summaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
diff options
context:
space:
mode:
authorarcadia-devtools <[email protected]>2022-03-01 22:49:23 +0300
committerarcadia-devtools <[email protected]>2022-03-01 22:49:23 +0300
commitf1db7e1d2a6f1e911c41352aecb7897b8cc48d74 (patch)
treee551b29a4f1a5e46cb6f23b04e3192dcf5f9da32 /contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
parent8de79fac61fafe1e9e559da116135cca3f5846d1 (diff)
intermediate changes
ref:51d474bda1b99a2cf73ca7da0cd5398ef5683bf4
Diffstat (limited to 'contrib/libs/cxxsupp/openmp/kmp_affinity.cpp')
-rw-r--r--contrib/libs/cxxsupp/openmp/kmp_affinity.cpp8611
1 files changed, 4378 insertions, 4233 deletions
diff --git a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
index 8b40bd7ecda..4e6699ff214 100644
--- a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
+++ b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
@@ -2,3046 +2,2993 @@
* kmp_affinity.cpp -- affinity management
*/
+
//===----------------------------------------------------------------------===//
//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.txt for details.
//
//===----------------------------------------------------------------------===//
+
#include "kmp.h"
-#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
-#if KMP_USE_HIER_SCHED
-#error #include "kmp_dispatch_hier.h"
-#endif
-#if KMP_USE_HWLOC
-// Copied from hwloc
-#define HWLOC_GROUP_KIND_INTEL_MODULE 102
-#define HWLOC_GROUP_KIND_INTEL_TILE 103
-#define HWLOC_GROUP_KIND_INTEL_DIE 104
-#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
-#endif
-
-// The machine topology
-kmp_topology_t *__kmp_topology = nullptr;
-// KMP_HW_SUBSET environment variable
-kmp_hw_subset_t *__kmp_hw_subset = nullptr;
+#include "kmp_affinity.h"
// Store the real or imagined machine hierarchy here
static hierarchy_info machine_hierarchy;
-void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
-
-void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
- kmp_uint32 depth;
- // The test below is true if affinity is available, but set to "none". Need to
- // init on first use of hierarchical barrier.
- if (TCR_1(machine_hierarchy.uninitialized))
- machine_hierarchy.init(nproc);
-
- // Adjust the hierarchy in case num threads exceeds original
- if (nproc > machine_hierarchy.base_num_threads)
- machine_hierarchy.resize(nproc);
-
- depth = machine_hierarchy.depth;
- KMP_DEBUG_ASSERT(depth > 0);
-
- thr_bar->depth = depth;
- __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
- &(thr_bar->base_leaf_kids));
- thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
+void __kmp_cleanup_hierarchy() {
+ machine_hierarchy.fini();
}
-static int nCoresPerPkg, nPackages;
-static int __kmp_nThreadsPerCore;
-#ifndef KMP_DFLT_NTH_CORES
-static int __kmp_ncores;
-#endif
+void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
+ kmp_uint32 depth;
+ // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
+ if (TCR_1(machine_hierarchy.uninitialized))
+ machine_hierarchy.init(NULL, nproc);
-const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
- switch (type) {
- case KMP_HW_SOCKET:
- return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
- case KMP_HW_DIE:
- return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
- case KMP_HW_MODULE:
- return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
- case KMP_HW_TILE:
- return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
- case KMP_HW_NUMA:
- return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
- case KMP_HW_L3:
- return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
- case KMP_HW_L2:
- return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
- case KMP_HW_L1:
- return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
- case KMP_HW_LLC:
- return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
- case KMP_HW_CORE:
- return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
- case KMP_HW_THREAD:
- return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
- case KMP_HW_PROC_GROUP:
- return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
- }
- return KMP_I18N_STR(Unknown);
-}
+ // Adjust the hierarchy in case num threads exceeds original
+ if (nproc > machine_hierarchy.base_num_threads)
+ machine_hierarchy.resize(nproc);
-const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
- switch (type) {
- case KMP_HW_SOCKET:
- return ((plural) ? "sockets" : "socket");
- case KMP_HW_DIE:
- return ((plural) ? "dice" : "die");
- case KMP_HW_MODULE:
- return ((plural) ? "modules" : "module");
- case KMP_HW_TILE:
- return ((plural) ? "tiles" : "tile");
- case KMP_HW_NUMA:
- return ((plural) ? "numa_domains" : "numa_domain");
- case KMP_HW_L3:
- return ((plural) ? "l3_caches" : "l3_cache");
- case KMP_HW_L2:
- return ((plural) ? "l2_caches" : "l2_cache");
- case KMP_HW_L1:
- return ((plural) ? "l1_caches" : "l1_cache");
- case KMP_HW_LLC:
- return ((plural) ? "ll_caches" : "ll_cache");
- case KMP_HW_CORE:
- return ((plural) ? "cores" : "core");
- case KMP_HW_THREAD:
- return ((plural) ? "threads" : "thread");
- case KMP_HW_PROC_GROUP:
- return ((plural) ? "proc_groups" : "proc_group");
- }
- return ((plural) ? "unknowns" : "unknown");
-}
+ depth = machine_hierarchy.depth;
+ KMP_DEBUG_ASSERT(depth > 0);
-////////////////////////////////////////////////////////////////////////////////
-// kmp_hw_thread_t methods
-int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
- const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
- const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
- int depth = __kmp_topology->get_depth();
- for (int level = 0; level < depth; ++level) {
- if (ahwthread->ids[level] < bhwthread->ids[level])
- return -1;
- else if (ahwthread->ids[level] > bhwthread->ids[level])
- return 1;
- }
- if (ahwthread->os_id < bhwthread->os_id)
- return -1;
- else if (ahwthread->os_id > bhwthread->os_id)
- return 1;
- return 0;
+ thr_bar->depth = depth;
+ thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
+ thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
}
#if KMP_AFFINITY_SUPPORTED
-int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
- int i;
- const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
- const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
- int depth = __kmp_topology->get_depth();
- KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
- KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
- for (i = 0; i < __kmp_affinity_compact; i++) {
- int j = depth - i - 1;
- if (aa->sub_ids[j] < bb->sub_ids[j])
- return -1;
- if (aa->sub_ids[j] > bb->sub_ids[j])
- return 1;
- }
- for (; i < depth; i++) {
- int j = i - __kmp_affinity_compact;
- if (aa->sub_ids[j] < bb->sub_ids[j])
- return -1;
- if (aa->sub_ids[j] > bb->sub_ids[j])
- return 1;
- }
- return 0;
-}
-#endif
-
-void kmp_hw_thread_t::print() const {
- int depth = __kmp_topology->get_depth();
- printf("%4d ", os_id);
- for (int i = 0; i < depth; ++i) {
- printf("%4d ", ids[i]);
- }
- printf("\n");
-}
-////////////////////////////////////////////////////////////////////////////////
-// kmp_topology_t methods
-
-// Remove layers that don't add information to the topology.
-// This is done by having the layer take on the id = UNKNOWN_ID (-1)
-void kmp_topology_t::_remove_radix1_layers() {
- int preference[KMP_HW_LAST];
- int top_index1, top_index2;
- // Set up preference associative array
- preference[KMP_HW_PROC_GROUP] = 110;
- preference[KMP_HW_SOCKET] = 100;
- preference[KMP_HW_CORE] = 95;
- preference[KMP_HW_THREAD] = 90;
- preference[KMP_HW_NUMA] = 85;
- preference[KMP_HW_DIE] = 80;
- preference[KMP_HW_TILE] = 75;
- preference[KMP_HW_MODULE] = 73;
- preference[KMP_HW_L3] = 70;
- preference[KMP_HW_L2] = 65;
- preference[KMP_HW_L1] = 60;
- preference[KMP_HW_LLC] = 5;
- top_index1 = 0;
- top_index2 = 1;
- while (top_index1 < depth - 1 && top_index2 < depth) {
- kmp_hw_t type1 = types[top_index1];
- kmp_hw_t type2 = types[top_index2];
- KMP_ASSERT_VALID_HW_TYPE(type1);
- KMP_ASSERT_VALID_HW_TYPE(type2);
- // Do not allow the three main topology levels (sockets, cores, threads) to
- // be compacted down
- if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
- type1 == KMP_HW_SOCKET) &&
- (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
- type2 == KMP_HW_SOCKET)) {
- top_index1 = top_index2++;
- continue;
- }
- bool radix1 = true;
- bool all_same = true;
- int id1 = hw_threads[0].ids[top_index1];
- int id2 = hw_threads[0].ids[top_index2];
- int pref1 = preference[type1];
- int pref2 = preference[type2];
- for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
- if (hw_threads[hwidx].ids[top_index1] == id1 &&
- hw_threads[hwidx].ids[top_index2] != id2) {
- radix1 = false;
- break;
- }
- if (hw_threads[hwidx].ids[top_index2] != id2)
- all_same = false;
- id1 = hw_threads[hwidx].ids[top_index1];
- id2 = hw_threads[hwidx].ids[top_index2];
- }
- if (radix1) {
- // Select the layer to remove based on preference
- kmp_hw_t remove_type, keep_type;
- int remove_layer, remove_layer_ids;
- if (pref1 > pref2) {
- remove_type = type2;
- remove_layer = remove_layer_ids = top_index2;
- keep_type = type1;
- } else {
- remove_type = type1;
- remove_layer = remove_layer_ids = top_index1;
- keep_type = type2;
- }
- // If all the indexes for the second (deeper) layer are the same.
- // e.g., all are zero, then make sure to keep the first layer's ids
- if (all_same)
- remove_layer_ids = top_index2;
- // Remove radix one type by setting the equivalence, removing the id from
- // the hw threads and removing the layer from types and depth
- set_equivalent_type(remove_type, keep_type);
- for (int idx = 0; idx < num_hw_threads; ++idx) {
- kmp_hw_thread_t &hw_thread = hw_threads[idx];
- for (int d = remove_layer_ids; d < depth - 1; ++d)
- hw_thread.ids[d] = hw_thread.ids[d + 1];
- }
- for (int idx = remove_layer; idx < depth - 1; ++idx)
- types[idx] = types[idx + 1];
- depth--;
+//
+// Print the affinity mask to the character array in a pretty format.
+//
+#if KMP_USE_HWLOC
+char *
+__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
+{
+ int num_chars_to_write, num_chars_written;
+ char* scan;
+ KMP_ASSERT(buf_len >= 40);
+
+ // bufsize of 0 just retrieves the needed buffer size.
+ num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
+
+ // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
+ // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
+ // take into account the '\0' character.
+ if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
+ KMP_SNPRINTF(buf, buf_len, "{<empty>}");
+ } else if(num_chars_to_write < buf_len - 3) {
+ // no problem fitting the mask into buf_len number of characters
+ buf[0] = '{';
+ // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
+ num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
+ buf[num_chars_written+1] = '}';
+ buf[num_chars_written+2] = '\0';
} else {
- top_index1 = top_index2++;
+ // Need to truncate the affinity mask string and add ellipsis.
+ // To do this, we first write out the '{' + str(mask)
+ buf[0] = '{';
+ hwloc_bitmap_list_snprintf(buf+1, buf_len-7, (hwloc_bitmap_t)mask);
+ // then, what we do here is go to the 7th to last character, then go backwards until we are NOT
+ // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't
+ // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
+ // { 45, 67,...} instead.
+ scan = buf + buf_len - 7;
+ while(*scan >= '0' && *scan <= '9' && scan >= buf)
+ scan--;
+ *(scan+1) = '.';
+ *(scan+2) = '.';
+ *(scan+3) = '.';
+ *(scan+4) = '}';
+ *(scan+5) = '\0';
}
- }
- KMP_ASSERT(depth > 0);
-}
-
-void kmp_topology_t::_set_last_level_cache() {
- if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
- else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
-#if KMP_MIC_SUPPORTED
- else if (__kmp_mic_type == mic3) {
- if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
- else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
- // L2/Tile wasn't detected so just say L1
- else
- set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
- }
-#endif
- else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
- // Fallback is to set last level cache to socket or core
- if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
- if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
- else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
- set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
- }
- KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
+ return buf;
}
+#else
+char *
+__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
+{
+ KMP_ASSERT(buf_len >= 40);
+ char *scan = buf;
+ char *end = buf + buf_len - 1;
-// Gather the count of each topology layer and the ratio
-void kmp_topology_t::_gather_enumeration_information() {
- int previous_id[KMP_HW_LAST];
- int max[KMP_HW_LAST];
-
- for (int i = 0; i < depth; ++i) {
- previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
- max[i] = 0;
- count[i] = 0;
- ratio[i] = 0;
- }
- for (int i = 0; i < num_hw_threads; ++i) {
- kmp_hw_thread_t &hw_thread = hw_threads[i];
- for (int layer = 0; layer < depth; ++layer) {
- int id = hw_thread.ids[layer];
- if (id != previous_id[layer]) {
- // Add an additional increment to each count
- for (int l = layer; l < depth; ++l)
- count[l]++;
- // Keep track of topology layer ratio statistics
- max[layer]++;
- for (int l = layer + 1; l < depth; ++l) {
- if (max[l] > ratio[l])
- ratio[l] = max[l];
- max[l] = 1;
+ //
+ // Find first element / check for empty set.
+ //
+ size_t i;
+ for (i = 0; i < KMP_CPU_SETSIZE; i++) {
+ if (KMP_CPU_ISSET(i, mask)) {
+ break;
}
- break;
- }
}
- for (int layer = 0; layer < depth; ++layer) {
- previous_id[layer] = hw_thread.ids[layer];
+ if (i == KMP_CPU_SETSIZE) {
+ KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
+ while (*scan != '\0') scan++;
+ KMP_ASSERT(scan <= end);
+ return buf;
}
- }
- for (int layer = 0; layer < depth; ++layer) {
- if (max[layer] > ratio[layer])
- ratio[layer] = max[layer];
- }
-}
-// Find out if the topology is uniform
-void kmp_topology_t::_discover_uniformity() {
- int num = 1;
- for (int level = 0; level < depth; ++level)
- num *= ratio[level];
- flags.uniform = (num == count[depth - 1]);
-}
+ KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
+ while (*scan != '\0') scan++;
+ i++;
+ for (; i < KMP_CPU_SETSIZE; i++) {
+ if (! KMP_CPU_ISSET(i, mask)) {
+ continue;
+ }
-// Set all the sub_ids for each hardware thread
-void kmp_topology_t::_set_sub_ids() {
- int previous_id[KMP_HW_LAST];
- int sub_id[KMP_HW_LAST];
-
- for (int i = 0; i < depth; ++i) {
- previous_id[i] = -1;
- sub_id[i] = -1;
- }
- for (int i = 0; i < num_hw_threads; ++i) {
- kmp_hw_thread_t &hw_thread = hw_threads[i];
- // Setup the sub_id
- for (int j = 0; j < depth; ++j) {
- if (hw_thread.ids[j] != previous_id[j]) {
- sub_id[j]++;
- for (int k = j + 1; k < depth; ++k) {
- sub_id[k] = 0;
+ //
+ // Check for buffer overflow. A string of the form ",<n>" will have
+ // at most 10 characters, plus we want to leave room to print ",...}"
+ // if the set is too large to print for a total of 15 characters.
+ // We already left room for '\0' in setting end.
+ //
+ if (end - scan < 15) {
+ break;
}
- break;
- }
- }
- // Set previous_id
- for (int j = 0; j < depth; ++j) {
- previous_id[j] = hw_thread.ids[j];
+ KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
+ while (*scan != '\0') scan++;
}
- // Set the sub_ids field
- for (int j = 0; j < depth; ++j) {
- hw_thread.sub_ids[j] = sub_id[j];
+ if (i < KMP_CPU_SETSIZE) {
+ KMP_SNPRINTF(scan, end-scan+1, ",...");
+ while (*scan != '\0') scan++;
}
- }
+ KMP_SNPRINTF(scan, end-scan+1, "}");
+ while (*scan != '\0') scan++;
+ KMP_ASSERT(scan <= end);
+ return buf;
}
+#endif // KMP_USE_HWLOC
-void kmp_topology_t::_set_globals() {
- // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
- int core_level, thread_level, package_level;
- package_level = get_level(KMP_HW_SOCKET);
-#if KMP_GROUP_AFFINITY
- if (package_level == -1)
- package_level = get_level(KMP_HW_PROC_GROUP);
-#endif
- core_level = get_level(KMP_HW_CORE);
- thread_level = get_level(KMP_HW_THREAD);
-
- KMP_ASSERT(core_level != -1);
- KMP_ASSERT(thread_level != -1);
-
- __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
- if (package_level != -1) {
- nCoresPerPkg = calculate_ratio(core_level, package_level);
- nPackages = get_count(package_level);
- } else {
- // assume one socket
- nCoresPerPkg = get_count(core_level);
- nPackages = 1;
- }
-#ifndef KMP_DFLT_NTH_CORES
- __kmp_ncores = get_count(core_level);
-#endif
-}
-kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
- const kmp_hw_t *types) {
- kmp_topology_t *retval;
- // Allocate all data in one large allocation
- size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
- sizeof(int) * ndepth * 3;
- char *bytes = (char *)__kmp_allocate(size);
- retval = (kmp_topology_t *)bytes;
- if (nproc > 0) {
- retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
- } else {
- retval->hw_threads = nullptr;
- }
- retval->num_hw_threads = nproc;
- retval->depth = ndepth;
- int *arr =
- (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
- retval->types = (kmp_hw_t *)arr;
- retval->ratio = arr + ndepth;
- retval->count = arr + 2 * ndepth;
- KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
- for (int i = 0; i < ndepth; ++i) {
- retval->types[i] = types[i];
- retval->equivalent[types[i]] = types[i];
- }
- return retval;
-}
+void
+__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
+{
+ KMP_CPU_ZERO(mask);
-void kmp_topology_t::deallocate(kmp_topology_t *topology) {
- if (topology)
- __kmp_free(topology);
-}
+# if KMP_GROUP_AFFINITY
-bool kmp_topology_t::check_ids() const {
- // Assume ids have been sorted
- if (num_hw_threads == 0)
- return true;
- for (int i = 1; i < num_hw_threads; ++i) {
- kmp_hw_thread_t &current_thread = hw_threads[i];
- kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
- bool unique = false;
- for (int j = 0; j < depth; ++j) {
- if (previous_thread.ids[j] != current_thread.ids[j]) {
- unique = true;
- break;
- }
+ if (__kmp_num_proc_groups > 1) {
+ int group;
+ KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
+ for (group = 0; group < __kmp_num_proc_groups; group++) {
+ int i;
+ int num = __kmp_GetActiveProcessorCount(group);
+ for (i = 0; i < num; i++) {
+ KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
+ }
+ }
}
- if (unique)
- continue;
- return false;
- }
- return true;
-}
+ else
+
+# endif /* KMP_GROUP_AFFINITY */
-void kmp_topology_t::dump() const {
- printf("***********************\n");
- printf("*** __kmp_topology: ***\n");
- printf("***********************\n");
- printf("* depth: %d\n", depth);
-
- printf("* types: ");
- for (int i = 0; i < depth; ++i)
- printf("%15s ", __kmp_hw_get_keyword(types[i]));
- printf("\n");
-
- printf("* ratio: ");
- for (int i = 0; i < depth; ++i) {
- printf("%15d ", ratio[i]);
- }
- printf("\n");
-
- printf("* count: ");
- for (int i = 0; i < depth; ++i) {
- printf("%15d ", count[i]);
- }
- printf("\n");
-
- printf("* equivalent map:\n");
- KMP_FOREACH_HW_TYPE(i) {
- const char *key = __kmp_hw_get_keyword(i);
- const char *value = __kmp_hw_get_keyword(equivalent[i]);
- printf("%-15s -> %-15s\n", key, value);
- }
-
- printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
-
- printf("* num_hw_threads: %d\n", num_hw_threads);
- printf("* hw_threads:\n");
- for (int i = 0; i < num_hw_threads; ++i) {
- hw_threads[i].print();
- }
- printf("***********************\n");
+ {
+ int proc;
+ for (proc = 0; proc < __kmp_xproc; proc++) {
+ KMP_CPU_SET(proc, mask);
+ }
+ }
}
-void kmp_topology_t::print(const char *env_var) const {
- kmp_str_buf_t buf;
- int print_types_depth;
- __kmp_str_buf_init(&buf);
- kmp_hw_t print_types[KMP_HW_LAST + 2];
-
- // Num Available Threads
- KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
-
- // Uniform or not
- if (is_uniform()) {
- KMP_INFORM(Uniform, env_var);
- } else {
- KMP_INFORM(NonUniform, env_var);
- }
-
- // Equivalent types
- KMP_FOREACH_HW_TYPE(type) {
- kmp_hw_t eq_type = equivalent[type];
- if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
- KMP_INFORM(AffEqualTopologyTypes, env_var,
- __kmp_hw_get_catalog_string(type),
- __kmp_hw_get_catalog_string(eq_type));
- }
- }
-
- // Quick topology
- KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
- // Create a print types array that always guarantees printing
- // the core and thread level
- print_types_depth = 0;
- for (int level = 0; level < depth; ++level)
- print_types[print_types_depth++] = types[level];
- if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
- // Force in the core level for quick topology
- if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
- // Force core before thread e.g., 1 socket X 2 threads/socket
- // becomes 1 socket X 1 core/socket X 2 threads/socket
- print_types[print_types_depth - 1] = KMP_HW_CORE;
- print_types[print_types_depth++] = KMP_HW_THREAD;
- } else {
- print_types[print_types_depth++] = KMP_HW_CORE;
- }
- }
- // Always put threads at very end of quick topology
- if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
- print_types[print_types_depth++] = KMP_HW_THREAD;
-
- __kmp_str_buf_clear(&buf);
- kmp_hw_t numerator_type;
- kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
- int core_level = get_level(KMP_HW_CORE);
- int ncores = get_count(core_level);
-
- for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
- int c;
- bool plural;
- numerator_type = print_types[plevel];
- KMP_ASSERT_VALID_HW_TYPE(numerator_type);
- if (equivalent[numerator_type] != numerator_type)
- c = 1;
- else
- c = get_ratio(level++);
- plural = (c > 1);
- if (plevel == 0) {
- __kmp_str_buf_print(&buf, "%d %s", c,
- __kmp_hw_get_catalog_string(numerator_type, plural));
- } else {
- __kmp_str_buf_print(&buf, " x %d %s/%s", c,
- __kmp_hw_get_catalog_string(numerator_type, plural),
- __kmp_hw_get_catalog_string(denominator_type));
- }
- denominator_type = numerator_type;
- }
- KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
-
- if (num_hw_threads <= 0) {
- __kmp_str_buf_free(&buf);
- return;
- }
-
- // Full OS proc to hardware thread map
- KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
- for (int i = 0; i < num_hw_threads; i++) {
- __kmp_str_buf_clear(&buf);
- for (int level = 0; level < depth; ++level) {
- kmp_hw_t type = types[level];
- __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
- __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
- }
- KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
- }
-
- __kmp_str_buf_free(&buf);
+//
+// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
+// called to renumber the labels from [0..n] and place them into the child_num
+// vector of the address object. This is done in case the labels used for
+// the children at one node of the hierarchy differ from those used for
+// another node at the same level. Example: suppose the machine has 2 nodes
+// with 2 packages each. The first node contains packages 601 and 602, and
+// second node contains packages 603 and 604. If we try to sort the table
+// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
+// because we are paying attention to the labels themselves, not the ordinal
+// child numbers. By using the child numbers in the sort, the result is
+// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
+//
+static void
+__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
+ int numAddrs)
+{
+ KMP_DEBUG_ASSERT(numAddrs > 0);
+ int depth = address2os->first.depth;
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
+ * sizeof(unsigned));
+ int labCt;
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[0].first.childNums[labCt] = counts[labCt] = 0;
+ lastLabel[labCt] = address2os[0].first.labels[labCt];
+ }
+ int i;
+ for (i = 1; i < numAddrs; i++) {
+ for (labCt = 0; labCt < depth; labCt++) {
+ if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
+ int labCt2;
+ for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
+ counts[labCt2] = 0;
+ lastLabel[labCt2] = address2os[i].first.labels[labCt2];
+ }
+ counts[labCt]++;
+ lastLabel[labCt] = address2os[i].first.labels[labCt];
+ break;
+ }
+ }
+ for (labCt = 0; labCt < depth; labCt++) {
+ address2os[i].first.childNums[labCt] = counts[labCt];
+ }
+ for (; labCt < (int)Address::maxDepth; labCt++) {
+ address2os[i].first.childNums[labCt] = 0;
+ }
+ }
}
-void kmp_topology_t::canonicalize() {
- _remove_radix1_layers();
- _gather_enumeration_information();
- _discover_uniformity();
- _set_sub_ids();
- _set_globals();
- _set_last_level_cache();
-
-#if KMP_MIC_SUPPORTED
- // Manually Add L2 = Tile equivalence
- if (__kmp_mic_type == mic3) {
- if (get_level(KMP_HW_L2) != -1)
- set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
- else if (get_level(KMP_HW_TILE) != -1)
- set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
- }
-#endif
- // Perform post canonicalization checking
- KMP_ASSERT(depth > 0);
- for (int level = 0; level < depth; ++level) {
- // All counts, ratios, and types must be valid
- KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
- KMP_ASSERT_VALID_HW_TYPE(types[level]);
- // Detected types must point to themselves
- KMP_ASSERT(equivalent[types[level]] == types[level]);
- }
+//
+// All of the __kmp_affinity_create_*_map() routines should set
+// __kmp_affinity_masks to a vector of affinity mask objects of length
+// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
+// return the number of levels in the machine topology tree (zero if
+// __kmp_affinity_type == affinity_none).
+//
+// All of the __kmp_affinity_create_*_map() routines should set *fullMask
+// to the affinity mask for the initialization thread. They need to save and
+// restore the mask, and it could be needed later, so saving it is just an
+// optimization to avoid calling kmp_get_system_affinity() again.
