an entire byte in a mask to the given value +template<class Mask> +void maskSetByte(Mask &m, const unsigned int idx, const char val) { + assert(idx < sizeof(m)); + char *m8 = (char *)&m; + char &byte = m8[idx]; + byte = val; +} + +// Clear a bit in the mask, starting from the little end. +template<class Mask> +void maskClearBit(Mask &m, const u32 bit) { + u8 *byte = maskGetByte(m, bit); + *byte &= ~(1U << (bit % 8)); +} + +/* + * Common code: the following code operates on parts of the NFA that are common + * to both the (defunct) General and the LimEx models. + */ + +static +void buildReachMapping(const build_info &args, vector<NFAStateSet> &reach, + vector<u8> &reachMap) { + const NGHolder &h = args.h; + const auto &state_ids = args.state_ids; + + // Build a list of vertices with a state index assigned. + vector<NFAVertex> verts; + verts.reserve(args.num_states); + for (auto v : vertices_range(h)) { + if (state_ids.at(v) != NO_STATE) { + verts.push_back(v); + } + } + + // Build a mapping from set-of-states -> reachability. + map<NFAStateSet, CharReach> mapping; + NFAStateSet states(args.num_states); + for (size_t i = 0; i < N_CHARS; i++) { + states.reset(); + for (auto v : verts) { + const CharReach &cr = h[v].char_reach; + if (cr.test(i)) { + u32 state_id = state_ids.at(v); + states.set(state_id); + } + } + mapping[states].set(i); + } + + DEBUG_PRINTF("%zu distinct reachability entries\n", mapping.size()); + assert(!mapping.empty()); + + // Build a vector of distinct reachability entries and a mapping from every + // character to one of those entries. + + reach.reserve(mapping.size()); + reachMap.assign(N_CHARS, 0); + + u8 num = 0; + for (auto mi = mapping.begin(), me = mapping.end(); mi != me; ++mi, ++num) { + // Reach entry. + reach.push_back(mi->first); + + // Character mapping. + const CharReach &cr = mi->second; + for (size_t i = cr.find_first(); i != CharReach::npos; + i = cr.find_next(i)) { + reachMap[i] = num; + } + } +} + +struct AccelBuild { + AccelBuild() : v(NGHolder::null_vertex()), state(0), offset(0) {} + NFAVertex v; + u32 state; + u32 offset; // offset correction to apply + CharReach stop1; // single-byte accel stop literals + flat_set<pair<u8, u8>> stop2; // double-byte accel stop literals +}; + +static +void findStopLiterals(const build_info &bi, NFAVertex v, AccelBuild &build) { + u32 state = bi.state_ids.at(v); + build.v = v; + build.state = state; + NFAStateSet ss(bi.num_states); + ss.set(state); + + if (!contains(bi.accel.precalc, ss)) { + build.stop1 = CharReach::dot(); + } else { + const precalcAccel &precalc = bi.accel.precalc.at(ss); + if (precalc.double_lits.empty()) { + build.stop1 = precalc.single_cr; + build.offset = precalc.single_offset; + } else { + build.stop1 = precalc.double_cr; + build.stop2 = precalc.double_lits; + build.offset = precalc.double_offset; + } + } + +#ifdef DEBUG + printf("state %u stop1:", state); + for (size_t j = build.stop1.find_first(); j != build.stop1.npos; + j = build.stop1.find_next(j)) { + printf(" 0x%02x", (u32)j); + } + printf("\n"); + printf("state %u stop2:", state); + for (auto it = build.stop2.begin(); it != build.stop2.end(); ++it) { + printf(" 0x%02hhx%02hhx", it->first, it->second); + } + printf("\n"); +#endif +} + +// Generate all the data we need for at most NFA_MAX_ACCEL_STATES accelerable +// states. +static +void gatherAccelStates(const build_info &bi, vector<AccelBuild> &accelStates) { + for (auto v : bi.accel.accelerable) { + DEBUG_PRINTF("state %u is accelerable\n", bi.state_ids.at(v)); + AccelBuild a; + findStopLiterals(bi, v, a); + accelStates.push_back(a); + } + + // AccelStates should be sorted by state number, so that we build our accel + // masks correctly. + sort(accelStates.begin(), accelStates.end(), + [](const AccelBuild &a, const AccelBuild &b) { + return a.state < b.state; + }); + + // Our caller shouldn't have fed us too many accel states. + assert(accelStates.size() <= NFA_MAX_ACCEL_STATES); + if (accelStates.size() > NFA_MAX_ACCEL_STATES) { + accelStates.resize(NFA_MAX_ACCEL_STATES); + } +} + +static +void combineAccel(const AccelBuild &in, AccelBuild &out) { + // stop1 and stop2 union + out.stop1 |= in.stop1; + out.stop2.insert(in.stop2.begin(), in.stop2.end()); + // offset is maximum of the two + out.offset = max(out.offset, in.offset); +} + +static +void minimiseAccel(AccelBuild &build) { + flat_set<pair<u8, u8>> new_stop2; + // Any two-byte accels beginning with a one-byte accel should be removed + for (const auto &si : build.stop2) { + if (!build.stop1.test(si.first)) { + new_stop2.insert(si); + } + } + build.stop2 = new_stop2; +} + +struct AccelAuxCmp { + explicit AccelAuxCmp(const AccelAux &aux_in) : aux(aux_in) {} + bool operator()(const AccelAux &a) const { + return !memcmp(&a, &aux, sizeof(AccelAux)); + } +private: + const AccelAux &aux; +}; + +static +bool allow_wide_accel(NFAVertex v, const NGHolder &g, NFAVertex sds_or_proxy) { + return v == sds_or_proxy || edge(g.start, v, g).second; +} + +static +bool allow_wide_accel(const vector<NFAVertex> &vv, const NGHolder &g, + NFAVertex sds_or_proxy) { + for (auto v : vv) { + if (allow_wide_accel(v, g, sds_or_proxy)) { + return true; + } + } + + return false; +} + +// identify and mark states that we feel are accelerable (for a limex NFA) +/* Note: leftfix nfas allow accepts to be accelerated */ +static +void nfaFindAccelSchemes(const NGHolder &g, + const map<NFAVertex, BoundedRepeatSummary> &br_cyclic, + unordered_map<NFAVertex, AccelScheme> *out) { + vector<CharReach> refined_cr = reduced_cr(g, br_cyclic); + + NFAVertex sds_or_proxy = get_sds_or_proxy(g); + + for (auto v : vertices_range(g)) { + // We want to skip any vertices that don't lead to at least one other + // (self-loops don't count) vertex. + if (!has_proper_successor(v, g)) { + DEBUG_PRINTF("skipping vertex %zu\n", g[v].index); + continue; + } + + bool allow_wide = allow_wide_accel(v, g, sds_or_proxy); + + AccelScheme as; + if (nfaCheckAccel(g, v, refined_cr, br_cyclic, &as, allow_wide)) { + DEBUG_PRINTF("graph vertex %zu is accelerable with offset %u.\n", + g[v].index, as.offset); + (*out)[v] = as; + } + } +} + +struct fas_visitor : public boost::default_bfs_visitor { + fas_visitor(const unordered_map<NFAVertex, AccelScheme> &am_in, + unordered_map<NFAVertex, AccelScheme> *out_in) + : accel_map(am_in), out(out_in) {} + + void discover_vertex(NFAVertex v, const NGHolder &) { + if (accel_map.find(v) != accel_map.end()) { + (*out)[v] = accel_map.find(v)->second; + } + if (out->size() >= NFA_MAX_ACCEL_STATES) { + throw this; /* done */ + } + } + const unordered_map<NFAVertex, AccelScheme> &accel_map; + unordered_map<NFAVertex, AccelScheme> *out; +}; + +static +void filterAccelStates(NGHolder &g, const map<u32, set<NFAVertex>> &tops, + unordered_map<NFAVertex, AccelScheme> *accel_map) { + /* We want the NFA_MAX_ACCEL_STATES best acceleration states, everything + * else should be ditched. We use a simple BFS to choose accel states near + * the start. */ + + vector<NFAEdge> tempEdges; + for (const auto &vv : tops | map_values) { + for (NFAVertex v : vv) { + if (!edge(g.start, v, g).second) { + tempEdges.push_back(add_edge(g.start, v, g).first); + } + } + } + + // Similarly, connect (start, startDs) if necessary. + if (!edge(g.start, g.startDs, g).second) { + NFAEdge e = add_edge(g.start, g.startDs, g); + tempEdges.push_back(e); // Remove edge later. + } + + unordered_map<NFAVertex, AccelScheme> out; + + try { + boost::breadth_first_search(g, g.start, + visitor(fas_visitor(*accel_map, &out)) + .color_map(make_small_color_map(g))); + } catch (fas_visitor *) { + ; /* found max accel_states */ + } + + remove_edges(tempEdges, g); + + assert(out.size() <= NFA_MAX_ACCEL_STATES); + accel_map->swap(out); +} + +static +bool containsBadSubset(const limex_accel_info &accel, + const NFAStateSet &state_set, const u32 effective_sds) { + NFAStateSet subset(state_set.size()); + for (size_t j = state_set.find_first(); j != state_set.npos; + j = state_set.find_next(j)) { + subset = state_set; + subset.reset(j); + + if (effective_sds != NO_STATE && subset.count() == 1 && + subset.test(effective_sds)) { + continue; + } + + if (subset.any() && !contains(accel.precalc, subset)) { + return true; + } + } + return false; +} + +static +bool is_too_wide(const AccelScheme &as) { + return as.cr.count() > MAX_MERGED_ACCEL_STOPS; +} + +static +void fillAccelInfo(build_info &bi) { + if (!bi.do_accel) { + return; + } + + NGHolder &g = bi.h; + limex_accel_info &accel = bi.accel; + unordered_map<NFAVertex, AccelScheme> &accel_map = accel.accel_map; + const