diff options
author | arcadia-devtools <[email protected]> | 2022-03-01 22:49:23 +0300 |
---|---|---|
committer | arcadia-devtools <[email protected]> | 2022-03-01 22:49:23 +0300 |
commit | f1db7e1d2a6f1e911c41352aecb7897b8cc48d74 (patch) | |
tree | e551b29a4f1a5e46cb6f23b04e3192dcf5f9da32 /contrib/libs/cxxsupp/openmp/kmp_affinity.cpp | |
parent | 8de79fac61fafe1e9e559da116135cca3f5846d1 (diff) |
intermediate changes
ref:51d474bda1b99a2cf73ca7da0cd5398ef5683bf4
Diffstat (limited to 'contrib/libs/cxxsupp/openmp/kmp_affinity.cpp')
-rw-r--r-- | contrib/libs/cxxsupp/openmp/kmp_affinity.cpp | 8611 |
1 files changed, 4378 insertions, 4233 deletions
diff --git a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp index 8b40bd7ecda..4e6699ff214 100644 --- a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp +++ b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp @@ -2,3046 +2,2993 @@ * kmp_affinity.cpp -- affinity management */ + //===----------------------------------------------------------------------===// // -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception +// The LLVM Compiler Infrastructure +// +// This file is dual licensed under the MIT and the University of Illinois Open +// Source Licenses. See LICENSE.txt for details. // //===----------------------------------------------------------------------===// + #include "kmp.h" -#include "kmp_affinity.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_str.h" #include "kmp_wrapper_getpid.h" -#if KMP_USE_HIER_SCHED -#error #include "kmp_dispatch_hier.h" -#endif -#if KMP_USE_HWLOC -// Copied from hwloc -#define HWLOC_GROUP_KIND_INTEL_MODULE 102 -#define HWLOC_GROUP_KIND_INTEL_TILE 103 -#define HWLOC_GROUP_KIND_INTEL_DIE 104 -#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 -#endif - -// The machine topology -kmp_topology_t *__kmp_topology = nullptr; -// KMP_HW_SUBSET environment variable -kmp_hw_subset_t *__kmp_hw_subset = nullptr; +#include "kmp_affinity.h" // Store the real or imagined machine hierarchy here static hierarchy_info machine_hierarchy; -void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } - -void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { - kmp_uint32 depth; - // The test below is true if affinity is available, but set to "none". Need to - // init on first use of hierarchical barrier. - if (TCR_1(machine_hierarchy.uninitialized)) - machine_hierarchy.init(nproc); - - // Adjust the hierarchy in case num threads exceeds original - if (nproc > machine_hierarchy.base_num_threads) - machine_hierarchy.resize(nproc); - - depth = machine_hierarchy.depth; - KMP_DEBUG_ASSERT(depth > 0); - - thr_bar->depth = depth; - __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, - &(thr_bar->base_leaf_kids)); - thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; +void __kmp_cleanup_hierarchy() { + machine_hierarchy.fini(); } -static int nCoresPerPkg, nPackages; -static int __kmp_nThreadsPerCore; -#ifndef KMP_DFLT_NTH_CORES -static int __kmp_ncores; -#endif +void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { + kmp_uint32 depth; + // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier. + if (TCR_1(machine_hierarchy.uninitialized)) + machine_hierarchy.init(NULL, nproc); -const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { - switch (type) { - case KMP_HW_SOCKET: - return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); - case KMP_HW_DIE: - return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); - case KMP_HW_MODULE: - return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); - case KMP_HW_TILE: - return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); - case KMP_HW_NUMA: - return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); - case KMP_HW_L3: - return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); - case KMP_HW_L2: - return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); - case KMP_HW_L1: - return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); - case KMP_HW_LLC: - return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); - case KMP_HW_CORE: - return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); - case KMP_HW_THREAD: - return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); - case KMP_HW_PROC_GROUP: - return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); - } - return KMP_I18N_STR(Unknown); -} + // Adjust the hierarchy in case num threads exceeds original + if (nproc > machine_hierarchy.base_num_threads) + machine_hierarchy.resize(nproc); -const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { - switch (type) { - case KMP_HW_SOCKET: - return ((plural) ? "sockets" : "socket"); - case KMP_HW_DIE: - return ((plural) ? "dice" : "die"); - case KMP_HW_MODULE: - return ((plural) ? "modules" : "module"); - case KMP_HW_TILE: - return ((plural) ? "tiles" : "tile"); - case KMP_HW_NUMA: - return ((plural) ? "numa_domains" : "numa_domain"); - case KMP_HW_L3: - return ((plural) ? "l3_caches" : "l3_cache"); - case KMP_HW_L2: - return ((plural) ? "l2_caches" : "l2_cache"); - case KMP_HW_L1: - return ((plural) ? "l1_caches" : "l1_cache"); - case KMP_HW_LLC: - return ((plural) ? "ll_caches" : "ll_cache"); - case KMP_HW_CORE: - return ((plural) ? "cores" : "core"); - case KMP_HW_THREAD: - return ((plural) ? "threads" : "thread"); - case KMP_HW_PROC_GROUP: - return ((plural) ? "proc_groups" : "proc_group"); - } - return ((plural) ? "unknowns" : "unknown"); -} + depth = machine_hierarchy.depth; + KMP_DEBUG_ASSERT(depth > 0); -//////////////////////////////////////////////////////////////////////////////// -// kmp_hw_thread_t methods -int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { - const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; - const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; - int depth = __kmp_topology->get_depth(); - for (int level = 0; level < depth; ++level) { - if (ahwthread->ids[level] < bhwthread->ids[level]) - return -1; - else if (ahwthread->ids[level] > bhwthread->ids[level]) - return 1; - } - if (ahwthread->os_id < bhwthread->os_id) - return -1; - else if (ahwthread->os_id > bhwthread->os_id) - return 1; - return 0; + thr_bar->depth = depth; + thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1; + thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; } #if KMP_AFFINITY_SUPPORTED -int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { - int i; - const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; - const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; - int depth = __kmp_topology->get_depth(); - KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); - KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); - for (i = 0; i < __kmp_affinity_compact; i++) { - int j = depth - i - 1; - if (aa->sub_ids[j] < bb->sub_ids[j]) - return -1; - if (aa->sub_ids[j] > bb->sub_ids[j]) - return 1; - } - for (; i < depth; i++) { - int j = i - __kmp_affinity_compact; - if (aa->sub_ids[j] < bb->sub_ids[j]) - return -1; - if (aa->sub_ids[j] > bb->sub_ids[j]) - return 1; - } - return 0; -} -#endif - -void kmp_hw_thread_t::print() const { - int depth = __kmp_topology->get_depth(); - printf("%4d ", os_id); - for (int i = 0; i < depth; ++i) { - printf("%4d ", ids[i]); - } - printf("\n"); -} -//////////////////////////////////////////////////////////////////////////////// -// kmp_topology_t methods - -// Remove layers that don't add information to the topology. -// This is done by having the layer take on the id = UNKNOWN_ID (-1) -void kmp_topology_t::_remove_radix1_layers() { - int preference[KMP_HW_LAST]; - int top_index1, top_index2; - // Set up preference associative array - preference[KMP_HW_PROC_GROUP] = 110; - preference[KMP_HW_SOCKET] = 100; - preference[KMP_HW_CORE] = 95; - preference[KMP_HW_THREAD] = 90; - preference[KMP_HW_NUMA] = 85; - preference[KMP_HW_DIE] = 80; - preference[KMP_HW_TILE] = 75; - preference[KMP_HW_MODULE] = 73; - preference[KMP_HW_L3] = 70; - preference[KMP_HW_L2] = 65; - preference[KMP_HW_L1] = 60; - preference[KMP_HW_LLC] = 5; - top_index1 = 0; - top_index2 = 1; - while (top_index1 < depth - 1 && top_index2 < depth) { - kmp_hw_t type1 = types[top_index1]; - kmp_hw_t type2 = types[top_index2]; - KMP_ASSERT_VALID_HW_TYPE(type1); - KMP_ASSERT_VALID_HW_TYPE(type2); - // Do not allow the three main topology levels (sockets, cores, threads) to - // be compacted down - if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || - type1 == KMP_HW_SOCKET) && - (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || - type2 == KMP_HW_SOCKET)) { - top_index1 = top_index2++; - continue; - } - bool radix1 = true; - bool all_same = true; - int id1 = hw_threads[0].ids[top_index1]; - int id2 = hw_threads[0].ids[top_index2]; - int pref1 = preference[type1]; - int pref2 = preference[type2]; - for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { - if (hw_threads[hwidx].ids[top_index1] == id1 && - hw_threads[hwidx].ids[top_index2] != id2) { - radix1 = false; - break; - } - if (hw_threads[hwidx].ids[top_index2] != id2) - all_same = false; - id1 = hw_threads[hwidx].ids[top_index1]; - id2 = hw_threads[hwidx].ids[top_index2]; - } - if (radix1) { - // Select the layer to remove based on preference - kmp_hw_t remove_type, keep_type; - int remove_layer, remove_layer_ids; - if (pref1 > pref2) { - remove_type = type2; - remove_layer = remove_layer_ids = top_index2; - keep_type = type1; - } else { - remove_type = type1; - remove_layer = remove_layer_ids = top_index1; - keep_type = type2; - } - // If all the indexes for the second (deeper) layer are the same. - // e.g., all are zero, then make sure to keep the first layer's ids - if (all_same) - remove_layer_ids = top_index2; - // Remove radix one type by setting the equivalence, removing the id from - // the hw threads and removing the layer from types and depth - set_equivalent_type(remove_type, keep_type); - for (int idx = 0; idx < num_hw_threads; ++idx) { - kmp_hw_thread_t &hw_thread = hw_threads[idx]; - for (int d = remove_layer_ids; d < depth - 1; ++d) - hw_thread.ids[d] = hw_thread.ids[d + 1]; - } - for (int idx = remove_layer; idx < depth - 1; ++idx) - types[idx] = types[idx + 1]; - depth--; +// +// Print the affinity mask to the character array in a pretty format. +// +#if KMP_USE_HWLOC +char * +__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) +{ + int num_chars_to_write, num_chars_written; + char* scan; + KMP_ASSERT(buf_len >= 40); + + // bufsize of 0 just retrieves the needed buffer size. + num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask); + + // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes + // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not + // take into account the '\0' character. + if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) { + KMP_SNPRINTF(buf, buf_len, "{<empty>}"); + } else if(num_chars_to_write < buf_len - 3) { + // no problem fitting the mask into buf_len number of characters + buf[0] = '{'; + // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer + num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask); + buf[num_chars_written+1] = '}'; + buf[num_chars_written+2] = '\0'; } else { - top_index1 = top_index2++; + // Need to truncate the affinity mask string and add ellipsis. + // To do this, we first write out the '{' + str(mask) + buf[0] = '{'; + hwloc_bitmap_list_snprintf(buf+1, buf_len-7, (hwloc_bitmap_t)mask); + // then, what we do here is go to the 7th to last character, then go backwards until we are NOT + // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't + // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get + // { 45, 67,...} instead. + scan = buf + buf_len - 7; + while(*scan >= '0' && *scan <= '9' && scan >= buf) + scan--; + *(scan+1) = '.'; + *(scan+2) = '.'; + *(scan+3) = '.'; + *(scan+4) = '}'; + *(scan+5) = '\0'; } - } - KMP_ASSERT(depth > 0); -} - -void kmp_topology_t::_set_last_level_cache() { - if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); - else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); -#if KMP_MIC_SUPPORTED - else if (__kmp_mic_type == mic3) { - if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); - else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); - // L2/Tile wasn't detected so just say L1 - else - set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); - } -#endif - else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); - // Fallback is to set last level cache to socket or core - if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { - if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); - else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) - set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); - } - KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); + return buf; } +#else +char * +__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) +{ + KMP_ASSERT(buf_len >= 40); + char *scan = buf; + char *end = buf + buf_len - 1; -// Gather the count of each topology layer and the ratio -void kmp_topology_t::_gather_enumeration_information() { - int previous_id[KMP_HW_LAST]; - int max[KMP_HW_LAST]; - - for (int i = 0; i < depth; ++i) { - previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; - max[i] = 0; - count[i] = 0; - ratio[i] = 0; - } - for (int i = 0; i < num_hw_threads; ++i) { - kmp_hw_thread_t &hw_thread = hw_threads[i]; - for (int layer = 0; layer < depth; ++layer) { - int id = hw_thread.ids[layer]; - if (id != previous_id[layer]) { - // Add an additional increment to each count - for (int l = layer; l < depth; ++l) - count[l]++; - // Keep track of topology layer ratio statistics - max[layer]++; - for (int l = layer + 1; l < depth; ++l) { - if (max[l] > ratio[l]) - ratio[l] = max[l]; - max[l] = 1; + // + // Find first element / check for empty set. + // + size_t i; + for (i = 0; i < KMP_CPU_SETSIZE; i++) { + if (KMP_CPU_ISSET(i, mask)) { + break; } - break; - } } - for (int layer = 0; layer < depth; ++layer) { - previous_id[layer] = hw_thread.ids[layer]; + if (i == KMP_CPU_SETSIZE) { + KMP_SNPRINTF(scan, end-scan+1, "{<empty>}"); + while (*scan != '\0') scan++; + KMP_ASSERT(scan <= end); + return buf; } - } - for (int layer = 0; layer < depth; ++layer) { - if (max[layer] > ratio[layer]) - ratio[layer] = max[layer]; - } -} -// Find out if the topology is uniform -void kmp_topology_t::_discover_uniformity() { - int num = 1; - for (int level = 0; level < depth; ++level) - num *= ratio[level]; - flags.uniform = (num == count[depth - 1]); -} + KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i); + while (*scan != '\0') scan++; + i++; + for (; i < KMP_CPU_SETSIZE; i++) { + if (! KMP_CPU_ISSET(i, mask)) { + continue; + } -// Set all the sub_ids for each hardware thread -void kmp_topology_t::_set_sub_ids() { - int previous_id[KMP_HW_LAST]; - int sub_id[KMP_HW_LAST]; - - for (int i = 0; i < depth; ++i) { - previous_id[i] = -1; - sub_id[i] = -1; - } - for (int i = 0; i < num_hw_threads; ++i) { - kmp_hw_thread_t &hw_thread = hw_threads[i]; - // Setup the sub_id - for (int j = 0; j < depth; ++j) { - if (hw_thread.ids[j] != previous_id[j]) { - sub_id[j]++; - for (int k = j + 1; k < depth; ++k) { - sub_id[k] = 0; + // + // Check for buffer overflow. A string of the form ",<n>" will have + // at most 10 characters, plus we want to leave room to print ",...}" + // if the set is too large to print for a total of 15 characters. + // We already left room for '\0' in setting end. + // + if (end - scan < 15) { + break; } - break; - } - } - // Set previous_id - for (int j = 0; j < depth; ++j) { - previous_id[j] = hw_thread.ids[j]; + KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i); + while (*scan != '\0') scan++; } - // Set the sub_ids field - for (int j = 0; j < depth; ++j) { - hw_thread.sub_ids[j] = sub_id[j]; + if (i < KMP_CPU_SETSIZE) { + KMP_SNPRINTF(scan, end-scan+1, ",..."); + while (*scan != '\0') scan++; } - } + KMP_SNPRINTF(scan, end-scan+1, "}"); + while (*scan != '\0') scan++; + KMP_ASSERT(scan <= end); + return buf; } +#endif // KMP_USE_HWLOC -void kmp_topology_t::_set_globals() { - // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores - int core_level, thread_level, package_level; - package_level = get_level(KMP_HW_SOCKET); -#if KMP_GROUP_AFFINITY - if (package_level == -1) - package_level = get_level(KMP_HW_PROC_GROUP); -#endif - core_level = get_level(KMP_HW_CORE); - thread_level = get_level(KMP_HW_THREAD); - - KMP_ASSERT(core_level != -1); - KMP_ASSERT(thread_level != -1); - - __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); - if (package_level != -1) { - nCoresPerPkg = calculate_ratio(core_level, package_level); - nPackages = get_count(package_level); - } else { - // assume one socket - nCoresPerPkg = get_count(core_level); - nPackages = 1; - } -#ifndef KMP_DFLT_NTH_CORES - __kmp_ncores = get_count(core_level); -#endif -} -kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, - const kmp_hw_t *types) { - kmp_topology_t *retval; - // Allocate all data in one large allocation - size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + - sizeof(int) * ndepth * 3; - char *bytes = (char *)__kmp_allocate(size); - retval = (kmp_topology_t *)bytes; - if (nproc > 0) { - retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); - } else { - retval->hw_threads = nullptr; - } - retval->num_hw_threads = nproc; - retval->depth = ndepth; - int *arr = - (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); - retval->types = (kmp_hw_t *)arr; - retval->ratio = arr + ndepth; - retval->count = arr + 2 * ndepth; - KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } - for (int i = 0; i < ndepth; ++i) { - retval->types[i] = types[i]; - retval->equivalent[types[i]] = types[i]; - } - return retval; -} +void +__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) +{ + KMP_CPU_ZERO(mask); -void kmp_topology_t::deallocate(kmp_topology_t *topology) { - if (topology) - __kmp_free(topology); -} +# if KMP_GROUP_AFFINITY -bool kmp_topology_t::check_ids() const { - // Assume ids have been sorted - if (num_hw_threads == 0) - return true; - for (int i = 1; i < num_hw_threads; ++i) { - kmp_hw_thread_t ¤t_thread = hw_threads[i]; - kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; - bool unique = false; - for (int j = 0; j < depth; ++j) { - if (previous_thread.ids[j] != current_thread.ids[j]) { - unique = true; - break; - } + if (__kmp_num_proc_groups > 1) { + int group; + KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); + for (group = 0; group < __kmp_num_proc_groups; group++) { + int i; + int num = __kmp_GetActiveProcessorCount(group); + for (i = 0; i < num; i++) { + KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); + } + } } - if (unique) - continue; - return false; - } - return true; -} + else + +# endif /* KMP_GROUP_AFFINITY */ -void kmp_topology_t::dump() const { - printf("***********************\n"); - printf("*** __kmp_topology: ***\n"); - printf("***********************\n"); - printf("* depth: %d\n", depth); - - printf("* types: "); - for (int i = 0; i < depth; ++i) - printf("%15s ", __kmp_hw_get_keyword(types[i])); - printf("\n"); - - printf("* ratio: "); - for (int i = 0; i < depth; ++i) { - printf("%15d ", ratio[i]); - } - printf("\n"); - - printf("* count: "); - for (int i = 0; i < depth; ++i) { - printf("%15d ", count[i]); - } - printf("\n"); - - printf("* equivalent map:\n"); - KMP_FOREACH_HW_TYPE(i) { - const char *key = __kmp_hw_get_keyword(i); - const char *value = __kmp_hw_get_keyword(equivalent[i]); - printf("%-15s -> %-15s\n", key, value); - } - - printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); - - printf("* num_hw_threads: %d\n", num_hw_threads); - printf("* hw_threads:\n"); - for (int i = 0; i < num_hw_threads; ++i) { - hw_threads[i].print(); - } - printf("***********************\n"); + { + int proc; + for (proc = 0; proc < __kmp_xproc; proc++) { + KMP_CPU_SET(proc, mask); + } + } } -void kmp_topology_t::print(const char *env_var) const { - kmp_str_buf_t buf; - int print_types_depth; - __kmp_str_buf_init(&buf); - kmp_hw_t print_types[KMP_HW_LAST + 2]; - - // Num Available Threads - KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); - - // Uniform or not - if (is_uniform()) { - KMP_INFORM(Uniform, env_var); - } else { - KMP_INFORM(NonUniform, env_var); - } - - // Equivalent types - KMP_FOREACH_HW_TYPE(type) { - kmp_hw_t eq_type = equivalent[type]; - if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { - KMP_INFORM(AffEqualTopologyTypes, env_var, - __kmp_hw_get_catalog_string(type), - __kmp_hw_get_catalog_string(eq_type)); - } - } - - // Quick topology - KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); - // Create a print types array that always guarantees printing - // the core and thread level - print_types_depth = 0; - for (int level = 0; level < depth; ++level) - print_types[print_types_depth++] = types[level]; - if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { - // Force in the core level for quick topology - if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { - // Force core before thread e.g., 1 socket X 2 threads/socket - // becomes 1 socket X 1 core/socket X 2 threads/socket - print_types[print_types_depth - 1] = KMP_HW_CORE; - print_types[print_types_depth++] = KMP_HW_THREAD; - } else { - print_types[print_types_depth++] = KMP_HW_CORE; - } - } - // Always put threads at very end of quick topology - if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) - print_types[print_types_depth++] = KMP_HW_THREAD; - - __kmp_str_buf_clear(&buf); - kmp_hw_t numerator_type; - kmp_hw_t denominator_type = KMP_HW_UNKNOWN; - int core_level = get_level(KMP_HW_CORE); - int ncores = get_count(core_level); - - for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { - int c; - bool plural; - numerator_type = print_types[plevel]; - KMP_ASSERT_VALID_HW_TYPE(numerator_type); - if (equivalent[numerator_type] != numerator_type) - c = 1; - else - c = get_ratio(level++); - plural = (c > 1); - if (plevel == 0) { - __kmp_str_buf_print(&buf, "%d %s", c, - __kmp_hw_get_catalog_string(numerator_type, plural)); - } else { - __kmp_str_buf_print(&buf, " x %d %s/%s", c, - __kmp_hw_get_catalog_string(numerator_type, plural), - __kmp_hw_get_catalog_string(denominator_type)); - } - denominator_type = numerator_type; - } - KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); - - if (num_hw_threads <= 0) { - __kmp_str_buf_free(&buf); - return; - } - - // Full OS proc to hardware thread map - KMP_INFORM(OSProcToPhysicalThreadMap, env_var); - for (int i = 0; i < num_hw_threads; i++) { - __kmp_str_buf_clear(&buf); - for (int level = 0; level < depth; ++level) { - kmp_hw_t type = types[level]; - __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); - __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); - } - KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); - } - - __kmp_str_buf_free(&buf); +// +// When sorting by labels, __kmp_affinity_assign_child_nums() must first be +// called to renumber the labels from [0..n] and place them into the child_num +// vector of the address object. This is done in case the labels used for +// the children at one node of the hierarchy differ from those used for +// another node at the same level. Example: suppose the machine has 2 nodes +// with 2 packages each. The first node contains packages 601 and 602, and +// second node contains packages 603 and 604. If we try to sort the table +// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 +// because we are paying attention to the labels themselves, not the ordinal +// child numbers. By using the child numbers in the sort, the result is +// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. +// +static void +__kmp_affinity_assign_child_nums(AddrUnsPair *address2os, + int numAddrs) +{ + KMP_DEBUG_ASSERT(numAddrs > 0); + int depth = address2os->first.depth; + unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *lastLabel = (unsigned *)__kmp_allocate(depth + * sizeof(unsigned)); + int labCt; + for (labCt = 0; labCt < depth; labCt++) { + address2os[0].first.childNums[labCt] = counts[labCt] = 0; + lastLabel[labCt] = address2os[0].first.labels[labCt]; + } + int i; + for (i = 1; i < numAddrs; i++) { + for (labCt = 0; labCt < depth; labCt++) { + if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { + int labCt2; + for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { + counts[labCt2] = 0; + lastLabel[labCt2] = address2os[i].first.labels[labCt2]; + } + counts[labCt]++; + lastLabel[labCt] = address2os[i].first.labels[labCt]; + break; + } + } + for (labCt = 0; labCt < depth; labCt++) { + address2os[i].first.childNums[labCt] = counts[labCt]; + } + for (; labCt < (int)Address::maxDepth; labCt++) { + address2os[i].first.childNums[labCt] = 0; + } + } } -void kmp_topology_t::canonicalize() { - _remove_radix1_layers(); - _gather_enumeration_information(); - _discover_uniformity(); - _set_sub_ids(); - _set_globals(); - _set_last_level_cache(); - -#if KMP_MIC_SUPPORTED - // Manually Add L2 = Tile equivalence - if (__kmp_mic_type == mic3) { - if (get_level(KMP_HW_L2) != -1) - set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); - else if (get_level(KMP_HW_TILE) != -1) - set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); - } -#endif - // Perform post canonicalization checking - KMP_ASSERT(depth > 0); - for (int level = 0; level < depth; ++level) { - // All counts, ratios, and types must be valid - KMP_ASSERT(count[level] > 0 && ratio[level] > 0); - KMP_ASSERT_VALID_HW_TYPE(types[level]); - // Detected types must point to themselves - KMP_ASSERT(equivalent[types[level]] == types[level]); - } +// +// All of the __kmp_affinity_create_*_map() routines should set +// __kmp_affinity_masks to a vector of affinity mask objects of length +// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and +// return the number of levels in the machine topology tree (zero if +// __kmp_affinity_type == affinity_none). +// +// All of the __kmp_affinity_create_*_map() routines should set *fullMask +// to the affinity mask for the initialization thread. They need to save and +// restore the mask, and it could be needed later, so saving it is just an +// optimization to avoid calling kmp_get_system_affinity() again. +// +static kmp_affin_mask_t *fullMask = NULL; -#if KMP_AFFINITY_SUPPORTED - // Set the number of affinity granularity levels - if (__kmp_affinity_gran_levels < 0) { - kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); - // Check if user's granularity request is valid - if (gran_type == KMP_HW_UNKNOWN) { - // First try core, then thread, then package - kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; - for (auto g : gran_types) { - if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { - gran_type = g; - break; - } - } - KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); - // Warn user what granularity setting will be used instead - KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", - __kmp_hw_get_catalog_string(__kmp_affinity_gran), - __kmp_hw_get_catalog_string(gran_type)); - __kmp_affinity_gran = gran_type; - } - __kmp_affinity_gran_levels = 0; - for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) - __kmp_affinity_gran_levels++; - } -#endif // KMP_AFFINITY_SUPPORTED -} +kmp_affin_mask_t * +__kmp_affinity_get_fullMask() { return fullMask; } -// Canonicalize an explicit packages X cores/pkg X threads/core topology -void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, - int nthreads_per_core, int ncores) { - int ndepth = 3; - depth = ndepth; - KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } - for (int level = 0; level < depth; ++level) { - count[level] = 0; - ratio[level] = 0; - } - count[0] = npackages; - count[1] = ncores; - count[2] = __kmp_xproc; - ratio[0] = npackages; - ratio[1] = ncores_per_pkg; - ratio[2] = nthreads_per_core; - equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; - equivalent[KMP_HW_CORE] = KMP_HW_CORE; - equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; - types[0] = KMP_HW_SOCKET; - types[1] = KMP_HW_CORE; - types[2] = KMP_HW_THREAD; - //__kmp_avail_proc = __kmp_xproc; - _discover_uniformity(); -} -// Apply the KMP_HW_SUBSET envirable to the topology -// Returns true if KMP_HW_SUBSET filtered any processors -// otherwise, returns false -bool kmp_topology_t::filter_hw_subset() { - // If KMP_HW_SUBSET wasn't requested, then do nothing. - if (!