aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/openmp/kmp_lock.cpp
diff options
context:
space:
mode:
authorAnton Samokhvalov <pg83@yandex.ru>2022-02-10 16:45:17 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:17 +0300
commitd3a398281c6fd1d3672036cb2d63f842d2cb28c5 (patch)
treedd4bd3ca0f36b817e96812825ffaf10d645803f2 /contrib/libs/cxxsupp/openmp/kmp_lock.cpp
parent72cb13b4aff9bc9cf22e49251bc8fd143f82538f (diff)
downloadydb-d3a398281c6fd1d3672036cb2d63f842d2cb28c5.tar.gz
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/cxxsupp/openmp/kmp_lock.cpp')
-rw-r--r--contrib/libs/cxxsupp/openmp/kmp_lock.cpp8408
1 files changed, 4204 insertions, 4204 deletions
diff --git a/contrib/libs/cxxsupp/openmp/kmp_lock.cpp b/contrib/libs/cxxsupp/openmp/kmp_lock.cpp
index ec884f6a51..becf7eddf6 100644
--- a/contrib/libs/cxxsupp/openmp/kmp_lock.cpp
+++ b/contrib/libs/cxxsupp/openmp/kmp_lock.cpp
@@ -1,4207 +1,4207 @@
-/*
- * kmp_lock.cpp -- lock-related functions
- */
-
-
-//===----------------------------------------------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.txt for details.
-//
-//===----------------------------------------------------------------------===//
-
-
-#include <stddef.h>
-
-#include "kmp.h"
-#include "kmp_itt.h"
-#include "kmp_i18n.h"
-#include "kmp_lock.h"
-#include "kmp_io.h"
-
-#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
-# include <unistd.h>
-# include <sys/syscall.h>
-// We should really include <futex.h>, but that causes compatibility problems on different
-// Linux* OS distributions that either require that you include (or break when you try to include)
-// <pci/types.h>.
-// Since all we need is the two macros below (which are part of the kernel ABI, so can't change)
-// we just define the constants here and don't include <futex.h>
-# ifndef FUTEX_WAIT
-# define FUTEX_WAIT 0
-# endif
-# ifndef FUTEX_WAKE
-# define FUTEX_WAKE 1
-# endif
-#endif
-
-/* Implement spin locks for internal library use. */
-/* The algorithm implemented is Lamport's bakery lock [1974]. */
-
-void
-__kmp_validate_locks( void )
-{
- int i;
- kmp_uint32 x, y;
-
- /* Check to make sure unsigned arithmetic does wraps properly */
- x = ~((kmp_uint32) 0) - 2;
- y = x - 2;
-
- for (i = 0; i < 8; ++i, ++x, ++y) {
- kmp_uint32 z = (x - y);
- KMP_ASSERT( z == 2 );
- }
-
- KMP_ASSERT( offsetof( kmp_base_queuing_lock, tail_id ) % 8 == 0 );
-}
-
-
-/* ------------------------------------------------------------------------ */
-/* test and set locks */
-
-//
-// For the non-nested locks, we can only assume that the first 4 bytes were
-// allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
-// compiler only allocates a 4 byte pointer on IA-32 architecture. On
-// Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
-//
-// gcc reserves >= 8 bytes for nested locks, so we can assume that the
-// entire 8 bytes were allocated for nested locks on all 64-bit platforms.
-//
-
-static kmp_int32
-__kmp_get_tas_lock_owner( kmp_tas_lock_t *lck )
-{
- return KMP_LOCK_STRIP(TCR_4( lck->lk.poll )) - 1;
-}
-
-static inline bool
-__kmp_is_tas_lock_nestable( kmp_tas_lock_t *lck )
-{
- return lck->lk.depth_locked != -1;
-}
-
-__forceinline static int
-__kmp_acquire_tas_lock_timed_template( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- KMP_MB();
-
-#ifdef USE_LOCK_PROFILE
- kmp_uint32 curr = TCR_4( lck->lk.poll );
- if ( ( curr != 0 ) && ( curr != gtid + 1 ) )
- __kmp_printf( "LOCK CONTENTION: %p\n", lck );
- /* else __kmp_printf( "." );*/
-#endif /* USE_LOCK_PROFILE */
-
- if ( ( lck->lk.poll == KMP_LOCK_FREE(tas) )
- && KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) {
- KMP_FSYNC_ACQUIRED(lck);
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-
- kmp_uint32 spins;
- KMP_FSYNC_PREPARE( lck );
- KMP_INIT_YIELD( spins );
- if ( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
- __kmp_xproc ) ) {
- KMP_YIELD( TRUE );
- }
- else {
- KMP_YIELD_SPIN( spins );
- }
-
- while ( ( lck->lk.poll != KMP_LOCK_FREE(tas) ) ||
- ( ! KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) ) {
- //
- // FIXME - use exponential backoff here
- //
- if ( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
- __kmp_xproc ) ) {
- KMP_YIELD( TRUE );
- }
- else {
- KMP_YIELD_SPIN( spins );
- }
- }
- KMP_FSYNC_ACQUIRED( lck );
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_acquire_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- return __kmp_acquire_tas_lock_timed_template( lck, gtid );
-}
-
-static int
-__kmp_acquire_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_tas_lock_owner( lck ) == gtid ) ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
- return __kmp_acquire_tas_lock( lck, gtid );
-}
-
-int
-__kmp_test_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- if ( ( lck->lk.poll == KMP_LOCK_FREE(tas) )
- && KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) {
- KMP_FSYNC_ACQUIRED( lck );
- return TRUE;
- }
- return FALSE;
-}
-
-static int
-__kmp_test_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- return __kmp_test_tas_lock( lck, gtid );
-}
-
-int
-__kmp_release_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KMP_FSYNC_RELEASING(lck);
- KMP_ST_REL32( &(lck->lk.poll), KMP_LOCK_FREE(tas) );
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KMP_YIELD( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
- __kmp_xproc ) );
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_tas_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_tas_lock_owner( lck ) >= 0 )
- && ( __kmp_get_tas_lock_owner( lck ) != gtid ) ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_tas_lock( lck, gtid );
-}
-
-void
-__kmp_init_tas_lock( kmp_tas_lock_t * lck )
-{
- TCW_4( lck->lk.poll, KMP_LOCK_FREE(tas) );
-}
-
-static void
-__kmp_init_tas_lock_with_checks( kmp_tas_lock_t * lck )
-{
- __kmp_init_tas_lock( lck );
-}
-
-void
-__kmp_destroy_tas_lock( kmp_tas_lock_t *lck )
-{
- lck->lk.poll = 0;
-}
-
-static void
-__kmp_destroy_tas_lock_with_checks( kmp_tas_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_tas_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_tas_lock( lck );
-}
-
-
-//
-// nested test and set locks
-//
-
-int
-__kmp_acquire_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_tas_lock_owner( lck ) == gtid ) {
- lck->lk.depth_locked += 1;
- return KMP_LOCK_ACQUIRED_NEXT;
- }
- else {
- __kmp_acquire_tas_lock_timed_template( lck, gtid );
- lck->lk.depth_locked = 1;
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-}
-
-static int
-__kmp_acquire_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_nest_lock";
- if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_acquire_nested_tas_lock( lck, gtid );
-}
-
-int
-__kmp_test_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- int retval;
-
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_tas_lock_owner( lck ) == gtid ) {
- retval = ++lck->lk.depth_locked;
- }
- else if ( !__kmp_test_tas_lock( lck, gtid ) ) {
- retval = 0;
- }
- else {
- KMP_MB();
- retval = lck->lk.depth_locked = 1;
- }
- return retval;
-}
-
-static int
-__kmp_test_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_nest_lock";
- if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_test_nested_tas_lock( lck, gtid );
-}
-
-int
-__kmp_release_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- KMP_MB();
- if ( --(lck->lk.depth_locked) == 0 ) {
- __kmp_release_tas_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
- }
- return KMP_LOCK_STILL_HELD;
-}
-
-static int
-__kmp_release_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_nest_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_tas_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_tas_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_nested_tas_lock( lck, gtid );
-}
-
-void
-__kmp_init_nested_tas_lock( kmp_tas_lock_t * lck )
-{
- __kmp_init_tas_lock( lck );
- lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
-}
-
-static void
-__kmp_init_nested_tas_lock_with_checks( kmp_tas_lock_t * lck )
-{
- __kmp_init_nested_tas_lock( lck );
-}
-
-void
-__kmp_destroy_nested_tas_lock( kmp_tas_lock_t *lck )
-{
- __kmp_destroy_tas_lock( lck );
- lck->lk.depth_locked = 0;
-}
-
-static void
-__kmp_destroy_nested_tas_lock_with_checks( kmp_tas_lock_t *lck )
-{
- char const * const func = "omp_destroy_nest_lock";
- if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_tas_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_nested_tas_lock( lck );
-}
-
-
-#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
-
-/* ------------------------------------------------------------------------ */
-/* futex locks */
-
-// futex locks are really just test and set locks, with a different method
-// of handling contention. They take the same amount of space as test and
-// set locks, and are allocated the same way (i.e. use the area allocated by
-// the compiler for non-nested locks / allocate nested locks on the heap).
-
-static kmp_int32
-__kmp_get_futex_lock_owner( kmp_futex_lock_t *lck )
-{
- return KMP_LOCK_STRIP(( TCR_4( lck->lk.poll ) >> 1 )) - 1;
-}
-
-static inline bool
-__kmp_is_futex_lock_nestable( kmp_futex_lock_t *lck )
-{
- return lck->lk.depth_locked != -1;
-}
-
-__forceinline static int
-__kmp_acquire_futex_lock_timed_template( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- kmp_int32 gtid_code = ( gtid + 1 ) << 1;
-
- KMP_MB();
-
-#ifdef USE_LOCK_PROFILE
- kmp_uint32 curr = TCR_4( lck->lk.poll );
- if ( ( curr != 0 ) && ( curr != gtid_code ) )
- __kmp_printf( "LOCK CONTENTION: %p\n", lck );
- /* else __kmp_printf( "." );*/
-#endif /* USE_LOCK_PROFILE */
-
- KMP_FSYNC_PREPARE( lck );
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
- lck, lck->lk.poll, gtid ) );
-
- kmp_int32 poll_val;
-
- while ( ( poll_val = KMP_COMPARE_AND_STORE_RET32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex),
- KMP_LOCK_BUSY(gtid_code, futex) ) ) != KMP_LOCK_FREE(futex) ) {
-
- kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
- lck, gtid, poll_val, cond ) );
-
- //
- // NOTE: if you try to use the following condition for this branch
- //
- // if ( poll_val & 1 == 0 )
- //
- // Then the 12.0 compiler has a bug where the following block will
- // always be skipped, regardless of the value of the LSB of poll_val.
- //
- if ( ! cond ) {
- //
- // Try to set the lsb in the poll to indicate to the owner
- // thread that they need to wake this thread up.
- //
- if ( ! KMP_COMPARE_AND_STORE_REL32( & ( lck->lk.poll ), poll_val, poll_val | KMP_LOCK_BUSY(1, futex) ) ) {
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
- lck, lck->lk.poll, gtid ) );
- continue;
- }
- poll_val |= KMP_LOCK_BUSY(1, futex);
-
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n",
- lck, lck->lk.poll, gtid ) );
- }
-
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
- lck, gtid, poll_val ) );
-
- kmp_int32 rc;
- if ( ( rc = syscall( __NR_futex, & ( lck->lk.poll ), FUTEX_WAIT,
- poll_val, NULL, NULL, 0 ) ) != 0 ) {
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) failed (rc=%d errno=%d)\n",
- lck, gtid, poll_val, rc, errno ) );
- continue;
- }
-
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
- lck, gtid, poll_val ) );
- //
- // This thread has now done a successful futex wait call and was
- // entered on the OS futex queue. We must now perform a futex
- // wake call when releasing the lock, as we have no idea how many
- // other threads are in the queue.
- //
- gtid_code |= 1;
- }
-
- KMP_FSYNC_ACQUIRED( lck );
- KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n",
- lck, lck->lk.poll, gtid ) );
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_acquire_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- return __kmp_acquire_futex_lock_timed_template( lck, gtid );
-}
-
-static int
-__kmp_acquire_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_futex_lock_owner( lck ) == gtid ) ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
- return __kmp_acquire_futex_lock( lck, gtid );
-}
-
-int
-__kmp_test_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- if ( KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex), KMP_LOCK_BUSY(gtid+1, futex) << 1 ) ) {
- KMP_FSYNC_ACQUIRED( lck );
- return TRUE;
- }
- return FALSE;
-}
-
-static int
-__kmp_test_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- return __kmp_test_futex_lock( lck, gtid );
-}
-
-int
-__kmp_release_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
- lck, lck->lk.poll, gtid ) );
-
- KMP_FSYNC_RELEASING(lck);
-
- kmp_int32 poll_val = KMP_XCHG_FIXED32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex) );
-
- KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
- lck, gtid, poll_val ) );
-
- if ( KMP_LOCK_STRIP(poll_val) & 1 ) {
- KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
- lck, gtid ) );
- syscall( __NR_futex, & ( lck->lk.poll ), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), NULL, NULL, 0 );
- }
-
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n",
- lck, lck->lk.poll, gtid ) );
-
- KMP_YIELD( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
- __kmp_xproc ) );
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_futex_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_futex_lock_owner( lck ) >= 0 )
- && ( __kmp_get_futex_lock_owner( lck ) != gtid ) ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_futex_lock( lck, gtid );
-}
-
-void
-__kmp_init_futex_lock( kmp_futex_lock_t * lck )
-{
- TCW_4( lck->lk.poll, KMP_LOCK_FREE(futex) );
-}
-
-static void
-__kmp_init_futex_lock_with_checks( kmp_futex_lock_t * lck )
-{
- __kmp_init_futex_lock( lck );
-}
-
-void
-__kmp_destroy_futex_lock( kmp_futex_lock_t *lck )
-{
- lck->lk.poll = 0;
-}
-
-static void
-__kmp_destroy_futex_lock_with_checks( kmp_futex_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
- && __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_futex_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_futex_lock( lck );
-}
-
-
-//
-// nested futex locks
-//
-
-int
-__kmp_acquire_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_futex_lock_owner( lck ) == gtid ) {
- lck->lk.depth_locked += 1;
- return KMP_LOCK_ACQUIRED_NEXT;
- }
- else {
- __kmp_acquire_futex_lock_timed_template( lck, gtid );
- lck->lk.depth_locked = 1;
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-}
-
-static int
-__kmp_acquire_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_nest_lock";
- if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_acquire_nested_futex_lock( lck, gtid );
-}
-
-int
-__kmp_test_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- int retval;
-
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_futex_lock_owner( lck ) == gtid ) {
- retval = ++lck->lk.depth_locked;
- }
- else if ( !__kmp_test_futex_lock( lck, gtid ) ) {
- retval = 0;
- }
- else {
- KMP_MB();
- retval = lck->lk.depth_locked = 1;
- }
- return retval;
-}
-
-static int
-__kmp_test_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_nest_lock";
- if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_test_nested_futex_lock( lck, gtid );
-}
-
-int
-__kmp_release_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- KMP_MB();
- if ( --(lck->lk.depth_locked) == 0 ) {
- __kmp_release_futex_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
- }
- return KMP_LOCK_STILL_HELD;
-}
-
-static int
-__kmp_release_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_nest_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_futex_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_futex_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_nested_futex_lock( lck, gtid );
-}
-
-void
-__kmp_init_nested_futex_lock( kmp_futex_lock_t * lck )
-{
- __kmp_init_futex_lock( lck );
- lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
-}
-
-static void
-__kmp_init_nested_futex_lock_with_checks( kmp_futex_lock_t * lck )
-{
- __kmp_init_nested_futex_lock( lck );
-}
-
-void
-__kmp_destroy_nested_futex_lock( kmp_futex_lock_t *lck )
-{
- __kmp_destroy_futex_lock( lck );
- lck->lk.depth_locked = 0;
-}
-
-static void
-__kmp_destroy_nested_futex_lock_with_checks( kmp_futex_lock_t *lck )
-{
- char const * const func = "omp_destroy_nest_lock";
- if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_futex_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_nested_futex_lock( lck );
-}
-
-#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
-
-
-/* ------------------------------------------------------------------------ */
-/* ticket (bakery) locks */
-
-static kmp_int32
-__kmp_get_ticket_lock_owner( kmp_ticket_lock_t *lck )
-{
- return TCR_4( lck->lk.owner_id ) - 1;
-}
-
-static inline bool
-__kmp_is_ticket_lock_nestable( kmp_ticket_lock_t *lck )
-{
- return lck->lk.depth_locked != -1;
-}
-
-static kmp_uint32
-__kmp_bakery_check(kmp_uint value, kmp_uint checker)
-{
+/*
+ * kmp_lock.cpp -- lock-related functions
+ */
+
+
+//===----------------------------------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
+//
+//===----------------------------------------------------------------------===//
+
+
+#include <stddef.h>
+
+#include "kmp.h"
+#include "kmp_itt.h"
+#include "kmp_i18n.h"
+#include "kmp_lock.h"
+#include "kmp_io.h"
+
+#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
+# include <unistd.h>
+# include <sys/syscall.h>
+// We should really include <futex.h>, but that causes compatibility problems on different
+// Linux* OS distributions that either require that you include (or break when you try to include)
+// <pci/types.h>.
+// Since all we need is the two macros below (which are part of the kernel ABI, so can't change)
+// we just define the constants here and don't include <futex.h>
+# ifndef FUTEX_WAIT
+# define FUTEX_WAIT 0
+# endif
+# ifndef FUTEX_WAKE
+# define FUTEX_WAKE 1
+# endif
+#endif
+
+/* Implement spin locks for internal library use. */
+/* The algorithm implemented is Lamport's bakery lock [1974]. */
+
+void
+__kmp_validate_locks( void )
+{
+ int i;
+ kmp_uint32 x, y;
+
+ /* Check to make sure unsigned arithmetic does wraps properly */
+ x = ~((kmp_uint32) 0) - 2;
+ y = x - 2;
+
+ for (i = 0; i < 8; ++i, ++x, ++y) {
+ kmp_uint32 z = (x - y);
+ KMP_ASSERT( z == 2 );
+ }
+
+ KMP_ASSERT( offsetof( kmp_base_queuing_lock, tail_id ) % 8 == 0 );
+}
+
+
+/* ------------------------------------------------------------------------ */
+/* test and set locks */
+
+//
+// For the non-nested locks, we can only assume that the first 4 bytes were
+// allocated, since gcc only allocates 4 bytes for omp_lock_t, and the Intel
+// compiler only allocates a 4 byte pointer on IA-32 architecture. On
+// Windows* OS on Intel(R) 64, we can assume that all 8 bytes were allocated.
+//
+// gcc reserves >= 8 bytes for nested locks, so we can assume that the
+// entire 8 bytes were allocated for nested locks on all 64-bit platforms.
+//
+
+static kmp_int32
+__kmp_get_tas_lock_owner( kmp_tas_lock_t *lck )
+{
+ return KMP_LOCK_STRIP(TCR_4( lck->lk.poll )) - 1;
+}
+
+static inline bool
+__kmp_is_tas_lock_nestable( kmp_tas_lock_t *lck )
+{
+ return lck->lk.depth_locked != -1;
+}
+
+__forceinline static int
+__kmp_acquire_tas_lock_timed_template( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_MB();
+
+#ifdef USE_LOCK_PROFILE
+ kmp_uint32 curr = TCR_4( lck->lk.poll );
+ if ( ( curr != 0 ) && ( curr != gtid + 1 ) )
+ __kmp_printf( "LOCK CONTENTION: %p\n", lck );
+ /* else __kmp_printf( "." );*/
+#endif /* USE_LOCK_PROFILE */
+
+ if ( ( lck->lk.poll == KMP_LOCK_FREE(tas) )
+ && KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) {
+ KMP_FSYNC_ACQUIRED(lck);
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+
+ kmp_uint32 spins;
+ KMP_FSYNC_PREPARE( lck );
+ KMP_INIT_YIELD( spins );
+ if ( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
+ __kmp_xproc ) ) {
+ KMP_YIELD( TRUE );
+ }
+ else {
+ KMP_YIELD_SPIN( spins );
+ }
+
+ while ( ( lck->lk.poll != KMP_LOCK_FREE(tas) ) ||
+ ( ! KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) ) {
+ //
+ // FIXME - use exponential backoff here
+ //
+ if ( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
+ __kmp_xproc ) ) {
+ KMP_YIELD( TRUE );
+ }
+ else {
+ KMP_YIELD_SPIN( spins );
+ }
+ }
+ KMP_FSYNC_ACQUIRED( lck );
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_acquire_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ return __kmp_acquire_tas_lock_timed_template( lck, gtid );
+}
+
+static int
+__kmp_acquire_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_tas_lock_owner( lck ) == gtid ) ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+ return __kmp_acquire_tas_lock( lck, gtid );
+}
+
+int
+__kmp_test_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ if ( ( lck->lk.poll == KMP_LOCK_FREE(tas) )
+ && KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(tas), KMP_LOCK_BUSY(gtid+1, tas) ) ) {
+ KMP_FSYNC_ACQUIRED( lck );
+ return TRUE;
+ }
+ return FALSE;
+}
+
+static int
+__kmp_test_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ return __kmp_test_tas_lock( lck, gtid );
+}
+
+int
+__kmp_release_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KMP_FSYNC_RELEASING(lck);
+ KMP_ST_REL32( &(lck->lk.poll), KMP_LOCK_FREE(tas) );
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KMP_YIELD( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
+ __kmp_xproc ) );
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_tas_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_tas_lock_owner( lck ) >= 0 )
+ && ( __kmp_get_tas_lock_owner( lck ) != gtid ) ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_tas_lock( lck, gtid );
+}
+
+void
+__kmp_init_tas_lock( kmp_tas_lock_t * lck )
+{
+ TCW_4( lck->lk.poll, KMP_LOCK_FREE(tas) );
+}
+
+static void
+__kmp_init_tas_lock_with_checks( kmp_tas_lock_t * lck )
+{
+ __kmp_init_tas_lock( lck );
+}
+
+void
+__kmp_destroy_tas_lock( kmp_tas_lock_t *lck )
+{
+ lck->lk.poll = 0;
+}
+
+static void
+__kmp_destroy_tas_lock_with_checks( kmp_tas_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( ( sizeof ( kmp_tas_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_tas_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_tas_lock( lck );
+}
+
+
+//
+// nested test and set locks
+//
+
+int
+__kmp_acquire_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_tas_lock_owner( lck ) == gtid ) {
+ lck->lk.depth_locked += 1;
+ return KMP_LOCK_ACQUIRED_NEXT;
+ }
+ else {
+ __kmp_acquire_tas_lock_timed_template( lck, gtid );
+ lck->lk.depth_locked = 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+}
+
+static int
+__kmp_acquire_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_nest_lock";
+ if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_acquire_nested_tas_lock( lck, gtid );
+}
+
+int
+__kmp_test_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ int retval;
+
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_tas_lock_owner( lck ) == gtid ) {
+ retval = ++lck->lk.depth_locked;
+ }
+ else if ( !__kmp_test_tas_lock( lck, gtid ) ) {
+ retval = 0;
+ }
+ else {
+ KMP_MB();
+ retval = lck->lk.depth_locked = 1;
+ }
+ return retval;
+}
+
+static int
+__kmp_test_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_nest_lock";
+ if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_test_nested_tas_lock( lck, gtid );
+}
+
+int
+__kmp_release_nested_tas_lock( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ KMP_MB();
+ if ( --(lck->lk.depth_locked) == 0 ) {
+ __kmp_release_tas_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+ }
+ return KMP_LOCK_STILL_HELD;
+}
+
+static int
+__kmp_release_nested_tas_lock_with_checks( kmp_tas_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_nest_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_tas_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_tas_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_nested_tas_lock( lck, gtid );
+}
+
+void
+__kmp_init_nested_tas_lock( kmp_tas_lock_t * lck )
+{
+ __kmp_init_tas_lock( lck );
+ lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
+}
+
+static void
+__kmp_init_nested_tas_lock_with_checks( kmp_tas_lock_t * lck )
+{
+ __kmp_init_nested_tas_lock( lck );
+}
+
+void
+__kmp_destroy_nested_tas_lock( kmp_tas_lock_t *lck )
+{
+ __kmp_destroy_tas_lock( lck );
+ lck->lk.depth_locked = 0;
+}
+
+static void
+__kmp_destroy_nested_tas_lock_with_checks( kmp_tas_lock_t *lck )
+{
+ char const * const func = "omp_destroy_nest_lock";
+ if ( ! __kmp_is_tas_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_tas_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_nested_tas_lock( lck );
+}
+
+
+#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM || KMP_ARCH_AARCH64)
+
+/* ------------------------------------------------------------------------ */
+/* futex locks */
+
+// futex locks are really just test and set locks, with a different method
+// of handling contention. They take the same amount of space as test and
+// set locks, and are allocated the same way (i.e. use the area allocated by
+// the compiler for non-nested locks / allocate nested locks on the heap).
+
+static kmp_int32
+__kmp_get_futex_lock_owner( kmp_futex_lock_t *lck )
+{
+ return KMP_LOCK_STRIP(( TCR_4( lck->lk.poll ) >> 1 )) - 1;
+}
+
+static inline bool
+__kmp_is_futex_lock_nestable( kmp_futex_lock_t *lck )
+{
+ return lck->lk.depth_locked != -1;
+}
+
+__forceinline static int
+__kmp_acquire_futex_lock_timed_template( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_int32 gtid_code = ( gtid + 1 ) << 1;
+
+ KMP_MB();
+
+#ifdef USE_LOCK_PROFILE
+ kmp_uint32 curr = TCR_4( lck->lk.poll );
+ if ( ( curr != 0 ) && ( curr != gtid_code ) )
+ __kmp_printf( "LOCK CONTENTION: %p\n", lck );
+ /* else __kmp_printf( "." );*/
+#endif /* USE_LOCK_PROFILE */
+
+ KMP_FSYNC_PREPARE( lck );
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d entering\n",
+ lck, lck->lk.poll, gtid ) );
+
+ kmp_int32 poll_val;
+
+ while ( ( poll_val = KMP_COMPARE_AND_STORE_RET32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex),
+ KMP_LOCK_BUSY(gtid_code, futex) ) ) != KMP_LOCK_FREE(futex) ) {
+
+ kmp_int32 cond = KMP_LOCK_STRIP(poll_val) & 1;
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d poll_val = 0x%x cond = 0x%x\n",
+ lck, gtid, poll_val, cond ) );
+
+ //
+ // NOTE: if you try to use the following condition for this branch
+ //
+ // if ( poll_val & 1 == 0 )
+ //
+ // Then the 12.0 compiler has a bug where the following block will
+ // always be skipped, regardless of the value of the LSB of poll_val.
+ //
+ if ( ! cond ) {
+ //
+ // Try to set the lsb in the poll to indicate to the owner
+ // thread that they need to wake this thread up.
+ //
+ if ( ! KMP_COMPARE_AND_STORE_REL32( & ( lck->lk.poll ), poll_val, poll_val | KMP_LOCK_BUSY(1, futex) ) ) {
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d can't set bit 0\n",
+ lck, lck->lk.poll, gtid ) );
+ continue;
+ }
+ poll_val |= KMP_LOCK_BUSY(1, futex);
+
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d bit 0 set\n",
+ lck, lck->lk.poll, gtid ) );
+ }
+
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d before futex_wait(0x%x)\n",
+ lck, gtid, poll_val ) );
+
+ kmp_int32 rc;
+ if ( ( rc = syscall( __NR_futex, & ( lck->lk.poll ), FUTEX_WAIT,
+ poll_val, NULL, NULL, 0 ) ) != 0 ) {
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d futex_wait(0x%x) failed (rc=%d errno=%d)\n",
+ lck, gtid, poll_val, rc, errno ) );
+ continue;
+ }
+
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p, T#%d after futex_wait(0x%x)\n",
+ lck, gtid, poll_val ) );
+ //
+ // This thread has now done a successful futex wait call and was
+ // entered on the OS futex queue. We must now perform a futex
+ // wake call when releasing the lock, as we have no idea how many
+ // other threads are in the queue.