+//
+static kmp_affin_mask_t *fullMask = NULL;
-#if KMP_AFFINITY_SUPPORTED
- // Set the number of affinity granularity levels
- if (__kmp_affinity_gran_levels < 0) {
- kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
- // Check if user's granularity request is valid
- if (gran_type == KMP_HW_UNKNOWN) {
- // First try core, then thread, then package
- kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
- for (auto g : gran_types) {
- if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
- gran_type = g;
- break;
- }
- }
- KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
- // Warn user what granularity setting will be used instead
- KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
- __kmp_hw_get_catalog_string(__kmp_affinity_gran),
- __kmp_hw_get_catalog_string(gran_type));
- __kmp_affinity_gran = gran_type;
- }
- __kmp_affinity_gran_levels = 0;
- for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
- __kmp_affinity_gran_levels++;
- }
-#endif // KMP_AFFINITY_SUPPORTED
-}
+kmp_affin_mask_t *
+__kmp_affinity_get_fullMask() { return fullMask; }
-// Canonicalize an explicit packages X cores/pkg X threads/core topology
-void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
- int nthreads_per_core, int ncores) {
- int ndepth = 3;
- depth = ndepth;
- KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
- for (int level = 0; level < depth; ++level) {
- count[level] = 0;
- ratio[level] = 0;
- }
- count[0] = npackages;
- count[1] = ncores;
- count[2] = __kmp_xproc;
- ratio[0] = npackages;
- ratio[1] = ncores_per_pkg;
- ratio[2] = nthreads_per_core;
- equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
- equivalent[KMP_HW_CORE] = KMP_HW_CORE;
- equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
- types[0] = KMP_HW_SOCKET;
- types[1] = KMP_HW_CORE;
- types[2] = KMP_HW_THREAD;
- //__kmp_avail_proc = __kmp_xproc;
- _discover_uniformity();
-}
-// Apply the KMP_HW_SUBSET envirable to the topology
-// Returns true if KMP_HW_SUBSET filtered any processors
-// otherwise, returns false
-bool kmp_topology_t::filter_hw_subset() {
- // If KMP_HW_SUBSET wasn't requested, then do nothing.
- if (!__kmp_hw_subset)
- return false;
-
- // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
- int hw_subset_depth = __kmp_hw_subset->get_depth();
- kmp_hw_t specified[KMP_HW_LAST];
- KMP_ASSERT(hw_subset_depth > 0);
- KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
- for (int i = 0; i < hw_subset_depth; ++i) {
- int max_count;
- int num = __kmp_hw_subset->at(i).num;
- int offset = __kmp_hw_subset->at(i).offset;
- kmp_hw_t type = __kmp_hw_subset->at(i).type;
- kmp_hw_t equivalent_type = equivalent[type];
- int level = get_level(type);
-
- // Check to see if current layer is in detected machine topology
- if (equivalent_type != KMP_HW_UNKNOWN) {
- __kmp_hw_subset->at(i).type = equivalent_type;
- } else {
- KMP_WARNING(AffHWSubsetNotExistGeneric,
- __kmp_hw_get_catalog_string(type));
- return false;
- }
-
- // Check to see if current layer has already been specified
- // either directly or through an equivalent type
- if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
- KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
- __kmp_hw_get_catalog_string(specified[equivalent_type]));
- return false;
- }
- specified[equivalent_type] = type;
-
- // Check to see if layers are in order
- if (i + 1 < hw_subset_depth) {
- kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type);
- if (next_type == KMP_HW_UNKNOWN) {
- KMP_WARNING(
- AffHWSubsetNotExistGeneric,
- __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type));
- return false;
- }
- int next_topology_level = get_level(next_type);
- if (level > next_topology_level) {
- KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type),
- __kmp_hw_get_catalog_string(next_type));
- return false;
- }
- }
-
- // Check to see if each layer's num & offset parameters are valid
- max_count = get_ratio(level);
- if (max_count < 0 || num + offset > max_count) {
- bool plural = (num > 1);
- KMP_WARNING(AffHWSubsetManyGeneric,
- __kmp_hw_get_catalog_string(type, plural));
- return false;
- }
- }
-
- // Apply the filtered hardware subset
- int new_index = 0;
- for (int i = 0; i < num_hw_threads; ++i) {
- kmp_hw_thread_t &hw_thread = hw_threads[i];
- // Check to see if this hardware thread should be filtered
- bool should_be_filtered = false;
- for (int level = 0, hw_subset_index = 0;
- level < depth && hw_subset_index < hw_subset_depth; ++level) {
- kmp_hw_t topology_type = types[level];
- auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
- kmp_hw_t hw_subset_type = hw_subset_item.type;
- if (topology_type != hw_subset_type)
- continue;
- int num = hw_subset_item.num;
- int offset = hw_subset_item.offset;
- hw_subset_index++;
- if (hw_thread.sub_ids[level] < offset ||
- hw_thread.sub_ids[level] >= offset + num) {
- should_be_filtered = true;
- break;
- }
- }
- if (!should_be_filtered) {
- if (i != new_index)
- hw_threads[new_index] = hw_thread;
- new_index++;
- } else {
-#if KMP_AFFINITY_SUPPORTED
- KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask);
+static int nCoresPerPkg, nPackages;
+static int __kmp_nThreadsPerCore;
+#ifndef KMP_DFLT_NTH_CORES
+static int __kmp_ncores;
#endif
- __kmp_avail_proc--;
- }
- }
- KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
- num_hw_threads = new_index;
-
- // Post hardware subset canonicalization
- _gather_enumeration_information();
- _discover_uniformity();
- _set_globals();
- _set_last_level_cache();
- return true;
-}
-bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
- if (hw_level >= depth)
- return true;
- bool retval = true;
- const kmp_hw_thread_t &t1 = hw_threads[hwt1];
- const kmp_hw_thread_t &t2 = hw_threads[hwt2];
- for (int i = 0; i < (depth - hw_level); ++i) {
- if (t1.ids[i] != t2.ids[i])
- return false;
- }
- return retval;
+//
+// __kmp_affinity_uniform_topology() doesn't work when called from
+// places which support arbitrarily many levels in the machine topology
+// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
+// __kmp_affinity_create_x2apicid_map().
+//
+inline static bool
+__kmp_affinity_uniform_topology()
+{
+ return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
}
-////////////////////////////////////////////////////////////////////////////////
-
-#if KMP_AFFINITY_SUPPORTED
-class kmp_affinity_raii_t {
- kmp_affin_mask_t *mask;
- bool restored;
-public:
- kmp_affinity_raii_t() : restored(false) {
- KMP_CPU_ALLOC(mask);
- KMP_ASSERT(mask != NULL);
- __kmp_get_system_affinity(mask, TRUE);
- }
- void restore() {
- __kmp_set_system_affinity(mask, TRUE);
- KMP_CPU_FREE(mask);
- restored = true;
- }
- ~kmp_affinity_raii_t() {
- if (!restored) {
- __kmp_set_system_affinity(mask, TRUE);
- KMP_CPU_FREE(mask);
- }
- }
-};
-
-bool KMPAffinity::picked_api = false;
+//
+// Print out the detailed machine topology map, i.e. the physical locations
+// of each OS proc.
+//
+static void
+__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
+ int pkgLevel, int coreLevel, int threadLevel)
+{
+ int proc;
-void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
-void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
-void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
-void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
-void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
-void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
+ KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
+ for (proc = 0; proc < len; proc++) {
+ int level;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ for (level = 0; level < depth; level++) {
+ if (level == threadLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
+ }
+ else if (level == coreLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
+ }
+ else if (level == pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
+ }
+ else if (level > pkgLevel) {
+ __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
+ level - pkgLevel - 1);
+ }
+ else {
+ __kmp_str_buf_print(&buf, "L%d ", level);
+ }
+ __kmp_str_buf_print(&buf, "%d ",
+ address2os[proc].first.labels[level]);
+ }
+ KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
+ buf.str);
+ __kmp_str_buf_free(&buf);
+ }
+}
-void KMPAffinity::pick_api() {
- KMPAffinity *affinity_dispatch;
- if (picked_api)
- return;
#if KMP_USE_HWLOC
- // Only use Hwloc if affinity isn't explicitly disabled and
- // user requests Hwloc topology method
- if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
- __kmp_affinity_type != affinity_disabled) {
- affinity_dispatch = new KMPHwlocAffinity();
- } else
-#endif
- {
- affinity_dispatch = new KMPNativeAffinity();
- }
- __kmp_affinity_dispatch = affinity_dispatch;
- picked_api = true;
-}
+static int
+__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
-void KMPAffinity::destroy_api() {
- if (__kmp_affinity_dispatch != NULL) {
- delete __kmp_affinity_dispatch;
- __kmp_affinity_dispatch = NULL;
- picked_api = false;
- }
-}
+ //
+ // Save the affinity mask for the current thread.
+ //
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ __kmp_get_system_affinity(oldMask, TRUE);
-#define KMP_ADVANCE_SCAN(scan) \
- while (*scan != '\0') { \
- scan++; \
- }
+ unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology);
+ int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU);
+ int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE);
+ int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET);
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0;
-// Print the affinity mask to the character array in a pretty format.
-// The format is a comma separated list of non-negative integers or integer
-// ranges: e.g., 1,2,3-5,7,9-15
-// The format can also be the string "{<empty>}" if no bits are set in mask
-char *__kmp_affinity_print_mask(char *buf, int buf_len,
- kmp_affin_mask_t *mask) {
- int start = 0, finish = 0, previous = 0;
- bool first_range;
- KMP_ASSERT(buf);
- KMP_ASSERT(buf_len >= 40);
- KMP_ASSERT(mask);
- char *scan = buf;
- char *end = buf + buf_len - 1;
-
- // Check for empty set.
- if (mask->begin() == mask->end()) {
- KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
- KMP_ADVANCE_SCAN(scan);
- KMP_ASSERT(scan <= end);
- return buf;
- }
-
- first_range = true;
- start = mask->begin();
- while (1) {
- // Find next range
- // [start, previous] is inclusive range of contiguous bits in mask
- for (finish = mask->next(start), previous = start;
- finish == previous + 1 && finish != mask->end();
- finish = mask->next(finish)) {
- previous = finish;
- }
-
- // The first range does not need a comma printed before it, but the rest
- // of the ranges do need a comma beforehand
- if (!first_range) {
- KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
- KMP_ADVANCE_SCAN(scan);
- } else {
- first_range = false;
+ //
+ // This makes an assumption about the topology being four levels:
+ // machines -> packages -> cores -> hardware threads
+ //
+ hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology);
+ hwloc_obj_t child_iterator;
+ for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
+ child_iterator != NULL;
+ child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
+ {
+ nPackages++;
}
- // Range with three or more contiguous bits in the affinity mask
- if (previous - start > 1) {
- KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
- } else {
- // Range with one or two contiguous bits in the affinity mask
- KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
- KMP_ADVANCE_SCAN(scan);
- if (previous - start > 0) {
- KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
- }
- }
- KMP_ADVANCE_SCAN(scan);
- // Start over with new start point
- start = finish;
- if (start == mask->end())
- break;
- // Check for overflow
- if (end - scan < 2)
- break;
- }
-
- // Check for overflow
- KMP_ASSERT(scan <= end);
- return buf;
-}
-#undef KMP_ADVANCE_SCAN
-
-// Print the affinity mask to the string buffer object in a pretty format
-// The format is a comma separated list of non-negative integers or integer
-// ranges: e.g., 1,2,3-5,7,9-15
-// The format can also be the string "{<empty>}" if no bits are set in mask
-kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
- kmp_affin_mask_t *mask) {
- int start = 0, finish = 0, previous = 0;
- bool first_range;
- KMP_ASSERT(buf);
- KMP_ASSERT(mask);
-
- __kmp_str_buf_clear(buf);
-
- // Check for empty set.
- if (mask->begin() == mask->end()) {
- __kmp_str_buf_print(buf, "%s", "{<empty>}");
- return buf;
- }
-
- first_range = true;
- start = mask->begin();
- while (1) {
- // Find next range
- // [start, previous] is inclusive range of contiguous bits in mask
- for (finish = mask->next(start), previous = start;
- finish == previous + 1 && finish != mask->end();
- finish = mask->next(finish)) {
- previous = finish;
- }
-
- // The first range does not need a comma printed before it, but the rest
- // of the ranges do need a comma beforehand
- if (!first_range) {
- __kmp_str_buf_print(buf, "%s", ",");
- } else {
- first_range = false;
+ current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0);
+ for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
+ child_iterator != NULL;
+ child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
+ {
+ nCoresPerPkg++;
+ }
+ current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0);
+ for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
+ child_iterator != NULL;
+ child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
+ {
+ __kmp_nThreadsPerCore++;
}
- // Range with three or more contiguous bits in the affinity mask
- if (previous - start > 1) {
- __kmp_str_buf_print(buf, "%u-%u", start, previous);
- } else {
- // Range with one or two contiguous bits in the affinity mask
- __kmp_str_buf_print(buf, "%u", start);
- if (previous - start > 0) {
- __kmp_str_buf_print(buf, ",%u", previous);
- }
- }
- // Start over with new start point
- start = finish;
- if (start == mask->end())
- break;
- }
- return buf;
-}
-
-void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
- KMP_CPU_ZERO(mask);
-#if KMP_GROUP_AFFINITY
+ if (! KMP_AFFINITY_CAPABLE())
+ {
+ //
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ //
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
- if (__kmp_num_proc_groups > 1) {
- int group;
- KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
- for (group = 0; group < __kmp_num_proc_groups; group++) {
- int i;
- int num = __kmp_GetActiveProcessorCount(group);
- for (i = 0; i < num; i++) {
- KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
- }
+ //
+ // Allocate the data structure to be returned.
+ //
+ AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
+
+ unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
+ unsigned i;
+ hwloc_obj_t hardware_thread_iterator;
+ int nActiveThreads = 0;
+ for(i=0;i<num_hardware_threads;i++) {
+ hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i);
+ Address addr(3);
+ if(! KMP_CPU_ISSET(i, fullMask)) continue;
+ addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index;
+ addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg;
+ addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore;
+ retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index);
+ nActiveThreads++;
}
- } else
-#endif /* KMP_GROUP_AFFINITY */
+ //
+ // If there's only one thread context to bind to, return now.
+ //
+ KMP_ASSERT(nActiveThreads > 0);
+ if (nActiveThreads == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
- {
- int proc;
- for (proc = 0; proc < __kmp_xproc; proc++) {
- KMP_CPU_SET(proc, mask);
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Form an Address object which only includes the package level.
+ //
+ Address addr(1);
+ addr.labels[0] = retval[0].first.labels[pkgLevel-1];
+ retval[0].first = addr;
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
+ }
+
+ *address2os = retval;
+ KMP_CPU_FREE(oldMask);
+ return 1;
}
- }
-}
-// All of the __kmp_affinity_create_*_map() routines should allocate the
-// internal topology object and set the layer ids for it. Each routine
-// returns a boolean on whether it was successful at doing so.
-kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
+ //
+ // Sort the table by physical Id.
+ //
+ qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
-#if KMP_USE_HWLOC
-static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
-#if HWLOC_API_VERSION >= 0x00020000
- return hwloc_obj_type_is_cache(obj->type);
-#else
- return obj->type == HWLOC_OBJ_CACHE;
-#endif
-}
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return if affinity is not enabled.
+ //
+ __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel);
-// Returns KMP_HW_* type derived from HWLOC_* type
-static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
-
- if (__kmp_hwloc_is_cache_type(obj)) {
- if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
- return KMP_HW_UNKNOWN;
- switch (obj->attr->cache.depth) {
- case 1:
- return KMP_HW_L1;
- case 2:
-#if KMP_MIC_SUPPORTED
- if (__kmp_mic_type == mic3) {
- return KMP_HW_TILE;
- }
-#endif
- return KMP_HW_L2;
- case 3:
- return KMP_HW_L3;
- }
- return KMP_HW_UNKNOWN;
- }
-
- switch (obj->type) {
- case HWLOC_OBJ_PACKAGE:
- return KMP_HW_SOCKET;
- case HWLOC_OBJ_NUMANODE:
- return KMP_HW_NUMA;
- case HWLOC_OBJ_CORE:
- return KMP_HW_CORE;
- case HWLOC_OBJ_PU:
- return KMP_HW_THREAD;
- case HWLOC_OBJ_GROUP:
- if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
- return KMP_HW_DIE;
- else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
- return KMP_HW_TILE;
- else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
- return KMP_HW_MODULE;
- else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
- return KMP_HW_PROC_GROUP;
- return KMP_HW_UNKNOWN;
-#if HWLOC_API_VERSION >= 0x00020100
- case HWLOC_OBJ_DIE:
- return KMP_HW_DIE;
-#endif
- }
- return KMP_HW_UNKNOWN;
-}
+ //
+ // Check to see if the machine topology is uniform
+ //
+ unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel);
+ unsigned ncores = __kmp_ncores;
+ unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
+ unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads);
-// Returns the number of objects of type 'type' below 'obj' within the topology
-// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
-// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
-// object.
-static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
- hwloc_obj_type_t type) {
- int retval = 0;
- hwloc_obj_t first;
- for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
- obj->logical_index, type, 0);
- first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
- obj->type, first) == obj;
- first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
- first)) {
- ++retval;
- }
- return retval;
-}
+ //
+ // Print the machine topology summary.
+ //
+ if (__kmp_affinity_verbose) {
+ char mask[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-// This gets the sub_id for a lower object under a higher object in the
-// topology tree
-static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
- hwloc_obj_t lower) {
- hwloc_obj_t obj;
- hwloc_obj_type_t ltype = lower->type;
- int lindex = lower->logical_index - 1;
- int sub_id = 0;
- // Get the previous lower object
- obj = hwloc_get_obj_by_type(t, ltype, lindex);
- while (obj && lindex >= 0 &&
- hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
- if (obj->userdata) {
- sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
- break;
- }
- sub_id++;
- lindex--;
- obj = hwloc_get_obj_by_type(t, ltype, lindex);
- }
- // store sub_id + 1 so that 0 is differed from NULL
- lower->userdata = RCAST(void *, sub_id + 1);
- return sub_id;
-}
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
-static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
- kmp_hw_t type;
- int hw_thread_index, sub_id;
- int depth;
- hwloc_obj_t pu, obj, root, prev;
- kmp_hw_t types[KMP_HW_LAST];
- hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
-
- hwloc_topology_t tp = __kmp_hwloc_topology;
- *msg_id = kmp_i18n_null;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
- }
-
- if (!KMP_AFFINITY_CAPABLE()) {
- // Hack to try and infer the machine topology using only the data
- // available from hwloc on the current thread, and __kmp_xproc.
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
- hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
- if (o != NULL)
- nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
- else
- nCoresPerPkg = 1; // no PACKAGE found
- o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
- if (o != NULL)
- __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
- else
- __kmp_nThreadsPerCore = 1; // no CORE found
- __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
- if (nCoresPerPkg == 0)
- nCoresPerPkg = 1; // to prevent possible division by 0
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- return true;
- }
-
- root = hwloc_get_root_obj(tp);
-
- // Figure out the depth and types in the topology
- depth = 0;
- pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
- KMP_ASSERT(pu);
- obj = pu;
- types[depth] = KMP_HW_THREAD;
- hwloc_types[depth] = obj->type;
- depth++;
- while (obj != root && obj != NULL) {
- obj = obj->parent;
-#if HWLOC_API_VERSION >= 0x00020000
- if (obj->memory_arity) {
- hwloc_obj_t memory;
- for (memory = obj->memory_first_child; memory;
- memory = hwloc_get_next_child(tp, obj, memory)) {
- if (memory->type == HWLOC_OBJ_NUMANODE)
- break;
- }
- if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
- types[depth] = KMP_HW_NUMA;
- hwloc_types[depth] = memory->type;
- depth++;
- }
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", npackages);
+ //for (level = 1; level <= pkgLevel; level++) {
+ // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
+ // }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
}
-#endif
- type = __kmp_hwloc_type_2_topology_type(obj);
- if (type != KMP_HW_UNKNOWN) {
- types[depth] = type;
- hwloc_types[depth] = obj->type;
- depth++;
- }
- }
- KMP_ASSERT(depth > 0);
-
- // Get the order for the types correct
- for (int i = 0, j = depth - 1; i < j; ++i, --j) {
- hwloc_obj_type_t hwloc_temp = hwloc_types[i];
- kmp_hw_t temp = types[i];
- types[i] = types[j];
- types[j] = temp;
- hwloc_types[i] = hwloc_types[j];
- hwloc_types[j] = hwloc_temp;
- }
-
- // Allocate the data structure to be returned.
- __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
-
- hw_thread_index = 0;
- pu = NULL;
- while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
- int index = depth - 1;
- bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
- if (included) {
- hw_thread.clear();
- hw_thread.ids[index] = pu->logical_index;
- hw_thread.os_id = pu->os_index;
- index--;
- }
- obj = pu;
- prev = obj;
- while (obj != root && obj != NULL) {
- obj = obj->parent;
-#if HWLOC_API_VERSION >= 0x00020000
- // NUMA Nodes are handled differently since they are not within the
- // parent/child structure anymore. They are separate children
- // of obj (memory_first_child points to first memory child)
- if (obj->memory_arity) {
- hwloc_obj_t memory;
- for (memory = obj->memory_first_child; memory;
- memory = hwloc_get_next_child(tp, obj, memory)) {
- if (memory->type == HWLOC_OBJ_NUMANODE)
- break;
+
+ if (__kmp_affinity_type == affinity_none) {
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Find any levels with radiix 1, and remove them from the map
+ // (except for the package level).
+ //
+ int new_depth = 0;
+ int level;
+ unsigned proc;
+ for (level = 1; level < (int)depth; level++) {
+ if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
+ continue;
}
- if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
- sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
- if (included) {
- hw_thread.ids[index] = memory->logical_index;
- hw_thread.ids[index + 1] = sub_id;
- index--;
- }
- prev = memory;
- }
- prev = obj;
- }
-#endif
- type = __kmp_hwloc_type_2_topology_type(obj);
- if (type != KMP_HW_UNKNOWN) {
- sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
- if (included) {
- hw_thread.ids[index] = obj->logical_index;
- hw_thread.ids[index + 1] = sub_id;
- index--;
- }
- prev = obj;
- }
- }
- if (included)
- hw_thread_index++;
- }
- __kmp_topology->sort_ids();
- return true;
+ new_depth++;
+ }
+
+ //
+ // If we are removing any levels, allocate a new vector to return,
+ // and copy the relevant information to it.
+ //
+ if (new_depth != depth-1) {
+ AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
+ sizeof(AddrUnsPair) * nActiveThreads);
+ for (proc = 0; (int)proc < nActiveThreads; proc++) {
+ Address addr(new_depth);
+ new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
+ }
+ int new_level = 0;
+ for (level = 1; level < (int)depth; level++) {
+ if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
+ if (level == threadLevel) {
+ threadLevel = -1;
+ }
+ else if ((threadLevel >= 0) && (level < threadLevel)) {
+ threadLevel--;
+ }
+ if (level == coreLevel) {
+ coreLevel = -1;
+ }
+ else if ((coreLevel >= 0) && (level < coreLevel)) {
+ coreLevel--;
+ }
+ if (level < pkgLevel) {
+ pkgLevel--;
+ }
+ continue;
+ }
+ for (proc = 0; (int)proc < nActiveThreads; proc++) {
+ new_retval[proc].first.labels[new_level]
+ = retval[proc].first.labels[level];
+ }
+ new_level++;
+ }
+
+ __kmp_free(retval);
+ retval = new_retval;
+ depth = new_depth;
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1,
+ coreLevel-1, threadLevel-1);
+ }
+
+ KMP_CPU_FREE(oldMask);
+ *address2os = retval;
+ if(depth == 0) return 0;
+ else return depth-1;
}
#endif // KMP_USE_HWLOC
+//
// If we don't know how to retrieve the machine's processor topology, or
// encounter an error in doing so, this routine is called to form a "flat"
// mapping of os thread id's <-> processor id's.
-static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
- *msg_id = kmp_i18n_null;
- int depth = 3;
- kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
-
- if (__kmp_affinity_verbose) {
- KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
- }
-
- // Even if __kmp_affinity_type == affinity_none, this routine might still
- // called to set __kmp_ncores, as well as
- // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
- if (!KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- __kmp_ncores = nPackages = __kmp_xproc;
+//
+static int
+__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Even if __kmp_affinity_type == affinity_none, this routine might still
+ // called to set __kmp_ncores, as well as
+ // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ //
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_ncores = nPackages = __kmp_xproc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ncores = nPackages = __kmp_avail_proc;
__kmp_nThreadsPerCore = nCoresPerPkg = 1;
- return true;
- }
-
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
- // Make sure all these vars are set correctly, and return now if affinity is
- // not enabled.
- __kmp_ncores = nPackages = __kmp_avail_proc;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
-
- // Construct the data structure to be returned.
- __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
- int avail_ct = 0;
- int i;
- KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
- // Skip this proc if it is not included in the machine model.
- if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
- continue;
- }
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
- hw_thread.clear();
- hw_thread.os_id = i;
- hw_thread.ids[0] = i;
- hw_thread.ids[1] = 0;
- hw_thread.ids[2] = 0;
- avail_ct++;
- }
- if (__kmp_affinity_verbose) {
- KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
- }
- return true;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
+
+ KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ return 0;
+ }
+
+ //
+ // Contruct the data structure to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ int avail_ct = 0;
+ unsigned int i;
+ KMP_CPU_SET_ITERATE(i, fullMask) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+
+ Address addr(1);
+ addr.labels[0] = i;
+ (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
+ }
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Only the package level is modeled in the machine topology map,
+ // so the #levels of granularity is either 0 or 1.
+ //
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels = 1;
+ }
+ else {
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 1;
}
-#if KMP_GROUP_AFFINITY
+
+# if KMP_GROUP_AFFINITY
+
+//
// If multiple Windows* OS processor groups exist, we can create a 2-level
-// topology map with the groups at level 0 and the individual procs at level 1.
+// topology map with the groups at level 0 and the individual procs at
+// level 1.
+//
// This facilitates letting the threads float among all procs in a group,
// if granularity=group (the default when there are multiple groups).
-static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
- *msg_id = kmp_i18n_null;
- int depth = 3;
- kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
- const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
-
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
- }
-
- // If we aren't affinity capable, then use flat topology
- if (!KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- nPackages = __kmp_num_proc_groups;
- __kmp_nThreadsPerCore = 1;
- __kmp_ncores = __kmp_xproc;
- nCoresPerPkg = nPackages / __kmp_ncores;
- return true;
- }
-
- // Construct the data structure to be returned.