map<NFAVertex, BoundedRepeatSummary> &br_cyclic = bi.br_cyclic; + const unordered_map<NFAVertex, u32> &state_ids = bi.state_ids; + const u32 num_states = bi.num_states; + + nfaFindAccelSchemes(g, br_cyclic, &accel_map); + filterAccelStates(g, bi.tops, &accel_map); + + assert(accel_map.size() <= NFA_MAX_ACCEL_STATES); + + vector<CharReach> refined_cr = reduced_cr(g, br_cyclic); + + vector<NFAVertex> astates; + for (const auto &m : accel_map) { + astates.push_back(m.first); + } + + NFAStateSet useful(num_states); + NFAStateSet state_set(num_states); + vector<NFAVertex> states; + + NFAVertex sds_or_proxy = get_sds_or_proxy(g); + const u32 effective_sds = state_ids.at(sds_or_proxy); + + /* for each subset of the accel keys need to find an accel scheme */ + assert(astates.size() < 32); + sort(astates.begin(), astates.end()); + + for (u32 i = 1, i_end = 1U << astates.size(); i < i_end; i++) { + DEBUG_PRINTF("saving info for accel %u\n", i); + states.clear(); + state_set.reset(); + for (u32 j = 0, j_end = astates.size(); j < j_end; j++) { + if (i & (1U << j)) { + NFAVertex v = astates[j]; + states.push_back(v); + state_set.set(state_ids.at(v)); + } + } + + if (containsBadSubset(accel, state_set, effective_sds)) { + DEBUG_PRINTF("accel %u has bad subset\n", i); + continue; /* if a subset failed to build we would too */ + } + + const bool allow_wide = allow_wide_accel(states, g, sds_or_proxy); + + AccelScheme as = nfaFindAccel(g, states, refined_cr, br_cyclic, + allow_wide, true); + if (is_too_wide(as)) { + DEBUG_PRINTF("accel %u too wide (%zu, %d)\n", i, + as.cr.count(), MAX_MERGED_ACCEL_STOPS); + continue; + } + + DEBUG_PRINTF("accel %u ok with offset s%u, d%u\n", i, as.offset, + as.double_offset); + + precalcAccel &pa = accel.precalc[state_set]; + pa.single_offset = as.offset; + pa.single_cr = as.cr; + + if (as.double_byte.size() != 0) { + pa.double_offset = as.double_offset; + pa.double_lits = as.double_byte; + pa.double_cr = as.double_cr; + } + + useful |= state_set; + } + + for (const auto &m : accel_map) { + NFAVertex v = m.first; + const u32 state_id = state_ids.at(v); + + /* if we we unable to make a scheme out of the state in any context, + * there is not point marking it as accelerable */ + if (!useful.test(state_id)) { + continue; + } + + u32 offset = 0; + state_set.reset(); + state_set.set(state_id); + + accel.accelerable.insert(v); + findAccelFriends(g, v, br_cyclic, offset, &accel.friends[v]); + } +} + +/** The AccelAux structure has large alignment specified, and this makes some + * compilers do odd things unless we specify a custom allocator. */ +typedef vector<AccelAux, AlignedAllocator<AccelAux, alignof(AccelAux)>> + AccelAuxVector; + +#define IMPOSSIBLE_ACCEL_MASK (~0U) + +static +u32 getEffectiveAccelStates(const build_info &args, + const unordered_map<NFAVertex, NFAVertex> &dom_map, + u32 active_accel_mask, + const vector<AccelBuild> &accelStates) { + /* accelStates is indexed by the acceleration bit index and contains a + * reference to the original vertex & state_id */ + + /* Cases to consider: + * + * 1: Accel states a and b are on and b can squash a + * --> we can ignore a. This will result in a no longer being accurately + * modelled - we may miss escapes turning it off and we may also miss + * its successors being activated. + * + * 2: Accel state b is on but accel state a is off and a is .* and must be + * seen before b is reached (and would not be covered by (1)) + * --> if a is squashable (or may die unexpectedly) we should continue + * as is + * --> if a is not squashable we can treat this as a+b or as a no accel, + * impossible case + * --> this case could be extended to handle non dot reaches by + * effectively creating something similar to squash masks for the + * reverse graph + * + * + * Other cases: + * + * 3: Accel states a and b are on but have incompatible reaches + * --> we should treat this as an impossible case. Actually, this case + * is unlikely to arise as we pick states with wide reaches to + * accelerate so an empty intersection is unlikely. + * + * Note: we need to be careful when dealing with accel states corresponding + * to bounded repeat cyclics - they may 'turn off' based on a max bound and + * so we may still require on earlier states to be accurately modelled. + */ + const NGHolder &h = args.h; + + /* map from accel_id to mask of accel_ids that it is dominated by */ + vector<u32> dominated_by(accelStates.size()); + + map<NFAVertex, u32> accel_id_map; + for (u32 accel_id = 0; accel_id < accelStates.size(); accel_id++) { + NFAVertex v = accelStates[accel_id].v; + accel_id_map[v] = accel_id; + } + + /* Note: we want a slightly less strict defn of dominate as skip edges + * prevent .* 'truly' dominating */ + for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) { + u32 accel_id = findAndClearLSB_32(&local_accel_mask); + assert(accel_id < accelStates.size()); + NFAVertex v = accelStates[accel_id].v; + while (contains(dom_map, v) && dom_map.at(v)) { + v = dom_map.at(v); + if (contains(accel_id_map, v)) { + dominated_by[accel_id] |= 1U << accel_id_map[v]; + } + /* TODO: could also look at inv_adj vertices to handle fan-in */ + for (NFAVertex a : adjacent_vertices_range(v, h)) { + if (a == v || !contains(accel_id_map, a) + || a == accelStates[accel_id].v /* not likely */) { + continue; + } + if (!is_subset_of(h[v].reports, h[a].reports)) { + continue; + } + auto v_succ = succs(v, h); + auto a_succ = succs(a, h); + if (is_subset_of(v_succ, a_succ)) { + dominated_by[accel_id] |= 1U << accel_id_map[a]; + } + } + } + } + + u32 may_turn_off = 0; /* BR with max bound, non-dots, squashed, etc */ + for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) { + u32 accel_id = findAndClearLSB_32(&local_accel_mask); + NFAVertex v = accelStates[accel_id].v; + u32 state_id = accelStates[accel_id].state; + assert(contains(args.accel.accelerable, v)); + if (!h[v].char_reach.all()) { + may_turn_off |= 1U << accel_id; + continue; + } + if (contains(args.br_cyclic, v) + && args.br_cyclic.at(v).repeatMax != depth::infinity()) { + may_turn_off |= 1U << accel_id; + continue; + } + for (const auto &s_mask : args.squashMap | map_values) { + if (!s_mask.test(state_id)) { + may_turn_off |= 1U << accel_id; + break; + } + } + for (const auto &s_mask : args.reportSquashMap | map_values) { + if (!s_mask.test(state_id)) { + may_turn_off |= 1U << accel_id; + break; + } + } + } + + /* Case 1: */ + u32 ignored = 0; + for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) { + u32 accel_id_b = findAndClearLSB_32(&local_accel_mask); + NFAVertex v = accelStates[accel_id_b].v; + if (!contains(args.squashMap, v)) { + continue; + } + assert(!contains(args.br_cyclic, v) + || args.br_cyclic.at(v).repeatMax == depth::infinity()); + NFAStateSet squashed = args.squashMap.at(v); + squashed.flip(); /* default sense for mask of survivors */ + + for (u32 local_accel_mask2 = active_accel_mask; local_accel_mask2; ) { + u32 accel_id_a = findAndClearLSB_32(&local_accel_mask2); + if (squashed.test(accelStates[accel_id_a].state)) { + ignored |= 1U << accel_id_a; + } + } + } + + /* Case 2: */ + for (u32 local_accel_mask = active_accel_mask; local_accel_mask; ) { + u32 accel_id = findAndClearLSB_32(&local_accel_mask); + + u32 stuck_dominators = dominated_by[accel_id] & ~may_turn_off; + if ((stuck_dominators & active_accel_mask) != stuck_dominators) { + DEBUG_PRINTF("only %08x on, but we require %08x\n", + active_accel_mask, stuck_dominators); + return IMPOSSIBLE_ACCEL_MASK; + } + } + + if (ignored) { + DEBUG_PRINTF("in %08x, ignoring %08x\n", active_accel_mask, ignored); + } + + return active_accel_mask & ~ignored; +} + +static +void buildAccel(const build_info &args, NFAStateSet &accelMask, + NFAStateSet &accelFriendsMask, AccelAuxVector &auxvec, + vector<u8> &accelTable) { + const limex_accel_info &accel = args.accel; + + // Init, all zeroes. + accelMask.resize(args.num_states); + accelFriendsMask.resize(args.num_states); + + if (!args.do_accel) { + return; + } + + vector<AccelBuild> accelStates; + gatherAccelStates(args, accelStates); + + if (accelStates.empty()) { + DEBUG_PRINTF("no accelerable states\n"); + return; + } + + const auto dom_map = findDominators(args.h); + + // We have 2^n different accel entries, one for each possible + // combination of accelerable states. + assert(accelStates.size() < 32); + const u32 accelCount = 1U << accelStates.size(); + assert(accelCount <= 256); + + // Set up a unioned AccelBuild for every possible combination of the set + // bits in accelStates. + vector<AccelBuild> accelOuts(accelCount); + vector<u32> effective_accel_set; + effective_accel_set.push_back(0); /* empty