+ //
+ gtid_code |= 1;
+ }
+
+ KMP_FSYNC_ACQUIRED( lck );
+ KA_TRACE( 1000, ("__kmp_acquire_futex_lock: lck:%p(0x%x), T#%d exiting\n",
+ lck, lck->lk.poll, gtid ) );
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_acquire_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ return __kmp_acquire_futex_lock_timed_template( lck, gtid );
+}
+
+static int
+__kmp_acquire_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_futex_lock_owner( lck ) == gtid ) ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+ return __kmp_acquire_futex_lock( lck, gtid );
+}
+
+int
+__kmp_test_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ if ( KMP_COMPARE_AND_STORE_ACQ32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex), KMP_LOCK_BUSY(gtid+1, futex) << 1 ) ) {
+ KMP_FSYNC_ACQUIRED( lck );
+ return TRUE;
+ }
+ return FALSE;
+}
+
+static int
+__kmp_test_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ return __kmp_test_futex_lock( lck, gtid );
+}
+
+int
+__kmp_release_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d entering\n",
+ lck, lck->lk.poll, gtid ) );
+
+ KMP_FSYNC_RELEASING(lck);
+
+ kmp_int32 poll_val = KMP_XCHG_FIXED32( & ( lck->lk.poll ), KMP_LOCK_FREE(futex) );
+
+ KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p, T#%d released poll_val = 0x%x\n",
+ lck, gtid, poll_val ) );
+
+ if ( KMP_LOCK_STRIP(poll_val) & 1 ) {
+ KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p, T#%d futex_wake 1 thread\n",
+ lck, gtid ) );
+ syscall( __NR_futex, & ( lck->lk.poll ), FUTEX_WAKE, KMP_LOCK_BUSY(1, futex), NULL, NULL, 0 );
+ }
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KA_TRACE( 1000, ("__kmp_release_futex_lock: lck:%p(0x%x), T#%d exiting\n",
+ lck, lck->lk.poll, gtid ) );
+
+ KMP_YIELD( TCR_4( __kmp_nth ) > ( __kmp_avail_proc ? __kmp_avail_proc :
+ __kmp_xproc ) );
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_futex_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_futex_lock_owner( lck ) >= 0 )
+ && ( __kmp_get_futex_lock_owner( lck ) != gtid ) ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_futex_lock( lck, gtid );
+}
+
+void
+__kmp_init_futex_lock( kmp_futex_lock_t * lck )
+{
+ TCW_4( lck->lk.poll, KMP_LOCK_FREE(futex) );
+}
+
+static void
+__kmp_init_futex_lock_with_checks( kmp_futex_lock_t * lck )
+{
+ __kmp_init_futex_lock( lck );
+}
+
+void
+__kmp_destroy_futex_lock( kmp_futex_lock_t *lck )
+{
+ lck->lk.poll = 0;
+}
+
+static void
+__kmp_destroy_futex_lock_with_checks( kmp_futex_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( ( sizeof ( kmp_futex_lock_t ) <= OMP_LOCK_T_SIZE )
+ && __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_futex_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_futex_lock( lck );
+}
+
+
+//
+// nested futex locks
+//
+
+int
+__kmp_acquire_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_futex_lock_owner( lck ) == gtid ) {
+ lck->lk.depth_locked += 1;
+ return KMP_LOCK_ACQUIRED_NEXT;
+ }
+ else {
+ __kmp_acquire_futex_lock_timed_template( lck, gtid );
+ lck->lk.depth_locked = 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+}
+
+static int
+__kmp_acquire_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_nest_lock";
+ if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_acquire_nested_futex_lock( lck, gtid );
+}
+
+int
+__kmp_test_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ int retval;
+
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_futex_lock_owner( lck ) == gtid ) {
+ retval = ++lck->lk.depth_locked;
+ }
+ else if ( !__kmp_test_futex_lock( lck, gtid ) ) {
+ retval = 0;
+ }
+ else {
+ KMP_MB();
+ retval = lck->lk.depth_locked = 1;
+ }
+ return retval;
+}
+
+static int
+__kmp_test_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_nest_lock";
+ if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_test_nested_futex_lock( lck, gtid );
+}
+
+int
+__kmp_release_nested_futex_lock( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ KMP_MB();
+ if ( --(lck->lk.depth_locked) == 0 ) {
+ __kmp_release_futex_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+ }
+ return KMP_LOCK_STILL_HELD;
+}
+
+static int
+__kmp_release_nested_futex_lock_with_checks( kmp_futex_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_nest_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_futex_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_futex_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_nested_futex_lock( lck, gtid );
+}
+
+void
+__kmp_init_nested_futex_lock( kmp_futex_lock_t * lck )
+{
+ __kmp_init_futex_lock( lck );
+ lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
+}
+
+static void
+__kmp_init_nested_futex_lock_with_checks( kmp_futex_lock_t * lck )
+{
+ __kmp_init_nested_futex_lock( lck );
+}
+
+void
+__kmp_destroy_nested_futex_lock( kmp_futex_lock_t *lck )
+{
+ __kmp_destroy_futex_lock( lck );
+ lck->lk.depth_locked = 0;
+}
+
+static void
+__kmp_destroy_nested_futex_lock_with_checks( kmp_futex_lock_t *lck )
+{
+ char const * const func = "omp_destroy_nest_lock";
+ if ( ! __kmp_is_futex_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_futex_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_nested_futex_lock( lck );
+}
+
+#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
+
+
+/* ------------------------------------------------------------------------ */
+/* ticket (bakery) locks */
+
+static kmp_int32
+__kmp_get_ticket_lock_owner( kmp_ticket_lock_t *lck )
+{
+ return TCR_4( lck->lk.owner_id ) - 1;
+}
+
+static inline bool
+__kmp_is_ticket_lock_nestable( kmp_ticket_lock_t *lck )
+{
+ return lck->lk.depth_locked != -1;
+}
+
+static kmp_uint32
+__kmp_bakery_check(kmp_uint value, kmp_uint checker)
+{
kmp_uint32 pause;
-
- if (value == checker) {
- return TRUE;
- }
- for (pause = checker - value; pause != 0; --pause);
- return FALSE;
-}
-
-__forceinline static int
-__kmp_acquire_ticket_lock_timed_template( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- kmp_uint32 my_ticket;
- KMP_MB();
-
- my_ticket = KMP_TEST_THEN_INC32( (kmp_int32 *) &lck->lk.next_ticket );
-
-#ifdef USE_LOCK_PROFILE
- if ( TCR_4( lck->lk.now_serving ) != my_ticket )
- __kmp_printf( "LOCK CONTENTION: %p\n", lck );
- /* else __kmp_printf( "." );*/
-#endif /* USE_LOCK_PROFILE */
-
- if ( TCR_4( lck->lk.now_serving ) == my_ticket ) {
- KMP_FSYNC_ACQUIRED(lck);
- return KMP_LOCK_ACQUIRED_FIRST;
- }
- KMP_WAIT_YIELD( &lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck );
- KMP_FSYNC_ACQUIRED(lck);
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_acquire_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- return __kmp_acquire_ticket_lock_timed_template( lck, gtid );
-}
-
-static int
-__kmp_acquire_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_ticket_lock_owner( lck ) == gtid ) ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
-
- __kmp_acquire_ticket_lock( lck, gtid );
-
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_test_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- kmp_uint32 my_ticket = TCR_4( lck->lk.next_ticket );
- if ( TCR_4( lck->lk.now_serving ) == my_ticket ) {
- kmp_uint32 next_ticket = my_ticket + 1;
- if ( KMP_COMPARE_AND_STORE_ACQ32( (kmp_int32 *) &lck->lk.next_ticket,
- my_ticket, next_ticket ) ) {
- KMP_FSYNC_ACQUIRED( lck );
- return TRUE;
- }
- }
- return FALSE;
-}
-
-static int
-__kmp_test_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
-
- int retval = __kmp_test_ticket_lock( lck, gtid );
-
- if ( retval ) {
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-int
-__kmp_release_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- kmp_uint32 distance;
-
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KMP_FSYNC_RELEASING(lck);
- distance = ( TCR_4( lck->lk.next_ticket ) - TCR_4( lck->lk.now_serving ) );
-
- KMP_ST_REL32( &(lck->lk.now_serving), lck->lk.now_serving + 1 );
-
- KMP_MB(); /* Flush all pending memory write invalidates. */
-
- KMP_YIELD( distance
- > (kmp_uint32) (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc) );
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_ticket_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_ticket_lock_owner( lck ) >= 0 )
- && ( __kmp_get_ticket_lock_owner( lck ) != gtid ) ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- lck->lk.owner_id = 0;
- return __kmp_release_ticket_lock( lck, gtid );
-}
-
-void
-__kmp_init_ticket_lock( kmp_ticket_lock_t * lck )
-{
- lck->lk.location = NULL;
- TCW_4( lck->lk.next_ticket, 0 );
- TCW_4( lck->lk.now_serving, 0 );
- lck->lk.owner_id = 0; // no thread owns the lock.
- lck->lk.depth_locked = -1; // -1 => not a nested lock.
- lck->lk.initialized = (kmp_ticket_lock *)lck;
-}
-
-static void
-__kmp_init_ticket_lock_with_checks( kmp_ticket_lock_t * lck )
-{
- __kmp_init_ticket_lock( lck );
-}
-
-void
-__kmp_destroy_ticket_lock( kmp_ticket_lock_t *lck )
-{
- lck->lk.initialized = NULL;
- lck->lk.location = NULL;
- lck->lk.next_ticket = 0;
- lck->lk.now_serving = 0;
- lck->lk.owner_id = 0;
- lck->lk.depth_locked = -1;
-}
-
-static void
-__kmp_destroy_ticket_lock_with_checks( kmp_ticket_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_ticket_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_ticket_lock( lck );
-}
-
-
-//
-// nested ticket locks
-//
-
-int
-__kmp_acquire_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_ticket_lock_owner( lck ) == gtid ) {
- lck->lk.depth_locked += 1;
- return KMP_LOCK_ACQUIRED_NEXT;
- }
- else {
- __kmp_acquire_ticket_lock_timed_template( lck, gtid );
- KMP_MB();
- lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-}
-
-static int
-__kmp_acquire_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_acquire_nested_ticket_lock( lck, gtid );
-}
-
-int
-__kmp_test_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- int retval;
-
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_ticket_lock_owner( lck ) == gtid ) {
- retval = ++lck->lk.depth_locked;
- }
- else if ( !__kmp_test_ticket_lock( lck, gtid ) ) {
- retval = 0;
- }
- else {
- KMP_MB();
- retval = lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-static int
-__kmp_test_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck,
- kmp_int32 gtid )
-{
- char const * const func = "omp_test_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_test_nested_ticket_lock( lck, gtid );
-}
-
-int
-__kmp_release_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- KMP_MB();
- if ( --(lck->lk.depth_locked) == 0 ) {
- KMP_MB();
- lck->lk.owner_id = 0;
- __kmp_release_ticket_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
- }
- return KMP_LOCK_STILL_HELD;
-}
-
-static int
-__kmp_release_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_nest_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_ticket_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_ticket_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_nested_ticket_lock( lck, gtid );
-}
-
-void
-__kmp_init_nested_ticket_lock( kmp_ticket_lock_t * lck )
-{
- __kmp_init_ticket_lock( lck );
- lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
-}
-
-static void
-__kmp_init_nested_ticket_lock_with_checks( kmp_ticket_lock_t * lck )
-{
- __kmp_init_nested_ticket_lock( lck );
-}
-
-void
-__kmp_destroy_nested_ticket_lock( kmp_ticket_lock_t *lck )
-{
- __kmp_destroy_ticket_lock( lck );
- lck->lk.depth_locked = 0;
-}
-
-static void
-__kmp_destroy_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck )
-{
- char const * const func = "omp_destroy_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_ticket_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_nested_ticket_lock( lck );
-}
-
-
-//
-// access functions to fields which don't exist for all lock kinds.
-//
-
-static int
-__kmp_is_ticket_lock_initialized( kmp_ticket_lock_t *lck )
-{
- return lck == lck->lk.initialized;
-}
-
-static const ident_t *
-__kmp_get_ticket_lock_location( kmp_ticket_lock_t *lck )
-{
- return lck->lk.location;
-}
-
-static void
-__kmp_set_ticket_lock_location( kmp_ticket_lock_t *lck, const ident_t *loc )
-{
- lck->lk.location = loc;
-}
-
-static kmp_lock_flags_t
-__kmp_get_ticket_lock_flags( kmp_ticket_lock_t *lck )
-{
- return lck->lk.flags;
-}
-
-static void
-__kmp_set_ticket_lock_flags( kmp_ticket_lock_t *lck, kmp_lock_flags_t flags )
-{
- lck->lk.flags = flags;
-}
-
-/* ------------------------------------------------------------------------ */
-/* queuing locks */
-
-/*
- * First the states
- * (head,tail) = 0, 0 means lock is unheld, nobody on queue
- * UINT_MAX or -1, 0 means lock is held, nobody on queue
- * h, h means lock is held or about to transition, 1 element on queue
- * h, t h <> t, means lock is held or about to transition, >1 elements on queue
- *
- * Now the transitions
- * Acquire(0,0) = -1 ,0
- * Release(0,0) = Error
- * Acquire(-1,0) = h ,h h > 0
- * Release(-1,0) = 0 ,0
- * Acquire(h,h) = h ,t h > 0, t > 0, h <> t
- * Release(h,h) = -1 ,0 h > 0
- * Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
- * Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
- *
- * And pictorially
- *
- *
- * +-----+
- * | 0, 0|------- release -------> Error
- * +-----+
- * | ^
- * acquire| |release
- * | |
- * | |
- * v |
- * +-----+
- * |-1, 0|
- * +-----+
- * | ^
- * acquire| |release
- * | |
- * | |
- * v |
- * +-----+
- * | h, h|
- * +-----+
- * | ^
- * acquire| |release
- * | |
- * | |
- * v |
- * +-----+
- * | h, t|----- acquire, release loopback ---+
- * +-----+ |
- * ^ |
- * | |
- * +------------------------------------+
- *
- */
-
-#ifdef DEBUG_QUEUING_LOCKS
-
-/* Stuff for circular trace buffer */
-#define TRACE_BUF_ELE 1024
-static char traces[TRACE_BUF_ELE][128] = { 0 }
-static int tc = 0;
-#define TRACE_LOCK(X,Y) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y );
-#define TRACE_LOCK_T(X,Y,Z) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X,Y,Z );
-#define TRACE_LOCK_HT(X,Y,Z,Q) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, Z, Q );
-
-static void
-__kmp_dump_queuing_lock( kmp_info_t *this_thr, kmp_int32 gtid,
- kmp_queuing_lock_t *lck, kmp_int32 head_id, kmp_int32 tail_id )
-{
- kmp_int32 t, i;
-
- __kmp_printf_no_lock( "\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n" );
-
- i = tc % TRACE_BUF_ELE;
- __kmp_printf_no_lock( "%s\n", traces[i] );
- i = (i+1) % TRACE_BUF_ELE;
- while ( i != (tc % TRACE_BUF_ELE) ) {
- __kmp_printf_no_lock( "%s", traces[i] );
- i = (i+1) % TRACE_BUF_ELE;
- }
- __kmp_printf_no_lock( "\n" );
-
- __kmp_printf_no_lock(
- "\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, next_wait:%d, head_id:%d, tail_id:%d\n",
- gtid+1, this_thr->th.th_spin_here, this_thr->th.th_next_waiting,
- head_id, tail_id );
-
- __kmp_printf_no_lock( "\t\thead: %d ", lck->lk.head_id );
-
- if ( lck->lk.head_id >= 1 ) {
- t = __kmp_threads[lck->lk.head_id-1]->th.th_next_waiting;
- while (t > 0) {
- __kmp_printf_no_lock( "-> %d ", t );
- t = __kmp_threads[t-1]->th.th_next_waiting;
- }
- }
- __kmp_printf_no_lock( "; tail: %d ", lck->lk.tail_id );
- __kmp_printf_no_lock( "\n\n" );
-}
-
-#endif /* DEBUG_QUEUING_LOCKS */
-
-static kmp_int32
-__kmp_get_queuing_lock_owner( kmp_queuing_lock_t *lck )
-{
- return TCR_4( lck->lk.owner_id ) - 1;
-}
-
-static inline bool
-__kmp_is_queuing_lock_nestable( kmp_queuing_lock_t *lck )
-{
- return lck->lk.depth_locked != -1;
-}
-
-/* Acquire a lock using a the queuing lock implementation */
-template <bool takeTime>
-/* [TLW] The unused template above is left behind because of what BEB believes is a
- potential compiler problem with __forceinline. */
-__forceinline static int
-__kmp_acquire_queuing_lock_timed_template( kmp_queuing_lock_t *lck,
- kmp_int32 gtid )
-{
+
+ if (value == checker) {
+ return TRUE;
+ }
+ for (pause = checker - value; pause != 0; --pause);
+ return FALSE;
+}
+
+__forceinline static int
+__kmp_acquire_ticket_lock_timed_template( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_uint32 my_ticket;
+ KMP_MB();
+
+ my_ticket = KMP_TEST_THEN_INC32( (kmp_int32 *) &lck->lk.next_ticket );
+
+#ifdef USE_LOCK_PROFILE
+ if ( TCR_4( lck->lk.now_serving ) != my_ticket )
+ __kmp_printf( "LOCK CONTENTION: %p\n", lck );
+ /* else __kmp_printf( "." );*/
+#endif /* USE_LOCK_PROFILE */
+
+ if ( TCR_4( lck->lk.now_serving ) == my_ticket ) {
+ KMP_FSYNC_ACQUIRED(lck);
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+ KMP_WAIT_YIELD( &lck->lk.now_serving, my_ticket, __kmp_bakery_check, lck );
+ KMP_FSYNC_ACQUIRED(lck);
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_acquire_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ return __kmp_acquire_ticket_lock_timed_template( lck, gtid );
+}
+
+static int
+__kmp_acquire_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_ticket_lock_owner( lck ) == gtid ) ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+
+ __kmp_acquire_ticket_lock( lck, gtid );
+
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_test_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_uint32 my_ticket = TCR_4( lck->lk.next_ticket );
+ if ( TCR_4( lck->lk.now_serving ) == my_ticket ) {
+ kmp_uint32 next_ticket = my_ticket + 1;
+ if ( KMP_COMPARE_AND_STORE_ACQ32( (kmp_int32 *) &lck->lk.next_ticket,
+ my_ticket, next_ticket ) ) {
+ KMP_FSYNC_ACQUIRED( lck );
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+static int
+__kmp_test_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+
+ int retval = __kmp_test_ticket_lock( lck, gtid );
+
+ if ( retval ) {
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+int
+__kmp_release_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_uint32 distance;
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KMP_FSYNC_RELEASING(lck);
+ distance = ( TCR_4( lck->lk.next_ticket ) - TCR_4( lck->lk.now_serving ) );
+
+ KMP_ST_REL32( &(lck->lk.now_serving), lck->lk.now_serving + 1 );
+
+ KMP_MB(); /* Flush all pending memory write invalidates. */
+
+ KMP_YIELD( distance
+ > (kmp_uint32) (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc) );
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_ticket_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_ticket_lock_owner( lck ) >= 0 )
+ && ( __kmp_get_ticket_lock_owner( lck ) != gtid ) ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ lck->lk.owner_id = 0;
+ return __kmp_release_ticket_lock( lck, gtid );
+}
+
+void
+__kmp_init_ticket_lock( kmp_ticket_lock_t * lck )
+{
+ lck->lk.location = NULL;
+ TCW_4( lck->lk.next_ticket, 0 );
+ TCW_4( lck->lk.now_serving, 0 );
+ lck->lk.owner_id = 0; // no thread owns the lock.
+ lck->lk.depth_locked = -1; // -1 => not a nested lock.
+ lck->lk.initialized = (kmp_ticket_lock *)lck;
+}
+
+static void
+__kmp_init_ticket_lock_with_checks( kmp_ticket_lock_t * lck )
+{
+ __kmp_init_ticket_lock( lck );
+}
+
+void
+__kmp_destroy_ticket_lock( kmp_ticket_lock_t *lck )
+{
+ lck->lk.initialized = NULL;
+ lck->lk.location = NULL;
+ lck->lk.next_ticket = 0;
+ lck->lk.now_serving = 0;
+ lck->lk.owner_id = 0;
+ lck->lk.depth_locked = -1;
+}
+
+static void
+__kmp_destroy_ticket_lock_with_checks( kmp_ticket_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_ticket_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_ticket_lock( lck );
+}
+
+
+//
+// nested ticket locks
+//
+
+int
+__kmp_acquire_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_ticket_lock_owner( lck ) == gtid ) {
+ lck->lk.depth_locked += 1;
+ return KMP_LOCK_ACQUIRED_NEXT;
+ }
+ else {
+ __kmp_acquire_ticket_lock_timed_template( lck, gtid );
+ KMP_MB();
+ lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+}
+
+static int
+__kmp_acquire_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_acquire_nested_ticket_lock( lck, gtid );
+}
+
+int
+__kmp_test_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ int retval;
+
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_ticket_lock_owner( lck ) == gtid ) {
+ retval = ++lck->lk.depth_locked;
+ }
+ else if ( !__kmp_test_ticket_lock( lck, gtid ) ) {
+ retval = 0;
+ }
+ else {
+ KMP_MB();
+ retval = lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+static int
+__kmp_test_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck,
+ kmp_int32 gtid )
+{
+ char const * const func = "omp_test_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_test_nested_ticket_lock( lck, gtid );
+}
+
+int
+__kmp_release_nested_ticket_lock( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ KMP_MB();
+ if ( --(lck->lk.depth_locked) == 0 ) {
+ KMP_MB();
+ lck->lk.owner_id = 0;
+ __kmp_release_ticket_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+ }
+ return KMP_LOCK_STILL_HELD;
+}
+
+static int
+__kmp_release_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_nest_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_ticket_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_ticket_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_nested_ticket_lock( lck, gtid );
+}
+
+void
+__kmp_init_nested_ticket_lock( kmp_ticket_lock_t * lck )
+{
+ __kmp_init_ticket_lock( lck );
+ lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
+}
+
+static void
+__kmp_init_nested_ticket_lock_with_checks( kmp_ticket_lock_t * lck )
+{
+ __kmp_init_nested_ticket_lock( lck );
+}
+
+void
+__kmp_destroy_nested_ticket_lock( kmp_ticket_lock_t *lck )
+{
+ __kmp_destroy_ticket_lock( lck );
+ lck->lk.depth_locked = 0;
+}
+
+static void
+__kmp_destroy_nested_ticket_lock_with_checks( kmp_ticket_lock_t *lck )
+{
+ char const * const func = "omp_destroy_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_ticket_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_ticket_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_nested_ticket_lock( lck );
+}
+
+
+//
+// access functions to fields which don't exist for all lock kinds.
+//
+
+static int
+__kmp_is_ticket_lock_initialized( kmp_ticket_lock_t *lck )
+{
+ return lck == lck->lk.initialized;
+}
+
+static const ident_t *
+__kmp_get_ticket_lock_location( kmp_ticket_lock_t *lck )
+{
+ return lck->lk.location;
+}
+
+static void
+__kmp_set_ticket_lock_location( kmp_ticket_lock_t *lck, const ident_t *loc )
+{
+ lck->lk.location = loc;
+}
+
+static kmp_lock_flags_t
+__kmp_get_ticket_lock_flags( kmp_ticket_lock_t *lck )
+{
+ return lck->lk.flags;
+}
+
+static void
+__kmp_set_ticket_lock_flags( kmp_ticket_lock_t *lck, kmp_lock_flags_t flags )
+{
+ lck->lk.flags = flags;
+}
+
+/* ------------------------------------------------------------------------ */
+/* queuing locks */
+
+/*
+ * First the states
+ * (head,tail) = 0, 0 means lock is unheld, nobody on queue
+ * UINT_MAX or -1, 0 means lock is held, nobody on queue
+ * h, h means lock is held or about to transition, 1 element on queue
+ * h, t h <> t, means lock is held or about to transition, >1 elements on queue
+ *
+ * Now the transitions
+ * Acquire(0,0) = -1 ,0
+ * Release(0,0) = Error
+ * Acquire(-1,0) = h ,h h > 0
+ * Release(-1,0) = 0 ,0
+ * Acquire(h,h) = h ,t h > 0, t > 0, h <> t
+ * Release(h,h) = -1 ,0 h > 0
+ * Acquire(h,t) = h ,t' h > 0, t > 0, t' > 0, h <> t, h <> t', t <> t'
+ * Release(h,t) = h',t h > 0, t > 0, h <> t, h <> h', h' maybe = t
+ *
+ * And pictorially
+ *
+ *
+ * +-----+
+ * | 0, 0|------- release -------> Error
+ * +-----+
+ * | ^
+ * acquire| |release
+ * | |
+ * | |
+ * v |
+ * +-----+
+ * |-1, 0|
+ * +-----+
+ * | ^
+ * acquire| |release
+ * | |
+ * | |
+ * v |
+ * +-----+
+ * | h, h|
+ * +-----+
+ * | ^
+ * acquire| |release
+ * | |
+ * | |
+ * v |
+ * +-----+
+ * | h, t|----- acquire, release loopback ---+
+ * +-----+ |
+ * ^ |
+ * | |
+ * +------------------------------------+
+ *
+ */
+
+#ifdef DEBUG_QUEUING_LOCKS
+
+/* Stuff for circular trace buffer */
+#define TRACE_BUF_ELE 1024
+static char traces[TRACE_BUF_ELE][128] = { 0 }
+static int tc = 0;
+#define TRACE_LOCK(X,Y) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s\n", X, Y );
+#define TRACE_LOCK_T(X,Y,Z) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s%d\n", X,Y,Z );
+#define TRACE_LOCK_HT(X,Y,Z,Q) KMP_SNPRINTF( traces[tc++ % TRACE_BUF_ELE], 128, "t%d at %s %d,%d\n", X, Y, Z, Q );
+
+static void
+__kmp_dump_queuing_lock( kmp_info_t *this_thr, kmp_int32 gtid,
+ kmp_queuing_lock_t *lck, kmp_int32 head_id, kmp_int32 tail_id )
+{
+ kmp_int32 t, i;
+
+ __kmp_printf_no_lock( "\n__kmp_dump_queuing_lock: TRACE BEGINS HERE! \n" );
+
+ i = tc % TRACE_BUF_ELE;
+ __kmp_printf_no_lock( "%s\n", traces[i] );
+ i = (i+1) % TRACE_BUF_ELE;
+ while ( i != (tc % TRACE_BUF_ELE) ) {
+ __kmp_printf_no_lock( "%s", traces[i] );
+ i = (i+1) % TRACE_BUF_ELE;
+ }
+ __kmp_printf_no_lock( "\n" );
+
+ __kmp_printf_no_lock(
+ "\n__kmp_dump_queuing_lock: gtid+1:%d, spin_here:%d, next_wait:%d, head_id:%d, tail_id:%d\n",
+ gtid+1, this_thr->th.th_spin_here, this_thr->th.th_next_waiting,
+ head_id, tail_id );
+
+ __kmp_printf_no_lock( "\t\thead: %d ", lck->lk.head_id );
+
+ if ( lck->lk.head_id >= 1 ) {
+ t = __kmp_threads[lck->lk.head_id-1]->th.th_next_waiting;
+ while (t > 0) {
+ __kmp_printf_no_lock( "-> %d ", t );
+ t = __kmp_threads[t-1]->th.th_next_waiting;
+ }
+ }
+ __kmp_printf_no_lock( "; tail: %d ", lck->lk.tail_id );
+ __kmp_printf_no_lock( "\n\n" );
+}
+
+#endif /* DEBUG_QUEUING_LOCKS */
+
+static kmp_int32
+__kmp_get_queuing_lock_owner( kmp_queuing_lock_t *lck )
+{
+ return TCR_4( lck->lk.owner_id ) - 1;
+}
+
+static inline bool
+__kmp_is_queuing_lock_nestable( kmp_queuing_lock_t *lck )
+{
+ return lck->lk.depth_locked != -1;
+}
+
+/* Acquire a lock using a the queuing lock implementation */
+template <bool takeTime>
+/* [TLW] The unused template above is left behind because of what BEB believes is a
+ potential compiler problem with __forceinline. */
+__forceinline static int
+__kmp_acquire_queuing_lock_timed_template( kmp_queuing_lock_t *lck,
+ kmp_int32 gtid )
+{
kmp_info_t *this_thr = __kmp_thread_from_gtid( gtid );
- volatile kmp_int32 *head_id_p = & lck->lk.head_id;
- volatile kmp_int32 *tail_id_p = & lck->lk.tail_id;
- volatile kmp_uint32 *spin_here_p;
- kmp_int32 need_mf = 1;
-
-#if OMPT_SUPPORT
- ompt_state_t prev_state = ompt_state_undefined;
-#endif
-
- KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid ));
-
- KMP_FSYNC_PREPARE( lck );
- KMP_DEBUG_ASSERT( this_thr != NULL );
- spin_here_p = & this_thr->th.th_spin_here;
-
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "acq ent" );
- if ( *spin_here_p )
- __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
- if ( this_thr->th.th_next_waiting != 0 )
- __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
-#endif
- KMP_DEBUG_ASSERT( !*spin_here_p );
- KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
-
-
- /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to head_id_p
- that may follow, not just in execution order, but also in visibility order. This way,
- when a releasing thread observes the changes to the queue by this thread, it can
- rightly assume that spin_here_p has already been set to TRUE, so that when it sets
- spin_here_p to FALSE, it is not premature. If the releasing thread sets spin_here_p
- to FALSE before this thread sets it to TRUE, this thread will hang.