__kmp_hw_subset) - return false; - - // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology - int hw_subset_depth = __kmp_hw_subset->get_depth(); - kmp_hw_t specified[KMP_HW_LAST]; - KMP_ASSERT(hw_subset_depth > 0); - KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } - for (int i = 0; i < hw_subset_depth; ++i) { - int max_count; - int num = __kmp_hw_subset->at(i).num; - int offset = __kmp_hw_subset->at(i).offset; - kmp_hw_t type = __kmp_hw_subset->at(i).type; - kmp_hw_t equivalent_type = equivalent[type]; - int level = get_level(type); - - // Check to see if current layer is in detected machine topology - if (equivalent_type != KMP_HW_UNKNOWN) { - __kmp_hw_subset->at(i).type = equivalent_type; - } else { - KMP_WARNING(AffHWSubsetNotExistGeneric, - __kmp_hw_get_catalog_string(type)); - return false; - } - - // Check to see if current layer has already been specified - // either directly or through an equivalent type - if (specified[equivalent_type] != KMP_HW_UNKNOWN) { - KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), - __kmp_hw_get_catalog_string(specified[equivalent_type])); - return false; - } - specified[equivalent_type] = type; - - // Check to see if layers are in order - if (i + 1 < hw_subset_depth) { - kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type); - if (next_type == KMP_HW_UNKNOWN) { - KMP_WARNING( - AffHWSubsetNotExistGeneric, - __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type)); - return false; - } - int next_topology_level = get_level(next_type); - if (level > next_topology_level) { - KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type), - __kmp_hw_get_catalog_string(next_type)); - return false; - } - } - - // Check to see if each layer's num & offset parameters are valid - max_count = get_ratio(level); - if (max_count < 0 || num + offset > max_count) { - bool plural = (num > 1); - KMP_WARNING(AffHWSubsetManyGeneric, - __kmp_hw_get_catalog_string(type, plural)); - return false; - } - } - - // Apply the filtered hardware subset - int new_index = 0; - for (int i = 0; i < num_hw_threads; ++i) { - kmp_hw_thread_t &hw_thread = hw_threads[i]; - // Check to see if this hardware thread should be filtered - bool should_be_filtered = false; - for (int level = 0, hw_subset_index = 0; - level < depth && hw_subset_index < hw_subset_depth; ++level) { - kmp_hw_t topology_type = types[level]; - auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index); - kmp_hw_t hw_subset_type = hw_subset_item.type; - if (topology_type != hw_subset_type) - continue; - int num = hw_subset_item.num; - int offset = hw_subset_item.offset; - hw_subset_index++; - if (hw_thread.sub_ids[level] < offset || - hw_thread.sub_ids[level] >= offset + num) { - should_be_filtered = true; - break; - } - } - if (!should_be_filtered) { - if (i != new_index) - hw_threads[new_index] = hw_thread; - new_index++; - } else { -#if KMP_AFFINITY_SUPPORTED - KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask); +static int nCoresPerPkg, nPackages; +static int __kmp_nThreadsPerCore; +#ifndef KMP_DFLT_NTH_CORES +static int __kmp_ncores; #endif - __kmp_avail_proc--; - } - } - KMP_DEBUG_ASSERT(new_index <= num_hw_threads); - num_hw_threads = new_index; - - // Post hardware subset canonicalization - _gather_enumeration_information(); - _discover_uniformity(); - _set_globals(); - _set_last_level_cache(); - return true; -} -bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { - if (hw_level >= depth) - return true; - bool retval = true; - const kmp_hw_thread_t &t1 = hw_threads[hwt1]; - const kmp_hw_thread_t &t2 = hw_threads[hwt2]; - for (int i = 0; i < (depth - hw_level); ++i) { - if (t1.ids[i] != t2.ids[i]) - return false; - } - return retval; +// +// __kmp_affinity_uniform_topology() doesn't work when called from +// places which support arbitrarily many levels in the machine topology +// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() +// __kmp_affinity_create_x2apicid_map(). +// +inline static bool +__kmp_affinity_uniform_topology() +{ + return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); } -//////////////////////////////////////////////////////////////////////////////// - -#if KMP_AFFINITY_SUPPORTED -class kmp_affinity_raii_t { - kmp_affin_mask_t *mask; - bool restored; -public: - kmp_affinity_raii_t() : restored(false) { - KMP_CPU_ALLOC(mask); - KMP_ASSERT(mask != NULL); - __kmp_get_system_affinity(mask, TRUE); - } - void restore() { - __kmp_set_system_affinity(mask, TRUE); - KMP_CPU_FREE(mask); - restored = true; - } - ~kmp_affinity_raii_t() { - if (!restored) { - __kmp_set_system_affinity(mask, TRUE); - KMP_CPU_FREE(mask); - } - } -}; - -bool KMPAffinity::picked_api = false; +// +// Print out the detailed machine topology map, i.e. the physical locations +// of each OS proc. +// +static void +__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth, + int pkgLevel, int coreLevel, int threadLevel) +{ + int proc; -void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } -void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } -void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } -void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } -void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } -void KMPAffinity::operator delete(void *p) { __kmp_free(p); } + KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); + for (proc = 0; proc < len; proc++) { + int level; + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + for (level = 0; level < depth; level++) { + if (level == threadLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); + } + else if (level == coreLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); + } + else if (level == pkgLevel) { + __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); + } + else if (level > pkgLevel) { + __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), + level - pkgLevel - 1); + } + else { + __kmp_str_buf_print(&buf, "L%d ", level); + } + __kmp_str_buf_print(&buf, "%d ", + address2os[proc].first.labels[level]); + } + KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, + buf.str); + __kmp_str_buf_free(&buf); + } +} -void KMPAffinity::pick_api() { - KMPAffinity *affinity_dispatch; - if (picked_api) - return; #if KMP_USE_HWLOC - // Only use Hwloc if affinity isn't explicitly disabled and - // user requests Hwloc topology method - if (__kmp_affinity_top_method == affinity_top_method_hwloc && - __kmp_affinity_type != affinity_disabled) { - affinity_dispatch = new KMPHwlocAffinity(); - } else -#endif - { - affinity_dispatch = new KMPNativeAffinity(); - } - __kmp_affinity_dispatch = affinity_dispatch; - picked_api = true; -} +static int +__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; -void KMPAffinity::destroy_api() { - if (__kmp_affinity_dispatch != NULL) { - delete __kmp_affinity_dispatch; - __kmp_affinity_dispatch = NULL; - picked_api = false; - } -} + // + // Save the affinity mask for the current thread. + // + kmp_affin_mask_t *oldMask; + KMP_CPU_ALLOC(oldMask); + __kmp_get_system_affinity(oldMask, TRUE); -#define KMP_ADVANCE_SCAN(scan) \ - while (*scan != '\0') { \ - scan++; \ - } + unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology); + int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU); + int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE); + int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET); + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0; -// Print the affinity mask to the character array in a pretty format. -// The format is a comma separated list of non-negative integers or integer -// ranges: e.g., 1,2,3-5,7,9-15 -// The format can also be the string "{<empty>}" if no bits are set in mask -char *__kmp_affinity_print_mask(char *buf, int buf_len, - kmp_affin_mask_t *mask) { - int start = 0, finish = 0, previous = 0; - bool first_range; - KMP_ASSERT(buf); - KMP_ASSERT(buf_len >= 40); - KMP_ASSERT(mask); - char *scan = buf; - char *end = buf + buf_len - 1; - - // Check for empty set. - if (mask->begin() == mask->end()) { - KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); - KMP_ADVANCE_SCAN(scan); - KMP_ASSERT(scan <= end); - return buf; - } - - first_range = true; - start = mask->begin(); - while (1) { - // Find next range - // [start, previous] is inclusive range of contiguous bits in mask - for (finish = mask->next(start), previous = start; - finish == previous + 1 && finish != mask->end(); - finish = mask->next(finish)) { - previous = finish; - } - - // The first range does not need a comma printed before it, but the rest - // of the ranges do need a comma beforehand - if (!first_range) { - KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); - KMP_ADVANCE_SCAN(scan); - } else { - first_range = false; + // + // This makes an assumption about the topology being four levels: + // machines -> packages -> cores -> hardware threads + // + hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology); + hwloc_obj_t child_iterator; + for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); + child_iterator != NULL; + child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) + { + nPackages++; } - // Range with three or more contiguous bits in the affinity mask - if (previous - start > 1) { - KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); - } else { - // Range with one or two contiguous bits in the affinity mask - KMP_SNPRINTF(scan, end - scan + 1, "%u", start); - KMP_ADVANCE_SCAN(scan); - if (previous - start > 0) { - KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); - } - } - KMP_ADVANCE_SCAN(scan); - // Start over with new start point - start = finish; - if (start == mask->end()) - break; - // Check for overflow - if (end - scan < 2) - break; - } - - // Check for overflow - KMP_ASSERT(scan <= end); - return buf; -} -#undef KMP_ADVANCE_SCAN - -// Print the affinity mask to the string buffer object in a pretty format -// The format is a comma separated list of non-negative integers or integer -// ranges: e.g., 1,2,3-5,7,9-15 -// The format can also be the string "{<empty>}" if no bits are set in mask -kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, - kmp_affin_mask_t *mask) { - int start = 0, finish = 0, previous = 0; - bool first_range; - KMP_ASSERT(buf); - KMP_ASSERT(mask); - - __kmp_str_buf_clear(buf); - - // Check for empty set. - if (mask->begin() == mask->end()) { - __kmp_str_buf_print(buf, "%s", "{<empty>}"); - return buf; - } - - first_range = true; - start = mask->begin(); - while (1) { - // Find next range - // [start, previous] is inclusive range of contiguous bits in mask - for (finish = mask->next(start), previous = start; - finish == previous + 1 && finish != mask->end(); - finish = mask->next(finish)) { - previous = finish; - } - - // The first range does not need a comma printed before it, but the rest - // of the ranges do need a comma beforehand - if (!first_range) { - __kmp_str_buf_print(buf, "%s", ","); - } else { - first_range = false; + current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0); + for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); + child_iterator != NULL; + child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) + { + nCoresPerPkg++; + } + current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0); + for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); + child_iterator != NULL; + child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) + { + __kmp_nThreadsPerCore++; } - // Range with three or more contiguous bits in the affinity mask - if (previous - start > 1) { - __kmp_str_buf_print(buf, "%u-%u", start, previous); - } else { - // Range with one or two contiguous bits in the affinity mask - __kmp_str_buf_print(buf, "%u", start); - if (previous - start > 0) { - __kmp_str_buf_print(buf, ",%u", previous); - } - } - // Start over with new start point - start = finish; - if (start == mask->end()) - break; - } - return buf; -} - -void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { - KMP_CPU_ZERO(mask); -#if KMP_GROUP_AFFINITY + if (! KMP_AFFINITY_CAPABLE()) + { + // + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + // + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } - if (__kmp_num_proc_groups > 1) { - int group; - KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); - for (group = 0; group < __kmp_num_proc_groups; group++) { - int i; - int num = __kmp_GetActiveProcessorCount(group); - for (i = 0; i < num; i++) { - KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); - } + // + // Allocate the data structure to be returned. + // + AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); + + unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel); + unsigned i; + hwloc_obj_t hardware_thread_iterator; + int nActiveThreads = 0; + for(i=0;i<num_hardware_threads;i++) { + hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i); + Address addr(3); + if(! KMP_CPU_ISSET(i, fullMask)) continue; + addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index; + addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg; + addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore; + retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index); + nActiveThreads++; } - } else -#endif /* KMP_GROUP_AFFINITY */ + // + // If there's only one thread context to bind to, return now. + // + KMP_ASSERT(nActiveThreads > 0); + if (nActiveThreads == 1) { + __kmp_ncores = nPackages = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } - { - int proc; - for (proc = 0; proc < __kmp_xproc; proc++) { - KMP_CPU_SET(proc, mask); + if (__kmp_affinity_type == affinity_none) { + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Form an Address object which only includes the package level. + // + Address addr(1); + addr.labels[0] = retval[0].first.labels[pkgLevel-1]; + retval[0].first = addr; + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); + } + + *address2os = retval; + KMP_CPU_FREE(oldMask); + return 1; } - } -} -// All of the __kmp_affinity_create_*_map() routines should allocate the -// internal topology object and set the layer ids for it. Each routine -// returns a boolean on whether it was successful at doing so. -kmp_affin_mask_t *__kmp_affin_fullMask = NULL; + // + // Sort the table by physical Id. + // + qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels); -#if KMP_USE_HWLOC -static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { -#if HWLOC_API_VERSION >= 0x00020000 - return hwloc_obj_type_is_cache(obj->type); -#else - return obj->type == HWLOC_OBJ_CACHE; -#endif -} + // + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return if affinity is not enabled. + // + __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel); -// Returns KMP_HW_* type derived from HWLOC_* type -static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { - - if (__kmp_hwloc_is_cache_type(obj)) { - if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) - return KMP_HW_UNKNOWN; - switch (obj->attr->cache.depth) { - case 1: - return KMP_HW_L1; - case 2: -#if KMP_MIC_SUPPORTED - if (__kmp_mic_type == mic3) { - return KMP_HW_TILE; - } -#endif - return KMP_HW_L2; - case 3: - return KMP_HW_L3; - } - return KMP_HW_UNKNOWN; - } - - switch (obj->type) { - case HWLOC_OBJ_PACKAGE: - return KMP_HW_SOCKET; - case HWLOC_OBJ_NUMANODE: - return KMP_HW_NUMA; - case HWLOC_OBJ_CORE: - return KMP_HW_CORE; - case HWLOC_OBJ_PU: - return KMP_HW_THREAD; - case HWLOC_OBJ_GROUP: - if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) - return KMP_HW_DIE; - else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) - return KMP_HW_TILE; - else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) - return KMP_HW_MODULE; - else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) - return KMP_HW_PROC_GROUP; - return KMP_HW_UNKNOWN; -#if HWLOC_API_VERSION >= 0x00020100 - case HWLOC_OBJ_DIE: - return KMP_HW_DIE; -#endif - } - return KMP_HW_UNKNOWN; -} + // + // Check to see if the machine topology is uniform + // + unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel); + unsigned ncores = __kmp_ncores; + unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel); + unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads); -// Returns the number of objects of type 'type' below 'obj' within the topology -// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is -// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET -// object. -static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, - hwloc_obj_type_t type) { - int retval = 0; - hwloc_obj_t first; - for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, - obj->logical_index, type, 0); - first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, - obj->type, first) == obj; - first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, - first)) { - ++retval; - } - return retval; -} + // + // Print the machine topology summary. + // + if (__kmp_affinity_verbose) { + char mask[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); -// This gets the sub_id for a lower object under a higher object in the -// topology tree -static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, - hwloc_obj_t lower) { - hwloc_obj_t obj; - hwloc_obj_type_t ltype = lower->type; - int lindex = lower->logical_index - 1; - int sub_id = 0; - // Get the previous lower object - obj = hwloc_get_obj_by_type(t, ltype, lindex); - while (obj && lindex >= 0 && - hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { - if (obj->userdata) { - sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); - break; - } - sub_id++; - lindex--; - obj = hwloc_get_obj_by_type(t, ltype, lindex); - } - // store sub_id + 1 so that 0 is differed from NULL - lower->userdata = RCAST(void *, sub_id + 1); - return sub_id; -} + KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } -static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { - kmp_hw_t type; - int hw_thread_index, sub_id; - int depth; - hwloc_obj_t pu, obj, root, prev; - kmp_hw_t types[KMP_HW_LAST]; - hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; - - hwloc_topology_t tp = __kmp_hwloc_topology; - *msg_id = kmp_i18n_null; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); - } - - if (!KMP_AFFINITY_CAPABLE()) { - // Hack to try and infer the machine topology using only the data - // available from hwloc on the current thread, and __kmp_xproc. - KMP_ASSERT(__kmp_affinity_type == affinity_none); - // hwloc only guarantees existance of PU object, so check PACKAGE and CORE - hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); - if (o != NULL) - nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); - else - nCoresPerPkg = 1; // no PACKAGE found - o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); - if (o != NULL) - __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); - else - __kmp_nThreadsPerCore = 1; // no CORE found - __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; - if (nCoresPerPkg == 0) - nCoresPerPkg = 1; // to prevent possible division by 0 - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - return true; - } - - root = hwloc_get_root_obj(tp); - - // Figure out the depth and types in the topology - depth = 0; - pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); - KMP_ASSERT(pu); - obj = pu; - types[depth] = KMP_HW_THREAD; - hwloc_types[depth] = obj->type; - depth++; - while (obj != root && obj != NULL) { - obj = obj->parent; -#if HWLOC_API_VERSION >= 0x00020000 - if (obj->memory_arity) { - hwloc_obj_t memory; - for (memory = obj->memory_first_child; memory; - memory = hwloc_get_next_child(tp, obj, memory)) { - if (memory->type == HWLOC_OBJ_NUMANODE) - break; - } - if (memory && memory->type == HWLOC_OBJ_NUMANODE) { - types[depth] = KMP_HW_NUMA; - hwloc_types[depth] = memory->type; - depth++; - } + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + + __kmp_str_buf_print(&buf, "%d", npackages); + //for (level = 1; level <= pkgLevel; level++) { + // __kmp_str_buf_print(&buf, " x %d", maxCt[level]); + // } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + + __kmp_str_buf_free(&buf); } -#endif - type = __kmp_hwloc_type_2_topology_type(obj); - if (type != KMP_HW_UNKNOWN) { - types[depth] = type; - hwloc_types[depth] = obj->type; - depth++; - } - } - KMP_ASSERT(depth > 0); - - // Get the order for the types correct - for (int i = 0, j = depth - 1; i < j; ++i, --j) { - hwloc_obj_type_t hwloc_temp = hwloc_types[i]; - kmp_hw_t temp = types[i]; - types[i] = types[j]; - types[j] = temp; - hwloc_types[i] = hwloc_types[j]; - hwloc_types[j] = hwloc_temp; - } - - // Allocate the data structure to be returned. - __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); - - hw_thread_index = 0; - pu = NULL; - while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { - int index = depth - 1; - bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); - kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); - if (included) { - hw_thread.clear(); - hw_thread.ids[index] = pu->logical_index; - hw_thread.os_id = pu->os_index; - index--; - } - obj = pu; - prev = obj; - while (obj != root && obj != NULL) { - obj = obj->parent; -#if HWLOC_API_VERSION >= 0x00020000 - // NUMA Nodes are handled differently since they are not within the - // parent/child structure anymore. They are separate children - // of obj (memory_first_child points to first memory child) - if (obj->memory_arity) { - hwloc_obj_t memory; - for (memory = obj->memory_first_child; memory; - memory = hwloc_get_next_child(tp, obj, memory)) { - if (memory->type == HWLOC_OBJ_NUMANODE) - break; + + if (__kmp_affinity_type == affinity_none) { + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Find any levels with radiix 1, and remove them from the map + // (except for the package level). + // + int new_depth = 0; + int level; + unsigned proc; + for (level = 1; level < (int)depth; level++) { + if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) { + continue; } - if (memory && memory->type == HWLOC_OBJ_NUMANODE) { - sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); - if (included) { - hw_thread.ids[index] = memory->logical_index; - hw_thread.ids[index + 1] = sub_id; - index--; - } - prev = memory; - } - prev = obj; - } -#endif - type = __kmp_hwloc_type_2_topology_type(obj); - if (type != KMP_HW_UNKNOWN) { - sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); - if (included) { - hw_thread.ids[index] = obj->logical_index; - hw_thread.ids[index + 1] = sub_id; - index--; - } - prev = obj; - } - } - if (included) - hw_thread_index++; - } - __kmp_topology->sort_ids(); - return true; + new_depth++; + } + + // + // If we are removing any levels, allocate a new vector to return, + // and copy the relevant information to it. + // + if (new_depth != depth-1) { + AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( + sizeof(AddrUnsPair) * nActiveThreads); + for (proc = 0; (int)proc < nActiveThreads; proc++) { + Address addr(new_depth); + new_retval[proc] = AddrUnsPair(addr, retval[proc].second); + } + int new_level = 0; + for (level = 1; level < (int)depth; level++) { + if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) { + if (level == threadLevel) { + threadLevel = -1; + } + else if ((threadLevel >= 0) && (level < threadLevel)) { + threadLevel--; + } + if (level == coreLevel) { + coreLevel = -1; + } + else if ((coreLevel >= 0) && (level < coreLevel)) { + coreLevel--; + } + if (level < pkgLevel) { + pkgLevel--; + } + continue; + } + for (proc = 0; (int)proc < nActiveThreads; proc++) { + new_retval[proc].first.labels[new_level] + = retval[proc].first.labels[level]; + } + new_level++; + } + + __kmp_free(retval); + retval = new_retval; + depth = new_depth; + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + __kmp_affinity_gran_levels = 0; + if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { + __kmp_affinity_gran_levels++; + } + if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { + __kmp_affinity_gran_levels++; + } + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels++; + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1, + coreLevel-1, threadLevel-1); + } + + KMP_CPU_FREE(oldMask); + *address2os = retval; + if(depth == 0) return 0; + else return depth-1; } #endif // KMP_USE_HWLOC +// // If we don't know how to retrieve the machine's processor topology, or // encounter an error in doing so, this routine is called to form a "flat" // mapping of os thread id's <-> processor id's. -static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { - *msg_id = kmp_i18n_null; - int depth = 3; - kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; - - if (__kmp_affinity_verbose) { - KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); - } - - // Even if __kmp_affinity_type == affinity_none, this routine might still - // called to set __kmp_ncores, as well as - // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. - if (!KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - __kmp_ncores = nPackages = __kmp_xproc; +// +static int +__kmp_affinity_create_flat_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Even if __kmp_affinity_type == affinity_none, this routine might still + // called to set __kmp_ncores, as well as + // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // + if (! KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + __kmp_ncores = nPackages = __kmp_xproc; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ncores = nPackages = __kmp_avail_proc; __kmp_nThreadsPerCore = nCoresPerPkg = 1; - return true; - } - - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. - // Make sure all these vars are set correctly, and return now if affinity is - // not enabled. - __kmp_ncores = nPackages = __kmp_avail_proc; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - - // Construct the data structure to be returned. - __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); - int avail_ct = 0; - int i; - KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { - // Skip this proc if it is not included in the machine model. - if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { - continue; - } - kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); - hw_thread.clear(); - hw_thread.os_id = i; - hw_thread.ids[0] = i; - hw_thread.ids[1] = 0; - hw_thread.ids[2] = 0; - avail_ct++; - } - if (__kmp_affinity_verbose) { - KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); - } - return true; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); + + KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + if (__kmp_affinity_type == affinity_none) { + return 0; + } + + // + // Contruct the data structure to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); + int avail_ct = 0; + unsigned int i; + KMP_CPU_SET_ITERATE(i, fullMask) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + + Address addr(1); + addr.labels[0] = i; + (*address2os)[avail_ct++] = AddrUnsPair(addr,i); + } + if (__kmp_affinity_verbose) { + KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Only the package level is modeled in the machine topology map, + // so the #levels of granularity is either 0 or 1. + // + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels = 1; + } + else { + __kmp_affinity_gran_levels = 0; + } + } + return 1; } -#if KMP_GROUP_AFFINITY + +# if KMP_GROUP_AFFINITY + +// // If multiple Windows* OS processor groups exist, we can create a 2-level -// topology map with the groups at level 0 and the individual procs at level 1. +// topology map with the groups at level 0 and the individual procs at +// level 1. +// // This facilitates letting the threads float among all procs in a group, // if granularity=group (the default when there are multiple groups). -static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { - *msg_id = kmp_i18n_null; - int depth = 3; - kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; - const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); - - if (__kmp_affinity_verbose) { - KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); - } - - // If we aren't affinity capable, then use flat topology - if (!KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - nPackages = __kmp_num_proc_groups; - __kmp_nThreadsPerCore = 1; - __kmp_ncores = __kmp_xproc; - nCoresPerPkg = nPackages / __kmp_ncores; - return true; - } - - // Construct the data structure to be returned. - __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); - int avail_ct = 0; - int i; - KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { - // Skip this proc if it is not included in the machine model. - if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { - continue; - } - kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); - hw_thread.clear(); - hw_thread.os_id = i; - hw_thread.ids[0] = i / BITS_PER_GROUP; - hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; - } - return true; -} -#endif /* KMP_GROUP_AFFINITY */ - -#if KMP_ARCH_X86 || KMP_ARCH_X86_64 - -template <kmp_uint32 LSB, kmp_uint32 MSB> -static inline unsigned __kmp_extract_bits(kmp_uint32 v) { - const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; - const kmp_uint32 SHIFT_RIGHT = LSB; - kmp_uint32 retval = v; - retval <<= SHIFT_LEFT; - retval >>= (SHIFT_LEFT + SHIFT_RIGHT); - return retval; +// +static int +__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // If we don't have multiple processor groups, return now. + // The flat mapping will be used. + // + if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) { + // FIXME set *msg_id + return -1; + } + + // + // Contruct the data structure to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); + int avail_ct = 0; + int i; + KMP_CPU_SET_ITERATE(i, fullMask) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + + Address addr(2); + addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); + addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); + (*address2os)[avail_ct++] = AddrUnsPair(addr,i); + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], + addr.labels[1]); + } + } + + if (__kmp_affinity_gran_levels < 0) { + if (__kmp_affinity_gran == affinity_gran_group) { + __kmp_affinity_gran_levels = 1; + } + else if ((__kmp_affinity_gran == affinity_gran_fine) + || (__kmp_affinity_gran == affinity_gran_thread)) { + __kmp_affinity_gran_levels = 0; + } + else { + const char *gran_str = NULL; + if (__kmp_affinity_gran == affinity_gran_core) { + gran_str = "core"; + } + else if (__kmp_affinity_gran == affinity_gran_package) { + gran_str = "package"; + } + else if (__kmp_affinity_gran == affinity_gran_node) { + gran_str = "node"; + } + else { + KMP_ASSERT(0); + } + + // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread" + __kmp_affinity_gran_levels = 0; + } + } + return 2; } -static int __kmp_cpuid_mask_width(int count) { - int r = 0; +# endif /* KMP_GROUP_AFFINITY */ + - while ((1 << r) < count) - ++r; - return r; +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + +static int +__kmp_cpuid_mask_width(int count) { + int r = 0; + + while((1<<r) < count) + ++r; + return r; } + class apicThreadInfo { public: - unsigned osId; // param to __kmp_affinity_bind_thread - unsigned apicId; // from cpuid after binding - unsigned maxCoresPerPkg; // "" - unsigned maxThreadsPerPkg; // "" - unsigned pkgId; // inferred from above values - unsigned coreId; // "" - unsigned threadId; // "" + unsigned osId; // param to __kmp_affinity_bind_thread + unsigned apicId; // from cpuid after binding + unsigned maxCoresPerPkg; // "" + unsigned maxThreadsPerPkg; // "" + unsigned pkgId; // inferred from above values + unsigned coreId; // "" + unsigned threadId; // "" }; -static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, - const void *b) { - const apicThreadInfo *aa = (const apicThreadInfo *)a; - const apicThreadInfo *bb = (const apicThreadInfo *)b; - if (aa->pkgId < bb->pkgId) - return -1; - if (aa->pkgId > bb->pkgId) - return 1; - if (aa->coreId < bb->coreId) - return -1; - if (aa->coreId > bb->coreId) - return 1; - if (aa->threadId < bb->threadId) - return -1; - if (aa->threadId > bb->threadId) - return 1; - return 0; + +static int +__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b) +{ + const apicThreadInfo *aa = (const apicThreadInfo *)a; + const apicThreadInfo *bb = (const apicThreadInfo *)b; + if (aa->osId < bb->osId) return -1; + if (aa->osId > bb->osId) return 1; + return 0; +} + + +static int +__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) +{ + const apicThreadInfo *aa = (const apicThreadInfo *)a; + const apicThreadInfo *bb = (const apicThreadInfo *)b; + if (aa->pkgId < bb->pkgId) return -1; + if (aa->pkgId > bb->pkgId) return 1; + if (aa->coreId < bb->coreId) return -1; + if (aa->coreId > bb->coreId) return 1; + if (aa->threadId < bb->threadId) return -1; + if (aa->threadId > bb->threadId) return 1; + return 0; } -class kmp_cache_info_t { -public: - struct info_t { - unsigned level, mask; - }; - kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } - size_t get_depth() const { return depth; } - info_t &operator[](size_t index) { return table[index]; } - const info_t &operator[](size_t index) const { return table[index]; } - - static kmp_hw_t get_topology_type(unsigned level) { - KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); - switch (level) { - case 1: - return KMP_HW_L1; - case 2: - return KMP_HW_L2; - case 3: - return KMP_HW_L3; - } - return KMP_HW_UNKNOWN; - } - -private: - static const int MAX_CACHE_LEVEL = 3; - - size_t depth; - info_t table[MAX_CACHE_LEVEL]; - - void get_leaf4_levels() { - unsigned level = 0; - while (depth < MAX_CACHE_LEVEL) { - unsigned cache_type, max_threads_sharing; - unsigned cache_level, cache_mask_width; - kmp_cpuid buf2; - __kmp_x86_cpuid(4, level, &buf2); - cache_type = __kmp_extract_bits<0, 4>(buf2.eax); - if (!cache_type) - break; - // Skip instruction caches - if (cache_type == 2) { - level++; - continue; - } - max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; - cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); - cache_level = __kmp_extract_bits<5, 7>(buf2.eax); - table[depth].level = cache_level; - table[depth].mask = ((-1) << cache_mask_width); - depth++; - level++; - } - } -}; +// // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use // an algorithm which cycles through the available os threads, setting // the current thread's affinity mask to that thread, and then retrieves // the Apic Id for each thread context using the cpuid instruction. -static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { - kmp_cpuid buf; - *msg_id = kmp_i18n_null; - - if (__kmp_affinity_verbose) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); - } - - // Check if cpuid leaf 4 is supported. - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax < 4) { - *msg_id = kmp_i18n_str_NoLeaf4Support; - return false; - } - - // The algorithm used starts by setting the affinity to each available thread - // and retrieving info from the cpuid instruction, so if we are not capable of - // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we - // need to do something else - use the defaults that we calculated from - // issuing cpuid without binding to each proc. - if (!KMP_AFFINITY_CAPABLE()) { - // Hack to try and infer the machine topology using only the data - // available from cpuid on the current thread, and __kmp_xproc. - KMP_ASSERT(__kmp_affinity_type == affinity_none); - - // Get an upper bound on the number of threads per package using cpuid(1). - // On some OS/chps combinations where HT is supported by the chip but is - // disabled, this value will be 2 on a single core chip. Usually, it will be - // 2 if HT is enabled and 1 if HT is disabled. - __kmp_x86_cpuid(1, 0, &buf); - int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; - if (maxThreadsPerPkg == 0) { - maxThreadsPerPkg = 1; - } - - // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded - // value. - // - // The author of cpu_count.cpp treated this only an upper bound on the - // number of cores, but I haven't seen any cases where it was greater than - // the actual number of cores, so we will treat it as exact in this block of - // code. - // - // First, we need to check if cpuid(4) is supported on this chip. To see if - // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or - // greater. - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax >= 4) { - __kmp_x86_cpuid(4, 0, &buf); - nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; - } else { - nCoresPerPkg = 1; - } - - // There is no way to reliably tell if HT is enabled without issuing the - // cpuid instruction from every thread, can correlating the cpuid info, so - // if the machine is not affinity capable, we assume that HT is off. We have - // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine - // does not support HT. - // - // - Older OSes are usually found on machines with older chips, which do not - // support HT. - // - The performance penalty for mistakenly identifying a machine as HT when - // it isn't (which results in blocktime being incorrectly set to 0) is - // greater than the penalty when for mistakenly identifying a machine as - // being 1 thread/core when it is really HT enabled (which results in - // blocktime being incorrectly set to a positive value). - __kmp_ncores = __kmp_xproc; - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - __kmp_nThreadsPerCore = 1; - return true; - } - - // From here on, we can assume that it is safe to call - // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if - // __kmp_affinity_type = affinity_none. - - // Save the affinity mask for the current thread. - kmp_affinity_raii_t previous_affinity; - - // Run through each of the available contexts, binding the current thread - // to it, and obtaining the pertinent information using the cpuid instr. - // - // The relevant information is: - // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context - // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. - // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value - // of this field determines the width of the core# + thread# fields in the - // Apic Id. It is also an upper bound on the number of threads per - // package, but it has been verified that situations happen were it is not - // exact. In particular, on certain OS/chip combinations where Intel(R) - // Hyper-Threading Technology is supported by the chip but has been - // disabled, the value of this field will be 2 (for a single core chip). - // On other OS/chip combinations supporting Intel(R) Hyper-Threading - // Technology, the value of this field will be 1 when Intel(R) - // Hyper-Threading Technology is disabled and 2 when it is enabled. - // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value - // of this field (+1) determines the width of the core# field in the Apic - // Id. The comments in "cpucount.cpp" say that this value is an upper - // bound, but the IA-32 architecture manual says that it is exactly the - // number of cores per package, and I haven't seen any case where it - // wasn't. - // - // From this information, deduce the package Id, core Id, and thread Id, - // and set the corresponding fields in the apicThreadInfo struct. - unsigned i; - apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( +// +static int +__kmp_affinity_create_apicid_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + kmp_cpuid buf; + int rc; + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Check if cpuid leaf 4 is supported. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax < 4) { + *msg_id = kmp_i18n_str_NoLeaf4Support; + return -1; + } + + // + // The algorithm used starts by setting the affinity to each available + // thread and retrieving info from the cpuid instruction, so if we are + // not capable of calling __kmp_get_system_affinity() and + // _kmp_get_system_affinity(), then we need to do something else - use + // the defaults that we calculated from issuing cpuid without binding + // to each proc. + // + if (! KMP_AFFINITY_CAPABLE()) { + // + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + // + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + // + // Get an upper bound on the number of threads per package using + // cpuid(1). + // + // On some OS/chps combinations where HT is supported by the chip + // but is disabled, this value will be 2 on a single core chip. + // Usually, it will be 2 if HT is enabled and 1 if HT is disabled. + // + __kmp_x86_cpuid(1, 0, &buf); + int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (maxThreadsPerPkg == 0) { + maxThreadsPerPkg = 1; + } + + // + // The num cores per pkg comes from cpuid(4). + // 1 must be added to the encoded value. + // + // The author of cpu_count.cpp treated this only an upper bound + // on the number of cores, but I haven't seen any cases where it + // was greater than the actual number of cores, so we will treat + // it as exact in this block of code. + // + // First, we need to check if cpuid(4) is supported on this chip. + // To see if cpuid(n) is supported, issue cpuid(0) and check if eax + // has the value n or greater. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } + else { + nCoresPerPkg = 1; + } + + // + // There is no way to reliably tell if HT is enabled without issuing + // the cpuid instruction from every thread, can correlating the cpuid + // info, so if the machine is not affinity capable, we assume that HT + // is off. We have seen quite a few machines where maxThreadsPerPkg + // is 2, yet the machine does not support HT. + // + // - Older OSes are usually found on machines with older chips, which + // do not support HT. + // + // - The performance penalty for mistakenly identifying a machine as + // HT when it isn't (which results in blocktime being incorrecly set + // to 0) is greater than the penalty when for mistakenly identifying + // a machine as being 1 thread/core when it is really HT enabled + // (which results in blocktime being incorrectly set to a positive + // value). + // + __kmp_ncores = __kmp_xproc; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + __kmp_nThreadsPerCore = 1; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), + // even if __kmp_affinity_type = affinity_none. + // + + // + // Save the affinity mask for the current thread. + // + kmp_affin_mask_t *oldMask; + KMP_CPU_ALLOC(oldMask); + KMP_ASSERT(oldMask != NULL); + __kmp_get_system_affinity(oldMask, TRUE); + + // + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + // + // The relevant information is: + // + // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context + // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. + // + // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The + // value of this field determines the width of the core# + thread# + // fields in the Apic Id. It is also an upper bound on the number + // of threads per package, but it has been verified that situations + // happen were it is not exact. In particular, on certain OS/chip + // combinations where Intel(R) Hyper-Threading Technology is supported + // by the chip but has + // been disabled, the value of this field will be 2 (for a single core + // chip). On other OS/chip combinations supporting + // Intel(R) Hyper-Threading Technology, the value of + // this field will be 1 when Intel(R) Hyper-Threading Technology is + // disabled and 2 when it is enabled. + // + // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The + // value of this field (+1) determines the width of the core# field in + // the Apic Id. The comments in "cpucount.cpp" say that this value is + // an upper bound, but the IA-32 architecture manual says that it is + // exactly the number of cores per package, and I haven't seen any + // case where it wasn't. + // + // From this information, deduce the package Id, core Id, and thread Id, + // and set the corresponding fields in the apicThreadInfo struct. + // + unsigned i; + apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( __kmp_avail_proc * sizeof(apicThreadInfo)); - unsigned nApics = 0; - KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { - // Skip this proc if it is not included in the machine model. - if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { - continue; + unsigned nApics = 0; + KMP_CPU_SET_ITERATE(i, fullMask) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); + + __kmp_affinity_bind_thread(i); + threadInfo[nApics].osId = i; + + // + // The apic id and max threads per pkg come from cpuid(1). + // + __kmp_x86_cpuid(1, 0, &buf); + if (! (buf.edx >> 9) & 1) { + __kmp_set_system_affinity(oldMask, TRUE); + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_ApicNotPresent; + return -1; + } + threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; + threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (threadInfo[nApics].maxThreadsPerPkg == 0) { + threadInfo[nApics].maxThreadsPerPkg = 1; + } + + // + // Max cores per pkg comes from cpuid(4). + // 1 must be added to the encoded value. + // + // First, we need to check if cpuid(4) is supported on this chip. + // To see if cpuid(n) is supported, issue cpuid(0) and check if eax + // has the value n or greater. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } + else { + threadInfo[nApics].maxCoresPerPkg = 1; + } + + // + // Infer the pkgId / coreId / threadId using only the info + // obtained locally. + // + int widthCT = __kmp_cpuid_mask_width( + threadInfo[nApics].maxThreadsPerPkg); + threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; + + int widthC = __kmp_cpuid_mask_width( + threadInfo[nApics].maxCoresPerPkg); + int widthT = widthCT - widthC; + if (widthT < 0) { + // + // I've never seen this one happen, but I suppose it could, if + // the cpuid instruction on a chip was really screwed up. + // Make sure to restore the affinity mask before the tail call. + // + __kmp_set_system_affinity(oldMask, TRUE); + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + + int maskC = (1 << widthC) - 1; + threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) + &maskC; + + int maskT = (1 << widthT) - 1; + threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT; + + nApics++; } - KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); - __kmp_affinity_dispatch->bind_thread(i); - threadInfo[nApics].osId = i; + // + // We've collected all the info we need. + // Restore the old affinity mask for this thread. + // + __kmp_set_system_affinity(oldMask, TRUE); - // The apic id and max threads per pkg come from cpuid(1). - __kmp_x86_cpuid(1, 0, &buf); - if (((buf.edx >> 9) & 1) == 0) { - __kmp_free(threadInfo); - *msg_id = kmp_i18n_str_ApicNotPresent; - return false; + // + // If there's only one thread context to bind to, form an Address object + // with depth 1 and return immediately (or, if affinity is off, set + // address2os to NULL and return). + // + // If it is configured to omit the package level when there is only a + // single package, the logic at the end of this routine won't work if + // there is only a single thread - it would try to form an Address + // object with depth 0. + // + KMP_ASSERT(nApics > 0); + if (nApics == 1) { + __kmp_ncores = nPackages = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 0; + } + + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); + Address addr(1); + addr.labels[0] = threadInfo[0].pkgId; + (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); + } + + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 1; } - threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; - threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; - if (threadInfo[nApics].maxThreadsPerPkg == 0) { - threadInfo[nApics].maxThreadsPerPkg = 1; + + // + // Sort the threadInfo table by physical Id. + // + qsort(threadInfo, nApics, sizeof(*threadInfo), + __kmp_affinity_cmp_apicThreadInfo_phys_id); + + // + // The table is now sorted by pkgId / coreId / threadId, but we really + // don't know the radix of any of the fields. pkgId's may be sparsely + // assigned among the chips on a system. Although coreId's are usually + // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore + // (or the total # packages) are at this point - we want to determine + // that now. We only have an upper bound on the first two figures. + // + // We also perform a consistency check at this point: the values returned + // by the cpuid instruction for any thread bound to a given package had + // better return the same info for maxThreadsPerPkg and maxCoresPerPkg. + // + nPackages = 1; + nCoresPerPkg = 1; + __kmp_nThreadsPerCore = 1; + unsigned nCores = 1; + + unsigned pkgCt = 1; // to determine radii + unsigned lastPkgId = threadInfo[0].pkgId; + unsigned coreCt = 1; + unsigned lastCoreId = threadInfo[0].coreId; + unsigned threadCt = 1; + unsigned lastThreadId = threadInfo[0].threadId; + + // intra-pkg consist checks + unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; + unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; + + for (i = 1; i < nApics; i++) { + if (threadInfo[i].pkgId != lastPkgId) { + nCores++; + pkgCt++; + lastPkgId = threadInfo[i].pkgId; + if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; + coreCt = 1; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + + // + // This is a different package, so go on to the next iteration + // without doing any consistency checks. Reset the consistency + // check vars, though. + // + prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; + prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; + continue; + } + + if (threadInfo[i].coreId != lastCoreId) { + nCores++; + coreCt++; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + } + else if (threadInfo[i].threadId != lastThreadId) { + threadCt++; + lastThreadId = threadInfo[i].threadId; + } + else { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; + return -1; + } + + // + // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg + // fields agree between all the threads bounds to a given package. + // + if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) + || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } } + nPackages = pkgCt; + if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; + if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; - // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded - // value. // - // First, we need to check if cpuid(4) is supported on this chip. To see if - // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n - // or greater. - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax >= 4) { - __kmp_x86_cpuid(4, 0, &buf); - threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; - } else { - threadInfo[nApics].maxCoresPerPkg = 1; - } - - // Infer the pkgId / coreId / threadId using only the info obtained locally. - int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); - threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; - - int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); - int widthT = widthCT - widthC; - if (widthT < 0) { - // I've never seen this one happen, but I suppose it could, if the cpuid - // instruction on a chip was really screwed up. Make sure to restore the - // affinity mask before the tail call. - __kmp_free(threadInfo); - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return false; - } - - int maskC = (1 << widthC) - 1; - threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; - - int maskT = (1 << widthT) - 1; - threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; - - nApics++; - } - - // We've collected all the info we need. - // Restore the old affinity mask for this thread. - previous_affinity.restore(); - - // Sort the threadInfo table by physical Id. - qsort(threadInfo, nApics, sizeof(*threadInfo), - __kmp_affinity_cmp_apicThreadInfo_phys_id); - - // The table is now sorted by pkgId / coreId / threadId, but we really don't - // know the radix of any of the fields. pkgId's may be sparsely assigned among - // the chips on a system. Although coreId's are usually assigned - // [0 .. coresPerPkg-1] and threadId's are usually assigned - // [0..threadsPerCore-1], we don't want to make any such assumptions. - // - // For that matter, we don't know what coresPerPkg and threadsPerCore (or the - // total # packages) are at this point - we want to determine that now. We - // only have an upper bound on the first two figures. - // - // We also perform a consistency check at this point: the values returned by - // the cpuid instruction for any thread bound to a given package had better - // return the same info for maxThreadsPerPkg and maxCoresPerPkg. - nPackages = 1; - nCoresPerPkg = 1; - __kmp_nThreadsPerCore = 1; - unsigned nCores = 1; - - unsigned pkgCt = 1; // to determine radii - unsigned lastPkgId = threadInfo[0].pkgId; - unsigned coreCt = 1; - unsigned lastCoreId = threadInfo[0].coreId; - unsigned threadCt = 1; - unsigned lastThreadId = threadInfo[0].threadId; - - // intra-pkg consist checks - unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; - unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; - - for (i = 1; i < nApics; i++) { - if (threadInfo[i].pkgId != lastPkgId) { - nCores++; - pkgCt++; - lastPkgId = threadInfo[i].pkgId; - if ((int)coreCt > nCoresPerPkg) - nCoresPerPkg = coreCt; - coreCt = 1; - lastCoreId = threadInfo[i].coreId; - if ((int)threadCt > __kmp_nThreadsPerCore) - __kmp_nThreadsPerCore = threadCt; - threadCt = 1; - lastThreadId = threadInfo[i].threadId; - - // This is a different package, so go on to the next iteration without - // doing any consistency checks. Reset the consistency check vars, though. - prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; - prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; - continue; - } - - if (threadInfo[i].coreId != lastCoreId) { - nCores++; - coreCt++; - lastCoreId = threadInfo[i].coreId; - if ((int)threadCt > __kmp_nThreadsPerCore) - __kmp_nThreadsPerCore = threadCt; - threadCt = 1; - lastThreadId = threadInfo[i].threadId; - } else if (threadInfo[i].threadId != lastThreadId) { - threadCt++; - lastThreadId = threadInfo[i].threadId; - } else { - __kmp_free(threadInfo); - *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; - return false; - } - - // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg - // fields agree between all the threads bounds to a given package. - if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || - (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { - __kmp_free(threadInfo); - *msg_id = kmp_i18n_str_InconsistentCpuidInfo; - return false; - } - } - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. - // Make sure all these vars are set correctly - nPackages = pkgCt; - if ((int)coreCt > nCoresPerPkg) - nCoresPerPkg = coreCt; - if ((int)threadCt > __kmp_nThreadsPerCore) - __kmp_nThreadsPerCore = threadCt; - __kmp_ncores = nCores; - KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); - - // Now that we've determined the number of packages, the number of cores per - // package, and the number of threads per core, we can construct the data - // structure that is to be returned. - int idx = 0; - int pkgLevel = 0; - int coreLevel = 1; - int threadLevel = 2; - //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); - int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); - kmp_hw_t types[3]; - if (pkgLevel >= 0) - types[idx++] = KMP_HW_SOCKET; - if (coreLevel >= 0) - types[idx++] = KMP_HW_CORE; - if (threadLevel >= 0) - types[idx++] = KMP_HW_THREAD; - - KMP_ASSERT(depth > 0); - __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); - - for (i = 0; i < nApics; ++i) { - idx = 0; - unsigned os = threadInfo[i].osId; - kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); - hw_thread.clear(); - - if (pkgLevel >= 0) { - hw_thread.ids[idx++] = threadInfo[i].pkgId; + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ncores = nCores; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } - if (coreLevel >= 0) { - hw_thread.ids[idx++] = threadInfo[i].coreId; + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return 0; } - if (threadLevel >= 0) { - hw_thread.ids[idx++] = threadInfo[i].threadId; - } - hw_thread.os_id = os; - } - - __kmp_free(threadInfo); - __kmp_topology->sort_ids(); - if (!