diff options
author | arcadia-devtools <[email protected]> | 2022-02-25 13:32:34 +0300 |
---|---|---|
committer | arcadia-devtools <[email protected]> | 2022-02-25 13:32:34 +0300 |
commit | 5a69c8d3bf97c5729c2f38e3edf38ad072cc8660 (patch) | |
tree | be60467f93523358c938a3b0e7704db98aca1368 /contrib/libs/cxxsupp/openmp/kmp_affinity.cpp | |
parent | 79b9f78973dff05d368d9cddf75f1f7ea23ae439 (diff) |
intermediate changes
ref:2c72e25aac316b2b2e56bf74f87d33341e8ce8ba
Diffstat (limited to 'contrib/libs/cxxsupp/openmp/kmp_affinity.cpp')
-rw-r--r-- | contrib/libs/cxxsupp/openmp/kmp_affinity.cpp | 8611 |
1 files changed, 4233 insertions, 4378 deletions
diff --git a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp index 4e6699ff214..8b40bd7ecda 100644 --- a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp +++ b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp @@ -2,2993 +2,3046 @@ * kmp_affinity.cpp -- affinity management */ - //===----------------------------------------------------------------------===// // -// The LLVM Compiler Infrastructure -// -// This file is dual licensed under the MIT and the University of Illinois Open -// Source Licenses. See LICENSE.txt for details. +// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. +// See https://llvm.org/LICENSE.txt for license information. +// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// - #include "kmp.h" +#include "kmp_affinity.h" #include "kmp_i18n.h" #include "kmp_io.h" #include "kmp_str.h" #include "kmp_wrapper_getpid.h" -#include "kmp_affinity.h" +#if KMP_USE_HIER_SCHED +#error #include "kmp_dispatch_hier.h" +#endif +#if KMP_USE_HWLOC +// Copied from hwloc +#define HWLOC_GROUP_KIND_INTEL_MODULE 102 +#define HWLOC_GROUP_KIND_INTEL_TILE 103 +#define HWLOC_GROUP_KIND_INTEL_DIE 104 +#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220 +#endif + +// The machine topology +kmp_topology_t *__kmp_topology = nullptr; +// KMP_HW_SUBSET environment variable +kmp_hw_subset_t *__kmp_hw_subset = nullptr; // Store the real or imagined machine hierarchy here static hierarchy_info machine_hierarchy; -void __kmp_cleanup_hierarchy() { - machine_hierarchy.fini(); -} +void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); } void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) { - kmp_uint32 depth; - // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier. - if (TCR_1(machine_hierarchy.uninitialized)) - machine_hierarchy.init(NULL, nproc); + kmp_uint32 depth; + // The test below is true if affinity is available, but set to "none". Need to + // init on first use of hierarchical barrier. + if (TCR_1(machine_hierarchy.uninitialized)) + machine_hierarchy.init(nproc); + + // Adjust the hierarchy in case num threads exceeds original + if (nproc > machine_hierarchy.base_num_threads) + machine_hierarchy.resize(nproc); + + depth = machine_hierarchy.depth; + KMP_DEBUG_ASSERT(depth > 0); + + thr_bar->depth = depth; + __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1, + &(thr_bar->base_leaf_kids)); + thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; +} - // Adjust the hierarchy in case num threads exceeds original - if (nproc > machine_hierarchy.base_num_threads) - machine_hierarchy.resize(nproc); +static int nCoresPerPkg, nPackages; +static int __kmp_nThreadsPerCore; +#ifndef KMP_DFLT_NTH_CORES +static int __kmp_ncores; +#endif - depth = machine_hierarchy.depth; - KMP_DEBUG_ASSERT(depth > 0); +const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) { + switch (type) { + case KMP_HW_SOCKET: + return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket)); + case KMP_HW_DIE: + return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die)); + case KMP_HW_MODULE: + return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module)); + case KMP_HW_TILE: + return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile)); + case KMP_HW_NUMA: + return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain)); + case KMP_HW_L3: + return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache)); + case KMP_HW_L2: + return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache)); + case KMP_HW_L1: + return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache)); + case KMP_HW_LLC: + return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache)); + case KMP_HW_CORE: + return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core)); + case KMP_HW_THREAD: + return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread)); + case KMP_HW_PROC_GROUP: + return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup)); + } + return KMP_I18N_STR(Unknown); +} - thr_bar->depth = depth; - thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1; - thr_bar->skip_per_level = machine_hierarchy.skipPerLevel; +const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) { + switch (type) { + case KMP_HW_SOCKET: + return ((plural) ? "sockets" : "socket"); + case KMP_HW_DIE: + return ((plural) ? "dice" : "die"); + case KMP_HW_MODULE: + return ((plural) ? "modules" : "module"); + case KMP_HW_TILE: + return ((plural) ? "tiles" : "tile"); + case KMP_HW_NUMA: + return ((plural) ? "numa_domains" : "numa_domain"); + case KMP_HW_L3: + return ((plural) ? "l3_caches" : "l3_cache"); + case KMP_HW_L2: + return ((plural) ? "l2_caches" : "l2_cache"); + case KMP_HW_L1: + return ((plural) ? "l1_caches" : "l1_cache"); + case KMP_HW_LLC: + return ((plural) ? "ll_caches" : "ll_cache"); + case KMP_HW_CORE: + return ((plural) ? "cores" : "core"); + case KMP_HW_THREAD: + return ((plural) ? "threads" : "thread"); + case KMP_HW_PROC_GROUP: + return ((plural) ? "proc_groups" : "proc_group"); + } + return ((plural) ? "unknowns" : "unknown"); +} + +//////////////////////////////////////////////////////////////////////////////// +// kmp_hw_thread_t methods +int kmp_hw_thread_t::compare_ids(const void *a, const void *b) { + const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a; + const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b; + int depth = __kmp_topology->get_depth(); + for (int level = 0; level < depth; ++level) { + if (ahwthread->ids[level] < bhwthread->ids[level]) + return -1; + else if (ahwthread->ids[level] > bhwthread->ids[level]) + return 1; + } + if (ahwthread->os_id < bhwthread->os_id) + return -1; + else if (ahwthread->os_id > bhwthread->os_id) + return 1; + return 0; } #if KMP_AFFINITY_SUPPORTED +int kmp_hw_thread_t::compare_compact(const void *a, const void *b) { + int i; + const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a; + const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b; + int depth = __kmp_topology->get_depth(); + KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0); + KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth); + for (i = 0; i < __kmp_affinity_compact; i++) { + int j = depth - i - 1; + if (aa->sub_ids[j] < bb->sub_ids[j]) + return -1; + if (aa->sub_ids[j] > bb->sub_ids[j]) + return 1; + } + for (; i < depth; i++) { + int j = i - __kmp_affinity_compact; + if (aa->sub_ids[j] < bb->sub_ids[j]) + return -1; + if (aa->sub_ids[j] > bb->sub_ids[j]) + return 1; + } + return 0; +} +#endif -// -// Print the affinity mask to the character array in a pretty format. -// -#if KMP_USE_HWLOC -char * -__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) -{ - int num_chars_to_write, num_chars_written; - char* scan; - KMP_ASSERT(buf_len >= 40); - - // bufsize of 0 just retrieves the needed buffer size. - num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask); - - // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes - // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not - // take into account the '\0' character. - if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) { - KMP_SNPRINTF(buf, buf_len, "{<empty>}"); - } else if(num_chars_to_write < buf_len - 3) { - // no problem fitting the mask into buf_len number of characters - buf[0] = '{'; - // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer - num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask); - buf[num_chars_written+1] = '}'; - buf[num_chars_written+2] = '\0'; - } else { - // Need to truncate the affinity mask string and add ellipsis. - // To do this, we first write out the '{' + str(mask) - buf[0] = '{'; - hwloc_bitmap_list_snprintf(buf+1, buf_len-7, (hwloc_bitmap_t)mask); - // then, what we do here is go to the 7th to last character, then go backwards until we are NOT - // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't - // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get - // { 45, 67,...} instead. - scan = buf + buf_len - 7; - while(*scan >= '0' && *scan <= '9' && scan >= buf) - scan--; - *(scan+1) = '.'; - *(scan+2) = '.'; - *(scan+3) = '.'; - *(scan+4) = '}'; - *(scan+5) = '\0'; - } - return buf; +void kmp_hw_thread_t::print() const { + int depth = __kmp_topology->get_depth(); + printf("%4d ", os_id); + for (int i = 0; i < depth; ++i) { + printf("%4d ", ids[i]); + } + printf("\n"); } -#else -char * -__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask) -{ - KMP_ASSERT(buf_len >= 40); - char *scan = buf; - char *end = buf + buf_len - 1; - // - // Find first element / check for empty set. - // - size_t i; - for (i = 0; i < KMP_CPU_SETSIZE; i++) { - if (KMP_CPU_ISSET(i, mask)) { - break; - } - } - if (i == KMP_CPU_SETSIZE) { - KMP_SNPRINTF(scan, end-scan+1, "{<empty>}"); - while (*scan != '\0') scan++; - KMP_ASSERT(scan <= end); - return buf; +//////////////////////////////////////////////////////////////////////////////// +// kmp_topology_t methods + +// Remove layers that don't add information to the topology. +// This is done by having the layer take on the id = UNKNOWN_ID (-1) +void kmp_topology_t::_remove_radix1_layers() { + int preference[KMP_HW_LAST]; + int top_index1, top_index2; + // Set up preference associative array + preference[KMP_HW_PROC_GROUP] = 110; + preference[KMP_HW_SOCKET] = 100; + preference[KMP_HW_CORE] = 95; + preference[KMP_HW_THREAD] = 90; + preference[KMP_HW_NUMA] = 85; + preference[KMP_HW_DIE] = 80; + preference[KMP_HW_TILE] = 75; + preference[KMP_HW_MODULE] = 73; + preference[KMP_HW_L3] = 70; + preference[KMP_HW_L2] = 65; + preference[KMP_HW_L1] = 60; + preference[KMP_HW_LLC] = 5; + top_index1 = 0; + top_index2 = 1; + while (top_index1 < depth - 1 && top_index2 < depth) { + kmp_hw_t type1 = types[top_index1]; + kmp_hw_t type2 = types[top_index2]; + KMP_ASSERT_VALID_HW_TYPE(type1); + KMP_ASSERT_VALID_HW_TYPE(type2); + // Do not allow the three main topology levels (sockets, cores, threads) to + // be compacted down + if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE || + type1 == KMP_HW_SOCKET) && + (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE || + type2 == KMP_HW_SOCKET)) { + top_index1 = top_index2++; + continue; + } + bool radix1 = true; + bool all_same = true; + int id1 = hw_threads[0].ids[top_index1]; + int id2 = hw_threads[0].ids[top_index2]; + int pref1 = preference[type1]; + int pref2 = preference[type2]; + for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) { + if (hw_threads[hwidx].ids[top_index1] == id1 && + hw_threads[hwidx].ids[top_index2] != id2) { + radix1 = false; + break; + } + if (hw_threads[hwidx].ids[top_index2] != id2) + all_same = false; + id1 = hw_threads[hwidx].ids[top_index1]; + id2 = hw_threads[hwidx].ids[top_index2]; + } + if (radix1) { + // Select the layer to remove based on preference + kmp_hw_t remove_type, keep_type; + int remove_layer, remove_layer_ids; + if (pref1 > pref2) { + remove_type = type2; + remove_layer = remove_layer_ids = top_index2; + keep_type = type1; + } else { + remove_type = type1; + remove_layer = remove_layer_ids = top_index1; + keep_type = type2; + } + // If all the indexes for the second (deeper) layer are the same. + // e.g., all are zero, then make sure to keep the first layer's ids + if (all_same) + remove_layer_ids = top_index2; + // Remove radix one type by setting the equivalence, removing the id from + // the hw threads and removing the layer from types and depth + set_equivalent_type(remove_type, keep_type); + for (int idx = 0; idx < num_hw_threads; ++idx) { + kmp_hw_thread_t &hw_thread = hw_threads[idx]; + for (int d = remove_layer_ids; d < depth - 1; ++d) + hw_thread.ids[d] = hw_thread.ids[d + 1]; + } + for (int idx = remove_layer; idx < depth - 1; ++idx) + types[idx] = types[idx + 1]; + depth--; + } else { + top_index1 = top_index2++; } + } + KMP_ASSERT(depth > 0); +} - KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i); - while (*scan != '\0') scan++; - i++; - for (; i < KMP_CPU_SETSIZE; i++) { - if (! KMP_CPU_ISSET(i, mask)) { - continue; - } +void kmp_topology_t::_set_last_level_cache() { + if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_L3); + else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); +#if KMP_MIC_SUPPORTED + else if (__kmp_mic_type == mic3) { + if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_L2); + else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE); + // L2/Tile wasn't detected so just say L1 + else + set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); + } +#endif + else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_L1); + // Fallback is to set last level cache to socket or core + if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) { + if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET); + else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN) + set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE); + } + KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN); +} - // - // Check for buffer overflow. A string of the form ",<n>" will have - // at most 10 characters, plus we want to leave room to print ",...}" - // if the set is too large to print for a total of 15 characters. - // We already left room for '\0' in setting end. - // - if (end - scan < 15) { - break; +// Gather the count of each topology layer and the ratio +void kmp_topology_t::_gather_enumeration_information() { + int previous_id[KMP_HW_LAST]; + int max[KMP_HW_LAST]; + + for (int i = 0; i < depth; ++i) { + previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID; + max[i] = 0; + count[i] = 0; + ratio[i] = 0; + } + for (int i = 0; i < num_hw_threads; ++i) { + kmp_hw_thread_t &hw_thread = hw_threads[i]; + for (int layer = 0; layer < depth; ++layer) { + int id = hw_thread.ids[layer]; + if (id != previous_id[layer]) { + // Add an additional increment to each count + for (int l = layer; l < depth; ++l) + count[l]++; + // Keep track of topology layer ratio statistics + max[layer]++; + for (int l = layer + 1; l < depth; ++l) { + if (max[l] > ratio[l]) + ratio[l] = max[l]; + max[l] = 1; } - KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i); - while (*scan != '\0') scan++; + break; + } } - if (i < KMP_CPU_SETSIZE) { - KMP_SNPRINTF(scan, end-scan+1, ",..."); - while (*scan != '\0') scan++; + for (int layer = 0; layer < depth; ++layer) { + previous_id[layer] = hw_thread.ids[layer]; } - KMP_SNPRINTF(scan, end-scan+1, "}"); - while (*scan != '\0') scan++; - KMP_ASSERT(scan <= end); - return buf; + } + for (int layer = 0; layer < depth; ++layer) { + if (max[layer] > ratio[layer]) + ratio[layer] = max[layer]; + } } -#endif // KMP_USE_HWLOC - - -void -__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) -{ - KMP_CPU_ZERO(mask); -# if KMP_GROUP_AFFINITY +// Find out if the topology is uniform +void kmp_topology_t::_discover_uniformity() { + int num = 1; + for (int level = 0; level < depth; ++level) + num *= ratio[level]; + flags.uniform = (num == count[depth - 1]); +} - if (__kmp_num_proc_groups > 1) { - int group; - KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); - for (group = 0; group < __kmp_num_proc_groups; group++) { - int i; - int num = __kmp_GetActiveProcessorCount(group); - for (i = 0; i < num; i++) { - KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); - } +// Set all the sub_ids for each hardware thread +void kmp_topology_t::_set_sub_ids() { + int previous_id[KMP_HW_LAST]; + int sub_id[KMP_HW_LAST]; + + for (int i = 0; i < depth; ++i) { + previous_id[i] = -1; + sub_id[i] = -1; + } + for (int i = 0; i < num_hw_threads; ++i) { + kmp_hw_thread_t &hw_thread = hw_threads[i]; + // Setup the sub_id + for (int j = 0; j < depth; ++j) { + if (hw_thread.ids[j] != previous_id[j]) { + sub_id[j]++; + for (int k = j + 1; k < depth; ++k) { + sub_id[k] = 0; } + break; + } } - else - -# endif /* KMP_GROUP_AFFINITY */ - - { - int proc; - for (proc = 0; proc < __kmp_xproc; proc++) { - KMP_CPU_SET(proc, mask); - } + // Set previous_id + for (int j = 0; j < depth; ++j) { + previous_id[j] = hw_thread.ids[j]; } -} - -// -// When sorting by labels, __kmp_affinity_assign_child_nums() must first be -// called to renumber the labels from [0..n] and place them into the child_num -// vector of the address object. This is done in case the labels used for -// the children at one node of the hierarchy differ from those used for -// another node at the same level. Example: suppose the machine has 2 nodes -// with 2 packages each. The first node contains packages 601 and 602, and -// second node contains packages 603 and 604. If we try to sort the table -// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604 -// because we are paying attention to the labels themselves, not the ordinal -// child numbers. By using the child numbers in the sort, the result is -// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604. -// -static void -__kmp_affinity_assign_child_nums(AddrUnsPair *address2os, - int numAddrs) -{ - KMP_DEBUG_ASSERT(numAddrs > 0); - int depth = address2os->first.depth; - unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); - unsigned *lastLabel = (unsigned *)__kmp_allocate(depth - * sizeof(unsigned)); - int labCt; - for (labCt = 0; labCt < depth; labCt++) { - address2os[0].first.childNums[labCt] = counts[labCt] = 0; - lastLabel[labCt] = address2os[0].first.labels[labCt]; - } - int i; - for (i = 1; i < numAddrs; i++) { - for (labCt = 0; labCt < depth; labCt++) { - if (address2os[i].first.labels[labCt] != lastLabel[labCt]) { - int labCt2; - for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) { - counts[labCt2] = 0; - lastLabel[labCt2] = address2os[i].first.labels[labCt2]; - } - counts[labCt]++; - lastLabel[labCt] = address2os[i].first.labels[labCt]; - break; - } - } - for (labCt = 0; labCt < depth; labCt++) { - address2os[i].first.childNums[labCt] = counts[labCt]; - } - for (; labCt < (int)Address::maxDepth; labCt++) { - address2os[i].first.childNums[labCt] = 0; - } + // Set the sub_ids field + for (int j = 0; j < depth; ++j) { + hw_thread.sub_ids[j] = sub_id[j]; } + } } - -// -// All of the __kmp_affinity_create_*_map() routines