- */
- *spin_here_p = TRUE; /* before enqueuing to prevent race */
-
- while( 1 ) {
- kmp_int32 enqueued;
- kmp_int32 head;
- kmp_int32 tail;
-
- head = *head_id_p;
-
- switch ( head ) {
-
- case -1:
- {
-#ifdef DEBUG_QUEUING_LOCKS
- tail = *tail_id_p;
- TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
-#endif
- tail = 0; /* to make sure next link asynchronously read is not set accidentally;
- this assignment prevents us from entering the if ( t > 0 )
- condition in the enqueued case below, which is not necessary for
- this state transition */
-
- need_mf = 0;
- /* try (-1,0)->(tid,tid) */
- enqueued = KMP_COMPARE_AND_STORE_ACQ64( (volatile kmp_int64 *) tail_id_p,
- KMP_PACK_64( -1, 0 ),
- KMP_PACK_64( gtid+1, gtid+1 ) );
-#ifdef DEBUG_QUEUING_LOCKS
- if ( enqueued ) TRACE_LOCK( gtid+1, "acq enq: (-1,0)->(tid,tid)" );
-#endif
- }
- break;
-
- default:
- {
- tail = *tail_id_p;
- KMP_DEBUG_ASSERT( tail != gtid + 1 );
-
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
-#endif
-
- if ( tail == 0 ) {
- enqueued = FALSE;
- }
- else {
- need_mf = 0;
- /* try (h,t) or (h,h)->(h,tid) */
- enqueued = KMP_COMPARE_AND_STORE_ACQ32( tail_id_p, tail, gtid+1 );
-
-#ifdef DEBUG_QUEUING_LOCKS
- if ( enqueued ) TRACE_LOCK( gtid+1, "acq enq: (h,t)->(h,tid)" );
-#endif
- }
- }
- break;
-
- case 0: /* empty queue */
- {
- kmp_int32 grabbed_lock;
-
-#ifdef DEBUG_QUEUING_LOCKS
- tail = *tail_id_p;
- TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
-#endif
- /* try (0,0)->(-1,0) */
-
- /* only legal transition out of head = 0 is head = -1 with no change to tail */
- grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32( head_id_p, 0, -1 );
-
- if ( grabbed_lock ) {
-
- *spin_here_p = FALSE;
-
- KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
- lck, gtid ));
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK_HT( gtid+1, "acq exit: ", head, 0 );
-#endif
-
-#if OMPT_SUPPORT
- if (ompt_enabled && prev_state != ompt_state_undefined) {
- /* change the state before clearing wait_id */
- this_thr->th.ompt_thread_info.state = prev_state;
- this_thr->th.ompt_thread_info.wait_id = 0;
- }
-#endif
-
- KMP_FSYNC_ACQUIRED( lck );
- return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
- }
- enqueued = FALSE;
- }
- break;
- }
-
-#if OMPT_SUPPORT
- if (ompt_enabled && prev_state == ompt_state_undefined) {
- /* this thread will spin; set wait_id before entering wait state */
- prev_state = this_thr->th.ompt_thread_info.state;
- this_thr->th.ompt_thread_info.wait_id = (uint64_t) lck;
- this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
- }
-#endif
-
- if ( enqueued ) {
- if ( tail > 0 ) {
- kmp_info_t *tail_thr = __kmp_thread_from_gtid( tail - 1 );
- KMP_ASSERT( tail_thr != NULL );
- tail_thr->th.th_next_waiting = gtid+1;
- /* corresponding wait for this write in release code */
- }
- KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", lck, gtid ));
-
-
- /* ToDo: May want to consider using __kmp_wait_sleep or something that sleeps for
- * throughput only here.
- */
- KMP_MB();
- KMP_WAIT_YIELD(spin_here_p, FALSE, KMP_EQ, lck);
-
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "acq spin" );
-
- if ( this_thr->th.th_next_waiting != 0 )
- __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
-#endif
- KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
- KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after waiting on queue\n",
- lck, gtid ));
-
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "acq exit 2" );
-#endif
-
-#if OMPT_SUPPORT
- /* change the state before clearing wait_id */
- this_thr->th.ompt_thread_info.state = prev_state;
- this_thr->th.ompt_thread_info.wait_id = 0;
-#endif
-
- /* got lock, we were dequeued by the thread that released lock */
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-
- /* Yield if number of threads > number of logical processors */
- /* ToDo: Not sure why this should only be in oversubscription case,
- maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
- KMP_YIELD( TCR_4( __kmp_nth ) > (__kmp_avail_proc ? __kmp_avail_proc :
- __kmp_xproc ) );
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "acq retry" );
-#endif
-
- }
- KMP_ASSERT2( 0, "should not get here" );
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_acquire_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- return __kmp_acquire_queuing_lock_timed_template<false>( lck, gtid );
-}
-
-static int
-__kmp_acquire_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
- kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
-
- __kmp_acquire_queuing_lock( lck, gtid );
-
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_test_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- volatile kmp_int32 *head_id_p = & lck->lk.head_id;
- kmp_int32 head;
-#ifdef KMP_DEBUG
- kmp_info_t *this_thr;
-#endif
-
- KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid ));
- KMP_DEBUG_ASSERT( gtid >= 0 );
-#ifdef KMP_DEBUG
- this_thr = __kmp_thread_from_gtid( gtid );
- KMP_DEBUG_ASSERT( this_thr != NULL );
- KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here );
-#endif
-
- head = *head_id_p;
-
- if ( head == 0 ) { /* nobody on queue, nobody holding */
-
- /* try (0,0)->(-1,0) */
-
- if ( KMP_COMPARE_AND_STORE_ACQ32( head_id_p, 0, -1 ) ) {
- KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid ));
- KMP_FSYNC_ACQUIRED(lck);
- return TRUE;
- }
- }
-
- KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid ));
- return FALSE;
-}
-
-static int
-__kmp_test_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
-
- int retval = __kmp_test_queuing_lock( lck, gtid );
-
- if ( retval ) {
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-int
-__kmp_release_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
+ volatile kmp_int32 *head_id_p = & lck->lk.head_id;
+ volatile kmp_int32 *tail_id_p = & lck->lk.tail_id;
+ volatile kmp_uint32 *spin_here_p;
+ kmp_int32 need_mf = 1;
+
+#if OMPT_SUPPORT
+ ompt_state_t prev_state = ompt_state_undefined;
+#endif
+
+ KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d entering\n", lck, gtid ));
+
+ KMP_FSYNC_PREPARE( lck );
+ KMP_DEBUG_ASSERT( this_thr != NULL );
+ spin_here_p = & this_thr->th.th_spin_here;
+
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "acq ent" );
+ if ( *spin_here_p )
+ __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
+ if ( this_thr->th.th_next_waiting != 0 )
+ __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
+#endif
+ KMP_DEBUG_ASSERT( !*spin_here_p );
+ KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
+
+
+ /* The following st.rel to spin_here_p needs to precede the cmpxchg.acq to head_id_p
+ that may follow, not just in execution order, but also in visibility order. This way,
+ when a releasing thread observes the changes to the queue by this thread, it can
+ rightly assume that spin_here_p has already been set to TRUE, so that when it sets
+ spin_here_p to FALSE, it is not premature. If the releasing thread sets spin_here_p
+ to FALSE before this thread sets it to TRUE, this thread will hang.
+ */
+ *spin_here_p = TRUE; /* before enqueuing to prevent race */
+
+ while( 1 ) {
+ kmp_int32 enqueued;
+ kmp_int32 head;
+ kmp_int32 tail;
+
+ head = *head_id_p;
+
+ switch ( head ) {
+
+ case -1:
+ {
+#ifdef DEBUG_QUEUING_LOCKS
+ tail = *tail_id_p;
+ TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
+#endif
+ tail = 0; /* to make sure next link asynchronously read is not set accidentally;
+ this assignment prevents us from entering the if ( t > 0 )
+ condition in the enqueued case below, which is not necessary for
+ this state transition */
+
+ need_mf = 0;
+ /* try (-1,0)->(tid,tid) */
+ enqueued = KMP_COMPARE_AND_STORE_ACQ64( (volatile kmp_int64 *) tail_id_p,
+ KMP_PACK_64( -1, 0 ),
+ KMP_PACK_64( gtid+1, gtid+1 ) );
+#ifdef DEBUG_QUEUING_LOCKS
+ if ( enqueued ) TRACE_LOCK( gtid+1, "acq enq: (-1,0)->(tid,tid)" );
+#endif
+ }
+ break;
+
+ default:
+ {
+ tail = *tail_id_p;
+ KMP_DEBUG_ASSERT( tail != gtid + 1 );
+
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
+#endif
+
+ if ( tail == 0 ) {
+ enqueued = FALSE;
+ }
+ else {
+ need_mf = 0;
+ /* try (h,t) or (h,h)->(h,tid) */
+ enqueued = KMP_COMPARE_AND_STORE_ACQ32( tail_id_p, tail, gtid+1 );
+
+#ifdef DEBUG_QUEUING_LOCKS
+ if ( enqueued ) TRACE_LOCK( gtid+1, "acq enq: (h,t)->(h,tid)" );
+#endif
+ }
+ }
+ break;
+
+ case 0: /* empty queue */
+ {
+ kmp_int32 grabbed_lock;
+
+#ifdef DEBUG_QUEUING_LOCKS
+ tail = *tail_id_p;
+ TRACE_LOCK_HT( gtid+1, "acq read: ", head, tail );
+#endif
+ /* try (0,0)->(-1,0) */
+
+ /* only legal transition out of head = 0 is head = -1 with no change to tail */
+ grabbed_lock = KMP_COMPARE_AND_STORE_ACQ32( head_id_p, 0, -1 );
+
+ if ( grabbed_lock ) {
+
+ *spin_here_p = FALSE;
+
+ KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: no queuing\n",
+ lck, gtid ));
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK_HT( gtid+1, "acq exit: ", head, 0 );
+#endif
+
+#if OMPT_SUPPORT
+ if (ompt_enabled && prev_state != ompt_state_undefined) {
+ /* change the state before clearing wait_id */
+ this_thr->th.ompt_thread_info.state = prev_state;
+ this_thr->th.ompt_thread_info.wait_id = 0;
+ }
+#endif
+
+ KMP_FSYNC_ACQUIRED( lck );
+ return KMP_LOCK_ACQUIRED_FIRST; /* lock holder cannot be on queue */
+ }
+ enqueued = FALSE;
+ }
+ break;
+ }
+
+#if OMPT_SUPPORT
+ if (ompt_enabled && prev_state == ompt_state_undefined) {
+ /* this thread will spin; set wait_id before entering wait state */
+ prev_state = this_thr->th.ompt_thread_info.state;
+ this_thr->th.ompt_thread_info.wait_id = (uint64_t) lck;
+ this_thr->th.ompt_thread_info.state = ompt_state_wait_lock;
+ }
+#endif
+
+ if ( enqueued ) {
+ if ( tail > 0 ) {
+ kmp_info_t *tail_thr = __kmp_thread_from_gtid( tail - 1 );
+ KMP_ASSERT( tail_thr != NULL );
+ tail_thr->th.th_next_waiting = gtid+1;
+ /* corresponding wait for this write in release code */
+ }
+ KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d waiting for lock\n", lck, gtid ));
+
+
+ /* ToDo: May want to consider using __kmp_wait_sleep or something that sleeps for
+ * throughput only here.
+ */
+ KMP_MB();
+ KMP_WAIT_YIELD(spin_here_p, FALSE, KMP_EQ, lck);
+
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "acq spin" );
+
+ if ( this_thr->th.th_next_waiting != 0 )
+ __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
+#endif
+ KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
+ KA_TRACE( 1000, ("__kmp_acquire_queuing_lock: lck:%p, T#%d exiting: after waiting on queue\n",
+ lck, gtid ));
+
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "acq exit 2" );
+#endif
+
+#if OMPT_SUPPORT
+ /* change the state before clearing wait_id */
+ this_thr->th.ompt_thread_info.state = prev_state;
+ this_thr->th.ompt_thread_info.wait_id = 0;
+#endif
+
+ /* got lock, we were dequeued by the thread that released lock */
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+
+ /* Yield if number of threads > number of logical processors */
+ /* ToDo: Not sure why this should only be in oversubscription case,
+ maybe should be traditional YIELD_INIT/YIELD_WHEN loop */
+ KMP_YIELD( TCR_4( __kmp_nth ) > (__kmp_avail_proc ? __kmp_avail_proc :
+ __kmp_xproc ) );
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "acq retry" );
+#endif
+
+ }
+ KMP_ASSERT2( 0, "should not get here" );
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_acquire_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ return __kmp_acquire_queuing_lock_timed_template<false>( lck, gtid );
+}
+
+static int
+__kmp_acquire_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
+ kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+
+ __kmp_acquire_queuing_lock( lck, gtid );
+
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_test_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ volatile kmp_int32 *head_id_p = & lck->lk.head_id;
+ kmp_int32 head;
+#ifdef KMP_DEBUG
kmp_info_t *this_thr;
- volatile kmp_int32 *head_id_p = & lck->lk.head_id;
- volatile kmp_int32 *tail_id_p = & lck->lk.tail_id;
-
- KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid ));
- KMP_DEBUG_ASSERT( gtid >= 0 );
- this_thr = __kmp_thread_from_gtid( gtid );
- KMP_DEBUG_ASSERT( this_thr != NULL );
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "rel ent" );
-
- if ( this_thr->th.th_spin_here )
- __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
- if ( this_thr->th.th_next_waiting != 0 )
- __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
-#endif
- KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here );
- KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
-
- KMP_FSYNC_RELEASING(lck);
-
- while( 1 ) {
- kmp_int32 dequeued;
- kmp_int32 head;
- kmp_int32 tail;
-
- head = *head_id_p;
-
-#ifdef DEBUG_QUEUING_LOCKS
- tail = *tail_id_p;
- TRACE_LOCK_HT( gtid+1, "rel read: ", head, tail );
- if ( head == 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
-#endif
- KMP_DEBUG_ASSERT( head != 0 ); /* holding the lock, head must be -1 or queue head */
-
- if ( head == -1 ) { /* nobody on queue */
-
- /* try (-1,0)->(0,0) */
- if ( KMP_COMPARE_AND_STORE_REL32( head_id_p, -1, 0 ) ) {
- KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
- lck, gtid ));
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK_HT( gtid+1, "rel exit: ", 0, 0 );
-#endif
-
-#if OMPT_SUPPORT
- /* nothing to do - no other thread is trying to shift blame */
-#endif
-
- return KMP_LOCK_RELEASED;
- }
- dequeued = FALSE;
-
- }
- else {
-
- tail = *tail_id_p;
- if ( head == tail ) { /* only one thread on the queue */
-
-#ifdef DEBUG_QUEUING_LOCKS
- if ( head <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
-#endif
- KMP_DEBUG_ASSERT( head > 0 );
-
- /* try (h,h)->(-1,0) */
- dequeued = KMP_COMPARE_AND_STORE_REL64( (kmp_int64 *) tail_id_p,
- KMP_PACK_64( head, head ), KMP_PACK_64( -1, 0 ) );
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "rel deq: (h,h)->(-1,0)" );
-#endif
-
- }
- else {
- volatile kmp_int32 *waiting_id_p;
- kmp_info_t *head_thr = __kmp_thread_from_gtid( head - 1 );
- KMP_DEBUG_ASSERT( head_thr != NULL );
- waiting_id_p = & head_thr->th.th_next_waiting;
-
- /* Does this require synchronous reads? */
-#ifdef DEBUG_QUEUING_LOCKS
- if ( head <= 0 || tail <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
-#endif
- KMP_DEBUG_ASSERT( head > 0 && tail > 0 );
-
- /* try (h,t)->(h',t) or (t,t) */
-
- KMP_MB();
- /* make sure enqueuing thread has time to update next waiting thread field */
- *head_id_p = (kmp_int32) KMP_WAIT_YIELD((volatile kmp_uint*) waiting_id_p, 0, KMP_NEQ, NULL);
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "rel deq: (h,t)->(h',t)" );
-#endif
- dequeued = TRUE;
- }
- }
-
- if ( dequeued ) {
- kmp_info_t *head_thr = __kmp_thread_from_gtid( head - 1 );
- KMP_DEBUG_ASSERT( head_thr != NULL );
-
- /* Does this require synchronous reads? */
-#ifdef DEBUG_QUEUING_LOCKS
- if ( head <= 0 || tail <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
-#endif
- KMP_DEBUG_ASSERT( head > 0 && tail > 0 );
-
- /* For clean code only.
- * Thread not released until next statement prevents race with acquire code.
- */
- head_thr->th.th_next_waiting = 0;
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK_T( gtid+1, "rel nw=0 for t=", head );
-#endif
-
- KMP_MB();
- /* reset spin value */
- head_thr->th.th_spin_here = FALSE;
-
- KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after dequeuing\n",
- lck, gtid ));
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "rel exit 2" );
-#endif
- return KMP_LOCK_RELEASED;
- }
- /* KMP_CPU_PAUSE( ); don't want to make releasing thread hold up acquiring threads */
-
-#ifdef DEBUG_QUEUING_LOCKS
- TRACE_LOCK( gtid+1, "rel retry" );
-#endif
-
- } /* while */
- KMP_ASSERT2( 0, "should not get here" );
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
- kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- lck->lk.owner_id = 0;
- return __kmp_release_queuing_lock( lck, gtid );
-}
-
-void
-__kmp_init_queuing_lock( kmp_queuing_lock_t *lck )
-{
- lck->lk.location = NULL;
- lck->lk.head_id = 0;
- lck->lk.tail_id = 0;
- lck->lk.next_ticket = 0;
- lck->lk.now_serving = 0;
- lck->lk.owner_id = 0; // no thread owns the lock.
- lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
- lck->lk.initialized = lck;
-
- KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
-}
-
-static void
-__kmp_init_queuing_lock_with_checks( kmp_queuing_lock_t * lck )
-{
- __kmp_init_queuing_lock( lck );
-}
-
-void
-__kmp_destroy_queuing_lock( kmp_queuing_lock_t *lck )
-{
- lck->lk.initialized = NULL;
- lck->lk.location = NULL;
- lck->lk.head_id = 0;
- lck->lk.tail_id = 0;
- lck->lk.next_ticket = 0;
- lck->lk.now_serving = 0;
- lck->lk.owner_id = 0;
- lck->lk.depth_locked = -1;
-}
-
-static void
-__kmp_destroy_queuing_lock_with_checks( kmp_queuing_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_queuing_lock( lck );
-}
-
-
-//
-// nested queuing locks
-//
-
-int
-__kmp_acquire_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
- lck->lk.depth_locked += 1;
- return KMP_LOCK_ACQUIRED_NEXT;
- }
- else {
- __kmp_acquire_queuing_lock_timed_template<false>( lck, gtid );
- KMP_MB();
- lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-}
-
-static int
-__kmp_acquire_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_acquire_nested_queuing_lock( lck, gtid );
-}
-
-int
-__kmp_test_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- int retval;
-
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
- retval = ++lck->lk.depth_locked;
- }
- else if ( !__kmp_test_queuing_lock( lck, gtid ) ) {
- retval = 0;
- }
- else {
- KMP_MB();
- retval = lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-static int
-__kmp_test_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
- kmp_int32 gtid )
-{
- char const * const func = "omp_test_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_test_nested_queuing_lock( lck, gtid );
-}
-
-int
-__kmp_release_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- KMP_MB();
- if ( --(lck->lk.depth_locked) == 0 ) {
- KMP_MB();
- lck->lk.owner_id = 0;
- __kmp_release_queuing_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
- }
- return KMP_LOCK_STILL_HELD;
-}
-
-static int
-__kmp_release_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_nest_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_nested_queuing_lock( lck, gtid );
-}
-
-void
-__kmp_init_nested_queuing_lock( kmp_queuing_lock_t * lck )
-{
- __kmp_init_queuing_lock( lck );
- lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
-}
-
-static void
-__kmp_init_nested_queuing_lock_with_checks( kmp_queuing_lock_t * lck )
-{
- __kmp_init_nested_queuing_lock( lck );
-}
-
-void
-__kmp_destroy_nested_queuing_lock( kmp_queuing_lock_t *lck )
-{
- __kmp_destroy_queuing_lock( lck );
- lck->lk.depth_locked = 0;
-}
-
-static void
-__kmp_destroy_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck )
-{
- char const * const func = "omp_destroy_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_queuing_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_nested_queuing_lock( lck );
-}
-
-
-//
-// access functions to fields which don't exist for all lock kinds.
-//
-
-static int
-__kmp_is_queuing_lock_initialized( kmp_queuing_lock_t *lck )
-{
- return lck == lck->lk.initialized;
-}
-
-static const ident_t *
-__kmp_get_queuing_lock_location( kmp_queuing_lock_t *lck )
-{
- return lck->lk.location;
-}
-
-static void
-__kmp_set_queuing_lock_location( kmp_queuing_lock_t *lck, const ident_t *loc )
-{
- lck->lk.location = loc;
-}
-
-static kmp_lock_flags_t
-__kmp_get_queuing_lock_flags( kmp_queuing_lock_t *lck )
-{
- return lck->lk.flags;
-}
-
-static void
-__kmp_set_queuing_lock_flags( kmp_queuing_lock_t *lck, kmp_lock_flags_t flags )
-{
- lck->lk.flags = flags;
-}
-
-#if KMP_USE_ADAPTIVE_LOCKS
-
-/*
- RTM Adaptive locks
-*/
-
-#if KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
-
-#include <immintrin.h>
-#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
-
-#else
-
-// Values from the status register after failed speculation.
-#define _XBEGIN_STARTED (~0u)
-#define _XABORT_EXPLICIT (1 << 0)
-#define _XABORT_RETRY (1 << 1)
-#define _XABORT_CONFLICT (1 << 2)
-#define _XABORT_CAPACITY (1 << 3)
-#define _XABORT_DEBUG (1 << 4)
-#define _XABORT_NESTED (1 << 5)
-#define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
-
-// Aborts for which it's worth trying again immediately
-#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
-
-#define STRINGIZE_INTERNAL(arg) #arg
-#define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
-
-// Access to RTM instructions
-
-/*
- A version of XBegin which returns -1 on speculation, and the value of EAX on an abort.
- This is the same definition as the compiler intrinsic that will be supported at some point.
-*/
-static __inline int _xbegin()
-{
- int res = -1;
-
-#if KMP_OS_WINDOWS
-#if KMP_ARCH_X86_64
- _asm {
- _emit 0xC7
- _emit 0xF8
- _emit 2
- _emit 0
- _emit 0
- _emit 0
- jmp L2
- mov res, eax
- L2:
- }
-#else /* IA32 */
- _asm {
- _emit 0xC7
- _emit 0xF8
- _emit 2
- _emit 0
- _emit 0
- _emit 0
- jmp L2
- mov res, eax
- L2:
- }
-#endif // KMP_ARCH_X86_64
-#else
- /* Note that %eax must be noted as killed (clobbered), because
- * the XSR is returned in %eax(%rax) on abort. Other register
- * values are restored, so don't need to be killed.
- *
- * We must also mark 'res' as an input and an output, since otherwise
- * 'res=-1' may be dropped as being dead, whereas we do need the
- * assignment on the successful (i.e., non-abort) path.
- */
- __asm__ volatile ("1: .byte 0xC7; .byte 0xF8;\n"
- " .long 1f-1b-6\n"
- " jmp 2f\n"
- "1: movl %%eax,%0\n"
- "2:"
- :"+r"(res)::"memory","%eax");
-#endif // KMP_OS_WINDOWS
- return res;
-}
-
-/*
- Transaction end
-*/
-static __inline void _xend()
-{
-#if KMP_OS_WINDOWS
- __asm {
- _emit 0x0f
- _emit 0x01
- _emit 0xd5
- }
-#else
- __asm__ volatile (".byte 0x0f; .byte 0x01; .byte 0xd5" :::"memory");
-#endif
-}
-
-/*
- This is a macro, the argument must be a single byte constant which
- can be evaluated by the inline assembler, since it is emitted as a
- byte into the assembly code.
-*/
-#if KMP_OS_WINDOWS
-#define _xabort(ARG) \
- _asm _emit 0xc6 \
- _asm _emit 0xf8 \
- _asm _emit ARG
-#else
-#define _xabort(ARG) \
- __asm__ volatile (".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG) :::"memory");
-#endif
-
-#endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
-
-//
-// Statistics is collected for testing purpose
-//
-#if KMP_DEBUG_ADAPTIVE_LOCKS
-
-// We accumulate speculative lock statistics when the lock is destroyed.
-// We keep locks that haven't been destroyed in the liveLocks list
-// so that we can grab their statistics too.
-static kmp_adaptive_lock_statistics_t destroyedStats;
-
-// To hold the list of live locks.
-static kmp_adaptive_lock_info_t liveLocks;
-
-// A lock so we can safely update the list of locks.
-static kmp_bootstrap_lock_t chain_lock;
-
-// Initialize the list of stats.
-void
-__kmp_init_speculative_stats()
-{
- kmp_adaptive_lock_info_t *lck = &liveLocks;
-
- memset( ( void * ) & ( lck->stats ), 0, sizeof( lck->stats ) );
- lck->stats.next = lck;
- lck->stats.prev = lck;
-
- KMP_ASSERT( lck->stats.next->stats.prev == lck );
- KMP_ASSERT( lck->stats.prev->stats.next == lck );
-
- __kmp_init_bootstrap_lock( &chain_lock );
-
-}
-
-// Insert the lock into the circular list
-static void
-__kmp_remember_lock( kmp_adaptive_lock_info_t * lck )
-{
- __kmp_acquire_bootstrap_lock( &chain_lock );
-
- lck->stats.next = liveLocks.stats.next;
- lck->stats.prev = &liveLocks;
-
- liveLocks.stats.next = lck;
- lck->stats.next->stats.prev = lck;
-
- KMP_ASSERT( lck->stats.next->stats.prev == lck );
- KMP_ASSERT( lck->stats.prev->stats.next == lck );
-
- __kmp_release_bootstrap_lock( &chain_lock );
-}
-
-static void
-__kmp_forget_lock( kmp_adaptive_lock_info_t * lck )
-{
- KMP_ASSERT( lck->stats.next->stats.prev == lck );
- KMP_ASSERT( lck->stats.prev->stats.next == lck );
-
- kmp_adaptive_lock_info_t * n = lck->stats.next;
- kmp_adaptive_lock_info_t * p = lck->stats.prev;
-
- n->stats.prev = p;
- p->stats.next = n;
-}
-
-static void
-__kmp_zero_speculative_stats( kmp_adaptive_lock_info_t * lck )
-{
- memset( ( void * )&lck->stats, 0, sizeof( lck->stats ) );
- __kmp_remember_lock( lck );
-}
-
-static void
-__kmp_add_stats( kmp_adaptive_lock_statistics_t * t, kmp_adaptive_lock_info_t * lck )
-{
- kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
-
- t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
- t->successfulSpeculations += s->successfulSpeculations;
- t->hardFailedSpeculations += s->hardFailedSpeculations;
- t->softFailedSpeculations += s->softFailedSpeculations;
- t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
- t->lemmingYields += s->lemmingYields;
-}
-
-static void
-__kmp_accumulate_speculative_stats( kmp_adaptive_lock_info_t * lck)
-{
- kmp_adaptive_lock_statistics_t *t = &destroyedStats;
-
- __kmp_acquire_bootstrap_lock( &chain_lock );
-
- __kmp_add_stats( &destroyedStats, lck );
- __kmp_forget_lock( lck );
-
- __kmp_release_bootstrap_lock( &chain_lock );
-}
-
-static float
-percent (kmp_uint32 count, kmp_uint32 total)
-{
- return (total == 0) ? 0.0: (100.0 * count)/total;
-}
-
-static
-FILE * __kmp_open_stats_file()
-{
- if (strcmp (__kmp_speculative_statsfile, "-") == 0)
- return stdout;
-
- size_t buffLen = KMP_STRLEN( __kmp_speculative_statsfile ) + 20;
- char buffer[buffLen];
- KMP_SNPRINTF (&buffer[0], buffLen, __kmp_speculative_statsfile,
- (kmp_int32)getpid());
- FILE * result = fopen(&buffer[0], "w");
-
- // Maybe we should issue a warning here...