- __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
- int avail_ct = 0;
- int i;
- KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
- // Skip this proc if it is not included in the machine model.
- if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
- continue;
- }
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
- hw_thread.clear();
- hw_thread.os_id = i;
- hw_thread.ids[0] = i / BITS_PER_GROUP;
- hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
- }
- return true;
-}
-#endif /* KMP_GROUP_AFFINITY */
-
-#if KMP_ARCH_X86 || KMP_ARCH_X86_64
-
-template <kmp_uint32 LSB, kmp_uint32 MSB>
-static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
- const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
- const kmp_uint32 SHIFT_RIGHT = LSB;
- kmp_uint32 retval = v;
- retval <<= SHIFT_LEFT;
- retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
- return retval;
+//
+static int
+__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // If we don't have multiple processor groups, return now.
+ // The flat mapping will be used.
+ //
+ if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
+ // FIXME set *msg_id
+ return -1;
+ }
+
+ //
+ // Contruct the data structure to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, fullMask) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+
+ Address addr(2);
+ addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
+ addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
+ (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
+ addr.labels[1]);
+ }
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ if (__kmp_affinity_gran == affinity_gran_group) {
+ __kmp_affinity_gran_levels = 1;
+ }
+ else if ((__kmp_affinity_gran == affinity_gran_fine)
+ || (__kmp_affinity_gran == affinity_gran_thread)) {
+ __kmp_affinity_gran_levels = 0;
+ }
+ else {
+ const char *gran_str = NULL;
+ if (__kmp_affinity_gran == affinity_gran_core) {
+ gran_str = "core";
+ }
+ else if (__kmp_affinity_gran == affinity_gran_package) {
+ gran_str = "package";
+ }
+ else if (__kmp_affinity_gran == affinity_gran_node) {
+ gran_str = "node";
+ }
+ else {
+ KMP_ASSERT(0);
+ }
+
+ // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
+ __kmp_affinity_gran_levels = 0;
+ }
+ }
+ return 2;
}
-static int __kmp_cpuid_mask_width(int count) {
- int r = 0;
+# endif /* KMP_GROUP_AFFINITY */
+
- while ((1 << r) < count)
- ++r;
- return r;
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+static int
+__kmp_cpuid_mask_width(int count) {
+ int r = 0;
+
+ while((1<<r) < count)
+ ++r;
+ return r;
}
+
class apicThreadInfo {
public:
- unsigned osId; // param to __kmp_affinity_bind_thread
- unsigned apicId; // from cpuid after binding
- unsigned maxCoresPerPkg; // ""
- unsigned maxThreadsPerPkg; // ""
- unsigned pkgId; // inferred from above values
- unsigned coreId; // ""
- unsigned threadId; // ""
+ unsigned osId; // param to __kmp_affinity_bind_thread
+ unsigned apicId; // from cpuid after binding
+ unsigned maxCoresPerPkg; // ""
+ unsigned maxThreadsPerPkg; // ""
+ unsigned pkgId; // inferred from above values
+ unsigned coreId; // ""
+ unsigned threadId; // ""
};
-static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
- const void *b) {
- const apicThreadInfo *aa = (const apicThreadInfo *)a;
- const apicThreadInfo *bb = (const apicThreadInfo *)b;
- if (aa->pkgId < bb->pkgId)
- return -1;
- if (aa->pkgId > bb->pkgId)
- return 1;
- if (aa->coreId < bb->coreId)
- return -1;
- if (aa->coreId > bb->coreId)
- return 1;
- if (aa->threadId < bb->threadId)
- return -1;
- if (aa->threadId > bb->threadId)
- return 1;
- return 0;
+
+static int
+__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
+{
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->osId < bb->osId) return -1;
+ if (aa->osId > bb->osId) return 1;
+ return 0;
+}
+
+
+static int
+__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
+{
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->pkgId < bb->pkgId) return -1;
+ if (aa->pkgId > bb->pkgId) return 1;
+ if (aa->coreId < bb->coreId) return -1;
+ if (aa->coreId > bb->coreId) return 1;
+ if (aa->threadId < bb->threadId) return -1;
+ if (aa->threadId > bb->threadId) return 1;
+ return 0;
}
-class kmp_cache_info_t {
-public:
- struct info_t {
- unsigned level, mask;
- };
- kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
- size_t get_depth() const { return depth; }
- info_t &operator[](size_t index) { return table[index]; }
- const info_t &operator[](size_t index) const { return table[index]; }
-
- static kmp_hw_t get_topology_type(unsigned level) {
- KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
- switch (level) {
- case 1:
- return KMP_HW_L1;
- case 2:
- return KMP_HW_L2;
- case 3:
- return KMP_HW_L3;
- }
- return KMP_HW_UNKNOWN;
- }
-
-private:
- static const int MAX_CACHE_LEVEL = 3;
-
- size_t depth;
- info_t table[MAX_CACHE_LEVEL];
-
- void get_leaf4_levels() {
- unsigned level = 0;
- while (depth < MAX_CACHE_LEVEL) {
- unsigned cache_type, max_threads_sharing;
- unsigned cache_level, cache_mask_width;
- kmp_cpuid buf2;
- __kmp_x86_cpuid(4, level, &buf2);
- cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
- if (!cache_type)
- break;
- // Skip instruction caches
- if (cache_type == 2) {
- level++;
- continue;
- }
- max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
- cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
- cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
- table[depth].level = cache_level;
- table[depth].mask = ((-1) << cache_mask_width);
- depth++;
- level++;
- }
- }
-};
+//
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
// an algorithm which cycles through the available os threads, setting
// the current thread's affinity mask to that thread, and then retrieves
// the Apic Id for each thread context using the cpuid instruction.
-static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
- kmp_cpuid buf;
- *msg_id = kmp_i18n_null;
-
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
- }
-
- // Check if cpuid leaf 4 is supported.
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax < 4) {
- *msg_id = kmp_i18n_str_NoLeaf4Support;
- return false;
- }
-
- // The algorithm used starts by setting the affinity to each available thread
- // and retrieving info from the cpuid instruction, so if we are not capable of
- // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
- // need to do something else - use the defaults that we calculated from
- // issuing cpuid without binding to each proc.
- if (!KMP_AFFINITY_CAPABLE()) {
- // Hack to try and infer the machine topology using only the data
- // available from cpuid on the current thread, and __kmp_xproc.
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
-
- // Get an upper bound on the number of threads per package using cpuid(1).
- // On some OS/chps combinations where HT is supported by the chip but is
- // disabled, this value will be 2 on a single core chip. Usually, it will be
- // 2 if HT is enabled and 1 if HT is disabled.
- __kmp_x86_cpuid(1, 0, &buf);
- int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
- if (maxThreadsPerPkg == 0) {
- maxThreadsPerPkg = 1;
- }
-
- // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
- // value.
- //
- // The author of cpu_count.cpp treated this only an upper bound on the
- // number of cores, but I haven't seen any cases where it was greater than
- // the actual number of cores, so we will treat it as exact in this block of
- // code.
- //
- // First, we need to check if cpuid(4) is supported on this chip. To see if
- // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
- // greater.
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax >= 4) {
- __kmp_x86_cpuid(4, 0, &buf);
- nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
- } else {
- nCoresPerPkg = 1;
- }
-
- // There is no way to reliably tell if HT is enabled without issuing the
- // cpuid instruction from every thread, can correlating the cpuid info, so
- // if the machine is not affinity capable, we assume that HT is off. We have
- // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
- // does not support HT.
- //
- // - Older OSes are usually found on machines with older chips, which do not
- // support HT.
- // - The performance penalty for mistakenly identifying a machine as HT when
- // it isn't (which results in blocktime being incorrectly set to 0) is
- // greater than the penalty when for mistakenly identifying a machine as
- // being 1 thread/core when it is really HT enabled (which results in
- // blocktime being incorrectly set to a positive value).
- __kmp_ncores = __kmp_xproc;
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- __kmp_nThreadsPerCore = 1;
- return true;
- }
-
- // From here on, we can assume that it is safe to call
- // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
- // __kmp_affinity_type = affinity_none.
-
- // Save the affinity mask for the current thread.
- kmp_affinity_raii_t previous_affinity;
-
- // Run through each of the available contexts, binding the current thread
- // to it, and obtaining the pertinent information using the cpuid instr.
- //
- // The relevant information is:
- // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
- // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
- // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
- // of this field determines the width of the core# + thread# fields in the
- // Apic Id. It is also an upper bound on the number of threads per
- // package, but it has been verified that situations happen were it is not
- // exact. In particular, on certain OS/chip combinations where Intel(R)
- // Hyper-Threading Technology is supported by the chip but has been
- // disabled, the value of this field will be 2 (for a single core chip).
- // On other OS/chip combinations supporting Intel(R) Hyper-Threading
- // Technology, the value of this field will be 1 when Intel(R)
- // Hyper-Threading Technology is disabled and 2 when it is enabled.
- // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
- // of this field (+1) determines the width of the core# field in the Apic
- // Id. The comments in "cpucount.cpp" say that this value is an upper
- // bound, but the IA-32 architecture manual says that it is exactly the
- // number of cores per package, and I haven't seen any case where it
- // wasn't.
- //
- // From this information, deduce the package Id, core Id, and thread Id,
- // and set the corresponding fields in the apicThreadInfo struct.
- unsigned i;
- apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
+//
+static int
+__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ kmp_cpuid buf;
+ int rc;
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Check if cpuid leaf 4 is supported.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 4) {
+ *msg_id = kmp_i18n_str_NoLeaf4Support;
+ return -1;
+ }
+
+ //
+ // The algorithm used starts by setting the affinity to each available
+ // thread and retrieving info from the cpuid instruction, so if we are
+ // not capable of calling __kmp_get_system_affinity() and
+ // _kmp_get_system_affinity(), then we need to do something else - use
+ // the defaults that we calculated from issuing cpuid without binding
+ // to each proc.
+ //
+ if (! KMP_AFFINITY_CAPABLE()) {
+ //
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ //
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ //
+ // Get an upper bound on the number of threads per package using
+ // cpuid(1).
+ //
+ // On some OS/chps combinations where HT is supported by the chip
+ // but is disabled, this value will be 2 on a single core chip.
+ // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
+ //
+ __kmp_x86_cpuid(1, 0, &buf);
+ int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (maxThreadsPerPkg == 0) {
+ maxThreadsPerPkg = 1;
+ }
+
+ //
+ // The num cores per pkg comes from cpuid(4).
+ // 1 must be added to the encoded value.
+ //
+ // The author of cpu_count.cpp treated this only an upper bound
+ // on the number of cores, but I haven't seen any cases where it
+ // was greater than the actual number of cores, so we will treat
+ // it as exact in this block of code.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip.
+ // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
+ // has the value n or greater.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ }
+ else {
+ nCoresPerPkg = 1;
+ }
+
+ //
+ // There is no way to reliably tell if HT is enabled without issuing
+ // the cpuid instruction from every thread, can correlating the cpuid
+ // info, so if the machine is not affinity capable, we assume that HT
+ // is off. We have seen quite a few machines where maxThreadsPerPkg
+ // is 2, yet the machine does not support HT.
+ //
+ // - Older OSes are usually found on machines with older chips, which
+ // do not support HT.
+ //
+ // - The performance penalty for mistakenly identifying a machine as
+ // HT when it isn't (which results in blocktime being incorrecly set
+ // to 0) is greater than the penalty when for mistakenly identifying
+ // a machine as being 1 thread/core when it is really HT enabled
+ // (which results in blocktime being incorrectly set to a positive
+ // value).
+ //
+ __kmp_ncores = __kmp_xproc;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ __kmp_nThreadsPerCore = 1;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ //
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
+ // even if __kmp_affinity_type = affinity_none.
+ //
+
+ //
+ // Save the affinity mask for the current thread.
+ //
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ KMP_ASSERT(oldMask != NULL);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ //
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ // The relevant information is:
+ //
+ // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
+ // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
+ //
+ // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
+ // value of this field determines the width of the core# + thread#
+ // fields in the Apic Id. It is also an upper bound on the number
+ // of threads per package, but it has been verified that situations
+ // happen were it is not exact. In particular, on certain OS/chip
+ // combinations where Intel(R) Hyper-Threading Technology is supported
+ // by the chip but has
+ // been disabled, the value of this field will be 2 (for a single core
+ // chip). On other OS/chip combinations supporting
+ // Intel(R) Hyper-Threading Technology, the value of
+ // this field will be 1 when Intel(R) Hyper-Threading Technology is
+ // disabled and 2 when it is enabled.
+ //
+ // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
+ // value of this field (+1) determines the width of the core# field in
+ // the Apic Id. The comments in "cpucount.cpp" say that this value is
+ // an upper bound, but the IA-32 architecture manual says that it is
+ // exactly the number of cores per package, and I haven't seen any
+ // case where it wasn't.
+ //
+ // From this information, deduce the package Id, core Id, and thread Id,
+ // and set the corresponding fields in the apicThreadInfo struct.
+ //
+ unsigned i;
+ apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
__kmp_avail_proc * sizeof(apicThreadInfo));
- unsigned nApics = 0;
- KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
- // Skip this proc if it is not included in the machine model.
- if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
- continue;
+ unsigned nApics = 0;
+ KMP_CPU_SET_ITERATE(i, fullMask) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
+
+ __kmp_affinity_bind_thread(i);
+ threadInfo[nApics].osId = i;
+
+ //
+ // The apic id and max threads per pkg come from cpuid(1).
+ //
+ __kmp_x86_cpuid(1, 0, &buf);
+ if (! (buf.edx >> 9) & 1) {
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_ApicNotPresent;
+ return -1;
+ }
+ threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
+ threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (threadInfo[nApics].maxThreadsPerPkg == 0) {
+ threadInfo[nApics].maxThreadsPerPkg = 1;
+ }
+
+ //
+ // Max cores per pkg comes from cpuid(4).
+ // 1 must be added to the encoded value.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip.
+ // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
+ // has the value n or greater.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ }
+ else {
+ threadInfo[nApics].maxCoresPerPkg = 1;
+ }
+
+ //
+ // Infer the pkgId / coreId / threadId using only the info
+ // obtained locally.
+ //
+ int widthCT = __kmp_cpuid_mask_width(
+ threadInfo[nApics].maxThreadsPerPkg);
+ threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
+
+ int widthC = __kmp_cpuid_mask_width(
+ threadInfo[nApics].maxCoresPerPkg);
+ int widthT = widthCT - widthC;
+ if (widthT < 0) {
+ //
+ // I've never seen this one happen, but I suppose it could, if
+ // the cpuid instruction on a chip was really screwed up.
+ // Make sure to restore the affinity mask before the tail call.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+
+ int maskC = (1 << widthC) - 1;
+ threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
+ &maskC;
+
+ int maskT = (1 << widthT) - 1;
+ threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
+
+ nApics++;
}
- KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
- __kmp_affinity_dispatch->bind_thread(i);
- threadInfo[nApics].osId = i;
+ //
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
- // The apic id and max threads per pkg come from cpuid(1).
- __kmp_x86_cpuid(1, 0, &buf);
- if (((buf.edx >> 9) & 1) == 0) {
- __kmp_free(threadInfo);
- *msg_id = kmp_i18n_str_ApicNotPresent;
- return false;
+ //
+ // If there's only one thread context to bind to, form an Address object
+ // with depth 1 and return immediately (or, if affinity is off, set
+ // address2os to NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a
+ // single package, the logic at the end of this routine won't work if
+ // there is only a single thread - it would try to form an Address
+ // object with depth 0.
+ //
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0].pkgId;
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 1;
}
- threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
- threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
- if (threadInfo[nApics].maxThreadsPerPkg == 0) {
- threadInfo[nApics].maxThreadsPerPkg = 1;
+
+ //
+ // Sort the threadInfo table by physical Id.
+ //
+ qsort(threadInfo, nApics, sizeof(*threadInfo),
+ __kmp_affinity_cmp_apicThreadInfo_phys_id);
+
+ //
+ // The table is now sorted by pkgId / coreId / threadId, but we really
+ // don't know the radix of any of the fields. pkgId's may be sparsely
+ // assigned among the chips on a system. Although coreId's are usually
+ // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore
+ // (or the total # packages) are at this point - we want to determine
+ // that now. We only have an upper bound on the first two figures.
+ //
+ // We also perform a consistency check at this point: the values returned
+ // by the cpuid instruction for any thread bound to a given package had
+ // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
+ //
+ nPackages = 1;
+ nCoresPerPkg = 1;
+ __kmp_nThreadsPerCore = 1;
+ unsigned nCores = 1;
+
+ unsigned pkgCt = 1; // to determine radii
+ unsigned lastPkgId = threadInfo[0].pkgId;
+ unsigned coreCt = 1;
+ unsigned lastCoreId = threadInfo[0].coreId;
+ unsigned threadCt = 1;
+ unsigned lastThreadId = threadInfo[0].threadId;
+
+ // intra-pkg consist checks
+ unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
+ unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
+
+ for (i = 1; i < nApics; i++) {
+ if (threadInfo[i].pkgId != lastPkgId) {
+ nCores++;
+ pkgCt++;
+ lastPkgId = threadInfo[i].pkgId;
+ if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
+ coreCt = 1;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+
+ //
+ // This is a different package, so go on to the next iteration
+ // without doing any consistency checks. Reset the consistency
+ // check vars, though.
+ //
+ prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
+ prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
+ continue;
+ }
+
+ if (threadInfo[i].coreId != lastCoreId) {
+ nCores++;
+ coreCt++;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+ }
+ else if (threadInfo[i].threadId != lastThreadId) {
+ threadCt++;
+ lastThreadId = threadInfo[i].threadId;
+ }
+ else {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
+ return -1;
+ }
+
+ //
+ // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
+ // fields agree between all the threads bounds to a given package.
+ //
+ if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
+ || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
}
+ nPackages = pkgCt;
+ if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
+ if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
- // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
- // value.
//
- // First, we need to check if cpuid(4) is supported on this chip. To see if
- // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
- // or greater.
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax >= 4) {
- __kmp_x86_cpuid(4, 0, &buf);
- threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
- } else {
- threadInfo[nApics].maxCoresPerPkg = 1;
- }
-
- // Infer the pkgId / coreId / threadId using only the info obtained locally.
- int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
- threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
-
- int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
- int widthT = widthCT - widthC;
- if (widthT < 0) {
- // I've never seen this one happen, but I suppose it could, if the cpuid
- // instruction on a chip was really screwed up. Make sure to restore the
- // affinity mask before the tail call.
- __kmp_free(threadInfo);
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return false;
- }
-
- int maskC = (1 << widthC) - 1;
- threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
-
- int maskT = (1 << widthT) - 1;
- threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
-
- nApics++;
- }
-
- // We've collected all the info we need.
- // Restore the old affinity mask for this thread.
- previous_affinity.restore();
-
- // Sort the threadInfo table by physical Id.
- qsort(threadInfo, nApics, sizeof(*threadInfo),
- __kmp_affinity_cmp_apicThreadInfo_phys_id);
-
- // The table is now sorted by pkgId / coreId / threadId, but we really don't
- // know the radix of any of the fields. pkgId's may be sparsely assigned among
- // the chips on a system. Although coreId's are usually assigned
- // [0 .. coresPerPkg-1] and threadId's are usually assigned
- // [0..threadsPerCore-1], we don't want to make any such assumptions.
- //
- // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
- // total # packages) are at this point - we want to determine that now. We
- // only have an upper bound on the first two figures.
- //
- // We also perform a consistency check at this point: the values returned by
- // the cpuid instruction for any thread bound to a given package had better
- // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
- nPackages = 1;
- nCoresPerPkg = 1;
- __kmp_nThreadsPerCore = 1;
- unsigned nCores = 1;
-
- unsigned pkgCt = 1; // to determine radii
- unsigned lastPkgId = threadInfo[0].pkgId;
- unsigned coreCt = 1;
- unsigned lastCoreId = threadInfo[0].coreId;
- unsigned threadCt = 1;
- unsigned lastThreadId = threadInfo[0].threadId;
-
- // intra-pkg consist checks
- unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
- unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
-
- for (i = 1; i < nApics; i++) {
- if (threadInfo[i].pkgId != lastPkgId) {
- nCores++;
- pkgCt++;
- lastPkgId = threadInfo[i].pkgId;
- if ((int)coreCt > nCoresPerPkg)
- nCoresPerPkg = coreCt;
- coreCt = 1;
- lastCoreId = threadInfo[i].coreId;
- if ((int)threadCt > __kmp_nThreadsPerCore)
- __kmp_nThreadsPerCore = threadCt;
- threadCt = 1;
- lastThreadId = threadInfo[i].threadId;
-
- // This is a different package, so go on to the next iteration without
- // doing any consistency checks. Reset the consistency check vars, though.
- prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
- prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
- continue;
- }
-
- if (threadInfo[i].coreId != lastCoreId) {
- nCores++;
- coreCt++;
- lastCoreId = threadInfo[i].coreId;
- if ((int)threadCt > __kmp_nThreadsPerCore)
- __kmp_nThreadsPerCore = threadCt;
- threadCt = 1;
- lastThreadId = threadInfo[i].threadId;
- } else if (threadInfo[i].threadId != lastThreadId) {
- threadCt++;
- lastThreadId = threadInfo[i].threadId;
- } else {
- __kmp_free(threadInfo);
- *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
- return false;
- }
-
- // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
- // fields agree between all the threads bounds to a given package.
- if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
- (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
- __kmp_free(threadInfo);
- *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
- return false;
- }
- }
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
- // Make sure all these vars are set correctly
- nPackages = pkgCt;
- if ((int)coreCt > nCoresPerPkg)
- nCoresPerPkg = coreCt;
- if ((int)threadCt > __kmp_nThreadsPerCore)
- __kmp_nThreadsPerCore = threadCt;
- __kmp_ncores = nCores;
- KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
-
- // Now that we've determined the number of packages, the number of cores per
- // package, and the number of threads per core, we can construct the data
- // structure that is to be returned.
- int idx = 0;
- int pkgLevel = 0;
- int coreLevel = 1;
- int threadLevel = 2;
- //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
- int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
- kmp_hw_t types[3];
- if (pkgLevel >= 0)
- types[idx++] = KMP_HW_SOCKET;
- if (coreLevel >= 0)
- types[idx++] = KMP_HW_CORE;
- if (threadLevel >= 0)
- types[idx++] = KMP_HW_THREAD;
-
- KMP_ASSERT(depth > 0);
- __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
-
- for (i = 0; i < nApics; ++i) {
- idx = 0;
- unsigned os = threadInfo[i].osId;
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
- hw_thread.clear();
-
- if (pkgLevel >= 0) {
- hw_thread.ids[idx++] = threadInfo[i].pkgId;
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ncores = nCores;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
}
- if (coreLevel >= 0) {
- hw_thread.ids[idx++] = threadInfo[i].coreId;
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return 0;
}
- if (threadLevel >= 0) {
- hw_thread.ids[idx++] = threadInfo[i].threadId;
- }
- hw_thread.os_id = os;
- }
-
- __kmp_free(threadInfo);
- __kmp_topology->sort_ids();
- if (!__kmp_topology->check_ids()) {
- kmp_topology_t::deallocate(__kmp_topology);
- __kmp_topology = nullptr;
- *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
- return false;
- }
- return true;
+
+ //
+ // Now that we've determined the number of packages, the number of cores
+ // per package, and the number of threads per core, we can construct the
+ // data structure that is to be returned.
+ //
+ int pkgLevel = 0;
+ int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
+ int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
+ unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
+
+ KMP_ASSERT(depth > 0);
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
+
+ for (i = 0; i < nApics; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i].osId;
+ int d = 0;
+
+ if (pkgLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].pkgId;
+ }
+ if (coreLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].coreId;
+ }
+ if (threadLevel >= 0) {
+ addr.labels[d++] = threadInfo[i].threadId;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0)
+ && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(threadInfo);
+ KMP_CPU_FREE(oldMask);
+ return depth;
}
+
+//
// Intel(R) microarchitecture code name Nehalem, Dunnington and later
// architectures support a newer interface for specifying the x2APIC Ids,
-// based on CPUID.B or CPUID.1F
-/*
- * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
- Bits Bits Bits Bits
- 31-16 15-8 7-4 4-0
----+-----------+--------------+-------------+-----------------+
-EAX| reserved | reserved | reserved | Bits to Shift |
----+-----------|--------------+-------------+-----------------|
-EBX| reserved | Num logical processors at level (16 bits) |
----+-----------|--------------+-------------------------------|
-ECX| reserved | Level Type | Level Number (8 bits) |
----+-----------+--------------+-------------------------------|
-EDX| X2APIC ID (32 bits) |
----+----------------------------------------------------------+
-*/
-
-enum {
- INTEL_LEVEL_TYPE_INVALID = 0, // Package level
- INTEL_LEVEL_TYPE_SMT = 1,
- INTEL_LEVEL_TYPE_CORE = 2,
- INTEL_LEVEL_TYPE_TILE = 3,
- INTEL_LEVEL_TYPE_MODULE = 4,
- INTEL_LEVEL_TYPE_DIE = 5,
- INTEL_LEVEL_TYPE_LAST = 6,
-};
+// based on cpuid leaf 11.
+//
+static int
+__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
+ kmp_i18n_id_t *const msg_id)
+{
+ kmp_cpuid buf;
-struct cpuid_level_info_t {
- unsigned level_type, mask, mask_width, nitems, cache_mask;
-};
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
-static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
- switch (intel_type) {
- case INTEL_LEVEL_TYPE_INVALID:
- return KMP_HW_SOCKET;
- case INTEL_LEVEL_TYPE_SMT:
- return KMP_HW_THREAD;
- case INTEL_LEVEL_TYPE_CORE:
- return KMP_HW_CORE;
- case INTEL_LEVEL_TYPE_TILE:
- return KMP_HW_TILE;
- case INTEL_LEVEL_TYPE_MODULE:
- return KMP_HW_MODULE;
- case INTEL_LEVEL_TYPE_DIE:
- return KMP_HW_DIE;
- }
- return KMP_HW_UNKNOWN;
-}
+ //
+ // Check to see if cpuid leaf 11 is supported.