should set -// __kmp_affinity_masks to a vector of affinity mask objects of length -// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and -// return the number of levels in the machine topology tree (zero if -// __kmp_affinity_type == affinity_none). -// -// All of the __kmp_affinity_create_*_map() routines should set *fullMask -// to the affinity mask for the initialization thread. They need to save and -// restore the mask, and it could be needed later, so saving it is just an -// optimization to avoid calling kmp_get_system_affinity() again. -// -static kmp_affin_mask_t *fullMask = NULL; - -kmp_affin_mask_t * -__kmp_affinity_get_fullMask() { return fullMask; } - - -static int nCoresPerPkg, nPackages; -static int __kmp_nThreadsPerCore; +void kmp_topology_t::_set_globals() { + // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores + int core_level, thread_level, package_level; + package_level = get_level(KMP_HW_SOCKET); +#if KMP_GROUP_AFFINITY + if (package_level == -1) + package_level = get_level(KMP_HW_PROC_GROUP); +#endif + core_level = get_level(KMP_HW_CORE); + thread_level = get_level(KMP_HW_THREAD); + + KMP_ASSERT(core_level != -1); + KMP_ASSERT(thread_level != -1); + + __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level); + if (package_level != -1) { + nCoresPerPkg = calculate_ratio(core_level, package_level); + nPackages = get_count(package_level); + } else { + // assume one socket + nCoresPerPkg = get_count(core_level); + nPackages = 1; + } #ifndef KMP_DFLT_NTH_CORES -static int __kmp_ncores; + __kmp_ncores = get_count(core_level); #endif - -// -// __kmp_affinity_uniform_topology() doesn't work when called from -// places which support arbitrarily many levels in the machine topology -// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map() -// __kmp_affinity_create_x2apicid_map(). -// -inline static bool -__kmp_affinity_uniform_topology() -{ - return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages); } +kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth, + const kmp_hw_t *types) { + kmp_topology_t *retval; + // Allocate all data in one large allocation + size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc + + sizeof(int) * ndepth * 3; + char *bytes = (char *)__kmp_allocate(size); + retval = (kmp_topology_t *)bytes; + if (nproc > 0) { + retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t)); + } else { + retval->hw_threads = nullptr; + } + retval->num_hw_threads = nproc; + retval->depth = ndepth; + int *arr = + (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc); + retval->types = (kmp_hw_t *)arr; + retval->ratio = arr + ndepth; + retval->count = arr + 2 * ndepth; + KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; } + for (int i = 0; i < ndepth; ++i) { + retval->types[i] = types[i]; + retval->equivalent[types[i]] = types[i]; + } + return retval; +} -// -// Print out the detailed machine topology map, i.e. the physical locations -// of each OS proc. -// -static void -__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth, - int pkgLevel, int coreLevel, int threadLevel) -{ - int proc; +void kmp_topology_t::deallocate(kmp_topology_t *topology) { + if (topology) + __kmp_free(topology); +} - KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY"); - for (proc = 0; proc < len; proc++) { - int level; - kmp_str_buf_t buf; - __kmp_str_buf_init(&buf); - for (level = 0; level < depth; level++) { - if (level == threadLevel) { - __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread)); - } - else if (level == coreLevel) { - __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core)); - } - else if (level == pkgLevel) { - __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package)); - } - else if (level > pkgLevel) { - __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node), - level - pkgLevel - 1); - } - else { - __kmp_str_buf_print(&buf, "L%d ", level); - } - __kmp_str_buf_print(&buf, "%d ", - address2os[proc].first.labels[level]); - } - KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second, - buf.str); - __kmp_str_buf_free(&buf); +bool kmp_topology_t::check_ids() const { + // Assume ids have been sorted + if (num_hw_threads == 0) + return true; + for (int i = 1; i < num_hw_threads; ++i) { + kmp_hw_thread_t ¤t_thread = hw_threads[i]; + kmp_hw_thread_t &previous_thread = hw_threads[i - 1]; + bool unique = false; + for (int j = 0; j < depth; ++j) { + if (previous_thread.ids[j] != current_thread.ids[j]) { + unique = true; + break; + } } + if (unique) + continue; + return false; + } + return true; } -#if KMP_USE_HWLOC -static int -__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os, - kmp_i18n_id_t *const msg_id) -{ - *address2os = NULL; - *msg_id = kmp_i18n_null; - - // - // Save the affinity mask for the current thread. - // - kmp_affin_mask_t *oldMask; - KMP_CPU_ALLOC(oldMask); - __kmp_get_system_affinity(oldMask, TRUE); - - unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology); - int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU); - int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE); - int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET); - __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0; - - // - // This makes an assumption about the topology being four levels: - // machines -> packages -> cores -> hardware threads - // - hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology); - hwloc_obj_t child_iterator; - for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); - child_iterator != NULL; - child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) - { - nPackages++; - } - current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0); - for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); - child_iterator != NULL; - child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) - { - nCoresPerPkg++; - } - current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0); - for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL); - child_iterator != NULL; - child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator)) - { - __kmp_nThreadsPerCore++; - } +void kmp_topology_t::dump() const { + printf("***********************\n"); + printf("*** __kmp_topology: ***\n"); + printf("***********************\n"); + printf("* depth: %d\n", depth); + + printf("* types: "); + for (int i = 0; i < depth; ++i) + printf("%15s ", __kmp_hw_get_keyword(types[i])); + printf("\n"); + + printf("* ratio: "); + for (int i = 0; i < depth; ++i) { + printf("%15d ", ratio[i]); + } + printf("\n"); + + printf("* count: "); + for (int i = 0; i < depth; ++i) { + printf("%15d ", count[i]); + } + printf("\n"); + + printf("* equivalent map:\n"); + KMP_FOREACH_HW_TYPE(i) { + const char *key = __kmp_hw_get_keyword(i); + const char *value = __kmp_hw_get_keyword(equivalent[i]); + printf("%-15s -> %-15s\n", key, value); + } + + printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No")); + + printf("* num_hw_threads: %d\n", num_hw_threads); + printf("* hw_threads:\n"); + for (int i = 0; i < num_hw_threads; ++i) { + hw_threads[i].print(); + } + printf("***********************\n"); +} - if (! KMP_AFFINITY_CAPABLE()) - { - // - // Hack to try and infer the machine topology using only the data - // available from cpuid on the current thread, and __kmp_xproc. - // - KMP_ASSERT(__kmp_affinity_type == affinity_none); - - __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (__kmp_affinity_uniform_topology()) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - return 0; - } +void kmp_topology_t::print(const char *env_var) const { + kmp_str_buf_t buf; + int print_types_depth; + __kmp_str_buf_init(&buf); + kmp_hw_t print_types[KMP_HW_LAST + 2]; + + // Num Available Threads + KMP_INFORM(AvailableOSProc, env_var, num_hw_threads); + + // Uniform or not + if (is_uniform()) { + KMP_INFORM(Uniform, env_var); + } else { + KMP_INFORM(NonUniform, env_var); + } + + // Equivalent types + KMP_FOREACH_HW_TYPE(type) { + kmp_hw_t eq_type = equivalent[type]; + if (eq_type != KMP_HW_UNKNOWN && eq_type != type) { + KMP_INFORM(AffEqualTopologyTypes, env_var, + __kmp_hw_get_catalog_string(type), + __kmp_hw_get_catalog_string(eq_type)); + } + } + + // Quick topology + KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST); + // Create a print types array that always guarantees printing + // the core and thread level + print_types_depth = 0; + for (int level = 0; level < depth; ++level) + print_types[print_types_depth++] = types[level]; + if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) { + // Force in the core level for quick topology + if (print_types[print_types_depth - 1] == KMP_HW_THREAD) { + // Force core before thread e.g., 1 socket X 2 threads/socket + // becomes 1 socket X 1 core/socket X 2 threads/socket + print_types[print_types_depth - 1] = KMP_HW_CORE; + print_types[print_types_depth++] = KMP_HW_THREAD; + } else { + print_types[print_types_depth++] = KMP_HW_CORE; + } + } + // Always put threads at very end of quick topology + if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD) + print_types[print_types_depth++] = KMP_HW_THREAD; + + __kmp_str_buf_clear(&buf); + kmp_hw_t numerator_type; + kmp_hw_t denominator_type = KMP_HW_UNKNOWN; + int core_level = get_level(KMP_HW_CORE); + int ncores = get_count(core_level); + + for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) { + int c; + bool plural; + numerator_type = print_types[plevel]; + KMP_ASSERT_VALID_HW_TYPE(numerator_type); + if (equivalent[numerator_type] != numerator_type) + c = 1; + else + c = get_ratio(level++); + plural = (c > 1); + if (plevel == 0) { + __kmp_str_buf_print(&buf, "%d %s", c, + __kmp_hw_get_catalog_string(numerator_type, plural)); + } else { + __kmp_str_buf_print(&buf, " x %d %s/%s", c, + __kmp_hw_get_catalog_string(numerator_type, plural), + __kmp_hw_get_catalog_string(denominator_type)); + } + denominator_type = numerator_type; + } + KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores); + + if (num_hw_threads <= 0) { + __kmp_str_buf_free(&buf); + return; + } + + // Full OS proc to hardware thread map + KMP_INFORM(OSProcToPhysicalThreadMap, env_var); + for (int i = 0; i < num_hw_threads; i++) { + __kmp_str_buf_clear(&buf); + for (int level = 0; level < depth; ++level) { + kmp_hw_t type = types[level]; + __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type)); + __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]); + } + KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str); + } + + __kmp_str_buf_free(&buf); +} - // - // Allocate the data structure to be returned. - // - AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); - - unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel); - unsigned i; - hwloc_obj_t hardware_thread_iterator; - int nActiveThreads = 0; - for(i=0;i<num_hardware_threads;i++) { - hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i); - Address addr(3); - if(! KMP_CPU_ISSET(i, fullMask)) continue; - addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index; - addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg; - addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore; - retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index); - nActiveThreads++; - } +void kmp_topology_t::canonicalize() { + _remove_radix1_layers(); + _gather_enumeration_information(); + _discover_uniformity(); + _set_sub_ids(); + _set_globals(); + _set_last_level_cache(); + +#if KMP_MIC_SUPPORTED + // Manually Add L2 = Tile equivalence + if (__kmp_mic_type == mic3) { + if (get_level(KMP_HW_L2) != -1) + set_equivalent_type(KMP_HW_TILE, KMP_HW_L2); + else if (get_level(KMP_HW_TILE) != -1) + set_equivalent_type(KMP_HW_L2, KMP_HW_TILE); + } +#endif - // - // If there's only one thread context to bind to, return now. - // - KMP_ASSERT(nActiveThreads > 0); - if (nActiveThreads == 1) { - __kmp_ncores = nPackages = 1; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); - - KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } + // Perform post canonicalization checking + KMP_ASSERT(depth > 0); + for (int level = 0; level < depth; ++level) { + // All counts, ratios, and types must be valid + KMP_ASSERT(count[level] > 0 && ratio[level] > 0); + KMP_ASSERT_VALID_HW_TYPE(types[level]); + // Detected types must point to themselves + KMP_ASSERT(equivalent[types[level]] == types[level]); + } - if (__kmp_affinity_type == affinity_none) { - __kmp_free(retval); - KMP_CPU_FREE(oldMask); - return 0; - } +#if KMP_AFFINITY_SUPPORTED + // Set the number of affinity granularity levels + if (__kmp_affinity_gran_levels < 0) { + kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran); + // Check if user's granularity request is valid + if (gran_type == KMP_HW_UNKNOWN) { + // First try core, then thread, then package + kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET}; + for (auto g : gran_types) { + if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) { + gran_type = g; + break; + } + } + KMP_ASSERT(gran_type != KMP_HW_UNKNOWN); + // Warn user what granularity setting will be used instead + KMP_WARNING(AffGranularityBad, "KMP_AFFINITY", + __kmp_hw_get_catalog_string(__kmp_affinity_gran), + __kmp_hw_get_catalog_string(gran_type)); + __kmp_affinity_gran = gran_type; + } + __kmp_affinity_gran_levels = 0; + for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i) + __kmp_affinity_gran_levels++; + } +#endif // KMP_AFFINITY_SUPPORTED +} - // - // Form an Address object which only includes the package level. - // - Address addr(1); - addr.labels[0] = retval[0].first.labels[pkgLevel-1]; - retval[0].first = addr; +// Canonicalize an explicit packages X cores/pkg X threads/core topology +void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg, + int nthreads_per_core, int ncores) { + int ndepth = 3; + depth = ndepth; + KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; } + for (int level = 0; level < depth; ++level) { + count[level] = 0; + ratio[level] = 0; + } + count[0] = npackages; + count[1] = ncores; + count[2] = __kmp_xproc; + ratio[0] = npackages; + ratio[1] = ncores_per_pkg; + ratio[2] = nthreads_per_core; + equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET; + equivalent[KMP_HW_CORE] = KMP_HW_CORE; + equivalent[KMP_HW_THREAD] = KMP_HW_THREAD; + types[0] = KMP_HW_SOCKET; + types[1] = KMP_HW_CORE; + types[2] = KMP_HW_THREAD; + //__kmp_avail_proc = __kmp_xproc; + _discover_uniformity(); +} - if (__kmp_affinity_gran_levels < 0) { - __kmp_affinity_gran_levels = 0; - } +// Apply the KMP_HW_SUBSET envirable to the topology +// Returns true if KMP_HW_SUBSET filtered any processors +// otherwise, returns false +bool kmp_topology_t::filter_hw_subset() { + // If KMP_HW_SUBSET wasn't requested, then do nothing. + if (!__kmp_hw_subset) + return false; + + // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology + int hw_subset_depth = __kmp_hw_subset->get_depth(); + kmp_hw_t specified[KMP_HW_LAST]; + KMP_ASSERT(hw_subset_depth > 0); + KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; } + for (int i = 0; i < hw_subset_depth; ++i) { + int max_count; + int num = __kmp_hw_subset->at(i).num; + int offset = __kmp_hw_subset->at(i).offset; + kmp_hw_t type = __kmp_hw_subset->at(i).type; + kmp_hw_t equivalent_type = equivalent[type]; + int level = get_level(type); + + // Check to see if current layer is in detected machine topology + if (equivalent_type != KMP_HW_UNKNOWN) { + __kmp_hw_subset->at(i).type = equivalent_type; + } else { + KMP_WARNING(AffHWSubsetNotExistGeneric, + __kmp_hw_get_catalog_string(type)); + return false; + } + + // Check to see if current layer has already been specified + // either directly or through an equivalent type + if (specified[equivalent_type] != KMP_HW_UNKNOWN) { + KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type), + __kmp_hw_get_catalog_string(specified[equivalent_type])); + return false; + } + specified[equivalent_type] = type; + + // Check to see if layers are in order + if (i + 1 < hw_subset_depth) { + kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type); + if (next_type == KMP_HW_UNKNOWN) { + KMP_WARNING( + AffHWSubsetNotExistGeneric, + __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type)); + return false; + } + int next_topology_level = get_level(next_type); + if (level > next_topology_level) { + KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type), + __kmp_hw_get_catalog_string(next_type)); + return false; + } + } + + // Check to see if each layer's num & offset parameters are valid + max_count = get_ratio(level); + if (max_count < 0 || num + offset > max_count) { + bool plural = (num > 1); + KMP_WARNING(AffHWSubsetManyGeneric, + __kmp_hw_get_catalog_string(type, plural)); + return false; + } + } + + // Apply the filtered hardware subset + int new_index = 0; + for (int i = 0; i < num_hw_threads; ++i) { + kmp_hw_thread_t &hw_thread = hw_threads[i]; + // Check to see if this hardware thread should be filtered + bool should_be_filtered = false; + for (int level = 0, hw_subset_index = 0; + level < depth && hw_subset_index < hw_subset_depth; ++level) { + kmp_hw_t topology_type = types[level]; + auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index); + kmp_hw_t hw_subset_type = hw_subset_item.type; + if (topology_type != hw_subset_type) + continue; + int num = hw_subset_item.num; + int offset = hw_subset_item.offset; + hw_subset_index++; + if (hw_thread.sub_ids[level] < offset || + hw_thread.sub_ids[level] >= offset + num) { + should_be_filtered = true; + break; + } + } + if (!should_be_filtered) { + if (i != new_index) + hw_threads[new_index] = hw_thread; + new_index++; + } else { +#if KMP_AFFINITY_SUPPORTED + KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask); +#endif + __kmp_avail_proc--; + } + } + KMP_DEBUG_ASSERT(new_index <= num_hw_threads); + num_hw_threads = new_index; + + // Post hardware subset canonicalization + _gather_enumeration_information(); + _discover_uniformity(); + _set_globals(); + _set_last_level_cache(); + return true; +} - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); - } +bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const { + if (hw_level >= depth) + return true; + bool retval = true; + const kmp_hw_thread_t &t1 = hw_threads[hwt1]; + const kmp_hw_thread_t &t2 = hw_threads[hwt2]; + for (int i = 0; i < (depth - hw_level); ++i) { + if (t1.ids[i] != t2.ids[i]) + return false; + } + return retval; +} - *address2os = retval; - KMP_CPU_FREE(oldMask); - return 1; - } +//////////////////////////////////////////////////////////////////////////////// - // - // Sort the table by physical Id. - // - qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels); +#if KMP_AFFINITY_SUPPORTED +class