- return result ? result : stdout;
-}
-
-void
-__kmp_print_speculative_stats()
-{
- if (__kmp_user_lock_kind != lk_adaptive)
- return;
-
- FILE * statsFile = __kmp_open_stats_file();
-
- kmp_adaptive_lock_statistics_t total = destroyedStats;
- kmp_adaptive_lock_info_t *lck;
-
- for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
- __kmp_add_stats( &total, lck );
- }
- kmp_adaptive_lock_statistics_t *t = &total;
- kmp_uint32 totalSections = t->nonSpeculativeAcquires + t->successfulSpeculations;
- kmp_uint32 totalSpeculations = t->successfulSpeculations + t->hardFailedSpeculations +
- t->softFailedSpeculations;
-
- fprintf ( statsFile, "Speculative lock statistics (all approximate!)\n");
- fprintf ( statsFile, " Lock parameters: \n"
- " max_soft_retries : %10d\n"
- " max_badness : %10d\n",
- __kmp_adaptive_backoff_params.max_soft_retries,
- __kmp_adaptive_backoff_params.max_badness);
- fprintf( statsFile, " Non-speculative acquire attempts : %10d\n", t->nonSpeculativeAcquireAttempts );
- fprintf( statsFile, " Total critical sections : %10d\n", totalSections );
- fprintf( statsFile, " Successful speculations : %10d (%5.1f%%)\n",
- t->successfulSpeculations, percent( t->successfulSpeculations, totalSections ) );
- fprintf( statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
- t->nonSpeculativeAcquires, percent( t->nonSpeculativeAcquires, totalSections ) );
- fprintf( statsFile, " Lemming yields : %10d\n\n", t->lemmingYields );
-
- fprintf( statsFile, " Speculative acquire attempts : %10d\n", totalSpeculations );
- fprintf( statsFile, " Successes : %10d (%5.1f%%)\n",
- t->successfulSpeculations, percent( t->successfulSpeculations, totalSpeculations ) );
- fprintf( statsFile, " Soft failures : %10d (%5.1f%%)\n",
- t->softFailedSpeculations, percent( t->softFailedSpeculations, totalSpeculations ) );
- fprintf( statsFile, " Hard failures : %10d (%5.1f%%)\n",
- t->hardFailedSpeculations, percent( t->hardFailedSpeculations, totalSpeculations ) );
-
- if (statsFile != stdout)
- fclose( statsFile );
-}
-
-# define KMP_INC_STAT(lck,stat) ( lck->lk.adaptive.stats.stat++ )
-#else
-# define KMP_INC_STAT(lck,stat)
-
-#endif // KMP_DEBUG_ADAPTIVE_LOCKS
-
-static inline bool
-__kmp_is_unlocked_queuing_lock( kmp_queuing_lock_t *lck )
-{
- // It is enough to check that the head_id is zero.
- // We don't also need to check the tail.
- bool res = lck->lk.head_id == 0;
-
- // We need a fence here, since we must ensure that no memory operations
- // from later in this thread float above that read.
-#if KMP_COMPILER_ICC
- _mm_mfence();
-#else
- __sync_synchronize();
-#endif
-
- return res;
-}
-
-// Functions for manipulating the badness
-static __inline void
-__kmp_update_badness_after_success( kmp_adaptive_lock_t *lck )
-{
- // Reset the badness to zero so we eagerly try to speculate again
- lck->lk.adaptive.badness = 0;
- KMP_INC_STAT(lck,successfulSpeculations);
-}
-
-// Create a bit mask with one more set bit.
-static __inline void
-__kmp_step_badness( kmp_adaptive_lock_t *lck )
-{
- kmp_uint32 newBadness = ( lck->lk.adaptive.badness << 1 ) | 1;
- if ( newBadness > lck->lk.adaptive.max_badness) {
- return;
- } else {
- lck->lk.adaptive.badness = newBadness;
- }
-}
-
-// Check whether speculation should be attempted.
-static __inline int
-__kmp_should_speculate( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- kmp_uint32 badness = lck->lk.adaptive.badness;
- kmp_uint32 attempts= lck->lk.adaptive.acquire_attempts;
- int res = (attempts & badness) == 0;
- return res;
-}
-
-// Attempt to acquire only the speculative lock.
-// Does not back off to the non-speculative lock.
-//
-static int
-__kmp_test_adaptive_lock_only( kmp_adaptive_lock_t * lck, kmp_int32 gtid )
-{
- int retries = lck->lk.adaptive.max_soft_retries;
-
- // We don't explicitly count the start of speculation, rather we record
- // the results (success, hard fail, soft fail). The sum of all of those
- // is the total number of times we started speculation since all
- // speculations must end one of those ways.
- do
- {
- kmp_uint32 status = _xbegin();
- // Switch this in to disable actual speculation but exercise
- // at least some of the rest of the code. Useful for debugging...
- // kmp_uint32 status = _XABORT_NESTED;
-
- if (status == _XBEGIN_STARTED )
- { /* We have successfully started speculation
- * Check that no-one acquired the lock for real between when we last looked
- * and now. This also gets the lock cache line into our read-set,
- * which we need so that we'll abort if anyone later claims it for real.
- */
- if (! __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
- {
- // Lock is now visibly acquired, so someone beat us to it.
- // Abort the transaction so we'll restart from _xbegin with the
- // failure status.
- _xabort(0x01);
- KMP_ASSERT2( 0, "should not get here" );
- }
- return 1; // Lock has been acquired (speculatively)
- } else {
- // We have aborted, update the statistics
- if ( status & SOFT_ABORT_MASK)
- {
- KMP_INC_STAT(lck,softFailedSpeculations);
- // and loop round to retry.
- }
- else
- {
- KMP_INC_STAT(lck,hardFailedSpeculations);
- // Give up if we had a hard failure.
- break;
- }
- }
- } while( retries-- ); // Loop while we have retries, and didn't fail hard.
-
- // Either we had a hard failure or we didn't succeed softly after
- // the full set of attempts, so back off the badness.
- __kmp_step_badness( lck );
- return 0;
-}
-
-// Attempt to acquire the speculative lock, or back off to the non-speculative one
-// if the speculative lock cannot be acquired.
-// We can succeed speculatively, non-speculatively, or fail.
-static int
-__kmp_test_adaptive_lock( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- // First try to acquire the lock speculatively
- if ( __kmp_should_speculate( lck, gtid ) && __kmp_test_adaptive_lock_only( lck, gtid ) )
- return 1;
-
- // Speculative acquisition failed, so try to acquire it non-speculatively.
- // Count the non-speculative acquire attempt
- lck->lk.adaptive.acquire_attempts++;
-
- // Use base, non-speculative lock.
- if ( __kmp_test_queuing_lock( GET_QLK_PTR(lck), gtid ) )
- {
- KMP_INC_STAT(lck,nonSpeculativeAcquires);
- return 1; // Lock is acquired (non-speculatively)
- }
- else
- {
- return 0; // Failed to acquire the lock, it's already visibly locked.
- }
-}
-
-static int
-__kmp_test_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
-
- int retval = __kmp_test_adaptive_lock( lck, gtid );
-
- if ( retval ) {
- lck->lk.qlk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-// Block until we can acquire a speculative, adaptive lock.
-// We check whether we should be trying to speculate.
-// If we should be, we check the real lock to see if it is free,
-// and, if not, pause without attempting to acquire it until it is.
-// Then we try the speculative acquire.
-// This means that although we suffer from lemmings a little (
-// because all we can't acquire the lock speculatively until
-// the queue of threads waiting has cleared), we don't get into a
-// state where we can never acquire the lock speculatively (because we
-// force the queue to clear by preventing new arrivals from entering the
-// queue).
-// This does mean that when we're trying to break lemmings, the lock
-// is no longer fair. However OpenMP makes no guarantee that its
-// locks are fair, so this isn't a real problem.
-static void
-__kmp_acquire_adaptive_lock( kmp_adaptive_lock_t * lck, kmp_int32 gtid )
-{
- if ( __kmp_should_speculate( lck, gtid ) )
- {
- if ( __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
- {
- if ( __kmp_test_adaptive_lock_only( lck , gtid ) )
- return;
- // We tried speculation and failed, so give up.
- }
- else
- {
- // We can't try speculation until the lock is free, so we
- // pause here (without suspending on the queueing lock,
- // to allow it to drain, then try again.
- // All other threads will also see the same result for
- // shouldSpeculate, so will be doing the same if they
- // try to claim the lock from now on.
- while ( ! __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
- {
- KMP_INC_STAT(lck,lemmingYields);
- __kmp_yield (TRUE);
- }
-
- if ( __kmp_test_adaptive_lock_only( lck, gtid ) )
- return;
- }
- }
-
- // Speculative acquisition failed, so acquire it non-speculatively.
- // Count the non-speculative acquire attempt
- lck->lk.adaptive.acquire_attempts++;
-
- __kmp_acquire_queuing_lock_timed_template<FALSE>( GET_QLK_PTR(lck), gtid );
- // We have acquired the base lock, so count that.
- KMP_INC_STAT(lck,nonSpeculativeAcquires );
-}
-
-static void
-__kmp_acquire_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) == gtid ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
-
- __kmp_acquire_adaptive_lock( lck, gtid );
-
- lck->lk.qlk.owner_id = gtid + 1;
-}
-
-static int
-__kmp_release_adaptive_lock( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- if ( __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
- { // If the lock doesn't look claimed we must be speculating.
- // (Or the user's code is buggy and they're releasing without locking;
- // if we had XTEST we'd be able to check that case...)
- _xend(); // Exit speculation
- __kmp_update_badness_after_success( lck );
- }
- else
- { // Since the lock *is* visibly locked we're not speculating,
- // so should use the underlying lock's release scheme.
- __kmp_release_queuing_lock( GET_QLK_PTR(lck), gtid );
- }
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- lck->lk.qlk.owner_id = 0;
- __kmp_release_adaptive_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
-}
-
-static void
-__kmp_init_adaptive_lock( kmp_adaptive_lock_t *lck )
-{
- __kmp_init_queuing_lock( GET_QLK_PTR(lck) );
- lck->lk.adaptive.badness = 0;
- lck->lk.adaptive.acquire_attempts = 0; //nonSpeculativeAcquireAttempts = 0;
- lck->lk.adaptive.max_soft_retries = __kmp_adaptive_backoff_params.max_soft_retries;
- lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
-#if KMP_DEBUG_ADAPTIVE_LOCKS
- __kmp_zero_speculative_stats( &lck->lk.adaptive );
-#endif
- KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
-}
-
-static void
-__kmp_init_adaptive_lock_with_checks( kmp_adaptive_lock_t * lck )
-{
- __kmp_init_adaptive_lock( lck );
-}
-
-static void
-__kmp_destroy_adaptive_lock( kmp_adaptive_lock_t *lck )
-{
-#if KMP_DEBUG_ADAPTIVE_LOCKS
- __kmp_accumulate_speculative_stats( &lck->lk.adaptive );
-#endif
- __kmp_destroy_queuing_lock (GET_QLK_PTR(lck));
- // Nothing needed for the speculative part.
-}
-
-static void
-__kmp_destroy_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_adaptive_lock( lck );
-}
-
-
-#endif // KMP_USE_ADAPTIVE_LOCKS
-
-
-/* ------------------------------------------------------------------------ */
-/* DRDPA ticket locks */
-/* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
-
-static kmp_int32
-__kmp_get_drdpa_lock_owner( kmp_drdpa_lock_t *lck )
-{
- return TCR_4( lck->lk.owner_id ) - 1;
-}
-
-static inline bool
-__kmp_is_drdpa_lock_nestable( kmp_drdpa_lock_t *lck )
-{
- return lck->lk.depth_locked != -1;
-}
-
-__forceinline static int
-__kmp_acquire_drdpa_lock_timed_template( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- kmp_uint64 ticket = KMP_TEST_THEN_INC64((kmp_int64 *)&lck->lk.next_ticket);
- kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
- volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
- = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- TCR_PTR(lck->lk.polls); // volatile load
-
-#ifdef USE_LOCK_PROFILE
- if (TCR_8(polls[ticket & mask].poll) != ticket)
- __kmp_printf("LOCK CONTENTION: %p\n", lck);
- /* else __kmp_printf( "." );*/
-#endif /* USE_LOCK_PROFILE */
-
- //
- // Now spin-wait, but reload the polls pointer and mask, in case the
- // polling area has been reconfigured. Unless it is reconfigured, the
- // reloads stay in L1 cache and are cheap.
- //
- // Keep this code in sync with KMP_WAIT_YIELD, in kmp_dispatch.c !!!
- //
- // The current implementation of KMP_WAIT_YIELD doesn't allow for mask
- // and poll to be re-read every spin iteration.
- //
- kmp_uint32 spins;
-
- KMP_FSYNC_PREPARE(lck);
- KMP_INIT_YIELD(spins);
- while (TCR_8(polls[ticket & mask]).poll < ticket) { // volatile load
- // If we are oversubscribed,
- // or have waited a bit (and KMP_LIBRARY=turnaround), then yield.
- // CPU Pause is in the macros for yield.
- //
- KMP_YIELD(TCR_4(__kmp_nth)
- > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
- KMP_YIELD_SPIN(spins);
-
- // Re-read the mask and the poll pointer from the lock structure.
- //
- // Make certain that "mask" is read before "polls" !!!
- //
- // If another thread picks reconfigures the polling area and updates
- // their values, and we get the new value of mask and the old polls
- // pointer, we could access memory beyond the end of the old polling
- // area.
- //
- mask = TCR_8(lck->lk.mask); // volatile load
- polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- TCR_PTR(lck->lk.polls); // volatile load
- }
-
- //
- // Critical section starts here
- //
- KMP_FSYNC_ACQUIRED(lck);
- KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
- ticket, lck));
- lck->lk.now_serving = ticket; // non-volatile store
-
- //
- // Deallocate a garbage polling area if we know that we are the last
- // thread that could possibly access it.
- //
- // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
- // ticket.
- //
- if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
- __kmp_free((void *)lck->lk.old_polls);
- lck->lk.old_polls = NULL;
- lck->lk.cleanup_ticket = 0;
- }
-
- //
- // Check to see if we should reconfigure the polling area.
- // If there is still a garbage polling area to be deallocated from a
- // previous reconfiguration, let a later thread reconfigure it.
- //
- if (lck->lk.old_polls == NULL) {
- bool reconfigure = false;
- volatile struct kmp_base_drdpa_lock::kmp_lock_poll *old_polls = polls;
- kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
-
- if (TCR_4(__kmp_nth)
- > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
- //
- // We are in oversubscription mode. Contract the polling area
- // down to a single location, if that hasn't been done already.
- //
- if (num_polls > 1) {
- reconfigure = true;
- num_polls = TCR_4(lck->lk.num_polls);
- mask = 0;
- num_polls = 1;
- polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- __kmp_allocate(num_polls * sizeof(*polls));
- polls[0].poll = ticket;
- }
- }
- else {
- //
- // We are in under/fully subscribed mode. Check the number of
- // threads waiting on the lock. The size of the polling area
- // should be at least the number of threads waiting.
- //
- kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
- if (num_waiting > num_polls) {
- kmp_uint32 old_num_polls = num_polls;
- reconfigure = true;
- do {
- mask = (mask << 1) | 1;
- num_polls *= 2;
- } while (num_polls <= num_waiting);
-
- //
- // Allocate the new polling area, and copy the relevant portion
- // of the old polling area to the new area. __kmp_allocate()
- // zeroes the memory it allocates, and most of the old area is
- // just zero padding, so we only copy the release counters.
- //
- polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- __kmp_allocate(num_polls * sizeof(*polls));
- kmp_uint32 i;
- for (i = 0; i < old_num_polls; i++) {
- polls[i].poll = old_polls[i].poll;
- }
- }
- }
-
- if (reconfigure) {
- //
- // Now write the updated fields back to the lock structure.
- //
- // Make certain that "polls" is written before "mask" !!!
- //
- // If another thread picks up the new value of mask and the old
- // polls pointer , it could access memory beyond the end of the
- // old polling area.
- //
- // On x86, we need memory fences.
- //
- KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring lock %p to %d polls\n",
- ticket, lck, num_polls));
-
- lck->lk.old_polls = old_polls; // non-volatile store
- lck->lk.polls = polls; // volatile store
-
- KMP_MB();
-
- lck->lk.num_polls = num_polls; // non-volatile store
- lck->lk.mask = mask; // volatile store
-
- KMP_MB();
-
- //
- // Only after the new polling area and mask have been flushed
- // to main memory can we update the cleanup ticket field.
- //
- // volatile load / non-volatile store
- //
- lck->lk.cleanup_ticket = TCR_8(lck->lk.next_ticket);
- }
- }
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_acquire_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- return __kmp_acquire_drdpa_lock_timed_template( lck, gtid );
-}
-
-static int
-__kmp_acquire_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) ) {
- KMP_FATAL( LockIsAlreadyOwned, func );
- }
-
- __kmp_acquire_drdpa_lock( lck, gtid );
-
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
-}
-
-int
-__kmp_test_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- //
- // First get a ticket, then read the polls pointer and the mask.
- // The polls pointer must be read before the mask!!! (See above)
- //
- kmp_uint64 ticket = TCR_8(lck->lk.next_ticket); // volatile load
- volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
- = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- TCR_PTR(lck->lk.polls); // volatile load
- kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
- if (TCR_8(polls[ticket & mask].poll) == ticket) {
- kmp_uint64 next_ticket = ticket + 1;
- if (KMP_COMPARE_AND_STORE_ACQ64((kmp_int64 *)&lck->lk.next_ticket,
- ticket, next_ticket)) {
- KMP_FSYNC_ACQUIRED(lck);
- KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
- ticket, lck));
- lck->lk.now_serving = ticket; // non-volatile store
-
- //
- // Since no threads are waiting, there is no possibility that
- // we would want to reconfigure the polling area. We might
- // have the cleanup ticket value (which says that it is now
- // safe to deallocate old_polls), but we'll let a later thread
- // which calls __kmp_acquire_lock do that - this routine
- // isn't supposed to block, and we would risk blocks if we
- // called __kmp_free() to do the deallocation.
- //
- return TRUE;
- }
- }
- return FALSE;
-}
-
-static int
-__kmp_test_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
-
- int retval = __kmp_test_drdpa_lock( lck, gtid );
-
- if ( retval ) {
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-int
-__kmp_release_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- //
- // Read the ticket value from the lock data struct, then the polls
- // pointer and the mask. The polls pointer must be read before the
- // mask!!! (See above)
- //
- kmp_uint64 ticket = lck->lk.now_serving + 1; // non-volatile load
- volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
- = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- TCR_PTR(lck->lk.polls); // volatile load
- kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
- KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
- ticket - 1, lck));
- KMP_FSYNC_RELEASING(lck);
- KMP_ST_REL64(&(polls[ticket & mask].poll), ticket); // volatile store
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_drdpa_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( ( gtid >= 0 ) && ( __kmp_get_drdpa_lock_owner( lck ) >= 0 )
- && ( __kmp_get_drdpa_lock_owner( lck ) != gtid ) ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- lck->lk.owner_id = 0;
- return __kmp_release_drdpa_lock( lck, gtid );
-}
-
-void
-__kmp_init_drdpa_lock( kmp_drdpa_lock_t *lck )
-{
- lck->lk.location = NULL;
- lck->lk.mask = 0;
- lck->lk.num_polls = 1;
- lck->lk.polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
- __kmp_allocate(lck->lk.num_polls * sizeof(*(lck->lk.polls)));
- lck->lk.cleanup_ticket = 0;
- lck->lk.old_polls = NULL;
- lck->lk.next_ticket = 0;
- lck->lk.now_serving = 0;
- lck->lk.owner_id = 0; // no thread owns the lock.
- lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
- lck->lk.initialized = lck;
-
- KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
-}
-
-static void
-__kmp_init_drdpa_lock_with_checks( kmp_drdpa_lock_t * lck )
-{
- __kmp_init_drdpa_lock( lck );
-}
-
-void
-__kmp_destroy_drdpa_lock( kmp_drdpa_lock_t *lck )
-{
- lck->lk.initialized = NULL;
- lck->lk.location = NULL;
- if (lck->lk.polls != NULL) {
- __kmp_free((void *)lck->lk.polls);
- lck->lk.polls = NULL;
- }
- if (lck->lk.old_polls != NULL) {
- __kmp_free((void *)lck->lk.old_polls);
- lck->lk.old_polls = NULL;
- }
- lck->lk.mask = 0;
- lck->lk.num_polls = 0;
- lck->lk.cleanup_ticket = 0;
- lck->lk.next_ticket = 0;
- lck->lk.now_serving = 0;
- lck->lk.owner_id = 0;
- lck->lk.depth_locked = -1;
-}
-
-static void
-__kmp_destroy_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck )
-{
- char const * const func = "omp_destroy_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockNestableUsedAsSimple, func );
- }
- if ( __kmp_get_drdpa_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_drdpa_lock( lck );
-}
-
-
-//
-// nested drdpa ticket locks
-//
-
-int
-__kmp_acquire_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) {
- lck->lk.depth_locked += 1;
- return KMP_LOCK_ACQUIRED_NEXT;
- }
- else {
- __kmp_acquire_drdpa_lock_timed_template( lck, gtid );
- KMP_MB();
- lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- return KMP_LOCK_ACQUIRED_FIRST;
- }
-}
-
-static void
-__kmp_acquire_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_set_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- __kmp_acquire_nested_drdpa_lock( lck, gtid );
-}
-
-int
-__kmp_test_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- int retval;
-
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- if ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) {
- retval = ++lck->lk.depth_locked;
- }
- else if ( !__kmp_test_drdpa_lock( lck, gtid ) ) {
- retval = 0;
- }
- else {
- KMP_MB();
- retval = lck->lk.depth_locked = 1;
- KMP_MB();
- lck->lk.owner_id = gtid + 1;
- }
- return retval;
-}
-
-static int
-__kmp_test_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_test_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- return __kmp_test_nested_drdpa_lock( lck, gtid );
-}
-
-int
-__kmp_release_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- KMP_DEBUG_ASSERT( gtid >= 0 );
-
- KMP_MB();
- if ( --(lck->lk.depth_locked) == 0 ) {
- KMP_MB();
- lck->lk.owner_id = 0;
- __kmp_release_drdpa_lock( lck, gtid );
- return KMP_LOCK_RELEASED;
- }
- return KMP_LOCK_STILL_HELD;
-}
-
-static int
-__kmp_release_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
-{
- char const * const func = "omp_unset_nest_lock";
- KMP_MB(); /* in case another processor initialized lock */
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_drdpa_lock_owner( lck ) == -1 ) {
- KMP_FATAL( LockUnsettingFree, func );
- }
- if ( __kmp_get_drdpa_lock_owner( lck ) != gtid ) {
- KMP_FATAL( LockUnsettingSetByAnother, func );
- }
- return __kmp_release_nested_drdpa_lock( lck, gtid );
-}
-
-void
-__kmp_init_nested_drdpa_lock( kmp_drdpa_lock_t * lck )
-{
- __kmp_init_drdpa_lock( lck );
- lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
-}
-
-static void
-__kmp_init_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t * lck )
-{
- __kmp_init_nested_drdpa_lock( lck );
-}
-
-void
-__kmp_destroy_nested_drdpa_lock( kmp_drdpa_lock_t *lck )
-{
- __kmp_destroy_drdpa_lock( lck );
- lck->lk.depth_locked = 0;
-}
-
-static void
-__kmp_destroy_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck )
-{
- char const * const func = "omp_destroy_nest_lock";
- if ( lck->lk.initialized != lck ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
- KMP_FATAL( LockSimpleUsedAsNestable, func );
- }
- if ( __kmp_get_drdpa_lock_owner( lck ) != -1 ) {
- KMP_FATAL( LockStillOwned, func );
- }
- __kmp_destroy_nested_drdpa_lock( lck );
-}
-
-
-//
-// access functions to fields which don't exist for all lock kinds.
-//
-
-static int
-__kmp_is_drdpa_lock_initialized( kmp_drdpa_lock_t *lck )
-{
- return lck == lck->lk.initialized;
-}
-
-static const ident_t *
-__kmp_get_drdpa_lock_location( kmp_drdpa_lock_t *lck )
-{
- return lck->lk.location;
-}
-
-static void
-__kmp_set_drdpa_lock_location( kmp_drdpa_lock_t *lck, const ident_t *loc )
-{
- lck->lk.location = loc;
-}
-
-static kmp_lock_flags_t
-__kmp_get_drdpa_lock_flags( kmp_drdpa_lock_t *lck )
-{
- return lck->lk.flags;
-}
-
-static void
-__kmp_set_drdpa_lock_flags( kmp_drdpa_lock_t *lck, kmp_lock_flags_t flags )
-{
- lck->lk.flags = flags;
-}
-
-#if KMP_USE_DYNAMIC_LOCK
-
-// Direct lock initializers. It simply writes a tag to the low 8 bits of the lock word.
-static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, kmp_dyna_lockseq_t seq)
-{
- TCW_4(*lck, KMP_GET_D_TAG(seq));
- KA_TRACE(20, ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
-}
-
-#if KMP_USE_TSX
-
-// HLE lock functions - imported from the testbed runtime.
-#define HLE_ACQUIRE ".byte 0xf2;"
-#define HLE_RELEASE ".byte 0xf3;"
-
-static inline kmp_uint32
-swap4(kmp_uint32 volatile *p, kmp_uint32 v)
-{
- __asm__ volatile(HLE_ACQUIRE "xchg %1,%0"
- : "+r"(v), "+m"(*p)
- :
- : "memory");
- return v;
-}
-
-static void
-__kmp_destroy_hle_lock(kmp_dyna_lock_t *lck)
-{
- TCW_4(*lck, 0);
-}
-
-static void
-__kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- // Use gtid for KMP_LOCK_BUSY if necessary
- if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
- int delay = 1;
- do {
- while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
- for (int i = delay; i != 0; --i)
- KMP_CPU_PAUSE();
- delay = ((delay << 1) | 1) & 7;
- }
- } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
- }
-}
-
-static void
-__kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
-}
-
-static int
-__kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- __asm__ volatile(HLE_RELEASE "movl %1,%0"
- : "=m"(*lck)
- : "r"(KMP_LOCK_FREE(hle))
- : "memory");
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
-}
-
-static int
-__kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
-}
-
-static int
-__kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
-{
- return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
-}
-
-static void
-__kmp_init_rtm_lock(kmp_queuing_lock_t *lck)
-{
- __kmp_init_queuing_lock(lck);
-}
-
-static void
-__kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck)
-{
- __kmp_destroy_queuing_lock(lck);
-}
-
-static void
-__kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- unsigned retries=3, status;
- do {
- status = _xbegin();
- if (status == _XBEGIN_STARTED) {
- if (__kmp_is_unlocked_queuing_lock(lck))
- return;
- _xabort(0xff);
- }
- if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
- // Wait until lock becomes free
- while (! __kmp_is_unlocked_queuing_lock(lck))
- __kmp_yield(TRUE);
- }
- else if (!(status & _XABORT_RETRY))
- break;
- } while (retries--);
-
- // Fall-back non-speculative lock (xchg)
- __kmp_acquire_queuing_lock(lck, gtid);
-}
-
-static void
-__kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- __kmp_acquire_rtm_lock(lck, gtid);
-}
-
-static int
-__kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- if (__kmp_is_unlocked_queuing_lock(lck)) {
- // Releasing from speculation
- _xend();
- }
- else {
- // Releasing from a real lock
- __kmp_release_queuing_lock(lck, gtid);
- }
- return KMP_LOCK_RELEASED;
-}
-
-static int
-__kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- return __kmp_release_rtm_lock(lck, gtid);
-}
-
-static int
-__kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- unsigned retries=3, status;
- do {
- status = _xbegin();
- if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
- return 1;
- }
- if (!(status & _XABORT_RETRY))
- break;
- } while (retries--);
-
- return (__kmp_is_unlocked_queuing_lock(lck))? 1: 0;
-}
-
-static int
-__kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
-{
- return __kmp_test_rtm_lock(lck, gtid);
-}
-
-#endif // KMP_USE_TSX
-
-// Entry functions for indirect locks (first element of direct lock jump tables).
-static void __kmp_init_indirect_lock(kmp_dyna_lock_t * l, kmp_dyna_lockseq_t tag);
-static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t * lock);
-static void __kmp_set_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
-static int __kmp_unset_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
-static int __kmp_test_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
-static void __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
-static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
-static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
-
-//
-// Jump tables for the indirect lock functions.
-// Only fill in the odd entries, that avoids the need to shift out the low bit.
-//
-
-// init functions
-#define expand(l, op) 0,__kmp_init_direct_lock,
-void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t)
- = { __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init) };
-#undef expand
-
-// destroy functions
-#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
-void (*__kmp_direct_destroy[])(kmp_dyna_lock_t *)
- = { __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy) };
-#undef expand
-
-// set/acquire functions
-#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
-static void (*direct_set[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire) };
-#undef expand
-#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
-static void (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_set_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, acquire) };
-#undef expand
-
-// unset/release and test functions
-#define expand(l, op) 0,(int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
-static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release) };
-static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test) };
-#undef expand
-#define expand(l, op) 0,(int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
-static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_unset_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, release) };
-static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32)
- = { __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test) };
-#undef expand
-
-// Exposes only one set of jump tables (*lock or *lock_with_checks).
-void (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0;
-int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0;
-int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0;
-
-//
-// Jump tables for the indirect lock functions.