+ //
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 11) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, 0, &buf);
+ if (buf.ebx == 0) {
+ *msg_id = kmp_i18n_str_NoLeaf11Support;
+ return -1;
+ }
-// This function takes the topology leaf, a levels array to store the levels
-// detected and a bitmap of the known levels.
-// Returns the number of levels in the topology
-static unsigned
-__kmp_x2apicid_get_levels(int leaf,
- cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
- kmp_uint64 known_levels) {
- unsigned level, levels_index;
- unsigned level_type, mask_width, nitems;
- kmp_cpuid buf;
-
- // New algorithm has known topology layers act as highest unknown topology
- // layers when unknown topology layers exist.
- // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
- // are unknown topology layers, Then SMT will take the characteristics of
- // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
- // This eliminates unknown portions of the topology while still keeping the
- // correct structure.
- level = levels_index = 0;
- do {
- __kmp_x86_cpuid(leaf, level, &buf);
- level_type = __kmp_extract_bits<8, 15>(buf.ecx);
- mask_width = __kmp_extract_bits<0, 4>(buf.eax);
- nitems = __kmp_extract_bits<0, 15>(buf.ebx);
- if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
- return 0;
-
- if (known_levels & (1ull << level_type)) {
- // Add a new level to the topology
- KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
- levels[levels_index].level_type = level_type;
- levels[levels_index].mask_width = mask_width;
- levels[levels_index].nitems = nitems;
- levels_index++;
- } else {
- // If it is an unknown level, then logically move the previous layer up
- if (levels_index > 0) {
- levels[levels_index - 1].mask_width = mask_width;
- levels[levels_index - 1].nitems = nitems;
- }
- }
- level++;
- } while (level_type != INTEL_LEVEL_TYPE_INVALID);
-
- // Set the masks to & with apicid
- for (unsigned i = 0; i < levels_index; ++i) {
- if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
- levels[i].mask = ~((-1) << levels[i].mask_width);
- levels[i].cache_mask = (-1) << levels[i].mask_width;
- for (unsigned j = 0; j < i; ++j)
- levels[i].mask ^= levels[j].mask;
- } else {
- KMP_DEBUG_ASSERT(levels_index > 0);
- levels[i].mask = (-1) << levels[i - 1].mask_width;
- levels[i].cache_mask = 0;
+ //
+ // Find the number of levels in the machine topology. While we're at it,
+ // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
+ // try to get more accurate values later by explicitly counting them,
+ // but get reasonable defaults now, in case we return early.
+ //
+ int level;
+ int threadLevel = -1;
+ int coreLevel = -1;
+ int pkgLevel = -1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+
+ for (level = 0;; level++) {
+ if (level > 31) {
+ //
+ // FIXME: Hack for DPD200163180
+ //
+ // If level is big then something went wrong -> exiting
+ //
+ // There could actually be 32 valid levels in the machine topology,
+ // but so far, the only machine we have seen which does not exit
+ // this loop before iteration 32 has fubar x2APIC settings.
+ //
+ // For now, just reject this case based upon loop trip count.
+ //
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ __kmp_x86_cpuid(11, level, &buf);
+ if (buf.ebx == 0) {
+ if (pkgLevel < 0) {
+ //
+ // Will infer nPackages from __kmp_xproc
+ //
+ pkgLevel = level;
+ level++;
+ }
+ break;
+ }
+ int kind = (buf.ecx >> 8) & 0xff;
+ if (kind == 1) {
+ //
+ // SMT level
+ //
+ threadLevel = level;
+ coreLevel = -1;
+ pkgLevel = -1;
+ __kmp_nThreadsPerCore = buf.ebx & 0xff;
+ if (__kmp_nThreadsPerCore == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ else if (kind == 2) {
+ //
+ // core level
+ //
+ coreLevel = level;
+ pkgLevel = -1;
+ nCoresPerPkg = buf.ebx & 0xff;
+ if (nCoresPerPkg == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ else {
+ if (level <= 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ if (pkgLevel >= 0) {
+ continue;
+ }
+ pkgLevel = level;
+ nPackages = buf.ebx & 0xff;
+ if (nPackages == 0) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return -1;
+ }
+ }
+ }
+ int depth = level;
+
+ //
+ // In the above loop, "level" was counted from the finest level (usually
+ // thread) to the coarsest. The caller expects that we will place the
+ // labels in (*address2os)[].first.labels[] in the inverse order, so
+ // we need to invert the vars saying which level means what.
+ //
+ if (threadLevel >= 0) {
+ threadLevel = depth - threadLevel - 1;
+ }
+ if (coreLevel >= 0) {
+ coreLevel = depth - coreLevel - 1;
+ }
+ KMP_DEBUG_ASSERT(pkgLevel >= 0);
+ pkgLevel = depth - pkgLevel - 1;
+
+ //
+ // The algorithm used starts by setting the affinity to each available
+ // thread and retrieving info from the cpuid instruction, so if we are
+ // not capable of calling __kmp_get_system_affinity() and
+ // _kmp_get_system_affinity(), then we need to do something else - use
+ // the defaults that we calculated from issuing cpuid without binding
+ // to each proc.
+ //
+ if (! KMP_AFFINITY_CAPABLE())
+ {
+ //
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ //
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (__kmp_affinity_uniform_topology()) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+ return 0;
+ }
+
+ //
+ //
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
+ // even if __kmp_affinity_type = affinity_none.
+ //
+
+ //
+ // Save the affinity mask for the current thread.
+ //
+ kmp_affin_mask_t *oldMask;
+ KMP_CPU_ALLOC(oldMask);
+ __kmp_get_system_affinity(oldMask, TRUE);
+
+ //
+ // Allocate the data structure to be returned.
+ //
+ AddrUnsPair *retval = (AddrUnsPair *)
+ __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
+
+ //
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ unsigned int proc;
+ int nApics = 0;
+ KMP_CPU_SET_ITERATE(proc, fullMask) {
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
+
+ __kmp_affinity_bind_thread(proc);
+
+ //
+ // Extrach the labels for each level in the machine topology map
+ // from the Apic ID.
+ //
+ Address addr(depth);
+ int prev_shift = 0;
+
+ for (level = 0; level < depth; level++) {
+ __kmp_x86_cpuid(11, level, &buf);
+ unsigned apicId = buf.edx;
+ if (buf.ebx == 0) {
+ if (level != depth - 1) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+ addr.labels[depth - level - 1] = apicId >> prev_shift;
+ level++;
+ break;
+ }
+ int shift = buf.eax & 0x1f;
+ int mask = (1 << shift) - 1;
+ addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
+ prev_shift = shift;
+ }
+ if (level != depth) {
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return -1;
+ }
+
+ retval[nApics] = AddrUnsPair(addr, proc);
+ nApics++;
+ }
+
+ //
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ //
+ __kmp_set_system_affinity(oldMask, TRUE);
+
+ //
+ // If there's only one thread context to bind to, return now.
+ //
+ KMP_ASSERT(nApics > 0);
+ if (nApics == 1) {
+ __kmp_ncores = nPackages = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Form an Address object which only includes the package level.
+ //
+ Address addr(1);
+ addr.labels[0] = retval[0].first.labels[pkgLevel];
+ retval[0].first = addr;
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
+ }
+
+ *address2os = retval;
+ KMP_CPU_FREE(oldMask);
+ return 1;
+ }
+
+ //
+ // Sort the table by physical Id.
+ //
+ qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
+
+ //
+ // Find the radix at each of the levels.
+ //
+ unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
+ for (level = 0; level < depth; level++) {
+ totals[level] = 1;
+ maxCt[level] = 1;
+ counts[level] = 1;
+ last[level] = retval[0].first.labels[level];
}
- }
- return levels_index;
-}
-static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
-
- cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
- kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
- unsigned levels_index;
- kmp_cpuid buf;
- kmp_uint64 known_levels;
- int topology_leaf, highest_leaf, apic_id;
- int num_leaves;
- static int leaves[] = {0, 0};
-
- kmp_i18n_id_t leaf_message_id;
-
- KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
-
- *msg_id = kmp_i18n_null;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
- }
-
- // Figure out the known topology levels
- known_levels = 0ull;
- for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
- if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
- known_levels |= (1ull << i);
- }
- }
-
- // Get the highest cpuid leaf supported
- __kmp_x86_cpuid(0, 0, &buf);
- highest_leaf = buf.eax;
-
- // If a specific topology method was requested, only allow that specific leaf
- // otherwise, try both leaves 31 and 11 in that order
- num_leaves = 0;
- if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
- num_leaves = 1;
- leaves[0] = 11;
- leaf_message_id = kmp_i18n_str_NoLeaf11Support;
- } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
- num_leaves = 1;
- leaves[0] = 31;
- leaf_message_id = kmp_i18n_str_NoLeaf31Support;
- } else {
- num_leaves = 2;
- leaves[0] = 31;
- leaves[1] = 11;
- leaf_message_id = kmp_i18n_str_NoLeaf11Support;
- }
-
- // Check to see if cpuid leaf 31 or 11 is supported.
- __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
- topology_leaf = -1;
- for (int i = 0; i < num_leaves; ++i) {
- int leaf = leaves[i];
- if (highest_leaf < leaf)
- continue;
- __kmp_x86_cpuid(leaf, 0, &buf);
- if (buf.ebx == 0)
- continue;
- topology_leaf = leaf;
- levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
- if (levels_index == 0)
- continue;
- break;
- }
- if (topology_leaf == -1 || levels_index == 0) {
- *msg_id = leaf_message_id;
- return false;
- }
- KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
-
- // The algorithm used starts by setting the affinity to each available thread
- // and retrieving info from the cpuid instruction, so if we are not capable of
- // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
- // we need to do something else - use the defaults that we calculated from
- // issuing cpuid without binding to each proc.
- if (!KMP_AFFINITY_CAPABLE()) {
- // Hack to try and infer the machine topology using only the data
- // available from cpuid on the current thread, and __kmp_xproc.
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- for (unsigned i = 0; i < levels_index; ++i) {
- if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
- __kmp_nThreadsPerCore = levels[i].nitems;
- } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
- nCoresPerPkg = levels[i].nitems;
- }
- }
- __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- return true;
- }
-
- // Allocate the data structure to be returned.
- int depth = levels_index;
- for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
- types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
- __kmp_topology =
- kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
-
- // Insert equivalent cache types if they exist
- kmp_cache_info_t cache_info;
- for (size_t i = 0; i < cache_info.get_depth(); ++i) {
- const kmp_cache_info_t::info_t &info = cache_info[i];
- unsigned cache_mask = info.mask;
- unsigned cache_level = info.level;
- for (unsigned j = 0; j < levels_index; ++j) {
- unsigned hw_cache_mask = levels[j].cache_mask;
- kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
- if (hw_cache_mask == cache_mask && j < levels_index - 1) {
- kmp_hw_t type =
- __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
- __kmp_topology->set_equivalent_type(cache_type, type);
- }
- }
- }
-
- // From here on, we can assume that it is safe to call
- // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
- // __kmp_affinity_type = affinity_none.
-
- // Save the affinity mask for the current thread.
- kmp_affinity_raii_t previous_affinity;
-
- // Run through each of the available contexts, binding the current thread
- // to it, and obtaining the pertinent information using the cpuid instr.
- unsigned int proc;
- int hw_thread_index = 0;
- KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
- cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
- unsigned my_levels_index;
-
- // Skip this proc if it is not included in the machine model.
- if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
- continue;
- }
- KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
-
- __kmp_affinity_dispatch->bind_thread(proc);
-
- // New algorithm
- __kmp_x86_cpuid(topology_leaf, 0, &buf);
- apic_id = buf.edx;
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
- my_levels_index =
- __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
- if (my_levels_index == 0 || my_levels_index != levels_index) {
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return false;
- }
- hw_thread.clear();
- hw_thread.os_id = proc;
- // Put in topology information
- for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
- hw_thread.ids[idx] = apic_id & my_levels[j].mask;
- if (j > 0) {
- hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
- }
- }
- hw_thread_index++;
- }
- KMP_ASSERT(hw_thread_index > 0);
- __kmp_topology->sort_ids();
- if (!__kmp_topology->check_ids()) {
- kmp_topology_t::deallocate(__kmp_topology);
- __kmp_topology = nullptr;
- *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
- return false;
- }
- return true;
+ //
+ // From here on, the iteration variable "level" runs from the finest
+ // level to the coarsest, i.e. we iterate forward through
+ // (*address2os)[].first.labels[] - in the previous loops, we iterated
+ // backwards.
+ //
+ for (proc = 1; (int)proc < nApics; proc++) {
+ int level;
+ for (level = 0; level < depth; level++) {
+ if (retval[proc].first.labels[level] != last[level]) {
+ int j;
+ for (j = level + 1; j < depth; j++) {
+ totals[j]++;
+ counts[j] = 1;
+ // The line below causes printing incorrect topology information
+ // in case the max value for some level (maxCt[level]) is encountered earlier than
+ // some less value while going through the array.
+ // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
+ // whereas it must be 4.
+ // TODO!!! Check if it can be commented safely
+ //maxCt[j] = 1;
+ last[j] = retval[proc].first.labels[j];
+ }
+ totals[level]++;
+ counts[level]++;
+ if (counts[level] > maxCt[level]) {
+ maxCt[level] = counts[level];
+ }
+ last[level] = retval[proc].first.labels[level];
+ break;
+ }
+ else if (level == depth - 1) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
+ return -1;
+ }
+ }
+ }
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return if affinity is not enabled.
+ //
+ if (threadLevel >= 0) {
+ __kmp_nThreadsPerCore = maxCt[threadLevel];
+ }
+ else {
+ __kmp_nThreadsPerCore = 1;
+ }
+ nPackages = totals[pkgLevel];
+
+ if (coreLevel >= 0) {
+ __kmp_ncores = totals[coreLevel];
+ nCoresPerPkg = maxCt[coreLevel];
+ }
+ else {
+ __kmp_ncores = nPackages;
+ nCoresPerPkg = 1;
+ }
+
+ //
+ // Check to see if the machine topology is uniform
+ //
+ unsigned prod = maxCt[0];
+ for (level = 1; level < depth; level++) {
+ prod *= maxCt[level];
+ }
+ bool uniform = (prod == totals[level - 1]);
+
+ //
+ // Print the machine topology summary.
+ //
+ if (__kmp_affinity_verbose) {
+ char mask[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+
+ KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[0]);
+ for (level = 1; level <= pkgLevel; level++) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ __kmp_free(retval);
+ KMP_CPU_FREE(oldMask);
+ return 0;
+ }
+
+ //
+ // Find any levels with radiix 1, and remove them from the map
+ // (except for the package level).
+ //
+ int new_depth = 0;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1) && (level != pkgLevel)) {
+ continue;
+ }
+ new_depth++;
+ }
+
+ //
+ // If we are removing any levels, allocate a new vector to return,
+ // and copy the relevant information to it.
+ //
+ if (new_depth != depth) {
+ AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
+ sizeof(AddrUnsPair) * nApics);
+ for (proc = 0; (int)proc < nApics; proc++) {
+ Address addr(new_depth);
+ new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
+ }
+ int new_level = 0;
+ int newPkgLevel = -1;
+ int newCoreLevel = -1;
+ int newThreadLevel = -1;
+ int i;
+ for (level = 0; level < depth; level++) {
+ if ((maxCt[level] == 1)
+ && (level != pkgLevel)) {
+ //
+ // Remove this level. Never remove the package level
+ //
+ continue;
+ }
+ if (level == pkgLevel) {
+ newPkgLevel = level;
+ }
+ if (level == coreLevel) {
+ newCoreLevel = level;
+ }
+ if (level == threadLevel) {
+ newThreadLevel = level;
+ }
+ for (proc = 0; (int)proc < nApics; proc++) {
+ new_retval[proc].first.labels[new_level]
+ = retval[proc].first.labels[level];
+ }
+ new_level++;
+ }
+
+ __kmp_free(retval);
+ retval = new_retval;
+ depth = new_depth;
+ pkgLevel = newPkgLevel;
+ coreLevel = newCoreLevel;
+ threadLevel = newThreadLevel;
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ __kmp_affinity_gran_levels = 0;
+ if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
+ __kmp_affinity_gran_levels++;
+ }
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(last);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ __kmp_free(totals);
+ KMP_CPU_FREE(oldMask);
+ *address2os = retval;
+ return depth;
}
-#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-#define osIdIndex 0
-#define threadIdIndex 1
-#define coreIdIndex 2
-#define pkgIdIndex 3
-#define nodeIdIndex 4
+
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+
+#define osIdIndex 0
+#define threadIdIndex 1
+#define coreIdIndex 2
+#define pkgIdIndex 3
+#define nodeIdIndex 4
typedef unsigned *ProcCpuInfo;
static unsigned maxIndex = pkgIdIndex;
-static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
- const void *b) {
- unsigned i;
- const unsigned *aa = *(unsigned *const *)a;
- const unsigned *bb = *(unsigned *const *)b;
- for (i = maxIndex;; i--) {
- if (aa[i] < bb[i])
- return -1;
- if (aa[i] > bb[i])
- return 1;
- if (i == osIdIndex)
- break;
- }
- return 0;
-}
-
-#if KMP_USE_HIER_SCHED
-// Set the array sizes for the hierarchy layers
-static void __kmp_dispatch_set_hierarchy_values() {
- // Set the maximum number of L1's to number of cores
- // Set the maximum number of L2's to to either number of cores / 2 for
- // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
- // Or the number of cores for Intel(R) Xeon(R) processors
- // Set the maximum number of NUMA nodes and L3's to number of packages
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
- nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
-#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
- KMP_MIC_SUPPORTED
- if (__kmp_mic_type >= mic3)
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
- else
-#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
- __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
- // Set the number of threads per unit
- // Number of hardware threads per L1/L2/L3/NUMA/LOOP
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
- __kmp_nThreadsPerCore;
-#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
- KMP_MIC_SUPPORTED
- if (__kmp_mic_type >= mic3)
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
- 2 * __kmp_nThreadsPerCore;
- else
-#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
- __kmp_nThreadsPerCore;
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
- nCoresPerPkg * __kmp_nThreadsPerCore;
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
- nCoresPerPkg * __kmp_nThreadsPerCore;
- __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
- nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
-}
-// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
-// i.e., this thread's L1 or this thread's L2, etc.
-int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
- int index = type + 1;
- int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
- KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
- if (type == kmp_hier_layer_e::LAYER_THREAD)
- return tid;
- else if (type == kmp_hier_layer_e::LAYER_LOOP)
+static int
+__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
+{
+ const unsigned *aa = (const unsigned *)a;
+ const unsigned *bb = (const unsigned *)b;
+ if (aa[osIdIndex] < bb[osIdIndex]) return -1;
+ if (aa[osIdIndex] > bb[osIdIndex]) return 1;
return 0;
- KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
- if (tid >= num_hw_threads)
- tid = tid % num_hw_threads;
- return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
-}
+};
-// Return the number of t1's per t2
-int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
- int i1 = t1 + 1;
- int i2 = t2 + 1;
- KMP_DEBUG_ASSERT(i1 <= i2);
- KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
- KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
- KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
- // (nthreads/t2) / (nthreads/t1) = t1 / t2
- return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
-}
-#endif // KMP_USE_HIER_SCHED
-
-static inline const char *__kmp_cpuinfo_get_filename() {
- const char *filename;
- if (__kmp_cpuinfo_file != nullptr)
- filename = __kmp_cpuinfo_file;
- else
- filename = "/proc/cpuinfo";
- return filename;
-}
-static inline const char *__kmp_cpuinfo_get_envvar() {
- const char *envvar = nullptr;
- if (__kmp_cpuinfo_file != nullptr)
- envvar = "KMP_CPUINFO_FILE";
- return envvar;
+static int
+__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
+{
+ unsigned i;
+ const unsigned *aa = *((const unsigned **)a);
+ const unsigned *bb = *((const unsigned **)b);
+ for (i = maxIndex; ; i--) {
+ if (aa[i] < bb[i]) return -1;
+ if (aa[i] > bb[i]) return 1;
+ if (i == osIdIndex) break;
+ }
+ return 0;
}
+
+//
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
// affinity map.
-static bool __kmp_affinity_create_cpuinfo_map(int *line,
- kmp_i18n_id_t *const msg_id) {
- const char *filename = __kmp_cpuinfo_get_filename();
- const char *envvar = __kmp_cpuinfo_get_envvar();
- *msg_id = kmp_i18n_null;
-
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
- }
-
- kmp_safe_raii_file_t f(filename, "r", envvar);
-
- // Scan of the file, and count the number of "processor" (osId) fields,
- // and find the highest value of <n> for a node_<n> field.
- char buf[256];
- unsigned num_records = 0;
- while (!feof(f)) {
- buf[sizeof(buf) - 1] = 1;
- if (!fgets(buf, sizeof(buf), f)) {
- // Read errors presumably because of EOF
- break;
- }
-
- char s1[] = "processor";
- if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
- num_records++;
- continue;
- }
-
- // FIXME - this will match "node_<n> <garbage>"
- unsigned level;
- if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
- // validate the input fisrt:
- if (level > (unsigned)__kmp_xproc) { // level is too big
- level = __kmp_xproc;
- }
- if (nodeIdIndex + level >= maxIndex) {
- maxIndex = nodeIdIndex + level;
- }
- continue;
- }
- }
-
- // Check for empty file / no valid processor records, or too many. The number
- // of records can't exceed the number of valid bits in the affinity mask.
- if (num_records == 0) {
- *msg_id = kmp_i18n_str_NoProcRecords;
- return false;
- }
- if (num_records > (unsigned)__kmp_xproc) {
- *msg_id = kmp_i18n_str_TooManyProcRecords;
- return false;
- }
-
- // Set the file pointer back to the beginning, so that we can scan the file
- // again, this time performing a full parse of the data. Allocate a vector of
- // ProcCpuInfo object, where we will place the data. Adding an extra element
- // at the end allows us to remove a lot of extra checks for termination
- // conditions.
- if (fseek(f, 0, SEEK_SET) != 0) {
- *msg_id = kmp_i18n_str_CantRewindCpuinfo;
- return false;
- }
-
- // Allocate the array of records to store the proc info in. The dummy
- // element at the end makes the logic in filling them out easier to code.
- unsigned **threadInfo =
- (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
- unsigned i;
- for (i = 0; i <= num_records; i++) {
- threadInfo[i] =
- (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
- }
-
-#define CLEANUP_THREAD_INFO \
- for (i = 0; i <= num_records; i++) { \
- __kmp_free(threadInfo[i]); \
- } \
- __kmp_free(threadInfo);
-
- // A value of UINT_MAX means that we didn't find the field
- unsigned __index;
-
-#define INIT_PROC_INFO(p) \
- for (__index = 0; __index <= maxIndex; __index++) { \
- (p)[__index] = UINT_MAX; \
- }
-
- for (i = 0; i <= num_records; i++) {
- INIT_PROC_INFO(threadInfo[i]);
- }
-
- unsigned num_avail = 0;
- *line = 0;
- while (!feof(f)) {
- // Create an inner scoping level, so that all the goto targets at the end of
- // the loop appear in an outer scoping level. This avoids warnings about
- // jumping past an initialization to a target in the same block.
- {
- buf[sizeof(buf) - 1] = 1;
- bool long_line = false;
- if (!fgets(buf, sizeof(buf), f)) {
- // Read errors presumably because of EOF
- // If there is valid data in threadInfo[num_avail], then fake
- // a blank line in ensure that the last address gets parsed.
- bool valid = false;
- for (i = 0; i <= maxIndex; i++) {
- if (threadInfo[num_avail][i] != UINT_MAX) {
- valid = true;
- }
- }
- if (!valid) {
- break;
- }
- buf[0] = 0;
- } else if (!buf[sizeof(buf) - 1]) {
- // The line is longer than the buffer. Set a flag and don't
- // emit an error if we were going to ignore the line, anyway.
- long_line = true;
-
-#define CHECK_LINE \
- if (long_line) { \
- CLEANUP_THREAD_INFO; \
- *msg_id = kmp_i18n_str_LongLineCpuinfo; \
- return false; \
- }
- }
- (*line)++;
-
- char s1[] = "processor";
- if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s1) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
- goto no_val;
- if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
-#if KMP_ARCH_AARCH64
- // Handle the old AArch64 /proc/cpuinfo layout differently,
- // it contains all of the 'processor' entries listed in a
- // single 'Processor' section, therefore the normal looking
- // for duplicates in that section will always fail.
- num_avail++;
-#else
- goto dup_field;
-#endif
- threadInfo[num_avail][osIdIndex] = val;
-#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
- char path[256];
- KMP_SNPRINTF(
- path, sizeof(path),
- "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
- threadInfo[num_avail][osIdIndex]);
- __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
-
- KMP_SNPRINTF(path, sizeof(path),
- "/sys/devices/system/cpu/cpu%u/topology/core_id",
- threadInfo[num_avail][osIdIndex]);
- __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
- continue;
+//
+static int
+__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
+ kmp_i18n_id_t *const msg_id, FILE *f)
+{
+ *address2os = NULL;
+ *msg_id = kmp_i18n_null;
+
+ //
+ // Scan of the file, and count the number of "processor" (osId) fields,
+ // and find the highest value of <n> for a node_<n> field.
+ //
+ char buf[256];
+ unsigned num_records = 0;
+ while (! feof(f)) {
+ buf[sizeof(buf) - 1] = 1;
+ if (! fgets(buf, sizeof(buf), f)) {
+ //
+ // Read errors presumably because of EOF
+ //
+ break;
+ }
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ num_records++;
+ continue;
+ }
+
+ //
+ // FIXME - this will match "node_<n> <garbage>"
+ //
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
+ if (nodeIdIndex + level >= maxIndex) {
+ maxIndex = nodeIdIndex + level;
+ }
+ continue;
+ }
+ }
+
+ //
+ // Check for empty file / no valid processor records, or too many.
+ // The number of records can't exceed the number of valid bits in the
+ // affinity mask.
+ //
+ if (num_records == 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_NoProcRecords;
+ return -1;
+ }
+ if (num_records > (unsigned)__kmp_xproc) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_TooManyProcRecords;
+ return -1;
+ }
+
+ //
+ // Set the file pointer back to the begginning, so that we can scan the
+ // file again, this time performing a full parse of the data.