__kmp_topology->check_ids()) { - kmp_topology_t::deallocate(__kmp_topology); - __kmp_topology = nullptr; - *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; - return false; - } - return true; + + // + // Now that we've determined the number of packages, the number of cores + // per package, and the number of threads per core, we can construct the + // data structure that is to be returned. + // + int pkgLevel = 0; + int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; + int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); + unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); + + KMP_ASSERT(depth > 0); + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics); + + for (i = 0; i < nApics; ++i) { + Address addr(depth); + unsigned os = threadInfo[i].osId; + int d = 0; + + if (pkgLevel >= 0) { + addr.labels[d++] = threadInfo[i].pkgId; + } + if (coreLevel >= 0) { + addr.labels[d++] = threadInfo[i].coreId; + } + if (threadLevel >= 0) { + addr.labels[d++] = threadInfo[i].threadId; + } + (*address2os)[i] = AddrUnsPair(addr, os); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + __kmp_affinity_gran_levels = 0; + if ((threadLevel >= 0) + && (__kmp_affinity_gran > affinity_gran_thread)) { + __kmp_affinity_gran_levels++; + } + if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { + __kmp_affinity_gran_levels++; + } + if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { + __kmp_affinity_gran_levels++; + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(threadInfo); + KMP_CPU_FREE(oldMask); + return depth; } + +// // Intel(R) microarchitecture code name Nehalem, Dunnington and later // architectures support a newer interface for specifying the x2APIC Ids, -// based on CPUID.B or CPUID.1F -/* - * CPUID.B or 1F, Input ECX (sub leaf # aka level number) - Bits Bits Bits Bits - 31-16 15-8 7-4 4-0 ----+-----------+--------------+-------------+-----------------+ -EAX| reserved | reserved | reserved | Bits to Shift | ----+-----------|--------------+-------------+-----------------| -EBX| reserved | Num logical processors at level (16 bits) | ----+-----------|--------------+-------------------------------| -ECX| reserved | Level Type | Level Number (8 bits) | ----+-----------+--------------+-------------------------------| -EDX| X2APIC ID (32 bits) | ----+----------------------------------------------------------+ -*/ - -enum { - INTEL_LEVEL_TYPE_INVALID = 0, // Package level - INTEL_LEVEL_TYPE_SMT = 1, - INTEL_LEVEL_TYPE_CORE = 2, - INTEL_LEVEL_TYPE_TILE = 3, - INTEL_LEVEL_TYPE_MODULE = 4, - INTEL_LEVEL_TYPE_DIE = 5, - INTEL_LEVEL_TYPE_LAST = 6, -}; +// based on cpuid leaf 11. +// +static int +__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, + kmp_i18n_id_t *const msg_id) +{ + kmp_cpuid buf; -struct cpuid_level_info_t { - unsigned level_type, mask, mask_width, nitems, cache_mask; -}; + *address2os = NULL; + *msg_id = kmp_i18n_null; -static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { - switch (intel_type) { - case INTEL_LEVEL_TYPE_INVALID: - return KMP_HW_SOCKET; - case INTEL_LEVEL_TYPE_SMT: - return KMP_HW_THREAD; - case INTEL_LEVEL_TYPE_CORE: - return KMP_HW_CORE; - case INTEL_LEVEL_TYPE_TILE: - return KMP_HW_TILE; - case INTEL_LEVEL_TYPE_MODULE: - return KMP_HW_MODULE; - case INTEL_LEVEL_TYPE_DIE: - return KMP_HW_DIE; - } - return KMP_HW_UNKNOWN; -} + // + // Check to see if cpuid leaf 11 is supported. + // + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax < 11) { + *msg_id = kmp_i18n_str_NoLeaf11Support; + return -1; + } + __kmp_x86_cpuid(11, 0, &buf); + if (buf.ebx == 0) { + *msg_id = kmp_i18n_str_NoLeaf11Support; + return -1; + } -// This function takes the topology leaf, a levels array to store the levels -// detected and a bitmap of the known levels. -// Returns the number of levels in the topology -static unsigned -__kmp_x2apicid_get_levels(int leaf, - cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], - kmp_uint64 known_levels) { - unsigned level, levels_index; - unsigned level_type, mask_width, nitems; - kmp_cpuid buf; - - // New algorithm has known topology layers act as highest unknown topology - // layers when unknown topology layers exist. - // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> - // are unknown topology layers, Then SMT will take the characteristics of - // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). - // This eliminates unknown portions of the topology while still keeping the - // correct structure. - level = levels_index = 0; - do { - __kmp_x86_cpuid(leaf, level, &buf); - level_type = __kmp_extract_bits<8, 15>(buf.ecx); - mask_width = __kmp_extract_bits<0, 4>(buf.eax); - nitems = __kmp_extract_bits<0, 15>(buf.ebx); - if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) - return 0; - - if (known_levels & (1ull << level_type)) { - // Add a new level to the topology - KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); - levels[levels_index].level_type = level_type; - levels[levels_index].mask_width = mask_width; - levels[levels_index].nitems = nitems; - levels_index++; - } else { - // If it is an unknown level, then logically move the previous layer up - if (levels_index > 0) { - levels[levels_index - 1].mask_width = mask_width; - levels[levels_index - 1].nitems = nitems; - } - } - level++; - } while (level_type != INTEL_LEVEL_TYPE_INVALID); - - // Set the masks to & with apicid - for (unsigned i = 0; i < levels_index; ++i) { - if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { - levels[i].mask = ~((-1) << levels[i].mask_width); - levels[i].cache_mask = (-1) << levels[i].mask_width; - for (unsigned j = 0; j < i; ++j) - levels[i].mask ^= levels[j].mask; - } else { - KMP_DEBUG_ASSERT(levels_index > 0); - levels[i].mask = (-1) << levels[i - 1].mask_width; - levels[i].cache_mask = 0; + // + // Find the number of levels in the machine topology. While we're at it, + // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will + // try to get more accurate values later by explicitly counting them, + // but get reasonable defaults now, in case we return early. + // + int level; + int threadLevel = -1; + int coreLevel = -1; + int pkgLevel = -1; + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; + + for (level = 0;; level++) { + if (level > 31) { + // + // FIXME: Hack for DPD200163180 + // + // If level is big then something went wrong -> exiting + // + // There could actually be 32 valid levels in the machine topology, + // but so far, the only machine we have seen which does not exit + // this loop before iteration 32 has fubar x2APIC settings. + // + // For now, just reject this case based upon loop trip count. + // + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + __kmp_x86_cpuid(11, level, &buf); + if (buf.ebx == 0) { + if (pkgLevel < 0) { + // + // Will infer nPackages from __kmp_xproc + // + pkgLevel = level; + level++; + } + break; + } + int kind = (buf.ecx >> 8) & 0xff; + if (kind == 1) { + // + // SMT level + // + threadLevel = level; + coreLevel = -1; + pkgLevel = -1; + __kmp_nThreadsPerCore = buf.ebx & 0xff; + if (__kmp_nThreadsPerCore == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + else if (kind == 2) { + // + // core level + // + coreLevel = level; + pkgLevel = -1; + nCoresPerPkg = buf.ebx & 0xff; + if (nCoresPerPkg == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + else { + if (level <= 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + if (pkgLevel >= 0) { + continue; + } + pkgLevel = level; + nPackages = buf.ebx & 0xff; + if (nPackages == 0) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return -1; + } + } + } + int depth = level; + + // + // In the above loop, "level" was counted from the finest level (usually + // thread) to the coarsest. The caller expects that we will place the + // labels in (*address2os)[].first.labels[] in the inverse order, so + // we need to invert the vars saying which level means what. + // + if (threadLevel >= 0) { + threadLevel = depth - threadLevel - 1; + } + if (coreLevel >= 0) { + coreLevel = depth - coreLevel - 1; + } + KMP_DEBUG_ASSERT(pkgLevel >= 0); + pkgLevel = depth - pkgLevel - 1; + + // + // The algorithm used starts by setting the affinity to each available + // thread and retrieving info from the cpuid instruction, so if we are + // not capable of calling __kmp_get_system_affinity() and + // _kmp_get_system_affinity(), then we need to do something else - use + // the defaults that we calculated from issuing cpuid without binding + // to each proc. + // + if (! KMP_AFFINITY_CAPABLE()) + { + // + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + // + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (__kmp_affinity_uniform_topology()) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + return 0; + } + + // + // + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), + // even if __kmp_affinity_type = affinity_none. + // + + // + // Save the affinity mask for the current thread. + // + kmp_affin_mask_t *oldMask; + KMP_CPU_ALLOC(oldMask); + __kmp_get_system_affinity(oldMask, TRUE); + + // + // Allocate the data structure to be returned. + // + AddrUnsPair *retval = (AddrUnsPair *) + __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); + + // + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + // + unsigned int proc; + int nApics = 0; + KMP_CPU_SET_ITERATE(proc, fullMask) { + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(proc, fullMask)) { + continue; + } + KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); + + __kmp_affinity_bind_thread(proc); + + // + // Extrach the labels for each level in the machine topology map + // from the Apic ID. + // + Address addr(depth); + int prev_shift = 0; + + for (level = 0; level < depth; level++) { + __kmp_x86_cpuid(11, level, &buf); + unsigned apicId = buf.edx; + if (buf.ebx == 0) { + if (level != depth - 1) { + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } + addr.labels[depth - level - 1] = apicId >> prev_shift; + level++; + break; + } + int shift = buf.eax & 0x1f; + int mask = (1 << shift) - 1; + addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; + prev_shift = shift; + } + if (level != depth) { + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return -1; + } + + retval[nApics] = AddrUnsPair(addr, proc); + nApics++; + } + + // + // We've collected all the info we need. + // Restore the old affinity mask for this thread. + // + __kmp_set_system_affinity(oldMask, TRUE); + + // + // If there's only one thread context to bind to, return now. + // + KMP_ASSERT(nApics > 0); + if (nApics == 1) { + __kmp_ncores = nPackages = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Form an Address object which only includes the package level. + // + Address addr(1); + addr.labels[0] = retval[0].first.labels[pkgLevel]; + retval[0].first = addr; + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); + } + + *address2os = retval; + KMP_CPU_FREE(oldMask); + return 1; + } + + // + // Sort the table by physical Id. + // + qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); + + // + // Find the radix at each of the levels. + // + unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); + for (level = 0; level < depth; level++) { + totals[level] = 1; + maxCt[level] = 1; + counts[level] = 1; + last[level] = retval[0].first.labels[level]; } - } - return levels_index; -} -static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { - - cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; - kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; - unsigned levels_index; - kmp_cpuid buf; - kmp_uint64 known_levels; - int topology_leaf, highest_leaf, apic_id; - int num_leaves; - static int leaves[] = {0, 0}; - - kmp_i18n_id_t leaf_message_id; - - KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); - - *msg_id = kmp_i18n_null; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); - } - - // Figure out the known topology levels - known_levels = 0ull; - for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { - if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { - known_levels |= (1ull << i); - } - } - - // Get the highest cpuid leaf supported - __kmp_x86_cpuid(0, 0, &buf); - highest_leaf = buf.eax; - - // If a specific topology method was requested, only allow that specific leaf - // otherwise, try both leaves 31 and 11 in that order - num_leaves = 0; - if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { - num_leaves = 1; - leaves[0] = 11; - leaf_message_id = kmp_i18n_str_NoLeaf11Support; - } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { - num_leaves = 1; - leaves[0] = 31; - leaf_message_id = kmp_i18n_str_NoLeaf31Support; - } else { - num_leaves = 2; - leaves[0] = 31; - leaves[1] = 11; - leaf_message_id = kmp_i18n_str_NoLeaf11Support; - } - - // Check to see if cpuid leaf 31 or 11 is supported. - __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; - topology_leaf = -1; - for (int i = 0; i < num_leaves; ++i) { - int leaf = leaves[i]; - if (highest_leaf < leaf) - continue; - __kmp_x86_cpuid(leaf, 0, &buf); - if (buf.ebx == 0) - continue; - topology_leaf = leaf; - levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); - if (levels_index == 0) - continue; - break; - } - if (topology_leaf == -1 || levels_index == 0) { - *msg_id = leaf_message_id; - return false; - } - KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); - - // The algorithm used starts by setting the affinity to each available thread - // and retrieving info from the cpuid instruction, so if we are not capable of - // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then - // we need to do something else - use the defaults that we calculated from - // issuing cpuid without binding to each proc. - if (!KMP_AFFINITY_CAPABLE()) { - // Hack to try and infer the machine topology using only the data - // available from cpuid on the current thread, and __kmp_xproc. - KMP_ASSERT(__kmp_affinity_type == affinity_none); - for (unsigned i = 0; i < levels_index; ++i) { - if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { - __kmp_nThreadsPerCore = levels[i].nitems; - } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { - nCoresPerPkg = levels[i].nitems; - } - } - __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - return true; - } - - // Allocate the data structure to be returned. - int depth = levels_index; - for (int i = depth - 1, j = 0; i >= 0; --i, ++j) - types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); - __kmp_topology = - kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); - - // Insert equivalent cache types if they exist - kmp_cache_info_t cache_info; - for (size_t i = 0; i < cache_info.get_depth(); ++i) { - const kmp_cache_info_t::info_t &info = cache_info[i]; - unsigned cache_mask = info.mask; - unsigned cache_level = info.level; - for (unsigned j = 0; j < levels_index; ++j) { - unsigned hw_cache_mask = levels[j].cache_mask; - kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); - if (hw_cache_mask == cache_mask && j < levels_index - 1) { - kmp_hw_t type = - __kmp_intel_type_2_topology_type(levels[j + 1].level_type); - __kmp_topology->set_equivalent_type(cache_type, type); - } - } - } - - // From here on, we can assume that it is safe to call - // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if - // __kmp_affinity_type = affinity_none. - - // Save the affinity mask for the current thread. - kmp_affinity_raii_t previous_affinity; - - // Run through each of the available contexts, binding the current thread - // to it, and obtaining the pertinent information using the cpuid instr. - unsigned int proc; - int hw_thread_index = 0; - KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { - cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; - unsigned my_levels_index; - - // Skip this proc if it is not included in the machine model. - if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { - continue; - } - KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); - - __kmp_affinity_dispatch->bind_thread(proc); - - // New algorithm - __kmp_x86_cpuid(topology_leaf, 0, &buf); - apic_id = buf.edx; - kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); - my_levels_index = - __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); - if (my_levels_index == 0 || my_levels_index != levels_index) { - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return false; - } - hw_thread.clear(); - hw_thread.os_id = proc; - // Put in topology information - for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { - hw_thread.ids[idx] = apic_id & my_levels[j].mask; - if (j > 0) { - hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; - } - } - hw_thread_index++; - } - KMP_ASSERT(hw_thread_index > 0); - __kmp_topology->sort_ids(); - if (!__kmp_topology->check_ids()) { - kmp_topology_t::deallocate(__kmp_topology); - __kmp_topology = nullptr; - *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; - return false; - } - return true; + // + // From here on, the iteration variable "level" runs from the finest + // level to the coarsest, i.e. we iterate forward through + // (*address2os)[].first.labels[] - in the previous loops, we iterated + // backwards. + // + for (proc = 1; (int)proc < nApics; proc++) { + int level; + for (level = 0; level < depth; level++) { + if (retval[proc].first.labels[level] != last[level]) { + int j; + for (j = level + 1; j < depth; j++) { + totals[j]++; + counts[j] = 1; + // The line below causes printing incorrect topology information + // in case the max value for some level (maxCt[level]) is encountered earlier than + // some less value while going through the array. + // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2 + // whereas it must be 4. + // TODO!!! Check if it can be commented safely + //maxCt[j] = 1; + last[j] = retval[proc].first.labels[j]; + } + totals[level]++; + counts[level]++; + if (counts[level] > maxCt[level]) { + maxCt[level] = counts[level]; + } + last[level] = retval[proc].first.labels[level]; + break; + } + else if (level == depth - 1) { + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; + return -1; + } + } + } + + // + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return if affinity is not enabled. + // + if (threadLevel >= 0) { + __kmp_nThreadsPerCore = maxCt[threadLevel]; + } + else { + __kmp_nThreadsPerCore = 1; + } + nPackages = totals[pkgLevel]; + + if (coreLevel >= 0) { + __kmp_ncores = totals[coreLevel]; + nCoresPerPkg = maxCt[coreLevel]; + } + else { + __kmp_ncores = nPackages; + nCoresPerPkg = 1; + } + + // + // Check to see if the machine topology is uniform + // + unsigned prod = maxCt[0]; + for (level = 1; level < depth; level++) { + prod *= maxCt[level]; + } + bool uniform = (prod == totals[level - 1]); + + // + // Print the machine topology summary. + // + if (__kmp_affinity_verbose) { + char mask[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); + + KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + + __kmp_str_buf_print(&buf, "%d", totals[0]); + for (level = 1; level <= pkgLevel; level++) { + __kmp_str_buf_print(&buf, " x %d", maxCt[level]); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + + __kmp_str_buf_free(&buf); + } + + if (__kmp_affinity_type == affinity_none) { + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + __kmp_free(retval); + KMP_CPU_FREE(oldMask); + return 0; + } + + // + // Find any levels with radiix 1, and remove them from the map + // (except for the package level). + // + int new_depth = 0; + for (level = 0; level < depth; level++) { + if ((maxCt[level] == 1) && (level != pkgLevel)) { + continue; + } + new_depth++; + } + + // + // If we are removing any levels, allocate a new vector to return, + // and copy the relevant information to it. + // + if (new_depth != depth) { + AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( + sizeof(AddrUnsPair) * nApics); + for (proc = 0; (int)proc < nApics; proc++) { + Address addr(new_depth); + new_retval[proc] = AddrUnsPair(addr, retval[proc].second); + } + int new_level = 0; + int newPkgLevel = -1; + int newCoreLevel = -1; + int newThreadLevel = -1; + int i; + for (level = 0; level < depth; level++) { + if ((maxCt[level] == 1) + && (level != pkgLevel)) { + // + // Remove this level. Never remove the package level + // + continue; + } + if (level == pkgLevel) { + newPkgLevel = level; + } + if (level == coreLevel) { + newCoreLevel = level; + } + if (level == threadLevel) { + newThreadLevel = level; + } + for (proc = 0; (int)proc < nApics; proc++) { + new_retval[proc].first.labels[new_level] + = retval[proc].first.labels[level]; + } + new_level++; + } + + __kmp_free(retval); + retval = new_retval; + depth = new_depth; + pkgLevel = newPkgLevel; + coreLevel = newCoreLevel; + threadLevel = newThreadLevel; + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + __kmp_affinity_gran_levels = 0; + if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { + __kmp_affinity_gran_levels++; + } + if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { + __kmp_affinity_gran_levels++; + } + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels++; + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(last); + __kmp_free(maxCt); + __kmp_free(counts); + __kmp_free(totals); + KMP_CPU_FREE(oldMask); + *address2os = retval; + return depth; } -#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ -#define osIdIndex 0 -#define threadIdIndex 1 -#define coreIdIndex 2 -#define pkgIdIndex 3 -#define nodeIdIndex 4 + +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + + +#define osIdIndex 0 +#define threadIdIndex 1 +#define coreIdIndex 2 +#define pkgIdIndex 3 +#define nodeIdIndex 4 typedef unsigned *ProcCpuInfo; static unsigned maxIndex = pkgIdIndex; -static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, - const void *b) { - unsigned i; - const unsigned *aa = *(unsigned *const *)a; - const unsigned *bb = *(unsigned *const *)b; - for (i = maxIndex;; i--) { - if (aa[i] < bb[i]) - return -1; - if (aa[i] > bb[i]) - return 1; - if (i == osIdIndex) - break; - } - return 0; -} - -#if KMP_USE_HIER_SCHED -// Set the array sizes for the hierarchy layers -static void __kmp_dispatch_set_hierarchy_values() { - // Set the maximum number of L1's to number of cores - // Set the maximum number of L2's to to either number of cores / 2 for - // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing - // Or the number of cores for Intel(R) Xeon(R) processors - // Set the maximum number of NUMA nodes and L3's to number of packages - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = - nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; -#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ - KMP_MIC_SUPPORTED - if (__kmp_mic_type >= mic3) - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; - else -#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; - __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; - // Set the number of threads per unit - // Number of hardware threads per L1/L2/L3/NUMA/LOOP - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = - __kmp_nThreadsPerCore; -#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ - KMP_MIC_SUPPORTED - if (__kmp_mic_type >= mic3) - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = - 2 * __kmp_nThreadsPerCore; - else -#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = - __kmp_nThreadsPerCore; - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = - nCoresPerPkg * __kmp_nThreadsPerCore; - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = - nCoresPerPkg * __kmp_nThreadsPerCore; - __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = - nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; -} -// Return the index into the hierarchy for this tid and layer type (L1, L2, etc) -// i.e., this thread's L1 or this thread's L2, etc. -int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { - int index = type + 1; - int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; - KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); - if (type == kmp_hier_layer_e::LAYER_THREAD) - return tid; - else if (type == kmp_hier_layer_e::LAYER_LOOP) +static int +__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) +{ + const unsigned *aa = (const unsigned *)a; + const unsigned *bb = (const unsigned *)b; + if (aa[osIdIndex] < bb[osIdIndex]) return -1; + if (aa[osIdIndex] > bb[osIdIndex]) return 1; return 0; - KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); - if (tid >= num_hw_threads) - tid = tid % num_hw_threads; - return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; -} +}; -// Return the number of t1's per t2 -int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { - int i1 = t1 + 1; - int i2 = t2 + 1; - KMP_DEBUG_ASSERT(i1 <= i2); - KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); - KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); - KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); - // (nthreads/t2) / (nthreads/t1) = t1 / t2 - return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; -} -#endif // KMP_USE_HIER_SCHED - -static inline const char *__kmp_cpuinfo_get_filename() { - const char *filename; - if (__kmp_cpuinfo_file != nullptr) - filename = __kmp_cpuinfo_file; - else - filename = "/proc/cpuinfo"; - return filename; -} -static inline const char *__kmp_cpuinfo_get_envvar() { - const char *envvar = nullptr; - if (__kmp_cpuinfo_file != nullptr) - envvar = "KMP_CPUINFO_FILE"; - return envvar; +static int +__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) +{ + unsigned i; + const unsigned *aa = *((const unsigned **)a); + const unsigned *bb = *((const unsigned **)b); + for (i = maxIndex; ; i--) { + if (aa[i] < bb[i]) return -1; + if (aa[i] > bb[i]) return 1; + if (i == osIdIndex) break; + } + return 0; } + +// // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the // affinity map. -static bool __kmp_affinity_create_cpuinfo_map(int *line, - kmp_i18n_id_t *const msg_id) { - const char *filename = __kmp_cpuinfo_get_filename(); - const char *envvar = __kmp_cpuinfo_get_envvar(); - *msg_id = kmp_i18n_null; - - if (__kmp_affinity_verbose) { - KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); - } - - kmp_safe_raii_file_t f(filename, "r", envvar); - - // Scan of the file, and count the number of "processor" (osId) fields, - // and find the highest value of <n> for a node_<n> field. - char buf[256]; - unsigned num_records = 0; - while (!feof(f)) { - buf[sizeof(buf) - 1] = 1; - if (!fgets(buf, sizeof(buf), f)) { - // Read errors presumably because of EOF - break; - } - - char s1[] = "processor"; - if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { - num_records++; - continue; - } - - // FIXME - this will match "node_<n> <garbage>" - unsigned level; - if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { - // validate the input fisrt: - if (level > (unsigned)__kmp_xproc) { // level is too big - level = __kmp_xproc; - } - if (nodeIdIndex + level >= maxIndex) { - maxIndex = nodeIdIndex + level; - } - continue; - } - } - - // Check for empty file / no valid processor records, or too many. The number - // of records can't exceed the number of valid bits in the affinity mask. - if (num_records == 0) { - *msg_id = kmp_i18n_str_NoProcRecords; - return false; - } - if (num_records > (unsigned)__kmp_xproc) { - *msg_id = kmp_i18n_str_TooManyProcRecords; - return false; - } - - // Set the file pointer back to the beginning, so that we can scan the file - // again, this time performing a full parse of the data. Allocate a vector of - // ProcCpuInfo object, where we will place the data. Adding an extra element - // at the end allows us to remove a lot of extra checks for termination - // conditions. - if (fseek(f, 0, SEEK_SET) != 0) { - *msg_id = kmp_i18n_str_CantRewindCpuinfo; - return false; - } - - // Allocate the array of records to store the proc info in. The dummy - // element at the end makes the logic in filling them out easier to code. - unsigned **threadInfo = - (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); - unsigned i; - for (i = 0; i <= num_records; i++) { - threadInfo[i] = - (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); - } - -#define CLEANUP_THREAD_INFO \ - for (i = 0; i <= num_records; i++) { \ - __kmp_free(threadInfo[i]); \ - } \ - __kmp_free(threadInfo); - - // A value of UINT_MAX means that we didn't find the field - unsigned __index; - -#define INIT_PROC_INFO(p) \ - for (__index = 0; __index <= maxIndex; __index++) { \ - (p)[__index] = UINT_MAX; \ - } - - for (i = 0; i <= num_records; i++) { - INIT_PROC_INFO(threadInfo[i]); - } - - unsigned num_avail = 0; - *line = 0; - while (!feof(f)) { - // Create an inner scoping level, so that all the goto targets at the end of - // the loop appear in an outer scoping level. This avoids warnings about - // jumping past an initialization to a target in the same block. - { - buf[sizeof(buf) - 1] = 1; - bool long_line = false; - if (!fgets(buf, sizeof(buf), f)) { - // Read errors presumably because of EOF - // If there is valid data in threadInfo[num_avail], then fake - // a blank line in ensure that the last address gets parsed. - bool valid = false; - for (i = 0; i <= maxIndex; i++) { - if (threadInfo[num_avail][i] != UINT_MAX) { - valid = true; - } - } - if (!valid) { - break; - } - buf[0] = 0; - } else if (!buf[sizeof(buf) - 1]) { - // The line is longer than the buffer. Set a flag and don't - // emit an error if we were going to ignore the line, anyway. - long_line = true; - -#define CHECK_LINE \ - if (long_line) { \ - CLEANUP_THREAD_INFO; \ - *msg_id = kmp_i18n_str_LongLineCpuinfo; \ - return false; \ - } - } - (*line)++; - - char s1[] = "processor"; - if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s1) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) - goto no_val; - if (threadInfo[num_avail][osIdIndex] != UINT_MAX) -#if KMP_ARCH_AARCH64 - // Handle the old AArch64 /proc/cpuinfo layout differently, - // it contains all of the 'processor' entries listed in a - // single 'Processor' section, therefore the normal looking - // for duplicates in that section will always fail. - num_avail++; -#else - goto dup_field; -#endif - threadInfo[num_avail][osIdIndex] = val; -#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) - char path[256]; - KMP_SNPRINTF( - path, sizeof(path), - "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", - threadInfo[num_avail][osIdIndex]); - __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); - - KMP_SNPRINTF(path, sizeof(path), - "/sys/devices/system/cpu/cpu%u/topology/core_id", - threadInfo[num_avail][osIdIndex]); - __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); - continue; +// +static int +__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line, + kmp_i18n_id_t *const msg_id, FILE *f) +{ + *address2os = NULL; + *msg_id = kmp_i18n_null; + + // + // Scan of the file, and count the number of "processor" (osId) fields, + // and find the highest value of <n> for a node_<n> field. + // + char buf[256]; + unsigned num_records = 0; + while (! feof(f)) { + buf[sizeof(buf) - 1] = 1; + if (! fgets(buf, sizeof(buf), f)) { + // + // Read errors presumably because of EOF + // + break; + } + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + num_records++; + continue; + } + + // + // FIXME - this will match "node_<n> <garbage>" + // + unsigned level; + if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { + if (nodeIdIndex + level >= maxIndex) { + maxIndex = nodeIdIndex + level; + } + continue; + } + } + + // + // Check for empty file / no valid processor records, or too many. + // The number of records can't exceed the number of valid bits in the + // affinity mask. + // + if (num_records == 0) { + *line = 0; + *msg_id = kmp_i18n_str_NoProcRecords; + return -1; + } + if (num_records > (unsigned)__kmp_xproc) { + *line = 0; + *msg_id = kmp_i18n_str_TooManyProcRecords; + return -1; + } + + // + // Set the file pointer back to the begginning, so that we can scan the + // file again, this time performing a full parse of the data. + // Allocate a vector of ProcCpuInfo object, where we will place the data. + // Adding an extra element at the end allows us to remove a lot of extra + // checks for termination conditions. + // + if (fseek(f, 0, SEEK_SET) != 0) { + *line = 0; + *msg_id = kmp_i18n_str_CantRewindCpuinfo; + return -1; + } + + // + // Allocate the array of records to store the proc info in. The dummy + // element at the end makes the logic in filling them out easier to code. + // + unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) + * sizeof(unsigned *)); + unsigned i; + for (i = 0; i <= num_records; i++) { + threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + } + +#define CLEANUP_THREAD_INFO \ + for (i = 0; i <= num_records; i++) { \ + __kmp_free(threadInfo[i]); \ + } \ + __kmp_free(threadInfo); + + // + // A value of UINT_MAX means that we didn't find the field + // + unsigned __index; + +#define INIT_PROC_INFO(p) \ + for (__index = 0; __index <= maxIndex; __index++) { \ + (p)[__index] = UINT_MAX; \ + } + + for (i = 0; i <= num_records; i++) { + INIT_PROC_INFO(threadInfo[i]); + } + + unsigned num_avail = 0; + *line = 0; + while (! feof(f)) { + // + // Create an inner scoping level, so that all the goto targets at the + // end of the loop appear in an outer scoping level. This avoids + // warnings about jumping past an initialization to a target in the + // same block. + // + { + buf[sizeof(buf) - 1] = 1; + bool long_line = false; + if (! fgets(buf, sizeof(buf), f)) { + // + // Read errors presumably because of EOF + // + // If there is valid data in threadInfo[num_avail], then fake + // a blank line in ensure that the last address gets parsed. + // + bool valid = false; + for (i = 0; i <= maxIndex; i++) { + if (threadInfo[num_avail][i] != UINT_MAX) { + valid = true; + } + } + if (! valid) { + break; + } + buf[0] = 0; + } else if (!buf[sizeof(buf) - 1]) { + // + // The line is longer than the buffer. Set a flag and don't + // emit an error if we were going to ignore the line, anyway. + // + long_line = true; + +#define CHECK_LINE \ + if (long_line) { \ + CLEANUP_THREAD_INFO; \ + *msg_id = kmp_i18n_str_LongLineCpuinfo; \ + return -1; \ + } + } + (*line)++; + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s1) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][osIdIndex] = val; +#if KMP_OS_LINUX && USE_SYSFS_INFO + char path[256]; + KMP_SNPRINTF(path, sizeof(path), + "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", + threadInfo[num_avail][osIdIndex]); + __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); + + KMP_SNPRINTF(path, sizeof(path), + "/sys/devices/system/cpu/cpu%u/topology/core_id", + threadInfo[num_avail][osIdIndex]); + __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); + continue; #else - } - char s2[] = "physical id"; - if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s2) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) - goto no_val; - if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) - goto dup_field; - threadInfo[num_avail][pkgIdIndex] = val; - continue; - } - char s3[] = "core id"; - if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s3) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) - goto no_val; - if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) - goto dup_field; - threadInfo[num_avail][coreIdIndex] = val; - continue; + } + char s2[] = "physical id"; + if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s2) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][pkgIdIndex] = val; + continue; + } + char s3[] = "core id"; + if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s3) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][coreIdIndex] = val; + continue; #endif // KMP_OS_LINUX && USE_SYSFS_INFO - } - char s4[] = "thread id"; - if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s4) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) - goto no_val; - if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) - goto dup_field; - threadInfo[num_avail][threadIdIndex] = val; - continue; - } - unsigned level; - if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s4) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) - goto no_val; - KMP_ASSERT(nodeIdIndex + level <= maxIndex); - if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) - goto dup_field; - threadInfo[num_avail][nodeIdIndex + level] = val; - continue; - } - - // We didn't recognize the leading token on the line. There are lots of - // leading tokens that we don't recognize - if the line isn't empty, go on - // to the next line. - if ((*buf != 0) && (*buf != '\n')) { - // If the line is longer than the buffer, read characters - // until we find a newline. - if (long_line) { - int ch; - while (((ch = fgetc(f)) != EOF) && (ch != '\n')) - ; + } + char s4[] = "thread id"; + if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; + if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; + threadInfo[num_avail][threadIdIndex] = val; + continue; + } + unsigned level; + if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; + KMP_ASSERT(nodeIdIndex + level <= maxIndex); + if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; + threadInfo[num_avail][nodeIdIndex + level] = val; + continue; + } + + // + // We didn't recognize the leading token on the line. + // There are lots of leading tokens that we don't recognize - + // if the line isn't empty, go on to the next line. + // + if ((*buf != 0) && (*buf != '\n')) { + // + // If the line is longer than the buffer, read characters + // until we find a newline. + // + if (long_line) { + int ch; + while (((ch = fgetc(f)) != EOF) && (ch != '\n')); + } + continue; + } + + // + // A newline has signalled the end of the processor record. + // Check that there aren't too many procs specified. + // + if ((int)num_avail == __kmp_xproc) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_TooManyEntries; + return -1; + } + + // + // Check for missing fields. The osId field must be there, and we + // currently require that the physical id field is specified, also. + // + if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingProcField; + return -1; + } + if (threadInfo[0][pkgIdIndex] == UINT_MAX) { + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingPhysicalIDField; + return -1; + } + + // + // Skip this proc if it is not included in the machine model. + // + if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) { + INIT_PROC_INFO(threadInfo[num_avail]); + continue; + } + + // + // We have a successful parse of this proc's info. + // Increment the counter, and prepare for the next proc. + // + num_avail++; + KMP_ASSERT(num_avail <= num_records); + INIT_PROC_INFO(threadInfo[num_avail]); } continue; - } - // A newline has signalled the end of the processor record. - // Check that there aren't too many procs specified. - if ((int)num_avail == __kmp_xproc) { + no_val: CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_TooManyEntries; - return false; - } + *msg_id = kmp_i18n_str_MissingValCpuinfo; + return -1; - // Check for missing fields. The osId field must be there, and we - // currently require that the physical id field is specified, also. - if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { + dup_field: CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingProcField; - return false; - } - if (threadInfo[0][pkgIdIndex] == UINT_MAX) { + *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; + return -1; + } + *line = 0; + +# if KMP_MIC && REDUCE_TEAM_SIZE + unsigned teamSize = 0; +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + // check for num_records == __kmp_xproc ??? + + // + // If there's only one thread context to bind to, form an Address object + // with depth 1 and return immediately (or, if affinity is off, set + // address2os to NULL and return). + // + // If it is configured to omit the package level when there is only a + // single package, the logic at the end of this routine won't work if + // there is only a single thread - it would try to form an Address + // object with depth 0. + // + KMP_ASSERT(num_avail > 0); + KMP_ASSERT(num_avail <= num_records); + if (num_avail == 1) { + __kmp_ncores = 1; + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; + if (__kmp_affinity_verbose) { + if (! KMP_AFFINITY_CAPABLE()) { + KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } + else { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + fullMask); + KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } + int index; + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + __kmp_str_buf_print(&buf, "1"); + for (index = maxIndex - 1; index > pkgIdIndex; index--) { + __kmp_str_buf_print(&buf, " x 1"); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); + __kmp_str_buf_free(&buf); + } + + if (__kmp_affinity_type == affinity_none) { + CLEANUP_THREAD_INFO; + return 0; + } + + *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); + Address addr(1); + addr.labels[0] = threadInfo[0][pkgIdIndex]; + (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); + + if (__kmp_affinity_gran_levels < 0) { + __kmp_affinity_gran_levels = 0; + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); + } + CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingPhysicalIDField; - return false; - } - - // Skip this proc if it is not included in the machine model. - if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], - __kmp_affin_fullMask)) { - INIT_PROC_INFO(threadInfo[num_avail]); - continue; - } + return 1; + } - // We have a successful parse of this proc's info. - // Increment the counter, and prepare for the next proc. - num_avail++; - KMP_ASSERT(num_avail <= num_records); - INIT_PROC_INFO(threadInfo[num_avail]); + // + // Sort the threadInfo table by physical Id. + // + qsort(threadInfo, num_avail, sizeof(*threadInfo), + __kmp_affinity_cmp_ProcCpuInfo_phys_id); + + // + // The table is now sorted by pkgId / coreId / threadId, but we really + // don't know the radix of any of the fields. pkgId's may be sparsely + // assigned among the chips on a system. Although coreId's are usually + // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore + // (or the total # packages) are at this point - we want to determine + // that now. We only have an upper bound on the first two figures. + // + unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) + * sizeof(unsigned)); + + bool assign_thread_ids = false; + unsigned threadIdCt; + unsigned index; + + restart_radix_check: + threadIdCt = 0; + + // + // Initialize the counter arrays with data from threadInfo[0]. + // + if (assign_thread_ids) { + if (threadInfo[0][threadIdIndex] == UINT_MAX) { + threadInfo[0][threadIdIndex] = threadIdCt++; + } + else if (threadIdCt <= threadInfo[0][threadIdIndex]) { + threadIdCt = threadInfo[0][threadIdIndex] + 1; + } + } + for (index = 0; index <= maxIndex; index++) { + counts[index] = 1; + maxCt[index] = 1; + totals[index] = 1; + lastId[index] = threadInfo[0][index];; } - continue; - no_val: - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingValCpuinfo; - return false; + // + // Run through the rest of the OS procs. + // + for (i = 1; i < num_avail; i++) { + // + // Find the most significant index whose id differs + // from the id for the previous OS proc. + // + for (index = maxIndex; index >= threadIdIndex; index--) { + if (assign_thread_ids && (index == threadIdIndex)) { + // + // Auto-assign the thread id field if it wasn't specified. + // + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } - dup_field: - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; - return false; - } - *line = 0; - -#if KMP_MIC && REDUCE_TEAM_SIZE - unsigned teamSize = 0; -#endif // KMP_MIC && REDUCE_TEAM_SIZE - - // check for num_records == __kmp_xproc ??? - - // If it is configured to omit the package level when there is only a single - // package, the logic at the end of this routine won't work if there is only a - // single thread - KMP_ASSERT(num_avail > 0); - KMP_ASSERT(num_avail <= num_records); - - // Sort the threadInfo table by physical Id. - qsort(threadInfo, num_avail, sizeof(*threadInfo), - __kmp_affinity_cmp_ProcCpuInfo_phys_id); - - // The table is now sorted by pkgId / coreId / threadId, but we really don't - // know the radix of any of the fields. pkgId's may be sparsely assigned among - // the chips on a system. Although coreId's are usually assigned - // [0 .. coresPerPkg-1] and threadId's are usually assigned - // [0..threadsPerCore-1], we don't want to make any such assumptions. - // - // For that matter, we don't know what coresPerPkg and threadsPerCore (or the - // total # packages) are at this point - we want to determine that now. We - // only have an upper bound on the first two figures. - unsigned *counts = - (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); - unsigned *maxCt = - (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); - unsigned *totals = - (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); - unsigned *lastId = - (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); - - bool assign_thread_ids = false; - unsigned threadIdCt; - unsigned index; - -restart_radix_check: - threadIdCt = 0; - - // Initialize the counter arrays with data from threadInfo[0]. - if (assign_thread_ids) { - if (threadInfo[0][threadIdIndex] == UINT_MAX) { - threadInfo[0][threadIdIndex] = threadIdCt++; - } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { - threadIdCt = threadInfo[0][threadIdIndex] + 1; - } - } - for (index = 0; index <= maxIndex; index++) { - counts[index] = 1; - maxCt[index] = 1; - totals[index] = 1; - lastId[index] = threadInfo[0][index]; - ; - } - - // Run through the rest of the OS procs. - for (i = 1; i < num_avail; i++) { - // Find the most significant index whose id differs from the id for the - // previous OS proc. - for (index = maxIndex; index >= threadIdIndex; index--) { - if (assign_thread_ids && (index == threadIdIndex)) { - // Auto-assign the thread id field if it wasn't specified. - if (threadInfo[i][threadIdIndex] == UINT_MAX) { - threadInfo[i][threadIdIndex] = threadIdCt++; - } - // Apparently the thread id field was specified for some entries and not - // others. Start the thread id counter off at the next higher thread id. - else if (threadIdCt <= threadInfo[i][threadIdIndex]) { - threadIdCt = threadInfo[i][threadIdIndex] + 1; - } - } - if (threadInfo[i][index] != lastId[index]) { - // Run through all indices which are less significant, and reset the - // counts to 1. At all levels up to and including index, we need to - // increment the totals and record the last id. - unsigned index2; - for (index2 = threadIdIndex; index2 < index; index2++) { - totals[index2]++; - if (counts[index2] > maxCt[index2]) { - maxCt[index2] = counts[index2]; - } - counts[index2] = 1; - lastId[index2] = threadInfo[i][index2]; - } - counts[index]++; - totals[index]++; - lastId[index] = threadInfo[i][index]; - - if (assign_thread_ids && (index > threadIdIndex)) { - -#if KMP_MIC && REDUCE_TEAM_SIZE - // The default team size is the total #threads in the machine - // minus 1 thread for every core that has 3 or more threads. - teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); -#endif // KMP_MIC && REDUCE_TEAM_SIZE - - // Restart the thread counter, as we are on a new core. - threadIdCt = 0; - - // Auto-assign the thread id field if it wasn't specified. - if (threadInfo[i][threadIdIndex] == UINT_MAX) { - threadInfo[i][threadIdIndex] = threadIdCt++; - } - - // Apparently the thread id field was specified for some entries and - // not others. Start the thread id counter off at the next higher - // thread id. - else if (threadIdCt <= threadInfo[i][threadIdIndex]) { - threadIdCt = threadInfo[i][threadIdIndex] + 1; - } + // + // Aparrently the thread id field was specified for some + // entries and not others. Start the thread id counter + // off at the next higher thread id. + // + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } + } + if (threadInfo[i][index] != lastId[index]) { + // + // Run through all indices which are less significant, + // and reset the counts to 1. + // + // At all levels up to and including index, we need to + // increment the totals and record the last id. + // + unsigned index2; + for (index2 = threadIdIndex; index2 < index; index2++) { + totals[index2]++; + if (counts[index2] > maxCt[index2]) { + maxCt[index2] = counts[index2]; + } + counts[index2] = 1; + lastId[index2] = threadInfo[i][index2]; + } + counts[index]++; + totals[index]++; + lastId[index] = threadInfo[i][index]; + + if (assign_thread_ids && (index > threadIdIndex)) { + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + // + teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + // + // Restart the thread counter, as we are on a new core. + // + threadIdCt = 0; + + // + // Auto-assign the thread id field if it wasn't specified. + // + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } + + // + // Aparrently the thread id field was specified for some + // entries and not others. Start the thread id counter + // off at the next higher thread id. + // + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } + } + break; + } + } + if (index < threadIdIndex) { + // + // If thread ids were specified, it is an error if they are not + // unique. Also, check that we waven't already restarted the + // loop (to be safe - shouldn't need to). + // + if ((threadInfo[i][threadIdIndex] != UINT_MAX) + || assign_thread_ids) { + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; + return -1; + } + + // + // If the thread ids were not specified and we see entries + // entries that are duplicates, start the loop over and + // assign the thread ids manually. + // + assign_thread_ids = true; + goto restart_radix_check; + } + } + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + // + teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + for (index = threadIdIndex; index <= maxIndex; index++) { + if (counts[index] > maxCt[index]) { + maxCt[index] = counts[index]; } - break; - } } - if (index < threadIdIndex) { - // If thread ids were specified, it is an error if they are not unique. - // Also, check that we waven't already restarted the loop (to be safe - - // shouldn't need to). - if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { + + __kmp_nThreadsPerCore = maxCt[threadIdIndex]; + nCoresPerPkg = maxCt[coreIdIndex]; + nPackages = totals[pkgIdIndex]; + + // + // Check to see if the machine topology is uniform + // + unsigned prod = totals[maxIndex]; + for (index = threadIdIndex; index < maxIndex; index++) { + prod *= maxCt[index]; + } + bool uniform = (prod == totals[threadIdIndex]); + + // + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, + // nCoresPerPkg, & nPackages. Make sure all these vars are set + // correctly, and return now if affinity is not enabled. + // + __kmp_ncores = totals[coreIdIndex]; + + if (__kmp_affinity_verbose) { + if (! KMP_AFFINITY_CAPABLE()) { + KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + } + else { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); + KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); + if (__kmp_affinity_respect_mask) { + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } else { + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); + if (uniform) { + KMP_INFORM(Uniform, "KMP_AFFINITY"); + } else { + KMP_INFORM(NonUniform, "KMP_AFFINITY"); + } + } + kmp_str_buf_t buf; + __kmp_str_buf_init(&buf); + + __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); + for (index = maxIndex - 1; index >= pkgIdIndex; index--) { + __kmp_str_buf_print(&buf, " x %d", maxCt[index]); + } + KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], + maxCt[threadIdIndex], __kmp_ncores); + + __kmp_str_buf_free(&buf); + } + +# if KMP_MIC && REDUCE_TEAM_SIZE + // + // Set the default team size. + // + if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { + __kmp_dflt_team_nth = teamSize; + KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n", + __kmp_dflt_team_nth)); + } +# endif // KMP_MIC && REDUCE_TEAM_SIZE + + if (__kmp_affinity_type == affinity_none) { __kmp_free(lastId); __kmp_free(totals); __kmp_free(maxCt); __kmp_free(counts); CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; - return false; - } - - // If the thread ids were not specified and we see entries entries that - // are duplicates, start the loop over and assign the thread ids manually. - assign_thread_ids = true; - goto restart_radix_check; - } - } - -#if KMP_MIC && REDUCE_TEAM_SIZE - // The default team size is the total #threads in the machine - // minus 1 thread for every core that has 3 or more threads. - teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); -#endif // KMP_MIC && REDUCE_TEAM_SIZE - - for (index = threadIdIndex; index <= maxIndex; index++) { - if (counts[index] > maxCt[index]) { - maxCt[index] = counts[index]; - } - } - - __kmp_nThreadsPerCore = maxCt[threadIdIndex]; - nCoresPerPkg = maxCt[coreIdIndex]; - nPackages = totals[pkgIdIndex]; - - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. - // Make sure all these vars are set correctly, and return now if affinity is - // not enabled. - __kmp_ncores = totals[coreIdIndex]; - if (!KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - return true; - } - -#if KMP_MIC && REDUCE_TEAM_SIZE - // Set the default team size. - if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { - __kmp_dflt_team_nth = teamSize; - KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " - "__kmp_dflt_team_nth = %d\n", - __kmp_dflt_team_nth)); - } -#endif // KMP_MIC && REDUCE_TEAM_SIZE - - KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); - - // Count the number of levels which have more nodes at that level than at the - // parent's level (with there being an implicit root node of the top level). - // This is equivalent to saying that there is at least one node at this level - // which has a sibling. These levels are in the map, and the package level is - // always in the map. - bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); - for (index = threadIdIndex; index < maxIndex; index++) { - KMP_ASSERT(totals[index] >= totals[index + 1]); - inMap[index] = (totals[index] > totals[index + 1]); - } - inMap[maxIndex] = (totals[maxIndex] > 1); - inMap[pkgIdIndex] = true; - inMap[coreIdIndex] = true; - inMap[threadIdIndex] = true; - - int depth = 0; - int idx = 0; - kmp_hw_t types[KMP_HW_LAST]; - int pkgLevel = -1; - int coreLevel = -1; - int threadLevel = -1; - for (index = threadIdIndex; index <= maxIndex; index++) { - if (inMap[index]) { - depth++; - } - } - if (inMap[pkgIdIndex]) { - pkgLevel = idx; - types[idx++] = KMP_HW_SOCKET; - } - if (inMap[coreIdIndex]) { - coreLevel = idx; - types[idx++] = KMP_HW_CORE; - } - if (inMap[threadIdIndex]) { - threadLevel = idx; - types[idx++] = KMP_HW_THREAD; - } - KMP_ASSERT(depth > 0); - - // Construct the data structure that is to be returned. - __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); - - for (i = 0; i < num_avail; ++i) { - unsigned os = threadInfo[i][osIdIndex]; - int src_index; - int dst_index = 0; - kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); - hw_thread.clear(); - hw_thread.os_id = os; - - idx = 0; - for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { - if (!inMap[src_index]) { - continue; - } - if (src_index == pkgIdIndex) { - hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; - } else if (src_index == coreIdIndex) { - hw_thread.ids[coreLevel] = threadInfo[i][src_index]; - } else if (src_index == threadIdIndex) { - hw_thread.ids[threadLevel] = threadInfo[i][src_index]; - } - dst_index++; - } - } - - __kmp_free(inMap); - __kmp_free(lastId); - __kmp_free(totals); - __kmp_free(maxCt); - __kmp_free(counts); - CLEANUP_THREAD_INFO; - __kmp_topology->sort_ids(); - if (!__kmp_topology->check_ids()) { - kmp_topology_t::deallocate(__kmp_topology); - __kmp_topology = nullptr; - *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; - return false; - } - return true; + return 0; + } + + // + // Count the number of levels which have more nodes at that level than + // at the parent's level (with there being an implicit root node of + // the top level). This is equivalent to saying that there is at least + // one node at this level which has a sibling. These levels are in the + // map, and the package level is always in the map. + // + bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); + int level = 0; + for (index = threadIdIndex; index < maxIndex; index++) { + KMP_ASSERT(totals[index] >= totals[index + 1]); + inMap[index] = (totals[index] > totals[index + 1]); + } + inMap[maxIndex] = (totals[maxIndex] > 1); + inMap[pkgIdIndex] = true; + + int depth = 0; + for (index = threadIdIndex; index <= maxIndex; index++) { + if (inMap[index]) { + depth++; + } + } + KMP_ASSERT(depth > 0); + + // + // Construct the data structure that is to be returned. + // + *address2os = (AddrUnsPair*) + __kmp_allocate(sizeof(AddrUnsPair) * num_avail); + int pkgLevel = -1; + int coreLevel = -1; + int threadLevel = -1; + + for (i = 0; i < num_avail; ++i) { + Address addr(depth); + unsigned os = threadInfo[i][osIdIndex]; + int src_index; + int dst_index = 0; + + for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { + if (! inMap[src_index]) { + continue; + } + addr.labels[dst_index] = threadInfo[i][src_index]; + if (src_index == pkgIdIndex) { + pkgLevel = dst_index; + } + else if (src_index == coreIdIndex) { + coreLevel = dst_index; + } + else if (src_index == threadIdIndex) { + threadLevel = dst_index; + } + dst_index++; + } + (*address2os)[i] = AddrUnsPair(addr, os); + } + + if (__kmp_affinity_gran_levels < 0) { + // + // Set the granularity level based on what levels are modeled + // in the machine topology map. + // + unsigned src_index; + __kmp_affinity_gran_levels = 0; + for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { + if (! inMap[src_index]) { + continue; + } + switch (src_index) { + case threadIdIndex: + if (__kmp_affinity_gran > affinity_gran_thread) { + __kmp_affinity_gran_levels++; + } + + break; + case coreIdIndex: + if (__kmp_affinity_gran > affinity_gran_core) { + __kmp_affinity_gran_levels++; + } + break; + + case pkgIdIndex: + if (__kmp_affinity_gran > affinity_gran_package) { + __kmp_affinity_gran_levels++; + } + break; + } + } + } + + if (__kmp_affinity_verbose) { + __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, + coreLevel, threadLevel); + } + + __kmp_free(inMap); + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + return depth; } + +// // Create and return a table of affinity masks, indexed by OS thread ID. // This routine handles OR'ing together all the affinity masks of threads // that are sufficiently close, if granularity > fine. -static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, - unsigned *numUnique) { - // First form a table of affinity masks in order of OS thread id. - int maxOsId; - int i; - int numAddrs = __kmp_topology->get_num_hw_threads(); - int depth = __kmp_topology->get_depth(); - KMP_ASSERT(numAddrs); - KMP_ASSERT(depth); - - maxOsId = 0; - for (i = numAddrs - 1;; --i) { - int osId = __kmp_topology->at(i).os_id; - if (osId > maxOsId) { - maxOsId = osId; - } - if (i == 0) - break; - } - kmp_affin_mask_t *osId2Mask; - KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); - KMP_ASSERT(__kmp_affinity_gran_levels >= 0); - if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { - KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); - } - if (__kmp_affinity_gran_levels >= (int)depth) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffThreadsMayMigrate); - } - } - - // Run through the table, forming the masks for all threads on each core. - // Threads on the same core will have identical kmp_hw_thread_t objects, not - // considering the last level, which must be the thread id. All threads on a - // core will appear consecutively. - int unique = 0; - int j = 0; // index of 1st thread on core - int leader = 0; - kmp_affin_mask_t *sum; - KMP_CPU_ALLOC_ON_STACK(sum); - KMP_CPU_ZERO(sum); - KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); - for (i = 1; i < numAddrs; i++) { - // If this thread is sufficiently close to the leader (within the - // granularity setting), then set the bit for this os thread in the - // affinity mask for this group, and go on to the next thread. - if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { - KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); - continue; - } - - // For every thread in this group, copy the mask to the thread's entry in - // the osId2Mask table. Mark the first address as a leader. +// +static kmp_affin_mask_t * +__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique, + AddrUnsPair *address2os, unsigned numAddrs) +{ + // + // First form a table of affinity masks in order of OS thread id. + // + unsigned depth; + unsigned maxOsId; + unsigned i; + + KMP_ASSERT(numAddrs > 0); + depth = address2os[0].first.depth; + + maxOsId = 0; + for (i = 0; i < numAddrs; i++) { + unsigned osId = address2os[i].second; + if (osId > maxOsId) { + maxOsId = osId; + } + } + kmp_affin_mask_t *osId2Mask; + KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1)); + + // + // Sort the address2os table according to physical order. Doing so + // will put all threads on the same core/package/node in consecutive + // locations. + // + qsort(address2os, numAddrs, sizeof(*address2os), + __kmp_affinity_cmp_Address_labels); + + KMP_ASSERT(__kmp_affinity_gran_levels >= 0); + if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { + KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); + } + if (__kmp_affinity_gran_levels >= (int)depth) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffThreadsMayMigrate); + } + } + + // + // Run through the table, forming the masks for all threads on each + // core. Threads on the same core will have identical "Address" + // objects, not considering the last level, which must be the thread + // id. All threads on a core will appear consecutively. + // + unsigned unique = 0; + unsigned j = 0; // index