is effectively empty */ + + for (u32 i = 1; i < accelCount; i++) { + u32 effective_i = getEffectiveAccelStates(args, dom_map, i, + accelStates); + effective_accel_set.push_back(effective_i); + + if (effective_i == IMPOSSIBLE_ACCEL_MASK) { + DEBUG_PRINTF("this combination of accel states is not possible\n"); + accelOuts[i].stop1 = CharReach::dot(); + continue; + } + + while (effective_i) { + u32 base_accel_state = findAndClearLSB_32(&effective_i); + combineAccel(accelStates[base_accel_state], accelOuts[i]); + } + minimiseAccel(accelOuts[i]); + } + + accelTable.resize(accelCount); + + // We dedupe our AccelAux structures here, so that we only write one copy + // of each unique accel scheme into the bytecode, using the accelTable as + // an index. + + // Start with the NONE case. + auxvec.push_back(AccelAux()); + memset(&auxvec[0], 0, sizeof(AccelAux)); + auxvec[0].accel_type = ACCEL_NONE; // no states on. + + AccelAux aux; + for (u32 i = 1; i < accelCount; i++) { + memset(&aux, 0, sizeof(aux)); + + NFAStateSet effective_states(args.num_states); + u32 effective_i = effective_accel_set[i]; + + AccelInfo ainfo; + ainfo.double_offset = accelOuts[i].offset; + ainfo.double_stop1 = accelOuts[i].stop1; + ainfo.double_stop2 = accelOuts[i].stop2; + + if (effective_i != IMPOSSIBLE_ACCEL_MASK) { + while (effective_i) { + u32 base_accel_id = findAndClearLSB_32(&effective_i); + effective_states.set(accelStates[base_accel_id].state); + } + + if (contains(accel.precalc, effective_states)) { + const auto &precalc = accel.precalc.at(effective_states); + ainfo.single_offset = precalc.single_offset; + ainfo.single_stops = precalc.single_cr; + } + } + + buildAccelAux(ainfo, &aux); + + // FIXME: We may want a faster way to find AccelAux structures that + // we've already built before. + auto it = find_if(auxvec.begin(), auxvec.end(), AccelAuxCmp(aux)); + if (it == auxvec.end()) { + accelTable[i] = verify_u8(auxvec.size()); + auxvec.push_back(aux); + } else { + accelTable[i] = verify_u8(it - auxvec.begin()); + } + } + + DEBUG_PRINTF("%zu unique accel schemes (of max %u)\n", auxvec.size(), + accelCount); + + // XXX: ACCEL_NONE? + for (const auto &as : accelStates) { + NFAVertex v = as.v; + assert(v && args.state_ids.at(v) == as.state); + + accelMask.set(as.state); + accelFriendsMask.set(as.state); + + if (!contains(accel.friends, v)) { + continue; + } + // Add the friends of this state to the friends mask. + const flat_set<NFAVertex> &friends = accel.friends.at(v); + DEBUG_PRINTF("%u has %zu friends\n", as.state, friends.size()); + for (auto friend_v : friends) { + u32 state_id = args.state_ids.at(friend_v); + DEBUG_PRINTF("--> %u\n", state_id); + accelFriendsMask.set(state_id); + } + } +} + +static +u32 addSquashMask(const build_info &args, const NFAVertex &v, + vector<NFAStateSet> &squash) { + auto sit = args.reportSquashMap.find(v); + if (sit == args.reportSquashMap.end()) { + return MO_INVALID_IDX; + } + + // This state has a squash mask. Paw through the existing vector to + // see if we've already seen it, otherwise add a new one. + auto it = find(squash.begin(), squash.end(), sit->second); + if (it != squash.end()) { + return verify_u32(std::distance(squash.begin(), it)); + } + u32 idx = verify_u32(squash.size()); + squash.push_back(sit->second); + return idx; +} + +using ReportListCache = ue2_unordered_map<vector<ReportID>, u32>; + +static +u32 addReports(const flat_set<ReportID> &r, vector<ReportID> &reports, + ReportListCache &reports_cache) { + assert(!r.empty()); + + vector<ReportID> my_reports(begin(r), end(r)); + my_reports.push_back(MO_INVALID_IDX); // sentinel + + auto cache_it = reports_cache.find(my_reports); + if (cache_it != end(reports_cache)) { + u32 offset = cache_it->second; + DEBUG_PRINTF("reusing cached report list at %u\n", offset); + return offset; + } + + auto it = search(begin(reports), end(reports), begin(my_reports), + end(my_reports)); + if (it != end(reports)) { + u32 offset = verify_u32(std::distance(begin(reports), it)); + DEBUG_PRINTF("reusing found report list at %u\n", offset); + return offset; + } + + u32 offset = verify_u32(reports.size()); + insert(&reports, reports.end(), my_reports); + reports_cache.emplace(move(my_reports), offset); + return offset; +} + +static +void buildAcceptsList(const build_info &args, ReportListCache &reports_cache, + vector<NFAVertex> &verts, vector<NFAAccept> &accepts, + vector<ReportID> &reports, vector<NFAStateSet> &squash) { + if (verts.empty()) { + return; + } + + DEBUG_PRINTF("building accept lists for %zu states\n", verts.size()); + + auto cmp_state_id = [&args](NFAVertex a, NFAVertex b) { + u32 a_state = args.state_ids.at(a); + u32 b_state = args.state_ids.at(b); + assert(a_state != b_state || a == b); + return a_state < b_state; + }; + + sort(begin(verts), end(verts), cmp_state_id); + + const NGHolder &h = args.h; + for (const auto &v : verts) { + DEBUG_PRINTF("state=%u, reports: [%s]\n", args.state_ids.at(v), + as_string_list(h[v].reports).c_str()); + NFAAccept a; + memset(&a, 0, sizeof(a)); + assert(!h[v].reports.empty()); + if (h[v].reports.size() == 1) { + a.single_report = 1; + a.reports = *h[v].reports.begin(); + } else { + a.single_report = 0; + a.reports = addReports(h[v].reports, reports, reports_cache); + } + a.squash = addSquashMask(args, v, squash); + accepts.push_back(move(a)); + } +} + +static +void buildAccepts(const build_info &args, ReportListCache &reports_cache, + NFAStateSet &acceptMask, NFAStateSet &acceptEodMask, + vector<NFAAccept> &accepts, vector<NFAAccept> &acceptsEod, + vector<ReportID> &reports, vector<NFAStateSet> &squash) { + const NGHolder &h = args.h; + + acceptMask.resize(args.num_states); + acceptEodMask.resize(args.num_states); + + vector<NFAVertex> verts_accept, verts_accept_eod; + + for (auto v : vertices_range(h)) { + u32 state_id = args.state_ids.at(v); + + if (state_id == NO_STATE || !is_match_vertex(v, h)) { + continue; + } + + if (edge(v, h.accept, h).second) { + acceptMask.set(state_id); + verts_accept.push_back(v); + } else { + assert(edge(v, h.acceptEod, h).second); + acceptEodMask.set(state_id); + verts_accept_eod.push_back(v); + } + } + + buildAcceptsList(args, reports_cache, verts_accept, accepts, reports, + squash); + buildAcceptsList(args, reports_cache, verts_accept_eod, acceptsEod, reports, + squash); +} + +static +void buildTopMasks(const build_info &args, vector<NFAStateSet> &topMasks) { + if (args.tops.empty()) { + return; // No tops, probably an outfix NFA. + } + + u32 numMasks = args.tops.rbegin()->first + 1; // max mask index + DEBUG_PRINTF("we have %u top masks\n", numMasks); + + topMasks.assign(numMasks, NFAStateSet(args.num_states)); // all zeroes + + for (const auto &m : args.tops) { + u32 mask_idx = m.first; + for (NFAVertex v : m.second) { + u32 state_id = args.state_ids.at(v); + DEBUG_PRINTF("state %u is in top mask %u\n", state_id, mask_idx); + + assert(mask_idx < numMasks); + assert(state_id != NO_STATE); + + topMasks[mask_idx].set(state_id); + } + } +} + +static +u32 uncompressedStateSize(u32 num_states) { + // Number of bytes required to store all our states. + return ROUNDUP_N(num_states, 8)/8; +} + +static +u32 compressedStateSize(const NGHolder &h, const NFAStateSet &maskedStates, + const unordered_map<NFAVertex, u32> &state_ids) { + // Shrink state requirement to enough to fit the compressed largest reach. + vector<u32> allreach(N_CHARS, 0); + + for (auto v : vertices_range(h)) { + u32 i = state_ids.at(v); + if (i == NO_STATE || maskedStates.test(i)) { + continue; + } + const CharReach &cr = h[v].char_reach; + for (size_t j = cr.find_first(); j != cr.npos; j = cr.find_next(j)) { + allreach[j]++; // state 'i' can reach character 'j'. + } + } + + u32 maxreach = *max_element(allreach.begin(), allreach.end()); + DEBUG_PRINTF("max reach is %u\n", maxreach); + return (maxreach + 7) / 8; +} + +static +bool hasSquashableInitDs(const build_info &args) { + const NGHolder &h = args.h; + + if (args.squashMap.empty()) { + DEBUG_PRINTF("squash map is empty\n"); + return false; + } + + NFAStateSet initDs(args.num_states); + u32 sds_state = args.state_ids.at(h.startDs); + if (sds_state == NO_STATE) { + DEBUG_PRINTF("no states in initds\n"); + return false; + } + + initDs.set(sds_state); + + /* TODO: simplify */ + + // Check normal squash map. + for (const auto &m : args.squashMap) { + DEBUG_PRINTF("checking squash mask for state %u\n", + args.state_ids.at(m.first)); + NFAStateSet squashed = ~(m.second); // flip mask + assert(squashed.size() == initDs.size()); + if (squashed.intersects(initDs)) { + DEBUG_PRINTF("state %u squashes initds states\n", + args.state_ids.at(m.first)); + return true; + } + } + + // Check report squash map. + for (const auto &m : args.reportSquashMap) { + DEBUG_PRINTF("checking report squash mask for state %u\n", + args.state_ids.at(m.first)); + NFAStateSet squashed = ~(m.second); // flip mask + assert(squashed.size() == initDs.size()); + if (squashed.intersects(initDs)) { + DEBUG_PRINTF("state %u squashes initds states\n", + args.state_ids.at(m.first)); + return true; + } + } + + return false; +} + +static +bool hasInitDsStates(const NGHolder &h, + const unordered_map<NFAVertex, u32> &state_ids) { + if (state_ids.at(h.startDs) != NO_STATE) { + return true; + } + + if (is_triggered(h) && state_ids.at(h.start) != NO_STATE) { + return true; + } + + return false; +} + +static +void findMaskedCompressionStates(const build_info &args, + NFAStateSet &maskedStates) { + const NGHolder &h = args.h; + if (!generates_callbacks(h)) { + // Rose leftfixes can mask out initds, which is worth doing if it will + // stay on forever (i.e. it's not squashable). + u32 sds_i = args.state_ids.at(h.startDs); + if (sds_i != NO_STATE && !hasSquashableInitDs(args)) { + maskedStates.set(sds_i); + DEBUG_PRINTF("masking out initds state\n"); + } + } + + // Suffixes and outfixes can mask out leaf states, which should all be + // accepts. Right now we can only do this when there is nothing in initDs, + // as we switch that on unconditionally in the expand call. + if (!inspects_states_for_accepts(h) + && !hasInitDsStates(h, args.state_ids)) { + NFAStateSet nonleaf(args.num_states); + for (const auto &e : edges_range(h)) { + u32 from = args.state_ids.at(source(e, h)); + u32 to = args.state_ids.at(target(e, h)); + if (from == NO_STATE) { + continue; + } + + // We cannot mask out EOD accepts, as they have to perform an + // action after they're switched on that may be delayed until the + // next stream write. + if (to == NO_STATE && target(e, h) != h.acceptEod) { + continue; + } + + nonleaf.set(from); + } + + for (u32 i = 0; i < args.num_states; i++) { + if (!nonleaf.test(i)) { + maskedStates.set(i); + } + } + + DEBUG_PRINTF("masking out %zu leaf states\n", maskedStates.count()); + } +} + +/** \brief Sets a given flag in the LimEx structure. */ +template<class implNFA_t> +static +void setLimexFlag(implNFA_t *limex, u32 flag) { + assert(flag); + assert((flag & (flag - 1)) == 0); + limex->flags |= flag; +} + +/** \brief Sets a given flag in the NFA structure */ +static +void setNfaFlag(NFA *nfa, u32 flag) { + assert(flag); + assert((flag & (flag - 1)) == 0); + nfa->flags |= flag; +} + +// Some of our NFA types support compressing the state down if we're not using +// all of it. +template<class implNFA_t> +static +void findStateSize(const build_info &args, implNFA_t *limex) { + // Nothing is masked off by default. + maskFill(limex->compressMask, 0xff); + + u32 sizeUncompressed = uncompressedStateSize(args.num_states); + assert(sizeUncompressed <= sizeof(limex->compressMask)); + + if (!args.stateCompression) { + DEBUG_PRINTF("compression disabled, uncompressed state size %u\n", + sizeUncompressed); + limex->stateSize = sizeUncompressed; + return; + } + + NFAStateSet maskedStates(args.num_states); + findMaskedCompressionStates(args, maskedStates); + + u32 sizeCompressed = compressedStateSize(args.h, maskedStates, args.state_ids); + assert(sizeCompressed <= sizeof(limex->compressMask)); + + DEBUG_PRINTF("compressed=%u, uncompressed=%u\n", sizeCompressed, + sizeUncompressed); + + // Must be at least a 10% saving. + if ((sizeCompressed * 100) <= (sizeUncompressed * 90)) { + DEBUG_PRINTF("using compression, state size %u\n", + sizeCompressed); + setLimexFlag(limex, LIMEX_FLAG_COMPRESS_STATE); + limex->stateSize = sizeCompressed; + + if (maskedStates.any()) { + DEBUG_PRINTF("masking %zu states\n", maskedStates.count()); + setLimexFlag(limex, LIMEX_FLAG_COMPRESS_MASKED); + for (size_t i = maskedStates.find_first(); i != NFAStateSet::npos; + i = maskedStates.find_next(i)) { + maskClearBit(limex->compressMask, i); + } + } + } else { + DEBUG_PRINTF("not using compression, state size %u\n", + sizeUncompressed); + limex->stateSize = sizeUncompressed; + } +} + +/* + * LimEx NFA: code for building NFAs in the Limited+Exceptional model. Most + * transitions are limited, with transitions outside the constraints of our + * shifts taken care of as 'exceptions'. Exceptions are also used to handle + * accepts and squash behaviour. + */ + +/** + * \brief Prototype exception class. + * + * Used to build up the map of exceptions before being converted to real + * NFAException32 (etc) structures. + */ +struct ExceptionProto { + u32 reports_index = MO_INVALID_IDX; + NFAStateSet succ_states; + NFAStateSet squash_states; + u32 repeat_index = MO_INVALID_IDX; + enum LimExTrigger trigger = LIMEX_TRIGGER_NONE; + enum LimExSquash squash = LIMEX_SQUASH_NONE; + + explicit ExceptionProto(u32 num_states) + : succ_states(num_states), squash_states(num_states) { + // Squash states are represented as the set of states to leave on, + // so we start with all-ones. + squash_states.set(); + } + + bool operator<(const ExceptionProto &b) const { + const ExceptionProto &a = *this; + + ORDER_CHECK(reports_index); + ORDER_CHECK(repeat_index); + ORDER_CHECK(trigger); + ORDER_CHECK(squash); + ORDER_CHECK(succ_states); + ORDER_CHECK(squash_states); + + return false; + } +}; + +static +u32 buildExceptionMap(const build_info &args, ReportListCache &reports_cache, + const unordered_set<NFAEdge> &exceptional, + map<ExceptionProto, vector<u32>> &exceptionMap, + vector<ReportID> &reportList) { + const NGHolder &h = args.h; + const u32 num_states = args.num_states; + u32 exceptionCount = 0; + + unordered_map<NFAVertex, u32> pos_trigger; + unordered_map<NFAVertex, u32> tug_trigger; + + for (u32 i = 0; i < args.repeats.size(); i++) { + const BoundedRepeatData &br = args.repeats[i]; + assert(!contains(pos_trigger, br.pos_trigger)); + pos_trigger[br.pos_trigger] = i; + for (auto v : br.tug_triggers) { + assert(!contains(tug_trigger, v)); + tug_trigger[v] = i; + } + } + + for (auto v : vertices_range(h)) { + const u32 i = args.state_ids.at(v); + + if (i == NO_STATE) { + continue; + } + + bool addMe = false; + ExceptionProto e(num_states); + + if (edge(v, h.accept, h).second && generates_callbacks(h)) { + /* if nfa is never used to produce callbacks, no need to mark + * states as exceptional */ + const auto &reports = h[v].reports; + + DEBUG_PRINTF("state %u is exceptional due to accept " + "(%zu reports)\n", i, reports.size()); + + if (reports.empty()) { + e.reports_index = MO_INVALID_IDX; + } else { + e.reports_index = + addReports(reports, reportList, reports_cache); + } + + // We may be applying a report squash too. + auto mi = args.reportSquashMap.find(v); + if (mi != args.reportSquashMap.end()) { + DEBUG_PRINTF("report squashes states\n"); + assert(e.squash_states.size() == mi->second.size()); + e.squash_states = mi->second; + e.squash = LIMEX_SQUASH_REPORT; + } + + addMe = true; + } + + if (contains(pos_trigger, v)) { + u32 repeat_index = pos_trigger[v]; + assert(e.trigger == LIMEX_TRIGGER_NONE); + e.trigger = LIMEX_TRIGGER_POS; + e.repeat_index = repeat_index; + DEBUG_PRINTF("state %u has pos trigger for repeat %u\n", i, + repeat_index); + addMe = true; + } + + if (contains(tug_trigger, v)) { + u32 repeat_index = tug_trigger[v]; + assert(e.trigger == LIMEX_TRIGGER_NONE); + e.trigger = LIMEX_TRIGGER_TUG; + e.repeat_index = repeat_index; + + // TUG triggers can squash the preceding cyclic state. + u32 cyclic = args.state_ids.at(args.repeats[repeat_index].cyclic); + e.squash_states.reset(cyclic); + e.squash = LIMEX_SQUASH_TUG; + DEBUG_PRINTF("state %u has tug trigger for repeat %u, can squash " + "state %u\n", i, repeat_index, cyclic); + addMe = true; + } + + // are we a non-limited transition? + for (const auto &oe : out_edges_range(v, h)) { + if (contains(exceptional, oe)) { + NFAVertex w = target(oe, h); + u32 w_idx = args.state_ids.at(w); + assert(w_idx != NO_STATE); + e.succ_states.set(w_idx); + DEBUG_PRINTF("exceptional transition %u->%u\n", i, w_idx); + addMe = true; + } + } + + // do we lead SOLELY to a squasher state? (we use the successors as + // a proxy for the out-edge here, so there must be only one for us + // to do this safely) + /* The above comment is IMHO bogus and would result in all squashing + * being disabled around stars */ + if (e.trigger != LIMEX_TRIGGER_TUG) { + for (auto w : adjacent_vertices_range(v, h)) { + if (w == v) { + continue; + } + u32 j = args.state_ids.at(w); + if (j == NO_STATE) { + continue; + } + DEBUG_PRINTF("we are checking if succ %u is a squasher\n", j); + auto mi = args.squashMap.find(w); + if (mi != args.squashMap.end()) { + DEBUG_PRINTF("squasher edge (%u, %u)\n", i, j); + DEBUG_PRINTF("e.squash_states.size() == %zu, " + "mi->second.size() = %zu\n", + e.squash_states.size(), mi->second.size()); + assert(e.squash_states.size() == mi->second.size()); + e.squash_states = mi->second; + + // NOTE: this might be being combined with the report + // squashing above. + + e.squash = LIMEX_SQUASH_CYCLIC; + DEBUG_PRINTF("squashing succ %u (turns off %zu states)\n", + j, mi->second.size() - mi->second.count()); + addMe = true; + } + } + } + + if (addMe) { + // Add 'e' if it isn't in the map, and push state i on to its list + // of states. + assert(e.succ_states.size() == num_states); + assert(e.squash_states.size() == num_states); + exceptionMap[e].push_back(i); + exceptionCount++; + } + } + + DEBUG_PRINTF("%u exceptions found (%zu unique)\n", exceptionCount, + exceptionMap.size()); + return exceptionCount; +} + +static +u32 depth_to_u32(const depth &d) { + assert(d.is_reachable()); + if (d.is_infinite()) { + return REPEAT_INF; + } + + u32 d_val = d; + assert(d_val < REPEAT_INF); + return d_val; +} + +static +bool isExceptionalTransition(u32 from, u32 to, const build_info &args, + u32 maxShift) { + if (!isLimitedTransition(from, to, maxShift)) { + return true; + } + + // All transitions out of a tug trigger are exceptional. + if (args.tugs.test(from)) { + return true; + } + return false; +} + +static +u32 findMaxVarShift(const build_info &args, u32 nShifts) { + const NGHolder &h = args.h; + u32 shiftMask = 0; + for (const auto &e : edges_range(h)) { + u32 from = args.state_ids.at(source(e, h)); + u32 to = args.state_ids.at(target(e, h)); + if (from == NO_STATE || to == NO_STATE) { + continue; + } + if (!isExceptionalTransition(from, to, args, MAX_SHIFT_AMOUNT)) { + shiftMask |= (1UL << (to - from)); + } + } + + u32 maxVarShift = 0; + for (u32 shiftCnt = 0; shiftMask != 0 && shiftCnt < nShifts; shiftCnt++) { + maxVarShift = findAndClearLSB_32(&shiftMask); + } + + return maxVarShift; +} + +static +int getLimexScore(const build_info &args, u32 nShifts) { + const NGHolder &h = args.h; + u32 maxVarShift = nShifts; + int score = 0; + + score += SHIFT_COST * nShifts; + maxVarShift = findMaxVarShift(args, nShifts); + + NFAStateSet exceptionalStates(args.num_states); + for (const auto &e : edges_range(h)) { + u32 from = args.state_ids.at(source(e, h)); + u32 to = args.state_ids.at(target(e, h)); + if (from == NO_STATE || to == NO_STATE) { + continue; + } + if (isExceptionalTransition(from, to, args, maxVarShift)) { + exceptionalStates.set(from); + } + } + score += EXCEPTION_COST * exceptionalStates.count(); + return score; +} + +// This function finds the best shift scheme with highest score +// Returns number of shifts and score calculated for appropriate scheme +// Returns zero if no appropriate scheme was found +static +u32 findBestNumOfVarShifts(const build_info &args, + int *bestScoreRet = nullptr) { + u32 bestNumOfVarShifts = 0; + int bestScore = INT_MAX; + for (u32 shiftCount = 1; shiftCount <= MAX_SHIFT_COUNT; shiftCount++) { + int score = getLimexScore(args, shiftCount); + if (score < bestScore) { + bestScore = score; + bestNumOfVarShifts = shiftCount; + } + } + if (bestScoreRet != nullptr) { + *bestScoreRet = bestScore; + } + return bestNumOfVarShifts; +} + +static +bool cannotDie(const build_info &args, const set<NFAVertex> &tops) { + const auto &h = args.h; + + // When this top is activated, all of the vertices in 'tops' are switched + // on. If any of those lead to a graph that cannot die, then this top + // cannot die. + + // For each top, we use a depth-first search to traverse the graph from the + // top, looking for a cyclic path consisting of vertices of dot reach. If + // one exists, than the NFA cannot die after this top is triggered. + + auto colour_map = make_small_color_map(h); + + struct CycleFound {}; + struct CannotDieVisitor : public boost::default_dfs_visitor { + void back_edge(const NFAEdge &e, const NGHolder &g) const { + DEBUG_PRINTF("back-edge %zu,%zu\n", g[source(e, g)].index, + g[target(e, g)].index); + if (g[target(e, g)].char_reach.all()) { + assert(g[source(e, g)].char_reach.all()); + throw CycleFound(); + } + } + }; + + try { + for (const auto &top : tops) { + DEBUG_PRINTF("checking top vertex %zu\n", h[top].index); + + // Constrain the search to the top vertices and any dot vertices it + // can reach. + auto term_func = [&](NFAVertex v, const NGHolder &g) { + if (v == top) { + return false; + } + if (!g[v].char_reach.all()) { + return true; + } + if (contains(args.br_cyclic, v) && + args.br_cyclic.at(v).repeatMax != depth::infinity()) { + // Bounded repeat vertices without inf max can be turned + // off. + return true; + } + return false; + }; + + boost::depth_first_visit(h, top, CannotDieVisitor(), colour_map, + term_func); + } + } catch (const CycleFound &) { + DEBUG_PRINTF("cycle found\n"); + return true; + } + + return false; +} + +/** \brief True if this NFA cannot ever be in no states at all. */ +static +bool cannotDie(const build_info &args) { + const auto &h = args.h; + const auto &state_ids = args.state_ids; + + // If we have a startDs we're actually using, we can't die. + if (state_ids.at(h.startDs) != NO_STATE) { + DEBUG_PRINTF("is using startDs\n"); + return true; + } + + return all_of_in(args.tops | map_values, [&](const set<NFAVertex> &verts) { + return cannotDie(args, verts); + }); +} + +template<NFAEngineType dtype> +struct Factory { + // typedefs for readability, for types derived from traits + typedef typename NFATraits<dtype>::exception_t exception_t; + typedef typename NFATraits<dtype>::implNFA_t implNFA_t; + typedef typename NFATraits<dtype>::tableRow_t tableRow_t; + + static + void allocState(NFA *nfa, u32 repeatscratchStateSize, + u32 repeatStreamState) { + implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa); + + // LimEx NFAs now store the following in state: + // 1. state bitvector (always present) + // 2. space associated with repeats + // This function just needs to size these correctly. + + u32 stateSize = limex->stateSize; + + DEBUG_PRINTF("bitvector=%zu/%u, repeat full=%u, stream=%u\n", + sizeof(limex->init), stateSize, repeatscratchStateSize, + repeatStreamState); + + size_t scratchStateSize = NFATraits<dtype>::scratch_state_size; + + if (repeatscratchStateSize) { + scratchStateSize + = ROUNDUP_N(scratchStateSize, alignof(RepeatControl)); + scratchStateSize += repeatscratchStateSize; + } + size_t streamStateSize = stateSize + repeatStreamState; + + nfa->scratchStateSize = verify_u32(scratchStateSize); + nfa->streamStateSize = verify_u32(streamStateSize); + } + + static + size_t repeatAllocSize(const BoundedRepeatData &br, u32 *tableOffset, + u32 *tugMaskOffset) { + size_t len = sizeof(NFARepeatInfo) + sizeof(RepeatInfo); + + // sparse lookup table. + if (br.type == REPEAT_SPARSE_OPTIMAL_P) { + len = ROUNDUP_N(len, alignof(u64a)); + *tableOffset = verify_u32(len); + len += sizeof(u64a) * (br.repeatMax + 1); + } else { + *tableOffset = 0; + } + + // tug mask. + len = ROUNDUP_N(len, alignof(tableRow_t)); + *tugMaskOffset = verify_u32(len); + len += sizeof(tableRow_t); + + // to simplify layout. + len = ROUNDUP_CL(len); + + return len; + } + + static + void buildRepeats(const build_info &args, + vector<bytecode_ptr<NFARepeatInfo>> &out, + u32 *scratchStateSize, u32 *streamState) { + out.reserve(args.repeats.size()); + + u32 repeat_idx = 0; + for (auto it = args.repeats.begin(), ite = args.repeats.end(); + it != ite; ++it, ++repeat_idx) { + const BoundedRepeatData &br = *it; + assert(args.state_ids.at(br.cyclic) != NO_STATE); + + u32 tableOffset, tugMaskOffset; + size_t len = repeatAllocSize(br, &tableOffset, &tugMaskOffset); + auto info = make_zeroed_bytecode_ptr<NFARepeatInfo>(len); + char *info_ptr = (char *)info.get(); + + // Collect state space info. + RepeatStateInfo rsi(br.type, br.repeatMin, br.repeatMax, br.minPeriod); + u32 streamStateLen = rsi.packedCtrlSize + rsi.stateSize; + + // Fill the NFARepeatInfo structure. + info->cyclicState = args.state_ids.at(br.cyclic); + info->ctrlIndex = repeat_idx; + info->packedCtrlOffset = *streamState; + info->stateOffset = *streamState + rsi.packedCtrlSize; + info->stateSize = streamStateLen; + info->tugMaskOffset = tugMaskOffset; + + // Fill the RepeatInfo structure. + RepeatInfo *repeat = + (RepeatInfo *)(info_ptr + sizeof(NFARepeatInfo)); + repeat->type = br.type; + repeat->repeatMin = depth_to_u32(br.repeatMin); + repeat->repeatMax = depth_to_u32(br.repeatMax); + repeat->horizon = rsi.horizon; + repeat->packedCtrlSize = rsi.packedCtrlSize; + repeat->stateSize = rsi.stateSize; + copy_bytes(repeat->packedFieldSizes, rsi.packedFieldSizes); + repeat->patchCount = rsi.patchCount; + repeat->patchSize = rsi.patchSize; + repeat->encodingSize = rsi.encodingSize; + repeat->patchesOffset = rsi.patchesOffset; + + u32 repeat_len = sizeof(RepeatInfo); + if (br.type == REPEAT_SPARSE_OPTIMAL_P) { + repeat_len += sizeof(u64a) * (rsi.patchSize + 1); + } + repeat->length = repeat_len; + + // Copy in the sparse lookup table. + if (br.type == REPEAT_SPARSE_OPTIMAL_P) { + assert(!rsi.table.empty()); + copy_bytes(info_ptr + tableOffset, rsi.table); + } + + // Fill the tug mask. + tableRow_t *tugMask = (tableRow_t *)(info_ptr + tugMaskOffset); + for (auto v : br.tug_triggers) { + u32 state_id = args.state_ids.at(v); + assert(state_id != NO_STATE); + maskSetBit(*tugMask, state_id); + } + + assert(streamStateLen); + *streamState += streamStateLen; + *scratchStateSize += sizeof(RepeatControl); + + out.emplace_back(move(info)); + } + } + + static + void writeLimexMasks(const build_info &args, implNFA_t *limex) { + const NGHolder &h = args.h; + + // Init masks. + u32 s_i = args.state_ids.at(h.start); + u32 sds_i = args.state_ids.at(h.startDs); + + if (s_i != NO_STATE) { + maskSetBit(limex->init, s_i); + if (is_triggered(h)) { + maskSetBit(limex->initDS, s_i); + } + } + + if (sds_i != NO_STATE) { + maskSetBit(limex->init, sds_i); + maskSetBit(limex->initDS, sds_i); + } + + // Zombie mask. + for (auto v : args.zombies) { + u32 state_id = args.state_ids.at(v); + assert(state_id != NO_STATE); + maskSetBit(limex->zombieMask, state_id); + } + + // Repeat cyclic mask. + for (const auto &br : args.repeats) { + u32 cyclic = args.state_ids.at(br.cyclic); + assert(cyclic != NO_STATE); + maskSetBit(limex->repeatCyclicMask, cyclic); + } + /* also include tugs in repeat cyclic mask */ + for (size_t i = args.tugs.find_first(); i != args.tugs.npos; + i = args.tugs.find_next(i)) { + maskSetBit(limex->repeatCyclicMask, i); + } + } + + static + void writeShiftMasks(const build_info &args, implNFA_t *limex) { + const NGHolder &h = args.h; + u32 maxShift = findMaxVarShift(args, limex->shiftCount); + u32 shiftMask = 0; + int shiftMaskIdx = 0; + + for (const auto &e : edges_range(h)) { + u32 from = args.state_ids.at(source(e, h)); + u32 to = args.state_ids.at(target(e, h)); + if (from == NO_STATE || to == NO_STATE) { + continue; + } + + // We check for exceptional transitions here, as we don't want tug + // trigger transitions emitted as limited transitions (even if they + // could be in this model). + if (!isExceptionalTransition(from, to, args, maxShift)) { + u32 shift = to - from; + if ((shiftMask & (1UL << shift)) == 0UL) { + shiftMask |= (1UL << shift); + limex->shiftAmount[shiftMaskIdx++] = (u8)shift; + } + assert(limex->shiftCount <= MAX_SHIFT_COUNT); + for (u32 i = 0; i < limex->shiftCount; i++) { + if (limex->shiftAmount[i] == (u8)shift) { + maskSetBit(limex->shift[i], from); + break; + } + } + } + } + if (maxShift && limex->shiftCount > 1) { + for (u32 i = 0; i < limex->shiftCount; i++) { + assert(!isMaskZero(limex->shift[i])); + } + } + } + + static + void findExceptionalTransitions(const build_info &args, + unordered_set<NFAEdge> &exceptional, + u32 maxShift) { + const NGHolder &h = args.h; + + for (const auto &e : edges_range(h)) { + u32 from = args.state_ids.at(source(e, h)); + u32 to = args.state_ids.at(target(e, h)); + if (from == NO_STATE || to == NO_STATE) { + continue; + } + + if (isExceptionalTransition(from, to, args, maxShift)) { + exceptional.insert(e); + } + } + } + + static + void writeExceptions(const build_info &args, + const map<ExceptionProto, vector<u32>> &exceptionMap, + const vector<u32> &repeatOffsets, implNFA_t *limex, + const u32 exceptionsOffset, + const u32 reportListOffset) { + DEBUG_PRINTF("exceptionsOffset=%u\n", exceptionsOffset); + + exception_t *etable = (exception_t *)((char *)limex + exceptionsOffset); + assert(ISALIGNED(etable)); + + map<u32, ExceptionProto> exception_by_state; + for (const auto &m : exceptionMap) { + const ExceptionProto &proto = m.first; + const vector<u32> &states = m.second; + for (u32 i : states) { + assert(!contains(exception_by_state, i)); + exception_by_state.emplace(i, proto); + } + } + + u32 ecount = 0; + for (const auto &m : exception_by_state) { + const ExceptionProto &proto = m.second; + u32 state_id = m.first; + DEBUG_PRINTF("exception %u, triggered by state %u\n", ecount, + state_id); + + // Write the exception entry. + exception_t &e = etable[ecount]; + maskSetBits(e.squash, proto.squash_states); + maskSetBits(e.successors, proto.succ_states); + if (proto.reports_index == MO_INVALID_IDX) { + e.reports = MO_INVALID_IDX; + } else { + e.reports = reportListOffset + + proto.reports_index * sizeof(ReportID); + } + e.hasSquash = verify_u8(proto.squash); + e.trigger = verify_u8(proto.trigger); + u32 repeat_offset = proto.repeat_index == MO_INVALID_IDX + ? MO_INVALID_IDX + : repeatOffsets[proto.repeat_index]; + e.repeatOffset = repeat_offset; + + // for the state that can switch it on + // set this bit in the exception mask + maskSetBit(limex->exceptionMask, state_id); + + ecount++; + } + + limex->exceptionOffset = exceptionsOffset; + limex->exceptionCount = ecount; + + if (args.num_states > 64 && args.cc.target_info.has_avx512vbmi()) { + const u8 *exceptionMask = (const u8 *)(&limex->exceptionMask); + u8 *shufMask = (u8 *)&limex->exceptionShufMask; + u8 *bitMask = (u8 *)&limex->exceptionBitMask; + u8 *andMask = (u8 *)&limex->exceptionAndMask; + + u32 tot_cnt = 0; + u32 pos = 0; + bool valid = true; + size_t tot = sizeof(limex->exceptionMask); + size_t base = 0; + + // We normally have up to 64 exceptions to handle, + // but treat 384 state Limex differently to simplify operations + size_t limit = 64; + if (args.num_states > 256 && args.num_states <= 384) { + limit = 48; + } + + for (size_t i = 0; i < tot; i++) { + if (!exceptionMask[i]) { + continue; + } + u32 bit_cnt = popcount32(exceptionMask[i]); + + tot_cnt += bit_cnt; + if (tot_cnt > limit) { + valid = false; + break; + } + + u32 emsk = exceptionMask[i]; + while (emsk) { + u32 t = findAndClearLSB_32(&emsk); + bitMask[pos] = 1U << t; + andMask[pos] = 1U << t; + shufMask[pos++] = i + base; + + if (pos == 32 && + (args.num_states > 128 && args.num_states <= 256)) { + base += 32; + } + } + } + // Avoid matching unused bytes + for (u32 i = pos; i < 64; i++) { + bitMask[i] = 0xff; + } + if (valid) { + setLimexFlag(limex, LIMEX_FLAG_EXTRACT_EXP); + } + } + } + + static + void writeReachMapping(const vector<NFAStateSet> &reach, + const vector<u8> &reachMap, implNFA_t *limex, + const u32 reachOffset) { + DEBUG_PRINTF("reachOffset=%u\n", reachOffset); + + // Reach mapping is inside the LimEx structure. + copy(reachMap.begin(), reachMap.end(), &limex->reachMap[0]); + + // Reach table is right after the LimEx structure. + tableRow_t *reachMask = (tableRow_t *)((char *)limex + reachOffset); + assert(ISALIGNED(reachMask)); + for (size_t i = 0, end = reach.size(); i < end; i++) { + maskSetBits(reachMask[i], reach[i]); + } + limex->reachSize = verify_u32(reach.size()); + } + + static + void writeTopMasks(const vector<NFAStateSet> &tops, implNFA_t *limex, + const u32 topsOffset) { + DEBUG_PRINTF("topsOffset=%u\n", topsOffset); + + limex->topOffset = topsOffset; + tableRow_t *topMasks = (tableRow_t *)((char *)limex + topsOffset); + assert(ISALIGNED(topMasks)); + + for (size_t i = 0, end = tops.size(); i < end; i++) { + maskSetBits(topMasks[i], tops[i]); + } + + limex->topCount = verify_u32(tops.size()); + } + + static + void writeAccelSsse3Masks(const NFAStateSet &accelMask, implNFA_t *limex) { + char *perm_base = (char *)&limex->accelPermute; + char *comp_base = (char *)&limex->accelCompare; + + u32 num = 0; // index in accel table. + for (size_t i = accelMask.find_first(); i != accelMask.npos; + i = accelMask.find_next(i), ++num) { + u32 state_id = verify_u32(i); + DEBUG_PRINTF("accel num=%u, state=%u\n", num, state_id); + + // PSHUFB permute and compare masks + size_t mask_idx = sizeof(u_128) * (state_id / 128U); + DEBUG_PRINTF("mask_idx=%zu\n", mask_idx); + u_128 *perm = (u_128 *)(perm_base + mask_idx); + u_128 *comp = (u_128 *)(comp_base + mask_idx); + maskSetByte(*perm, num, ((state_id % 128U) / 8U)); + maskSetByte(*comp, num, ~(1U << (state_id % 8U))); + } + } + + static + void writeAccel(const NFAStateSet &accelMask, + const NFAStateSet &accelFriendsMask, + const AccelAuxVector &accelAux, + const vector<u8> &accelTable, implNFA_t *limex, + const u32 accelTableOffset, const u32 accelAuxOffset) { + DEBUG_PRINTF("accelTableOffset=%u, accelAuxOffset=%u\n", + accelTableOffset, accelAuxOffset); + + // Write accel lookup table. + limex->accelTableOffset = accelTableOffset; + copy(accelTable.begin(), accelTable.end(), + (u8 *)((char *)limex + accelTableOffset)); + + // Write accel aux structures. + limex->accelAuxOffset = accelAuxOffset; + AccelAux *auxTable = (AccelAux *)((char *)limex + accelAuxOffset); + assert(ISALIGNED(auxTable)); + copy(accelAux.begin(), accelAux.end(), auxTable); + + // Write LimEx structure members. + limex->accelCount = verify_u32(accelTable.size()); + // FIXME: accelAuxCount is unused? + limex->accelAuxCount = verify_u32(accelAux.size()); + + // Write LimEx masks. + maskSetBits(limex->accel, accelMask); + maskSetBits(limex->accel_and_friends, accelFriendsMask); + + // We can use PSHUFB-based shuffles for models >= 128 states. These + // require some additional masks in the bytecode. + maskClear(limex->accelCompare); + maskFill(limex->accelPermute, (char)0x80); + if (NFATraits<dtype>::maxStates >= 128) { + writeAccelSsse3Masks(accelMask, limex); + } + } + + static + void writeAccepts(const NFAStateSet &acceptMask, + const NFAStateSet &acceptEodMask, + const vector<NFAAccept> &accepts, + const vector<NFAAccept> &acceptsEod, + const vector<NFAStateSet> &squash, implNFA_t *limex, + const u32 acceptsOffset, const u32 acceptsEodOffset, + const u32 squashOffset, const u32 reportListOffset) { + char *limex_base = (char *)limex; + + DEBUG_PRINTF("acceptsOffset=%u, acceptsEodOffset=%u, squashOffset=%u\n", + acceptsOffset, acceptsEodOffset, squashOffset); + + // LimEx masks (in structure) + maskSetBits(limex->accept, acceptMask); + maskSetBits(limex->acceptAtEOD, acceptEodMask); + + // Transforms the indices (report list, squash mask) into offsets + // relative to the base of the limex. + auto transform_offset_fn = [&](NFAAccept a) { + if (!a.single_report) { + a.reports = reportListOffset + a.reports * sizeof(ReportID); + } + a.squash = squashOffset + a.squash * sizeof(tableRow_t); + return a; + }; + + // Write accept table. + limex->acceptOffset = acceptsOffset; + limex->acceptCount = verify_u32(accepts.size()); + DEBUG_PRINTF("NFA has %zu accepts\n", accepts.size()); + NFAAccept *acceptsTable = (NFAAccept *)(limex_base + acceptsOffset); + assert(ISALIGNED(acceptsTable)); + transform(accepts.begin(), accepts.end(), acceptsTable, + transform_offset_fn); + + // Write eod accept table. + limex->acceptEodOffset = acceptsEodOffset; + limex->acceptEodCount = verify_u32(acceptsEod.size()); + DEBUG_PRINTF("NFA has %zu EOD accepts\n", acceptsEod.size()); + NFAAccept *acceptsEodTable = (NFAAccept *)(limex_base + acceptsEodOffset); + assert(ISALIGNED(acceptsEodTable)); + transform(acceptsEod.begin(), acceptsEod.end(), acceptsEodTable, + transform_offset_fn); + + // Write squash mask table. + limex->squashCount = verify_u32(squash.size()); + limex->squashOffset = squashOffset; + DEBUG_PRINTF("NFA has %zu report squash masks\n", squash.size()); + tableRow_t *mask = (tableRow_t *)(limex_base + squashOffset); + assert(ISALIGNED(mask)); + for (size_t i = 0, end = squash.size(); i < end; i++) { + maskSetBits(mask[i], squash[i]); + } + } + + static + void writeRepeats(const vector<bytecode_ptr<NFARepeatInfo>> &repeats, + vector<u32> &repeatOffsets, implNFA_t *limex, + const u32 repeatOffsetsOffset, const u32 repeatOffset) { + const u32 num_repeats = verify_u32(repeats.size()); + + DEBUG_PRINTF("repeatOffsetsOffset=%u, repeatOffset=%u\n", + repeatOffsetsOffset, repeatOffset); + + repeatOffsets.resize(num_repeats); + u32 offset = repeatOffset; + + for (u32 i = 0; i < num_repeats; i++) { + repeatOffsets[i] = offset; + assert(repeats[i]); + memcpy((char *)limex + offset, repeats[i].get(), repeats[i].size()); + offset += repeats[i].size(); + } + + // Write repeat offset lookup table. + assert(ISALIGNED_N((char *)limex + repeatOffsetsOffset, alignof(u32))); + copy_bytes((char *)limex + repeatOffsetsOffset, repeatOffsets); + + limex->repeatOffset = repeatOffsetsOffset; + limex->repeatCount = num_repeats; + } + + static + void writeReportList(const vector<ReportID> &reports, implNFA_t *limex, + const u32 reportListOffset) { + DEBUG_PRINTF("reportListOffset=%u\n", reportListOffset); + assert(ISALIGNED_N((char *)limex + reportListOffset, + alignof(ReportID))); + copy_bytes((char *)limex + reportListOffset, reports); + } + + static + bytecode_ptr<NFA> generateNfa(const build_info &args) { + if (args.num_states > NFATraits<dtype>::maxStates) { + return nullptr; + } + + // Build bounded repeat structures. + vector<bytecode_ptr<NFARepeatInfo>> repeats; + u32 repeats_full_state = 0; + u32 repeats_stream_state = 0; + buildRepeats(args, repeats, &repeats_full_state, &repeats_stream_state); + size_t repeatSize = 0; + for (size_t i = 0; i < repeats.size(); i++) { + repeatSize += repeats[i].size(); + } + + // We track report lists that have already been written into the global + // list in case we can reuse them. + ReportListCache reports_cache; + + unordered_set<NFAEdge> exceptional; + u32 shiftCount = findBestNumOfVarShifts(args); + assert(shiftCount); + u32 maxShift = findMaxVarShift(args, shiftCount); + findExceptionalTransitions(args, exceptional, maxShift); + + map<ExceptionProto, vector<u32>> exceptionMap; + vector<ReportID> reportList; + + u32 exceptionCount = buildExceptionMap(args, reports_cache, exceptional, + exceptionMap, reportList); + + assert(exceptionCount <= args.num_states); + + // Build reach table and character mapping. + vector<NFAStateSet> reach; + vector<u8> reachMap; + buildReachMapping(args, reach, reachMap); + + // Build top masks. + vector<NFAStateSet> tops; + buildTopMasks(args, tops); + + // Build all our accept info. + NFAStateSet acceptMask, acceptEodMask; + vector<NFAAccept> accepts, acceptsEod; + vector<NFAStateSet> squash; + buildAccepts(args, reports_cache, acceptMask, acceptEodMask, accepts, + acceptsEod, reportList, squash); + + // Build all our accel info. + NFAStateSet accelMask, accelFriendsMask; + AccelAuxVector accelAux; + vector<u8> accelTable; + buildAccel(args, accelMask, accelFriendsMask, accelAux, accelTable); + + // Compute the offsets in the bytecode for this LimEx NFA for all of + // our structures. First, the NFA and LimEx structures. All other + // offsets are relative to the start of the LimEx struct, starting with + // the reach table. + u32 offset = sizeof(implNFA_t); + + const u32 reachOffset = offset; + offset += sizeof(tableRow_t) * reach.size(); + + const u32 topsOffset = offset; + offset += sizeof(tableRow_t) * tops.size(); + + const u32 accelTableOffset = offset; + offset += sizeof(u8) * accelTable.size(); + + offset = ROUNDUP_N(offset, alignof(AccelAux)); + const u32 accelAuxOffset = offset; + offset += sizeof(AccelAux) * accelAux.size(); + + offset = ROUNDUP_N(offset, alignof(NFAAccept)); + const u32 acceptsOffset = offset; + offset += sizeof(NFAAccept) * accepts.size(); + const u32 acceptsEodOffset = offset; + offset += sizeof(NFAAccept) * acceptsEod.size(); + + offset = ROUNDUP_CL(offset); + const u32 squashOffset = offset; + offset += sizeof(tableRow_t) * squash.size(); + + offset = ROUNDUP_CL(offset); + const u32 exceptionsOffset = offset; + offset += sizeof(exception_t) * exceptionCount; + + const u32 reportListOffset = offset; + offset += sizeof(ReportID) * reportList.size(); + + const u32 repeatOffsetsOffset = offset; + offset += sizeof(u32) * args.repeats.size(); + + offset = ROUNDUP_CL(offset); + const u32 repeatsOffset = offset; + offset += repeatSize; + + // Now we can allocate space for the NFA and get to work on layout. + + size_t nfaSize = sizeof(NFA) + offset; + DEBUG_PRINTF("nfa size %zu\n", nfaSize); + auto nfa = make_zeroed_bytecode_ptr<NFA>(nfaSize); + assert(nfa); // otherwise we would have thrown std::bad_alloc + + implNFA_t *limex = (implNFA_t *)getMutableImplNfa(nfa.get()); + assert(ISALIGNED(limex)); + + writeReachMapping(reach, reachMap, limex, reachOffset); + + writeTopMasks(tops, limex, topsOffset); + + writeAccel(accelMask, accelFriendsMask, accelAux, accelTable, + limex, accelTableOffset, accelAuxOffset); + + writeAccepts(acceptMask, acceptEodMask, accepts, acceptsEod, squash, + limex, acceptsOffset, acceptsEodOffset, squashOffset, + reportListOffset); + + limex->shiftCount = shiftCount; + writeShiftMasks(args, limex); + + if (cannotDie(args)) { + DEBUG_PRINTF("nfa cannot die\n"); + setLimexFlag(limex, LIMEX_FLAG_CANNOT_DIE); + } + + // Determine