+ // Allocate a vector of ProcCpuInfo object, where we will place the data.
+ // Adding an extra element at the end allows us to remove a lot of extra
+ // checks for termination conditions.
+ //
+ if (fseek(f, 0, SEEK_SET) != 0) {
+ *line = 0;
+ *msg_id = kmp_i18n_str_CantRewindCpuinfo;
+ return -1;
+ }
+
+ //
+ // Allocate the array of records to store the proc info in. The dummy
+ // element at the end makes the logic in filling them out easier to code.
+ //
+ unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
+ * sizeof(unsigned *));
+ unsigned i;
+ for (i = 0; i <= num_records; i++) {
+ threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ }
+
+#define CLEANUP_THREAD_INFO \
+ for (i = 0; i <= num_records; i++) { \
+ __kmp_free(threadInfo[i]); \
+ } \
+ __kmp_free(threadInfo);
+
+ //
+ // A value of UINT_MAX means that we didn't find the field
+ //
+ unsigned __index;
+
+#define INIT_PROC_INFO(p) \
+ for (__index = 0; __index <= maxIndex; __index++) { \
+ (p)[__index] = UINT_MAX; \
+ }
+
+ for (i = 0; i <= num_records; i++) {
+ INIT_PROC_INFO(threadInfo[i]);
+ }
+
+ unsigned num_avail = 0;
+ *line = 0;
+ while (! feof(f)) {
+ //
+ // Create an inner scoping level, so that all the goto targets at the
+ // end of the loop appear in an outer scoping level. This avoids
+ // warnings about jumping past an initialization to a target in the
+ // same block.
+ //
+ {
+ buf[sizeof(buf) - 1] = 1;
+ bool long_line = false;
+ if (! fgets(buf, sizeof(buf), f)) {
+ //
+ // Read errors presumably because of EOF
+ //
+ // If there is valid data in threadInfo[num_avail], then fake
+ // a blank line in ensure that the last address gets parsed.
+ //
+ bool valid = false;
+ for (i = 0; i <= maxIndex; i++) {
+ if (threadInfo[num_avail][i] != UINT_MAX) {
+ valid = true;
+ }
+ }
+ if (! valid) {
+ break;
+ }
+ buf[0] = 0;
+ } else if (!buf[sizeof(buf) - 1]) {
+ //
+ // The line is longer than the buffer. Set a flag and don't
+ // emit an error if we were going to ignore the line, anyway.
+ //
+ long_line = true;
+
+#define CHECK_LINE \
+ if (long_line) { \
+ CLEANUP_THREAD_INFO; \
+ *msg_id = kmp_i18n_str_LongLineCpuinfo; \
+ return -1; \
+ }
+ }
+ (*line)++;
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s1) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][osIdIndex] = val;
+#if KMP_OS_LINUX && USE_SYSFS_INFO
+ char path[256];
+ KMP_SNPRINTF(path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
+
+ KMP_SNPRINTF(path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/core_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
+ continue;
#else
- }
- char s2[] = "physical id";
- if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s2) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
- goto no_val;
- if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
- goto dup_field;
- threadInfo[num_avail][pkgIdIndex] = val;
- continue;
- }
- char s3[] = "core id";
- if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s3) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
- goto no_val;
- if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
- goto dup_field;
- threadInfo[num_avail][coreIdIndex] = val;
- continue;
+ }
+ char s2[] = "physical id";
+ if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s2) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][pkgIdIndex] = val;
+ continue;
+ }
+ char s3[] = "core id";
+ if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s3) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][coreIdIndex] = val;
+ continue;
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
- }
- char s4[] = "thread id";
- if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s4) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
- goto no_val;
- if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
- goto dup_field;
- threadInfo[num_avail][threadIdIndex] = val;
- continue;
- }
- unsigned level;
- if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s4) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
- goto no_val;
- KMP_ASSERT(nodeIdIndex + level <= maxIndex);
- if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
- goto dup_field;
- threadInfo[num_avail][nodeIdIndex + level] = val;
- continue;
- }
-
- // We didn't recognize the leading token on the line. There are lots of
- // leading tokens that we don't recognize - if the line isn't empty, go on
- // to the next line.
- if ((*buf != 0) && (*buf != '\n')) {
- // If the line is longer than the buffer, read characters
- // until we find a newline.
- if (long_line) {
- int ch;
- while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
- ;
+ }
+ char s4[] = "thread id";
+ if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
+ if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][threadIdIndex] = val;
+ continue;
+ }
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
+ KMP_ASSERT(nodeIdIndex + level <= maxIndex);
+ if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
+ threadInfo[num_avail][nodeIdIndex + level] = val;
+ continue;
+ }
+
+ //
+ // We didn't recognize the leading token on the line.
+ // There are lots of leading tokens that we don't recognize -
+ // if the line isn't empty, go on to the next line.
+ //
+ if ((*buf != 0) && (*buf != '\n')) {
+ //
+ // If the line is longer than the buffer, read characters
+ // until we find a newline.
+ //
+ if (long_line) {
+ int ch;
+ while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
+ }
+ continue;
+ }
+
+ //
+ // A newline has signalled the end of the processor record.
+ // Check that there aren't too many procs specified.
+ //
+ if ((int)num_avail == __kmp_xproc) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_TooManyEntries;
+ return -1;
+ }
+
+ //
+ // Check for missing fields. The osId field must be there, and we
+ // currently require that the physical id field is specified, also.
+ //
+ if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingProcField;
+ return -1;
+ }
+ if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingPhysicalIDField;
+ return -1;
+ }
+
+ //
+ // Skip this proc if it is not included in the machine model.
+ //
+ if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ continue;
+ }
+
+ //
+ // We have a successful parse of this proc's info.
+ // Increment the counter, and prepare for the next proc.
+ //
+ num_avail++;
+ KMP_ASSERT(num_avail <= num_records);
+ INIT_PROC_INFO(threadInfo[num_avail]);
}
continue;
- }
- // A newline has signalled the end of the processor record.
- // Check that there aren't too many procs specified.
- if ((int)num_avail == __kmp_xproc) {
+ no_val:
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_TooManyEntries;
- return false;
- }
+ *msg_id = kmp_i18n_str_MissingValCpuinfo;
+ return -1;
- // Check for missing fields. The osId field must be there, and we
- // currently require that the physical id field is specified, also.
- if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
+ dup_field:
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingProcField;
- return false;
- }
- if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
+ *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
+ return -1;
+ }
+ *line = 0;
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ unsigned teamSize = 0;
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // check for num_records == __kmp_xproc ???
+
+ //
+ // If there's only one thread context to bind to, form an Address object
+ // with depth 1 and return immediately (or, if affinity is off, set
+ // address2os to NULL and return).
+ //
+ // If it is configured to omit the package level when there is only a
+ // single package, the logic at the end of this routine won't work if
+ // there is only a single thread - it would try to form an Address
+ // object with depth 0.
+ //
+ KMP_ASSERT(num_avail > 0);
+ KMP_ASSERT(num_avail <= num_records);
+ if (num_avail == 1) {
+ __kmp_ncores = 1;
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+ if (__kmp_affinity_verbose) {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ }
+ else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ }
+ int index;
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+ __kmp_str_buf_print(&buf, "1");
+ for (index = maxIndex - 1; index > pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x 1");
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
+ __kmp_str_buf_free(&buf);
+ }
+
+ if (__kmp_affinity_type == affinity_none) {
+ CLEANUP_THREAD_INFO;
+ return 0;
+ }
+
+ *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
+ Address addr(1);
+ addr.labels[0] = threadInfo[0][pkgIdIndex];
+ (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
+
+ if (__kmp_affinity_gran_levels < 0) {
+ __kmp_affinity_gran_levels = 0;
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
+ }
+
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingPhysicalIDField;
- return false;
- }
-
- // Skip this proc if it is not included in the machine model.
- if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
- __kmp_affin_fullMask)) {
- INIT_PROC_INFO(threadInfo[num_avail]);
- continue;
- }
+ return 1;
+ }
- // We have a successful parse of this proc's info.
- // Increment the counter, and prepare for the next proc.
- num_avail++;
- KMP_ASSERT(num_avail <= num_records);
- INIT_PROC_INFO(threadInfo[num_avail]);
+ //
+ // Sort the threadInfo table by physical Id.
+ //
+ qsort(threadInfo, num_avail, sizeof(*threadInfo),
+ __kmp_affinity_cmp_ProcCpuInfo_phys_id);
+
+ //
+ // The table is now sorted by pkgId / coreId / threadId, but we really
+ // don't know the radix of any of the fields. pkgId's may be sparsely
+ // assigned among the chips on a system. Although coreId's are usually
+ // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore
+ // (or the total # packages) are at this point - we want to determine
+ // that now. We only have an upper bound on the first two figures.
+ //
+ unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+ unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
+ * sizeof(unsigned));
+
+ bool assign_thread_ids = false;
+ unsigned threadIdCt;
+ unsigned index;
+
+ restart_radix_check:
+ threadIdCt = 0;
+
+ //
+ // Initialize the counter arrays with data from threadInfo[0].
+ //
+ if (assign_thread_ids) {
+ if (threadInfo[0][threadIdIndex] == UINT_MAX) {
+ threadInfo[0][threadIdIndex] = threadIdCt++;
+ }
+ else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
+ threadIdCt = threadInfo[0][threadIdIndex] + 1;
+ }
+ }
+ for (index = 0; index <= maxIndex; index++) {
+ counts[index] = 1;
+ maxCt[index] = 1;
+ totals[index] = 1;
+ lastId[index] = threadInfo[0][index];;
}
- continue;
- no_val:
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingValCpuinfo;
- return false;
+ //
+ // Run through the rest of the OS procs.
+ //
+ for (i = 1; i < num_avail; i++) {
+ //
+ // Find the most significant index whose id differs
+ // from the id for the previous OS proc.
+ //
+ for (index = maxIndex; index >= threadIdIndex; index--) {
+ if (assign_thread_ids && (index == threadIdIndex)) {
+ //
+ // Auto-assign the thread id field if it wasn't specified.
+ //
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
- dup_field:
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
- return false;
- }
- *line = 0;
-
-#if KMP_MIC && REDUCE_TEAM_SIZE
- unsigned teamSize = 0;
-#endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- // check for num_records == __kmp_xproc ???
-
- // If it is configured to omit the package level when there is only a single
- // package, the logic at the end of this routine won't work if there is only a
- // single thread
- KMP_ASSERT(num_avail > 0);
- KMP_ASSERT(num_avail <= num_records);
-
- // Sort the threadInfo table by physical Id.
- qsort(threadInfo, num_avail, sizeof(*threadInfo),
- __kmp_affinity_cmp_ProcCpuInfo_phys_id);
-
- // The table is now sorted by pkgId / coreId / threadId, but we really don't
- // know the radix of any of the fields. pkgId's may be sparsely assigned among
- // the chips on a system. Although coreId's are usually assigned
- // [0 .. coresPerPkg-1] and threadId's are usually assigned
- // [0..threadsPerCore-1], we don't want to make any such assumptions.
- //
- // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
- // total # packages) are at this point - we want to determine that now. We
- // only have an upper bound on the first two figures.
- unsigned *counts =
- (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
- unsigned *maxCt =
- (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
- unsigned *totals =
- (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
- unsigned *lastId =
- (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
-
- bool assign_thread_ids = false;
- unsigned threadIdCt;
- unsigned index;
-
-restart_radix_check:
- threadIdCt = 0;
-
- // Initialize the counter arrays with data from threadInfo[0].
- if (assign_thread_ids) {
- if (threadInfo[0][threadIdIndex] == UINT_MAX) {
- threadInfo[0][threadIdIndex] = threadIdCt++;
- } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
- threadIdCt = threadInfo[0][threadIdIndex] + 1;
- }
- }
- for (index = 0; index <= maxIndex; index++) {
- counts[index] = 1;
- maxCt[index] = 1;
- totals[index] = 1;
- lastId[index] = threadInfo[0][index];
- ;
- }
-
- // Run through the rest of the OS procs.
- for (i = 1; i < num_avail; i++) {
- // Find the most significant index whose id differs from the id for the
- // previous OS proc.
- for (index = maxIndex; index >= threadIdIndex; index--) {
- if (assign_thread_ids && (index == threadIdIndex)) {
- // Auto-assign the thread id field if it wasn't specified.
- if (threadInfo[i][threadIdIndex] == UINT_MAX) {
- threadInfo[i][threadIdIndex] = threadIdCt++;
- }
- // Apparently the thread id field was specified for some entries and not
- // others. Start the thread id counter off at the next higher thread id.
- else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
- threadIdCt = threadInfo[i][threadIdIndex] + 1;
- }
- }
- if (threadInfo[i][index] != lastId[index]) {
- // Run through all indices which are less significant, and reset the
- // counts to 1. At all levels up to and including index, we need to
- // increment the totals and record the last id.
- unsigned index2;
- for (index2 = threadIdIndex; index2 < index; index2++) {
- totals[index2]++;
- if (counts[index2] > maxCt[index2]) {
- maxCt[index2] = counts[index2];
- }
- counts[index2] = 1;
- lastId[index2] = threadInfo[i][index2];
- }
- counts[index]++;
- totals[index]++;
- lastId[index] = threadInfo[i][index];
-
- if (assign_thread_ids && (index > threadIdIndex)) {
-
-#if KMP_MIC && REDUCE_TEAM_SIZE
- // The default team size is the total #threads in the machine
- // minus 1 thread for every core that has 3 or more threads.
- teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
-#endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- // Restart the thread counter, as we are on a new core.
- threadIdCt = 0;
-
- // Auto-assign the thread id field if it wasn't specified.
- if (threadInfo[i][threadIdIndex] == UINT_MAX) {
- threadInfo[i][threadIdIndex] = threadIdCt++;
- }
-
- // Apparently the thread id field was specified for some entries and
- // not others. Start the thread id counter off at the next higher
- // thread id.
- else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
- threadIdCt = threadInfo[i][threadIdIndex] + 1;
- }
+ //
+ // Aparrently the thread id field was specified for some
+ // entries and not others. Start the thread id counter
+ // off at the next higher thread id.
+ //
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ if (threadInfo[i][index] != lastId[index]) {
+ //
+ // Run through all indices which are less significant,
+ // and reset the counts to 1.
+ //
+ // At all levels up to and including index, we need to
+ // increment the totals and record the last id.
+ //
+ unsigned index2;
+ for (index2 = threadIdIndex; index2 < index; index2++) {
+ totals[index2]++;
+ if (counts[index2] > maxCt[index2]) {
+ maxCt[index2] = counts[index2];
+ }
+ counts[index2] = 1;
+ lastId[index2] = threadInfo[i][index2];
+ }
+ counts[index]++;
+ totals[index]++;
+ lastId[index] = threadInfo[i][index];
+
+ if (assign_thread_ids && (index > threadIdIndex)) {
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ //
+ teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ //
+ // Restart the thread counter, as we are on a new core.
+ //
+ threadIdCt = 0;
+
+ //
+ // Auto-assign the thread id field if it wasn't specified.
+ //
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+
+ //
+ // Aparrently the thread id field was specified for some
+ // entries and not others. Start the thread id counter
+ // off at the next higher thread id.
+ //
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ break;
+ }
+ }
+ if (index < threadIdIndex) {
+ //
+ // If thread ids were specified, it is an error if they are not
+ // unique. Also, check that we waven't already restarted the
+ // loop (to be safe - shouldn't need to).
+ //
+ if ((threadInfo[i][threadIdIndex] != UINT_MAX)
+ || assign_thread_ids) {
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
+ return -1;
+ }
+
+ //
+ // If the thread ids were not specified and we see entries
+ // entries that are duplicates, start the loop over and
+ // assign the thread ids manually.
+ //
+ assign_thread_ids = true;
+ goto restart_radix_check;
+ }
+ }
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ //
+ teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (counts[index] > maxCt[index]) {
+ maxCt[index] = counts[index];
}
- break;
- }
}
- if (index < threadIdIndex) {
- // If thread ids were specified, it is an error if they are not unique.
- // Also, check that we waven't already restarted the loop (to be safe -
- // shouldn't need to).
- if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
+
+ __kmp_nThreadsPerCore = maxCt[threadIdIndex];
+ nCoresPerPkg = maxCt[coreIdIndex];
+ nPackages = totals[pkgIdIndex];
+
+ //
+ // Check to see if the machine topology is uniform
+ //
+ unsigned prod = totals[maxIndex];
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ prod *= maxCt[index];
+ }
+ bool uniform = (prod == totals[threadIdIndex]);
+
+ //
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore,
+ // nCoresPerPkg, & nPackages. Make sure all these vars are set
+ // correctly, and return now if affinity is not enabled.
+ //
+ __kmp_ncores = totals[coreIdIndex];
+
+ if (__kmp_affinity_verbose) {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ }
+ else {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
+ KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
+ if (__kmp_affinity_respect_mask) {
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ } else {
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
+ if (uniform) {
+ KMP_INFORM(Uniform, "KMP_AFFINITY");
+ } else {
+ KMP_INFORM(NonUniform, "KMP_AFFINITY");
+ }
+ }
+ kmp_str_buf_t buf;
+ __kmp_str_buf_init(&buf);
+
+ __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
+ for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
+ __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
+ }
+ KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
+ maxCt[threadIdIndex], __kmp_ncores);
+
+ __kmp_str_buf_free(&buf);
+ }
+
+# if KMP_MIC && REDUCE_TEAM_SIZE
+ //
+ // Set the default team size.
+ //
+ if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
+ __kmp_dflt_team_nth = teamSize;
+ KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
+ __kmp_dflt_team_nth));
+ }
+# endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ if (__kmp_affinity_type == affinity_none) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
- return false;
- }
-
- // If the thread ids were not specified and we see entries entries that
- // are duplicates, start the loop over and assign the thread ids manually.
- assign_thread_ids = true;
- goto restart_radix_check;
- }
- }
-
-#if KMP_MIC && REDUCE_TEAM_SIZE
- // The default team size is the total #threads in the machine
- // minus 1 thread for every core that has 3 or more threads.
- teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
-#endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- for (index = threadIdIndex; index <= maxIndex; index++) {
- if (counts[index] > maxCt[index]) {
- maxCt[index] = counts[index];
- }
- }
-
- __kmp_nThreadsPerCore = maxCt[threadIdIndex];
- nCoresPerPkg = maxCt[coreIdIndex];
- nPackages = totals[pkgIdIndex];
-
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
- // Make sure all these vars are set correctly, and return now if affinity is
- // not enabled.
- __kmp_ncores = totals[coreIdIndex];
- if (!KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- return true;
- }
-
-#if KMP_MIC && REDUCE_TEAM_SIZE
- // Set the default team size.
- if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
- __kmp_dflt_team_nth = teamSize;
- KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
- "__kmp_dflt_team_nth = %d\n",
- __kmp_dflt_team_nth));
- }
-#endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
-
- // Count the number of levels which have more nodes at that level than at the
- // parent's level (with there being an implicit root node of the top level).
- // This is equivalent to saying that there is at least one node at this level
- // which has a sibling. These levels are in the map, and the package level is
- // always in the map.
- bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
- for (index = threadIdIndex; index < maxIndex; index++) {
- KMP_ASSERT(totals[index] >= totals[index + 1]);
- inMap[index] = (totals[index] > totals[index + 1]);
- }
- inMap[maxIndex] = (totals[maxIndex] > 1);
- inMap[pkgIdIndex] = true;
- inMap[coreIdIndex] = true;
- inMap[threadIdIndex] = true;
-
- int depth = 0;
- int idx = 0;
- kmp_hw_t types[KMP_HW_LAST];
- int pkgLevel = -1;
- int coreLevel = -1;
- int threadLevel = -1;
- for (index = threadIdIndex; index <= maxIndex; index++) {
- if (inMap[index]) {
- depth++;
- }
- }
- if (inMap[pkgIdIndex]) {
- pkgLevel = idx;
- types[idx++] = KMP_HW_SOCKET;
- }
- if (inMap[coreIdIndex]) {
- coreLevel = idx;
- types[idx++] = KMP_HW_CORE;
- }
- if (inMap[threadIdIndex]) {
- threadLevel = idx;
- types[idx++] = KMP_HW_THREAD;
- }
- KMP_ASSERT(depth > 0);
-
- // Construct the data structure that is to be returned.
- __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
-
- for (i = 0; i < num_avail; ++i) {
- unsigned os = threadInfo[i][osIdIndex];
- int src_index;
- int dst_index = 0;
- kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
- hw_thread.clear();
- hw_thread.os_id = os;
-
- idx = 0;
- for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
- if (!inMap[src_index]) {
- continue;
- }
- if (src_index == pkgIdIndex) {
- hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
- } else if (src_index == coreIdIndex) {
- hw_thread.ids[coreLevel] = threadInfo[i][src_index];
- } else if (src_index == threadIdIndex) {
- hw_thread.ids[threadLevel] = threadInfo[i][src_index];
- }
- dst_index++;
- }
- }
-
- __kmp_free(inMap);
- __kmp_free(lastId);
- __kmp_free(totals);
- __kmp_free(maxCt);
- __kmp_free(counts);
- CLEANUP_THREAD_INFO;
- __kmp_topology->sort_ids();
- if (!__kmp_topology->check_ids()) {
- kmp_topology_t::deallocate(__kmp_topology);
- __kmp_topology = nullptr;
- *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
- return false;
- }
- return true;
+ return 0;
+ }
+
+ //
+ // Count the number of levels which have more nodes at that level than
+ // at the parent's level (with there being an implicit root node of
+ // the top level). This is equivalent to saying that there is at least
+ // one node at this level which has a sibling. These levels are in the
+ // map, and the package level is always in the map.
+ //
+ bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
+ int level = 0;
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ KMP_ASSERT(totals[index] >= totals[index + 1]);
+ inMap[index] = (totals[index] > totals[index + 1]);
+ }
+ inMap[maxIndex] = (totals[maxIndex] > 1);
+ inMap[pkgIdIndex] = true;
+
+ int depth = 0;
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (inMap[index]) {
+ depth++;
+ }
+ }
+ KMP_ASSERT(depth > 0);
+
+ //
+ // Construct the data structure that is to be returned.
+ //
+ *address2os = (AddrUnsPair*)
+ __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
+ int pkgLevel = -1;
+ int coreLevel = -1;
+ int threadLevel = -1;
+
+ for (i = 0; i < num_avail; ++i) {
+ Address addr(depth);
+ unsigned os = threadInfo[i][osIdIndex];
+ int src_index;
+ int dst_index = 0;
+
+ for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
+ if (! inMap[src_index]) {
+ continue;
+ }
+ addr.labels[dst_index] = threadInfo[i][src_index];
+ if (src_index == pkgIdIndex) {
+ pkgLevel = dst_index;
+ }
+ else if (src_index == coreIdIndex) {
+ coreLevel = dst_index;
+ }
+ else if (src_index == threadIdIndex) {
+ threadLevel = dst_index;
+ }
+ dst_index++;
+ }
+ (*address2os)[i] = AddrUnsPair(addr, os);
+ }
+
+ if (__kmp_affinity_gran_levels < 0) {
+ //
+ // Set the granularity level based on what levels are modeled
+ // in the machine topology map.
+ //
+ unsigned src_index;
+ __kmp_affinity_gran_levels = 0;
+ for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
+ if (! inMap[src_index]) {
+ continue;
+ }
+ switch (src_index) {
+ case threadIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_thread) {
+ __kmp_affinity_gran_levels++;
+ }
+
+ break;
+ case coreIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_core) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+
+ case pkgIdIndex:
+ if (__kmp_affinity_gran > affinity_gran_package) {
+ __kmp_affinity_gran_levels++;
+ }
+ break;
+ }
+ }
+ }
+
+ if (__kmp_affinity_verbose) {
+ __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
+ coreLevel, threadLevel);
+ }
+
+ __kmp_free(inMap);
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ return depth;
}
+
+//
// Create and return a table of affinity masks, indexed by OS thread ID.
// This routine handles OR'ing together all the affinity masks of threads
// that are sufficiently close, if granularity > fine.
-static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
- unsigned *numUnique) {
- // First form a table of affinity masks in order of OS thread id.
- int maxOsId;
- int i;
- int numAddrs = __kmp_topology->get_num_hw_threads();
- int depth = __kmp_topology->get_depth();
- KMP_ASSERT(numAddrs);
- KMP_ASSERT(depth);
-
- maxOsId = 0;
- for (i = numAddrs - 1;; --i) {
- int osId = __kmp_topology->at(i).os_id;
- if (osId > maxOsId) {
- maxOsId = osId;
- }
- if (i == 0)
- break;
- }
- kmp_affin_mask_t *osId2Mask;
- KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
- KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
- if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
- KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
- }
- if (__kmp_affinity_gran_levels >= (int)depth) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffThreadsMayMigrate);
- }
- }
-
- // Run through the table, forming the masks for all threads on each core.
- // Threads on the same core will have identical kmp_hw_thread_t objects, not
- // considering the last level, which must be the thread id. All threads on a
- // core will appear consecutively.
- int unique = 0;
- int j = 0; // index of 1st thread on core
- int leader = 0;
- kmp_affin_mask_t *sum;
- KMP_CPU_ALLOC_ON_STACK(sum);
- KMP_CPU_ZERO(sum);
- KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
- for (i = 1; i < numAddrs; i++) {
- // If this thread is sufficiently close to the leader (within the
- // granularity setting), then set the bit for this os thread in the
- // affinity mask for this group, and go on to the next thread.
- if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
- KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
- continue;
- }
-
- // For every thread in this group, copy the mask to the thread's entry in
- // the osId2Mask table. Mark the first address as a leader.
+//
+static kmp_affin_mask_t *
+__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
+ AddrUnsPair *address2os, unsigned numAddrs)
+{
+ //
+ // First form a table of affinity masks in order of OS thread id.