-//
-#define expand(l, op) (void (*)(kmp_user_lock_p))__kmp_##op##_##l##_##lock,
-void (*__kmp_indirect_init[])(kmp_user_lock_p) = { KMP_FOREACH_I_LOCK(expand, init) };
-void (*__kmp_indirect_destroy[])(kmp_user_lock_p) = { KMP_FOREACH_I_LOCK(expand, destroy) };
-#undef expand
-
-// set/acquire functions
-#define expand(l, op) (void (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock,
-static void (*indirect_set[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, acquire) };
-#undef expand
-#define expand(l, op) (void (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock_with_checks,
-static void (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, acquire) };
-#undef expand
-
-// unset/release and test functions
-#define expand(l, op) (int (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock,
-static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, release) };
-static int (*indirect_test[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, test) };
-#undef expand
-#define expand(l, op) (int (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock_with_checks,
-static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, release) };
-static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, test) };
-#undef expand
-
-// Exposes only one jump tables (*lock or *lock_with_checks).
-void (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0;
-int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0;
-int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0;
-
-// Lock index table.
-kmp_indirect_lock_table_t __kmp_i_lock_table;
-
-// Size of indirect locks.
-static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = { 0 };
-
-// Jump tables for lock accessor/modifier.
-void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, const ident_t *) = { 0 };
-void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, kmp_lock_flags_t) = { 0 };
-const ident_t * (*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p) = { 0 };
-kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p) = { 0 };
-
-// Use different lock pools for different lock types.
-static kmp_indirect_lock_t * __kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = { 0 };
-
-// User lock allocator for dynamically dispatched indirect locks.
-// Every entry of the indirect lock table holds the address and type of the allocated indrect lock
-// (kmp_indirect_lock_t), and the size of the table doubles when it is full. A destroyed indirect lock
-// object is returned to the reusable pool of locks, unique to each lock type.
-kmp_indirect_lock_t *
-__kmp_allocate_indirect_lock(void **user_lock, kmp_int32 gtid, kmp_indirect_locktag_t tag)
-{
- kmp_indirect_lock_t *lck;
- kmp_lock_index_t idx;
-
- __kmp_acquire_lock(&__kmp_global_lock, gtid);
-
- if (__kmp_indirect_lock_pool[tag] != NULL) {
- // Reuse the allocated and destroyed lock object
- lck = __kmp_indirect_lock_pool[tag];
- if (OMP_LOCK_T_SIZE < sizeof(void *))
- idx = lck->lock->pool.index;
- __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
- KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", lck));
- } else {
- idx = __kmp_i_lock_table.next;
- // Check capacity and double the size if it is full
- if (idx == __kmp_i_lock_table.size) {
- // Double up the space for block pointers
- int row = __kmp_i_lock_table.size/KMP_I_LOCK_CHUNK;
- kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
- __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate(2*row*sizeof(kmp_indirect_lock_t *));
- KMP_MEMCPY(__kmp_i_lock_table.table, old_table, row*sizeof(kmp_indirect_lock_t *));
- __kmp_free(old_table);
- // Allocate new objects in the new blocks
- for (int i = row; i < 2*row; ++i)
- *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)
- __kmp_allocate(KMP_I_LOCK_CHUNK*sizeof(kmp_indirect_lock_t));
- __kmp_i_lock_table.size = 2*idx;
- }
- __kmp_i_lock_table.next++;
- lck = KMP_GET_I_LOCK(idx);
- // Allocate a new base lock object
- lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
- KA_TRACE(20, ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
- }
-
- __kmp_release_lock(&__kmp_global_lock, gtid);
-
- lck->type = tag;
-
- if (OMP_LOCK_T_SIZE < sizeof(void *)) {
- *((kmp_lock_index_t *)user_lock) = idx << 1; // indirect lock word must be even.
- } else {
- *((kmp_indirect_lock_t **)user_lock) = lck;
- }
-
- return lck;
-}
-
-// User lock lookup for dynamically dispatched locks.
-static __forceinline
-kmp_indirect_lock_t *
-__kmp_lookup_indirect_lock(void **user_lock, const char *func)
-{
- if (__kmp_env_consistency_check) {
- kmp_indirect_lock_t *lck = NULL;
- if (user_lock == NULL) {
- KMP_FATAL(LockIsUninitialized, func);
- }
- if (OMP_LOCK_T_SIZE < sizeof(void *)) {
- kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
- if (idx >= __kmp_i_lock_table.size) {
- KMP_FATAL(LockIsUninitialized, func);
- }
- lck = KMP_GET_I_LOCK(idx);
- } else {
- lck = *((kmp_indirect_lock_t **)user_lock);
- }
- if (lck == NULL) {
- KMP_FATAL(LockIsUninitialized, func);
- }
- return lck;
- } else {
- if (OMP_LOCK_T_SIZE < sizeof(void *)) {
- return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
- } else {
- return *((kmp_indirect_lock_t **)user_lock);
- }
- }
-}
-
-static void
-__kmp_init_indirect_lock(kmp_dyna_lock_t * lock, kmp_dyna_lockseq_t seq)
-{
-#if KMP_USE_ADAPTIVE_LOCKS
- if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
- KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
- seq = lockseq_queuing;
- }
-#endif
-#if KMP_USE_TSX
- if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
- seq = lockseq_queuing;
- }
-#endif
- kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
- kmp_indirect_lock_t *l = __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
- KMP_I_LOCK_FUNC(l, init)(l->lock);
- KA_TRACE(20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", seq));
-}
-
-static void
-__kmp_destroy_indirect_lock(kmp_dyna_lock_t * lock)
-{
- kmp_uint32 gtid = __kmp_entry_gtid();
- kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
- KMP_I_LOCK_FUNC(l, destroy)(l->lock);
- kmp_indirect_locktag_t tag = l->type;
-
- __kmp_acquire_lock(&__kmp_global_lock, gtid);
-
- // Use the base lock's space to keep the pool chain.
- l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
- if (OMP_LOCK_T_SIZE < sizeof(void *)) {
- l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
- }
- __kmp_indirect_lock_pool[tag] = l;
-
- __kmp_release_lock(&__kmp_global_lock, gtid);
-}
-
-static void
-__kmp_set_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
- KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
-}
-
-static int
-__kmp_unset_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
- return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
-}
-
-static int
-__kmp_test_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
- return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
-}
-
-static void
-__kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
- KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
-}
-
-static int
-__kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
- return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
-}
-
-static int
-__kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
-{
- kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
- return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
-}
-
-kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
-
-// This is used only in kmp_error.c when consistency checking is on.
-kmp_int32
-__kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq)
-{
- switch (seq) {
- case lockseq_tas:
- case lockseq_nested_tas:
- return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
-#if KMP_HAS_FUTEX
- case lockseq_futex:
- case lockseq_nested_futex:
- return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
-#endif
- case lockseq_ticket:
- case lockseq_nested_ticket:
- return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
- case lockseq_queuing:
- case lockseq_nested_queuing:
-#if KMP_USE_ADAPTIVE_LOCKS
- case lockseq_adaptive:
- return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
-#endif
- case lockseq_drdpa:
- case lockseq_nested_drdpa:
- return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
- default:
- return 0;
- }
-}
-
-// Initializes data for dynamic user locks.
-void
-__kmp_init_dynamic_user_locks()
-{
- // Initialize jump table for the lock functions
- if (__kmp_env_consistency_check) {
- __kmp_direct_set = direct_set_check;
- __kmp_direct_unset = direct_unset_check;
- __kmp_direct_test = direct_test_check;
- __kmp_indirect_set = indirect_set_check;
- __kmp_indirect_unset = indirect_unset_check;
- __kmp_indirect_test = indirect_test_check;
- }
- else {
- __kmp_direct_set = direct_set;
- __kmp_direct_unset = direct_unset;
- __kmp_direct_test = direct_test;
- __kmp_indirect_set = indirect_set;
- __kmp_indirect_unset = indirect_unset;
- __kmp_indirect_test = indirect_test;
- }
-
- // Initialize lock index table
- __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
- __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
- *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)
- __kmp_allocate(KMP_I_LOCK_CHUNK*sizeof(kmp_indirect_lock_t));
- __kmp_i_lock_table.next = 0;
-
- // Indirect lock size
- __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
- __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
-#if KMP_USE_ADAPTIVE_LOCKS
- __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
-#endif
- __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
-#if KMP_USE_TSX
- __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
-#endif
- __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
-#if KMP_USE_FUTEX
- __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
-#endif
- __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
- __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
- __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
-
- // Initialize lock accessor/modifier
-#define fill_jumps(table, expand, sep) { \
- table[locktag##sep##ticket] = expand(ticket); \
- table[locktag##sep##queuing] = expand(queuing); \
- table[locktag##sep##drdpa] = expand(drdpa); \
-}
-
-#if KMP_USE_ADAPTIVE_LOCKS
-# define fill_table(table, expand) { \
- fill_jumps(table, expand, _); \
- table[locktag_adaptive] = expand(queuing); \
- fill_jumps(table, expand, _nested_); \
-}
-#else
-# define fill_table(table, expand) { \
- fill_jumps(table, expand, _); \
- fill_jumps(table, expand, _nested_); \
-}
-#endif // KMP_USE_ADAPTIVE_LOCKS
-
-#define expand(l) (void (*)(kmp_user_lock_p, const ident_t *))__kmp_set_##l##_lock_location
- fill_table(__kmp_indirect_set_location, expand);
-#undef expand
-#define expand(l) (void (*)(kmp_user_lock_p, kmp_lock_flags_t))__kmp_set_##l##_lock_flags
- fill_table(__kmp_indirect_set_flags, expand);
-#undef expand
-#define expand(l) (const ident_t * (*)(kmp_user_lock_p))__kmp_get_##l##_lock_location
- fill_table(__kmp_indirect_get_location, expand);
-#undef expand
-#define expand(l) (kmp_lock_flags_t (*)(kmp_user_lock_p))__kmp_get_##l##_lock_flags
- fill_table(__kmp_indirect_get_flags, expand);
-#undef expand
-
- __kmp_init_user_locks = TRUE;
-}
-
-// Clean up the lock table.
-void
-__kmp_cleanup_indirect_user_locks()
-{
- kmp_lock_index_t i;
- int k;
-
- // Clean up locks in the pools first (they were already destroyed before going into the pools).
- for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
- kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
- while (l != NULL) {
- kmp_indirect_lock_t *ll = l;
- l = (kmp_indirect_lock_t *)l->lock->pool.next;
- KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", ll));
- __kmp_free(ll->lock);
- ll->lock = NULL;
- }
- }
- // Clean up the remaining undestroyed locks.
- for (i = 0; i < __kmp_i_lock_table.next; i++) {
- kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
- if (l->lock != NULL) {
- // Locks not destroyed explicitly need to be destroyed here.
- KMP_I_LOCK_FUNC(l, destroy)(l->lock);
- KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", l));
- __kmp_free(l->lock);
- }
- }
- // Free the table
- for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
- __kmp_free(__kmp_i_lock_table.table[i]);
- __kmp_free(__kmp_i_lock_table.table);
-
- __kmp_init_user_locks = FALSE;
-}
-
-enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
-int __kmp_num_locks_in_block = 1; // FIXME - tune this value
-
-#else // KMP_USE_DYNAMIC_LOCK
-
-/* ------------------------------------------------------------------------ */
-/* user locks
- *
- * They are implemented as a table of function pointers which are set to the
- * lock functions of the appropriate kind, once that has been determined.
- */
-
-enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
-
-size_t __kmp_base_user_lock_size = 0;
-size_t __kmp_user_lock_size = 0;
-
-kmp_int32 ( *__kmp_get_user_lock_owner_ )( kmp_user_lock_p lck ) = NULL;
-int ( *__kmp_acquire_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-
-int ( *__kmp_test_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-int ( *__kmp_release_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-void ( *__kmp_init_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
-void ( *__kmp_destroy_user_lock_ )( kmp_user_lock_p lck ) = NULL;
-void ( *__kmp_destroy_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
-int ( *__kmp_acquire_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-
-int ( *__kmp_test_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-int ( *__kmp_release_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
-void ( *__kmp_init_nested_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
-void ( *__kmp_destroy_nested_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
-
-int ( *__kmp_is_user_lock_initialized_ )( kmp_user_lock_p lck ) = NULL;
-const ident_t * ( *__kmp_get_user_lock_location_ )( kmp_user_lock_p lck ) = NULL;
-void ( *__kmp_set_user_lock_location_ )( kmp_user_lock_p lck, const ident_t *loc ) = NULL;
-kmp_lock_flags_t ( *__kmp_get_user_lock_flags_ )( kmp_user_lock_p lck ) = NULL;
-void ( *__kmp_set_user_lock_flags_ )( kmp_user_lock_p lck, kmp_lock_flags_t flags ) = NULL;
-
-void __kmp_set_user_lock_vptrs( kmp_lock_kind_t user_lock_kind )
-{
- switch ( user_lock_kind ) {
- case lk_default:
- default:
- KMP_ASSERT( 0 );
-
- case lk_tas: {
- __kmp_base_user_lock_size = sizeof( kmp_base_tas_lock_t );
- __kmp_user_lock_size = sizeof( kmp_tas_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_tas_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
- KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
- }
- else {
- KMP_BIND_USER_LOCK(tas);
- KMP_BIND_NESTED_USER_LOCK(tas);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_tas_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) ) NULL;
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) ) NULL;
- }
- break;
-
-#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
-
- case lk_futex: {
- __kmp_base_user_lock_size = sizeof( kmp_base_futex_lock_t );
- __kmp_user_lock_size = sizeof( kmp_futex_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_futex_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
- KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
- }
- else {
- KMP_BIND_USER_LOCK(futex);
- KMP_BIND_NESTED_USER_LOCK(futex);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_futex_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) ) NULL;
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) ) NULL;
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) ) NULL;
- }
- break;
-
-#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
-
- case lk_ticket: {
- __kmp_base_user_lock_size = sizeof( kmp_base_ticket_lock_t );
- __kmp_user_lock_size = sizeof( kmp_ticket_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_ticket_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
- KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
- }
- else {
- KMP_BIND_USER_LOCK(ticket);
- KMP_BIND_NESTED_USER_LOCK(ticket);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_ticket_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) )
- ( &__kmp_is_ticket_lock_initialized );
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_ticket_lock_location );
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) )
- ( &__kmp_set_ticket_lock_location );
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_ticket_lock_flags );
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
- ( &__kmp_set_ticket_lock_flags );
- }
- break;
-
- case lk_queuing: {
- __kmp_base_user_lock_size = sizeof( kmp_base_queuing_lock_t );
- __kmp_user_lock_size = sizeof( kmp_queuing_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
- KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
- }
- else {
- KMP_BIND_USER_LOCK(queuing);
- KMP_BIND_NESTED_USER_LOCK(queuing);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_queuing_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) )
- ( &__kmp_is_queuing_lock_initialized );
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_location );
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) )
- ( &__kmp_set_queuing_lock_location );
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_flags );
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
- ( &__kmp_set_queuing_lock_flags );
- }
- break;
-
-#if KMP_USE_ADAPTIVE_LOCKS
- case lk_adaptive: {
- __kmp_base_user_lock_size = sizeof( kmp_base_adaptive_lock_t );
- __kmp_user_lock_size = sizeof( kmp_adaptive_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
- }
- else {
- KMP_BIND_USER_LOCK(adaptive);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_adaptive_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) )
- ( &__kmp_is_queuing_lock_initialized );
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_location );
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) )
- ( &__kmp_set_queuing_lock_location );
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_queuing_lock_flags );
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
- ( &__kmp_set_queuing_lock_flags );
-
- }
- break;
-#endif // KMP_USE_ADAPTIVE_LOCKS
-
- case lk_drdpa: {
- __kmp_base_user_lock_size = sizeof( kmp_base_drdpa_lock_t );
- __kmp_user_lock_size = sizeof( kmp_drdpa_lock_t );
-
- __kmp_get_user_lock_owner_ =
- ( kmp_int32 ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_drdpa_lock_owner );
-
- if ( __kmp_env_consistency_check ) {
- KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
- KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
- }
- else {
- KMP_BIND_USER_LOCK(drdpa);
- KMP_BIND_NESTED_USER_LOCK(drdpa);
- }
-
- __kmp_destroy_user_lock_ =
- ( void ( * )( kmp_user_lock_p ) )
- ( &__kmp_destroy_drdpa_lock );
-
- __kmp_is_user_lock_initialized_ =
- ( int ( * )( kmp_user_lock_p ) )
- ( &__kmp_is_drdpa_lock_initialized );
-
- __kmp_get_user_lock_location_ =
- ( const ident_t * ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_drdpa_lock_location );
-
- __kmp_set_user_lock_location_ =
- ( void ( * )( kmp_user_lock_p, const ident_t * ) )
- ( &__kmp_set_drdpa_lock_location );
-
- __kmp_get_user_lock_flags_ =
- ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
- ( &__kmp_get_drdpa_lock_flags );
-
- __kmp_set_user_lock_flags_ =
- ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
- ( &__kmp_set_drdpa_lock_flags );
- }
- break;
- }
-}
-
-
-// ----------------------------------------------------------------------------
-// User lock table & lock allocation
-
-kmp_lock_table_t __kmp_user_lock_table = { 1, 0, NULL };
-kmp_user_lock_p __kmp_lock_pool = NULL;
-
-// Lock block-allocation support.
-kmp_block_of_locks* __kmp_lock_blocks = NULL;
-int __kmp_num_locks_in_block = 1; // FIXME - tune this value
-
-static kmp_lock_index_t
-__kmp_lock_table_insert( kmp_user_lock_p lck )
-{
- // Assume that kmp_global_lock is held upon entry/exit.
- kmp_lock_index_t index;
- if ( __kmp_user_lock_table.used >= __kmp_user_lock_table.allocated ) {
- kmp_lock_index_t size;
- kmp_user_lock_p *table;
- // Reallocate lock table.
- if ( __kmp_user_lock_table.allocated == 0 ) {
- size = 1024;
- }
- else {
- size = __kmp_user_lock_table.allocated * 2;
- }
- table = (kmp_user_lock_p *)__kmp_allocate( sizeof( kmp_user_lock_p ) * size );
- KMP_MEMCPY( table + 1, __kmp_user_lock_table.table + 1, sizeof( kmp_user_lock_p ) * ( __kmp_user_lock_table.used - 1 ) );
- table[ 0 ] = (kmp_user_lock_p)__kmp_user_lock_table.table;
- // We cannot free the previous table now, since it may be in use by other
- // threads. So save the pointer to the previous table in in the first element of the
- // new table. All the tables will be organized into a list, and could be freed when
- // library shutting down.
- __kmp_user_lock_table.table = table;
- __kmp_user_lock_table.allocated = size;
- }
- KMP_DEBUG_ASSERT( __kmp_user_lock_table.used < __kmp_user_lock_table.allocated );
- index = __kmp_user_lock_table.used;
- __kmp_user_lock_table.table[ index ] = lck;
- ++ __kmp_user_lock_table.used;
- return index;
-}
-
-static kmp_user_lock_p
-__kmp_lock_block_allocate()
-{
- // Assume that kmp_global_lock is held upon entry/exit.
- static int last_index = 0;
- if ( ( last_index >= __kmp_num_locks_in_block )
- || ( __kmp_lock_blocks == NULL ) ) {
- // Restart the index.
- last_index = 0;
- // Need to allocate a new block.
- KMP_DEBUG_ASSERT( __kmp_user_lock_size > 0 );
- size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
- char* buffer = (char*)__kmp_allocate( space_for_locks + sizeof( kmp_block_of_locks ) );
- // Set up the new block.
- kmp_block_of_locks *new_block = (kmp_block_of_locks *)(& buffer[space_for_locks]);
- new_block->next_block = __kmp_lock_blocks;
- new_block->locks = (void *)buffer;
- // Publish the new block.
- KMP_MB();
- __kmp_lock_blocks = new_block;
- }
- kmp_user_lock_p ret = (kmp_user_lock_p)(& ( ( (char *)( __kmp_lock_blocks->locks ) )
- [ last_index * __kmp_user_lock_size ] ) );
- last_index++;
- return ret;
-}
-
-//
-// Get memory for a lock. It may be freshly allocated memory or reused memory
-// from lock pool.
-//
-kmp_user_lock_p
-__kmp_user_lock_allocate( void **user_lock, kmp_int32 gtid,
- kmp_lock_flags_t flags )
-{
- kmp_user_lock_p lck;
- kmp_lock_index_t index;
- KMP_DEBUG_ASSERT( user_lock );
-
- __kmp_acquire_lock( &__kmp_global_lock, gtid );
-
- if ( __kmp_lock_pool == NULL ) {
- // Lock pool is empty. Allocate new memory.
- if ( __kmp_num_locks_in_block <= 1 ) { // Tune this cutoff point.
- lck = (kmp_user_lock_p) __kmp_allocate( __kmp_user_lock_size );
- }
- else {
- lck = __kmp_lock_block_allocate();
- }
-
- // Insert lock in the table so that it can be freed in __kmp_cleanup,
- // and debugger has info on all allocated locks.
- index = __kmp_lock_table_insert( lck );
- }
- else {
- // Pick up lock from pool.
- lck = __kmp_lock_pool;
- index = __kmp_lock_pool->pool.index;
- __kmp_lock_pool = __kmp_lock_pool->pool.next;
- }
-
- //
- // We could potentially differentiate between nested and regular locks
- // here, and do the lock table lookup for regular locks only.
- //
- if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
- * ( (kmp_lock_index_t *) user_lock ) = index;
- }
- else {
- * ( (kmp_user_lock_p *) user_lock ) = lck;
- }
-
- // mark the lock if it is critical section lock.
- __kmp_set_user_lock_flags( lck, flags );
-
- __kmp_release_lock( & __kmp_global_lock, gtid ); // AC: TODO: move this line upper
-
- return lck;
-}
-
-// Put lock's memory to pool for reusing.
-void
-__kmp_user_lock_free( void **user_lock, kmp_int32 gtid, kmp_user_lock_p lck )
-{
- KMP_DEBUG_ASSERT( user_lock != NULL );
- KMP_DEBUG_ASSERT( lck != NULL );
-
- __kmp_acquire_lock( & __kmp_global_lock, gtid );
-
- lck->pool.next = __kmp_lock_pool;
- __kmp_lock_pool = lck;
- if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
- kmp_lock_index_t index = * ( (kmp_lock_index_t *) user_lock );
- KMP_DEBUG_ASSERT( 0 < index && index <= __kmp_user_lock_table.used );
- lck->pool.index = index;
- }
-
- __kmp_release_lock( & __kmp_global_lock, gtid );
-}
-
-kmp_user_lock_p
-__kmp_lookup_user_lock( void **user_lock, char const *func )
-{
- kmp_user_lock_p lck = NULL;
-
- if ( __kmp_env_consistency_check ) {
- if ( user_lock == NULL ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- }
-
- if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
- kmp_lock_index_t index = *( (kmp_lock_index_t *)user_lock );
- if ( __kmp_env_consistency_check ) {
- if ( ! ( 0 < index && index < __kmp_user_lock_table.used ) ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- }
- KMP_DEBUG_ASSERT( 0 < index && index < __kmp_user_lock_table.used );
- KMP_DEBUG_ASSERT( __kmp_user_lock_size > 0 );
- lck = __kmp_user_lock_table.table[index];
- }
- else {
- lck = *( (kmp_user_lock_p *)user_lock );
- }
-
- if ( __kmp_env_consistency_check ) {
- if ( lck == NULL ) {
- KMP_FATAL( LockIsUninitialized, func );
- }
- }
-
- return lck;
-}
-
-void
-__kmp_cleanup_user_locks( void )
-{
- //
- // Reset lock pool. Do not worry about lock in the pool -- we will free
- // them when iterating through lock table (it includes all the locks,
- // dead or alive).
- //
- __kmp_lock_pool = NULL;
-
-#define IS_CRITICAL(lck) \
- ( ( __kmp_get_user_lock_flags_ != NULL ) && \
- ( ( *__kmp_get_user_lock_flags_ )( lck ) & kmp_lf_critical_section ) )
-
- //
- // Loop through lock table, free all locks.
- //
- // Do not free item [0], it is reserved for lock tables list.
- //
- // FIXME - we are iterating through a list of (pointers to) objects of
- // type union kmp_user_lock, but we have no way of knowing whether the
- // base type is currently "pool" or whatever the global user lock type
- // is.
- //
- // We are relying on the fact that for all of the user lock types
- // (except "tas"), the first field in the lock struct is the "initialized"
- // field, which is set to the address of the lock object itself when
- // the lock is initialized. When the union is of type "pool", the
- // first field is a pointer to the next object in the free list, which
- // will not be the same address as the object itself.
- //
- // This means that the check ( *__kmp_is_user_lock_initialized_ )( lck )
- // will fail for "pool" objects on the free list. This must happen as
- // the "location" field of real user locks overlaps the "index" field
- // of "pool" objects.
- //
- // It would be better to run through the free list, and remove all "pool"
- // objects from the lock table before executing this loop. However,
- // "pool" objects do not always have their index field set (only on
- // lin_32e), and I don't want to search the lock table for the address
- // of every "pool" object on the free list.
- //
- while ( __kmp_user_lock_table.used > 1 ) {
- const ident *loc;
-
- //
- // reduce __kmp_user_lock_table.used before freeing the lock,
- // so that state of locks is consistent
- //
- kmp_user_lock_p lck = __kmp_user_lock_table.table[
- --__kmp_user_lock_table.used ];
-
- if ( ( __kmp_is_user_lock_initialized_ != NULL ) &&
- ( *__kmp_is_user_lock_initialized_ )( lck ) ) {
- //
- // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is
- // initialized AND it is NOT a critical section (user is not
- // responsible for destroying criticals) AND we know source
- // location to report.
- //
- if ( __kmp_env_consistency_check && ( ! IS_CRITICAL( lck ) ) &&
- ( ( loc = __kmp_get_user_lock_location( lck ) ) != NULL ) &&
- ( loc->psource != NULL ) ) {
- kmp_str_loc_t str_loc = __kmp_str_loc_init( loc->psource, 0 );
- KMP_WARNING( CnsLockNotDestroyed, str_loc.file, str_loc.line );
- __kmp_str_loc_free( &str_loc);
- }
-
-#ifdef KMP_DEBUG
- if ( IS_CRITICAL( lck ) ) {
- KA_TRACE( 20, ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", lck, *(void**)lck ) );
- }
- else {
- KA_TRACE( 20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, *(void**)lck ) );
- }
-#endif // KMP_DEBUG
-
- //
- // Cleanup internal lock dynamic resources
- // (for drdpa locks particularly).
- //
- __kmp_destroy_user_lock( lck );
- }
-
- //
- // Free the lock if block allocation of locks is not used.
- //
- if ( __kmp_lock_blocks == NULL ) {
- __kmp_free( lck );
- }
- }
-
-#undef IS_CRITICAL
-
- //
- // delete lock table(s).
- //
- kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
- __kmp_user_lock_table.table = NULL;
- __kmp_user_lock_table.allocated = 0;
-
- while ( table_ptr != NULL ) {
- //
- // In the first element we saved the pointer to the previous
- // (smaller) lock table.
- //
- kmp_user_lock_p *next = (kmp_user_lock_p *)( table_ptr[ 0 ] );
- __kmp_free( table_ptr );
- table_ptr = next;
- }
-
- //
- // Free buffers allocated for blocks of locks.
- //
- kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
- __kmp_lock_blocks = NULL;
-
- while ( block_ptr != NULL ) {
- kmp_block_of_locks_t *next = block_ptr->next_block;
- __kmp_free( block_ptr->locks );
- //
- // *block_ptr itself was allocated at the end of the locks vector.