the state required for our state vector. + findStateSize(args, limex); + + writeReportList(reportList, limex, reportListOffset); + + // Repeat structures and offset table. + vector<u32> repeatOffsets; + writeRepeats(repeats, repeatOffsets, limex, repeatOffsetsOffset, + repeatsOffset); + + writeExceptions(args, exceptionMap, repeatOffsets, limex, exceptionsOffset, + reportListOffset); + + writeLimexMasks(args, limex); + + allocState(nfa.get(), repeats_full_state, repeats_stream_state); + + nfa->type = dtype; + nfa->length = verify_u32(nfaSize); + nfa->nPositions = args.num_states; + + if (!args.zombies.empty()) { + setNfaFlag(nfa.get(), NFA_ZOMBIE); + } + if (!acceptsEod.empty()) { + setNfaFlag(nfa.get(), NFA_ACCEPTS_EOD); + } + + return nfa; + } + + static int score(const build_info &args) { + // LimEx NFAs are available in sizes from 32 to 512-bit. + size_t num_states = args.num_states; + + size_t sz = findContainerSize(num_states); + if (sz < 32) { + sz = 32; + } + + if (args.cc.grey.nfaForceSize) { + sz = args.cc.grey.nfaForceSize; + } + + if (sz != NFATraits<dtype>::maxStates) { + return -1; // fail, size not appropriate + } + + // We are of the right size, calculate a score based on the number + // of exceptions and the number of shifts used by this LimEx. + int score; + u32 shiftCount = findBestNumOfVarShifts(args, &score); + if (shiftCount == 0) { + return -1; + } + return score; + } +}; + +template<NFAEngineType dtype> +struct generateNfa { + static bytecode_ptr<NFA> call(const build_info &args) { + return Factory<dtype>::generateNfa(args); + } +}; + +template<NFAEngineType dtype> +struct scoreNfa { + static int call(const build_info &args) { + return Factory<dtype>::score(args); + } +}; + +#define MAKE_LIMEX_TRAITS(mlt_size) \ + template<> struct NFATraits<LIMEX_NFA_##mlt_size> { \ + typedef LimExNFA##mlt_size implNFA_t; \ + typedef u_##mlt_size tableRow_t; \ + typedef NFAException##mlt_size exception_t; \ + static const size_t maxStates = mlt_size; \ + static const size_t scratch_state_size = mlt_size == 64 ? sizeof(m128) \ + : sizeof(tableRow_t); \ + }; + +MAKE_LIMEX_TRAITS(32) +MAKE_LIMEX_TRAITS(64) +MAKE_LIMEX_TRAITS(128) +MAKE_LIMEX_TRAITS(256) +MAKE_LIMEX_TRAITS(384) +MAKE_LIMEX_TRAITS(512) + +} // namespace + +#ifndef NDEBUG +// Some sanity tests, called by an assertion in generate(). +static UNUSED +bool isSane(const NGHolder &h, const map<u32, set<NFAVertex>> &tops, + const unordered_map<NFAVertex, u32> &state_ids, + u32 num_states) { + unordered_set<u32> seen; + unordered_set<NFAVertex> top_starts; + for (const auto &vv : tops | map_values) { + insert(&top_starts, vv); + } + + for (auto v : vertices_range(h)) { + if (!contains(state_ids, v)) { + DEBUG_PRINTF("no entry for vertex %zu in state map\n", h[v].index); + return false; + } + const u32 i = state_ids.at(v); + if (i == NO_STATE) { + continue; + } + + DEBUG_PRINTF("checking vertex %zu (state %u)\n", h[v].index, i); + + if (i >= num_states || contains(seen, i)) { + DEBUG_PRINTF("vertex %u/%u has invalid state\n", i, num_states); + return false; + } + seen.insert(i); + + // All our states should be reachable and have a state assigned. + if (h[v].char_reach.none()) { + DEBUG_PRINTF("vertex %zu has empty reachability\n", h[v].index); + return false; + } + + // Every state that isn't a start state (or top, in triggered NFAs) + // must have at least one predecessor that is not itself. + if (v != h.start && v != h.startDs && !contains(top_starts, v) + && !proper_in_degree(v, h)) { + DEBUG_PRINTF("vertex %zu has no pred\n", h[v].index); + return false; + } + } + + if (seen.size() != num_states) { + return false; + } + + return true; +} +#endif // NDEBUG + +static +bool isFast(const build_info &args) { + const NGHolder &h = args.h; + const u32 num_states = args.num_states; + + if (num_states > MAX_SMALL_NFA_STATES) { + return false; + } + + unordered_map<NFAVertex, bool> pos_trigger; + for (u32 i = 0; i < args.repeats.size(); i++) { + const BoundedRepeatData &br = args.repeats[i]; + assert(!contains(pos_trigger, br.pos_trigger)); + pos_trigger[br.pos_trigger] = br.repeatMax <= MAX_REPEAT_SIZE; + } + + // Small NFA without bounded repeat should be fast. + if (pos_trigger.empty()) { + return true; + } + + vector<NFAVertex> cur; + unordered_set<NFAVertex> visited; + for (const auto &m : args.tops) { + for (NFAVertex v : m.second) { + cur.push_back(v); + visited.insert(v); + } + } + + u8 pos_dist = 0; + while (!cur.empty()) { + vector<NFAVertex> next; + for (const auto &v : cur) { + if (contains(pos_trigger, v)) { + const CharReach &cr = h[v].char_reach; + if (!pos_trigger[v] && cr.count() > MAX_REPEAT_CHAR_REACH) { + return false; + } + } + for (const auto &w : adjacent_vertices_range(v, h)) { + if (w == v) { + continue; + } + u32 j = args.state_ids.at(w); + if (j == NO_STATE) { + continue; + } + if (!contains(visited, w)) { + next.push_back(w); + visited.insert(w); + } + } + } + if (++pos_dist >= MIN_REPEAT_TRIGGER_DISTANCE) { + break; + } + swap(cur, next); + } + return true; +} + +static +u32 max_state(const unordered_map<NFAVertex, u32> &state_ids) { + u32 rv = 0; + for (const auto &m : state_ids) { + DEBUG_PRINTF("state %u\n", m.second); + if (m.second != NO_STATE) { + rv = max(m.second, rv); + } + } + DEBUG_PRINTF("max %u\n", rv); + return rv; +} + +bytecode_ptr<NFA> generate(NGHolder &h, + const unordered_map<NFAVertex, u32> &states, + const vector<BoundedRepeatData> &repeats, + const unordered_map<NFAVertex, NFAStateSet> &reportSquashMap, + const unordered_map<NFAVertex, NFAStateSet> &squashMap, + const map<u32, set<NFAVertex>> &tops, + const set<NFAVertex> &zombies, bool do_accel, + bool stateCompression, bool &fast, u32 hint, + const CompileContext &cc) { + const u32 num_states = max_state(states) + 1; + DEBUG_PRINTF("total states: %u\n", num_states); + + if (!cc.grey.allowLimExNFA) { + DEBUG_PRINTF("limex not allowed\n"); + return nullptr; + } + + // If you ask for a particular type, it had better be an NFA. + assert(hint == INVALID_NFA || hint <= LAST_LIMEX_NFA); + DEBUG_PRINTF("hint=%u\n", hint); + + // Sanity check the input data. + assert(isSane(h, tops, states, num_states)); + + // Build arguments used in the rest of this file. + build_info arg(h, states, repeats, reportSquashMap, squashMap, tops, + zombies, do_accel, stateCompression, cc, num_states); + + // Acceleration analysis. + fillAccelInfo(arg); + + vector<pair<int, NFAEngineType>> scores; + + if (hint != INVALID_NFA) { + // The caller has told us what to (attempt to) build. + scores.emplace_back(0, (NFAEngineType)hint); + } else { + for (size_t i = 0; i <= LAST_LIMEX_NFA; i++) { + NFAEngineType ntype = (NFAEngineType)i; + int score = DISPATCH_BY_LIMEX_TYPE(ntype, scoreNfa, arg); + if (score >= 0) { + DEBUG_PRINTF("%s scores %d\n", nfa_type_name(ntype), score); + scores.emplace_back(score, ntype); + } + } + } + + if (scores.empty()) { + DEBUG_PRINTF("No NFA returned a valid score for this case.\n"); + return nullptr; + } + + // Sort acceptable models in priority order, lowest score first. + sort(scores.begin(), scores.end()); + + for (const auto &elem : scores) { + assert(elem.first >= 0); + NFAEngineType limex_model = elem.second; + auto nfa = DISPATCH_BY_LIMEX_TYPE(limex_model, generateNfa, arg); + if (nfa) { + DEBUG_PRINTF("successful build with NFA engine: %s\n", + nfa_type_name(limex_model)); + fast = isFast(arg); + return nfa; + } + } + + DEBUG_PRINTF("NFA build failed.\n"); + return nullptr; +} + +u32 countAccelStates(NGHolder &h, + const unordered_map<NFAVertex, u32> &states, + const vector<BoundedRepeatData> &repeats, + const unordered_map<NFAVertex, NFAStateSet> &reportSquashMap, + const unordered_map<NFAVertex, NFAStateSet> &squashMap, + const map<u32, set<NFAVertex>> &tops, + const set<NFAVertex> &zombies, + const CompileContext &cc) { + const u32 num_states = max_state(states) + 1; + DEBUG_PRINTF("total states: %u\n", num_states); + + if (!cc.grey.allowLimExNFA) { + DEBUG_PRINTF("limex not allowed\n"); + return 0; + } + + // Sanity check the input data. + assert(isSane(h, tops, states, num_states)); + + const bool do_accel = true; + const bool state_compression = false; + + // Build arguments used in the rest of this file. + build_info bi(h, states, repeats, reportSquashMap, squashMap, tops, zombies, + do_accel, state_compression, cc, num_states); + + // Acceleration analysis. + nfaFindAccelSchemes(bi.h, bi.br_cyclic, &bi.accel.accel_map); + + u32 num_accel = verify_u32(bi.accel.accel_map.size()); + DEBUG_PRINTF("found %u accel states\n", num_accel); + return num_accel; +} + +} // namespace ue2 |