+ //
+ unsigned depth;
+ unsigned maxOsId;
+ unsigned i;
+
+ KMP_ASSERT(numAddrs > 0);
+ depth = address2os[0].first.depth;
+
+ maxOsId = 0;
+ for (i = 0; i < numAddrs; i++) {
+ unsigned osId = address2os[i].second;
+ if (osId > maxOsId) {
+ maxOsId = osId;
+ }
+ }
+ kmp_affin_mask_t *osId2Mask;
+ KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1));
+
+ //
+ // Sort the address2os table according to physical order. Doing so
+ // will put all threads on the same core/package/node in consecutive
+ // locations.
+ //
+ qsort(address2os, numAddrs, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_labels);
+
+ KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
+ if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
+ KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
+ }
+ if (__kmp_affinity_gran_levels >= (int)depth) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffThreadsMayMigrate);
+ }
+ }
+
+ //
+ // Run through the table, forming the masks for all threads on each
+ // core. Threads on the same core will have identical "Address"
+ // objects, not considering the last level, which must be the thread
+ // id. All threads on a core will appear consecutively.
+ //
+ unsigned unique = 0;
+ unsigned j = 0; // index of 1st thread on core
+ unsigned leader = 0;
+ Address *leaderAddr = &(address2os[0].first);
+ kmp_affin_mask_t *sum;
+ KMP_CPU_ALLOC_ON_STACK(sum);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[0].second, sum);
+ for (i = 1; i < numAddrs; i++) {
+ //
+ // If this thread is sufficiently close to the leader (within the
+ // granularity setting), then set the bit for this os thread in the
+ // affinity mask for this group, and go on to the next thread.
+ //
+ if (leaderAddr->isClose(address2os[i].first,
+ __kmp_affinity_gran_levels)) {
+ KMP_CPU_SET(address2os[i].second, sum);
+ continue;
+ }
+
+ //
+ // For every thread in this group, copy the mask to the thread's
+ // entry in the osId2Mask table. Mark the first address as a
+ // leader.
+ //
+ for (; j < i; j++) {
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
+ }
+ unique++;
+
+ //
+ // Start a new mask.
+ //
+ leader = i;
+ leaderAddr = &(address2os[i].first);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(address2os[i].second, sum);
+ }
+
+ //
+ // For every thread in last group, copy the mask to the thread's
+ // entry in the osId2Mask table.
+ //
for (; j < i; j++) {
- int osId = __kmp_topology->at(j).os_id;
- KMP_DEBUG_ASSERT(osId <= maxOsId);
- kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
- KMP_CPU_COPY(mask, sum);
- __kmp_topology->at(j).leader = (j == leader);
+ unsigned osId = address2os[j].second;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ address2os[j].first.leader = (j == leader);
}
unique++;
+ KMP_CPU_FREE_FROM_STACK(sum);
- // Start a new mask.
- leader = i;
- KMP_CPU_ZERO(sum);
- KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
- }
-
- // For every thread in last group, copy the mask to the thread's
- // entry in the osId2Mask table.
- for (; j < i; j++) {
- int osId = __kmp_topology->at(j).os_id;
- KMP_DEBUG_ASSERT(osId <= maxOsId);
- kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
- KMP_CPU_COPY(mask, sum);
- __kmp_topology->at(j).leader = (j == leader);
- }
- unique++;
- KMP_CPU_FREE_FROM_STACK(sum);
-
- *maxIndex = maxOsId;
- *numUnique = unique;
- return osId2Mask;
+ *maxIndex = maxOsId;
+ *numUnique = unique;
+ return osId2Mask;
}
+
+//
// Stuff for the affinity proclist parsers. It's easier to declare these vars
// as file-static than to try and pass them through the calling sequence of
// the recursive-descent OMP_PLACES parser.
+//
static kmp_affin_mask_t *newMasks;
static int numNewMasks;
static int nextNewMask;
-#define ADD_MASK(_mask) \
- { \
- if (nextNewMask >= numNewMasks) { \
- int i; \
- numNewMasks *= 2; \
- kmp_affin_mask_t *temp; \
- KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
- for (i = 0; i < numNewMasks / 2; i++) { \
- kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
- kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
- KMP_CPU_COPY(dest, src); \
- } \
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
- newMasks = temp; \
- } \
- KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
- nextNewMask++; \
- }
-
-#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
- { \
- if (((_osId) > _maxOsId) || \
- (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
- if (__kmp_affinity_verbose || \
- (__kmp_affinity_warnings && \
- (__kmp_affinity_type != affinity_none))) { \
- KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
- } \
- } else { \
- ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
- } \
- }
+#define ADD_MASK(_mask) \
+ { \
+ if (nextNewMask >= numNewMasks) { \
+ int i; \
+ numNewMasks *= 2; \
+ kmp_affin_mask_t* temp; \
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
+ for(i=0;i<numNewMasks/2;i++) { \
+ kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \
+ kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \
+ KMP_CPU_COPY(dest, src); \
+ } \
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \
+ newMasks = temp; \
+ } \
+ KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
+ nextNewMask++; \
+ }
+
+#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
+ { \
+ if (((_osId) > _maxOsId) || \
+ (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
+ && (__kmp_affinity_type != affinity_none))) { \
+ KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
+ } \
+ } \
+ else { \
+ ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
+ } \
+ }
+
+//
// Re-parse the proclist (for the explicit affinity type), and form the list
// of affinity newMasks indexed by gtid.
-static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
- unsigned int *out_numMasks,
- const char *proclist,
- kmp_affin_mask_t *osId2Mask,
- int maxOsId) {
- int i;
- const char *scan = proclist;
- const char *next = proclist;
-
- // We use malloc() for the temporary mask vector, so that we can use
- // realloc() to extend it.
- numNewMasks = 2;
- KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
- nextNewMask = 0;
- kmp_affin_mask_t *sumMask;
- KMP_CPU_ALLOC(sumMask);
- int setSize = 0;
-
- for (;;) {
- int start, end, stride;
-
- SKIP_WS(scan);
- next = scan;
- if (*next == '\0') {
- break;
- }
-
- if (*next == '{') {
- int num;
- setSize = 0;
- next++; // skip '{'
- SKIP_WS(next);
- scan = next;
-
- // Read the first integer in the set.
- KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
- SKIP_DIGITS(next);
- num = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(num >= 0, "bad explicit proc list");
-
- // Copy the mask for that osId to the sum (union) mask.
- if ((num > maxOsId) ||
- (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- KMP_CPU_ZERO(sumMask);
- } else {
- KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
- setSize = 1;
- }
-
- for (;;) {
- // Check for end of set.
- SKIP_WS(next);
- if (*next == '}') {
- next++; // skip '}'
- break;
+//
+static void
+__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks, const char *proclist,
+ kmp_affin_mask_t *osId2Mask, int maxOsId)
+{
+ int i;
+ const char *scan = proclist;
+ const char *next = proclist;
+
+ //
+ // We use malloc() for the temporary mask vector,
+ // so that we can use realloc() to extend it.
+ //
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+ kmp_affin_mask_t *sumMask;
+ KMP_CPU_ALLOC(sumMask);
+ int setSize = 0;
+
+ for (;;) {
+ int start, end, stride;
+
+ SKIP_WS(scan);
+ next = scan;
+ if (*next == '\0') {
+ break;
}
- // Skip optional comma.
- if (*next == ',') {
- next++;
+ if (*next == '{') {
+ int num;
+ setSize = 0;
+ next++; // skip '{'
+ SKIP_WS(next);
+ scan = next;
+
+ //
+ // Read the first integer in the set.
+ //
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad proclist");
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ //
+ // Copy the mask for that osId to the sum (union) mask.
+ //
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ KMP_CPU_ZERO(sumMask);
+ }
+ else {
+ KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize = 1;
+ }
+
+ for (;;) {
+ //
+ // Check for end of set.
+ //
+ SKIP_WS(next);
+ if (*next == '}') {
+ next++; // skip '}'
+ break;
+ }
+
+ //
+ // Skip optional comma.
+ //
+ if (*next == ',') {
+ next++;
+ }
+ SKIP_WS(next);
+
+ //
+ // Read the next integer in the set.
+ //
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad explicit proc list");
+
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ //
+ // Add the mask for that osId to the sum mask.
+ //
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ }
+ else {
+ KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize++;
+ }
+ }
+ if (setSize > 0) {
+ ADD_MASK(sumMask);
+ }
+
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
}
+
+ //
+ // Read the first integer.
+ //
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(start >= 0, "bad explicit proc list");
SKIP_WS(next);
- // Read the next integer in the set.
+ //
+ // If this isn't a range, then add a mask to the list and go on.
+ //
+ if (*next != '-') {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+
+ //
+ // Skip optional comma.
+ //
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ //
+ // This is a range. Skip over the '-' and read in the 2nd int.
+ //
+ next++; // skip '-'
+ SKIP_WS(next);
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
-
SKIP_DIGITS(next);
- num = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(num >= 0, "bad explicit proc list");
+ end = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(end >= 0, "bad explicit proc list");
- // Add the mask for that osId to the sum mask.
- if ((num > maxOsId) ||
- (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- } else {
- KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
- setSize++;
- }
- }
- if (setSize > 0) {
- ADD_MASK(sumMask);
- }
-
- SKIP_WS(next);
- if (*next == ',') {
- next++;
- }
- scan = next;
- continue;
- }
-
- // Read the first integer.
- KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
- SKIP_DIGITS(next);
- start = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(start >= 0, "bad explicit proc list");
- SKIP_WS(next);
-
- // If this isn't a range, then add a mask to the list and go on.
- if (*next != '-') {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
-
- // Skip optional comma.
- if (*next == ',') {
- next++;
- }
- scan = next;
- continue;
- }
-
- // This is a range. Skip over the '-' and read in the 2nd int.
- next++; // skip '-'
- SKIP_WS(next);
- scan = next;
- KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
- SKIP_DIGITS(next);
- end = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(end >= 0, "bad explicit proc list");
-
- // Check for a stride parameter
- stride = 1;
- SKIP_WS(next);
- if (*next == ':') {
- // A stride is specified. Skip over the ':" and read the 3rd int.
- int sign = +1;
- next++; // skip ':'
- SKIP_WS(next);
- scan = next;
- if (*next == '-') {
- sign = -1;
- next++;
+ //
+ // Check for a stride parameter
+ //
+ stride = 1;
SKIP_WS(next);
+ if (*next == ':') {
+ //
+ // A stride is specified. Skip over the ':" and read the 3rd int.
+ //
+ int sign = +1;
+ next++; // skip ':'
+ SKIP_WS(next);
+ scan = next;
+ if (*next == '-') {
+ sign = -1;
+ next++;
+ SKIP_WS(next);
+ scan = next;
+ }
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'),
+ "bad explicit proc list");
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(stride >= 0, "bad explicit proc list");
+ stride *= sign;
+ }
+
+ //
+ // Do some range checks.
+ //
+ KMP_ASSERT2(stride != 0, "bad explicit proc list");
+ if (stride > 0) {
+ KMP_ASSERT2(start <= end, "bad explicit proc list");
+ }
+ else {
+ KMP_ASSERT2(start >= end, "bad explicit proc list");
+ }
+ KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
+
+ //
+ // Add the mask for each OS proc # to the list.
+ //
+ if (stride > 0) {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start <= end);
+ }
+ else {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start >= end);
+ }
+
+ //
+ // Skip optional comma.
+ //
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
scan = next;
- }
- KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(stride >= 0, "bad explicit proc list");
- stride *= sign;
- }
-
- // Do some range checks.
- KMP_ASSERT2(stride != 0, "bad explicit proc list");
- if (stride > 0) {
- KMP_ASSERT2(start <= end, "bad explicit proc list");
- } else {
- KMP_ASSERT2(start >= end, "bad explicit proc list");
}
- KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
- // Add the mask for each OS proc # to the list.
- if (stride > 0) {
- do {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
- start += stride;
- } while (start <= end);
- } else {
- do {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
- start += stride;
- } while (start >= end);
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ return;
}
-
- // Skip optional comma.
- SKIP_WS(next);
- if (*next == ',') {
- next++;
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ for(i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
}
- scan = next;
- }
-
- *out_numMasks = nextNewMask;
- if (nextNewMask == 0) {
- *out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- return;
- }
- KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
- for (i = 0; i < nextNewMask; i++) {
- kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
- kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
- KMP_CPU_COPY(dest, src);
- }
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- KMP_CPU_FREE(sumMask);
+ KMP_CPU_FREE(sumMask);
}
+
+# if OMP_40_ENABLED
+
/*-----------------------------------------------------------------------------
+
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
places. Again, Here is the grammar:
@@ -3060,1531 +3007,1729 @@ subplace := num : num : signed
signed := num
signed := + signed
signed := - signed
+
-----------------------------------------------------------------------------*/
-static void __kmp_process_subplace_list(const char **scan,
- kmp_affin_mask_t *osId2Mask,
- int maxOsId, kmp_affin_mask_t *tempMask,
- int *setSize) {
- const char *next;
- for (;;) {
- int start, count, stride, i;
+static void
+__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
+{
+ const char *next;
- // Read in the starting proc id
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- start = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(start >= 0);
- *scan = next;
-
- // valid follow sets are ',' ':' and '}'
- SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- if ((start > maxOsId) ||
- (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- } else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- (*setSize)++;
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
+ for (;;) {
+ int start, count, stride, i;
+
+ //
+ // Read in the starting proc id
+ //
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(start >= 0);
+ *scan = next;
+
+ //
+ // valid follow sets are ',' ':' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ (*setSize)++;
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ //
+ // Read count parameter
+ //
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(count >= 0);
+ *scan = next;
+
+ //
+ // valid follow sets are ',' ':' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start++;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+
+ //
+ // Read stride parameter
+ //
+ int sign = +1;
+ for (;;) {
+ SKIP_WS(*scan);
+ if (**scan == '+') {
+ (*scan)++; // skip '+'
+ continue;
+ }
+ if (**scan == '-') {
+ sign *= -1;
+ (*scan)++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
+ "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(stride >= 0);
+ *scan = next;
+ stride *= sign;
+
+ //
+ // valid follow sets are ',' and '}'
+ //
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ }
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start += stride;
+ (*setSize)++;
+ }
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(0, "bad explicit places list");
}
- KMP_ASSERT2(**scan == ':', "bad explicit places list");
- (*scan)++; // skip ':'
+}
- // Read count parameter
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- count = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(count >= 0);
- *scan = next;
-
- // valid follow sets are ',' ':' and '}'
+
+static void
+__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
+{
+ const char *next;
+
+ //
+ // valid follow sets are '{' '!' and num
+ //
SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- for (i = 0; i < count; i++) {
- if ((start > maxOsId) ||
- (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- break; // don't proliferate warnings for large count
- } else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- start++;
- (*setSize)++;
+ if (**scan == '{') {
+ (*scan)++; // skip '{'
+ __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
+ setSize);
+ KMP_ASSERT2(**scan == '}', "bad explicit places list");
+ (*scan)++; // skip '}'
+ }
+ else if (**scan == '!') {
+ (*scan)++; // skip '!'
+ __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_CPU_COMPLEMENT(maxOsId, tempMask);
+ }
+ else if ((**scan >= '0') && (**scan <= '9')) {
+ next = *scan;
+ SKIP_DIGITS(next);
+ int num = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(num >= 0);
+ if ((num > maxOsId) ||
+ (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
}
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
+ else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
+ (*setSize)++;
+ }
+ *scan = next; // skip num
}
- KMP_ASSERT2(**scan == ':', "bad explicit places list");
- (*scan)++; // skip ':'
+ else {
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
+
+
+//static void
+void
+__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks, const char *placelist,
+ kmp_affin_mask_t *osId2Mask, int maxOsId)
+{
+ int i,j,count,stride,sign;
+ const char *scan = placelist;
+ const char *next = placelist;
+
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+
+ // tempMask is modified based on the previous or initial
+ // place to form the current place
+ // previousMask contains the previous place
+ kmp_affin_mask_t *tempMask;
+ kmp_affin_mask_t *previousMask;
+ KMP_CPU_ALLOC(tempMask);
+ KMP_CPU_ZERO(tempMask);
+ KMP_CPU_ALLOC(previousMask);
+ KMP_CPU_ZERO(previousMask);
+ int setSize = 0;
- // Read stride parameter
- int sign = +1;
for (;;) {
- SKIP_WS(*scan);
- if (**scan == '+') {
- (*scan)++; // skip '+'
- continue;
- }
- if (**scan == '-') {
- sign *= -1;
- (*scan)++; // skip '-'
- continue;
- }
- break;
- }
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(stride >= 0);
- *scan = next;
- stride *= sign;
-
- // valid follow sets are ',' and '}'
- SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- for (i = 0; i < count; i++) {
- if ((start > maxOsId) ||
- (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- break; // don't proliferate warnings for large count
- } else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- start += stride;
- (*setSize)++;
+ __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
+
+ //
+ // valid follow sets are ',' ':' and EOL
+ //
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ if (setSize > 0) {
+ ADD_MASK(tempMask);
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ if (*scan == '\0') {
+ break;
+ }
+ scan++; // skip ','
+ continue;
}
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
- }
- KMP_ASSERT2(0, "bad explicit places list");
- }
-}
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
-static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
- int maxOsId, kmp_affin_mask_t *tempMask,
- int *setSize) {
- const char *next;
-
- // valid follow sets are '{' '!' and num
- SKIP_WS(*scan);
- if (**scan == '{') {
- (*scan)++; // skip '{'
- __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
- KMP_ASSERT2(**scan == '}', "bad explicit places list");
- (*scan)++; // skip '}'
- } else if (**scan == '!') {
- (*scan)++; // skip '!'
- __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
- KMP_CPU_COMPLEMENT(maxOsId, tempMask);
- } else if ((**scan >= '0') && (**scan <= '9')) {
- next = *scan;
- SKIP_DIGITS(next);
- int num = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(num >= 0);
- if ((num > maxOsId) ||
- (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- } else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
- (*setSize)++;
- }
- *scan = next; // skip num
- } else {
- KMP_ASSERT2(0, "bad explicit places list");
- }
-}
+ //
+ // Read count parameter
+ //
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
+ "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT(count >= 0);
+ scan = next;
-// static void
-void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
- unsigned int *out_numMasks,
- const char *placelist,
- kmp_affin_mask_t *osId2Mask,
- int maxOsId) {
- int i, j, count, stride, sign;
- const char *scan = placelist;
- const char *next = placelist;
-
- numNewMasks = 2;
- KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
- nextNewMask = 0;
-
- // tempMask is modified based on the previous or initial
- // place to form the current place
- // previousMask contains the previous place
- kmp_affin_mask_t *tempMask;
- kmp_affin_mask_t *previousMask;
- KMP_CPU_ALLOC(tempMask);
- KMP_CPU_ZERO(tempMask);
- KMP_CPU_ALLOC(previousMask);
- KMP_CPU_ZERO(previousMask);
- int setSize = 0;
-
- for (;;) {
- __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
-
- // valid follow sets are ',' ':' and EOL
- SKIP_WS(scan);
- if (*scan == '\0' || *scan == ',') {
- if (setSize > 0) {
- ADD_MASK(tempMask);
- }
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
- if (*scan == '\0') {
- break;
- }
- scan++; // skip ','
- continue;
- }
-
- KMP_ASSERT2(*scan == ':', "bad explicit places list");
- scan++; // skip ':'
-
- // Read count parameter
- SKIP_WS(scan);
- KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
- next = scan;
- SKIP_DIGITS(next);
- count = __kmp_str_to_int(scan, *next);
- KMP_ASSERT(count >= 0);
- scan = next;
-
- // valid follow sets are ',' ':' and EOL
- SKIP_WS(scan);
- if (*scan == '\0' || *scan == ',') {
- stride = +1;
- } else {
- KMP_ASSERT2(*scan == ':', "bad explicit places list");
- scan++; // skip ':'
+ //
+ // valid follow sets are ',' ':' and EOL
+ //
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ stride = +1;
+ }
+ else {
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ //
+ // Read stride parameter
+ //
+ sign = +1;
+ for (;;) {
+ SKIP_WS(scan);
+ if (*scan == '+') {
+ scan++; // skip '+'
+ continue;
+ }
+ if (*scan == '-') {
+ sign *= -1;
+ scan++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
+ "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_DEBUG_ASSERT(stride >= 0);
+ scan = next;
+ stride *= sign;
+ }
- // Read stride parameter
- sign = +1;
- for (;;) {
+ // Add places determined by initial_place : count : stride
+ for (i = 0; i < count; i++) {
+ if (setSize == 0) {
+ break;
+ }
+ // Add the current place, then build the next place (tempMask) from that
+ KMP_CPU_COPY(previousMask, tempMask);
+ ADD_MASK(previousMask);
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ KMP_CPU_SET_ITERATE(j, previousMask) {
+ if (! KMP_CPU_ISSET(j, previousMask)) {
+ continue;
+ }
+ else if ((j+stride > maxOsId) || (j+stride < 0) ||
+ (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) {
+ if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
+ KMP_WARNING(AffIgnoreInvalidProcID, j+stride);
+ }
+ }
+ else {
+ KMP_CPU_SET(j+stride, tempMask);
+ setSize++;
+ }
+ }
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+
+ //
+ // valid follow sets are ',' and EOL
+ //
SKIP_WS(scan);
- if (*scan == '+') {
- scan++; // skip '+'
- continue;
+ if (*scan == '\0') {
+ break;
}
- if (*scan == '-') {
- sign *= -1;
- scan++; // skip '-'
- continue;
+ if (*scan == ',') {
+ scan++; // skip ','
+ continue;
}
- break;
- }
- SKIP_WS(scan);
- KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
- next = scan;
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(scan, *next);
- KMP_DEBUG_ASSERT(stride >= 0);
- scan = next;
- stride *= sign;
- }
-
- // Add places determined by initial_place : count : stride
- for (i = 0; i < count; i++) {
- if (setSize == 0) {
- break;
- }
- // Add the current place, then build the next place (tempMask) from that
- KMP_CPU_COPY(previousMask, tempMask);
- ADD_MASK(previousMask);
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
- KMP_CPU_SET_ITERATE(j, previousMask) {
- if (!KMP_CPU_ISSET(j, previousMask)) {
- continue;
- }
- if ((j + stride > maxOsId) || (j + stride < 0) ||
- (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
- (!KMP_CPU_ISSET(j + stride,
- KMP_CPU_INDEX(osId2Mask, j + stride)))) {
- if ((__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) &&
- i < count - 1) {
- KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
- }
- continue;
- }
- KMP_CPU_SET(j + stride, tempMask);
- setSize++;
- }
+
+ KMP_ASSERT2(0, "bad explicit places list");
}
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
- // valid follow sets are ',' and EOL
- SKIP_WS(scan);
- if (*scan == '\0') {
- break;
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ return;
}
- if (*scan == ',') {
- scan++; // skip ','
- continue;
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ KMP_CPU_FREE(tempMask);
+ KMP_CPU_FREE(previousMask);
+ for(i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
}
-
- KMP_ASSERT2(0, "bad explicit places list");
- }
-
- *out_numMasks = nextNewMask;
- if (nextNewMask == 0) {
- *out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- return;
- }
- KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
- KMP_CPU_FREE(tempMask);
- KMP_CPU_FREE(previousMask);
- for (i = 0; i < nextNewMask; i++) {
- kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
- kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
- KMP_CPU_COPY(dest, src);
- }
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
}
+# endif /* OMP_40_ENABLED */
+
#undef ADD_MASK
#undef ADD_MASK_OSID
-// This function figures out the deepest level at which there is at least one
-// cluster/core with more than one processing unit bound to it.
-static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
- int core_level = 0;
-
- for (int i = 0; i < nprocs; i++) {
- const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
- for (int j = bottom_level; j > 0; j--) {
- if (hw_thread.ids[j] > 0) {
- if (core_level < (j - 1)) {
- core_level = j - 1;
- }
- }
+static void
+__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
+{
+ if (__kmp_place_num_sockets == 0 &&
+ __kmp_place_num_cores == 0 &&
+ __kmp_place_num_threads_per_core == 0 )
+ return; // no topology limiting actions requested, exit
+ if (__kmp_place_num_sockets == 0)
+ __kmp_place_num_sockets = nPackages; // use all available sockets
+ if (__kmp_place_num_cores == 0)
+ __kmp_place_num_cores = nCoresPerPkg; // use all available cores
+ if (__kmp_place_num_threads_per_core == 0 ||
+ __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore)
+ __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
+
+ if ( !__kmp_affinity_uniform_topology() ) {
+ KMP_WARNING( AffThrPlaceNonUniform );
+ return; // don't support non-uniform topology
+ }
+ if ( depth != 3 ) {
+ KMP_WARNING( AffThrPlaceNonThreeLevel );
+ return; // don't support not-3-level topology
+ }
+ if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) {
+ KMP_WARNING(AffThrPlaceManySockets);
+ return;
+ }
+ if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
+ KMP_WARNING( AffThrPlaceManyCores );
+ return;
}
- }
- return core_level;
-}
-// This function counts number of clusters/cores at given level.
-static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
- int core_level) {
- return __kmp_topology->get_count(core_level);
-}
-// This function finds to which cluster/core given processing unit is bound.
-static int __kmp_affinity_find_core(int proc, int bottom_level,
- int core_level) {
- int core = 0;
- KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
- for (int i = 0; i <= proc; ++i) {
- if (i + 1 <= proc) {
- for (int j = 0; j <= core_level; ++j) {
- if (__kmp_topology->at(i + 1).sub_ids[j] !=
- __kmp_topology->at(i).sub_ids[j]) {
- core++;
- break;
- }
- }
- }
- }
- return core;
+ AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
+ __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
+
+ int i, j, k, n_old = 0, n_new = 0;
+ for (i = 0; i < nPackages; ++i)
+ if (i < __kmp_place_socket_offset ||
+ i >= __kmp_place_socket_offset + __kmp_place_num_sockets)
+ n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket
+ else
+ for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket
+ if (j < __kmp_place_core_offset ||
+ j >= __kmp_place_core_offset + __kmp_place_num_cores)
+ n_old += __kmp_nThreadsPerCore; // skip not-requested core
+ else
+ for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core
+ if (k < __kmp_place_num_threads_per_core) {
+ newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data
+ n_new++;
+ }
+ n_old++;
+ }
+ KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
+ KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores *
+ __kmp_place_num_threads_per_core);
+
+ nPackages = __kmp_place_num_sockets; // correct nPackages
+ nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
+ __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
+ __kmp_avail_proc = n_new; // correct avail_proc
+ __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
+
+ __kmp_free( *pAddr );
+ *pAddr = newAddr; // replace old topology with new one
}
-// This function finds maximal number of processing units bound to a
-// cluster/core at given level.