- //
- block_ptr = next;
- }
-
- TCW_4(__kmp_init_user_locks, FALSE);
-}
-
-#endif // KMP_USE_DYNAMIC_LOCK
+#endif
+
+ KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d entering\n", gtid ));
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+#ifdef KMP_DEBUG
+ this_thr = __kmp_thread_from_gtid( gtid );
+ KMP_DEBUG_ASSERT( this_thr != NULL );
+ KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here );
+#endif
+
+ head = *head_id_p;
+
+ if ( head == 0 ) { /* nobody on queue, nobody holding */
+
+ /* try (0,0)->(-1,0) */
+
+ if ( KMP_COMPARE_AND_STORE_ACQ32( head_id_p, 0, -1 ) ) {
+ KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d exiting: holding lock\n", gtid ));
+ KMP_FSYNC_ACQUIRED(lck);
+ return TRUE;
+ }
+ }
+
+ KA_TRACE( 1000, ("__kmp_test_queuing_lock: T#%d exiting: without lock\n", gtid ));
+ return FALSE;
+}
+
+static int
+__kmp_test_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+
+ int retval = __kmp_test_queuing_lock( lck, gtid );
+
+ if ( retval ) {
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+int
+__kmp_release_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_info_t *this_thr;
+ volatile kmp_int32 *head_id_p = & lck->lk.head_id;
+ volatile kmp_int32 *tail_id_p = & lck->lk.tail_id;
+
+ KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d entering\n", lck, gtid ));
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+ this_thr = __kmp_thread_from_gtid( gtid );
+ KMP_DEBUG_ASSERT( this_thr != NULL );
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "rel ent" );
+
+ if ( this_thr->th.th_spin_here )
+ __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
+ if ( this_thr->th.th_next_waiting != 0 )
+ __kmp_dump_queuing_lock( this_thr, gtid, lck, *head_id_p, *tail_id_p );
+#endif
+ KMP_DEBUG_ASSERT( !this_thr->th.th_spin_here );
+ KMP_DEBUG_ASSERT( this_thr->th.th_next_waiting == 0 );
+
+ KMP_FSYNC_RELEASING(lck);
+
+ while( 1 ) {
+ kmp_int32 dequeued;
+ kmp_int32 head;
+ kmp_int32 tail;
+
+ head = *head_id_p;
+
+#ifdef DEBUG_QUEUING_LOCKS
+ tail = *tail_id_p;
+ TRACE_LOCK_HT( gtid+1, "rel read: ", head, tail );
+ if ( head == 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
+#endif
+ KMP_DEBUG_ASSERT( head != 0 ); /* holding the lock, head must be -1 or queue head */
+
+ if ( head == -1 ) { /* nobody on queue */
+
+ /* try (-1,0)->(0,0) */
+ if ( KMP_COMPARE_AND_STORE_REL32( head_id_p, -1, 0 ) ) {
+ KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: queue empty\n",
+ lck, gtid ));
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK_HT( gtid+1, "rel exit: ", 0, 0 );
+#endif
+
+#if OMPT_SUPPORT
+ /* nothing to do - no other thread is trying to shift blame */
+#endif
+
+ return KMP_LOCK_RELEASED;
+ }
+ dequeued = FALSE;
+
+ }
+ else {
+
+ tail = *tail_id_p;
+ if ( head == tail ) { /* only one thread on the queue */
+
+#ifdef DEBUG_QUEUING_LOCKS
+ if ( head <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
+#endif
+ KMP_DEBUG_ASSERT( head > 0 );
+
+ /* try (h,h)->(-1,0) */
+ dequeued = KMP_COMPARE_AND_STORE_REL64( (kmp_int64 *) tail_id_p,
+ KMP_PACK_64( head, head ), KMP_PACK_64( -1, 0 ) );
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "rel deq: (h,h)->(-1,0)" );
+#endif
+
+ }
+ else {
+ volatile kmp_int32 *waiting_id_p;
+ kmp_info_t *head_thr = __kmp_thread_from_gtid( head - 1 );
+ KMP_DEBUG_ASSERT( head_thr != NULL );
+ waiting_id_p = & head_thr->th.th_next_waiting;
+
+ /* Does this require synchronous reads? */
+#ifdef DEBUG_QUEUING_LOCKS
+ if ( head <= 0 || tail <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
+#endif
+ KMP_DEBUG_ASSERT( head > 0 && tail > 0 );
+
+ /* try (h,t)->(h',t) or (t,t) */
+
+ KMP_MB();
+ /* make sure enqueuing thread has time to update next waiting thread field */
+ *head_id_p = (kmp_int32) KMP_WAIT_YIELD((volatile kmp_uint*) waiting_id_p, 0, KMP_NEQ, NULL);
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "rel deq: (h,t)->(h',t)" );
+#endif
+ dequeued = TRUE;
+ }
+ }
+
+ if ( dequeued ) {
+ kmp_info_t *head_thr = __kmp_thread_from_gtid( head - 1 );
+ KMP_DEBUG_ASSERT( head_thr != NULL );
+
+ /* Does this require synchronous reads? */
+#ifdef DEBUG_QUEUING_LOCKS
+ if ( head <= 0 || tail <= 0 ) __kmp_dump_queuing_lock( this_thr, gtid, lck, head, tail );
+#endif
+ KMP_DEBUG_ASSERT( head > 0 && tail > 0 );
+
+ /* For clean code only.
+ * Thread not released until next statement prevents race with acquire code.
+ */
+ head_thr->th.th_next_waiting = 0;
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK_T( gtid+1, "rel nw=0 for t=", head );
+#endif
+
+ KMP_MB();
+ /* reset spin value */
+ head_thr->th.th_spin_here = FALSE;
+
+ KA_TRACE( 1000, ("__kmp_release_queuing_lock: lck:%p, T#%d exiting: after dequeuing\n",
+ lck, gtid ));
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "rel exit 2" );
+#endif
+ return KMP_LOCK_RELEASED;
+ }
+ /* KMP_CPU_PAUSE( ); don't want to make releasing thread hold up acquiring threads */
+
+#ifdef DEBUG_QUEUING_LOCKS
+ TRACE_LOCK( gtid+1, "rel retry" );
+#endif
+
+ } /* while */
+ KMP_ASSERT2( 0, "should not get here" );
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
+ kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ lck->lk.owner_id = 0;
+ return __kmp_release_queuing_lock( lck, gtid );
+}
+
+void
+__kmp_init_queuing_lock( kmp_queuing_lock_t *lck )
+{
+ lck->lk.location = NULL;
+ lck->lk.head_id = 0;
+ lck->lk.tail_id = 0;
+ lck->lk.next_ticket = 0;
+ lck->lk.now_serving = 0;
+ lck->lk.owner_id = 0; // no thread owns the lock.
+ lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
+ lck->lk.initialized = lck;
+
+ KA_TRACE(1000, ("__kmp_init_queuing_lock: lock %p initialized\n", lck));
+}
+
+static void
+__kmp_init_queuing_lock_with_checks( kmp_queuing_lock_t * lck )
+{
+ __kmp_init_queuing_lock( lck );
+}
+
+void
+__kmp_destroy_queuing_lock( kmp_queuing_lock_t *lck )
+{
+ lck->lk.initialized = NULL;
+ lck->lk.location = NULL;
+ lck->lk.head_id = 0;
+ lck->lk.tail_id = 0;
+ lck->lk.next_ticket = 0;
+ lck->lk.now_serving = 0;
+ lck->lk.owner_id = 0;
+ lck->lk.depth_locked = -1;
+}
+
+static void
+__kmp_destroy_queuing_lock_with_checks( kmp_queuing_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_queuing_lock( lck );
+}
+
+
+//
+// nested queuing locks
+//
+
+int
+__kmp_acquire_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
+ lck->lk.depth_locked += 1;
+ return KMP_LOCK_ACQUIRED_NEXT;
+ }
+ else {
+ __kmp_acquire_queuing_lock_timed_template<false>( lck, gtid );
+ KMP_MB();
+ lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+}
+
+static int
+__kmp_acquire_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_acquire_nested_queuing_lock( lck, gtid );
+}
+
+int
+__kmp_test_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ int retval;
+
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_queuing_lock_owner( lck ) == gtid ) {
+ retval = ++lck->lk.depth_locked;
+ }
+ else if ( !__kmp_test_queuing_lock( lck, gtid ) ) {
+ retval = 0;
+ }
+ else {
+ KMP_MB();
+ retval = lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+static int
+__kmp_test_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck,
+ kmp_int32 gtid )
+{
+ char const * const func = "omp_test_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_test_nested_queuing_lock( lck, gtid );
+}
+
+int
+__kmp_release_nested_queuing_lock( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ KMP_MB();
+ if ( --(lck->lk.depth_locked) == 0 ) {
+ KMP_MB();
+ lck->lk.owner_id = 0;
+ __kmp_release_queuing_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+ }
+ return KMP_LOCK_STILL_HELD;
+}
+
+static int
+__kmp_release_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_nest_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_nested_queuing_lock( lck, gtid );
+}
+
+void
+__kmp_init_nested_queuing_lock( kmp_queuing_lock_t * lck )
+{
+ __kmp_init_queuing_lock( lck );
+ lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
+}
+
+static void
+__kmp_init_nested_queuing_lock_with_checks( kmp_queuing_lock_t * lck )
+{
+ __kmp_init_nested_queuing_lock( lck );
+}
+
+void
+__kmp_destroy_nested_queuing_lock( kmp_queuing_lock_t *lck )
+{
+ __kmp_destroy_queuing_lock( lck );
+ lck->lk.depth_locked = 0;
+}
+
+static void
+__kmp_destroy_nested_queuing_lock_with_checks( kmp_queuing_lock_t *lck )
+{
+ char const * const func = "omp_destroy_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_queuing_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_nested_queuing_lock( lck );
+}
+
+
+//
+// access functions to fields which don't exist for all lock kinds.
+//
+
+static int
+__kmp_is_queuing_lock_initialized( kmp_queuing_lock_t *lck )
+{
+ return lck == lck->lk.initialized;
+}
+
+static const ident_t *
+__kmp_get_queuing_lock_location( kmp_queuing_lock_t *lck )
+{
+ return lck->lk.location;
+}
+
+static void
+__kmp_set_queuing_lock_location( kmp_queuing_lock_t *lck, const ident_t *loc )
+{
+ lck->lk.location = loc;
+}
+
+static kmp_lock_flags_t
+__kmp_get_queuing_lock_flags( kmp_queuing_lock_t *lck )
+{
+ return lck->lk.flags;
+}
+
+static void
+__kmp_set_queuing_lock_flags( kmp_queuing_lock_t *lck, kmp_lock_flags_t flags )
+{
+ lck->lk.flags = flags;
+}
+
+#if KMP_USE_ADAPTIVE_LOCKS
+
+/*
+ RTM Adaptive locks
+*/
+
+#if KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
+
+#include <immintrin.h>
+#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
+
+#else
+
+// Values from the status register after failed speculation.
+#define _XBEGIN_STARTED (~0u)
+#define _XABORT_EXPLICIT (1 << 0)
+#define _XABORT_RETRY (1 << 1)
+#define _XABORT_CONFLICT (1 << 2)
+#define _XABORT_CAPACITY (1 << 3)
+#define _XABORT_DEBUG (1 << 4)
+#define _XABORT_NESTED (1 << 5)
+#define _XABORT_CODE(x) ((unsigned char)(((x) >> 24) & 0xFF))
+
+// Aborts for which it's worth trying again immediately
+#define SOFT_ABORT_MASK (_XABORT_RETRY | _XABORT_CONFLICT | _XABORT_EXPLICIT)
+
+#define STRINGIZE_INTERNAL(arg) #arg
+#define STRINGIZE(arg) STRINGIZE_INTERNAL(arg)
+
+// Access to RTM instructions
+
+/*
+ A version of XBegin which returns -1 on speculation, and the value of EAX on an abort.
+ This is the same definition as the compiler intrinsic that will be supported at some point.
+*/
+static __inline int _xbegin()
+{
+ int res = -1;
+
+#if KMP_OS_WINDOWS
+#if KMP_ARCH_X86_64
+ _asm {
+ _emit 0xC7
+ _emit 0xF8
+ _emit 2
+ _emit 0
+ _emit 0
+ _emit 0
+ jmp L2
+ mov res, eax
+ L2:
+ }
+#else /* IA32 */
+ _asm {
+ _emit 0xC7
+ _emit 0xF8
+ _emit 2
+ _emit 0
+ _emit 0
+ _emit 0
+ jmp L2
+ mov res, eax
+ L2:
+ }
+#endif // KMP_ARCH_X86_64
+#else
+ /* Note that %eax must be noted as killed (clobbered), because
+ * the XSR is returned in %eax(%rax) on abort. Other register
+ * values are restored, so don't need to be killed.
+ *
+ * We must also mark 'res' as an input and an output, since otherwise
+ * 'res=-1' may be dropped as being dead, whereas we do need the
+ * assignment on the successful (i.e., non-abort) path.
+ */
+ __asm__ volatile ("1: .byte 0xC7; .byte 0xF8;\n"
+ " .long 1f-1b-6\n"
+ " jmp 2f\n"
+ "1: movl %%eax,%0\n"
+ "2:"
+ :"+r"(res)::"memory","%eax");
+#endif // KMP_OS_WINDOWS
+ return res;
+}
+
+/*
+ Transaction end
+*/
+static __inline void _xend()
+{
+#if KMP_OS_WINDOWS
+ __asm {
+ _emit 0x0f
+ _emit 0x01
+ _emit 0xd5
+ }
+#else
+ __asm__ volatile (".byte 0x0f; .byte 0x01; .byte 0xd5" :::"memory");
+#endif
+}
+
+/*
+ This is a macro, the argument must be a single byte constant which
+ can be evaluated by the inline assembler, since it is emitted as a
+ byte into the assembly code.
+*/
+#if KMP_OS_WINDOWS
+#define _xabort(ARG) \
+ _asm _emit 0xc6 \
+ _asm _emit 0xf8 \
+ _asm _emit ARG
+#else
+#define _xabort(ARG) \
+ __asm__ volatile (".byte 0xC6; .byte 0xF8; .byte " STRINGIZE(ARG) :::"memory");
+#endif
+
+#endif // KMP_COMPILER_ICC && __INTEL_COMPILER >= 1300
+
+//
+// Statistics is collected for testing purpose
+//
+#if KMP_DEBUG_ADAPTIVE_LOCKS
+
+// We accumulate speculative lock statistics when the lock is destroyed.
+// We keep locks that haven't been destroyed in the liveLocks list
+// so that we can grab their statistics too.
+static kmp_adaptive_lock_statistics_t destroyedStats;
+
+// To hold the list of live locks.
+static kmp_adaptive_lock_info_t liveLocks;
+
+// A lock so we can safely update the list of locks.
+static kmp_bootstrap_lock_t chain_lock;
+
+// Initialize the list of stats.
+void
+__kmp_init_speculative_stats()
+{
+ kmp_adaptive_lock_info_t *lck = &liveLocks;
+
+ memset( ( void * ) & ( lck->stats ), 0, sizeof( lck->stats ) );
+ lck->stats.next = lck;
+ lck->stats.prev = lck;
+
+ KMP_ASSERT( lck->stats.next->stats.prev == lck );
+ KMP_ASSERT( lck->stats.prev->stats.next == lck );
+
+ __kmp_init_bootstrap_lock( &chain_lock );
+
+}
+
+// Insert the lock into the circular list
+static void
+__kmp_remember_lock( kmp_adaptive_lock_info_t * lck )
+{
+ __kmp_acquire_bootstrap_lock( &chain_lock );
+
+ lck->stats.next = liveLocks.stats.next;
+ lck->stats.prev = &liveLocks;
+
+ liveLocks.stats.next = lck;
+ lck->stats.next->stats.prev = lck;
+
+ KMP_ASSERT( lck->stats.next->stats.prev == lck );
+ KMP_ASSERT( lck->stats.prev->stats.next == lck );
+
+ __kmp_release_bootstrap_lock( &chain_lock );
+}
+
+static void
+__kmp_forget_lock( kmp_adaptive_lock_info_t * lck )
+{
+ KMP_ASSERT( lck->stats.next->stats.prev == lck );
+ KMP_ASSERT( lck->stats.prev->stats.next == lck );
+
+ kmp_adaptive_lock_info_t * n = lck->stats.next;
+ kmp_adaptive_lock_info_t * p = lck->stats.prev;
+
+ n->stats.prev = p;
+ p->stats.next = n;
+}
+
+static void
+__kmp_zero_speculative_stats( kmp_adaptive_lock_info_t * lck )
+{
+ memset( ( void * )&lck->stats, 0, sizeof( lck->stats ) );
+ __kmp_remember_lock( lck );
+}
+
+static void
+__kmp_add_stats( kmp_adaptive_lock_statistics_t * t, kmp_adaptive_lock_info_t * lck )
+{
+ kmp_adaptive_lock_statistics_t volatile *s = &lck->stats;
+
+ t->nonSpeculativeAcquireAttempts += lck->acquire_attempts;
+ t->successfulSpeculations += s->successfulSpeculations;
+ t->hardFailedSpeculations += s->hardFailedSpeculations;
+ t->softFailedSpeculations += s->softFailedSpeculations;
+ t->nonSpeculativeAcquires += s->nonSpeculativeAcquires;
+ t->lemmingYields += s->lemmingYields;
+}
+
+static void
+__kmp_accumulate_speculative_stats( kmp_adaptive_lock_info_t * lck)
+{
+ kmp_adaptive_lock_statistics_t *t = &destroyedStats;
+
+ __kmp_acquire_bootstrap_lock( &chain_lock );
+
+ __kmp_add_stats( &destroyedStats, lck );
+ __kmp_forget_lock( lck );
+
+ __kmp_release_bootstrap_lock( &chain_lock );
+}
+
+static float
+percent (kmp_uint32 count, kmp_uint32 total)
+{
+ return (total == 0) ? 0.0: (100.0 * count)/total;
+}
+
+static
+FILE * __kmp_open_stats_file()
+{
+ if (strcmp (__kmp_speculative_statsfile, "-") == 0)
+ return stdout;
+
+ size_t buffLen = KMP_STRLEN( __kmp_speculative_statsfile ) + 20;
+ char buffer[buffLen];
+ KMP_SNPRINTF (&buffer[0], buffLen, __kmp_speculative_statsfile,
+ (kmp_int32)getpid());
+ FILE * result = fopen(&buffer[0], "w");
+
+ // Maybe we should issue a warning here...
+ return result ? result : stdout;
+}
+
+void
+__kmp_print_speculative_stats()
+{
+ if (__kmp_user_lock_kind != lk_adaptive)
+ return;
+
+ FILE * statsFile = __kmp_open_stats_file();
+
+ kmp_adaptive_lock_statistics_t total = destroyedStats;
+ kmp_adaptive_lock_info_t *lck;
+
+ for (lck = liveLocks.stats.next; lck != &liveLocks; lck = lck->stats.next) {
+ __kmp_add_stats( &total, lck );
+ }
+ kmp_adaptive_lock_statistics_t *t = &total;
+ kmp_uint32 totalSections = t->nonSpeculativeAcquires + t->successfulSpeculations;
+ kmp_uint32 totalSpeculations = t->successfulSpeculations + t->hardFailedSpeculations +
+ t->softFailedSpeculations;
+
+ fprintf ( statsFile, "Speculative lock statistics (all approximate!)\n");
+ fprintf ( statsFile, " Lock parameters: \n"
+ " max_soft_retries : %10d\n"
+ " max_badness : %10d\n",
+ __kmp_adaptive_backoff_params.max_soft_retries,
+ __kmp_adaptive_backoff_params.max_badness);
+ fprintf( statsFile, " Non-speculative acquire attempts : %10d\n", t->nonSpeculativeAcquireAttempts );
+ fprintf( statsFile, " Total critical sections : %10d\n", totalSections );
+ fprintf( statsFile, " Successful speculations : %10d (%5.1f%%)\n",
+ t->successfulSpeculations, percent( t->successfulSpeculations, totalSections ) );
+ fprintf( statsFile, " Non-speculative acquires : %10d (%5.1f%%)\n",
+ t->nonSpeculativeAcquires, percent( t->nonSpeculativeAcquires, totalSections ) );
+ fprintf( statsFile, " Lemming yields : %10d\n\n", t->lemmingYields );
+
+ fprintf( statsFile, " Speculative acquire attempts : %10d\n", totalSpeculations );
+ fprintf( statsFile, " Successes : %10d (%5.1f%%)\n",
+ t->successfulSpeculations, percent( t->successfulSpeculations, totalSpeculations ) );
+ fprintf( statsFile, " Soft failures : %10d (%5.1f%%)\n",
+ t->softFailedSpeculations, percent( t->softFailedSpeculations, totalSpeculations ) );
+ fprintf( statsFile, " Hard failures : %10d (%5.1f%%)\n",
+ t->hardFailedSpeculations, percent( t->hardFailedSpeculations, totalSpeculations ) );
+
+ if (statsFile != stdout)
+ fclose( statsFile );
+}
+
+# define KMP_INC_STAT(lck,stat) ( lck->lk.adaptive.stats.stat++ )
+#else
+# define KMP_INC_STAT(lck,stat)
+
+#endif // KMP_DEBUG_ADAPTIVE_LOCKS
+
+static inline bool
+__kmp_is_unlocked_queuing_lock( kmp_queuing_lock_t *lck )
+{
+ // It is enough to check that the head_id is zero.
+ // We don't also need to check the tail.
+ bool res = lck->lk.head_id == 0;
+
+ // We need a fence here, since we must ensure that no memory operations
+ // from later in this thread float above that read.
+#if KMP_COMPILER_ICC
+ _mm_mfence();
+#else
+ __sync_synchronize();
+#endif
+
+ return res;
+}
+
+// Functions for manipulating the badness
+static __inline void
+__kmp_update_badness_after_success( kmp_adaptive_lock_t *lck )
+{
+ // Reset the badness to zero so we eagerly try to speculate again
+ lck->lk.adaptive.badness = 0;
+ KMP_INC_STAT(lck,successfulSpeculations);
+}
+
+// Create a bit mask with one more set bit.
+static __inline void
+__kmp_step_badness( kmp_adaptive_lock_t *lck )
+{
+ kmp_uint32 newBadness = ( lck->lk.adaptive.badness << 1 ) | 1;
+ if ( newBadness > lck->lk.adaptive.max_badness) {
+ return;
+ } else {
+ lck->lk.adaptive.badness = newBadness;
+ }
+}
+
+// Check whether speculation should be attempted.
+static __inline int
+__kmp_should_speculate( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_uint32 badness = lck->lk.adaptive.badness;
+ kmp_uint32 attempts= lck->lk.adaptive.acquire_attempts;
+ int res = (attempts & badness) == 0;
+ return res;
+}
+
+// Attempt to acquire only the speculative lock.
+// Does not back off to the non-speculative lock.
+//
+static int
+__kmp_test_adaptive_lock_only( kmp_adaptive_lock_t * lck, kmp_int32 gtid )
+{
+ int retries = lck->lk.adaptive.max_soft_retries;
+
+ // We don't explicitly count the start of speculation, rather we record
+ // the results (success, hard fail, soft fail). The sum of all of those
+ // is the total number of times we started speculation since all
+ // speculations must end one of those ways.
+ do
+ {
+ kmp_uint32 status = _xbegin();
+ // Switch this in to disable actual speculation but exercise
+ // at least some of the rest of the code. Useful for debugging...
+ // kmp_uint32 status = _XABORT_NESTED;
+
+ if (status == _XBEGIN_STARTED )
+ { /* We have successfully started speculation
+ * Check that no-one acquired the lock for real between when we last looked
+ * and now. This also gets the lock cache line into our read-set,
+ * which we need so that we'll abort if anyone later claims it for real.
+ */
+ if (! __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
+ {
+ // Lock is now visibly acquired, so someone beat us to it.
+ // Abort the transaction so we'll restart from _xbegin with the
+ // failure status.
+ _xabort(0x01);
+ KMP_ASSERT2( 0, "should not get here" );
+ }
+ return 1; // Lock has been acquired (speculatively)
+ } else {
+ // We have aborted, update the statistics
+ if ( status & SOFT_ABORT_MASK)
+ {
+ KMP_INC_STAT(lck,softFailedSpeculations);
+ // and loop round to retry.
+ }
+ else
+ {
+ KMP_INC_STAT(lck,hardFailedSpeculations);
+ // Give up if we had a hard failure.
+ break;
+ }
+ }
+ } while( retries-- ); // Loop while we have retries, and didn't fail hard.
+
+ // Either we had a hard failure or we didn't succeed softly after
+ // the full set of attempts, so back off the badness.
+ __kmp_step_badness( lck );
+ return 0;
+}
+
+// Attempt to acquire the speculative lock, or back off to the non-speculative one
+// if the speculative lock cannot be acquired.
+// We can succeed speculatively, non-speculatively, or fail.
+static int
+__kmp_test_adaptive_lock( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ // First try to acquire the lock speculatively
+ if ( __kmp_should_speculate( lck, gtid ) && __kmp_test_adaptive_lock_only( lck, gtid ) )
+ return 1;
+
+ // Speculative acquisition failed, so try to acquire it non-speculatively.
+ // Count the non-speculative acquire attempt
+ lck->lk.adaptive.acquire_attempts++;
+
+ // Use base, non-speculative lock.
+ if ( __kmp_test_queuing_lock( GET_QLK_PTR(lck), gtid ) )
+ {
+ KMP_INC_STAT(lck,nonSpeculativeAcquires);
+ return 1; // Lock is acquired (non-speculatively)
+ }
+ else
+ {
+ return 0; // Failed to acquire the lock, it's already visibly locked.
+ }
+}
+
+static int
+__kmp_test_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+
+ int retval = __kmp_test_adaptive_lock( lck, gtid );
+
+ if ( retval ) {
+ lck->lk.qlk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+// Block until we can acquire a speculative, adaptive lock.
+// We check whether we should be trying to speculate.
+// If we should be, we check the real lock to see if it is free,
+// and, if not, pause without attempting to acquire it until it is.
+// Then we try the speculative acquire.
+// This means that although we suffer from lemmings a little (
+// because all we can't acquire the lock speculatively until
+// the queue of threads waiting has cleared), we don't get into a
+// state where we can never acquire the lock speculatively (because we
+// force the queue to clear by preventing new arrivals from entering the
+// queue).
+// This does mean that when we're trying to break lemmings, the lock
+// is no longer fair. However OpenMP makes no guarantee that its
+// locks are fair, so this isn't a real problem.
+static void
+__kmp_acquire_adaptive_lock( kmp_adaptive_lock_t * lck, kmp_int32 gtid )
+{
+ if ( __kmp_should_speculate( lck, gtid ) )
+ {
+ if ( __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
+ {
+ if ( __kmp_test_adaptive_lock_only( lck , gtid ) )
+ return;
+ // We tried speculation and failed, so give up.
+ }
+ else
+ {
+ // We can't try speculation until the lock is free, so we
+ // pause here (without suspending on the queueing lock,
+ // to allow it to drain, then try again.
+ // All other threads will also see the same result for
+ // shouldSpeculate, so will be doing the same if they
+ // try to claim the lock from now on.
+ while ( ! __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
+ {
+ KMP_INC_STAT(lck,lemmingYields);
+ __kmp_yield (TRUE);
+ }
+
+ if ( __kmp_test_adaptive_lock_only( lck, gtid ) )
+ return;
+ }
+ }
+
+ // Speculative acquisition failed, so acquire it non-speculatively.
+ // Count the non-speculative acquire attempt
+ lck->lk.adaptive.acquire_attempts++;
+
+ __kmp_acquire_queuing_lock_timed_template<FALSE>( GET_QLK_PTR(lck), gtid );
+ // We have acquired the base lock, so count that.
+ KMP_INC_STAT(lck,nonSpeculativeAcquires );
+}
+
+static void
+__kmp_acquire_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) == gtid ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+
+ __kmp_acquire_adaptive_lock( lck, gtid );
+
+ lck->lk.qlk.owner_id = gtid + 1;
+}
+
+static int
+__kmp_release_adaptive_lock( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ if ( __kmp_is_unlocked_queuing_lock( GET_QLK_PTR(lck) ) )
+ { // If the lock doesn't look claimed we must be speculating.
+ // (Or the user's code is buggy and they're releasing without locking;
+ // if we had XTEST we'd be able to check that case...)
+ _xend(); // Exit speculation
+ __kmp_update_badness_after_success( lck );
+ }
+ else
+ { // Since the lock *is* visibly locked we're not speculating,
+ // so should use the underlying lock's release scheme.
+ __kmp_release_queuing_lock( GET_QLK_PTR(lck), gtid );
+ }
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ lck->lk.qlk.owner_id = 0;
+ __kmp_release_adaptive_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+}
+
+static void
+__kmp_init_adaptive_lock( kmp_adaptive_lock_t *lck )
+{
+ __kmp_init_queuing_lock( GET_QLK_PTR(lck) );
+ lck->lk.adaptive.badness = 0;
+ lck->lk.adaptive.acquire_attempts = 0; //nonSpeculativeAcquireAttempts = 0;
+ lck->lk.adaptive.max_soft_retries = __kmp_adaptive_backoff_params.max_soft_retries;
+ lck->lk.adaptive.max_badness = __kmp_adaptive_backoff_params.max_badness;
+#if KMP_DEBUG_ADAPTIVE_LOCKS
+ __kmp_zero_speculative_stats( &lck->lk.adaptive );
+#endif
+ KA_TRACE(1000, ("__kmp_init_adaptive_lock: lock %p initialized\n", lck));
+}
+
+static void
+__kmp_init_adaptive_lock_with_checks( kmp_adaptive_lock_t * lck )
+{
+ __kmp_init_adaptive_lock( lck );
+}
+
+static void
+__kmp_destroy_adaptive_lock( kmp_adaptive_lock_t *lck )
+{
+#if KMP_DEBUG_ADAPTIVE_LOCKS
+ __kmp_accumulate_speculative_stats( &lck->lk.adaptive );
+#endif
+ __kmp_destroy_queuing_lock (GET_QLK_PTR(lck));
+ // Nothing needed for the speculative part.