of 1st thread on core + unsigned leader = 0; + Address *leaderAddr = &(address2os[0].first); + kmp_affin_mask_t *sum; + KMP_CPU_ALLOC_ON_STACK(sum); + KMP_CPU_ZERO(sum); + KMP_CPU_SET(address2os[0].second, sum); + for (i = 1; i < numAddrs; i++) { + // + // If this thread is sufficiently close to the leader (within the + // granularity setting), then set the bit for this os thread in the + // affinity mask for this group, and go on to the next thread. + // + if (leaderAddr->isClose(address2os[i].first, + __kmp_affinity_gran_levels)) { + KMP_CPU_SET(address2os[i].second, sum); + continue; + } + + // + // For every thread in this group, copy the mask to the thread's + // entry in the osId2Mask table. Mark the first address as a + // leader. + // + for (; j < i; j++) { + unsigned osId = address2os[j].second; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + address2os[j].first.leader = (j == leader); + } + unique++; + + // + // Start a new mask. + // + leader = i; + leaderAddr = &(address2os[i].first); + KMP_CPU_ZERO(sum); + KMP_CPU_SET(address2os[i].second, sum); + } + + // + // For every thread in last group, copy the mask to the thread's + // entry in the osId2Mask table. + // for (; j < i; j++) { - int osId = __kmp_topology->at(j).os_id; - KMP_DEBUG_ASSERT(osId <= maxOsId); - kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); - KMP_CPU_COPY(mask, sum); - __kmp_topology->at(j).leader = (j == leader); + unsigned osId = address2os[j].second; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + address2os[j].first.leader = (j == leader); } unique++; + KMP_CPU_FREE_FROM_STACK(sum); - // Start a new mask. - leader = i; - KMP_CPU_ZERO(sum); - KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); - } - - // For every thread in last group, copy the mask to the thread's - // entry in the osId2Mask table. - for (; j < i; j++) { - int osId = __kmp_topology->at(j).os_id; - KMP_DEBUG_ASSERT(osId <= maxOsId); - kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); - KMP_CPU_COPY(mask, sum); - __kmp_topology->at(j).leader = (j == leader); - } - unique++; - KMP_CPU_FREE_FROM_STACK(sum); - - *maxIndex = maxOsId; - *numUnique = unique; - return osId2Mask; + *maxIndex = maxOsId; + *numUnique = unique; + return osId2Mask; } + +// // Stuff for the affinity proclist parsers. It's easier to declare these vars // as file-static than to try and pass them through the calling sequence of // the recursive-descent OMP_PLACES parser. +// static kmp_affin_mask_t *newMasks; static int numNewMasks; static int nextNewMask; -#define ADD_MASK(_mask) \ - { \ - if (nextNewMask >= numNewMasks) { \ - int i; \ - numNewMasks *= 2; \ - kmp_affin_mask_t *temp; \ - KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ - for (i = 0; i < numNewMasks / 2; i++) { \ - kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ - kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ - KMP_CPU_COPY(dest, src); \ - } \ - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ - newMasks = temp; \ - } \ - KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ - nextNewMask++; \ - } - -#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ - { \ - if (((_osId) > _maxOsId) || \ - (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ - if (__kmp_affinity_verbose || \ - (__kmp_affinity_warnings && \ - (__kmp_affinity_type != affinity_none))) { \ - KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ - } \ - } else { \ - ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ - } \ - } +#define ADD_MASK(_mask) \ + { \ + if (nextNewMask >= numNewMasks) { \ + int i; \ + numNewMasks *= 2; \ + kmp_affin_mask_t* temp; \ + KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ + for(i=0;i<numNewMasks/2;i++) { \ + kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \ + kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \ + KMP_CPU_COPY(dest, src); \ + } \ + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \ + newMasks = temp; \ + } \ + KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ + nextNewMask++; \ + } + +#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \ + { \ + if (((_osId) > _maxOsId) || \ + (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ + if (__kmp_affinity_verbose || (__kmp_affinity_warnings \ + && (__kmp_affinity_type != affinity_none))) { \ + KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ + } \ + } \ + else { \ + ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ + } \ + } + +// // Re-parse the proclist (for the explicit affinity type), and form the list // of affinity newMasks indexed by gtid. -static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, - unsigned int *out_numMasks, - const char *proclist, - kmp_affin_mask_t *osId2Mask, - int maxOsId) { - int i; - const char *scan = proclist; - const char *next = proclist; - - // We use malloc() for the temporary mask vector, so that we can use - // realloc() to extend it. - numNewMasks = 2; - KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); - nextNewMask = 0; - kmp_affin_mask_t *sumMask; - KMP_CPU_ALLOC(sumMask); - int setSize = 0; - - for (;;) { - int start, end, stride; - - SKIP_WS(scan); - next = scan; - if (*next == '\0') { - break; - } - - if (*next == '{') { - int num; - setSize = 0; - next++; // skip '{' - SKIP_WS(next); - scan = next; - - // Read the first integer in the set. - KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); - SKIP_DIGITS(next); - num = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(num >= 0, "bad explicit proc list"); - - // Copy the mask for that osId to the sum (union) mask. - if ((num > maxOsId) || - (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - KMP_CPU_ZERO(sumMask); - } else { - KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); - setSize = 1; - } - - for (;;) { - // Check for end of set. - SKIP_WS(next); - if (*next == '}') { - next++; // skip '}' - break; +// +static void +__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, const char *proclist, + kmp_affin_mask_t *osId2Mask, int maxOsId) +{ + int i; + const char *scan = proclist; + const char *next = proclist; + + // + // We use malloc() for the temporary mask vector, + // so that we can use realloc() to extend it. + // + numNewMasks = 2; + KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); + nextNewMask = 0; + kmp_affin_mask_t *sumMask; + KMP_CPU_ALLOC(sumMask); + int setSize = 0; + + for (;;) { + int start, end, stride; + + SKIP_WS(scan); + next = scan; + if (*next == '\0') { + break; } - // Skip optional comma. - if (*next == ',') { - next++; + if (*next == '{') { + int num; + setSize = 0; + next++; // skip '{' + SKIP_WS(next); + scan = next; + + // + // Read the first integer in the set. + // + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad proclist"); + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); + + // + // Copy the mask for that osId to the sum (union) mask. + // + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + KMP_CPU_ZERO(sumMask); + } + else { + KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize = 1; + } + + for (;;) { + // + // Check for end of set. + // + SKIP_WS(next); + if (*next == '}') { + next++; // skip '}' + break; + } + + // + // Skip optional comma. + // + if (*next == ',') { + next++; + } + SKIP_WS(next); + + // + // Read the next integer in the set. + // + scan = next; + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad explicit proc list"); + + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); + + // + // Add the mask for that osId to the sum mask. + // + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + } + else { + KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize++; + } + } + if (setSize > 0) { + ADD_MASK(sumMask); + } + + SKIP_WS(next); + if (*next == ',') { + next++; + } + scan = next; + continue; } + + // + // Read the first integer. + // + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + start = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(start >= 0, "bad explicit proc list"); SKIP_WS(next); - // Read the next integer in the set. + // + // If this isn't a range, then add a mask to the list and go on. + // + if (*next != '-') { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + + // + // Skip optional comma. + // + if (*next == ',') { + next++; + } + scan = next; + continue; + } + + // + // This is a range. Skip over the '-' and read in the 2nd int. + // + next++; // skip '-' + SKIP_WS(next); scan = next; KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - num = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(num >= 0, "bad explicit proc list"); + end = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(end >= 0, "bad explicit proc list"); - // Add the mask for that osId to the sum mask. - if ((num > maxOsId) || - (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - } else { - KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); - setSize++; - } - } - if (setSize > 0) { - ADD_MASK(sumMask); - } - - SKIP_WS(next); - if (*next == ',') { - next++; - } - scan = next; - continue; - } - - // Read the first integer. - KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - start = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(start >= 0, "bad explicit proc list"); - SKIP_WS(next); - - // If this isn't a range, then add a mask to the list and go on. - if (*next != '-') { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - - // Skip optional comma. - if (*next == ',') { - next++; - } - scan = next; - continue; - } - - // This is a range. Skip over the '-' and read in the 2nd int. - next++; // skip '-' - SKIP_WS(next); - scan = next; - KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - end = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(end >= 0, "bad explicit proc list"); - - // Check for a stride parameter - stride = 1; - SKIP_WS(next); - if (*next == ':') { - // A stride is specified. Skip over the ':" and read the 3rd int. - int sign = +1; - next++; // skip ':' - SKIP_WS(next); - scan = next; - if (*next == '-') { - sign = -1; - next++; + // + // Check for a stride parameter + // + stride = 1; SKIP_WS(next); + if (*next == ':') { + // + // A stride is specified. Skip over the ':" and read the 3rd int. + // + int sign = +1; + next++; // skip ':' + SKIP_WS(next); + scan = next; + if (*next == '-') { + sign = -1; + next++; + SKIP_WS(next); + scan = next; + } + KMP_ASSERT2((*next >= '0') && (*next <= '9'), + "bad explicit proc list"); + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(stride >= 0, "bad explicit proc list"); + stride *= sign; + } + + // + // Do some range checks. + // + KMP_ASSERT2(stride != 0, "bad explicit proc list"); + if (stride > 0) { + KMP_ASSERT2(start <= end, "bad explicit proc list"); + } + else { + KMP_ASSERT2(start >= end, "bad explicit proc list"); + } + KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); + + // + // Add the mask for each OS proc # to the list. + // + if (stride > 0) { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start <= end); + } + else { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start >= end); + } + + // + // Skip optional comma. + // + SKIP_WS(next); + if (*next == ',') { + next++; + } scan = next; - } - KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - stride = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(stride >= 0, "bad explicit proc list"); - stride *= sign; - } - - // Do some range checks. - KMP_ASSERT2(stride != 0, "bad explicit proc list"); - if (stride > 0) { - KMP_ASSERT2(start <= end, "bad explicit proc list"); - } else { - KMP_ASSERT2(start >= end, "bad explicit proc list"); } - KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); - // Add the mask for each OS proc # to the list. - if (stride > 0) { - do { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - start += stride; - } while (start <= end); - } else { - do { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - start += stride; - } while (start >= end); + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); + return; } - - // Skip optional comma. - SKIP_WS(next); - if (*next == ',') { - next++; + KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); + for(i = 0; i < nextNewMask; i++) { + kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); + kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); + KMP_CPU_COPY(dest, src); } - scan = next; - } - - *out_numMasks = nextNewMask; - if (nextNewMask == 0) { - *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - return; - } - KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); - for (i = 0; i < nextNewMask; i++) { - kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); - kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); - KMP_CPU_COPY(dest, src); - } - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - KMP_CPU_FREE(sumMask); + KMP_CPU_FREE(sumMask); } + +# if OMP_40_ENABLED + /*----------------------------------------------------------------------------- + Re-parse the OMP_PLACES proc id list, forming the newMasks for the different places. Again, Here is the grammar: @@ -3060,1531 +3007,1729 @@ subplace := num : num : signed signed := num signed := + signed signed := - signed + -----------------------------------------------------------------------------*/ -static void __kmp_process_subplace_list(const char **scan, - kmp_affin_mask_t *osId2Mask, - int maxOsId, kmp_affin_mask_t *tempMask, - int *setSize) { - const char *next; - for (;;) { - int start, count, stride, i; +static void +__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) +{ + const char *next; - // Read in the starting proc id - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - start = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(start >= 0); - *scan = next; - - // valid follow sets are ',' ':' and '}' - SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - if ((start > maxOsId) || - (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - } else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - (*setSize)++; - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; + for (;;) { + int start, count, stride, i; + + // + // Read in the starting proc id + // + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + start = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(start >= 0); + *scan = next; + + // + // valid follow sets are ',' ':' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + (*setSize)++; + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' + + // + // Read count parameter + // + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(count >= 0); + *scan = next; + + // + // valid follow sets are ',' ':' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start++; + (*setSize)++; + } + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' + + // + // Read stride parameter + // + int sign = +1; + for (;;) { + SKIP_WS(*scan); + if (**scan == '+') { + (*scan)++; // skip '+' + continue; + } + if (**scan == '-') { + sign *= -1; + (*scan)++; // skip '-' + continue; + } + break; + } + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), + "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(stride >= 0); + *scan = next; + stride *= sign; + + // + // valid follow sets are ',' and '}' + // + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start += stride; + (*setSize)++; + } + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } + + KMP_ASSERT2(0, "bad explicit places list"); } - KMP_ASSERT2(**scan == ':', "bad explicit places list"); - (*scan)++; // skip ':' +} - // Read count parameter - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - count = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(count >= 0); - *scan = next; - - // valid follow sets are ',' ':' and '}' + +static void +__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) +{ + const char *next; + + // + // valid follow sets are '{' '!' and num + // SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - for (i = 0; i < count; i++) { - if ((start > maxOsId) || - (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - break; // don't proliferate warnings for large count - } else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - start++; - (*setSize)++; + if (**scan == '{') { + (*scan)++; // skip '{' + __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask, + setSize); + KMP_ASSERT2(**scan == '}', "bad explicit places list"); + (*scan)++; // skip '}' + } + else if (**scan == '!') { + (*scan)++; // skip '!' + __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); + KMP_CPU_COMPLEMENT(maxOsId, tempMask); + } + else if ((**scan >= '0') && (**scan <= '9')) { + next = *scan; + SKIP_DIGITS(next); + int num = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(num >= 0); + if ((num > maxOsId) || + (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } } - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; + else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); + (*setSize)++; + } + *scan = next; // skip num } - KMP_ASSERT2(**scan == ':', "bad explicit places list"); - (*scan)++; // skip ':' + else { + KMP_ASSERT2(0, "bad explicit places list"); + } +} + + +//static void +void +__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, const char *placelist, + kmp_affin_mask_t *osId2Mask, int maxOsId) +{ + int i,j,count,stride,sign; + const char *scan = placelist; + const char *next = placelist; + + numNewMasks = 2; + KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); + nextNewMask = 0; + + // tempMask is modified based on the previous or initial + // place to form the current place + // previousMask contains the previous place + kmp_affin_mask_t *tempMask; + kmp_affin_mask_t *previousMask; + KMP_CPU_ALLOC(tempMask); + KMP_CPU_ZERO(tempMask); + KMP_CPU_ALLOC(previousMask); + KMP_CPU_ZERO(previousMask); + int setSize = 0; - // Read stride parameter - int sign = +1; for (;;) { - SKIP_WS(*scan); - if (**scan == '+') { - (*scan)++; // skip '+' - continue; - } - if (**scan == '-') { - sign *= -1; - (*scan)++; // skip '-' - continue; - } - break; - } - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - stride = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(stride >= 0); - *scan = next; - stride *= sign; - - // valid follow sets are ',' and '}' - SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - for (i = 0; i < count; i++) { - if ((start > maxOsId) || - (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - break; // don't proliferate warnings for large count - } else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - start += stride; - (*setSize)++; + __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); + + // + // valid follow sets are ',' ':' and EOL + // + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + if (setSize > 0) { + ADD_MASK(tempMask); + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + if (*scan == '\0') { + break; + } + scan++; // skip ',' + continue; } - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; - } - KMP_ASSERT2(0, "bad explicit places list"); - } -} + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' -static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, - int maxOsId, kmp_affin_mask_t *tempMask, - int *setSize) { - const char *next; - - // valid follow sets are '{' '!' and num - SKIP_WS(*scan); - if (**scan == '{') { - (*scan)++; // skip '{' - __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); - KMP_ASSERT2(**scan == '}', "bad explicit places list"); - (*scan)++; // skip '}' - } else if (**scan == '!') { - (*scan)++; // skip '!' - __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); - KMP_CPU_COMPLEMENT(maxOsId, tempMask); - } else if ((**scan >= '0') && (**scan <= '9')) { - next = *scan; - SKIP_DIGITS(next); - int num = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(num >= 0); - if ((num > maxOsId) || - (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - } else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); - (*setSize)++; - } - *scan = next; // skip num - } else { - KMP_ASSERT2(0, "bad explicit places list"); - } -} + // + // Read count parameter + // + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), + "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(scan, *next); + KMP_ASSERT(count >= 0); + scan = next; -// static void -void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, - unsigned int *out_numMasks, - const char *placelist, - kmp_affin_mask_t *osId2Mask, - int maxOsId) { - int i, j, count, stride, sign; - const char *scan = placelist; - const char *next = placelist; - - numNewMasks = 2; - KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); - nextNewMask = 0; - - // tempMask is modified based on the previous or initial - // place to form the current place - // previousMask contains the previous place - kmp_affin_mask_t *tempMask; - kmp_affin_mask_t *previousMask; - KMP_CPU_ALLOC(tempMask); - KMP_CPU_ZERO(tempMask); - KMP_CPU_ALLOC(previousMask); - KMP_CPU_ZERO(previousMask); - int setSize = 0; - - for (;;) { - __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); - - // valid follow sets are ',' ':' and EOL - SKIP_WS(scan); - if (*scan == '\0' || *scan == ',') { - if (setSize > 0) { - ADD_MASK(tempMask); - } - KMP_CPU_ZERO(tempMask); - setSize = 0; - if (*scan == '\0') { - break; - } - scan++; // skip ',' - continue; - } - - KMP_ASSERT2(*scan == ':', "bad explicit places list"); - scan++; // skip ':' - - // Read count parameter - SKIP_WS(scan); - KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); - next = scan; - SKIP_DIGITS(next); - count = __kmp_str_to_int(scan, *next); - KMP_ASSERT(count >= 0); - scan = next; - - // valid follow sets are ',' ':' and EOL - SKIP_WS(scan); - if (*scan == '\0' || *scan == ',') { - stride = +1; - } else { - KMP_ASSERT2(*scan == ':', "bad explicit places list"); - scan++; // skip ':' + // + // valid follow sets are ',' ':' and EOL + // + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + stride = +1; + } + else { + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' + + // + // Read stride parameter + // + sign = +1; + for (;;) { + SKIP_WS(scan); + if (*scan == '+') { + scan++; // skip '+' + continue; + } + if (*scan == '-') { + sign *= -1; + scan++; // skip '-' + continue; + } + break; + } + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), + "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_DEBUG_ASSERT(stride >= 0); + scan = next; + stride *= sign; + } - // Read stride parameter - sign = +1; - for (;;) { + // Add places determined by initial_place : count : stride + for (i = 0; i < count; i++) { + if (setSize == 0) { + break; + } + // Add the current place, then build the next place (tempMask) from that + KMP_CPU_COPY(previousMask, tempMask); + ADD_MASK(previousMask); + KMP_CPU_ZERO(tempMask); + setSize = 0; + KMP_CPU_SET_ITERATE(j, previousMask) { + if (! KMP_CPU_ISSET(j, previousMask)) { + continue; + } + else if ((j+stride > maxOsId) || (j+stride < 0) || + (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) { + if ((__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) && i < count - 1) { + KMP_WARNING(AffIgnoreInvalidProcID, j+stride); + } + } + else { + KMP_CPU_SET(j+stride, tempMask); + setSize++; + } + } + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + + // + // valid follow sets are ',' and EOL + // SKIP_WS(scan); - if (*scan == '+') { - scan++; // skip '+' - continue; + if (*scan == '\0') { + break; } - if (*scan == '-') { - sign *= -1; - scan++; // skip '-' - continue; + if (*scan == ',') { + scan++; // skip ',' + continue; } - break; - } - SKIP_WS(scan); - KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); - next = scan; - SKIP_DIGITS(next); - stride = __kmp_str_to_int(scan, *next); - KMP_DEBUG_ASSERT(stride >= 0); - scan = next; - stride *= sign; - } - - // Add places determined by initial_place : count : stride - for (i = 0; i < count; i++) { - if (setSize == 0) { - break; - } - // Add the current place, then build the next place (tempMask) from that - KMP_CPU_COPY(previousMask, tempMask); - ADD_MASK(previousMask); - KMP_CPU_ZERO(tempMask); - setSize = 0; - KMP_CPU_SET_ITERATE(j, previousMask) { - if (!KMP_CPU_ISSET(j, previousMask)) { - continue; - } - if ((j + stride > maxOsId) || (j + stride < 0) || - (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || - (!KMP_CPU_ISSET(j + stride, - KMP_CPU_INDEX(osId2Mask, j + stride)))) { - if ((__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) && - i < count - 1) { - KMP_WARNING(AffIgnoreInvalidProcID, j + stride); - } - continue; - } - KMP_CPU_SET(j + stride, tempMask); - setSize++; - } + + KMP_ASSERT2(0, "bad explicit places list"); } - KMP_CPU_ZERO(tempMask); - setSize = 0; - // valid follow sets are ',' and EOL - SKIP_WS(scan); - if (*scan == '\0') { - break; + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); + return; } - if (*scan == ',') { - scan++; // skip ',' - continue; + KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); + KMP_CPU_FREE(tempMask); + KMP_CPU_FREE(previousMask); + for(i = 0; i < nextNewMask; i++) { + kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); + kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); + KMP_CPU_COPY(dest, src); } - - KMP_ASSERT2(0, "bad explicit places list"); - } - - *out_numMasks = nextNewMask; - if (nextNewMask == 0) { - *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - return; - } - KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); - KMP_CPU_FREE(tempMask); - KMP_CPU_FREE(previousMask); - for (i = 0; i < nextNewMask; i++) { - kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); - kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); - KMP_CPU_COPY(dest, src); - } - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); } +# endif /* OMP_40_ENABLED */ + #undef ADD_MASK #undef ADD_MASK_OSID -// This function figures out the deepest level at which there is at least one -// cluster/core with more than one processing unit bound to it. -static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { - int core_level = 0; - - for (int i = 0; i < nprocs; i++) { - const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); - for (int j = bottom_level; j > 0; j--) { - if (hw_thread.ids[j] > 0) { - if (core_level < (j - 1)) { - core_level = j - 1; - } - } +static void +__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) +{ + if (__kmp_place_num_sockets == 0 && + __kmp_place_num_cores == 0 && + __kmp_place_num_threads_per_core == 0 ) + return; // no topology limiting actions requested, exit + if (__kmp_place_num_sockets == 0) + __kmp_place_num_sockets = nPackages; // use all available sockets + if (__kmp_place_num_cores == 0) + __kmp_place_num_cores = nCoresPerPkg; // use all available cores + if (__kmp_place_num_threads_per_core == 0 || + __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore) + __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts + + if ( !