-static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
- int core_level) {
- if (core_level >= bottom_level)
- return 1;
- int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
- return __kmp_topology->calculate_ratio(thread_level, core_level);
-}
-static int *procarr = NULL;
-static int __kmp_aff_depth = 0;
-
-// Create a one element mask array (set of places) which only contains the
-// initial process's affinity mask
-static void __kmp_create_affinity_none_places() {
- KMP_ASSERT(__kmp_affin_fullMask != NULL);
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- __kmp_affinity_num_masks = 1;
- KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
- kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
- KMP_CPU_COPY(dest, __kmp_affin_fullMask);
-}
+static AddrUnsPair *address2os = NULL;
+static int * procarr = NULL;
+static int __kmp_aff_depth = 0;
-static void __kmp_aux_affinity_initialize(void) {
- if (__kmp_affinity_masks != NULL) {
- KMP_ASSERT(__kmp_affin_fullMask != NULL);
- return;
- }
-
- // Create the "full" mask - this defines all of the processors that we
- // consider to be in the machine model. If respect is set, then it is the
- // initialization thread's affinity mask. Otherwise, it is all processors that
- // we know about on the machine.
- if (__kmp_affin_fullMask == NULL) {
- KMP_CPU_ALLOC(__kmp_affin_fullMask);
- }
- if (KMP_AFFINITY_CAPABLE()) {
- __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
- if (__kmp_affinity_respect_mask) {
- // Count the number of available processors.
- unsigned i;
- __kmp_avail_proc = 0;
- KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
- if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
- continue;
- }
- __kmp_avail_proc++;
- }
- if (__kmp_avail_proc > __kmp_xproc) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings &&
- (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(ErrorInitializeAffinity);
- }
- __kmp_affinity_type = affinity_none;
- KMP_AFFINITY_DISABLE();
+static void
+__kmp_aux_affinity_initialize(void)
+{
+ if (__kmp_affinity_masks != NULL) {
+ KMP_ASSERT(fullMask != NULL);
return;
- }
+ }
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- __kmp_affin_fullMask);
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- }
- } else {
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- __kmp_affin_fullMask);
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
- __kmp_avail_proc = __kmp_xproc;
-#if KMP_OS_WINDOWS
- // Set the process affinity mask since threads' affinity
- // masks must be subset of process mask in Windows* OS
- __kmp_affin_fullMask->set_process_affinity(true);
-#endif
+ //
+ // Create the "full" mask - this defines all of the processors that we
+ // consider to be in the machine model. If respect is set, then it is
+ // the initialization thread's affinity mask. Otherwise, it is all
+ // processors that we know about on the machine.
+ //
+ if (fullMask == NULL) {
+ KMP_CPU_ALLOC(fullMask);
+ }
+ if (KMP_AFFINITY_CAPABLE()) {
+ if (__kmp_affinity_respect_mask) {
+ __kmp_get_system_affinity(fullMask, TRUE);
+
+ //
+ // Count the number of available processors.
+ //
+ unsigned i;
+ __kmp_avail_proc = 0;
+ KMP_CPU_SET_ITERATE(i, fullMask) {
+ if (! KMP_CPU_ISSET(i, fullMask)) {
+ continue;
+ }
+ __kmp_avail_proc++;
+ }
+ if (__kmp_avail_proc > __kmp_xproc) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ __kmp_affinity_type = affinity_none;
+ KMP_AFFINITY_DISABLE();
+ return;
+ }
+ }
+ else {
+ __kmp_affinity_entire_machine_mask(fullMask);
+ __kmp_avail_proc = __kmp_xproc;
+ }
}
- }
- kmp_i18n_id_t msg_id = kmp_i18n_null;
+ int depth = -1;
+ kmp_i18n_id_t msg_id = kmp_i18n_null;
- // For backward compatibility, setting KMP_CPUINFO_FILE =>
- // KMP_TOPOLOGY_METHOD=cpuinfo
- if ((__kmp_cpuinfo_file != NULL) &&
+ //
+ // For backward compatibility, setting KMP_CPUINFO_FILE =>
+ // KMP_TOPOLOGY_METHOD=cpuinfo
+ //
+ if ((__kmp_cpuinfo_file != NULL) &&
(__kmp_affinity_top_method == affinity_top_method_all)) {
- __kmp_affinity_top_method = affinity_top_method_cpuinfo;
- }
-
- bool success = false;
- if (__kmp_affinity_top_method == affinity_top_method_all) {
-// In the default code path, errors are not fatal - we just try using
-// another method. We only emit a warning message if affinity is on, or the
-// verbose flag is set, an the nowarnings flag was not set.
-#if KMP_USE_HWLOC
- if (!success &&
- __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
- if (!__kmp_hwloc_error) {
- success = __kmp_affinity_create_hwloc_map(&msg_id);
- if (!success && __kmp_affinity_verbose) {
- KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ __kmp_affinity_top_method = affinity_top_method_cpuinfo;
+ }
+
+ if (__kmp_affinity_top_method == affinity_top_method_all) {
+ //
+ // In the default code path, errors are not fatal - we just try using
+ // another method. We only emit a warning message if affinity is on,
+ // or the verbose flag is set, an the nowarnings flag was not set.
+ //
+ const char *file_name = NULL;
+ int line = 0;
+# if KMP_USE_HWLOC
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ }
+ if(!__kmp_hwloc_error) {
+ depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ } else if(depth < 0 && __kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ }
+ } else if(__kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ }
+ }
+# endif
+
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ if (msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+ else {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+ }
+
+ file_name = NULL;
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+ }
+
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+# if KMP_OS_LINUX
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose) {
+ if (msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
+ }
+ else {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
+ }
+ }
+
+ FILE *f = fopen("/proc/cpuinfo", "r");
+ if (f == NULL) {
+ msg_id = kmp_i18n_str_CantOpenCpuinfo;
+ }
+ else {
+ file_name = "/proc/cpuinfo";
+ depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+ }
+
+# endif /* KMP_OS_LINUX */
+
+# if KMP_GROUP_AFFINITY
+
+ if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
+ KMP_ASSERT(depth != 0);
+ }
+
+# endif /* KMP_GROUP_AFFINITY */
+
+ if (depth < 0) {
+ if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
+ if (file_name == NULL) {
+ KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
+ }
+ else if (line == 0) {
+ KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
+ }
+ else {
+ KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ // FIXME - print msg if msg_id = kmp_i18n_null ???
+
+ file_name = "";
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
}
- } else if (__kmp_affinity_verbose) {
- KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
- }
}
-#endif
-#if KMP_ARCH_X86 || KMP_ARCH_X86_64
- if (!success) {
- success = __kmp_affinity_create_x2apicid_map(&msg_id);
- if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
- }
- }
- if (!success) {
- success = __kmp_affinity_create_apicid_map(&msg_id);
- if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
- }
- }
-#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-
-#if KMP_OS_LINUX
- if (!success) {
- int line = 0;
- success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
- if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
- }
- }
-#endif /* KMP_OS_LINUX */
-
-#if KMP_GROUP_AFFINITY
- if (!success && (__kmp_num_proc_groups > 1)) {
- success = __kmp_affinity_create_proc_group_map(&msg_id);
- if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
- }
- }
-#endif /* KMP_GROUP_AFFINITY */
-
- if (!success) {
- success = __kmp_affinity_create_flat_map(&msg_id);
- if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
- }
- KMP_ASSERT(success);
- }
- }
-
-// If the user has specified that a paricular topology discovery method is to be
-// used, then we abort if that method fails. The exception is group affinity,
-// which might have been implicitly set.
-#if KMP_USE_HWLOC
- else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
- KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
- success = __kmp_affinity_create_hwloc_map(&msg_id);
- if (!success) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- }
-#endif // KMP_USE_HWLOC
+ //
+ // If the user has specified that a paricular topology discovery method
+ // is to be used, then we abort if that method fails. The exception is
+ // group affinity, which might have been implicitly set.
+ //
-#if KMP_ARCH_X86 || KMP_ARCH_X86_64
- else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
- __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
- success = __kmp_affinity_create_x2apicid_map(&msg_id);
- if (!success) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
- success = __kmp_affinity_create_apicid_map(&msg_id);
- if (!success) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- }
-#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-
- else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
- int line = 0;
- success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
- if (!success) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- const char *filename = __kmp_cpuinfo_get_filename();
- if (line > 0) {
- KMP_FATAL(FileLineMsgExiting, filename, line,
- __kmp_i18n_catgets(msg_id));
- } else {
- KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
- }
- }
- }
-
-#if KMP_GROUP_AFFINITY
- else if (__kmp_affinity_top_method == affinity_top_method_group) {
- success = __kmp_affinity_create_proc_group_map(&msg_id);
- KMP_ASSERT(success);
- if (!success) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- }
-#endif /* KMP_GROUP_AFFINITY */
-
- else if (__kmp_affinity_top_method == affinity_top_method_flat) {
- success = __kmp_affinity_create_flat_map(&msg_id);
- // should not fail
- KMP_ASSERT(success);
- }
-
- // Early exit if topology could not be created
- if (!__kmp_topology) {
- if (KMP_AFFINITY_CAPABLE() &&
- (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
- KMP_WARNING(ErrorInitializeAffinity);
- }
- if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
- __kmp_ncores > 0) {
- __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
- __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- if (__kmp_affinity_verbose) {
- __kmp_topology->print("KMP_AFFINITY");
- }
- }
- __kmp_affinity_type = affinity_none;
- __kmp_create_affinity_none_places();
-#if KMP_USE_HIER_SCHED
- __kmp_dispatch_set_hierarchy_values();
-#endif
- KMP_AFFINITY_DISABLE();
- return;
- }
-
- // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
- // initialize other data structures which depend on the topology
- __kmp_topology->canonicalize();
- if (__kmp_affinity_verbose)
- __kmp_topology->print("KMP_AFFINITY");
- bool filtered = __kmp_topology->filter_hw_subset();
- if (filtered && __kmp_affinity_verbose)
- __kmp_topology->print("KMP_HW_SUBSET");
- machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
- KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
- // If KMP_AFFINITY=none, then only create the single "none" place
- // which is the process's initial affinity mask or the number of
- // hardware threads depending on respect,norespect
- if (__kmp_affinity_type == affinity_none) {
- __kmp_create_affinity_none_places();
-#if KMP_USE_HIER_SCHED
- __kmp_dispatch_set_hierarchy_values();
-#endif
- return;
- }
- int depth = __kmp_topology->get_depth();
-
- // Create the table of masks, indexed by thread Id.
- unsigned maxIndex;
- unsigned numUnique;
- kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
- if (__kmp_affinity_gran_levels == 0) {
- KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
- }
-
- switch (__kmp_affinity_type) {
-
- case affinity_explicit:
- KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
- if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
- __kmp_affinity_process_proclist(
- &__kmp_affinity_masks, &__kmp_affinity_num_masks,
- __kmp_affinity_proclist, osId2Mask, maxIndex);
- } else {
- __kmp_affinity_process_placelist(
- &__kmp_affinity_masks, &__kmp_affinity_num_masks,
- __kmp_affinity_proclist, osId2Mask, maxIndex);
- }
- if (__kmp_affinity_num_masks == 0) {
- if (__kmp_affinity_verbose ||
- (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffNoValidProcID);
- }
- __kmp_affinity_type = affinity_none;
- __kmp_create_affinity_none_places();
- return;
- }
- break;
-
- // The other affinity types rely on sorting the hardware threads according to
- // some permutation of the machine topology tree. Set __kmp_affinity_compact
- // and __kmp_affinity_offset appropriately, then jump to a common code
- // fragment to do the sort and create the array of affinity masks.
- case affinity_logical:
- __kmp_affinity_compact = 0;
- if (__kmp_affinity_offset) {
- __kmp_affinity_offset =
- __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
- }
- goto sortTopology;
-
- case affinity_physical:
- if (__kmp_nThreadsPerCore > 1) {
- __kmp_affinity_compact = 1;
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = 0;
- }
- } else {
- __kmp_affinity_compact = 0;
+# if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+ else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
+ KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
}
- if (__kmp_affinity_offset) {
- __kmp_affinity_offset =
- __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
+ else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
+ KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+
+ depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
}
- goto sortTopology;
- case affinity_scatter:
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = 0;
- } else {
- __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
- }
- goto sortTopology;
-
- case affinity_compact:
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = depth - 1;
- }
- goto sortTopology;
-
- case affinity_balanced:
- if (depth <= 1) {
- if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
- KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
- }
- __kmp_affinity_type = affinity_none;
- __kmp_create_affinity_none_places();
- return;
- } else if (!__kmp_topology->is_uniform()) {
- // Save the depth for further usage
- __kmp_aff_depth = depth;
-
- int core_level =
- __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
- int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
- core_level);
- int maxprocpercore = __kmp_affinity_max_proc_per_core(
- __kmp_avail_proc, depth - 1, core_level);
-
- int nproc = ncores * maxprocpercore;
- if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
- if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
- KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
+# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
+ const char *filename;
+ if (__kmp_cpuinfo_file != NULL) {
+ filename = __kmp_cpuinfo_file;
+ }
+ else {
+ filename = "/proc/cpuinfo";
+ }
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
+ }
+
+ FILE *f = fopen(filename, "r");
+ if (f == NULL) {
+ int code = errno;
+ if (__kmp_cpuinfo_file != NULL) {
+ __kmp_msg(
+ kmp_ms_fatal,
+ KMP_MSG(CantOpenFileForReading, filename),
+ KMP_ERR(code),
+ KMP_HNT(NameComesFrom_CPUINFO_FILE),
+ __kmp_msg_null
+ );
+ }
+ else {
+ __kmp_msg(
+ kmp_ms_fatal,
+ KMP_MSG(CantOpenFileForReading, filename),
+ KMP_ERR(code),
+ __kmp_msg_null
+ );
+ }
+ }
+ int line = 0;
+ depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
+ fclose(f);
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ if (line > 0) {
+ KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
+ }
+ else {
+ KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ if (__kmp_affinity_type == affinity_none) {
+ KMP_ASSERT(depth == 0);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ }
+
+# if KMP_GROUP_AFFINITY
+
+ else if (__kmp_affinity_top_method == affinity_top_method_group) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
+ KMP_ASSERT(depth != 0);
+ if (depth < 0) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+
+# endif /* KMP_GROUP_AFFINITY */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_flat) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
+ }
+
+ depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+ // should not fail
+ KMP_ASSERT(depth > 0);
+ KMP_ASSERT(address2os != NULL);
+ }
+
+# if KMP_USE_HWLOC
+ else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ }
+ depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
+ if (depth == 0) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ KMP_ASSERT(address2os == NULL);
+ return;
+ }
+# if KMP_DEBUG
+ AddrUnsPair *otheraddress2os = NULL;
+ int otherdepth = -1;
+# if KMP_MIC
+ otherdepth = __kmp_affinity_create_apicid_map(&otheraddress2os, &msg_id);
+# else
+ otherdepth = __kmp_affinity_create_x2apicid_map(&otheraddress2os, &msg_id);
+# endif
+ if(otheraddress2os != NULL && address2os != NULL) {
+ int i;
+ unsigned arent_equal_flag = 0;
+ for(i=0;i<__kmp_avail_proc;i++) {
+ if(otheraddress2os[i] != address2os[i]) arent_equal_flag = 1;
+ }
+ if(arent_equal_flag) {
+ KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are different from APICID\n"));
+ KA_TRACE(10, ("__kmp_aux_affinity_initialize: APICID Table:\n"));
+ for(i=0;i<__kmp_avail_proc;i++) {
+ otheraddress2os[i].print(); __kmp_printf("\n");
+ }
+ KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc Table:\n"));
+ for(i=0;i<__kmp_avail_proc;i++) {
+ address2os[i].print(); __kmp_printf("\n");
+ }
+ }
+ else {
+ KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are same as APICID\n"));
+ }
+ }
+# endif // KMP_DEBUG
+ }
+# endif // KMP_USE_HWLOC
+
+ if (address2os == NULL) {
+ if (KMP_AFFINITY_CAPABLE()
+ && (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none)))) {
+ KMP_WARNING(ErrorInitializeAffinity);
}
__kmp_affinity_type = affinity_none;
+ KMP_AFFINITY_DISABLE();
return;
- }
+ }
- procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
- for (int i = 0; i < nproc; i++) {
- procarr[i] = -1;
- }
+ __kmp_apply_thread_places(&address2os, depth);
- int lastcore = -1;
- int inlastcore = 0;
- for (int i = 0; i < __kmp_avail_proc; i++) {
- int proc = __kmp_topology->at(i).os_id;
- int core = __kmp_affinity_find_core(i, depth - 1, core_level);
+ //
+ // Create the table of masks, indexed by thread Id.
+ //
+ unsigned maxIndex;
+ unsigned numUnique;
+ kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
+ address2os, __kmp_avail_proc);
+ if (__kmp_affinity_gran_levels == 0) {
+ KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
+ }
- if (core == lastcore) {
- inlastcore++;
+ //
+ // Set the childNums vector in all Address objects. This must be done
+ // before we can sort using __kmp_affinity_cmp_Address_child_num(),
+ // which takes into account the setting of __kmp_affinity_compact.
+ //
+ __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
+
+ switch (__kmp_affinity_type) {
+
+ case affinity_explicit:
+ KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
+# if OMP_40_ENABLED
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
+# endif
+ {
+ __kmp_affinity_process_proclist(&__kmp_affinity_masks,
+ &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
+ maxIndex);
+ }
+# if OMP_40_ENABLED
+ else {
+ __kmp_affinity_process_placelist(&__kmp_affinity_masks,
+ &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
+ maxIndex);
+ }
+# endif
+ if (__kmp_affinity_num_masks == 0) {
+ if (__kmp_affinity_verbose || (__kmp_affinity_warnings
+ && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffNoValidProcID);
+ }
+ __kmp_affinity_type = affinity_none;
+ return;
+ }
+ break;
+
+ //
+ // The other affinity types rely on sorting the Addresses according
+ // to some permutation of the machine topology tree. Set
+ // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
+ // then jump to a common code fragment to do the sort and create
+ // the array of affinity masks.
+ //
+
+ case affinity_logical:
+ __kmp_affinity_compact = 0;
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
+ % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_physical:
+ if (__kmp_nThreadsPerCore > 1) {
+ __kmp_affinity_compact = 1;
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
} else {
- inlastcore = 0;
+ __kmp_affinity_compact = 0;
+ }
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
+ % __kmp_avail_proc;
+ }
+ goto sortAddresses;
+
+ case affinity_scatter:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
+ else {
+ __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
+ }
+ goto sortAddresses;
+
+ case affinity_compact:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
+ }
+ goto sortAddresses;
+
+ case affinity_balanced:
+ // Balanced works only for the case of a single package
+ if( nPackages > 1 ) {
+ if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
+ KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
+ }
+ __kmp_affinity_type = affinity_none;
+ return;
+ } else if( __kmp_affinity_uniform_topology() ) {
+ break;
+ } else { // Non-uniform topology
+
+ // Save the depth for further usage
+ __kmp_aff_depth = depth;
+
+ // Number of hyper threads per core in HT machine
+ int nth_per_core = __kmp_nThreadsPerCore;
+
+ int core_level;
+ if( nth_per_core > 1 ) {
+ core_level = depth - 2;
+ } else {
+ core_level = depth - 1;
+ }
+ int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
+ int nproc = nth_per_core * ncores;
+
+ procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
+ for( int i = 0; i < nproc; i++ ) {
+ procarr[ i ] = -1;
+ }
+
+ for( int i = 0; i < __kmp_avail_proc; i++ ) {
+ int proc = address2os[ i ].second;
+ // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
+ // If there is only one thread per core then depth == 2: level 0 - package,
+ // level 1 - core.
+ int level = depth - 1;
+
+ // __kmp_nth_per_core == 1
+ int thread = 0;
+ int core = address2os[ i ].first.labels[ level ];
+ // If the thread level exists, that is we have more than one thread context per core
+ if( nth_per_core > 1 ) {
+ thread = address2os[ i ].first.labels[ level ] % nth_per_core;
+ core = address2os[ i ].first.labels[ level - 1 ];
+ }
+ procarr[ core * nth_per_core + thread ] = proc;
+ }
+
+ break;
}
- lastcore = core;
- procarr[core * maxprocpercore + inlastcore] = proc;
- }
+ sortAddresses:
+ //
+ // Allocate the gtid->affinity mask table.
+ //
+ if (__kmp_affinity_dups) {
+ __kmp_affinity_num_masks = __kmp_avail_proc;
+ }
+ else {
+ __kmp_affinity_num_masks = numUnique;
+ }
+
+# if OMP_40_ENABLED
+ if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
+ && ( __kmp_affinity_num_places > 0 )
+ && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
+ __kmp_affinity_num_masks = __kmp_affinity_num_places;
+ }
+# endif
+
+ KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+
+ //
+ // Sort the address2os table according to the current setting of
+ // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
+ //
+ qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
+ __kmp_affinity_cmp_Address_child_num);
+ {
+ int i;
+ unsigned j;
+ for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
+ if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
+ continue;
+ }
+ unsigned osId = address2os[i].second;
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
+ kmp_affin_mask_t *dest
+ = KMP_CPU_INDEX(__kmp_affinity_masks, j);
+ KMP_ASSERT(KMP_CPU_ISSET(osId, src));
+ KMP_CPU_COPY(dest, src);
+ if (++j >= __kmp_affinity_num_masks) {
+ break;
+ }
+ }
+ KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
+ }
+ break;
+
+ default:
+ KMP_ASSERT2(0, "Unexpected affinity setting");
+ }
+
+ __kmp_free(osId2Mask);
+ machine_hierarchy.init(address2os, __kmp_avail_proc);
+}
+
+
+void
+__kmp_affinity_initialize(void)
+{
+ //
+ // Much of the code above was written assumming that if a machine was not
+ // affinity capable, then __kmp_affinity_type == affinity_none. We now
+ // explicitly represent this as __kmp_affinity_type == affinity_disabled.
+ //
+ // There are too many checks for __kmp_affinity_type == affinity_none
+ // in this code. Instead of trying to change them all, check if
+ // __kmp_affinity_type == affinity_disabled, and if so, slam it with
+ // affinity_none, call the real initialization routine, then restore
+ // __kmp_affinity_type to affinity_disabled.
+ //
+ int disabled = (__kmp_affinity_type == affinity_disabled);
+ if (! KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(disabled);
}
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = depth - 1;
+ if (disabled) {
+ __kmp_affinity_type = affinity_none;
+ }
+ __kmp_aux_affinity_initialize();
+ if (disabled) {
+ __kmp_affinity_type = affinity_disabled;
}
+}
- sortTopology:
- // Allocate the gtid->affinity mask table.
- if (__kmp_affinity_dups) {
- __kmp_affinity_num_masks = __kmp_avail_proc;
- } else {
- __kmp_affinity_num_masks = numUnique;
+
+void
+__kmp_affinity_uninitialize(void)
+{
+ if (__kmp_affinity_masks != NULL) {
+ KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ __kmp_affinity_masks = NULL;
+ }
+ if (fullMask != NULL) {
+ KMP_CPU_FREE(fullMask);
+ fullMask = NULL;
+ }
+ __kmp_affinity_num_masks = 0;
+# if OMP_40_ENABLED
+ __kmp_affinity_num_places = 0;
+# endif
+ if (__kmp_affinity_proclist != NULL) {
+ __kmp_free(__kmp_affinity_proclist);
+ __kmp_affinity_proclist = NULL;
+ }
+ if( address2os != NULL ) {
+ __kmp_free( address2os );
+ address2os = NULL;
+ }
+ if( procarr != NULL ) {
+ __kmp_free( procarr );
+ procarr = NULL;
+ }
+}
+
+
+void
+__kmp_affinity_set_init_mask(int gtid, int isa_root)
+{
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return;
}
- if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
- (__kmp_affinity_num_places > 0) &&
- ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
- __kmp_affinity_num_masks = __kmp_affinity_num_places;
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+ if (th->th.th_affin_mask == NULL) {
+ KMP_CPU_ALLOC(th->th.th_affin_mask);
+ }
+ else {
+ KMP_CPU_ZERO(th->th.th_affin_mask);
}
- KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ //
+ // Copy the thread mask to the kmp_info_t strucuture.
+ // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
+ // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
+ // is set, then the full mask is the same as the mask of the initialization
+ // thread.
+ //
+ kmp_affin_mask_t *mask;
+ int i;
- // Sort the topology table according to the current setting of
- // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
- __kmp_topology->sort_compact();
+# if OMP_40_ENABLED
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
+# endif
{
- int i;
- unsigned j;
- int num_hw_threads = __kmp_topology->get_num_hw_threads();
- for (i = 0, j = 0; i < num_hw_threads; i++) {
- if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
- continue;
- }
- int osId = __kmp_topology->at(i).os_id;
-
- kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
- kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
- KMP_ASSERT(KMP_CPU_ISSET(osId, src));
- KMP_CPU_COPY(dest, src);
- if (++j >= __kmp_affinity_num_masks) {
- break;
+ if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
+ ) {
+# if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+# endif
+ KMP_ASSERT(fullMask != NULL);
+ i = KMP_PLACE_ALL;
+ mask = fullMask;
+ }
+ else {
+ KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ }
+# if OMP_40_ENABLED
+ else {
+ if ((! isa_root)
+ || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
+# if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+# endif
+ KMP_ASSERT(fullMask != NULL);
+ i = KMP_PLACE_ALL;
+ mask = fullMask;
+ }
+ else {
+ //
+ // int i = some hash function or just a counter that doesn't
+ // always start at 0. Use gtid for now.