+}
+
+static void
+__kmp_destroy_adaptive_lock_with_checks( kmp_adaptive_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( lck->lk.qlk.initialized != GET_QLK_PTR(lck) ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_get_queuing_lock_owner( GET_QLK_PTR(lck) ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_adaptive_lock( lck );
+}
+
+
+#endif // KMP_USE_ADAPTIVE_LOCKS
+
+
+/* ------------------------------------------------------------------------ */
+/* DRDPA ticket locks */
+/* "DRDPA" means Dynamically Reconfigurable Distributed Polling Area */
+
+static kmp_int32
+__kmp_get_drdpa_lock_owner( kmp_drdpa_lock_t *lck )
+{
+ return TCR_4( lck->lk.owner_id ) - 1;
+}
+
+static inline bool
+__kmp_is_drdpa_lock_nestable( kmp_drdpa_lock_t *lck )
+{
+ return lck->lk.depth_locked != -1;
+}
+
+__forceinline static int
+__kmp_acquire_drdpa_lock_timed_template( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ kmp_uint64 ticket = KMP_TEST_THEN_INC64((kmp_int64 *)&lck->lk.next_ticket);
+ kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
+ volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
+ = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ TCR_PTR(lck->lk.polls); // volatile load
+
+#ifdef USE_LOCK_PROFILE
+ if (TCR_8(polls[ticket & mask].poll) != ticket)
+ __kmp_printf("LOCK CONTENTION: %p\n", lck);
+ /* else __kmp_printf( "." );*/
+#endif /* USE_LOCK_PROFILE */
+
+ //
+ // Now spin-wait, but reload the polls pointer and mask, in case the
+ // polling area has been reconfigured. Unless it is reconfigured, the
+ // reloads stay in L1 cache and are cheap.
+ //
+ // Keep this code in sync with KMP_WAIT_YIELD, in kmp_dispatch.c !!!
+ //
+ // The current implementation of KMP_WAIT_YIELD doesn't allow for mask
+ // and poll to be re-read every spin iteration.
+ //
+ kmp_uint32 spins;
+
+ KMP_FSYNC_PREPARE(lck);
+ KMP_INIT_YIELD(spins);
+ while (TCR_8(polls[ticket & mask]).poll < ticket) { // volatile load
+ // If we are oversubscribed,
+ // or have waited a bit (and KMP_LIBRARY=turnaround), then yield.
+ // CPU Pause is in the macros for yield.
+ //
+ KMP_YIELD(TCR_4(__kmp_nth)
+ > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc));
+ KMP_YIELD_SPIN(spins);
+
+ // Re-read the mask and the poll pointer from the lock structure.
+ //
+ // Make certain that "mask" is read before "polls" !!!
+ //
+ // If another thread picks reconfigures the polling area and updates
+ // their values, and we get the new value of mask and the old polls
+ // pointer, we could access memory beyond the end of the old polling
+ // area.
+ //
+ mask = TCR_8(lck->lk.mask); // volatile load
+ polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ TCR_PTR(lck->lk.polls); // volatile load
+ }
+
+ //
+ // Critical section starts here
+ //
+ KMP_FSYNC_ACQUIRED(lck);
+ KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld acquired lock %p\n",
+ ticket, lck));
+ lck->lk.now_serving = ticket; // non-volatile store
+
+ //
+ // Deallocate a garbage polling area if we know that we are the last
+ // thread that could possibly access it.
+ //
+ // The >= check is in case __kmp_test_drdpa_lock() allocated the cleanup
+ // ticket.
+ //
+ if ((lck->lk.old_polls != NULL) && (ticket >= lck->lk.cleanup_ticket)) {
+ __kmp_free((void *)lck->lk.old_polls);
+ lck->lk.old_polls = NULL;
+ lck->lk.cleanup_ticket = 0;
+ }
+
+ //
+ // Check to see if we should reconfigure the polling area.
+ // If there is still a garbage polling area to be deallocated from a
+ // previous reconfiguration, let a later thread reconfigure it.
+ //
+ if (lck->lk.old_polls == NULL) {
+ bool reconfigure = false;
+ volatile struct kmp_base_drdpa_lock::kmp_lock_poll *old_polls = polls;
+ kmp_uint32 num_polls = TCR_4(lck->lk.num_polls);
+
+ if (TCR_4(__kmp_nth)
+ > (__kmp_avail_proc ? __kmp_avail_proc : __kmp_xproc)) {
+ //
+ // We are in oversubscription mode. Contract the polling area
+ // down to a single location, if that hasn't been done already.
+ //
+ if (num_polls > 1) {
+ reconfigure = true;
+ num_polls = TCR_4(lck->lk.num_polls);
+ mask = 0;
+ num_polls = 1;
+ polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ __kmp_allocate(num_polls * sizeof(*polls));
+ polls[0].poll = ticket;
+ }
+ }
+ else {
+ //
+ // We are in under/fully subscribed mode. Check the number of
+ // threads waiting on the lock. The size of the polling area
+ // should be at least the number of threads waiting.
+ //
+ kmp_uint64 num_waiting = TCR_8(lck->lk.next_ticket) - ticket - 1;
+ if (num_waiting > num_polls) {
+ kmp_uint32 old_num_polls = num_polls;
+ reconfigure = true;
+ do {
+ mask = (mask << 1) | 1;
+ num_polls *= 2;
+ } while (num_polls <= num_waiting);
+
+ //
+ // Allocate the new polling area, and copy the relevant portion
+ // of the old polling area to the new area. __kmp_allocate()
+ // zeroes the memory it allocates, and most of the old area is
+ // just zero padding, so we only copy the release counters.
+ //
+ polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ __kmp_allocate(num_polls * sizeof(*polls));
+ kmp_uint32 i;
+ for (i = 0; i < old_num_polls; i++) {
+ polls[i].poll = old_polls[i].poll;
+ }
+ }
+ }
+
+ if (reconfigure) {
+ //
+ // Now write the updated fields back to the lock structure.
+ //
+ // Make certain that "polls" is written before "mask" !!!
+ //
+ // If another thread picks up the new value of mask and the old
+ // polls pointer , it could access memory beyond the end of the
+ // old polling area.
+ //
+ // On x86, we need memory fences.
+ //
+ KA_TRACE(1000, ("__kmp_acquire_drdpa_lock: ticket #%lld reconfiguring lock %p to %d polls\n",
+ ticket, lck, num_polls));
+
+ lck->lk.old_polls = old_polls; // non-volatile store
+ lck->lk.polls = polls; // volatile store
+
+ KMP_MB();
+
+ lck->lk.num_polls = num_polls; // non-volatile store
+ lck->lk.mask = mask; // volatile store
+
+ KMP_MB();
+
+ //
+ // Only after the new polling area and mask have been flushed
+ // to main memory can we update the cleanup ticket field.
+ //
+ // volatile load / non-volatile store
+ //
+ lck->lk.cleanup_ticket = TCR_8(lck->lk.next_ticket);
+ }
+ }
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_acquire_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ return __kmp_acquire_drdpa_lock_timed_template( lck, gtid );
+}
+
+static int
+__kmp_acquire_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) ) {
+ KMP_FATAL( LockIsAlreadyOwned, func );
+ }
+
+ __kmp_acquire_drdpa_lock( lck, gtid );
+
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+}
+
+int
+__kmp_test_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ //
+ // First get a ticket, then read the polls pointer and the mask.
+ // The polls pointer must be read before the mask!!! (See above)
+ //
+ kmp_uint64 ticket = TCR_8(lck->lk.next_ticket); // volatile load
+ volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
+ = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ TCR_PTR(lck->lk.polls); // volatile load
+ kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
+ if (TCR_8(polls[ticket & mask].poll) == ticket) {
+ kmp_uint64 next_ticket = ticket + 1;
+ if (KMP_COMPARE_AND_STORE_ACQ64((kmp_int64 *)&lck->lk.next_ticket,
+ ticket, next_ticket)) {
+ KMP_FSYNC_ACQUIRED(lck);
+ KA_TRACE(1000, ("__kmp_test_drdpa_lock: ticket #%lld acquired lock %p\n",
+ ticket, lck));
+ lck->lk.now_serving = ticket; // non-volatile store
+
+ //
+ // Since no threads are waiting, there is no possibility that
+ // we would want to reconfigure the polling area. We might
+ // have the cleanup ticket value (which says that it is now
+ // safe to deallocate old_polls), but we'll let a later thread
+ // which calls __kmp_acquire_lock do that - this routine
+ // isn't supposed to block, and we would risk blocks if we
+ // called __kmp_free() to do the deallocation.
+ //
+ return TRUE;
+ }
+ }
+ return FALSE;
+}
+
+static int
+__kmp_test_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+
+ int retval = __kmp_test_drdpa_lock( lck, gtid );
+
+ if ( retval ) {
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+int
+__kmp_release_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ //
+ // Read the ticket value from the lock data struct, then the polls
+ // pointer and the mask. The polls pointer must be read before the
+ // mask!!! (See above)
+ //
+ kmp_uint64 ticket = lck->lk.now_serving + 1; // non-volatile load
+ volatile struct kmp_base_drdpa_lock::kmp_lock_poll *polls
+ = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ TCR_PTR(lck->lk.polls); // volatile load
+ kmp_uint64 mask = TCR_8(lck->lk.mask); // volatile load
+ KA_TRACE(1000, ("__kmp_release_drdpa_lock: ticket #%lld released lock %p\n",
+ ticket - 1, lck));
+ KMP_FSYNC_RELEASING(lck);
+ KMP_ST_REL64(&(polls[ticket & mask].poll), ticket); // volatile store
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_drdpa_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( ( gtid >= 0 ) && ( __kmp_get_drdpa_lock_owner( lck ) >= 0 )
+ && ( __kmp_get_drdpa_lock_owner( lck ) != gtid ) ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ lck->lk.owner_id = 0;
+ return __kmp_release_drdpa_lock( lck, gtid );
+}
+
+void
+__kmp_init_drdpa_lock( kmp_drdpa_lock_t *lck )
+{
+ lck->lk.location = NULL;
+ lck->lk.mask = 0;
+ lck->lk.num_polls = 1;
+ lck->lk.polls = (volatile struct kmp_base_drdpa_lock::kmp_lock_poll *)
+ __kmp_allocate(lck->lk.num_polls * sizeof(*(lck->lk.polls)));
+ lck->lk.cleanup_ticket = 0;
+ lck->lk.old_polls = NULL;
+ lck->lk.next_ticket = 0;
+ lck->lk.now_serving = 0;
+ lck->lk.owner_id = 0; // no thread owns the lock.
+ lck->lk.depth_locked = -1; // >= 0 for nestable locks, -1 for simple locks.
+ lck->lk.initialized = lck;
+
+ KA_TRACE(1000, ("__kmp_init_drdpa_lock: lock %p initialized\n", lck));
+}
+
+static void
+__kmp_init_drdpa_lock_with_checks( kmp_drdpa_lock_t * lck )
+{
+ __kmp_init_drdpa_lock( lck );
+}
+
+void
+__kmp_destroy_drdpa_lock( kmp_drdpa_lock_t *lck )
+{
+ lck->lk.initialized = NULL;
+ lck->lk.location = NULL;
+ if (lck->lk.polls != NULL) {
+ __kmp_free((void *)lck->lk.polls);
+ lck->lk.polls = NULL;
+ }
+ if (lck->lk.old_polls != NULL) {
+ __kmp_free((void *)lck->lk.old_polls);
+ lck->lk.old_polls = NULL;
+ }
+ lck->lk.mask = 0;
+ lck->lk.num_polls = 0;
+ lck->lk.cleanup_ticket = 0;
+ lck->lk.next_ticket = 0;
+ lck->lk.now_serving = 0;
+ lck->lk.owner_id = 0;
+ lck->lk.depth_locked = -1;
+}
+
+static void
+__kmp_destroy_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck )
+{
+ char const * const func = "omp_destroy_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockNestableUsedAsSimple, func );
+ }
+ if ( __kmp_get_drdpa_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_drdpa_lock( lck );
+}
+
+
+//
+// nested drdpa ticket locks
+//
+
+int
+__kmp_acquire_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) {
+ lck->lk.depth_locked += 1;
+ return KMP_LOCK_ACQUIRED_NEXT;
+ }
+ else {
+ __kmp_acquire_drdpa_lock_timed_template( lck, gtid );
+ KMP_MB();
+ lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ return KMP_LOCK_ACQUIRED_FIRST;
+ }
+}
+
+static void
+__kmp_acquire_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_set_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ __kmp_acquire_nested_drdpa_lock( lck, gtid );
+}
+
+int
+__kmp_test_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ int retval;
+
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ if ( __kmp_get_drdpa_lock_owner( lck ) == gtid ) {
+ retval = ++lck->lk.depth_locked;
+ }
+ else if ( !__kmp_test_drdpa_lock( lck, gtid ) ) {
+ retval = 0;
+ }
+ else {
+ KMP_MB();
+ retval = lck->lk.depth_locked = 1;
+ KMP_MB();
+ lck->lk.owner_id = gtid + 1;
+ }
+ return retval;
+}
+
+static int
+__kmp_test_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_test_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ return __kmp_test_nested_drdpa_lock( lck, gtid );
+}
+
+int
+__kmp_release_nested_drdpa_lock( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ KMP_DEBUG_ASSERT( gtid >= 0 );
+
+ KMP_MB();
+ if ( --(lck->lk.depth_locked) == 0 ) {
+ KMP_MB();
+ lck->lk.owner_id = 0;
+ __kmp_release_drdpa_lock( lck, gtid );
+ return KMP_LOCK_RELEASED;
+ }
+ return KMP_LOCK_STILL_HELD;
+}
+
+static int
+__kmp_release_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck, kmp_int32 gtid )
+{
+ char const * const func = "omp_unset_nest_lock";
+ KMP_MB(); /* in case another processor initialized lock */
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_drdpa_lock_owner( lck ) == -1 ) {
+ KMP_FATAL( LockUnsettingFree, func );
+ }
+ if ( __kmp_get_drdpa_lock_owner( lck ) != gtid ) {
+ KMP_FATAL( LockUnsettingSetByAnother, func );
+ }
+ return __kmp_release_nested_drdpa_lock( lck, gtid );
+}
+
+void
+__kmp_init_nested_drdpa_lock( kmp_drdpa_lock_t * lck )
+{
+ __kmp_init_drdpa_lock( lck );
+ lck->lk.depth_locked = 0; // >= 0 for nestable locks, -1 for simple locks
+}
+
+static void
+__kmp_init_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t * lck )
+{
+ __kmp_init_nested_drdpa_lock( lck );
+}
+
+void
+__kmp_destroy_nested_drdpa_lock( kmp_drdpa_lock_t *lck )
+{
+ __kmp_destroy_drdpa_lock( lck );
+ lck->lk.depth_locked = 0;
+}
+
+static void
+__kmp_destroy_nested_drdpa_lock_with_checks( kmp_drdpa_lock_t *lck )
+{
+ char const * const func = "omp_destroy_nest_lock";
+ if ( lck->lk.initialized != lck ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ if ( ! __kmp_is_drdpa_lock_nestable( lck ) ) {
+ KMP_FATAL( LockSimpleUsedAsNestable, func );
+ }
+ if ( __kmp_get_drdpa_lock_owner( lck ) != -1 ) {
+ KMP_FATAL( LockStillOwned, func );
+ }
+ __kmp_destroy_nested_drdpa_lock( lck );
+}
+
+
+//
+// access functions to fields which don't exist for all lock kinds.
+//
+
+static int
+__kmp_is_drdpa_lock_initialized( kmp_drdpa_lock_t *lck )
+{
+ return lck == lck->lk.initialized;
+}
+
+static const ident_t *
+__kmp_get_drdpa_lock_location( kmp_drdpa_lock_t *lck )
+{
+ return lck->lk.location;
+}
+
+static void
+__kmp_set_drdpa_lock_location( kmp_drdpa_lock_t *lck, const ident_t *loc )
+{
+ lck->lk.location = loc;
+}
+
+static kmp_lock_flags_t
+__kmp_get_drdpa_lock_flags( kmp_drdpa_lock_t *lck )
+{
+ return lck->lk.flags;
+}
+
+static void
+__kmp_set_drdpa_lock_flags( kmp_drdpa_lock_t *lck, kmp_lock_flags_t flags )
+{
+ lck->lk.flags = flags;
+}
+
+#if KMP_USE_DYNAMIC_LOCK
+
+// Direct lock initializers. It simply writes a tag to the low 8 bits of the lock word.
+static void __kmp_init_direct_lock(kmp_dyna_lock_t *lck, kmp_dyna_lockseq_t seq)
+{
+ TCW_4(*lck, KMP_GET_D_TAG(seq));
+ KA_TRACE(20, ("__kmp_init_direct_lock: initialized direct lock with type#%d\n", seq));
+}
+
+#if KMP_USE_TSX
+
+// HLE lock functions - imported from the testbed runtime.
+#define HLE_ACQUIRE ".byte 0xf2;"
+#define HLE_RELEASE ".byte 0xf3;"
+
+static inline kmp_uint32
+swap4(kmp_uint32 volatile *p, kmp_uint32 v)
+{
+ __asm__ volatile(HLE_ACQUIRE "xchg %1,%0"
+ : "+r"(v), "+m"(*p)
+ :
+ : "memory");
+ return v;
+}
+
+static void
+__kmp_destroy_hle_lock(kmp_dyna_lock_t *lck)
+{
+ TCW_4(*lck, 0);
+}
+
+static void
+__kmp_acquire_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ // Use gtid for KMP_LOCK_BUSY if necessary
+ if (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle)) {
+ int delay = 1;
+ do {
+ while (*(kmp_uint32 volatile *)lck != KMP_LOCK_FREE(hle)) {
+ for (int i = delay; i != 0; --i)
+ KMP_CPU_PAUSE();
+ delay = ((delay << 1) | 1) & 7;
+ }
+ } while (swap4(lck, KMP_LOCK_BUSY(1, hle)) != KMP_LOCK_FREE(hle));
+ }
+}
+
+static void
+__kmp_acquire_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ __kmp_acquire_hle_lock(lck, gtid); // TODO: add checks
+}
+
+static int
+__kmp_release_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ __asm__ volatile(HLE_RELEASE "movl %1,%0"
+ : "=m"(*lck)
+ : "r"(KMP_LOCK_FREE(hle))
+ : "memory");
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ return __kmp_release_hle_lock(lck, gtid); // TODO: add checks
+}
+
+static int
+__kmp_test_hle_lock(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ return swap4(lck, KMP_LOCK_BUSY(1, hle)) == KMP_LOCK_FREE(hle);
+}
+
+static int
+__kmp_test_hle_lock_with_checks(kmp_dyna_lock_t *lck, kmp_int32 gtid)
+{
+ return __kmp_test_hle_lock(lck, gtid); // TODO: add checks
+}
+
+static void
+__kmp_init_rtm_lock(kmp_queuing_lock_t *lck)
+{
+ __kmp_init_queuing_lock(lck);
+}
+
+static void
+__kmp_destroy_rtm_lock(kmp_queuing_lock_t *lck)
+{
+ __kmp_destroy_queuing_lock(lck);
+}
+
+static void
+__kmp_acquire_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ unsigned retries=3, status;
+ do {
+ status = _xbegin();
+ if (status == _XBEGIN_STARTED) {
+ if (__kmp_is_unlocked_queuing_lock(lck))
+ return;
+ _xabort(0xff);
+ }
+ if ((status & _XABORT_EXPLICIT) && _XABORT_CODE(status) == 0xff) {
+ // Wait until lock becomes free
+ while (! __kmp_is_unlocked_queuing_lock(lck))
+ __kmp_yield(TRUE);
+ }
+ else if (!(status & _XABORT_RETRY))
+ break;
+ } while (retries--);
+
+ // Fall-back non-speculative lock (xchg)
+ __kmp_acquire_queuing_lock(lck, gtid);
+}
+
+static void
+__kmp_acquire_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ __kmp_acquire_rtm_lock(lck, gtid);
+}
+
+static int
+__kmp_release_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ if (__kmp_is_unlocked_queuing_lock(lck)) {
+ // Releasing from speculation
+ _xend();
+ }
+ else {
+ // Releasing from a real lock
+ __kmp_release_queuing_lock(lck, gtid);
+ }
+ return KMP_LOCK_RELEASED;
+}
+
+static int
+__kmp_release_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ return __kmp_release_rtm_lock(lck, gtid);
+}
+
+static int
+__kmp_test_rtm_lock(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ unsigned retries=3, status;
+ do {
+ status = _xbegin();
+ if (status == _XBEGIN_STARTED && __kmp_is_unlocked_queuing_lock(lck)) {
+ return 1;
+ }
+ if (!(status & _XABORT_RETRY))
+ break;
+ } while (retries--);
+
+ return (__kmp_is_unlocked_queuing_lock(lck))? 1: 0;
+}
+
+static int
+__kmp_test_rtm_lock_with_checks(kmp_queuing_lock_t *lck, kmp_int32 gtid)
+{
+ return __kmp_test_rtm_lock(lck, gtid);
+}
+
+#endif // KMP_USE_TSX
+
+// Entry functions for indirect locks (first element of direct lock jump tables).
+static void __kmp_init_indirect_lock(kmp_dyna_lock_t * l, kmp_dyna_lockseq_t tag);
+static void __kmp_destroy_indirect_lock(kmp_dyna_lock_t * lock);
+static void __kmp_set_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
+static int __kmp_unset_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
+static int __kmp_test_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32);
+static void __kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
+static int __kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
+static int __kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32);
+
+//
+// Jump tables for the indirect lock functions.
+// Only fill in the odd entries, that avoids the need to shift out the low bit.
+//
+
+// init functions
+#define expand(l, op) 0,__kmp_init_direct_lock,
+void (*__kmp_direct_init[])(kmp_dyna_lock_t *, kmp_dyna_lockseq_t)
+ = { __kmp_init_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, init) };
+#undef expand
+
+// destroy functions
+#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *))__kmp_##op##_##l##_lock,
+void (*__kmp_direct_destroy[])(kmp_dyna_lock_t *)
+ = { __kmp_destroy_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, destroy) };
+#undef expand
+
+// set/acquire functions
+#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
+static void (*direct_set[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_set_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, acquire) };
+#undef expand
+#define expand(l, op) 0,(void (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
+static void (*direct_set_check[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_set_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, acquire) };
+#undef expand
+
+// unset/release and test functions
+#define expand(l, op) 0,(int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock,
+static int (*direct_unset[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_unset_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, release) };
+static int (*direct_test[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_test_indirect_lock, 0, KMP_FOREACH_D_LOCK(expand, test) };
+#undef expand
+#define expand(l, op) 0,(int (*)(kmp_dyna_lock_t *, kmp_int32))__kmp_##op##_##l##_lock_with_checks,
+static int (*direct_unset_check[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_unset_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, release) };
+static int (*direct_test_check[])(kmp_dyna_lock_t *, kmp_int32)
+ = { __kmp_test_indirect_lock_with_checks, 0, KMP_FOREACH_D_LOCK(expand, test) };
+#undef expand
+
+// Exposes only one set of jump tables (*lock or *lock_with_checks).
+void (*(*__kmp_direct_set))(kmp_dyna_lock_t *, kmp_int32) = 0;
+int (*(*__kmp_direct_unset))(kmp_dyna_lock_t *, kmp_int32) = 0;
+int (*(*__kmp_direct_test))(kmp_dyna_lock_t *, kmp_int32) = 0;
+
+//
+// Jump tables for the indirect lock functions.
+//
+#define expand(l, op) (void (*)(kmp_user_lock_p))__kmp_##op##_##l##_##lock,
+void (*__kmp_indirect_init[])(kmp_user_lock_p) = { KMP_FOREACH_I_LOCK(expand, init) };
+void (*__kmp_indirect_destroy[])(kmp_user_lock_p) = { KMP_FOREACH_I_LOCK(expand, destroy) };
+#undef expand
+
+// set/acquire functions
+#define expand(l, op) (void (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock,
+static void (*indirect_set[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, acquire) };
+#undef expand
+#define expand(l, op) (void (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock_with_checks,
+static void (*indirect_set_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, acquire) };
+#undef expand
+
+// unset/release and test functions
+#define expand(l, op) (int (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock,
+static int (*indirect_unset[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, release) };
+static int (*indirect_test[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, test) };
+#undef expand
+#define expand(l, op) (int (*)(kmp_user_lock_p, kmp_int32))__kmp_##op##_##l##_##lock_with_checks,
+static int (*indirect_unset_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, release) };
+static int (*indirect_test_check[])(kmp_user_lock_p, kmp_int32) = { KMP_FOREACH_I_LOCK(expand, test) };
+#undef expand
+
+// Exposes only one jump tables (*lock or *lock_with_checks).
+void (*(*__kmp_indirect_set))(kmp_user_lock_p, kmp_int32) = 0;
+int (*(*__kmp_indirect_unset))(kmp_user_lock_p, kmp_int32) = 0;
+int (*(*__kmp_indirect_test))(kmp_user_lock_p, kmp_int32) = 0;
+
+// Lock index table.
+kmp_indirect_lock_table_t __kmp_i_lock_table;
+
+// Size of indirect locks.
+static kmp_uint32 __kmp_indirect_lock_size[KMP_NUM_I_LOCKS] = { 0 };
+
+// Jump tables for lock accessor/modifier.
+void (*__kmp_indirect_set_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p, const ident_t *) = { 0 };
+void (*__kmp_indirect_set_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p, kmp_lock_flags_t) = { 0 };
+const ident_t * (*__kmp_indirect_get_location[KMP_NUM_I_LOCKS])(kmp_user_lock_p) = { 0 };
+kmp_lock_flags_t (*__kmp_indirect_get_flags[KMP_NUM_I_LOCKS])(kmp_user_lock_p) = { 0 };
+
+// Use different lock pools for different lock types.
+static kmp_indirect_lock_t * __kmp_indirect_lock_pool[KMP_NUM_I_LOCKS] = { 0 };
+
+// User lock allocator for dynamically dispatched indirect locks.
+// Every entry of the indirect lock table holds the address and type of the allocated indrect lock
+// (kmp_indirect_lock_t), and the size of the table doubles when it is full. A destroyed indirect lock
+// object is returned to the reusable pool of locks, unique to each lock type.
+kmp_indirect_lock_t *
+__kmp_allocate_indirect_lock(void **user_lock, kmp_int32 gtid, kmp_indirect_locktag_t tag)
+{
+ kmp_indirect_lock_t *lck;
+ kmp_lock_index_t idx;
+
+ __kmp_acquire_lock(&__kmp_global_lock, gtid);
+
+ if (__kmp_indirect_lock_pool[tag] != NULL) {
+ // Reuse the allocated and destroyed lock object
+ lck = __kmp_indirect_lock_pool[tag];
+ if (OMP_LOCK_T_SIZE < sizeof(void *))
+ idx = lck->lock->pool.index;
+ __kmp_indirect_lock_pool[tag] = (kmp_indirect_lock_t *)lck->lock->pool.next;
+ KA_TRACE(20, ("__kmp_allocate_indirect_lock: reusing an existing lock %p\n", lck));
+ } else {
+ idx = __kmp_i_lock_table.next;
+ // Check capacity and double the size if it is full
+ if (idx == __kmp_i_lock_table.size) {
+ // Double up the space for block pointers
+ int row = __kmp_i_lock_table.size/KMP_I_LOCK_CHUNK;
+ kmp_indirect_lock_t **old_table = __kmp_i_lock_table.table;
+ __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate(2*row*sizeof(kmp_indirect_lock_t *));
+ KMP_MEMCPY(__kmp_i_lock_table.table, old_table, row*sizeof(kmp_indirect_lock_t *));
+ __kmp_free(old_table);
+ // Allocate new objects in the new blocks
+ for (int i = row; i < 2*row; ++i)
+ *(__kmp_i_lock_table.table + i) = (kmp_indirect_lock_t *)
+ __kmp_allocate(KMP_I_LOCK_CHUNK*sizeof(kmp_indirect_lock_t));
+ __kmp_i_lock_table.size = 2*idx;
+ }
+ __kmp_i_lock_table.next++;
+ lck = KMP_GET_I_LOCK(idx);
+ // Allocate a new base lock object
+ lck->lock = (kmp_user_lock_p)__kmp_allocate(__kmp_indirect_lock_size[tag]);
+ KA_TRACE(20, ("__kmp_allocate_indirect_lock: allocated a new lock %p\n", lck));
+ }
+
+ __kmp_release_lock(&__kmp_global_lock, gtid);
+
+ lck->type = tag;
+
+ if (OMP_LOCK_T_SIZE < sizeof(void *)) {
+ *((kmp_lock_index_t *)user_lock) = idx << 1; // indirect lock word must be even.
+ } else {
+ *((kmp_indirect_lock_t **)user_lock) = lck;
+ }
+
+ return lck;
+}
+
+// User lock lookup for dynamically dispatched locks.