__kmp_affinity_uniform_topology() ) { + KMP_WARNING( AffThrPlaceNonUniform ); + return; // don't support non-uniform topology + } + if ( depth != 3 ) { + KMP_WARNING( AffThrPlaceNonThreeLevel ); + return; // don't support not-3-level topology + } + if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) { + KMP_WARNING(AffThrPlaceManySockets); + return; + } + if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) { + KMP_WARNING( AffThrPlaceManyCores ); + return; } - } - return core_level; -} -// This function counts number of clusters/cores at given level. -static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, - int core_level) { - return __kmp_topology->get_count(core_level); -} -// This function finds to which cluster/core given processing unit is bound. -static int __kmp_affinity_find_core(int proc, int bottom_level, - int core_level) { - int core = 0; - KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); - for (int i = 0; i <= proc; ++i) { - if (i + 1 <= proc) { - for (int j = 0; j <= core_level; ++j) { - if (__kmp_topology->at(i + 1).sub_ids[j] != - __kmp_topology->at(i).sub_ids[j]) { - core++; - break; - } - } - } - } - return core; + AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) * + __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core); + + int i, j, k, n_old = 0, n_new = 0; + for (i = 0; i < nPackages; ++i) + if (i < __kmp_place_socket_offset || + i >= __kmp_place_socket_offset + __kmp_place_num_sockets) + n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket + else + for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket + if (j < __kmp_place_core_offset || + j >= __kmp_place_core_offset + __kmp_place_num_cores) + n_old += __kmp_nThreadsPerCore; // skip not-requested core + else + for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core + if (k < __kmp_place_num_threads_per_core) { + newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data + n_new++; + } + n_old++; + } + KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); + KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores * + __kmp_place_num_threads_per_core); + + nPackages = __kmp_place_num_sockets; // correct nPackages + nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg + __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore + __kmp_avail_proc = n_new; // correct avail_proc + __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores + + __kmp_free( *pAddr ); + *pAddr = newAddr; // replace old topology with new one } -// This function finds maximal number of processing units bound to a -// cluster/core at given level. -static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, - int core_level) { - if (core_level >= bottom_level) - return 1; - int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); - return __kmp_topology->calculate_ratio(thread_level, core_level); -} -static int *procarr = NULL; -static int __kmp_aff_depth = 0; - -// Create a one element mask array (set of places) which only contains the -// initial process's affinity mask -static void __kmp_create_affinity_none_places() { - KMP_ASSERT(__kmp_affin_fullMask != NULL); - KMP_ASSERT(__kmp_affinity_type == affinity_none); - __kmp_affinity_num_masks = 1; - KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); - kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); - KMP_CPU_COPY(dest, __kmp_affin_fullMask); -} +static AddrUnsPair *address2os = NULL; +static int * procarr = NULL; +static int __kmp_aff_depth = 0; -static void __kmp_aux_affinity_initialize(void) { - if (__kmp_affinity_masks != NULL) { - KMP_ASSERT(__kmp_affin_fullMask != NULL); - return; - } - - // Create the "full" mask - this defines all of the processors that we - // consider to be in the machine model. If respect is set, then it is the - // initialization thread's affinity mask. Otherwise, it is all processors that - // we know about on the machine. - if (__kmp_affin_fullMask == NULL) { - KMP_CPU_ALLOC(__kmp_affin_fullMask); - } - if (KMP_AFFINITY_CAPABLE()) { - __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); - if (__kmp_affinity_respect_mask) { - // Count the number of available processors. - unsigned i; - __kmp_avail_proc = 0; - KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { - if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { - continue; - } - __kmp_avail_proc++; - } - if (__kmp_avail_proc > __kmp_xproc) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && - (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(ErrorInitializeAffinity); - } - __kmp_affinity_type = affinity_none; - KMP_AFFINITY_DISABLE(); +static void +__kmp_aux_affinity_initialize(void) +{ + if (__kmp_affinity_masks != NULL) { + KMP_ASSERT(fullMask != NULL); return; - } + } - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - __kmp_affin_fullMask); - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } - } else { - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - __kmp_affin_fullMask); - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); - __kmp_avail_proc = __kmp_xproc; -#if KMP_OS_WINDOWS - // Set the process affinity mask since threads' affinity - // masks must be subset of process mask in Windows* OS - __kmp_affin_fullMask->set_process_affinity(true); -#endif + // + // Create the "full" mask - this defines all of the processors that we + // consider to be in the machine model. If respect is set, then it is + // the initialization thread's affinity mask. Otherwise, it is all + // processors that we know about on the machine. + // + if (fullMask == NULL) { + KMP_CPU_ALLOC(fullMask); + } + if (KMP_AFFINITY_CAPABLE()) { + if (__kmp_affinity_respect_mask) { + __kmp_get_system_affinity(fullMask, TRUE); + + // + // Count the number of available processors. + // + unsigned i; + __kmp_avail_proc = 0; + KMP_CPU_SET_ITERATE(i, fullMask) { + if (! KMP_CPU_ISSET(i, fullMask)) { + continue; + } + __kmp_avail_proc++; + } + if (__kmp_avail_proc > __kmp_xproc) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(ErrorInitializeAffinity); + } + __kmp_affinity_type = affinity_none; + KMP_AFFINITY_DISABLE(); + return; + } + } + else { + __kmp_affinity_entire_machine_mask(fullMask); + __kmp_avail_proc = __kmp_xproc; + } } - } - kmp_i18n_id_t msg_id = kmp_i18n_null; + int depth = -1; + kmp_i18n_id_t msg_id = kmp_i18n_null; - // For backward compatibility, setting KMP_CPUINFO_FILE => - // KMP_TOPOLOGY_METHOD=cpuinfo - if ((__kmp_cpuinfo_file != NULL) && + // + // For backward compatibility, setting KMP_CPUINFO_FILE => + // KMP_TOPOLOGY_METHOD=cpuinfo + // + if ((__kmp_cpuinfo_file != NULL) && (__kmp_affinity_top_method == affinity_top_method_all)) { - __kmp_affinity_top_method = affinity_top_method_cpuinfo; - } - - bool success = false; - if (__kmp_affinity_top_method == affinity_top_method_all) { -// In the default code path, errors are not fatal - we just try using -// another method. We only emit a warning message if affinity is on, or the -// verbose flag is set, an the nowarnings flag was not set. -#if KMP_USE_HWLOC - if (!success && - __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { - if (!__kmp_hwloc_error) { - success = __kmp_affinity_create_hwloc_map(&msg_id); - if (!success && __kmp_affinity_verbose) { - KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); + __kmp_affinity_top_method = affinity_top_method_cpuinfo; + } + + if (__kmp_affinity_top_method == affinity_top_method_all) { + // + // In the default code path, errors are not fatal - we just try using + // another method. We only emit a warning message if affinity is on, + // or the verbose flag is set, an the nowarnings flag was not set. + // + const char *file_name = NULL; + int line = 0; +# if KMP_USE_HWLOC + if (depth < 0) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); + } + if(!__kmp_hwloc_error) { + depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } else if(depth < 0 && __kmp_affinity_verbose) { + KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); + } + } else if(__kmp_affinity_verbose) { + KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); + } + } +# endif + +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + + if (depth < 0) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); + } + + file_name = NULL; + depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + + if (depth < 0) { + if (__kmp_affinity_verbose) { + if (msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), + KMP_I18N_STR(DecodingLegacyAPIC)); + } + else { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); + } + } + + file_name = NULL; + depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + } + } + +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + +# if KMP_OS_LINUX + + if (depth < 0) { + if (__kmp_affinity_verbose) { + if (msg_id != kmp_i18n_null) { + KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); + } + else { + KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); + } + } + + FILE *f = fopen("/proc/cpuinfo", "r"); + if (f == NULL) { + msg_id = kmp_i18n_str_CantOpenCpuinfo; + } + else { + file_name = "/proc/cpuinfo"; + depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); + fclose(f); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + } + } + +# endif /* KMP_OS_LINUX */ + +# if KMP_GROUP_AFFINITY + + if ((depth < 0) && (__kmp_num_proc_groups > 1)) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); + } + + depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); + KMP_ASSERT(depth != 0); + } + +# endif /* KMP_GROUP_AFFINITY */ + + if (depth < 0) { + if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { + if (file_name == NULL) { + KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); + } + else if (line == 0) { + KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); + } + else { + KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id)); + } + } + // FIXME - print msg if msg_id = kmp_i18n_null ??? + + file_name = ""; + depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + KMP_ASSERT(depth > 0); + KMP_ASSERT(address2os != NULL); } - } else if (__kmp_affinity_verbose) { - KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); - } } -#endif -#if KMP_ARCH_X86 || KMP_ARCH_X86_64 - if (!success) { - success = __kmp_affinity_create_x2apicid_map(&msg_id); - if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); - } - } - if (!success) { - success = __kmp_affinity_create_apicid_map(&msg_id); - if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); - } - } -#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ - -#if KMP_OS_LINUX - if (!success) { - int line = 0; - success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); - if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); - } - } -#endif /* KMP_OS_LINUX */ - -#if KMP_GROUP_AFFINITY - if (!success && (__kmp_num_proc_groups > 1)) { - success = __kmp_affinity_create_proc_group_map(&msg_id); - if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); - } - } -#endif /* KMP_GROUP_AFFINITY */ - - if (!success) { - success = __kmp_affinity_create_flat_map(&msg_id); - if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); - } - KMP_ASSERT(success); - } - } - -// If the user has specified that a paricular topology discovery method is to be -// used, then we abort if that method fails. The exception is group affinity, -// which might have been implicitly set. -#if KMP_USE_HWLOC - else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { - KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); - success = __kmp_affinity_create_hwloc_map(&msg_id); - if (!success) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } -#endif // KMP_USE_HWLOC + // + // If the user has specified that a paricular topology discovery method + // is to be used, then we abort if that method fails. The exception is + // group affinity, which might have been implicitly set. + // -#if KMP_ARCH_X86 || KMP_ARCH_X86_64 - else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || - __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { - success = __kmp_affinity_create_x2apicid_map(&msg_id); - if (!success) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { - success = __kmp_affinity_create_apicid_map(&msg_id); - if (!success) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } -#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ - - else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { - int line = 0; - success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); - if (!success) { - KMP_ASSERT(msg_id != kmp_i18n_null); - const char *filename = __kmp_cpuinfo_get_filename(); - if (line > 0) { - KMP_FATAL(FileLineMsgExiting, filename, line, - __kmp_i18n_catgets(msg_id)); - } else { - KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); - } - } - } - -#if KMP_GROUP_AFFINITY - else if (__kmp_affinity_top_method == affinity_top_method_group) { - success = __kmp_affinity_create_proc_group_map(&msg_id); - KMP_ASSERT(success); - if (!success) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } -#endif /* KMP_GROUP_AFFINITY */ - - else if (__kmp_affinity_top_method == affinity_top_method_flat) { - success = __kmp_affinity_create_flat_map(&msg_id); - // should not fail - KMP_ASSERT(success); - } - - // Early exit if topology could not be created - if (!__kmp_topology) { - if (KMP_AFFINITY_CAPABLE() && - (__kmp_affinity_verbose || - (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { - KMP_WARNING(ErrorInitializeAffinity); - } - if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && - __kmp_ncores > 0) { - __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); - __kmp_topology->canonicalize(nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - if (__kmp_affinity_verbose) { - __kmp_topology->print("KMP_AFFINITY"); - } - } - __kmp_affinity_type = affinity_none; - __kmp_create_affinity_none_places(); -#if KMP_USE_HIER_SCHED - __kmp_dispatch_set_hierarchy_values(); -#endif - KMP_AFFINITY_DISABLE(); - return; - } - - // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and - // initialize other data structures which depend on the topology - __kmp_topology->canonicalize(); - if (__kmp_affinity_verbose) - __kmp_topology->print("KMP_AFFINITY"); - bool filtered = __kmp_topology->filter_hw_subset(); - if (filtered && __kmp_affinity_verbose) - __kmp_topology->print("KMP_HW_SUBSET"); - machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); - KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); - // If KMP_AFFINITY=none, then only create the single "none" place - // which is the process's initial affinity mask or the number of - // hardware threads depending on respect,norespect - if (__kmp_affinity_type == affinity_none) { - __kmp_create_affinity_none_places(); -#if KMP_USE_HIER_SCHED - __kmp_dispatch_set_hierarchy_values(); -#endif - return; - } - int depth = __kmp_topology->get_depth(); - - // Create the table of masks, indexed by thread Id. - unsigned maxIndex; - unsigned numUnique; - kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); - if (__kmp_affinity_gran_levels == 0) { - KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); - } - - switch (__kmp_affinity_type) { - - case affinity_explicit: - KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); - if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { - __kmp_affinity_process_proclist( - &__kmp_affinity_masks, &__kmp_affinity_num_masks, - __kmp_affinity_proclist, osId2Mask, maxIndex); - } else { - __kmp_affinity_process_placelist( - &__kmp_affinity_masks, &__kmp_affinity_num_masks, - __kmp_affinity_proclist, osId2Mask, maxIndex); - } - if (__kmp_affinity_num_masks == 0) { - if (__kmp_affinity_verbose || - (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffNoValidProcID); - } - __kmp_affinity_type = affinity_none; - __kmp_create_affinity_none_places(); - return; - } - break; - - // The other affinity types rely on sorting the hardware threads according to - // some permutation of the machine topology tree. Set __kmp_affinity_compact - // and __kmp_affinity_offset appropriately, then jump to a common code - // fragment to do the sort and create the array of affinity masks. - case affinity_logical: - __kmp_affinity_compact = 0; - if (__kmp_affinity_offset) { - __kmp_affinity_offset = - __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; - } - goto sortTopology; - - case affinity_physical: - if (__kmp_nThreadsPerCore > 1) { - __kmp_affinity_compact = 1; - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = 0; - } - } else { - __kmp_affinity_compact = 0; +# if KMP_ARCH_X86 || KMP_ARCH_X86_64 + + else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", + KMP_I18N_STR(Decodingx2APIC)); + } + + depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } } - if (__kmp_affinity_offset) { - __kmp_affinity_offset = - __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; + else if (__kmp_affinity_top_method == affinity_top_method_apicid) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", + KMP_I18N_STR(DecodingLegacyAPIC)); + } + + depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } } - goto sortTopology; - case affinity_scatter: - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = 0; - } else { - __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; - } - goto sortTopology; - - case affinity_compact: - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = depth - 1; - } - goto sortTopology; - - case affinity_balanced: - if (depth <= 1) { - if (__kmp_affinity_verbose || __kmp_affinity_warnings) { - KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); - } - __kmp_affinity_type = affinity_none; - __kmp_create_affinity_none_places(); - return; - } else if (!__kmp_topology->is_uniform()) { - // Save the depth for further usage - __kmp_aff_depth = depth; - - int core_level = - __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); - int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, - core_level); - int maxprocpercore = __kmp_affinity_max_proc_per_core( - __kmp_avail_proc, depth - 1, core_level); - - int nproc = ncores * maxprocpercore; - if ((nproc < 2) || (nproc < __kmp_avail_proc)) { - if (__kmp_affinity_verbose || __kmp_affinity_warnings) { - KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); +# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + + else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { + const char *filename; + if (__kmp_cpuinfo_file != NULL) { + filename = __kmp_cpuinfo_file; + } + else { + filename = "/proc/cpuinfo"; + } + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); + } + + FILE *f = fopen(filename, "r"); + if (f == NULL) { + int code = errno; + if (__kmp_cpuinfo_file != NULL) { + __kmp_msg( + kmp_ms_fatal, + KMP_MSG(CantOpenFileForReading, filename), + KMP_ERR(code), + KMP_HNT(NameComesFrom_CPUINFO_FILE), + __kmp_msg_null + ); + } + else { + __kmp_msg( + kmp_ms_fatal, + KMP_MSG(CantOpenFileForReading, filename), + KMP_ERR(code), + __kmp_msg_null + ); + } + } + int line = 0; + depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); + fclose(f); + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + if (line > 0) { + KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); + } + else { + KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); + } + } + if (__kmp_affinity_type == affinity_none) { + KMP_ASSERT(depth == 0); + KMP_ASSERT(address2os == NULL); + return; + } + } + +# if KMP_GROUP_AFFINITY + + else if (__kmp_affinity_top_method == affinity_top_method_group) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); + } + + depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); + KMP_ASSERT(depth != 0); + if (depth < 0) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } + +# endif /* KMP_GROUP_AFFINITY */ + + else if (__kmp_affinity_top_method == affinity_top_method_flat) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); + } + + depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } + // should not fail + KMP_ASSERT(depth > 0); + KMP_ASSERT(address2os != NULL); + } + +# if KMP_USE_HWLOC + else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { + if (__kmp_affinity_verbose) { + KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); + } + depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); + if (depth == 0) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + KMP_ASSERT(address2os == NULL); + return; + } +# if KMP_DEBUG + AddrUnsPair *otheraddress2os = NULL; + int otherdepth = -1; +# if KMP_MIC + otherdepth = __kmp_affinity_create_apicid_map(&otheraddress2os, &msg_id); +# else + otherdepth = __kmp_affinity_create_x2apicid_map(&otheraddress2os, &msg_id); +# endif + if(otheraddress2os != NULL && address2os != NULL) { + int i; + unsigned arent_equal_flag = 0; + for(i=0;i<__kmp_avail_proc;i++) { + if(otheraddress2os[i] != address2os[i]) arent_equal_flag = 1; + } + if(arent_equal_flag) { + KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are different from APICID\n")); + KA_TRACE(10, ("__kmp_aux_affinity_initialize: APICID Table:\n")); + for(i=0;i<__kmp_avail_proc;i++) { + otheraddress2os[i].print(); __kmp_printf("\n"); + } + KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc Table:\n")); + for(i=0;i<__kmp_avail_proc;i++) { + address2os[i].print(); __kmp_printf("\n"); + } + } + else { + KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are same as APICID\n")); + } + } +# endif // KMP_DEBUG + } +# endif // KMP_USE_HWLOC + + if (address2os == NULL) { + if (KMP_AFFINITY_CAPABLE() + && (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none)))) { + KMP_WARNING(ErrorInitializeAffinity); } __kmp_affinity_type = affinity_none; + KMP_AFFINITY_DISABLE(); return; - } + } - procarr = (int *)__kmp_allocate(sizeof(int) * nproc); - for (int i = 0; i < nproc; i++) { - procarr[i] = -1; - } + __kmp_apply_thread_places(&address2os, depth); - int lastcore = -1; - int inlastcore = 0; - for (int i = 0; i < __kmp_avail_proc; i++) { - int proc = __kmp_topology->at(i).os_id; - int core = __kmp_affinity_find_core(i, depth - 1, core_level); + // + // Create the table of masks, indexed by thread Id. + // + unsigned maxIndex; + unsigned numUnique; + kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique, + address2os, __kmp_avail_proc); + if (__kmp_affinity_gran_levels == 0) { + KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); + } - if (core == lastcore) { - inlastcore++; + // + // Set the childNums vector in all Address objects. This must be done + // before we can sort using __kmp_affinity_cmp_Address_child_num(), + // which takes into account the setting of __kmp_affinity_compact. + // + __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); + + switch (__kmp_affinity_type) { + + case affinity_explicit: + KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); +# if OMP_40_ENABLED + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) +# endif + { + __kmp_affinity_process_proclist(&__kmp_affinity_masks, + &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, + maxIndex); + } +# if OMP_40_ENABLED + else { + __kmp_affinity_process_placelist(&__kmp_affinity_masks, + &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, + maxIndex); + } +# endif + if (__kmp_affinity_num_masks == 0) { + if (__kmp_affinity_verbose || (__kmp_affinity_warnings + && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffNoValidProcID); + } + __kmp_affinity_type = affinity_none; + return; + } + break; + + // + // The other affinity types rely on sorting the Addresses according + // to some permutation of the machine topology tree. Set + // __kmp_affinity_compact and __kmp_affinity_offset appropriately, + // then jump to a common code fragment to do the sort and create + // the array of affinity masks. + // + + case affinity_logical: + __kmp_affinity_compact = 0; + if (__kmp_affinity_offset) { + __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset + % __kmp_avail_proc; + } + goto sortAddresses; + + case affinity_physical: + if (__kmp_nThreadsPerCore > 1) { + __kmp_affinity_compact = 1; + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } } else { - inlastcore = 0; + __kmp_affinity_compact = 0; + } + if (__kmp_affinity_offset) { + __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset + % __kmp_avail_proc; + } + goto sortAddresses; + + case affinity_scatter: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } + else { + __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; + } + goto sortAddresses; + + case affinity_compact: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = depth - 1; + } + goto sortAddresses; + + case affinity_balanced: + // Balanced works only for the case of a single package + if( nPackages > 1 ) { + if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { + KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); + } + __kmp_affinity_type = affinity_none; + return; + } else if( __kmp_affinity_uniform_topology() ) { + break; + } else { // Non-uniform topology + + // Save the depth for further usage + __kmp_aff_depth = depth; + + // Number of hyper threads per core in HT machine + int nth_per_core = __kmp_nThreadsPerCore; + + int core_level; + if( nth_per_core > 1 ) { + core_level = depth - 2; + } else { + core_level = depth - 1; + } + int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; + int nproc = nth_per_core * ncores; + + procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); + for( int i = 0; i < nproc; i++ ) { + procarr[ i ] = -1; + } + + for( int i = 0; i < __kmp_avail_proc; i++ ) { + int proc = address2os[ i ].second; + // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread. + // If there is only one thread per core then depth == 2: level 0 - package, + // level 1 - core. + int level = depth - 1; + + // __kmp_nth_per_core == 1 + int thread = 0; + int core = address2os[ i ].first.labels[ level ]; + // If the thread level exists, that is we have more than one thread context per core + if( nth_per_core > 1 ) { + thread = address2os[ i ].first.labels[ level ] % nth_per_core; + core = address2os[ i ].first.labels[ level - 1 ]; + } + procarr[ core * nth_per_core + thread ] = proc; + } + + break; } - lastcore = core; - procarr[core * maxprocpercore + inlastcore] = proc; - } + sortAddresses: + // + // Allocate the gtid->affinity mask table. + // + if (__kmp_affinity_dups) { + __kmp_affinity_num_masks = __kmp_avail_proc; + } + else { + __kmp_affinity_num_masks = numUnique; + } + +# if OMP_40_ENABLED + if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) + && ( __kmp_affinity_num_places > 0 ) + && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) { + __kmp_affinity_num_masks = __kmp_affinity_num_places; + } +# endif + + KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); + + // + // Sort the address2os table according to the current setting of + // __kmp_affinity_compact, then fill out __kmp_affinity_masks. + // + qsort(address2os, __kmp_avail_proc, sizeof(*address2os), + __kmp_affinity_cmp_Address_child_num); + { + int i; + unsigned j; + for (i = 0, j = 0; i < __kmp_avail_proc; i++) { + if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) { + continue; + } + unsigned osId = address2os[i].second; + kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); + kmp_affin_mask_t *dest + = KMP_CPU_INDEX(__kmp_affinity_masks, j); + KMP_ASSERT(KMP_CPU_ISSET(osId, src)); + KMP_CPU_COPY(dest, src); + if (++j >= __kmp_affinity_num_masks) { + break; + } + } + KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); + } + break; + + default: + KMP_ASSERT2(0, "Unexpected affinity setting"); + } + + __kmp_free(osId2Mask); + machine_hierarchy.init(address2os, __kmp_avail_proc); +} + + +void +__kmp_affinity_initialize(void) +{ + // + // Much of the code above was written assumming that if a machine was not + // affinity capable, then __kmp_affinity_type == affinity_none. We now + // explicitly represent this as __kmp_affinity_type == affinity_disabled. + // + // There are too many checks for __kmp_affinity_type == affinity_none + // in this code. Instead of trying to change them all, check if + // __kmp_affinity_type == affinity_disabled, and if so, slam it with + // affinity_none, call the real initialization routine, then restore + // __kmp_affinity_type to affinity_disabled. + // + int disabled = (__kmp_affinity_type == affinity_disabled); + if (! KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(disabled); } - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = depth - 1; + if (disabled) { + __kmp_affinity_type = affinity_none; + } + __kmp_aux_affinity_initialize(); + if (disabled) { + __kmp_affinity_type = affinity_disabled; } +} - sortTopology: - // Allocate the gtid->affinity mask table. - if (__kmp_affinity_dups) { - __kmp_affinity_num_masks = __kmp_avail_proc; - } else { - __kmp_affinity_num_masks = numUnique; + +void +__kmp_affinity_uninitialize(void) +{ + if (__kmp_affinity_masks != NULL) { + KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); + __kmp_affinity_masks = NULL; + } + if (fullMask != NULL) { + KMP_CPU_FREE(fullMask); + fullMask = NULL; + } + __kmp_affinity_num_masks = 0; +# if OMP_40_ENABLED + __kmp_affinity_num_places = 0; +# endif + if (__kmp_affinity_proclist != NULL) { + __kmp_free(__kmp_affinity_proclist); + __kmp_affinity_proclist = NULL; + } + if( address2os != NULL ) { + __kmp_free( address2os ); + address2os = NULL; + } + if( procarr != NULL ) { + __kmp_free( procarr ); + procarr = NULL; + } +} + + +void +__kmp_affinity_set_init_mask(int gtid, int isa_root) +{ + if (! KMP_AFFINITY_CAPABLE()) { + return; } - if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && - (__kmp_affinity_num_places > 0) && - ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { - __kmp_affinity_num_masks = __kmp_affinity_num_places; + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + if (th->th.th_affin_mask == NULL) { + KMP_CPU_ALLOC(th->th.th_affin_mask); + } + else { + KMP_CPU_ZERO(th->th.th_affin_mask); } - KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); + // + // Copy the thread mask to the kmp_info_t strucuture. + // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one + // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask + // is set, then the full mask is the same as the mask of the initialization + // thread. + // + kmp_affin_mask_t *mask; + int i; - // Sort the topology table according to the current setting of - // __kmp_affinity_compact, then fill out __kmp_affinity_masks. - __kmp_topology->sort_compact(); +# if OMP_40_ENABLED + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) +# endif { - int i; - unsigned j; - int num_hw_threads = __kmp_topology->get_num_hw_threads(); - for (i = 0, j = 0; i < num_hw_threads; i++) { - if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { - continue; - } - int osId = __kmp_topology->at(i).os_id; - - kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); - kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); - KMP_ASSERT(KMP_CPU_ISSET(osId, src)); - KMP_CPU_COPY(dest, src); - if (++j >= __kmp_affinity_num_masks) { - break; + if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced) + ) { +# if KMP_GROUP_AFFINITY + if (__kmp_num_proc_groups > 1) { + return; + } +# endif + KMP_ASSERT(fullMask != NULL); + i = KMP_PLACE_ALL; + mask = fullMask; + } + else { + KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); + i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + } + } +# if OMP_40_ENABLED + else { + if ((! isa_root) + || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { +# if KMP_GROUP_AFFINITY + if (__kmp_num_proc_groups > 1) { + return; + } +# endif + KMP_ASSERT(fullMask != NULL); + i = KMP_PLACE_ALL; + mask = fullMask; + } + else { + // + // int i = some hash function or just a counter that doesn't + // always start at 0. Use gtid for now. + // + KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); + i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); } - } - KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); } - // Sort the topology back using ids - __kmp_topology->sort_ids(); - break; +# endif - default: - KMP_ASSERT2(0, "Unexpected affinity setting"); - } +# if OMP_40_ENABLED + th->th.th_current_place = i; + if (isa_root) { + th->th.th_new_place = i; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + } - KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); -} + if (i == KMP_PLACE_ALL) { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", + gtid)); + } + else { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", + gtid, i)); + } +# else + if (i == -1) { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n", + gtid)); + } + else { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", + gtid, i)); + } +# endif /* OMP_40_ENABLED */ -void __kmp_affinity_initialize(void) { - // Much of the code above was written assuming that if a machine was not - // affinity capable, then __kmp_affinity_type == affinity_none. We now - // explicitly represent this as __kmp_affinity_type == affinity_disabled. - // There are too many checks for __kmp_affinity_type == affinity_none - // in this code. Instead of trying to change them all, check if - // __kmp_affinity_type == affinity_disabled, and if so, slam it with - // affinity_none, call the real initialization routine, then restore - // __kmp_affinity_type to affinity_disabled. - int disabled = (__kmp_affinity_type == affinity_disabled); - if (!KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(disabled); - } - if (disabled) { - __kmp_affinity_type = affinity_none; - } - __kmp_aux_affinity_initialize(); - if (disabled) { - __kmp_affinity_type = affinity_disabled; - } -} + KMP_CPU_COPY(th->th.th_affin_mask, mask); -void __kmp_affinity_uninitialize(void) { - if (__kmp_affinity_masks != NULL) { - KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); - __kmp_affinity_masks = NULL; - } - if (__kmp_affin_fullMask != NULL) { - KMP_CPU_FREE(__kmp_affin_fullMask); - __kmp_affin_fullMask = NULL; - } - __kmp_affinity_num_masks = 0; - __kmp_affinity_type = affinity_default; - __kmp_affinity_num_places = 0; - if (__kmp_affinity_proclist != NULL) { - __kmp_free(__kmp_affinity_proclist); - __kmp_affinity_proclist = NULL; - } - if (procarr != NULL) { - __kmp_free(procarr); - procarr = NULL; - } -#if KMP_USE_HWLOC - if (__kmp_hwloc_topology != NULL) { - hwloc_topology_destroy(__kmp_hwloc_topology); - __kmp_hwloc_topology = NULL; - } -#endif - if (__kmp_hw_subset) { - kmp_hw_subset_t::deallocate(__kmp_hw_subset); - __kmp_hw_subset = nullptr; - } - if (__kmp_topology) { - kmp_topology_t::deallocate(__kmp_topology); - __kmp_topology = nullptr; - } - KMPAffinity::destroy_api(); + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid, + buf); + } + +# if KMP_OS_WINDOWS + // + // On Windows* OS, the process affinity mask might have changed. + // If the user didn't request affinity and this call fails, + // just continue silently. See CQ171393. + // + if ( __kmp_affinity_type == affinity_none ) { + __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); + } + else +# endif + __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); } -void __kmp_affinity_set_init_mask(int gtid, int isa_root) { - if (!KMP_AFFINITY_CAPABLE()) { - return; - } - - kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); - if (th->th.th_affin_mask == NULL) { - KMP_CPU_ALLOC(th->th.th_affin_mask); - } else { - KMP_CPU_ZERO(th->th.th_affin_mask); - } - - // Copy the thread mask to the kmp_info_t structure. If - // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that - // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, - // then the full mask is the same as the mask of the initialization thread. - kmp_affin_mask_t *mask; - int i; - - if (KMP_AFFINITY_NON_PROC_BIND) { - if ((__kmp_affinity_type == affinity_none) || - (__kmp_affinity_type == affinity_balanced) || - KMP_HIDDEN_HELPER_THREAD(gtid)) { -#if KMP_GROUP_AFFINITY - if (__kmp_num_proc_groups > 1) { - return; - } -#endif - KMP_ASSERT(__kmp_affin_fullMask != NULL); - i = 0; - mask = __kmp_affin_fullMask; - } else { - int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); - KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); - i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; - mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); - } - } else { - if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || - (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { -#if KMP_GROUP_AFFINITY - if (__kmp_num_proc_groups > 1) { + +# if OMP_40_ENABLED + +void +__kmp_affinity_set_place(int gtid) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { return; - } -#endif - KMP_ASSERT(__kmp_affin_fullMask != NULL); - i = KMP_PLACE_ALL; - mask = __kmp_affin_fullMask; - } else { - // int i = some hash function or just a counter that doesn't - // always start at 0. Use adjusted gtid for now. - int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); - KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); - i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; - mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); - } - } - - th->th.th_current_place = i; - if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { - th->th.th_new_place = i; - th->th.th_first_place = 0; - th->th.th_last_place = __kmp_affinity_num_masks - 1; - } else if (KMP_AFFINITY_NON_PROC_BIND) { - // When using a Non-OMP_PROC_BIND affinity method, - // set all threads' place-partition-var to the entire place list - th->th.th_first_place = 0; - th->th.th_last_place = __kmp_affinity_num_masks - 1; - } - - if (i == KMP_PLACE_ALL) { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", - gtid)); - } else { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", - gtid, i)); - } - - KMP_CPU_COPY(th->th.th_affin_mask, mask); - - if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) - /* to avoid duplicate printing (will be correctly printed on barrier) */ - && (__kmp_affinity_type == affinity_none || - (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), - __kmp_gettid(), gtid, buf); - } - -#if KMP_DEBUG - // Hidden helper thread affinity only printed for debug builds - if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", - (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); - } -#endif + } -#if KMP_OS_WINDOWS - // On Windows* OS, the process affinity mask might have changed. If the user - // didn't request affinity and this call fails, just continue silently. - // See CQ171393. - if (__kmp_affinity_type == affinity_none) { - __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); - } else -#endif + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + + KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n", + gtid, th->th.th_new_place, th->th.th_current_place)); + + // + // Check that the new place is within this thread's partition. + // + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + KMP_ASSERT(th->th.th_new_place >= 0); + KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); + if (th->th.th_first_place <= th->th.th_last_place) { + KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) + && (th->th.th_new_place <= th->th.th_last_place)); + } + else { + KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) + || (th->th.th_new_place >= th->th.th_last_place)); + } + + // + // Copy the thread mask to the kmp_info_t strucuture, + // and set this thread's affinity. + // + kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, + th->th.th_new_place); + KMP_CPU_COPY(th->th.th_affin_mask, mask); + th->th.th_current_place = th->th.th_new_place; + + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), + gtid, buf); + } __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); } -void __kmp_affinity_set_place(int gtid) { - if (!KMP_AFFINITY_CAPABLE()) { - return; - } - - kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); - - KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " - "place = %d)\n", - gtid, th->th.th_new_place, th->th.th_current_place)); - - // Check that the new place is within this thread's partition. - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - KMP_ASSERT(th->th.th_new_place >= 0); - KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); - if (th->th.th_first_place <= th->th.th_last_place) { - KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && - (th->th.th_new_place <= th->th.th_last_place)); - } else { - KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || - (th->th.th_new_place >= th->th.th_last_place)); - } - - // Copy the thread mask to the kmp_info_t structure, - // and set this thread's affinity. - kmp_affin_mask_t *mask = - KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); - KMP_CPU_COPY(th->th.th_affin_mask, mask); - th->th.th_current_place = th->th.th_new_place; - - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), - __kmp_gettid(), gtid, buf); - } - __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); -} +# endif /* OMP_40_ENABLED */ -int __kmp_aux_set_affinity(void **mask) { - int gtid; - kmp_info_t *th; - int retval; - if (!KMP_AFFINITY_CAPABLE()) { - return -1; - } +int +__kmp_aux_set_affinity(void **mask) +{ + int gtid; + kmp_info_t *th; + int retval; - gtid = __kmp_entry_gtid(); - KA_TRACE( - 1000, (""); { + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + gtid = __kmp_entry_gtid(); + KA_TRACE(1000, ;{ char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf( - "kmp_set_affinity: setting affinity mask for thread %d = %s\n", - gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } else { - unsigned proc; - int num_procs = 0; - - KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { - if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } - if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { - continue; - } - num_procs++; - } - if (num_procs == 0) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } - -#if KMP_GROUP_AFFINITY - if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } -#endif /* KMP_GROUP_AFFINITY */ - } - } - - th = __kmp_threads[gtid]; - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); - if (retval == 0) { - KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); - } - - th->th.th_current_place = KMP_PLACE_UNDEFINED; - th->th.th_new_place = KMP_PLACE_UNDEFINED; - th->th.th_first_place = 0; - th->th.th_last_place = __kmp_affinity_num_masks - 1; - - // Turn off 4.0 affinity for the current tread at this parallel level. - th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; - - return retval; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n", + gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + else { + unsigned proc; + int num_procs = 0; + + KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) { + if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { + continue; + } + num_procs++; + if (! KMP_CPU_ISSET(proc, fullMask)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + break; + } + } + if (num_procs == 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + +# if KMP_GROUP_AFFINITY + if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } +# endif /* KMP_GROUP_AFFINITY */ + + } + } + + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + if (retval == 0) { + KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); + } + +# if OMP_40_ENABLED + th->th.th_current_place = KMP_PLACE_UNDEFINED; + th->th.th_new_place = KMP_PLACE_UNDEFINED; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + + // + // Turn off 4.0 affinity for the current tread at this parallel level. + // + th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; +# endif + + return retval; } -int __kmp_aux_get_affinity(void **mask) { - int gtid; - int retval; - kmp_info_t *th; - if (!KMP_AFFINITY_CAPABLE()) { - return -1; - } +int +__kmp_aux_get_affinity(void **mask) +{ + int gtid; + int retval; + kmp_info_t *th; - gtid = __kmp_entry_gtid(); - th = __kmp_threads[gtid]; - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } - KA_TRACE( - 1000, (""); { + gtid = __kmp_entry_gtid(); + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + + KA_TRACE(1000, ;{ char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - __kmp_printf( - "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, - buf); - }); + th->th.th_affin_mask); + __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); + }); - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); + } } - } -#if !KMP_OS_WINDOWS +# if !KMP_OS_WINDOWS - retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); - KA_TRACE( - 1000, (""); { + retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + KA_TRACE(1000, ;{ char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_printf( - "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, - buf); - }); - return retval; + (kmp_affin_mask_t *)(*mask)); + __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); + }); + return retval; -#else - (void)retval; +# else - KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); - return 0; + KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); + return 0; -#endif /* KMP_OS_WINDOWS */ -} +# endif /* KMP_OS_WINDOWS */ -int __kmp_aux_get_affinity_max_proc() { - if (!KMP_AFFINITY_CAPABLE()) { - return 0; - } -#if KMP_GROUP_AFFINITY - if (__kmp_num_proc_groups > 1) { - return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); - } -#endif - return __kmp_xproc; } -int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { - if (!KMP_AFFINITY_CAPABLE()) { - return -1; - } +int +__kmp_aux_set_affinity_mask_proc(int proc, void **mask) +{ + int retval; - KA_TRACE( - 1000, (""); { + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " - "affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); - } - } - - if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { - return -1; - } - if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { - return -2; - } - - KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); - return 0; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); + } + } + + if ((proc < 0) +# if !KMP_USE_HWLOC + || ((unsigned)proc >= KMP_CPU_SETSIZE) +# endif + ) { + return -1; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return -2; + } + + KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); + return 0; } -int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { - if (!KMP_AFFINITY_CAPABLE()) { - return -1; - } - KA_TRACE( - 1000, (""); { +int +__kmp_aux_unset_affinity_mask_proc(int proc, void **mask) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " - "affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); - } - } - - if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { - return -1; - } - if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { - return -2; - } - - KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); - return 0; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); + } + } + + if ((proc < 0) +# if !KMP_USE_HWLOC + || ((unsigned)proc >= KMP_CPU_SETSIZE) +# endif + ) { + return -1; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return -2; + } + + KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); + return 0; } -int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { - if (!KMP_AFFINITY_CAPABLE()) { - return -1; - } - KA_TRACE( - 1000, (""); { +int +__kmp_aux_get_affinity_mask_proc(int proc, void **mask) +{ + int retval; + + if (! KMP_AFFINITY_CAPABLE()) { + return -1; + } + + KA_TRACE(1000, ;{ int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " - "affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); - } - } - - if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { - return -1; - } - if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { - return 0; - } + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); + } + } + + if ((proc < 0) +# if !KMP_USE_HWLOC + || ((unsigned)proc >= KMP_CPU_SETSIZE) +# endif + ) { + return -1; + } + if (! KMP_CPU_ISSET(proc, fullMask)) { + return 0; + } - return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); + return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); } -// Dynamic affinity settings - Affinity balanced -void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { - KMP_DEBUG_ASSERT(th); - bool fine_gran = true; - int tid = th->th.th_info.ds.ds_tid; - - // Do not perform balanced affinity for the hidden helper threads - if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) - return; - - switch (__kmp_affinity_gran) { - case KMP_HW_THREAD: - break; - case KMP_HW_CORE: - if (__kmp_nThreadsPerCore > 1) { - fine_gran = false; - } - break; - case KMP_HW_SOCKET: - if (nCoresPerPkg > 1) { - fine_gran = false; - } - break; - default: - fine_gran = false; - } - - if (__kmp_topology->is_uniform()) { - int coreID; - int threadID; - // Number of hyper threads per core in HT machine - int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; - // Number of cores - int ncores = __kmp_ncores; - if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { - __kmp_nth_per_core = __kmp_avail_proc / nPackages; - ncores = nPackages; - } - // How many threads will be bound to each core - int chunk = nthreads / ncores; - // How many cores will have an additional thread bound to it - "big cores" - int big_cores = nthreads % ncores; - // Number of threads on the big cores - int big_nth = (chunk + 1) * big_cores; - if (tid < big_nth) { - coreID = tid / (chunk + 1); - threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; - } else { // tid >= big_nth - coreID = (tid - big_cores) / chunk; - threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; - } - KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), - "Illegal set affinity operation when not capable"); - - kmp_affin_mask_t *mask = th->th.th_affin_mask; - KMP_CPU_ZERO(mask); - if (fine_gran) { - int osID = - __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; - KMP_CPU_SET(osID, mask); - } else { - for (int i = 0; i < __kmp_nth_per_core; i++) { - int osID; - osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; - KMP_CPU_SET(osID, mask); - } - } - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), - __kmp_gettid(), tid, buf); - } - __kmp_set_system_affinity(mask, TRUE); - } else { // Non-uniform topology +// Dynamic affinity settings - Affinity balanced +void __kmp_balanced_affinity( int tid, int nthreads ) +{ + if( __kmp_affinity_uniform_topology() ) { + int coreID; + int threadID; + // Number of hyper threads per core in HT machine + int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; + // Number of cores + int ncores = __kmp_ncores; + // How many threads will be bound to each core + int chunk = nthreads / ncores; + // How many cores will have an additional thread bound to it - "big cores" + int big_cores = nthreads % ncores; + // Number of threads on the big cores + int big_nth = ( chunk + 1 ) * big_cores; + if( tid < big_nth ) { + coreID = tid / (chunk + 1 ); + threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ; + } else { //tid >= big_nth + coreID = ( tid - big_cores ) / chunk; + threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ; + } - kmp_affin_mask_t *mask = th->th.th_affin_mask; - KMP_CPU_ZERO(mask); + KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), + "Illegal set affinity operation when not capable"); + + kmp_affin_mask_t *mask; + KMP_CPU_ALLOC_ON_STACK(mask); + KMP_CPU_ZERO(mask); + + // Granularity == thread + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + for( int i = 0; i < __kmp_nth_per_core; i++ ) { + int osID; + osID = address2os[ coreID * __kmp_nth_per_core + i ].second; + KMP_CPU_SET( osID, mask); + } + } + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), + tid, buf); + } + __kmp_set_system_affinity( mask, TRUE ); + KMP_CPU_FREE_FROM_STACK(mask); + } else { // Non-uniform topology + + kmp_affin_mask_t *mask; + KMP_CPU_ALLOC_ON_STACK(mask); + KMP_CPU_ZERO(mask); + + // Number of hyper threads per core in HT machine + int nth_per_core = __kmp_nThreadsPerCore; + int core_level; + if( nth_per_core > 1 ) { + core_level = __kmp_aff_depth - 2; + } else { + core_level = __kmp_aff_depth - 1; + } - int core_level = - __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); - int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, - __kmp_aff_depth - 1, core_level); - int nth_per_core = __kmp_affinity_max_proc_per_core( - __kmp_avail_proc, __kmp_aff_depth - 1, core_level); - - // For performance gain consider the special case nthreads == - // __kmp_avail_proc - if (nthreads == __kmp_avail_proc) { - if (fine_gran) { - int osID = __kmp_topology->at(tid).os_id; - KMP_CPU_SET(osID, mask); - } else { - int core = - __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); - for (int i = 0; i < __kmp_avail_proc; i++) { - int osID = __kmp_topology->at(i).os_id; - if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == - core) { - KMP_CPU_SET(osID, mask); - } - } - } - } else if (nthreads <= ncores) { - - int core = 0; - for (int i = 0; i < ncores; i++) { - // Check if this core from procarr[] is in the mask - int in_mask = 0; - for (int j = 0; j < nth_per_core; j++) { - if (procarr[i * nth_per_core + j] != -1) { - in_mask = 1; - break; - } - } - if (in_mask) { - if (tid == core) { - for (int j = 0; j < nth_per_core; j++) { - int osID = procarr[i * nth_per_core + j]; - if (osID != -1) { - KMP_CPU_SET(osID, mask); - // For fine granularity it is enough to set the first available - // osID for this core - if (fine_gran) { - break; + // Number of cores - maximum value; it does not count trail cores with 0 processors + int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; + + // For performance gain consider the special case nthreads == __kmp_avail_proc + if( nthreads == __kmp_avail_proc ) { + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = address2os[ tid ].second; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + int coreID = address2os[ tid ].first.labels[ core_level ]; + // We'll count found osIDs for the current core; they can be not more than nth_per_core; + // since the address2os is sortied we can break when cnt==nth_per_core + int cnt = 0; + for( int i = 0; i < __kmp_avail_proc; i++ ) { + int osID = address2os[ i ].second; + int core = address2os[ i ].first.labels[ core_level ]; + if( core == coreID ) { + KMP_CPU_SET( osID, mask); + cnt++; + if( cnt == nth_per_core ) { + break; + } + } } - } } - break; - } else { - core++; - } - } - } - } else { // nthreads > ncores - // Array to save the number of processors at each core - int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); - // Array to save the number of cores with "x" available processors; - int *ncores_with_x_procs = - (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); - // Array to save the number of cores with # procs from x to nth_per_core - int *ncores_with_x_to_max_procs = - (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); - - for (int i = 0; i <= nth_per_core; i++) { - ncores_with_x_procs[i] = 0; - ncores_with_x_to_max_procs[i] = 0; - } - - for (int i = 0; i < ncores; i++) { - int cnt = 0; - for (int j = 0; j < nth_per_core; j++) { - if (procarr[i * nth_per_core + j] != -1) { - cnt++; - } - } - nproc_at_core[i] = cnt; - ncores_with_x_procs[cnt]++; - } - - for (int i = 0; i <= nth_per_core; i++) { - for (int j = i; j <= nth_per_core; j++) { - ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; - } - } - - // Max number of processors - int nproc = nth_per_core * ncores; - // An array to keep number of threads per each context - int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); - for (int i = 0; i < nproc; i++) { - newarr[i] = 0; - } - - int nth = nthreads; - int flag = 0; - while (nth > 0) { - for (int j = 1; j <= nth_per_core; j++) { - int cnt = ncores_with_x_to_max_procs[j]; - for (int i = 0; i < ncores; i++) { - // Skip the core with 0 processors - if (nproc_at_core[i] == 0) { - continue; + } else if( nthreads <= __kmp_ncores ) { + + int core = 0; + for( int i = 0; i < ncores; i++ ) { + // Check if this core from procarr[] is in the mask + int in_mask = 0; + for( int j = 0; j < nth_per_core; j++ ) { + if( procarr[ i * nth_per_core + j ] != - 1 ) { + in_mask = 1; + break; + } + } + if( in_mask ) { + if( tid == core ) { + for( int j = 0; j < nth_per_core; j++ ) { + int osID = procarr[ i * nth_per_core + j ]; + if( osID != -1 ) { + KMP_CPU_SET( osID, mask ); + // For granularity=thread it is enough to set the first available osID for this core + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + break; + } + } + } + break; + } else { + core++; + } + } } - for (int k = 0; k < nth_per_core; k++) { - if (procarr[i * nth_per_core + k] != -1) { - if (newarr[i * nth_per_core + k] == 0) { - newarr[i * nth_per_core + k] = 1; - cnt--; - nth--; - break; - } else { - if (flag != 0) { - newarr[i * nth_per_core + k]++; - cnt--; - nth--; - break; - } + + } else { // nthreads > __kmp_ncores + + // Array to save the number of processors at each core + int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores); + // Array to save the number of cores with "x" available processors; + int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); + // Array to save the number of cores with # procs from x to nth_per_core + int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); + + for( int i = 0; i <= nth_per_core; i++ ) { + ncores_with_x_procs[ i ] = 0; + ncores_with_x_to_max_procs[ i ] = 0; + } + + for( int i = 0; i < ncores; i++ ) { + int cnt = 0; + for( int j = 0; j < nth_per_core; j++ ) { + if( procarr[ i * nth_per_core + j ] != -1 ) { + cnt++; + } } - } + nproc_at_core[ i ] = cnt; + ncores_with_x_procs[ cnt ]++; } - if (cnt == 0 || nth == 0) { - break; + + for( int i = 0; i <= nth_per_core; i++ ) { + for( int j = i; j <= nth_per_core; j++ ) { + ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ]; + } } - } - if (nth == 0) { - break; - } - } - flag = 1; - } - int sum = 0; - for (int i = 0; i < nproc; i++) { - sum += newarr[i]; - if (sum > tid) { - if (fine_gran) { - int osID = procarr[i]; - KMP_CPU_SET(osID, mask); - } else { - int coreID = i / nth_per_core; - for (int ii = 0; ii < nth_per_core; ii++) { - int osID = procarr[coreID * nth_per_core + ii]; - if (osID != -1) { - KMP_CPU_SET(osID, mask); - } + + // Max number of processors + int nproc = nth_per_core * ncores; + // An array to keep number of threads per each context + int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); + for( int i = 0; i < nproc; i++ ) { + newarr[ i ] = 0; + } + + int nth = nthreads; + int flag = 0; + while( nth > 0 ) { + for( int j = 1; j <= nth_per_core; j++ ) { + int cnt = ncores_with_x_to_max_procs[ j ]; + for( int i = 0; i < ncores; i++ ) { + // Skip the core with 0 processors + if( nproc_at_core[ i ] == 0 ) { + continue; + } + for( int k = 0; k < nth_per_core; k++ ) { + if( procarr[ i * nth_per_core + k ] != -1 ) { + if( newarr[ i * nth_per_core + k ] == 0 ) { + newarr[ i * nth_per_core + k ] = 1; + cnt--; + nth--; + break; + } else { + if( flag != 0 ) { + newarr[ i * nth_per_core + k ] ++; + cnt--; + nth--; + break; + } + } + } + } + if( cnt == 0 || nth == 0 ) { + break; + } + } + if( nth == 0 ) { + break; + } + } + flag = 1; + } + int sum = 0; + for( int i = 0; i < nproc; i++ ) { + sum += newarr[ i ]; + if( sum > tid ) { + // Granularity == thread + if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { + int osID = procarr[ i ]; + KMP_CPU_SET( osID, mask); + } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core + int coreID = i / nth_per_core; + for( int ii = 0; ii < nth_per_core; ii++ ) { + int osID = procarr[ coreID * nth_per_core + ii ]; + if( osID != -1 ) { + KMP_CPU_SET( osID, mask); + } + } + } + break; + } } - } - break; + __kmp_free( newarr ); } - } - __kmp_free(newarr); - } - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), - __kmp_gettid(), tid, buf); + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), + tid, buf); + } + __kmp_set_system_affinity( mask, TRUE ); + KMP_CPU_FREE_FROM_STACK(mask); } - __kmp_set_system_affinity(mask, TRUE); - } -} - -#if KMP_OS_LINUX || KMP_OS_FREEBSD -// We don't need this entry for Windows because -// there is GetProcessAffinityMask() api -// -// The intended usage is indicated by these steps: -// 1) The user gets the current affinity mask -// 2) Then sets the affinity by calling this function -// 3) Error check the return value -// 4) Use non-OpenMP parallelization -// 5) Reset the affinity to what was stored in step 1) -#ifdef __cplusplus -extern "C" -#endif - int - kmp_set_thread_affinity_mask_initial() -// the function returns 0 on success, -// -1 if we cannot bind thread -// >0 (errno) if an error happened during binding -{ - int gtid = __kmp_get_gtid(); - if (gtid < 0) { - // Do not touch non-omp threads - KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " - "non-omp thread, returning\n")); - return -1; - } - if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { - KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " - "affinity not initialized, returning\n")); - return -1; - } - KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " - "set full mask for thread %d\n", - gtid)); - KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); - return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); } -#endif #endif // KMP_AFFINITY_SUPPORTED |