kmp_affinity_raii_t { + kmp_affin_mask_t *mask; + bool restored; - // - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, - // nCoresPerPkg, & nPackages. Make sure all these vars are set - // correctly, and return if affinity is not enabled. - // - __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel); +public: + kmp_affinity_raii_t() : restored(false) { + KMP_CPU_ALLOC(mask); + KMP_ASSERT(mask != NULL); + __kmp_get_system_affinity(mask, TRUE); + } + void restore() { + __kmp_set_system_affinity(mask, TRUE); + KMP_CPU_FREE(mask); + restored = true; + } + ~kmp_affinity_raii_t() { + if (!restored) { + __kmp_set_system_affinity(mask, TRUE); + KMP_CPU_FREE(mask); + } + } +}; - // - // Check to see if the machine topology is uniform - // - unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel); - unsigned ncores = __kmp_ncores; - unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel); - unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads); +bool KMPAffinity::picked_api = false; - // - // Print the machine topology summary. - // - if (__kmp_affinity_verbose) { - char mask[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); +void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); } +void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); } +void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); } +void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); } +void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); } +void KMPAffinity::operator delete(void *p) { __kmp_free(p); } - KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (uniform) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } +void KMPAffinity::pick_api() { + KMPAffinity *affinity_dispatch; + if (picked_api) + return; +#if KMP_USE_HWLOC + // Only use Hwloc if affinity isn't explicitly disabled and + // user requests Hwloc topology method + if (__kmp_affinity_top_method == affinity_top_method_hwloc && + __kmp_affinity_type != affinity_disabled) { + affinity_dispatch = new KMPHwlocAffinity(); + } else +#endif + { + affinity_dispatch = new KMPNativeAffinity(); + } + __kmp_affinity_dispatch = affinity_dispatch; + picked_api = true; +} - kmp_str_buf_t buf; - __kmp_str_buf_init(&buf); +void KMPAffinity::destroy_api() { + if (__kmp_affinity_dispatch != NULL) { + delete __kmp_affinity_dispatch; + __kmp_affinity_dispatch = NULL; + picked_api = false; + } +} - __kmp_str_buf_print(&buf, "%d", npackages); - //for (level = 1; level <= pkgLevel; level++) { - // __kmp_str_buf_print(&buf, " x %d", maxCt[level]); - // } - KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); +#define KMP_ADVANCE_SCAN(scan) \ + while (*scan != '\0') { \ + scan++; \ + } - __kmp_str_buf_free(&buf); +// Print the affinity mask to the character array in a pretty format. +// The format is a comma separated list of non-negative integers or integer +// ranges: e.g., 1,2,3-5,7,9-15 +// The format can also be the string "{<empty>}" if no bits are set in mask +char *__kmp_affinity_print_mask(char *buf, int buf_len, + kmp_affin_mask_t *mask) { + int start = 0, finish = 0, previous = 0; + bool first_range; + KMP_ASSERT(buf); + KMP_ASSERT(buf_len >= 40); + KMP_ASSERT(mask); + char *scan = buf; + char *end = buf + buf_len - 1; + + // Check for empty set. + if (mask->begin() == mask->end()) { + KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}"); + KMP_ADVANCE_SCAN(scan); + KMP_ASSERT(scan <= end); + return buf; + } + + first_range = true; + start = mask->begin(); + while (1) { + // Find next range + // [start, previous] is inclusive range of contiguous bits in mask + for (finish = mask->next(start), previous = start; + finish == previous + 1 && finish != mask->end(); + finish = mask->next(finish)) { + previous = finish; + } + + // The first range does not need a comma printed before it, but the rest + // of the ranges do need a comma beforehand + if (!first_range) { + KMP_SNPRINTF(scan, end - scan + 1, "%s", ","); + KMP_ADVANCE_SCAN(scan); + } else { + first_range = false; } - - if (__kmp_affinity_type == affinity_none) { - KMP_CPU_FREE(oldMask); - return 0; + // Range with three or more contiguous bits in the affinity mask + if (previous - start > 1) { + KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous); + } else { + // Range with one or two contiguous bits in the affinity mask + KMP_SNPRINTF(scan, end - scan + 1, "%u", start); + KMP_ADVANCE_SCAN(scan); + if (previous - start > 0) { + KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous); + } + } + KMP_ADVANCE_SCAN(scan); + // Start over with new start point + start = finish; + if (start == mask->end()) + break; + // Check for overflow + if (end - scan < 2) + break; + } + + // Check for overflow + KMP_ASSERT(scan <= end); + return buf; +} +#undef KMP_ADVANCE_SCAN + +// Print the affinity mask to the string buffer object in a pretty format +// The format is a comma separated list of non-negative integers or integer +// ranges: e.g., 1,2,3-5,7,9-15 +// The format can also be the string "{<empty>}" if no bits are set in mask +kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf, + kmp_affin_mask_t *mask) { + int start = 0, finish = 0, previous = 0; + bool first_range; + KMP_ASSERT(buf); + KMP_ASSERT(mask); + + __kmp_str_buf_clear(buf); + + // Check for empty set. + if (mask->begin() == mask->end()) { + __kmp_str_buf_print(buf, "%s", "{<empty>}"); + return buf; + } + + first_range = true; + start = mask->begin(); + while (1) { + // Find next range + // [start, previous] is inclusive range of contiguous bits in mask + for (finish = mask->next(start), previous = start; + finish == previous + 1 && finish != mask->end(); + finish = mask->next(finish)) { + previous = finish; + } + + // The first range does not need a comma printed before it, but the rest + // of the ranges do need a comma beforehand + if (!first_range) { + __kmp_str_buf_print(buf, "%s", ","); + } else { + first_range = false; } + // Range with three or more contiguous bits in the affinity mask + if (previous - start > 1) { + __kmp_str_buf_print(buf, "%u-%u", start, previous); + } else { + // Range with one or two contiguous bits in the affinity mask + __kmp_str_buf_print(buf, "%u", start); + if (previous - start > 0) { + __kmp_str_buf_print(buf, ",%u", previous); + } + } + // Start over with new start point + start = finish; + if (start == mask->end()) + break; + } + return buf; +} - // - // Find any levels with radiix 1, and remove them from the map - // (except for the package level). - // - int new_depth = 0; - int level; - unsigned proc; - for (level = 1; level < (int)depth; level++) { - if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) { - continue; - } - new_depth++; - } +void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) { + KMP_CPU_ZERO(mask); - // - // If we are removing any levels, allocate a new vector to return, - // and copy the relevant information to it. - // - if (new_depth != depth-1) { - AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( - sizeof(AddrUnsPair) * nActiveThreads); - for (proc = 0; (int)proc < nActiveThreads; proc++) { - Address addr(new_depth); - new_retval[proc] = AddrUnsPair(addr, retval[proc].second); - } - int new_level = 0; - for (level = 1; level < (int)depth; level++) { - if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) { - if (level == threadLevel) { - threadLevel = -1; - } - else if ((threadLevel >= 0) && (level < threadLevel)) { - threadLevel--; - } - if (level == coreLevel) { - coreLevel = -1; - } - else if ((coreLevel >= 0) && (level < coreLevel)) { - coreLevel--; - } - if (level < pkgLevel) { - pkgLevel--; - } - continue; - } - for (proc = 0; (int)proc < nActiveThreads; proc++) { - new_retval[proc].first.labels[new_level] - = retval[proc].first.labels[level]; - } - new_level++; - } +#if KMP_GROUP_AFFINITY - __kmp_free(retval); - retval = new_retval; - depth = new_depth; + if (__kmp_num_proc_groups > 1) { + int group; + KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL); + for (group = 0; group < __kmp_num_proc_groups; group++) { + int i; + int num = __kmp_GetActiveProcessorCount(group); + for (i = 0; i < num; i++) { + KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask); + } } + } else - if (__kmp_affinity_gran_levels < 0) { - // - // Set the granularity level based on what levels are modeled - // in the machine topology map. - // - __kmp_affinity_gran_levels = 0; - if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { - __kmp_affinity_gran_levels++; - } - if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { - __kmp_affinity_gran_levels++; - } - if (__kmp_affinity_gran > affinity_gran_package) { - __kmp_affinity_gran_levels++; - } - } +#endif /* KMP_GROUP_AFFINITY */ - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1, - coreLevel-1, threadLevel-1); + { + int proc; + for (proc = 0; proc < __kmp_xproc; proc++) { + KMP_CPU_SET(proc, mask); } - - KMP_CPU_FREE(oldMask); - *address2os = retval; - if(depth == 0) return 0; - else return depth-1; + } } -#endif // KMP_USE_HWLOC -// -// If we don't know how to retrieve the machine's processor topology, or -// encounter an error in doing so, this routine is called to form a "flat" -// mapping of os thread id's <-> processor id's. -// -static int -__kmp_affinity_create_flat_map(AddrUnsPair **address2os, - kmp_i18n_id_t *const msg_id) -{ - *address2os = NULL; - *msg_id = kmp_i18n_null; +// All of the __kmp_affinity_create_*_map() routines should allocate the +// internal topology object and set the layer ids for it. Each routine +// returns a boolean on whether it was successful at doing so. +kmp_affin_mask_t *__kmp_affin_fullMask = NULL; - // - // Even if __kmp_affinity_type == affinity_none, this routine might still - // called to set __kmp_ncores, as well as - // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. - // - if (! KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - __kmp_ncores = nPackages = __kmp_xproc; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffFlatTopology, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - return 0; - } +#if KMP_USE_HWLOC +static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) { +#if HWLOC_API_VERSION >= 0x00020000 + return hwloc_obj_type_is_cache(obj->type); +#else + return obj->type == HWLOC_OBJ_CACHE; +#endif +} - // - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, - // nCoresPerPkg, & nPackages. Make sure all these vars are set - // correctly, and return now if affinity is not enabled. - // - __kmp_ncores = nPackages = __kmp_avail_proc; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); +// Returns KMP_HW_* type derived from HWLOC_* type +static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) { + + if (__kmp_hwloc_is_cache_type(obj)) { + if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION) + return KMP_HW_UNKNOWN; + switch (obj->attr->cache.depth) { + case 1: + return KMP_HW_L1; + case 2: +#if KMP_MIC_SUPPORTED + if (__kmp_mic_type == mic3) { + return KMP_HW_TILE; + } +#endif + return KMP_HW_L2; + case 3: + return KMP_HW_L3; + } + return KMP_HW_UNKNOWN; + } + + switch (obj->type) { + case HWLOC_OBJ_PACKAGE: + return KMP_HW_SOCKET; + case HWLOC_OBJ_NUMANODE: + return KMP_HW_NUMA; + case HWLOC_OBJ_CORE: + return KMP_HW_CORE; + case HWLOC_OBJ_PU: + return KMP_HW_THREAD; + case HWLOC_OBJ_GROUP: + if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE) + return KMP_HW_DIE; + else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE) + return KMP_HW_TILE; + else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE) + return KMP_HW_MODULE; + else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP) + return KMP_HW_PROC_GROUP; + return KMP_HW_UNKNOWN; +#if HWLOC_API_VERSION >= 0x00020100 + case HWLOC_OBJ_DIE: + return KMP_HW_DIE; +#endif + } + return KMP_HW_UNKNOWN; +} - KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - if (__kmp_affinity_type == affinity_none) { - return 0; - } +// Returns the number of objects of type 'type' below 'obj' within the topology +// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is +// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET +// object. +static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj, + hwloc_obj_type_t type) { + int retval = 0; + hwloc_obj_t first; + for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type, + obj->logical_index, type, 0); + first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology, + obj->type, first) == obj; + first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type, + first)) { + ++retval; + } + return retval; +} - // - // Contruct the data structure to be returned. - // - *address2os = (AddrUnsPair*) - __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); - int avail_ct = 0; - unsigned int i; - KMP_CPU_SET_ITERATE(i, fullMask) { - // - // Skip this proc if it is not included in the machine model. - // - if (! KMP_CPU_ISSET(i, fullMask)) { - continue; - } +// This gets the sub_id for a lower object under a higher object in the +// topology tree +static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher, + hwloc_obj_t lower) { + hwloc_obj_t obj; + hwloc_obj_type_t ltype = lower->type; + int lindex = lower->logical_index - 1; + int sub_id = 0; + // Get the previous lower object + obj = hwloc_get_obj_by_type(t, ltype, lindex); + while (obj && lindex >= 0 && + hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) { + if (obj->userdata) { + sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata)); + break; + } + sub_id++; + lindex--; + obj = hwloc_get_obj_by_type(t, ltype, lindex); + } + // store sub_id + 1 so that 0 is differed from NULL + lower->userdata = RCAST(void *, sub_id + 1); + return sub_id; +} - Address addr(1); - addr.labels[0] = i; - (*address2os)[avail_ct++] = AddrUnsPair(addr,i); - } - if (__kmp_affinity_verbose) { - KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); +static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) { + kmp_hw_t type; + int hw_thread_index, sub_id; + int depth; + hwloc_obj_t pu, obj, root, prev; + kmp_hw_t types[KMP_HW_LAST]; + hwloc_obj_type_t hwloc_types[KMP_HW_LAST]; + + hwloc_topology_t tp = __kmp_hwloc_topology; + *msg_id = kmp_i18n_null; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); + } + + if (!KMP_AFFINITY_CAPABLE()) { + // Hack to try and infer the machine topology using only the data + // available from hwloc on the current thread, and __kmp_xproc. + KMP_ASSERT(__kmp_affinity_type == affinity_none); + // hwloc only guarantees existance of PU object, so check PACKAGE and CORE + hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0); + if (o != NULL) + nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE); + else + nCoresPerPkg = 1; // no PACKAGE found + o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0); + if (o != NULL) + __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU); + else + __kmp_nThreadsPerCore = 1; // no CORE found + __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; + if (nCoresPerPkg == 0) + nCoresPerPkg = 1; // to prevent possible division by 0 + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + return true; + } + + root = hwloc_get_root_obj(tp); + + // Figure out the depth and types in the topology + depth = 0; + pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin()); + KMP_ASSERT(pu); + obj = pu; + types[depth] = KMP_HW_THREAD; + hwloc_types[depth] = obj->type; + depth++; + while (obj != root && obj != NULL) { + obj = obj->parent; +#if HWLOC_API_VERSION >= 0x00020000 + if (obj->memory_arity) { + hwloc_obj_t memory; + for (memory = obj->memory_first_child; memory; + memory = hwloc_get_next_child(tp, obj, memory)) { + if (memory->type == HWLOC_OBJ_NUMANODE) + break; + } + if (memory && memory->type == HWLOC_OBJ_NUMANODE) { + types[depth] = KMP_HW_NUMA; + hwloc_types[depth] = memory->type; + depth++; + } } - - if (__kmp_affinity_gran_levels < 0) { - // - // Only the package level is modeled in the machine topology map, - // so the #levels of granularity is either 0 or 1. - // - if (__kmp_affinity_gran > affinity_gran_package) { - __kmp_affinity_gran_levels = 1; - } - else { - __kmp_affinity_gran_levels = 0; +#endif + type = __kmp_hwloc_type_2_topology_type(obj); + if (type != KMP_HW_UNKNOWN) { + types[depth] = type; + hwloc_types[depth] = obj->type; + depth++; + } + } + KMP_ASSERT(depth > 0); + + // Get the order for the types correct + for (int i = 0, j = depth - 1; i < j; ++i, --j) { + hwloc_obj_type_t hwloc_temp = hwloc_types[i]; + kmp_hw_t temp = types[i]; + types[i] = types[j]; + types[j] = temp; + hwloc_types[i] = hwloc_types[j]; + hwloc_types[j] = hwloc_temp; + } + + // Allocate the data structure to be returned. + __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); + + hw_thread_index = 0; + pu = NULL; + while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) { + int index = depth - 1; + bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask); + kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); + if (included) { + hw_thread.clear(); + hw_thread.ids[index] = pu->logical_index; + hw_thread.os_id = pu->os_index; + index--; + } + obj = pu; + prev = obj; + while (obj != root && obj != NULL) { + obj = obj->parent; +#if HWLOC_API_VERSION >= 0x00020000 + // NUMA Nodes are handled differently since they are not within the + // parent/child structure anymore. They are separate children + // of obj (memory_first_child points to first memory child) + if (obj->memory_arity) { + hwloc_obj_t memory; + for (memory = obj->memory_first_child; memory; + memory = hwloc_get_next_child(tp, obj, memory)) { + if (memory->type == HWLOC_OBJ_NUMANODE) + break; } - } - return 1; + if (memory && memory->type == HWLOC_OBJ_NUMANODE) { + sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev); + if (included) { + hw_thread.ids[index] = memory->logical_index; + hw_thread.ids[index + 1] = sub_id; + index--; + } + prev = memory; + } + prev = obj; + } +#endif + type = __kmp_hwloc_type_2_topology_type(obj); + if (type != KMP_HW_UNKNOWN) { + sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev); + if (included) { + hw_thread.ids[index] = obj->logical_index; + hw_thread.ids[index + 1] = sub_id; + index--; + } + prev = obj; + } + } + if (included) + hw_thread_index++; + } + __kmp_topology->sort_ids(); + return true; } +#endif // KMP_USE_HWLOC +// If we don't know how to retrieve the machine's processor topology, or +// encounter an error in doing so, this routine is called to form a "flat" +// mapping of os thread id's <-> processor id's. +static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) { + *msg_id = kmp_i18n_null; + int depth = 3; + kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD}; + + if (__kmp_affinity_verbose) { + KMP_INFORM(UsingFlatOS, "KMP_AFFINITY"); + } + + // Even if __kmp_affinity_type == affinity_none, this routine might still + // called to set __kmp_ncores, as well as + // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + if (!KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + __kmp_ncores = nPackages = __kmp_xproc; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + return true; + } + + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // Make sure all these vars are set correctly, and return now if affinity is + // not enabled. + __kmp_ncores = nPackages = __kmp_avail_proc; + __kmp_nThreadsPerCore = nCoresPerPkg = 1; + + // Construct the data structure to be returned. + __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); + int avail_ct = 0; + int i; + KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { + // Skip this proc if it is not included in the machine model. + if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { + continue; + } + kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct); + hw_thread.clear(); + hw_thread.os_id = i; + hw_thread.ids[0] = i; + hw_thread.ids[1] = 0; + hw_thread.ids[2] = 0; + avail_ct++; + } + if (__kmp_affinity_verbose) { + KMP_INFORM(OSProcToPackage, "KMP_AFFINITY"); + } + return true; +} -# if KMP_GROUP_AFFINITY - -// +#if KMP_GROUP_AFFINITY // If multiple Windows* OS processor groups exist, we can create a 2-level -// topology map with the groups at level 0 and the individual procs at -// level 1. -// +// topology map with the groups at level 0 and the individual procs at level 1. // This facilitates letting the threads float among all procs in a group, // if granularity=group (the default when there are multiple groups). -// -static int -__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os, - kmp_i18n_id_t *const msg_id) -{ - *address2os = NULL; - *msg_id = kmp_i18n_null; - - // - // If we don't have multiple processor groups, return now. - // The flat mapping will be used. - // - if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) { - // FIXME set *msg_id - return -1; - } - - // - // Contruct the data structure to be returned. - // - *address2os = (AddrUnsPair*) - __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc); - int avail_ct = 0; - int i; - KMP_CPU_SET_ITERATE(i, fullMask) { - // - // Skip this proc if it is not included in the machine model. - // - if (! KMP_CPU_ISSET(i, fullMask)) { - continue; - } - - Address addr(2); - addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR)); - addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR)); - (*address2os)[avail_ct++] = AddrUnsPair(addr,i); - - if (__kmp_affinity_verbose) { - KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0], - addr.labels[1]); - } - } - - if (__kmp_affinity_gran_levels < 0) { - if (__kmp_affinity_gran == affinity_gran_group) { - __kmp_affinity_gran_levels = 1; - } - else if ((__kmp_affinity_gran == affinity_gran_fine) - || (__kmp_affinity_gran == affinity_gran_thread)) { - __kmp_affinity_gran_levels = 0; - } - else { - const char *gran_str = NULL; - if (__kmp_affinity_gran == affinity_gran_core) { - gran_str = "core"; - } - else if (__kmp_affinity_gran == affinity_gran_package) { - gran_str = "package"; - } - else if (__kmp_affinity_gran == affinity_gran_node) { - gran_str = "node"; - } - else { - KMP_ASSERT(0); - } - - // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread" - __kmp_affinity_gran_levels = 0; - } - } - return 2; +static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) { + *msg_id = kmp_i18n_null; + int depth = 3; + kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD}; + const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR); + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); + } + + // If we aren't affinity capable, then use flat topology + if (!KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + nPackages = __kmp_num_proc_groups; + __kmp_nThreadsPerCore = 1; + __kmp_ncores = __kmp_xproc; + nCoresPerPkg = nPackages / __kmp_ncores; + return true; + } + + // Construct the data structure to be returned. + __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types); + int avail_ct = 0; + int i; + KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { + // Skip this proc if it is not included in the machine model. + if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { + continue; + } + kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++); + hw_thread.clear(); + hw_thread.os_id = i; + hw_thread.ids[0] = i / BITS_PER_GROUP; + hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP; + } + return true; +} +#endif /* KMP_GROUP_AFFINITY */ + +#if KMP_ARCH_X86 || KMP_ARCH_X86_64 + +template <kmp_uint32 LSB, kmp_uint32 MSB> +static inline unsigned __kmp_extract_bits(kmp_uint32 v) { + const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB; + const kmp_uint32 SHIFT_RIGHT = LSB; + kmp_uint32 retval = v; + retval <<= SHIFT_LEFT; + retval >>= (SHIFT_LEFT + SHIFT_RIGHT); + return retval; } -# endif /* KMP_GROUP_AFFINITY */ - - -# if KMP_ARCH_X86 || KMP_ARCH_X86_64 - -static int -__kmp_cpuid_mask_width(int count) { - int r = 0; +static int __kmp_cpuid_mask_width(int count) { + int r = 0; - while((1<<r) < count) - ++r; - return r; + while ((1 << r) < count) + ++r; + return r; } - class apicThreadInfo { public: - unsigned osId; // param to __kmp_affinity_bind_thread - unsigned apicId; // from cpuid after binding - unsigned maxCoresPerPkg; // "" - unsigned maxThreadsPerPkg; // "" - unsigned pkgId; // inferred from above values - unsigned coreId; // "" - unsigned threadId; // "" + unsigned osId; // param to __kmp_affinity_bind_thread + unsigned apicId; // from cpuid after binding + unsigned maxCoresPerPkg; // "" + unsigned maxThreadsPerPkg; // "" + unsigned pkgId; // inferred from above values + unsigned coreId; // "" + unsigned threadId; // "" }; - -static int -__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b) -{ - const apicThreadInfo *aa = (const apicThreadInfo *)a; - const apicThreadInfo *bb = (const apicThreadInfo *)b; - if (aa->osId < bb->osId) return -1; - if (aa->osId > bb->osId) return 1; - return 0; -} - - -static int -__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b) -{ - const apicThreadInfo *aa = (const apicThreadInfo *)a; - const apicThreadInfo *bb = (const apicThreadInfo *)b; - if (aa->pkgId < bb->pkgId) return -1; - if (aa->pkgId > bb->pkgId) return 1; - if (aa->coreId < bb->coreId) return -1; - if (aa->coreId > bb->coreId) return 1; - if (aa->threadId < bb->threadId) return -1; - if (aa->threadId > bb->threadId) return 1; - return 0; +static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, + const void *b) { + const apicThreadInfo *aa = (const apicThreadInfo *)a; + const apicThreadInfo *bb = (const apicThreadInfo *)b; + if (aa->pkgId < bb->pkgId) + return -1; + if (aa->pkgId > bb->pkgId) + return 1; + if (aa->coreId < bb->coreId) + return -1; + if (aa->coreId > bb->coreId) + return 1; + if (aa->threadId < bb->threadId) + return -1; + if (aa->threadId > bb->threadId) + return 1; + return 0; } +class kmp_cache_info_t { +public: + struct info_t { + unsigned level, mask; + }; + kmp_cache_info_t() : depth(0) { get_leaf4_levels(); } + size_t get_depth() const { return depth; } + info_t &operator[](size_t index) { return table[index]; } + const info_t &operator[](size_t index) const { return table[index]; } + + static kmp_hw_t get_topology_type(unsigned level) { + KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL); + switch (level) { + case 1: + return KMP_HW_L1; + case 2: + return KMP_HW_L2; + case 3: + return KMP_HW_L3; + } + return KMP_HW_UNKNOWN; + } + +private: + static const int MAX_CACHE_LEVEL = 3; + + size_t depth; + info_t table[MAX_CACHE_LEVEL]; + + void get_leaf4_levels() { + unsigned level = 0; + while (depth < MAX_CACHE_LEVEL) { + unsigned cache_type, max_threads_sharing; + unsigned cache_level, cache_mask_width; + kmp_cpuid buf2; + __kmp_x86_cpuid(4, level, &buf2); + cache_type = __kmp_extract_bits<0, 4>(buf2.eax); + if (!cache_type) + break; + // Skip instruction caches + if (cache_type == 2) { + level++; + continue; + } + max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1; + cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing); + cache_level = __kmp_extract_bits<5, 7>(buf2.eax); + table[depth].level = cache_level; + table[depth].mask = ((-1) << cache_mask_width); + depth++; + level++; + } + } +}; -// // On IA-32 architecture and Intel(R) 64 architecture, we attempt to use // an algorithm which cycles through the available os threads, setting // the current thread's affinity mask to that thread, and then retrieves // the Apic Id for each thread context using the cpuid instruction. -// -static int -__kmp_affinity_create_apicid_map(AddrUnsPair **address2os, - kmp_i18n_id_t *const msg_id) -{ - kmp_cpuid buf; - int rc; - *address2os = NULL; - *msg_id = kmp_i18n_null; - - // - // Check if cpuid leaf 4 is supported. - // - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax < 4) { - *msg_id = kmp_i18n_str_NoLeaf4Support; - return -1; - } - - // - // The algorithm used starts by setting the affinity to each available - // thread and retrieving info from the cpuid instruction, so if we are - // not capable of calling __kmp_get_system_affinity() and - // _kmp_get_system_affinity(), then we need to do something else - use - // the defaults that we calculated from issuing cpuid without binding - // to each proc. - // - if (! KMP_AFFINITY_CAPABLE()) { - // - // Hack to try and infer the machine topology using only the data - // available from cpuid on the current thread, and __kmp_xproc. - // - KMP_ASSERT(__kmp_affinity_type == affinity_none); - - // - // Get an upper bound on the number of threads per package using - // cpuid(1). - // - // On some OS/chps combinations where HT is supported by the chip - // but is disabled, this value will be 2 on a single core chip. - // Usually, it will be 2 if HT is enabled and 1 if HT is disabled. - // - __kmp_x86_cpuid(1, 0, &buf); - int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; - if (maxThreadsPerPkg == 0) { - maxThreadsPerPkg = 1; - } - - // - // The num cores per pkg comes from cpuid(4). - // 1 must be added to the encoded value. - // - // The author of cpu_count.cpp treated this only an upper bound - // on the number of cores, but I haven't seen any cases where it - // was greater than the actual number of cores, so we will treat - // it as exact in this block of code. - // - // First, we need to check if cpuid(4) is supported on this chip. - // To see if cpuid(n) is supported, issue cpuid(0) and check if eax - // has the value n or greater. - // - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax >= 4) { - __kmp_x86_cpuid(4, 0, &buf); - nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; - } - else { - nCoresPerPkg = 1; - } - - // - // There is no way to reliably tell if HT is enabled without issuing - // the cpuid instruction from every thread, can correlating the cpuid - // info, so if the machine is not affinity capable, we assume that HT - // is off. We have seen quite a few machines where maxThreadsPerPkg - // is 2, yet the machine does not support HT. - // - // - Older OSes are usually found on machines with older chips, which - // do not support HT. - // - // - The performance penalty for mistakenly identifying a machine as - // HT when it isn't (which results in blocktime being incorrecly set - // to 0) is greater than the penalty when for mistakenly identifying - // a machine as being 1 thread/core when it is really HT enabled - // (which results in blocktime being incorrectly set to a positive - // value). - // - __kmp_ncores = __kmp_xproc; - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - __kmp_nThreadsPerCore = 1; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (__kmp_affinity_uniform_topology()) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - return 0; - } - - // - // - // From here on, we can assume that it is safe to call - // __kmp_get_system_affinity() and __kmp_set_system_affinity(), - // even if __kmp_affinity_type = affinity_none. - // - - // - // Save the affinity mask for the current thread. - // - kmp_affin_mask_t *oldMask; - KMP_CPU_ALLOC(oldMask); - KMP_ASSERT(oldMask != NULL); - __kmp_get_system_affinity(oldMask, TRUE); - - // - // Run through each of the available contexts, binding the current thread - // to it, and obtaining the pertinent information using the cpuid instr. - // - // The relevant information is: - // - // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context - // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. - // - // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The - // value of this field determines the width of the core# + thread# - // fields in the Apic Id. It is also an upper bound on the number - // of threads per package, but it has been verified that situations - // happen were it is not exact. In particular, on certain OS/chip - // combinations where Intel(R) Hyper-Threading Technology is supported - // by the chip but has - // been disabled, the value of this field will be 2 (for a single core - // chip). On other OS/chip combinations supporting - // Intel(R) Hyper-Threading Technology, the value of - // this field will be 1 when Intel(R) Hyper-Threading Technology is - // disabled and 2 when it is enabled. - // - // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The - // value of this field (+1) determines the width of the core# field in - // the Apic Id. The comments in "cpucount.cpp" say that this value is - // an upper bound, but the IA-32 architecture manual says that it is - // exactly the number of cores per package, and I haven't seen any - // case where it wasn't. - // - // From this information, deduce the package Id, core Id, and thread Id, - // and set the corresponding fields in the apicThreadInfo struct. - // - unsigned i; - apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( - __kmp_avail_proc * sizeof(apicThreadInfo)); - unsigned nApics = 0; - KMP_CPU_SET_ITERATE(i, fullMask) { - // - // Skip this proc if it is not included in the machine model. - // - if (! KMP_CPU_ISSET(i, fullMask)) { - continue; - } - KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); - - __kmp_affinity_bind_thread(i); - threadInfo[nApics].osId = i; - - // - // The apic id and max threads per pkg come from cpuid(1). - // - __kmp_x86_cpuid(1, 0, &buf); - if (! (buf.edx >> 9) & 1) { - __kmp_set_system_affinity(oldMask, TRUE); - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_ApicNotPresent; - return -1; - } - threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; - threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; - if (threadInfo[nApics].maxThreadsPerPkg == 0) { - threadInfo[nApics].maxThreadsPerPkg = 1; - } - - // - // Max cores per pkg comes from cpuid(4). - // 1 must be added to the encoded value. - // - // First, we need to check if cpuid(4) is supported on this chip. - // To see if cpuid(n) is supported, issue cpuid(0) and check if eax - // has the value n or greater. - // - __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax >= 4) { - __kmp_x86_cpuid(4, 0, &buf); - threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; - } - else { - threadInfo[nApics].maxCoresPerPkg = 1; - } - - // - // Infer the pkgId / coreId / threadId using only the info - // obtained locally. - // - int widthCT = __kmp_cpuid_mask_width( - threadInfo[nApics].maxThreadsPerPkg); - threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; - - int widthC = __kmp_cpuid_mask_width( - threadInfo[nApics].maxCoresPerPkg); - int widthT = widthCT - widthC; - if (widthT < 0) { - // - // I've never seen this one happen, but I suppose it could, if - // the cpuid instruction on a chip was really screwed up. - // Make sure to restore the affinity mask before the tail call. - // - __kmp_set_system_affinity(oldMask, TRUE); - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - - int maskC = (1 << widthC) - 1; - threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) - &maskC; - - int maskT = (1 << widthT) - 1; - threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT; - - nApics++; - } - - // - // We've collected all the info we need. - // Restore the old affinity mask for this thread. - // - __kmp_set_system_affinity(oldMask, TRUE); - - // - // If there's only one thread context to bind to, form an Address object - // with depth 1 and return immediately (or, if affinity is off, set - // address2os to NULL and return). - // - // If it is configured to omit the package level when there is only a - // single package, the logic at the end of this routine won't work if - // there is only a single thread - it would try to form an Address - // object with depth 0. - // - KMP_ASSERT(nApics > 0); - if (nApics == 1) { - __kmp_ncores = nPackages = 1; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); - - KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - - if (__kmp_affinity_type == affinity_none) { - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - return 0; - } - - *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); - Address addr(1); - addr.labels[0] = threadInfo[0].pkgId; - (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId); - - if (__kmp_affinity_gran_levels < 0) { - __kmp_affinity_gran_levels = 0; - } - - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); - } - - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - return 1; - } - - // - // Sort the threadInfo table by physical Id. - // - qsort(threadInfo, nApics, sizeof(*threadInfo), - __kmp_affinity_cmp_apicThreadInfo_phys_id); - - // - // The table is now sorted by pkgId / coreId / threadId, but we really - // don't know the radix of any of the fields. pkgId's may be sparsely - // assigned among the chips on a system. Although coreId's are usually - // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned - // [0..threadsPerCore-1], we don't want to make any such assumptions. - // - // For that matter, we don't know what coresPerPkg and threadsPerCore - // (or the total # packages) are at this point - we want to determine - // that now. We only have an upper bound on the first two figures. - // - // We also perform a consistency check at this point: the values returned - // by the cpuid instruction for any thread bound to a given package had - // better return the same info for maxThreadsPerPkg and maxCoresPerPkg. - // - nPackages = 1; - nCoresPerPkg = 1; +static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) { + kmp_cpuid buf; + *msg_id = kmp_i18n_null; + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); + } + + // Check if cpuid leaf 4 is supported. + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax < 4) { + *msg_id = kmp_i18n_str_NoLeaf4Support; + return false; + } + + // The algorithm used starts by setting the affinity to each available thread + // and retrieving info from the cpuid instruction, so if we are not capable of + // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we + // need to do something else - use the defaults that we calculated from + // issuing cpuid without binding to each proc. + if (!KMP_AFFINITY_CAPABLE()) { + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + KMP_ASSERT(__kmp_affinity_type == affinity_none); + + // Get an upper bound on the number of threads per package using cpuid(1). + // On some OS/chps combinations where HT is supported by the chip but is + // disabled, this value will be 2 on a single core chip. Usually, it will be + // 2 if HT is enabled and 1 if HT is disabled. + __kmp_x86_cpuid(1, 0, &buf); + int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (maxThreadsPerPkg == 0) { + maxThreadsPerPkg = 1; + } + + // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded + // value. + // + // The author of cpu_count.cpp treated this only an upper bound on the + // number of cores, but I haven't seen any cases where it was greater than + // the actual number of cores, so we will treat it as exact in this block of + // code. + // + // First, we need to check if cpuid(4) is supported on this chip. To see if + // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or + // greater. + __kmp_x86_cpuid(0, 0, &buf); + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } else { + nCoresPerPkg = 1; + } + + // There is no way to reliably tell if HT is enabled without issuing the + // cpuid instruction from every thread, can correlating the cpuid info, so + // if the machine is not affinity capable, we assume that HT is off. We have + // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine + // does not support HT. + // + // - Older OSes are usually found on machines with older chips, which do not + // support HT. + // - The performance penalty for mistakenly identifying a machine as HT when + // it isn't (which results in blocktime being incorrectly set to 0) is + // greater than the penalty when for mistakenly identifying a machine as + // being 1 thread/core when it is really HT enabled (which results in + // blocktime being incorrectly set to a positive value). + __kmp_ncores = __kmp_xproc; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; __kmp_nThreadsPerCore = 1; - unsigned nCores = 1; - - unsigned pkgCt = 1; // to determine radii - unsigned lastPkgId = threadInfo[0].pkgId; - unsigned coreCt = 1; - unsigned lastCoreId = threadInfo[0].coreId; - unsigned threadCt = 1; - unsigned lastThreadId = threadInfo[0].threadId; - - // intra-pkg consist checks - unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; - unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; - - for (i = 1; i < nApics; i++) { - if (threadInfo[i].pkgId != lastPkgId) { - nCores++; - pkgCt++; - lastPkgId = threadInfo[i].pkgId; - if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; - coreCt = 1; - lastCoreId = threadInfo[i].coreId; - if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; - threadCt = 1; - lastThreadId = threadInfo[i].threadId; - - // - // This is a different package, so go on to the next iteration - // without doing any consistency checks. Reset the consistency - // check vars, though. - // - prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; - prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; - continue; - } - - if (threadInfo[i].coreId != lastCoreId) { - nCores++; - coreCt++; - lastCoreId = threadInfo[i].coreId; - if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; - threadCt = 1; - lastThreadId = threadInfo[i].threadId; - } - else if (threadInfo[i].threadId != lastThreadId) { - threadCt++; - lastThreadId = threadInfo[i].threadId; - } - else { - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; - return -1; - } - - // - // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg - // fields agree between all the threads bounds to a given package. - // - if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) - || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_InconsistentCpuidInfo; - return -1; - } - } - nPackages = pkgCt; - if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt; - if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt; - - // - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, - // nCoresPerPkg, & nPackages. Make sure all these vars are set - // correctly, and return now if affinity is not enabled. - // - __kmp_ncores = nCores; - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); - - KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (__kmp_affinity_uniform_topology()) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - - } - - if (__kmp_affinity_type == affinity_none) { - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - return 0; + return true; + } + + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if + // __kmp_affinity_type = affinity_none. + + // Save the affinity mask for the current thread. + kmp_affinity_raii_t previous_affinity; + + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + // + // The relevant information is: + // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context + // has a uniqie Apic Id, which is of the form pkg# : core# : thread#. + // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value + // of this field determines the width of the core# + thread# fields in the + // Apic Id. It is also an upper bound on the number of threads per + // package, but it has been verified that situations happen were it is not + // exact. In particular, on certain OS/chip combinations where Intel(R) + // Hyper-Threading Technology is supported by the chip but has been + // disabled, the value of this field will be 2 (for a single core chip). + // On other OS/chip combinations supporting Intel(R) Hyper-Threading + // Technology, the value of this field will be 1 when Intel(R) + // Hyper-Threading Technology is disabled and 2 when it is enabled. + // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value + // of this field (+1) determines the width of the core# field in the Apic + // Id. The comments in "cpucount.cpp" say that this value is an upper + // bound, but the IA-32 architecture manual says that it is exactly the + // number of cores per package, and I haven't seen any case where it + // wasn't. + // + // From this information, deduce the package Id, core Id, and thread Id, + // and set the corresponding fields in the apicThreadInfo struct. + unsigned i; + apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate( + __kmp_avail_proc * sizeof(apicThreadInfo)); + unsigned nApics = 0; + KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { + // Skip this proc if it is not included in the machine model. + if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { + continue; } + KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc); - // - // Now that we've determined the number of packages, the number of cores - // per package, and the number of threads per core, we can construct the - // data structure that is to be returned. - // - int pkgLevel = 0; - int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1; - int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); - unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); - - KMP_ASSERT(depth > 0); - *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics); - - for (i = 0; i < nApics; ++i) { - Address addr(depth); - unsigned os = threadInfo[i].osId; - int d = 0; + __kmp_affinity_dispatch->bind_thread(i); + threadInfo[nApics].osId = i; - if (pkgLevel >= 0) { - addr.labels[d++] = threadInfo[i].pkgId; - } - if (coreLevel >= 0) { - addr.labels[d++] = threadInfo[i].coreId; - } - if (threadLevel >= 0) { - addr.labels[d++] = threadInfo[i].threadId; - } - (*address2os)[i] = AddrUnsPair(addr, os); - } - - if (__kmp_affinity_gran_levels < 0) { - // - // Set the granularity level based on what levels are modeled - // in the machine topology map. - // - __kmp_affinity_gran_levels = 0; - if ((threadLevel >= 0) - && (__kmp_affinity_gran > affinity_gran_thread)) { - __kmp_affinity_gran_levels++; - } - if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { - __kmp_affinity_gran_levels++; - } - if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) { - __kmp_affinity_gran_levels++; - } + // The apic id and max threads per pkg come from cpuid(1). + __kmp_x86_cpuid(1, 0, &buf); + if (((buf.edx >> 9) & 1) == 0) { + __kmp_free(threadInfo); + *msg_id = kmp_i18n_str_ApicNotPresent; + return false; } - - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel, - coreLevel, threadLevel); + threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff; + threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff; + if (threadInfo[nApics].maxThreadsPerPkg == 0) { + threadInfo[nApics].maxThreadsPerPkg = 1; } - __kmp_free(threadInfo); - KMP_CPU_FREE(oldMask); - return depth; -} - - -// -// Intel(R) microarchitecture code name Nehalem, Dunnington and later -// architectures support a newer interface for specifying the x2APIC Ids, -// based on cpuid leaf 11. -// -static int -__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os, - kmp_i18n_id_t *const msg_id) -{ - kmp_cpuid buf; - - *address2os = NULL; - *msg_id = kmp_i18n_null; - - // - // Check to see if cpuid leaf 11 is supported. + // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded + // value. // + // First, we need to check if cpuid(4) is supported on this chip. To see if + // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n + // or greater. __kmp_x86_cpuid(0, 0, &buf); - if (buf.eax < 11) { - *msg_id = kmp_i18n_str_NoLeaf11Support; - return -1; - } - __kmp_x86_cpuid(11, 0, &buf); - if (buf.ebx == 0) { - *msg_id = kmp_i18n_str_NoLeaf11Support; - return -1; - } - - // - // Find the number of levels in the machine topology. While we're at it, - // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will - // try to get more accurate values later by explicitly counting them, - // but get reasonable defaults now, in case we return early. - // - int level; - int threadLevel = -1; - int coreLevel = -1; - int pkgLevel = -1; - __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; - - for (level = 0;; level++) { - if (level > 31) { - // - // FIXME: Hack for DPD200163180 - // - // If level is big then something went wrong -> exiting - // - // There could actually be 32 valid levels in the machine topology, - // but so far, the only machine we have seen which does not exit - // this loop before iteration 32 has fubar x2APIC settings. - // - // For now, just reject this case based upon loop trip count. - // - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - __kmp_x86_cpuid(11, level, &buf); - if (buf.ebx == 0) { - if (pkgLevel < 0) { - // - // Will infer nPackages from __kmp_xproc - // - pkgLevel = level; - level++; - } - break; - } - int kind = (buf.ecx >> 8) & 0xff; - if (kind == 1) { - // - // SMT level - // - threadLevel = level; - coreLevel = -1; - pkgLevel = -1; - __kmp_nThreadsPerCore = buf.ebx & 0xff; - if (__kmp_nThreadsPerCore == 0) { - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - } - else if (kind == 2) { - // - // core level - // - coreLevel = level; - pkgLevel = -1; - nCoresPerPkg = buf.ebx & 0xff; - if (nCoresPerPkg == 0) { - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - } - else { - if (level <= 0) { - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - if (pkgLevel >= 0) { - continue; - } - pkgLevel = level; - nPackages = buf.ebx & 0xff; - if (nPackages == 0) { - *msg_id = kmp_i18n_str_InvalidCpuidInfo; - return -1; - } - } - } - int depth = level; - - // - // In the above loop, "level" was counted from the finest level (usually - // thread) to the coarsest. The caller expects that we will place the - // labels in (*address2os)[].first.labels[] in the inverse order, so - // we need to invert the vars saying which level means what. - // - if (threadLevel >= 0) { - threadLevel = depth - threadLevel - 1; + if (buf.eax >= 4) { + __kmp_x86_cpuid(4, 0, &buf); + threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1; + } else { + threadInfo[nApics].maxCoresPerPkg = 1; + } + + // Infer the pkgId / coreId / threadId using only the info obtained locally. + int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg); + threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT; + + int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg); + int widthT = widthCT - widthC; + if (widthT < 0) { + // I've never seen this one happen, but I suppose it could, if the cpuid + // instruction on a chip was really screwed up. Make sure to restore the + // affinity mask before the tail call. + __kmp_free(threadInfo); + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return false; + } + + int maskC = (1 << widthC) - 1; + threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC; + + int maskT = (1 << widthT) - 1; + threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT; + + nApics++; + } + + // We've collected all the info we need. + // Restore the old affinity mask for this thread. + previous_affinity.restore(); + + // Sort the threadInfo table by physical Id. + qsort(threadInfo, nApics, sizeof(*threadInfo), + __kmp_affinity_cmp_apicThreadInfo_phys_id); + + // The table is now sorted by pkgId / coreId / threadId, but we really don't + // know the radix of any of the fields. pkgId's may be sparsely assigned among + // the chips on a system. Although coreId's are usually assigned + // [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore (or the + // total # packages) are at this point - we want to determine that now. We + // only have an upper bound on the first two figures. + // + // We also perform a consistency check at this point: the values returned by + // the cpuid instruction for any thread bound to a given package had better + // return the same info for maxThreadsPerPkg and maxCoresPerPkg. + nPackages = 1; + nCoresPerPkg = 1; + __kmp_nThreadsPerCore = 1; + unsigned nCores = 1; + + unsigned pkgCt = 1; // to determine radii + unsigned lastPkgId = threadInfo[0].pkgId; + unsigned coreCt = 1; + unsigned lastCoreId = threadInfo[0].coreId; + unsigned threadCt = 1; + unsigned lastThreadId = threadInfo[0].threadId; + + // intra-pkg consist checks + unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg; + unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg; + + for (i = 1; i < nApics; i++) { + if (threadInfo[i].pkgId != lastPkgId) { + nCores++; + pkgCt++; + lastPkgId = threadInfo[i].pkgId; + if ((int)coreCt > nCoresPerPkg) + nCoresPerPkg = coreCt; + coreCt = 1; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) + __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + + // This is a different package, so go on to the next iteration without + // doing any consistency checks. Reset the consistency check vars, though. + prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg; + prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg; + continue; + } + + if (threadInfo[i].coreId != lastCoreId) { + nCores++; + coreCt++; + lastCoreId = threadInfo[i].coreId; + if ((int)threadCt > __kmp_nThreadsPerCore) + __kmp_nThreadsPerCore = threadCt; + threadCt = 1; + lastThreadId = threadInfo[i].threadId; + } else if (threadInfo[i].threadId != lastThreadId) { + threadCt++; + lastThreadId = threadInfo[i].threadId; + } else { + __kmp_free(threadInfo); + *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; + return false; + } + + // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg + // fields agree between all the threads bounds to a given package. + if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) || + (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) { + __kmp_free(threadInfo); + *msg_id = kmp_i18n_str_InconsistentCpuidInfo; + return false; + } + } + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // Make sure all these vars are set correctly + nPackages = pkgCt; + if ((int)coreCt > nCoresPerPkg) + nCoresPerPkg = coreCt; + if ((int)threadCt > __kmp_nThreadsPerCore) + __kmp_nThreadsPerCore = threadCt; + __kmp_ncores = nCores; + KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc); + + // Now that we've determined the number of packages, the number of cores per + // package, and the number of threads per core, we can construct the data + // structure that is to be returned. + int idx = 0; + int pkgLevel = 0; + int coreLevel = 1; + int threadLevel = 2; + //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1); + int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0); + kmp_hw_t types[3]; + if (pkgLevel >= 0) + types[idx++] = KMP_HW_SOCKET; + if (coreLevel >= 0) + types[idx++] = KMP_HW_CORE; + if (threadLevel >= 0) + types[idx++] = KMP_HW_THREAD; + + KMP_ASSERT(depth > 0); + __kmp_topology = kmp_topology_t::allocate(nApics, depth, types); + + for (i = 0; i < nApics; ++i) { + idx = 0; + unsigned os = threadInfo[i].osId; + kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); + hw_thread.clear(); + + if (pkgLevel >= 0) { + hw_thread.ids[idx++] = threadInfo[i].pkgId; } if (coreLevel >= 0) { - coreLevel = depth - coreLevel - 1; - } - KMP_DEBUG_ASSERT(pkgLevel >= 0); - pkgLevel = depth - pkgLevel - 1; - - // - // The algorithm used starts by setting the affinity to each available - // thread and retrieving info from the cpuid instruction, so if we are - // not capable of calling __kmp_get_system_affinity() and - // _kmp_get_system_affinity(), then we need to do something else - use - // the defaults that we calculated from issuing cpuid without binding - // to each proc. - // - if (! KMP_AFFINITY_CAPABLE()) - { - // - // Hack to try and infer the machine topology using only the data - // available from cpuid on the current thread, and __kmp_xproc. - // - KMP_ASSERT(__kmp_affinity_type == affinity_none); - - __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; - nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; - if (__kmp_affinity_verbose) { - KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (__kmp_affinity_uniform_topology()) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - return 0; - } - - // - // - // From here on, we can assume that it is safe to call - // __kmp_get_system_affinity() and __kmp_set_system_affinity(), - // even if __kmp_affinity_type = affinity_none. - // - - // - // Save the affinity mask for the current thread. - // - kmp_affin_mask_t *oldMask; - KMP_CPU_ALLOC(oldMask); - __kmp_get_system_affinity(oldMask, TRUE); - - // - // Allocate the data structure to be returned. - // - AddrUnsPair *retval = (AddrUnsPair *) - __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc); - - // - // Run through each of the available contexts, binding the current thread - // to it, and obtaining the pertinent information using the cpuid instr. - // - unsigned int proc; - int nApics = 0; - KMP_CPU_SET_ITERATE(proc, fullMask) { - // - // Skip this proc if it is not included in the machine model. - // - if (! KMP_CPU_ISSET(proc, fullMask)) { - continue; - } - KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc); - - __kmp_affinity_bind_thread(proc); - - // - // Extrach the labels for each level in the machine topology map - // from the Apic ID. - // - Address addr(depth); - int prev_shift = 0; - - for (level = 0; level < depth; level++) { - __kmp_x86_cpuid(11, level, &buf); - unsigned apicId = buf.edx; - if (buf.ebx == 0) { - if (level != depth - 1) { - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_InconsistentCpuidInfo; - return -1; - } - addr.labels[depth - level - 1] = apicId >> prev_shift; - level++; - break; - } - int shift = buf.eax & 0x1f; - int mask = (1 << shift) - 1; - addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift; - prev_shift = shift; - } - if (level != depth) { - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_InconsistentCpuidInfo; - return -1; - } - - retval[nApics] = AddrUnsPair(addr, proc); - nApics++; - } - - // - // We've collected all the info we need. - // Restore the old affinity mask for this thread. - // - __kmp_set_system_affinity(oldMask, TRUE); - - // - // If there's only one thread context to bind to, return now. - // - KMP_ASSERT(nApics > 0); - if (nApics == 1) { - __kmp_ncores = nPackages = 1; - __kmp_nThreadsPerCore = nCoresPerPkg = 1; - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask); - - KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - } - - if (__kmp_affinity_type == affinity_none) { - __kmp_free(retval); - KMP_CPU_FREE(oldMask); - return 0; - } - - // - // Form an Address object which only includes the package level. - // - Address addr(1); - addr.labels[0] = retval[0].first.labels[pkgLevel]; - retval[0].first = addr; - - if (__kmp_affinity_gran_levels < 0) { - __kmp_affinity_gran_levels = 0; - } - - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1); - } - - *address2os = retval; - KMP_CPU_FREE(oldMask); - return 1; - } - - // - // Sort the table by physical Id. - // - qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels); - - // - // Find the radix at each of the levels. - // - unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); - unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); - unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); - unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned)); - for (level = 0; level < depth; level++) { - totals[level] = 1; - maxCt[level] = 1; - counts[level] = 1; - last[level] = retval[0].first.labels[level]; + hw_thread.ids[idx++] = threadInfo[i].coreId; } - - // - // From here on, the iteration variable "level" runs from the finest - // level to the coarsest, i.e. we iterate forward through - // (*address2os)[].first.labels[] - in the previous loops, we iterated - // backwards. - // - for (proc = 1; (int)proc < nApics; proc++) { - int level; - for (level = 0; level < depth; level++) { - if (retval[proc].first.labels[level] != last[level]) { - int j; - for (j = level + 1; j < depth; j++) { - totals[j]++; - counts[j] = 1; - // The line below causes printing incorrect topology information - // in case the max value for some level (maxCt[level]) is encountered earlier than - // some less value while going through the array. - // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2 - // whereas it must be 4. - // TODO!!! Check if it can be commented safely - //maxCt[j] = 1; - last[j] = retval[proc].first.labels[j]; - } - totals[level]++; - counts[level]++; - if (counts[level] > maxCt[level]) { - maxCt[level] = counts[level]; - } - last[level] = retval[proc].first.labels[level]; - break; - } - else if (level == depth - 1) { - __kmp_free(last); - __kmp_free(maxCt); - __kmp_free(counts); - __kmp_free(totals); - __kmp_free(retval); - KMP_CPU_FREE(oldMask); - *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; - return -1; - } - } - } - - // - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, - // nCoresPerPkg, & nPackages. Make sure all these vars are set - // correctly, and return if affinity is not enabled. - // if (threadLevel >= 0) { - __kmp_nThreadsPerCore = maxCt[threadLevel]; - } - else { - __kmp_nThreadsPerCore = 1; - } - nPackages = totals[pkgLevel]; - - if (coreLevel >= 0) { - __kmp_ncores = totals[coreLevel]; - nCoresPerPkg = maxCt[coreLevel]; - } - else { - __kmp_ncores = nPackages; - nCoresPerPkg = 1; - } - - // - // Check to see if the machine topology is uniform - // - unsigned prod = maxCt[0]; - for (level = 1; level < depth; level++) { - prod *= maxCt[level]; - } - bool uniform = (prod == totals[level - 1]); - - // - // Print the machine topology summary. - // - if (__kmp_affinity_verbose) { - char mask[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask); - - KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (uniform) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - - kmp_str_buf_t buf; - __kmp_str_buf_init(&buf); - - __kmp_str_buf_print(&buf, "%d", totals[0]); - for (level = 1; level <= pkgLevel; level++) { - __kmp_str_buf_print(&buf, " x %d", maxCt[level]); - } - KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg, - __kmp_nThreadsPerCore, __kmp_ncores); - - __kmp_str_buf_free(&buf); - } - - if (__kmp_affinity_type == affinity_none) { - __kmp_free(last); - __kmp_free(maxCt); - __kmp_free(counts); - __kmp_free(totals); - __kmp_free(retval); - KMP_CPU_FREE(oldMask); - return 0; - } + hw_thread.ids[idx++] = threadInfo[i].threadId; + } + hw_thread.os_id = os; + } + + __kmp_free(threadInfo); + __kmp_topology->sort_ids(); + if (!__kmp_topology->check_ids()) { + kmp_topology_t::deallocate(__kmp_topology); + __kmp_topology = nullptr; + *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique; + return false; + } + return true; +} - // - // Find any levels with radiix 1, and remove them from the map - // (except for the package level). - // - int new_depth = 0; - for (level = 0; level < depth; level++) { - if ((maxCt[level] == 1) && (level != pkgLevel)) { - continue; - } - new_depth++; - } +// Intel(R) microarchitecture code name Nehalem, Dunnington and later +// architectures support a newer interface for specifying the x2APIC Ids, +// based on CPUID.B or CPUID.1F +/* + * CPUID.B or 1F, Input ECX (sub leaf # aka level number) + Bits Bits Bits Bits + 31-16 15-8 7-4 4-0 +---+-----------+--------------+-------------+-----------------+ +EAX| reserved | reserved | reserved | Bits to Shift | +---+-----------|--------------+-------------+-----------------| +EBX| reserved | Num logical processors at level (16 bits) | +---+-----------|--------------+-------------------------------| +ECX| reserved | Level Type | Level Number (8 bits) | +---+-----------+--------------+-------------------------------| +EDX| X2APIC ID (32 bits) | +---+----------------------------------------------------------+ +*/ + +enum { + INTEL_LEVEL_TYPE_INVALID = 0, // Package level + INTEL_LEVEL_TYPE_SMT = 1, + INTEL_LEVEL_TYPE_CORE = 2, + INTEL_LEVEL_TYPE_TILE = 3, + INTEL_LEVEL_TYPE_MODULE = 4, + INTEL_LEVEL_TYPE_DIE = 5, + INTEL_LEVEL_TYPE_LAST = 6, +}; - // - // If we are removing any levels, allocate a new vector to return, - // and copy the relevant information to it. - // - if (new_depth != depth) { - AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate( - sizeof(AddrUnsPair) * nApics); - for (proc = 0; (int)proc < nApics; proc++) { - Address addr(new_depth); - new_retval[proc] = AddrUnsPair(addr, retval[proc].second); - } - int new_level = 0; - int newPkgLevel = -1; - int newCoreLevel = -1; - int newThreadLevel = -1; - int i; - for (level = 0; level < depth; level++) { - if ((maxCt[level] == 1) - && (level != pkgLevel)) { - // - // Remove this level. Never remove the package level - // - continue; - } - if (level == pkgLevel) { - newPkgLevel = level; - } - if (level == coreLevel) { - newCoreLevel = level; - } - if (level == threadLevel) { - newThreadLevel = level; - } - for (proc = 0; (int)proc < nApics; proc++) { - new_retval[proc].first.labels[new_level] - = retval[proc].first.labels[level]; - } - new_level++; - } +struct cpuid_level_info_t { + unsigned level_type, mask, mask_width, nitems, cache_mask; +}; - __kmp_free(retval); - retval = new_retval; - depth = new_depth; - pkgLevel = newPkgLevel; - coreLevel = newCoreLevel; - threadLevel = newThreadLevel; - } - - if (__kmp_affinity_gran_levels < 0) { - // - // Set the granularity level based on what levels are modeled - // in the machine topology map. - // - __kmp_affinity_gran_levels = 0; - if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) { - __kmp_affinity_gran_levels++; - } - if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) { - __kmp_affinity_gran_levels++; - } - if (__kmp_affinity_gran > affinity_gran_package) { - __kmp_affinity_gran_levels++; - } - } +static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) { + switch (intel_type) { + case INTEL_LEVEL_TYPE_INVALID: + return KMP_HW_SOCKET; + case INTEL_LEVEL_TYPE_SMT: + return KMP_HW_THREAD; + case INTEL_LEVEL_TYPE_CORE: + return KMP_HW_CORE; + case INTEL_LEVEL_TYPE_TILE: + return KMP_HW_TILE; + case INTEL_LEVEL_TYPE_MODULE: + return KMP_HW_MODULE; + case INTEL_LEVEL_TYPE_DIE: + return KMP_HW_DIE; + } + return KMP_HW_UNKNOWN; +} - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel, - coreLevel, threadLevel); +// This function takes the topology leaf, a levels array to store the levels +// detected and a bitmap of the known levels. +// Returns the number of levels in the topology +static unsigned +__kmp_x2apicid_get_levels(int leaf, + cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST], + kmp_uint64 known_levels) { + unsigned level, levels_index; + unsigned level_type, mask_width, nitems; + kmp_cpuid buf; + + // New algorithm has known topology layers act as highest unknown topology + // layers when unknown topology layers exist. + // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z> + // are unknown topology layers, Then SMT will take the characteristics of + // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>). + // This eliminates unknown portions of the topology while still keeping the + // correct structure. + level = levels_index = 0; + do { + __kmp_x86_cpuid(leaf, level, &buf); + level_type = __kmp_extract_bits<8, 15>(buf.ecx); + mask_width = __kmp_extract_bits<0, 4>(buf.eax); + nitems = __kmp_extract_bits<0, 15>(buf.ebx); + if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0) + return 0; + + if (known_levels & (1ull << level_type)) { + // Add a new level to the topology + KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST); + levels[levels_index].level_type = level_type; + levels[levels_index].mask_width = mask_width; + levels[levels_index].nitems = nitems; + levels_index++; + } else { + // If it is an unknown level, then logically move the previous layer up + if (levels_index > 0) { + levels[levels_index - 1].mask_width = mask_width; + levels[levels_index - 1].nitems = nitems; + } + } + level++; + } while (level_type != INTEL_LEVEL_TYPE_INVALID); + + // Set the masks to & with apicid + for (unsigned i = 0; i < levels_index; ++i) { + if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) { + levels[i].mask = ~((-1) << levels[i].mask_width); + levels[i].cache_mask = (-1) << levels[i].mask_width; + for (unsigned j = 0; j < i; ++j) + levels[i].mask ^= levels[j].mask; + } else { + KMP_DEBUG_ASSERT(levels_index > 0); + levels[i].mask = (-1) << levels[i - 1].mask_width; + levels[i].cache_mask = 0; } - - __kmp_free(last); - __kmp_free(maxCt); - __kmp_free(counts); - __kmp_free(totals); - KMP_CPU_FREE(oldMask); - *address2os = retval; - return depth; + } + return levels_index; } +static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) { + + cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST]; + kmp_hw_t types[INTEL_LEVEL_TYPE_LAST]; + unsigned levels_index; + kmp_cpuid buf; + kmp_uint64 known_levels; + int topology_leaf, highest_leaf, apic_id; + int num_leaves; + static int leaves[] = {0, 0}; + + kmp_i18n_id_t leaf_message_id; + + KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST); + + *msg_id = kmp_i18n_null; + if (__kmp_affinity_verbose) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); + } + + // Figure out the known topology levels + known_levels = 0ull; + for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) { + if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) { + known_levels |= (1ull << i); + } + } + + // Get the highest cpuid leaf supported + __kmp_x86_cpuid(0, 0, &buf); + highest_leaf = buf.eax; + + // If a specific topology method was requested, only allow that specific leaf + // otherwise, try both leaves 31 and 11 in that order + num_leaves = 0; + if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { + num_leaves = 1; + leaves[0] = 11; + leaf_message_id = kmp_i18n_str_NoLeaf11Support; + } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { + num_leaves = 1; + leaves[0] = 31; + leaf_message_id = kmp_i18n_str_NoLeaf31Support; + } else { + num_leaves = 2; + leaves[0] = 31; + leaves[1] = 11; + leaf_message_id = kmp_i18n_str_NoLeaf11Support; + } + + // Check to see if cpuid leaf 31 or 11 is supported. + __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; + topology_leaf = -1; + for (int i = 0; i < num_leaves; ++i) { + int leaf = leaves[i]; + if (highest_leaf < leaf) + continue; + __kmp_x86_cpuid(leaf, 0, &buf); + if (buf.ebx == 0) + continue; + topology_leaf = leaf; + levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels); + if (levels_index == 0) + continue; + break; + } + if (topology_leaf == -1 || levels_index == 0) { + *msg_id = leaf_message_id; + return false; + } + KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST); + + // The algorithm used starts by setting the affinity to each available thread + // and retrieving info from the cpuid instruction, so if we are not capable of + // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then + // we need to do something else - use the defaults that we calculated from + // issuing cpuid without binding to each proc. + if (!KMP_AFFINITY_CAPABLE()) { + // Hack to try and infer the machine topology using only the data + // available from cpuid on the current thread, and __kmp_xproc. + KMP_ASSERT(__kmp_affinity_type == affinity_none); + for (unsigned i = 0; i < levels_index; ++i) { + if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) { + __kmp_nThreadsPerCore = levels[i].nitems; + } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) { + nCoresPerPkg = levels[i].nitems; + } + } + __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore; + nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg; + return true; + } + + // Allocate the data structure to be returned. + int depth = levels_index; + for (int i = depth - 1, j = 0; i >= 0; --i, ++j) + types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type); + __kmp_topology = + kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types); + + // Insert equivalent cache types if they exist + kmp_cache_info_t cache_info; + for (size_t i = 0; i < cache_info.get_depth(); ++i) { + const kmp_cache_info_t::info_t &info = cache_info[i]; + unsigned cache_mask = info.mask; + unsigned cache_level = info.level; + for (unsigned j = 0; j < levels_index; ++j) { + unsigned hw_cache_mask = levels[j].cache_mask; + kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level); + if (hw_cache_mask == cache_mask && j < levels_index - 1) { + kmp_hw_t type = + __kmp_intel_type_2_topology_type(levels[j + 1].level_type); + __kmp_topology->set_equivalent_type(cache_type, type); + } + } + } + + // From here on, we can assume that it is safe to call + // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if + // __kmp_affinity_type = affinity_none. + + // Save the affinity mask for the current thread. + kmp_affinity_raii_t previous_affinity; + + // Run through each of the available contexts, binding the current thread + // to it, and obtaining the pertinent information using the cpuid instr. + unsigned int proc; + int hw_thread_index = 0; + KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) { + cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST]; + unsigned my_levels_index; + + // Skip this proc if it is not included in the machine model. + if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { + continue; + } + KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc); + + __kmp_affinity_dispatch->bind_thread(proc); + + // New algorithm + __kmp_x86_cpuid(topology_leaf, 0, &buf); + apic_id = buf.edx; + kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index); + my_levels_index = + __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels); + if (my_levels_index == 0 || my_levels_index != levels_index) { + *msg_id = kmp_i18n_str_InvalidCpuidInfo; + return false; + } + hw_thread.clear(); + hw_thread.os_id = proc; + // Put in topology information + for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) { + hw_thread.ids[idx] = apic_id & my_levels[j].mask; + if (j > 0) { + hw_thread.ids[idx] >>= my_levels[j - 1].mask_width; + } + } + hw_thread_index++; + } + KMP_ASSERT(hw_thread_index > 0); + __kmp_topology->sort_ids(); + if (!