+static __forceinline
+kmp_indirect_lock_t *
+__kmp_lookup_indirect_lock(void **user_lock, const char *func)
+{
+ if (__kmp_env_consistency_check) {
+ kmp_indirect_lock_t *lck = NULL;
+ if (user_lock == NULL) {
+ KMP_FATAL(LockIsUninitialized, func);
+ }
+ if (OMP_LOCK_T_SIZE < sizeof(void *)) {
+ kmp_lock_index_t idx = KMP_EXTRACT_I_INDEX(user_lock);
+ if (idx >= __kmp_i_lock_table.size) {
+ KMP_FATAL(LockIsUninitialized, func);
+ }
+ lck = KMP_GET_I_LOCK(idx);
+ } else {
+ lck = *((kmp_indirect_lock_t **)user_lock);
+ }
+ if (lck == NULL) {
+ KMP_FATAL(LockIsUninitialized, func);
+ }
+ return lck;
+ } else {
+ if (OMP_LOCK_T_SIZE < sizeof(void *)) {
+ return KMP_GET_I_LOCK(KMP_EXTRACT_I_INDEX(user_lock));
+ } else {
+ return *((kmp_indirect_lock_t **)user_lock);
+ }
+ }
+}
+
+static void
+__kmp_init_indirect_lock(kmp_dyna_lock_t * lock, kmp_dyna_lockseq_t seq)
+{
+#if KMP_USE_ADAPTIVE_LOCKS
+ if (seq == lockseq_adaptive && !__kmp_cpuinfo.rtm) {
+ KMP_WARNING(AdaptiveNotSupported, "kmp_lockseq_t", "adaptive");
+ seq = lockseq_queuing;
+ }
+#endif
+#if KMP_USE_TSX
+ if (seq == lockseq_rtm && !__kmp_cpuinfo.rtm) {
+ seq = lockseq_queuing;
+ }
+#endif
+ kmp_indirect_locktag_t tag = KMP_GET_I_TAG(seq);
+ kmp_indirect_lock_t *l = __kmp_allocate_indirect_lock((void **)lock, __kmp_entry_gtid(), tag);
+ KMP_I_LOCK_FUNC(l, init)(l->lock);
+ KA_TRACE(20, ("__kmp_init_indirect_lock: initialized indirect lock with type#%d\n", seq));
+}
+
+static void
+__kmp_destroy_indirect_lock(kmp_dyna_lock_t * lock)
+{
+ kmp_uint32 gtid = __kmp_entry_gtid();
+ kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_destroy_lock");
+ KMP_I_LOCK_FUNC(l, destroy)(l->lock);
+ kmp_indirect_locktag_t tag = l->type;
+
+ __kmp_acquire_lock(&__kmp_global_lock, gtid);
+
+ // Use the base lock's space to keep the pool chain.
+ l->lock->pool.next = (kmp_user_lock_p)__kmp_indirect_lock_pool[tag];
+ if (OMP_LOCK_T_SIZE < sizeof(void *)) {
+ l->lock->pool.index = KMP_EXTRACT_I_INDEX(lock);
+ }
+ __kmp_indirect_lock_pool[tag] = l;
+
+ __kmp_release_lock(&__kmp_global_lock, gtid);
+}
+
+static void
+__kmp_set_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
+ KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
+}
+
+static int
+__kmp_unset_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
+ return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
+}
+
+static int
+__kmp_test_indirect_lock(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = KMP_LOOKUP_I_LOCK(lock);
+ return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
+}
+
+static void
+__kmp_set_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_set_lock");
+ KMP_I_LOCK_FUNC(l, set)(l->lock, gtid);
+}
+
+static int
+__kmp_unset_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_unset_lock");
+ return KMP_I_LOCK_FUNC(l, unset)(l->lock, gtid);
+}
+
+static int
+__kmp_test_indirect_lock_with_checks(kmp_dyna_lock_t * lock, kmp_int32 gtid)
+{
+ kmp_indirect_lock_t *l = __kmp_lookup_indirect_lock((void **)lock, "omp_test_lock");
+ return KMP_I_LOCK_FUNC(l, test)(l->lock, gtid);
+}
+
+kmp_dyna_lockseq_t __kmp_user_lock_seq = lockseq_queuing;
+
+// This is used only in kmp_error.c when consistency checking is on.
+kmp_int32
+__kmp_get_user_lock_owner(kmp_user_lock_p lck, kmp_uint32 seq)
+{
+ switch (seq) {
+ case lockseq_tas:
+ case lockseq_nested_tas:
+ return __kmp_get_tas_lock_owner((kmp_tas_lock_t *)lck);
+#if KMP_HAS_FUTEX
+ case lockseq_futex:
+ case lockseq_nested_futex:
+ return __kmp_get_futex_lock_owner((kmp_futex_lock_t *)lck);
+#endif
+ case lockseq_ticket:
+ case lockseq_nested_ticket:
+ return __kmp_get_ticket_lock_owner((kmp_ticket_lock_t *)lck);
+ case lockseq_queuing:
+ case lockseq_nested_queuing:
+#if KMP_USE_ADAPTIVE_LOCKS
+ case lockseq_adaptive:
+ return __kmp_get_queuing_lock_owner((kmp_queuing_lock_t *)lck);
+#endif
+ case lockseq_drdpa:
+ case lockseq_nested_drdpa:
+ return __kmp_get_drdpa_lock_owner((kmp_drdpa_lock_t *)lck);
+ default:
+ return 0;
+ }
+}
+
+// Initializes data for dynamic user locks.
+void
+__kmp_init_dynamic_user_locks()
+{
+ // Initialize jump table for the lock functions
+ if (__kmp_env_consistency_check) {
+ __kmp_direct_set = direct_set_check;
+ __kmp_direct_unset = direct_unset_check;
+ __kmp_direct_test = direct_test_check;
+ __kmp_indirect_set = indirect_set_check;
+ __kmp_indirect_unset = indirect_unset_check;
+ __kmp_indirect_test = indirect_test_check;
+ }
+ else {
+ __kmp_direct_set = direct_set;
+ __kmp_direct_unset = direct_unset;
+ __kmp_direct_test = direct_test;
+ __kmp_indirect_set = indirect_set;
+ __kmp_indirect_unset = indirect_unset;
+ __kmp_indirect_test = indirect_test;
+ }
+
+ // Initialize lock index table
+ __kmp_i_lock_table.size = KMP_I_LOCK_CHUNK;
+ __kmp_i_lock_table.table = (kmp_indirect_lock_t **)__kmp_allocate(sizeof(kmp_indirect_lock_t *));
+ *(__kmp_i_lock_table.table) = (kmp_indirect_lock_t *)
+ __kmp_allocate(KMP_I_LOCK_CHUNK*sizeof(kmp_indirect_lock_t));
+ __kmp_i_lock_table.next = 0;
+
+ // Indirect lock size
+ __kmp_indirect_lock_size[locktag_ticket] = sizeof(kmp_ticket_lock_t);
+ __kmp_indirect_lock_size[locktag_queuing] = sizeof(kmp_queuing_lock_t);
+#if KMP_USE_ADAPTIVE_LOCKS
+ __kmp_indirect_lock_size[locktag_adaptive] = sizeof(kmp_adaptive_lock_t);
+#endif
+ __kmp_indirect_lock_size[locktag_drdpa] = sizeof(kmp_drdpa_lock_t);
+#if KMP_USE_TSX
+ __kmp_indirect_lock_size[locktag_rtm] = sizeof(kmp_queuing_lock_t);
+#endif
+ __kmp_indirect_lock_size[locktag_nested_tas] = sizeof(kmp_tas_lock_t);
+#if KMP_USE_FUTEX
+ __kmp_indirect_lock_size[locktag_nested_futex] = sizeof(kmp_futex_lock_t);
+#endif
+ __kmp_indirect_lock_size[locktag_nested_ticket] = sizeof(kmp_ticket_lock_t);
+ __kmp_indirect_lock_size[locktag_nested_queuing] = sizeof(kmp_queuing_lock_t);
+ __kmp_indirect_lock_size[locktag_nested_drdpa] = sizeof(kmp_drdpa_lock_t);
+
+ // Initialize lock accessor/modifier
+#define fill_jumps(table, expand, sep) { \
+ table[locktag##sep##ticket] = expand(ticket); \
+ table[locktag##sep##queuing] = expand(queuing); \
+ table[locktag##sep##drdpa] = expand(drdpa); \
+}
+
+#if KMP_USE_ADAPTIVE_LOCKS
+# define fill_table(table, expand) { \
+ fill_jumps(table, expand, _); \
+ table[locktag_adaptive] = expand(queuing); \
+ fill_jumps(table, expand, _nested_); \
+}
+#else
+# define fill_table(table, expand) { \
+ fill_jumps(table, expand, _); \
+ fill_jumps(table, expand, _nested_); \
+}
+#endif // KMP_USE_ADAPTIVE_LOCKS
+
+#define expand(l) (void (*)(kmp_user_lock_p, const ident_t *))__kmp_set_##l##_lock_location
+ fill_table(__kmp_indirect_set_location, expand);
+#undef expand
+#define expand(l) (void (*)(kmp_user_lock_p, kmp_lock_flags_t))__kmp_set_##l##_lock_flags
+ fill_table(__kmp_indirect_set_flags, expand);
+#undef expand
+#define expand(l) (const ident_t * (*)(kmp_user_lock_p))__kmp_get_##l##_lock_location
+ fill_table(__kmp_indirect_get_location, expand);
+#undef expand
+#define expand(l) (kmp_lock_flags_t (*)(kmp_user_lock_p))__kmp_get_##l##_lock_flags
+ fill_table(__kmp_indirect_get_flags, expand);
+#undef expand
+
+ __kmp_init_user_locks = TRUE;
+}
+
+// Clean up the lock table.
+void
+__kmp_cleanup_indirect_user_locks()
+{
+ kmp_lock_index_t i;
+ int k;
+
+ // Clean up locks in the pools first (they were already destroyed before going into the pools).
+ for (k = 0; k < KMP_NUM_I_LOCKS; ++k) {
+ kmp_indirect_lock_t *l = __kmp_indirect_lock_pool[k];
+ while (l != NULL) {
+ kmp_indirect_lock_t *ll = l;
+ l = (kmp_indirect_lock_t *)l->lock->pool.next;
+ KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: freeing %p from pool\n", ll));
+ __kmp_free(ll->lock);
+ ll->lock = NULL;
+ }
+ }
+ // Clean up the remaining undestroyed locks.
+ for (i = 0; i < __kmp_i_lock_table.next; i++) {
+ kmp_indirect_lock_t *l = KMP_GET_I_LOCK(i);
+ if (l->lock != NULL) {
+ // Locks not destroyed explicitly need to be destroyed here.
+ KMP_I_LOCK_FUNC(l, destroy)(l->lock);
+ KA_TRACE(20, ("__kmp_cleanup_indirect_user_locks: destroy/freeing %p from table\n", l));
+ __kmp_free(l->lock);
+ }
+ }
+ // Free the table
+ for (i = 0; i < __kmp_i_lock_table.size / KMP_I_LOCK_CHUNK; i++)
+ __kmp_free(__kmp_i_lock_table.table[i]);
+ __kmp_free(__kmp_i_lock_table.table);
+
+ __kmp_init_user_locks = FALSE;
+}
+
+enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
+int __kmp_num_locks_in_block = 1; // FIXME - tune this value
+
+#else // KMP_USE_DYNAMIC_LOCK
+
+/* ------------------------------------------------------------------------ */
+/* user locks
+ *
+ * They are implemented as a table of function pointers which are set to the
+ * lock functions of the appropriate kind, once that has been determined.
+ */
+
+enum kmp_lock_kind __kmp_user_lock_kind = lk_default;
+
+size_t __kmp_base_user_lock_size = 0;
+size_t __kmp_user_lock_size = 0;
+
+kmp_int32 ( *__kmp_get_user_lock_owner_ )( kmp_user_lock_p lck ) = NULL;
+int ( *__kmp_acquire_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+
+int ( *__kmp_test_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+int ( *__kmp_release_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+void ( *__kmp_init_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
+void ( *__kmp_destroy_user_lock_ )( kmp_user_lock_p lck ) = NULL;
+void ( *__kmp_destroy_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
+int ( *__kmp_acquire_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+
+int ( *__kmp_test_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+int ( *__kmp_release_nested_user_lock_with_checks_ )( kmp_user_lock_p lck, kmp_int32 gtid ) = NULL;
+void ( *__kmp_init_nested_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
+void ( *__kmp_destroy_nested_user_lock_with_checks_ )( kmp_user_lock_p lck ) = NULL;
+
+int ( *__kmp_is_user_lock_initialized_ )( kmp_user_lock_p lck ) = NULL;
+const ident_t * ( *__kmp_get_user_lock_location_ )( kmp_user_lock_p lck ) = NULL;
+void ( *__kmp_set_user_lock_location_ )( kmp_user_lock_p lck, const ident_t *loc ) = NULL;
+kmp_lock_flags_t ( *__kmp_get_user_lock_flags_ )( kmp_user_lock_p lck ) = NULL;
+void ( *__kmp_set_user_lock_flags_ )( kmp_user_lock_p lck, kmp_lock_flags_t flags ) = NULL;
+
+void __kmp_set_user_lock_vptrs( kmp_lock_kind_t user_lock_kind )
+{
+ switch ( user_lock_kind ) {
+ case lk_default:
+ default:
+ KMP_ASSERT( 0 );
+
+ case lk_tas: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_tas_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_tas_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_tas_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(tas);
+ KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(tas);
+ }
+ else {
+ KMP_BIND_USER_LOCK(tas);
+ KMP_BIND_NESTED_USER_LOCK(tas);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_tas_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) ) NULL;
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) ) NULL;
+ }
+ break;
+
+#if KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
+
+ case lk_futex: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_futex_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_futex_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_futex_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(futex);
+ KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(futex);
+ }
+ else {
+ KMP_BIND_USER_LOCK(futex);
+ KMP_BIND_NESTED_USER_LOCK(futex);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_futex_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) ) NULL;
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) ) NULL;
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) ) NULL;
+ }
+ break;
+
+#endif // KMP_OS_LINUX && (KMP_ARCH_X86 || KMP_ARCH_X86_64 || KMP_ARCH_ARM)
+
+ case lk_ticket: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_ticket_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_ticket_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_ticket_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(ticket);
+ KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(ticket);
+ }
+ else {
+ KMP_BIND_USER_LOCK(ticket);
+ KMP_BIND_NESTED_USER_LOCK(ticket);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_ticket_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) )
+ ( &__kmp_is_ticket_lock_initialized );
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_ticket_lock_location );
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) )
+ ( &__kmp_set_ticket_lock_location );
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_ticket_lock_flags );
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
+ ( &__kmp_set_ticket_lock_flags );
+ }
+ break;
+
+ case lk_queuing: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_queuing_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_queuing_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(queuing);
+ KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(queuing);
+ }
+ else {
+ KMP_BIND_USER_LOCK(queuing);
+ KMP_BIND_NESTED_USER_LOCK(queuing);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_queuing_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) )
+ ( &__kmp_is_queuing_lock_initialized );
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_location );
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) )
+ ( &__kmp_set_queuing_lock_location );
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_flags );
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
+ ( &__kmp_set_queuing_lock_flags );
+ }
+ break;
+
+#if KMP_USE_ADAPTIVE_LOCKS
+ case lk_adaptive: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_adaptive_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_adaptive_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(adaptive);
+ }
+ else {
+ KMP_BIND_USER_LOCK(adaptive);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_adaptive_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) )
+ ( &__kmp_is_queuing_lock_initialized );
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_location );
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) )
+ ( &__kmp_set_queuing_lock_location );
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_queuing_lock_flags );
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
+ ( &__kmp_set_queuing_lock_flags );
+
+ }
+ break;
+#endif // KMP_USE_ADAPTIVE_LOCKS
+
+ case lk_drdpa: {
+ __kmp_base_user_lock_size = sizeof( kmp_base_drdpa_lock_t );
+ __kmp_user_lock_size = sizeof( kmp_drdpa_lock_t );
+
+ __kmp_get_user_lock_owner_ =
+ ( kmp_int32 ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_drdpa_lock_owner );
+
+ if ( __kmp_env_consistency_check ) {
+ KMP_BIND_USER_LOCK_WITH_CHECKS(drdpa);
+ KMP_BIND_NESTED_USER_LOCK_WITH_CHECKS(drdpa);
+ }
+ else {
+ KMP_BIND_USER_LOCK(drdpa);
+ KMP_BIND_NESTED_USER_LOCK(drdpa);
+ }
+
+ __kmp_destroy_user_lock_ =
+ ( void ( * )( kmp_user_lock_p ) )
+ ( &__kmp_destroy_drdpa_lock );
+
+ __kmp_is_user_lock_initialized_ =
+ ( int ( * )( kmp_user_lock_p ) )
+ ( &__kmp_is_drdpa_lock_initialized );
+
+ __kmp_get_user_lock_location_ =
+ ( const ident_t * ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_drdpa_lock_location );
+
+ __kmp_set_user_lock_location_ =
+ ( void ( * )( kmp_user_lock_p, const ident_t * ) )
+ ( &__kmp_set_drdpa_lock_location );
+
+ __kmp_get_user_lock_flags_ =
+ ( kmp_lock_flags_t ( * )( kmp_user_lock_p ) )
+ ( &__kmp_get_drdpa_lock_flags );
+
+ __kmp_set_user_lock_flags_ =
+ ( void ( * )( kmp_user_lock_p, kmp_lock_flags_t ) )
+ ( &__kmp_set_drdpa_lock_flags );
+ }
+ break;
+ }
+}
+
+
+// ----------------------------------------------------------------------------
+// User lock table & lock allocation
+
+kmp_lock_table_t __kmp_user_lock_table = { 1, 0, NULL };
+kmp_user_lock_p __kmp_lock_pool = NULL;
+
+// Lock block-allocation support.
+kmp_block_of_locks* __kmp_lock_blocks = NULL;
+int __kmp_num_locks_in_block = 1; // FIXME - tune this value
+
+static kmp_lock_index_t
+__kmp_lock_table_insert( kmp_user_lock_p lck )
+{
+ // Assume that kmp_global_lock is held upon entry/exit.
+ kmp_lock_index_t index;
+ if ( __kmp_user_lock_table.used >= __kmp_user_lock_table.allocated ) {
+ kmp_lock_index_t size;
+ kmp_user_lock_p *table;
+ // Reallocate lock table.
+ if ( __kmp_user_lock_table.allocated == 0 ) {
+ size = 1024;
+ }
+ else {
+ size = __kmp_user_lock_table.allocated * 2;
+ }
+ table = (kmp_user_lock_p *)__kmp_allocate( sizeof( kmp_user_lock_p ) * size );
+ KMP_MEMCPY( table + 1, __kmp_user_lock_table.table + 1, sizeof( kmp_user_lock_p ) * ( __kmp_user_lock_table.used - 1 ) );
+ table[ 0 ] = (kmp_user_lock_p)__kmp_user_lock_table.table;
+ // We cannot free the previous table now, since it may be in use by other
+ // threads. So save the pointer to the previous table in in the first element of the
+ // new table. All the tables will be organized into a list, and could be freed when
+ // library shutting down.
+ __kmp_user_lock_table.table = table;
+ __kmp_user_lock_table.allocated = size;
+ }
+ KMP_DEBUG_ASSERT( __kmp_user_lock_table.used < __kmp_user_lock_table.allocated );
+ index = __kmp_user_lock_table.used;
+ __kmp_user_lock_table.table[ index ] = lck;
+ ++ __kmp_user_lock_table.used;
+ return index;
+}
+
+static kmp_user_lock_p
+__kmp_lock_block_allocate()
+{
+ // Assume that kmp_global_lock is held upon entry/exit.
+ static int last_index = 0;
+ if ( ( last_index >= __kmp_num_locks_in_block )
+ || ( __kmp_lock_blocks == NULL ) ) {
+ // Restart the index.
+ last_index = 0;
+ // Need to allocate a new block.
+ KMP_DEBUG_ASSERT( __kmp_user_lock_size > 0 );
+ size_t space_for_locks = __kmp_user_lock_size * __kmp_num_locks_in_block;
+ char* buffer = (char*)__kmp_allocate( space_for_locks + sizeof( kmp_block_of_locks ) );
+ // Set up the new block.
+ kmp_block_of_locks *new_block = (kmp_block_of_locks *)(& buffer[space_for_locks]);
+ new_block->next_block = __kmp_lock_blocks;
+ new_block->locks = (void *)buffer;
+ // Publish the new block.
+ KMP_MB();
+ __kmp_lock_blocks = new_block;
+ }
+ kmp_user_lock_p ret = (kmp_user_lock_p)(& ( ( (char *)( __kmp_lock_blocks->locks ) )
+ [ last_index * __kmp_user_lock_size ] ) );
+ last_index++;
+ return ret;
+}
+
+//
+// Get memory for a lock. It may be freshly allocated memory or reused memory
+// from lock pool.
+//
+kmp_user_lock_p
+__kmp_user_lock_allocate( void **user_lock, kmp_int32 gtid,
+ kmp_lock_flags_t flags )
+{
+ kmp_user_lock_p lck;
+ kmp_lock_index_t index;
+ KMP_DEBUG_ASSERT( user_lock );
+
+ __kmp_acquire_lock( &__kmp_global_lock, gtid );
+
+ if ( __kmp_lock_pool == NULL ) {
+ // Lock pool is empty. Allocate new memory.
+ if ( __kmp_num_locks_in_block <= 1 ) { // Tune this cutoff point.
+ lck = (kmp_user_lock_p) __kmp_allocate( __kmp_user_lock_size );
+ }
+ else {
+ lck = __kmp_lock_block_allocate();
+ }
+
+ // Insert lock in the table so that it can be freed in __kmp_cleanup,
+ // and debugger has info on all allocated locks.
+ index = __kmp_lock_table_insert( lck );
+ }
+ else {
+ // Pick up lock from pool.
+ lck = __kmp_lock_pool;
+ index = __kmp_lock_pool->pool.index;
+ __kmp_lock_pool = __kmp_lock_pool->pool.next;
+ }
+
+ //
+ // We could potentially differentiate between nested and regular locks
+ // here, and do the lock table lookup for regular locks only.
+ //
+ if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
+ * ( (kmp_lock_index_t *) user_lock ) = index;
+ }
+ else {
+ * ( (kmp_user_lock_p *) user_lock ) = lck;
+ }
+
+ // mark the lock if it is critical section lock.
+ __kmp_set_user_lock_flags( lck, flags );
+
+ __kmp_release_lock( & __kmp_global_lock, gtid ); // AC: TODO: move this line upper
+
+ return lck;
+}
+
+// Put lock's memory to pool for reusing.
+void
+__kmp_user_lock_free( void **user_lock, kmp_int32 gtid, kmp_user_lock_p lck )
+{
+ KMP_DEBUG_ASSERT( user_lock != NULL );
+ KMP_DEBUG_ASSERT( lck != NULL );
+
+ __kmp_acquire_lock( & __kmp_global_lock, gtid );
+
+ lck->pool.next = __kmp_lock_pool;
+ __kmp_lock_pool = lck;
+ if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
+ kmp_lock_index_t index = * ( (kmp_lock_index_t *) user_lock );
+ KMP_DEBUG_ASSERT( 0 < index && index <= __kmp_user_lock_table.used );
+ lck->pool.index = index;
+ }
+
+ __kmp_release_lock( & __kmp_global_lock, gtid );
+}
+
+kmp_user_lock_p
+__kmp_lookup_user_lock( void **user_lock, char const *func )
+{
+ kmp_user_lock_p lck = NULL;
+
+ if ( __kmp_env_consistency_check ) {
+ if ( user_lock == NULL ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ }
+
+ if ( OMP_LOCK_T_SIZE < sizeof(void *) ) {
+ kmp_lock_index_t index = *( (kmp_lock_index_t *)user_lock );
+ if ( __kmp_env_consistency_check ) {
+ if ( ! ( 0 < index && index < __kmp_user_lock_table.used ) ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ }
+ KMP_DEBUG_ASSERT( 0 < index && index < __kmp_user_lock_table.used );
+ KMP_DEBUG_ASSERT( __kmp_user_lock_size > 0 );
+ lck = __kmp_user_lock_table.table[index];
+ }
+ else {
+ lck = *( (kmp_user_lock_p *)user_lock );
+ }
+
+ if ( __kmp_env_consistency_check ) {
+ if ( lck == NULL ) {
+ KMP_FATAL( LockIsUninitialized, func );
+ }
+ }
+
+ return lck;
+}
+
+void
+__kmp_cleanup_user_locks( void )
+{
+ //
+ // Reset lock pool. Do not worry about lock in the pool -- we will free
+ // them when iterating through lock table (it includes all the locks,
+ // dead or alive).
+ //
+ __kmp_lock_pool = NULL;
+
+#define IS_CRITICAL(lck) \
+ ( ( __kmp_get_user_lock_flags_ != NULL ) && \
+ ( ( *__kmp_get_user_lock_flags_ )( lck ) & kmp_lf_critical_section ) )
+
+ //
+ // Loop through lock table, free all locks.
+ //
+ // Do not free item [0], it is reserved for lock tables list.
+ //
+ // FIXME - we are iterating through a list of (pointers to) objects of
+ // type union kmp_user_lock, but we have no way of knowing whether the
+ // base type is currently "pool" or whatever the global user lock type
+ // is.
+ //
+ // We are relying on the fact that for all of the user lock types
+ // (except "tas"), the first field in the lock struct is the "initialized"
+ // field, which is set to the address of the lock object itself when
+ // the lock is initialized. When the union is of type "pool", the
+ // first field is a pointer to the next object in the free list, which
+ // will not be the same address as the object itself.
+ //
+ // This means that the check ( *__kmp_is_user_lock_initialized_ )( lck )
+ // will fail for "pool" objects on the free list. This must happen as
+ // the "location" field of real user locks overlaps the "index" field
+ // of "pool" objects.
+ //
+ // It would be better to run through the free list, and remove all "pool"
+ // objects from the lock table before executing this loop. However,
+ // "pool" objects do not always have their index field set (only on
+ // lin_32e), and I don't want to search the lock table for the address
+ // of every "pool" object on the free list.
+ //
+ while ( __kmp_user_lock_table.used > 1 ) {
+ const ident *loc;
+
+ //
+ // reduce __kmp_user_lock_table.used before freeing the lock,
+ // so that state of locks is consistent
+ //
+ kmp_user_lock_p lck = __kmp_user_lock_table.table[
+ --__kmp_user_lock_table.used ];
+
+ if ( ( __kmp_is_user_lock_initialized_ != NULL ) &&
+ ( *__kmp_is_user_lock_initialized_ )( lck ) ) {
+ //
+ // Issue a warning if: KMP_CONSISTENCY_CHECK AND lock is
+ // initialized AND it is NOT a critical section (user is not
+ // responsible for destroying criticals) AND we know source
+ // location to report.
+ //
+ if ( __kmp_env_consistency_check && ( ! IS_CRITICAL( lck ) ) &&
+ ( ( loc = __kmp_get_user_lock_location( lck ) ) != NULL ) &&
+ ( loc->psource != NULL ) ) {
+ kmp_str_loc_t str_loc = __kmp_str_loc_init( loc->psource, 0 );
+ KMP_WARNING( CnsLockNotDestroyed, str_loc.file, str_loc.line );
+ __kmp_str_loc_free( &str_loc);
+ }
+
+#ifdef KMP_DEBUG
+ if ( IS_CRITICAL( lck ) ) {
+ KA_TRACE( 20, ("__kmp_cleanup_user_locks: free critical section lock %p (%p)\n", lck, *(void**)lck ) );
+ }
+ else {
+ KA_TRACE( 20, ("__kmp_cleanup_user_locks: free lock %p (%p)\n", lck, *(void**)lck ) );
+ }
+#endif // KMP_DEBUG
+
+ //
+ // Cleanup internal lock dynamic resources
+ // (for drdpa locks particularly).
+ //
+ __kmp_destroy_user_lock( lck );
+ }
+
+ //
+ // Free the lock if block allocation of locks is not used.
+ //
+ if ( __kmp_lock_blocks == NULL ) {
+ __kmp_free( lck );
+ }
+ }
+
+#undef IS_CRITICAL
+
+ //
+ // delete lock table(s).
+ //
+ kmp_user_lock_p *table_ptr = __kmp_user_lock_table.table;
+ __kmp_user_lock_table.table = NULL;
+ __kmp_user_lock_table.allocated = 0;
+
+ while ( table_ptr != NULL ) {
+ //
+ // In the first element we saved the pointer to the previous
+ // (smaller) lock table.
+ //
+ kmp_user_lock_p *next = (kmp_user_lock_p *)( table_ptr[ 0 ] );
+ __kmp_free( table_ptr );
+ table_ptr = next;
+ }
+
+ //
+ // Free buffers allocated for blocks of locks.
+ //
+ kmp_block_of_locks_t *block_ptr = __kmp_lock_blocks;
+ __kmp_lock_blocks = NULL;
+
+ while ( block_ptr != NULL ) {
+ kmp_block_of_locks_t *next = block_ptr->next_block;
+ __kmp_free( block_ptr->locks );
+ //
+ // *block_ptr itself was allocated at the end of the locks vector.
+ //
+ block_ptr = next;
+ }
+
+ TCW_4(__kmp_init_user_locks, FALSE);
+}
+
+#endif // KMP_USE_DYNAMIC_LOCK