+ //
+ KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
+ i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
}
- }
- KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
}
- // Sort the topology back using ids
- __kmp_topology->sort_ids();
- break;
+# endif
- default:
- KMP_ASSERT2(0, "Unexpected affinity setting");
- }
+# if OMP_40_ENABLED
+ th->th.th_current_place = i;
+ if (isa_root) {
+ th->th.th_new_place = i;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ }
- KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
-}
+ if (i == KMP_PLACE_ALL) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
+ gtid));
+ }
+ else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
+ gtid, i));
+ }
+# else
+ if (i == -1) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
+ gtid));
+ }
+ else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
+ gtid, i));
+ }
+# endif /* OMP_40_ENABLED */
-void __kmp_affinity_initialize(void) {
- // Much of the code above was written assuming that if a machine was not
- // affinity capable, then __kmp_affinity_type == affinity_none. We now
- // explicitly represent this as __kmp_affinity_type == affinity_disabled.
- // There are too many checks for __kmp_affinity_type == affinity_none
- // in this code. Instead of trying to change them all, check if
- // __kmp_affinity_type == affinity_disabled, and if so, slam it with
- // affinity_none, call the real initialization routine, then restore
- // __kmp_affinity_type to affinity_disabled.
- int disabled = (__kmp_affinity_type == affinity_disabled);
- if (!KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(disabled);
- }
- if (disabled) {
- __kmp_affinity_type = affinity_none;
- }
- __kmp_aux_affinity_initialize();
- if (disabled) {
- __kmp_affinity_type = affinity_disabled;
- }
-}
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
-void __kmp_affinity_uninitialize(void) {
- if (__kmp_affinity_masks != NULL) {
- KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
- __kmp_affinity_masks = NULL;
- }
- if (__kmp_affin_fullMask != NULL) {
- KMP_CPU_FREE(__kmp_affin_fullMask);
- __kmp_affin_fullMask = NULL;
- }
- __kmp_affinity_num_masks = 0;
- __kmp_affinity_type = affinity_default;
- __kmp_affinity_num_places = 0;
- if (__kmp_affinity_proclist != NULL) {
- __kmp_free(__kmp_affinity_proclist);
- __kmp_affinity_proclist = NULL;
- }
- if (procarr != NULL) {
- __kmp_free(procarr);
- procarr = NULL;
- }
-#if KMP_USE_HWLOC
- if (__kmp_hwloc_topology != NULL) {
- hwloc_topology_destroy(__kmp_hwloc_topology);
- __kmp_hwloc_topology = NULL;
- }
-#endif
- if (__kmp_hw_subset) {
- kmp_hw_subset_t::deallocate(__kmp_hw_subset);
- __kmp_hw_subset = nullptr;
- }
- if (__kmp_topology) {
- kmp_topology_t::deallocate(__kmp_topology);
- __kmp_topology = nullptr;
- }
- KMPAffinity::destroy_api();
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
+ buf);
+ }
+
+# if KMP_OS_WINDOWS
+ //
+ // On Windows* OS, the process affinity mask might have changed.
+ // If the user didn't request affinity and this call fails,
+ // just continue silently. See CQ171393.
+ //
+ if ( __kmp_affinity_type == affinity_none ) {
+ __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
+ }
+ else
+# endif
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
-void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
- if (!KMP_AFFINITY_CAPABLE()) {
- return;
- }
-
- kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
- if (th->th.th_affin_mask == NULL) {
- KMP_CPU_ALLOC(th->th.th_affin_mask);
- } else {
- KMP_CPU_ZERO(th->th.th_affin_mask);
- }
-
- // Copy the thread mask to the kmp_info_t structure. If
- // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
- // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
- // then the full mask is the same as the mask of the initialization thread.
- kmp_affin_mask_t *mask;
- int i;
-
- if (KMP_AFFINITY_NON_PROC_BIND) {
- if ((__kmp_affinity_type == affinity_none) ||
- (__kmp_affinity_type == affinity_balanced) ||
- KMP_HIDDEN_HELPER_THREAD(gtid)) {
-#if KMP_GROUP_AFFINITY
- if (__kmp_num_proc_groups > 1) {
- return;
- }
-#endif
- KMP_ASSERT(__kmp_affin_fullMask != NULL);
- i = 0;
- mask = __kmp_affin_fullMask;
- } else {
- int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
- KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
- i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
- mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
- }
- } else {
- if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
- (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
-#if KMP_GROUP_AFFINITY
- if (__kmp_num_proc_groups > 1) {
+
+# if OMP_40_ENABLED
+
+void
+__kmp_affinity_set_place(int gtid)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
return;
- }
-#endif
- KMP_ASSERT(__kmp_affin_fullMask != NULL);
- i = KMP_PLACE_ALL;
- mask = __kmp_affin_fullMask;
- } else {
- // int i = some hash function or just a counter that doesn't
- // always start at 0. Use adjusted gtid for now.
- int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
- KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
- i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
- mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
- }
- }
-
- th->th.th_current_place = i;
- if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
- th->th.th_new_place = i;
- th->th.th_first_place = 0;
- th->th.th_last_place = __kmp_affinity_num_masks - 1;
- } else if (KMP_AFFINITY_NON_PROC_BIND) {
- // When using a Non-OMP_PROC_BIND affinity method,
- // set all threads' place-partition-var to the entire place list
- th->th.th_first_place = 0;
- th->th.th_last_place = __kmp_affinity_num_masks - 1;
- }
-
- if (i == KMP_PLACE_ALL) {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
- gtid));
- } else {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
- gtid, i));
- }
-
- KMP_CPU_COPY(th->th.th_affin_mask, mask);
-
- if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
- /* to avoid duplicate printing (will be correctly printed on barrier) */
- && (__kmp_affinity_type == affinity_none ||
- (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
- __kmp_gettid(), gtid, buf);
- }
-
-#if KMP_DEBUG
- // Hidden helper thread affinity only printed for debug builds
- if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
- (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
- }
-#endif
+ }
-#if KMP_OS_WINDOWS
- // On Windows* OS, the process affinity mask might have changed. If the user
- // didn't request affinity and this call fails, just continue silently.
- // See CQ171393.
- if (__kmp_affinity_type == affinity_none) {
- __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
- } else
-#endif
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+
+ KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
+ gtid, th->th.th_new_place, th->th.th_current_place));
+
+ //
+ // Check that the new place is within this thread's partition.
+ //
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ KMP_ASSERT(th->th.th_new_place >= 0);
+ KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
+ if (th->th.th_first_place <= th->th.th_last_place) {
+ KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
+ && (th->th.th_new_place <= th->th.th_last_place));
+ }
+ else {
+ KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
+ || (th->th.th_new_place >= th->th.th_last_place));
+ }
+
+ //
+ // Copy the thread mask to the kmp_info_t strucuture,
+ // and set this thread's affinity.
+ //
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
+ th->th.th_new_place);
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+ th->th.th_current_place = th->th.th_new_place;
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
+ gtid, buf);
+ }
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
-void __kmp_affinity_set_place(int gtid) {
- if (!KMP_AFFINITY_CAPABLE()) {
- return;
- }
-
- kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
-
- KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
- "place = %d)\n",
- gtid, th->th.th_new_place, th->th.th_current_place));
-
- // Check that the new place is within this thread's partition.
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
- KMP_ASSERT(th->th.th_new_place >= 0);
- KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
- if (th->th.th_first_place <= th->th.th_last_place) {
- KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
- (th->th.th_new_place <= th->th.th_last_place));
- } else {
- KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
- (th->th.th_new_place >= th->th.th_last_place));
- }
-
- // Copy the thread mask to the kmp_info_t structure,
- // and set this thread's affinity.
- kmp_affin_mask_t *mask =
- KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
- KMP_CPU_COPY(th->th.th_affin_mask, mask);
- th->th.th_current_place = th->th.th_new_place;
-
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
- __kmp_gettid(), gtid, buf);
- }
- __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
-}
+# endif /* OMP_40_ENABLED */
-int __kmp_aux_set_affinity(void **mask) {
- int gtid;
- kmp_info_t *th;
- int retval;
- if (!KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
+int
+__kmp_aux_set_affinity(void **mask)
+{
+ int gtid;
+ kmp_info_t *th;
+ int retval;
- gtid = __kmp_entry_gtid();
- KA_TRACE(
- 1000, (""); {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ gtid = __kmp_entry_gtid();
+ KA_TRACE(1000, ;{
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf(
- "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
- gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- } else {
- unsigned proc;
- int num_procs = 0;
-
- KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
- if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
- if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
- continue;
- }
- num_procs++;
- }
- if (num_procs == 0) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
-
-#if KMP_GROUP_AFFINITY
- if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
-#endif /* KMP_GROUP_AFFINITY */
- }
- }
-
- th = __kmp_threads[gtid];
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
- retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
- if (retval == 0) {
- KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
- }
-
- th->th.th_current_place = KMP_PLACE_UNDEFINED;
- th->th.th_new_place = KMP_PLACE_UNDEFINED;
- th->th.th_first_place = 0;
- th->th.th_last_place = __kmp_affinity_num_masks - 1;
-
- // Turn off 4.0 affinity for the current tread at this parallel level.
- th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
-
- return retval;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
+ gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+ else {
+ unsigned proc;
+ int num_procs = 0;
+
+ KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) {
+ if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
+ continue;
+ }
+ num_procs++;
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ break;
+ }
+ }
+ if (num_procs == 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+
+# if KMP_GROUP_AFFINITY
+ if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+# endif /* KMP_GROUP_AFFINITY */
+
+ }
+ }
+
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ if (retval == 0) {
+ KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
+ }
+
+# if OMP_40_ENABLED
+ th->th.th_current_place = KMP_PLACE_UNDEFINED;
+ th->th.th_new_place = KMP_PLACE_UNDEFINED;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+
+ //
+ // Turn off 4.0 affinity for the current tread at this parallel level.
+ //
+ th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
+# endif
+
+ return retval;
}
-int __kmp_aux_get_affinity(void **mask) {
- int gtid;
- int retval;
- kmp_info_t *th;
- if (!KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
+int
+__kmp_aux_get_affinity(void **mask)
+{
+ int gtid;
+ int retval;
+ kmp_info_t *th;
- gtid = __kmp_entry_gtid();
- th = __kmp_threads[gtid];
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
- KA_TRACE(
- 1000, (""); {
+ gtid = __kmp_entry_gtid();
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+
+ KA_TRACE(1000, ;{
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- __kmp_printf(
- "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
- buf);
- });
+ th->th.th_affin_mask);
+ __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
+ });
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
+ }
}
- }
-#if !KMP_OS_WINDOWS
+# if !KMP_OS_WINDOWS
- retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
- KA_TRACE(
- 1000, (""); {
+ retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ KA_TRACE(1000, ;{
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_printf(
- "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
- buf);
- });
- return retval;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
+ });
+ return retval;
-#else
- (void)retval;
+# else
- KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
- return 0;
+ KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
+ return 0;
-#endif /* KMP_OS_WINDOWS */
-}
+# endif /* KMP_OS_WINDOWS */
-int __kmp_aux_get_affinity_max_proc() {
- if (!KMP_AFFINITY_CAPABLE()) {
- return 0;
- }
-#if KMP_GROUP_AFFINITY
- if (__kmp_num_proc_groups > 1) {
- return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
- }
-#endif
- return __kmp_xproc;
}
-int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
- if (!KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
+int
+__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
- KA_TRACE(
- 1000, (""); {
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
- "affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
- }
- }
-
- if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
- return -1;
- }
- if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
- return -2;
- }
-
- KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
- return 0;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0)
+# if !KMP_USE_HWLOC
+ || ((unsigned)proc >= KMP_CPU_SETSIZE)
+# endif
+ ) {
+ return -1;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
}
-int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
- if (!KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
- KA_TRACE(
- 1000, (""); {
+int
+__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
- "affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
- }
- }
-
- if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
- return -1;
- }
- if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
- return -2;
- }
-
- KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
- return 0;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0)
+# if !KMP_USE_HWLOC
+ || ((unsigned)proc >= KMP_CPU_SETSIZE)
+# endif
+ ) {
+ return -1;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
}
-int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
- if (!KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
- KA_TRACE(
- 1000, (""); {
+int
+__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
+{
+ int retval;
+
+ if (! KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
+
+ KA_TRACE(1000, ;{
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
- "affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
- }
- }
-
- if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
- return -1;
- }
- if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
- return 0;
- }
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0)
+# if !KMP_USE_HWLOC
+ || ((unsigned)proc >= KMP_CPU_SETSIZE)
+# endif
+ ) {
+ return -1;
+ }
+ if (! KMP_CPU_ISSET(proc, fullMask)) {
+ return 0;
+ }
- return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
+ return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
}
-// Dynamic affinity settings - Affinity balanced
-void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
- KMP_DEBUG_ASSERT(th);
- bool fine_gran = true;
- int tid = th->th.th_info.ds.ds_tid;
-
- // Do not perform balanced affinity for the hidden helper threads
- if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
- return;
-
- switch (__kmp_affinity_gran) {
- case KMP_HW_THREAD:
- break;
- case KMP_HW_CORE:
- if (__kmp_nThreadsPerCore > 1) {
- fine_gran = false;
- }
- break;
- case KMP_HW_SOCKET:
- if (nCoresPerPkg > 1) {
- fine_gran = false;
- }
- break;
- default:
- fine_gran = false;
- }
-
- if (__kmp_topology->is_uniform()) {
- int coreID;
- int threadID;
- // Number of hyper threads per core in HT machine
- int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
- // Number of cores
- int ncores = __kmp_ncores;
- if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
- __kmp_nth_per_core = __kmp_avail_proc / nPackages;
- ncores = nPackages;
- }
- // How many threads will be bound to each core
- int chunk = nthreads / ncores;
- // How many cores will have an additional thread bound to it - "big cores"
- int big_cores = nthreads % ncores;
- // Number of threads on the big cores
- int big_nth = (chunk + 1) * big_cores;
- if (tid < big_nth) {
- coreID = tid / (chunk + 1);
- threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
- } else { // tid >= big_nth
- coreID = (tid - big_cores) / chunk;
- threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
- }
- KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
- "Illegal set affinity operation when not capable");
-
- kmp_affin_mask_t *mask = th->th.th_affin_mask;
- KMP_CPU_ZERO(mask);
- if (fine_gran) {
- int osID =
- __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
- KMP_CPU_SET(osID, mask);
- } else {
- for (int i = 0; i < __kmp_nth_per_core; i++) {
- int osID;
- osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
- KMP_CPU_SET(osID, mask);
- }
- }
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
- __kmp_gettid(), tid, buf);
- }
- __kmp_set_system_affinity(mask, TRUE);
- } else { // Non-uniform topology
+// Dynamic affinity settings - Affinity balanced
+void __kmp_balanced_affinity( int tid, int nthreads )
+{
+ if( __kmp_affinity_uniform_topology() ) {
+ int coreID;
+ int threadID;
+ // Number of hyper threads per core in HT machine
+ int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
+ // Number of cores
+ int ncores = __kmp_ncores;
+ // How many threads will be bound to each core
+ int chunk = nthreads / ncores;
+ // How many cores will have an additional thread bound to it - "big cores"
+ int big_cores = nthreads % ncores;
+ // Number of threads on the big cores
+ int big_nth = ( chunk + 1 ) * big_cores;
+ if( tid < big_nth ) {
+ coreID = tid / (chunk + 1 );
+ threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
+ } else { //tid >= big_nth
+ coreID = ( tid - big_cores ) / chunk;
+ threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
+ }
- kmp_affin_mask_t *mask = th->th.th_affin_mask;
- KMP_CPU_ZERO(mask);
+ KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
+ "Illegal set affinity operation when not capable");
+
+ kmp_affin_mask_t *mask;
+ KMP_CPU_ALLOC_ON_STACK(mask);
+ KMP_CPU_ZERO(mask);
+
+ // Granularity == thread
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ for( int i = 0; i < __kmp_nth_per_core; i++ ) {
+ int osID;
+ osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
+ KMP_CPU_SET( osID, mask);
+ }
+ }
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ tid, buf);
+ }
+ __kmp_set_system_affinity( mask, TRUE );
+ KMP_CPU_FREE_FROM_STACK(mask);
+ } else { // Non-uniform topology
+
+ kmp_affin_mask_t *mask;
+ KMP_CPU_ALLOC_ON_STACK(mask);
+ KMP_CPU_ZERO(mask);
+
+ // Number of hyper threads per core in HT machine
+ int nth_per_core = __kmp_nThreadsPerCore;
+ int core_level;
+ if( nth_per_core > 1 ) {
+ core_level = __kmp_aff_depth - 2;
+ } else {
+ core_level = __kmp_aff_depth - 1;
+ }
- int core_level =
- __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
- int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
- __kmp_aff_depth - 1, core_level);
- int nth_per_core = __kmp_affinity_max_proc_per_core(
- __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
-
- // For performance gain consider the special case nthreads ==
- // __kmp_avail_proc
- if (nthreads == __kmp_avail_proc) {
- if (fine_gran) {
- int osID = __kmp_topology->at(tid).os_id;
- KMP_CPU_SET(osID, mask);
- } else {
- int core =
- __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
- for (int i = 0; i < __kmp_avail_proc; i++) {
- int osID = __kmp_topology->at(i).os_id;
- if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
- core) {
- KMP_CPU_SET(osID, mask);
- }
- }
- }
- } else if (nthreads <= ncores) {
-
- int core = 0;
- for (int i = 0; i < ncores; i++) {
- // Check if this core from procarr[] is in the mask
- int in_mask = 0;
- for (int j = 0; j < nth_per_core; j++) {
- if (procarr[i * nth_per_core + j] != -1) {
- in_mask = 1;
- break;
- }
- }
- if (in_mask) {
- if (tid == core) {
- for (int j = 0; j < nth_per_core; j++) {
- int osID = procarr[i * nth_per_core + j];
- if (osID != -1) {
- KMP_CPU_SET(osID, mask);
- // For fine granularity it is enough to set the first available
- // osID for this core
- if (fine_gran) {
- break;
+ // Number of cores - maximum value; it does not count trail cores with 0 processors
+ int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
+
+ // For performance gain consider the special case nthreads == __kmp_avail_proc
+ if( nthreads == __kmp_avail_proc ) {
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = address2os[ tid ].second;
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ int coreID = address2os[ tid ].first.labels[ core_level ];
+ // We'll count found osIDs for the current core; they can be not more than nth_per_core;
+ // since the address2os is sortied we can break when cnt==nth_per_core
+ int cnt = 0;
+ for( int i = 0; i < __kmp_avail_proc; i++ ) {
+ int osID = address2os[ i ].second;
+ int core = address2os[ i ].first.labels[ core_level ];
+ if( core == coreID ) {
+ KMP_CPU_SET( osID, mask);
+ cnt++;
+ if( cnt == nth_per_core ) {
+ break;
+ }
+ }
}
- }
}
- break;
- } else {
- core++;
- }
- }
- }
- } else { // nthreads > ncores
- // Array to save the number of processors at each core
- int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
- // Array to save the number of cores with "x" available processors;
- int *ncores_with_x_procs =
- (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
- // Array to save the number of cores with # procs from x to nth_per_core
- int *ncores_with_x_to_max_procs =
- (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
-
- for (int i = 0; i <= nth_per_core; i++) {
- ncores_with_x_procs[i] = 0;
- ncores_with_x_to_max_procs[i] = 0;
- }
-
- for (int i = 0; i < ncores; i++) {
- int cnt = 0;
- for (int j = 0; j < nth_per_core; j++) {
- if (procarr[i * nth_per_core + j] != -1) {
- cnt++;
- }
- }
- nproc_at_core[i] = cnt;
- ncores_with_x_procs[cnt]++;
- }
-
- for (int i = 0; i <= nth_per_core; i++) {
- for (int j = i; j <= nth_per_core; j++) {
- ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
- }
- }
-
- // Max number of processors
- int nproc = nth_per_core * ncores;
- // An array to keep number of threads per each context
- int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
- for (int i = 0; i < nproc; i++) {
- newarr[i] = 0;
- }
-
- int nth = nthreads;
- int flag = 0;
- while (nth > 0) {
- for (int j = 1; j <= nth_per_core; j++) {
- int cnt = ncores_with_x_to_max_procs[j];
- for (int i = 0; i < ncores; i++) {
- // Skip the core with 0 processors
- if (nproc_at_core[i] == 0) {
- continue;
+ } else if( nthreads <= __kmp_ncores ) {
+
+ int core = 0;
+ for( int i = 0; i < ncores; i++ ) {
+ // Check if this core from procarr[] is in the mask
+ int in_mask = 0;
+ for( int j = 0; j < nth_per_core; j++ ) {
+ if( procarr[ i * nth_per_core + j ] != - 1 ) {
+ in_mask = 1;
+ break;
+ }
+ }
+ if( in_mask ) {
+ if( tid == core ) {
+ for( int j = 0; j < nth_per_core; j++ ) {
+ int osID = procarr[ i * nth_per_core + j ];
+ if( osID != -1 ) {
+ KMP_CPU_SET( osID, mask );
+ // For granularity=thread it is enough to set the first available osID for this core
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ break;
+ }
+ }
+ }
+ break;
+ } else {
+ core++;
+ }
+ }
}
- for (int k = 0; k < nth_per_core; k++) {
- if (procarr[i * nth_per_core + k] != -1) {
- if (newarr[i * nth_per_core + k] == 0) {
- newarr[i * nth_per_core + k] = 1;
- cnt--;
- nth--;
- break;
- } else {
- if (flag != 0) {
- newarr[i * nth_per_core + k]++;
- cnt--;
- nth--;
- break;
- }
+
+ } else { // nthreads > __kmp_ncores
+
+ // Array to save the number of processors at each core
+ int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
+ // Array to save the number of cores with "x" available processors;
+ int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
+ // Array to save the number of cores with # procs from x to nth_per_core
+ int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
+
+ for( int i = 0; i <= nth_per_core; i++ ) {
+ ncores_with_x_procs[ i ] = 0;
+ ncores_with_x_to_max_procs[ i ] = 0;
+ }
+
+ for( int i = 0; i < ncores; i++ ) {
+ int cnt = 0;
+ for( int j = 0; j < nth_per_core; j++ ) {
+ if( procarr[ i * nth_per_core + j ] != -1 ) {
+ cnt++;
+ }
}
- }
+ nproc_at_core[ i ] = cnt;
+ ncores_with_x_procs[ cnt ]++;
}
- if (cnt == 0 || nth == 0) {
- break;
+
+ for( int i = 0; i <= nth_per_core; i++ ) {
+ for( int j = i; j <= nth_per_core; j++ ) {
+ ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
+ }
}
- }
- if (nth == 0) {
- break;
- }
- }
- flag = 1;
- }
- int sum = 0;
- for (int i = 0; i < nproc; i++) {
- sum += newarr[i];
- if (sum > tid) {
- if (fine_gran) {
- int osID = procarr[i];
- KMP_CPU_SET(osID, mask);
- } else {
- int coreID = i / nth_per_core;
- for (int ii = 0; ii < nth_per_core; ii++) {
- int osID = procarr[coreID * nth_per_core + ii];
- if (osID != -1) {
- KMP_CPU_SET(osID, mask);
- }
+
+ // Max number of processors
+ int nproc = nth_per_core * ncores;
+ // An array to keep number of threads per each context
+ int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
+ for( int i = 0; i < nproc; i++ ) {
+ newarr[ i ] = 0;
+ }
+
+ int nth = nthreads;
+ int flag = 0;
+ while( nth > 0 ) {
+ for( int j = 1; j <= nth_per_core; j++ ) {
+ int cnt = ncores_with_x_to_max_procs[ j ];
+ for( int i = 0; i < ncores; i++ ) {
+ // Skip the core with 0 processors
+ if( nproc_at_core[ i ] == 0 ) {
+ continue;
+ }
+ for( int k = 0; k < nth_per_core; k++ ) {
+ if( procarr[ i * nth_per_core + k ] != -1 ) {
+ if( newarr[ i * nth_per_core + k ] == 0 ) {
+ newarr[ i * nth_per_core + k ] = 1;
+ cnt--;
+ nth--;
+ break;
+ } else {
+ if( flag != 0 ) {
+ newarr[ i * nth_per_core + k ] ++;
+ cnt--;
+ nth--;
+ break;
+ }
+ }
+ }
+ }
+ if( cnt == 0 || nth == 0 ) {
+ break;
+ }
+ }
+ if( nth == 0 ) {
+ break;
+ }
+ }
+ flag = 1;
+ }
+ int sum = 0;
+ for( int i = 0; i < nproc; i++ ) {
+ sum += newarr[ i ];
+ if( sum > tid ) {
+ // Granularity == thread
+ if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
+ int osID = procarr[ i ];
+ KMP_CPU_SET( osID, mask);
+ } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
+ int coreID = i / nth_per_core;
+ for( int ii = 0; ii < nth_per_core; ii++ ) {
+ int osID = procarr[ coreID * nth_per_core + ii ];
+ if( osID != -1 ) {
+ KMP_CPU_SET( osID, mask);
+ }
+ }
+ }
+ break;
+ }
}
- }
- break;
+ __kmp_free( newarr );
}
- }
- __kmp_free(newarr);
- }
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
- __kmp_gettid(), tid, buf);
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ tid, buf);
+ }
+ __kmp_set_system_affinity( mask, TRUE );
+ KMP_CPU_FREE_FROM_STACK(mask);
}
- __kmp_set_system_affinity(mask, TRUE);
- }
-}
-
-#if KMP_OS_LINUX || KMP_OS_FREEBSD
-// We don't need this entry for Windows because
-// there is GetProcessAffinityMask() api
-//
-// The intended usage is indicated by these steps:
-// 1) The user gets the current affinity mask
-// 2) Then sets the affinity by calling this function
-// 3) Error check the return value
-// 4) Use non-OpenMP parallelization
-// 5) Reset the affinity to what was stored in step 1)
-#ifdef __cplusplus
-extern "C"
-#endif
- int
- kmp_set_thread_affinity_mask_initial()
-// the function returns 0 on success,
-// -1 if we cannot bind thread
-// >0 (errno) if an error happened during binding
-{
- int gtid = __kmp_get_gtid();
- if (gtid < 0) {
- // Do not touch non-omp threads
- KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
- "non-omp thread, returning\n"));
- return -1;
- }
- if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
- KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
- "affinity not initialized, returning\n"));
- return -1;
- }
- KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
- "set full mask for thread %d\n",
- gtid));
- KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
- return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
}
-#endif
#endif // KMP_AFFINITY_SUPPORTED