__kmp_topology->check_ids()) { + kmp_topology_t::deallocate(__kmp_topology); + __kmp_topology = nullptr; + *msg_id = kmp_i18n_str_x2ApicIDsNotUnique; + return false; + } + return true; +} +#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ -# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ - - -#define osIdIndex 0 -#define threadIdIndex 1 -#define coreIdIndex 2 -#define pkgIdIndex 3 -#define nodeIdIndex 4 +#define osIdIndex 0 +#define threadIdIndex 1 +#define coreIdIndex 2 +#define pkgIdIndex 3 +#define nodeIdIndex 4 typedef unsigned *ProcCpuInfo; static unsigned maxIndex = pkgIdIndex; +static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, + const void *b) { + unsigned i; + const unsigned *aa = *(unsigned *const *)a; + const unsigned *bb = *(unsigned *const *)b; + for (i = maxIndex;; i--) { + if (aa[i] < bb[i]) + return -1; + if (aa[i] > bb[i]) + return 1; + if (i == osIdIndex) + break; + } + return 0; +} -static int -__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b) -{ - const unsigned *aa = (const unsigned *)a; - const unsigned *bb = (const unsigned *)b; - if (aa[osIdIndex] < bb[osIdIndex]) return -1; - if (aa[osIdIndex] > bb[osIdIndex]) return 1; - return 0; -}; - +#if KMP_USE_HIER_SCHED +// Set the array sizes for the hierarchy layers +static void __kmp_dispatch_set_hierarchy_values() { + // Set the maximum number of L1's to number of cores + // Set the maximum number of L2's to to either number of cores / 2 for + // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing + // Or the number of cores for Intel(R) Xeon(R) processors + // Set the maximum number of NUMA nodes and L3's to number of packages + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] = + nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores; +#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ + KMP_MIC_SUPPORTED + if (__kmp_mic_type >= mic3) + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2; + else +#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores; + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages; + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages; + __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1; + // Set the number of threads per unit + // Number of hardware threads per L1/L2/L3/NUMA/LOOP + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1; + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] = + __kmp_nThreadsPerCore; +#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \ + KMP_MIC_SUPPORTED + if (__kmp_mic_type >= mic3) + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = + 2 * __kmp_nThreadsPerCore; + else +#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS) + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] = + __kmp_nThreadsPerCore; + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] = + nCoresPerPkg * __kmp_nThreadsPerCore; + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] = + nCoresPerPkg * __kmp_nThreadsPerCore; + __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] = + nPackages * nCoresPerPkg * __kmp_nThreadsPerCore; +} -static int -__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b) -{ - unsigned i; - const unsigned *aa = *((const unsigned **)a); - const unsigned *bb = *((const unsigned **)b); - for (i = maxIndex; ; i--) { - if (aa[i] < bb[i]) return -1; - if (aa[i] > bb[i]) return 1; - if (i == osIdIndex) break; - } +// Return the index into the hierarchy for this tid and layer type (L1, L2, etc) +// i.e., this thread's L1 or this thread's L2, etc. +int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) { + int index = type + 1; + int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1]; + KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST); + if (type == kmp_hier_layer_e::LAYER_THREAD) + return tid; + else if (type == kmp_hier_layer_e::LAYER_LOOP) return 0; + KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0); + if (tid >= num_hw_threads) + tid = tid % num_hw_threads; + return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index]; } +// Return the number of t1's per t2 +int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) { + int i1 = t1 + 1; + int i2 = t2 + 1; + KMP_DEBUG_ASSERT(i1 <= i2); + KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST); + KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST); + KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0); + // (nthreads/t2) / (nthreads/t1) = t1 / t2 + return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1]; +} +#endif // KMP_USE_HIER_SCHED + +static inline const char *__kmp_cpuinfo_get_filename() { + const char *filename; + if (__kmp_cpuinfo_file != nullptr) + filename = __kmp_cpuinfo_file; + else + filename = "/proc/cpuinfo"; + return filename; +} + +static inline const char *__kmp_cpuinfo_get_envvar() { + const char *envvar = nullptr; + if (__kmp_cpuinfo_file != nullptr) + envvar = "KMP_CPUINFO_FILE"; + return envvar; +} -// // Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the // affinity map. -// -static int -__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line, - kmp_i18n_id_t *const msg_id, FILE *f) -{ - *address2os = NULL; - *msg_id = kmp_i18n_null; - - // - // Scan of the file, and count the number of "processor" (osId) fields, - // and find the highest value of <n> for a node_<n> field. - // - char buf[256]; - unsigned num_records = 0; - while (! feof(f)) { - buf[sizeof(buf) - 1] = 1; - if (! fgets(buf, sizeof(buf), f)) { - // - // Read errors presumably because of EOF - // - break; - } - - char s1[] = "processor"; - if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { - num_records++; - continue; - } - - // - // FIXME - this will match "node_<n> <garbage>" - // - unsigned level; - if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { - if (nodeIdIndex + level >= maxIndex) { - maxIndex = nodeIdIndex + level; - } - continue; - } - } - - // - // Check for empty file / no valid processor records, or too many. - // The number of records can't exceed the number of valid bits in the - // affinity mask. - // - if (num_records == 0) { - *line = 0; - *msg_id = kmp_i18n_str_NoProcRecords; - return -1; - } - if (num_records > (unsigned)__kmp_xproc) { - *line = 0; - *msg_id = kmp_i18n_str_TooManyProcRecords; - return -1; - } - - // - // Set the file pointer back to the begginning, so that we can scan the - // file again, this time performing a full parse of the data. - // Allocate a vector of ProcCpuInfo object, where we will place the data. - // Adding an extra element at the end allows us to remove a lot of extra - // checks for termination conditions. - // - if (fseek(f, 0, SEEK_SET) != 0) { - *line = 0; - *msg_id = kmp_i18n_str_CantRewindCpuinfo; - return -1; - } - - // - // Allocate the array of records to store the proc info in. The dummy - // element at the end makes the logic in filling them out easier to code. - // - unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1) - * sizeof(unsigned *)); - unsigned i; - for (i = 0; i <= num_records; i++) { - threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1) - * sizeof(unsigned)); - } - -#define CLEANUP_THREAD_INFO \ - for (i = 0; i <= num_records; i++) { \ - __kmp_free(threadInfo[i]); \ - } \ - __kmp_free(threadInfo); - - // - // A value of UINT_MAX means that we didn't find the field - // - unsigned __index; - -#define INIT_PROC_INFO(p) \ - for (__index = 0; __index <= maxIndex; __index++) { \ - (p)[__index] = UINT_MAX; \ - } - - for (i = 0; i <= num_records; i++) { - INIT_PROC_INFO(threadInfo[i]); - } - - unsigned num_avail = 0; - *line = 0; - while (! feof(f)) { - // - // Create an inner scoping level, so that all the goto targets at the - // end of the loop appear in an outer scoping level. This avoids - // warnings about jumping past an initialization to a target in the - // same block. - // - { - buf[sizeof(buf) - 1] = 1; - bool long_line = false; - if (! fgets(buf, sizeof(buf), f)) { - // - // Read errors presumably because of EOF - // - // If there is valid data in threadInfo[num_avail], then fake - // a blank line in ensure that the last address gets parsed. - // - bool valid = false; - for (i = 0; i <= maxIndex; i++) { - if (threadInfo[num_avail][i] != UINT_MAX) { - valid = true; - } - } - if (! valid) { - break; - } - buf[0] = 0; - } else if (!buf[sizeof(buf) - 1]) { - // - // The line is longer than the buffer. Set a flag and don't - // emit an error if we were going to ignore the line, anyway. - // - long_line = true; - -#define CHECK_LINE \ - if (long_line) { \ - CLEANUP_THREAD_INFO; \ - *msg_id = kmp_i18n_str_LongLineCpuinfo; \ - return -1; \ - } - } - (*line)++; - - char s1[] = "processor"; - if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s1) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; - if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field; - threadInfo[num_avail][osIdIndex] = val; -#if KMP_OS_LINUX && USE_SYSFS_INFO - char path[256]; - KMP_SNPRINTF(path, sizeof(path), - "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", - threadInfo[num_avail][osIdIndex]); - __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); - - KMP_SNPRINTF(path, sizeof(path), - "/sys/devices/system/cpu/cpu%u/topology/core_id", - threadInfo[num_avail][osIdIndex]); - __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); - continue; +static bool __kmp_affinity_create_cpuinfo_map(int *line, + kmp_i18n_id_t *const msg_id) { + const char *filename = __kmp_cpuinfo_get_filename(); + const char *envvar = __kmp_cpuinfo_get_envvar(); + *msg_id = kmp_i18n_null; + + if (__kmp_affinity_verbose) { + KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); + } + + kmp_safe_raii_file_t f(filename, "r", envvar); + + // Scan of the file, and count the number of "processor" (osId) fields, + // and find the highest value of <n> for a node_<n> field. + char buf[256]; + unsigned num_records = 0; + while (!feof(f)) { + buf[sizeof(buf) - 1] = 1; + if (!fgets(buf, sizeof(buf), f)) { + // Read errors presumably because of EOF + break; + } + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + num_records++; + continue; + } + + // FIXME - this will match "node_<n> <garbage>" + unsigned level; + if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { + // validate the input fisrt: + if (level > (unsigned)__kmp_xproc) { // level is too big + level = __kmp_xproc; + } + if (nodeIdIndex + level >= maxIndex) { + maxIndex = nodeIdIndex + level; + } + continue; + } + } + + // Check for empty file / no valid processor records, or too many. The number + // of records can't exceed the number of valid bits in the affinity mask. + if (num_records == 0) { + *msg_id = kmp_i18n_str_NoProcRecords; + return false; + } + if (num_records > (unsigned)__kmp_xproc) { + *msg_id = kmp_i18n_str_TooManyProcRecords; + return false; + } + + // Set the file pointer back to the beginning, so that we can scan the file + // again, this time performing a full parse of the data. Allocate a vector of + // ProcCpuInfo object, where we will place the data. Adding an extra element + // at the end allows us to remove a lot of extra checks for termination + // conditions. + if (fseek(f, 0, SEEK_SET) != 0) { + *msg_id = kmp_i18n_str_CantRewindCpuinfo; + return false; + } + + // Allocate the array of records to store the proc info in. The dummy + // element at the end makes the logic in filling them out easier to code. + unsigned **threadInfo = + (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *)); + unsigned i; + for (i = 0; i <= num_records; i++) { + threadInfo[i] = + (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); + } + +#define CLEANUP_THREAD_INFO \ + for (i = 0; i <= num_records; i++) { \ + __kmp_free(threadInfo[i]); \ + } \ + __kmp_free(threadInfo); + + // A value of UINT_MAX means that we didn't find the field + unsigned __index; + +#define INIT_PROC_INFO(p) \ + for (__index = 0; __index <= maxIndex; __index++) { \ + (p)[__index] = UINT_MAX; \ + } + + for (i = 0; i <= num_records; i++) { + INIT_PROC_INFO(threadInfo[i]); + } + + unsigned num_avail = 0; + *line = 0; + while (!feof(f)) { + // Create an inner scoping level, so that all the goto targets at the end of + // the loop appear in an outer scoping level. This avoids warnings about + // jumping past an initialization to a target in the same block. + { + buf[sizeof(buf) - 1] = 1; + bool long_line = false; + if (!fgets(buf, sizeof(buf), f)) { + // Read errors presumably because of EOF + // If there is valid data in threadInfo[num_avail], then fake + // a blank line in ensure that the last address gets parsed. + bool valid = false; + for (i = 0; i <= maxIndex; i++) { + if (threadInfo[num_avail][i] != UINT_MAX) { + valid = true; + } + } + if (!valid) { + break; + } + buf[0] = 0; + } else if (!buf[sizeof(buf) - 1]) { + // The line is longer than the buffer. Set a flag and don't + // emit an error if we were going to ignore the line, anyway. + long_line = true; + +#define CHECK_LINE \ + if (long_line) { \ + CLEANUP_THREAD_INFO; \ + *msg_id = kmp_i18n_str_LongLineCpuinfo; \ + return false; \ + } + } + (*line)++; + + char s1[] = "processor"; + if (strncmp(buf, s1, sizeof(s1) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s1) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) + goto no_val; + if (threadInfo[num_avail][osIdIndex] != UINT_MAX) +#if KMP_ARCH_AARCH64 + // Handle the old AArch64 /proc/cpuinfo layout differently, + // it contains all of the 'processor' entries listed in a + // single 'Processor' section, therefore the normal looking + // for duplicates in that section will always fail. + num_avail++; #else - } - char s2[] = "physical id"; - if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s2) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; - if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field; - threadInfo[num_avail][pkgIdIndex] = val; - continue; - } - char s3[] = "core id"; - if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s3) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; - if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field; - threadInfo[num_avail][coreIdIndex] = val; - continue; + goto dup_field; +#endif + threadInfo[num_avail][osIdIndex] = val; +#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64) + char path[256]; + KMP_SNPRINTF( + path, sizeof(path), + "/sys/devices/system/cpu/cpu%u/topology/physical_package_id", + threadInfo[num_avail][osIdIndex]); + __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]); + + KMP_SNPRINTF(path, sizeof(path), + "/sys/devices/system/cpu/cpu%u/topology/core_id", + threadInfo[num_avail][osIdIndex]); + __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]); + continue; +#else + } + char s2[] = "physical id"; + if (strncmp(buf, s2, sizeof(s2) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s2) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) + goto no_val; + if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) + goto dup_field; + threadInfo[num_avail][pkgIdIndex] = val; + continue; + } + char s3[] = "core id"; + if (strncmp(buf, s3, sizeof(s3) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s3) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) + goto no_val; + if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) + goto dup_field; + threadInfo[num_avail][coreIdIndex] = val; + continue; #endif // KMP_OS_LINUX && USE_SYSFS_INFO - } - char s4[] = "thread id"; - if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s4) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; - if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field; - threadInfo[num_avail][threadIdIndex] = val; - continue; - } - unsigned level; - if (KMP_SSCANF(buf, "node_%d id", &level) == 1) { - CHECK_LINE; - char *p = strchr(buf + sizeof(s4) - 1, ':'); - unsigned val; - if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val; - KMP_ASSERT(nodeIdIndex + level <= maxIndex); - if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field; - threadInfo[num_avail][nodeIdIndex + level] = val; - continue; - } - - // - // We didn't recognize the leading token on the line. - // There are lots of leading tokens that we don't recognize - - // if the line isn't empty, go on to the next line. - // - if ((*buf != 0) && (*buf != '\n')) { - // - // If the line is longer than the buffer, read characters - // until we find a newline. - // - if (long_line) { - int ch; - while (((ch = fgetc(f)) != EOF) && (ch != '\n')); - } - continue; - } - - // - // A newline has signalled the end of the processor record. - // Check that there aren't too many procs specified. - // - if ((int)num_avail == __kmp_xproc) { - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_TooManyEntries; - return -1; - } - - // - // Check for missing fields. The osId field must be there, and we - // currently require that the physical id field is specified, also. - // - if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingProcField; - return -1; - } - if (threadInfo[0][pkgIdIndex] == UINT_MAX) { - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingPhysicalIDField; - return -1; - } - - // - // Skip this proc if it is not included in the machine model. - // - if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) { - INIT_PROC_INFO(threadInfo[num_avail]); - continue; - } - - // - // We have a successful parse of this proc's info. - // Increment the counter, and prepare for the next proc. - // - num_avail++; - KMP_ASSERT(num_avail <= num_records); - INIT_PROC_INFO(threadInfo[num_avail]); + } + char s4[] = "thread id"; + if (strncmp(buf, s4, sizeof(s4) - 1) == 0) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) + goto no_val; + if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) + goto dup_field; + threadInfo[num_avail][threadIdIndex] = val; + continue; + } + unsigned level; + if (KMP_SSCANF(buf, "node_%u id", &level) == 1) { + CHECK_LINE; + char *p = strchr(buf + sizeof(s4) - 1, ':'); + unsigned val; + if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) + goto no_val; + KMP_ASSERT(nodeIdIndex + level <= maxIndex); + if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) + goto dup_field; + threadInfo[num_avail][nodeIdIndex + level] = val; + continue; + } + + // We didn't recognize the leading token on the line. There are lots of + // leading tokens that we don't recognize - if the line isn't empty, go on + // to the next line. + if ((*buf != 0) && (*buf != '\n')) { + // If the line is longer than the buffer, read characters + // until we find a newline. + if (long_line) { + int ch; + while (((ch = fgetc(f)) != EOF) && (ch != '\n')) + ; } continue; + } - no_val: + // A newline has signalled the end of the processor record. + // Check that there aren't too many procs specified. + if ((int)num_avail == __kmp_xproc) { CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_MissingValCpuinfo; - return -1; + *msg_id = kmp_i18n_str_TooManyEntries; + return false; + } - dup_field: + // Check for missing fields. The osId field must be there, and we + // currently require that the physical id field is specified, also. + if (threadInfo[num_avail][osIdIndex] == UINT_MAX) { CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; - return -1; - } - *line = 0; - -# if KMP_MIC && REDUCE_TEAM_SIZE - unsigned teamSize = 0; -# endif // KMP_MIC && REDUCE_TEAM_SIZE - - // check for num_records == __kmp_xproc ??? - - // - // If there's only one thread context to bind to, form an Address object - // with depth 1 and return immediately (or, if affinity is off, set - // address2os to NULL and return). - // - // If it is configured to omit the package level when there is only a - // single package, the logic at the end of this routine won't work if - // there is only a single thread - it would try to form an Address - // object with depth 0. - // - KMP_ASSERT(num_avail > 0); - KMP_ASSERT(num_avail <= num_records); - if (num_avail == 1) { - __kmp_ncores = 1; - __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1; - if (__kmp_affinity_verbose) { - if (! KMP_AFFINITY_CAPABLE()) { - KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } - else { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - fullMask); - KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } - int index; - kmp_str_buf_t buf; - __kmp_str_buf_init(&buf); - __kmp_str_buf_print(&buf, "1"); - for (index = maxIndex - 1; index > pkgIdIndex; index--) { - __kmp_str_buf_print(&buf, " x 1"); - } - KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1); - __kmp_str_buf_free(&buf); - } - - if (__kmp_affinity_type == affinity_none) { - CLEANUP_THREAD_INFO; - return 0; - } - - *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair)); - Address addr(1); - addr.labels[0] = threadInfo[0][pkgIdIndex]; - (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]); - - if (__kmp_affinity_gran_levels < 0) { - __kmp_affinity_gran_levels = 0; - } - - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1); - } - + *msg_id = kmp_i18n_str_MissingProcField; + return false; + } + if (threadInfo[0][pkgIdIndex] == UINT_MAX) { CLEANUP_THREAD_INFO; - return 1; - } - - // - // Sort the threadInfo table by physical Id. - // - qsort(threadInfo, num_avail, sizeof(*threadInfo), - __kmp_affinity_cmp_ProcCpuInfo_phys_id); - - // - // The table is now sorted by pkgId / coreId / threadId, but we really - // don't know the radix of any of the fields. pkgId's may be sparsely - // assigned among the chips on a system. Although coreId's are usually - // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned - // [0..threadsPerCore-1], we don't want to make any such assumptions. - // - // For that matter, we don't know what coresPerPkg and threadsPerCore - // (or the total # packages) are at this point - we want to determine - // that now. We only have an upper bound on the first two figures. - // - unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1) - * sizeof(unsigned)); - unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1) - * sizeof(unsigned)); - unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1) - * sizeof(unsigned)); - unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1) - * sizeof(unsigned)); - - bool assign_thread_ids = false; - unsigned threadIdCt; - unsigned index; - - restart_radix_check: - threadIdCt = 0; - - // - // Initialize the counter arrays with data from threadInfo[0]. - // - if (assign_thread_ids) { - if (threadInfo[0][threadIdIndex] == UINT_MAX) { - threadInfo[0][threadIdIndex] = threadIdCt++; - } - else if (threadIdCt <= threadInfo[0][threadIdIndex]) { - threadIdCt = threadInfo[0][threadIdIndex] + 1; - } - } - for (index = 0; index <= maxIndex; index++) { - counts[index] = 1; - maxCt[index] = 1; - totals[index] = 1; - lastId[index] = threadInfo[0][index];; - } - - // - // Run through the rest of the OS procs. - // - for (i = 1; i < num_avail; i++) { - // - // Find the most significant index whose id differs - // from the id for the previous OS proc. - // - for (index = maxIndex; index >= threadIdIndex; index--) { - if (assign_thread_ids && (index == threadIdIndex)) { - // - // Auto-assign the thread id field if it wasn't specified. - // - if (threadInfo[i][threadIdIndex] == UINT_MAX) { - threadInfo[i][threadIdIndex] = threadIdCt++; - } - - // - // Aparrently the thread id field was specified for some - // entries and not others. Start the thread id counter - // off at the next higher thread id. - // - else if (threadIdCt <= threadInfo[i][threadIdIndex]) { - threadIdCt = threadInfo[i][threadIdIndex] + 1; - } - } - if (threadInfo[i][index] != lastId[index]) { - // - // Run through all indices which are less significant, - // and reset the counts to 1. - // - // At all levels up to and including index, we need to - // increment the totals and record the last id. - // - unsigned index2; - for (index2 = threadIdIndex; index2 < index; index2++) { - totals[index2]++; - if (counts[index2] > maxCt[index2]) { - maxCt[index2] = counts[index2]; - } - counts[index2] = 1; - lastId[index2] = threadInfo[i][index2]; - } - counts[index]++; - totals[index]++; - lastId[index] = threadInfo[i][index]; - - if (assign_thread_ids && (index > threadIdIndex)) { - -# if KMP_MIC && REDUCE_TEAM_SIZE - // - // The default team size is the total #threads in the machine - // minus 1 thread for every core that has 3 or more threads. - // - teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); -# endif // KMP_MIC && REDUCE_TEAM_SIZE - - // - // Restart the thread counter, as we are on a new core. - // - threadIdCt = 0; - - // - // Auto-assign the thread id field if it wasn't specified. - // - if (threadInfo[i][threadIdIndex] == UINT_MAX) { - threadInfo[i][threadIdIndex] = threadIdCt++; - } - - // - // Aparrently the thread id field was specified for some - // entries and not others. Start the thread id counter - // off at the next higher thread id. - // - else if (threadIdCt <= threadInfo[i][threadIdIndex]) { - threadIdCt = threadInfo[i][threadIdIndex] + 1; - } - } - break; - } - } - if (index < threadIdIndex) { - // - // If thread ids were specified, it is an error if they are not - // unique. Also, check that we waven't already restarted the - // loop (to be safe - shouldn't need to). - // - if ((threadInfo[i][threadIdIndex] != UINT_MAX) - || assign_thread_ids) { - __kmp_free(lastId); - __kmp_free(totals); - __kmp_free(maxCt); - __kmp_free(counts); - CLEANUP_THREAD_INFO; - *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; - return -1; - } - - // - // If the thread ids were not specified and we see entries - // entries that are duplicates, start the loop over and - // assign the thread ids manually. - // - assign_thread_ids = true; - goto restart_radix_check; - } - } - -# if KMP_MIC && REDUCE_TEAM_SIZE - // - // The default team size is the total #threads in the machine - // minus 1 thread for every core that has 3 or more threads. - // - teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 ); -# endif // KMP_MIC && REDUCE_TEAM_SIZE - - for (index = threadIdIndex; index <= maxIndex; index++) { - if (counts[index] > maxCt[index]) { - maxCt[index] = counts[index]; - } - } - - __kmp_nThreadsPerCore = maxCt[threadIdIndex]; - nCoresPerPkg = maxCt[coreIdIndex]; - nPackages = totals[pkgIdIndex]; + *msg_id = kmp_i18n_str_MissingPhysicalIDField; + return false; + } + + // Skip this proc if it is not included in the machine model. + if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], + __kmp_affin_fullMask)) { + INIT_PROC_INFO(threadInfo[num_avail]); + continue; + } - // - // Check to see if the machine topology is uniform - // - unsigned prod = totals[maxIndex]; - for (index = threadIdIndex; index < maxIndex; index++) { - prod *= maxCt[index]; + // We have a successful parse of this proc's info. + // Increment the counter, and prepare for the next proc. + num_avail++; + KMP_ASSERT(num_avail <= num_records); + INIT_PROC_INFO(threadInfo[num_avail]); } - bool uniform = (prod == totals[threadIdIndex]); - - // - // When affinity is off, this routine will still be called to set - // __kmp_ncores, as well as __kmp_nThreadsPerCore, - // nCoresPerPkg, & nPackages. Make sure all these vars are set - // correctly, and return now if affinity is not enabled. - // - __kmp_ncores = totals[coreIdIndex]; + continue; - if (__kmp_affinity_verbose) { - if (! KMP_AFFINITY_CAPABLE()) { - KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY"); - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (uniform) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - } - else { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask); - KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY"); - if (__kmp_affinity_respect_mask) { - KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); - } else { - KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); - } - KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc); - if (uniform) { - KMP_INFORM(Uniform, "KMP_AFFINITY"); - } else { - KMP_INFORM(NonUniform, "KMP_AFFINITY"); - } - } - kmp_str_buf_t buf; - __kmp_str_buf_init(&buf); + no_val: + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_MissingValCpuinfo; + return false; - __kmp_str_buf_print(&buf, "%d", totals[maxIndex]); - for (index = maxIndex - 1; index >= pkgIdIndex; index--) { - __kmp_str_buf_print(&buf, " x %d", maxCt[index]); + dup_field: + CLEANUP_THREAD_INFO; + *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo; + return false; + } + *line = 0; + +#if KMP_MIC && REDUCE_TEAM_SIZE + unsigned teamSize = 0; +#endif // KMP_MIC && REDUCE_TEAM_SIZE + + // check for num_records == __kmp_xproc ??? + + // If it is configured to omit the package level when there is only a single + // package, the logic at the end of this routine won't work if there is only a + // single thread + KMP_ASSERT(num_avail > 0); + KMP_ASSERT(num_avail <= num_records); + + // Sort the threadInfo table by physical Id. + qsort(threadInfo, num_avail, sizeof(*threadInfo), + __kmp_affinity_cmp_ProcCpuInfo_phys_id); + + // The table is now sorted by pkgId / coreId / threadId, but we really don't + // know the radix of any of the fields. pkgId's may be sparsely assigned among + // the chips on a system. Although coreId's are usually assigned + // [0 .. coresPerPkg-1] and threadId's are usually assigned + // [0..threadsPerCore-1], we don't want to make any such assumptions. + // + // For that matter, we don't know what coresPerPkg and threadsPerCore (or the + // total # packages) are at this point - we want to determine that now. We + // only have an upper bound on the first two figures. + unsigned *counts = + (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); + unsigned *maxCt = + (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); + unsigned *totals = + (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); + unsigned *lastId = + (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned)); + + bool assign_thread_ids = false; + unsigned threadIdCt; + unsigned index; + +restart_radix_check: + threadIdCt = 0; + + // Initialize the counter arrays with data from threadInfo[0]. + if (assign_thread_ids) { + if (threadInfo[0][threadIdIndex] == UINT_MAX) { + threadInfo[0][threadIdIndex] = threadIdCt++; + } else if (threadIdCt <= threadInfo[0][threadIdIndex]) { + threadIdCt = threadInfo[0][threadIdIndex] + 1; + } + } + for (index = 0; index <= maxIndex; index++) { + counts[index] = 1; + maxCt[index] = 1; + totals[index] = 1; + lastId[index] = threadInfo[0][index]; + ; + } + + // Run through the rest of the OS procs. + for (i = 1; i < num_avail; i++) { + // Find the most significant index whose id differs from the id for the + // previous OS proc. + for (index = maxIndex; index >= threadIdIndex; index--) { + if (assign_thread_ids && (index == threadIdIndex)) { + // Auto-assign the thread id field if it wasn't specified. + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } + // Apparently the thread id field was specified for some entries and not + // others. Start the thread id counter off at the next higher thread id. + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } + } + if (threadInfo[i][index] != lastId[index]) { + // Run through all indices which are less significant, and reset the + // counts to 1. At all levels up to and including index, we need to + // increment the totals and record the last id. + unsigned index2; + for (index2 = threadIdIndex; index2 < index; index2++) { + totals[index2]++; + if (counts[index2] > maxCt[index2]) { + maxCt[index2] = counts[index2]; + } + counts[index2] = 1; + lastId[index2] = threadInfo[i][index2]; + } + counts[index]++; + totals[index]++; + lastId[index] = threadInfo[i][index]; + + if (assign_thread_ids && (index > threadIdIndex)) { + +#if KMP_MIC && REDUCE_TEAM_SIZE + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); +#endif // KMP_MIC && REDUCE_TEAM_SIZE + + // Restart the thread counter, as we are on a new core. + threadIdCt = 0; + + // Auto-assign the thread id field if it wasn't specified. + if (threadInfo[i][threadIdIndex] == UINT_MAX) { + threadInfo[i][threadIdIndex] = threadIdCt++; + } + + // Apparently the thread id field was specified for some entries and + // not others. Start the thread id counter off at the next higher + // thread id. + else if (threadIdCt <= threadInfo[i][threadIdIndex]) { + threadIdCt = threadInfo[i][threadIdIndex] + 1; + } } - KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex], - maxCt[threadIdIndex], __kmp_ncores); - - __kmp_str_buf_free(&buf); - } - -# if KMP_MIC && REDUCE_TEAM_SIZE - // - // Set the default team size. - // - if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { - __kmp_dflt_team_nth = teamSize; - KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n", - __kmp_dflt_team_nth)); + break; + } } -# endif // KMP_MIC && REDUCE_TEAM_SIZE - - if (__kmp_affinity_type == affinity_none) { + if (index < threadIdIndex) { + // If thread ids were specified, it is an error if they are not unique. + // Also, check that we waven't already restarted the loop (to be safe - + // shouldn't need to). + if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) { __kmp_free(lastId); __kmp_free(totals); __kmp_free(maxCt); __kmp_free(counts); CLEANUP_THREAD_INFO; - return 0; - } - - // - // Count the number of levels which have more nodes at that level than - // at the parent's level (with there being an implicit root node of - // the top level). This is equivalent to saying that there is at least - // one node at this level which has a sibling. These levels are in the - // map, and the package level is always in the map. - // - bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); - int level = 0; - for (index = threadIdIndex; index < maxIndex; index++) { - KMP_ASSERT(totals[index] >= totals[index + 1]); - inMap[index] = (totals[index] > totals[index + 1]); - } - inMap[maxIndex] = (totals[maxIndex] > 1); - inMap[pkgIdIndex] = true; - - int depth = 0; - for (index = threadIdIndex; index <= maxIndex; index++) { - if (inMap[index]) { - depth++; - } - } - KMP_ASSERT(depth > 0); - - // - // Construct the data structure that is to be returned. - // - *address2os = (AddrUnsPair*) - __kmp_allocate(sizeof(AddrUnsPair) * num_avail); - int pkgLevel = -1; - int coreLevel = -1; - int threadLevel = -1; - - for (i = 0; i < num_avail; ++i) { - Address addr(depth); - unsigned os = threadInfo[i][osIdIndex]; - int src_index; - int dst_index = 0; - - for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { - if (! inMap[src_index]) { - continue; - } - addr.labels[dst_index] = threadInfo[i][src_index]; - if (src_index == pkgIdIndex) { - pkgLevel = dst_index; - } - else if (src_index == coreIdIndex) { - coreLevel = dst_index; - } - else if (src_index == threadIdIndex) { - threadLevel = dst_index; - } - dst_index++; - } - (*address2os)[i] = AddrUnsPair(addr, os); - } - - if (__kmp_affinity_gran_levels < 0) { - // - // Set the granularity level based on what levels are modeled - // in the machine topology map. - // - unsigned src_index; - __kmp_affinity_gran_levels = 0; - for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) { - if (! inMap[src_index]) { - continue; - } - switch (src_index) { - case threadIdIndex: - if (__kmp_affinity_gran > affinity_gran_thread) { - __kmp_affinity_gran_levels++; - } - - break; - case coreIdIndex: - if (__kmp_affinity_gran > affinity_gran_core) { - __kmp_affinity_gran_levels++; - } - break; - - case pkgIdIndex: - if (__kmp_affinity_gran > affinity_gran_package) { - __kmp_affinity_gran_levels++; - } - break; - } - } - } - - if (__kmp_affinity_verbose) { - __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel, - coreLevel, threadLevel); - } - - __kmp_free(inMap); - __kmp_free(lastId); - __kmp_free(totals); - __kmp_free(maxCt); - __kmp_free(counts); - CLEANUP_THREAD_INFO; - return depth; + *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; + return false; + } + + // If the thread ids were not specified and we see entries entries that + // are duplicates, start the loop over and assign the thread ids manually. + assign_thread_ids = true; + goto restart_radix_check; + } + } + +#if KMP_MIC && REDUCE_TEAM_SIZE + // The default team size is the total #threads in the machine + // minus 1 thread for every core that has 3 or more threads. + teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1); +#endif // KMP_MIC && REDUCE_TEAM_SIZE + + for (index = threadIdIndex; index <= maxIndex; index++) { + if (counts[index] > maxCt[index]) { + maxCt[index] = counts[index]; + } + } + + __kmp_nThreadsPerCore = maxCt[threadIdIndex]; + nCoresPerPkg = maxCt[coreIdIndex]; + nPackages = totals[pkgIdIndex]; + + // When affinity is off, this routine will still be called to set + // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages. + // Make sure all these vars are set correctly, and return now if affinity is + // not enabled. + __kmp_ncores = totals[coreIdIndex]; + if (!KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(__kmp_affinity_type == affinity_none); + return true; + } + +#if KMP_MIC && REDUCE_TEAM_SIZE + // Set the default team size. + if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) { + __kmp_dflt_team_nth = teamSize; + KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting " + "__kmp_dflt_team_nth = %d\n", + __kmp_dflt_team_nth)); + } +#endif // KMP_MIC && REDUCE_TEAM_SIZE + + KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc); + + // Count the number of levels which have more nodes at that level than at the + // parent's level (with there being an implicit root node of the top level). + // This is equivalent to saying that there is at least one node at this level + // which has a sibling. These levels are in the map, and the package level is + // always in the map. + bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool)); + for (index = threadIdIndex; index < maxIndex; index++) { + KMP_ASSERT(totals[index] >= totals[index + 1]); + inMap[index] = (totals[index] > totals[index + 1]); + } + inMap[maxIndex] = (totals[maxIndex] > 1); + inMap[pkgIdIndex] = true; + inMap[coreIdIndex] = true; + inMap[threadIdIndex] = true; + + int depth = 0; + int idx = 0; + kmp_hw_t types[KMP_HW_LAST]; + int pkgLevel = -1; + int coreLevel = -1; + int threadLevel = -1; + for (index = threadIdIndex; index <= maxIndex; index++) { + if (inMap[index]) { + depth++; + } + } + if (inMap[pkgIdIndex]) { + pkgLevel = idx; + types[idx++] = KMP_HW_SOCKET; + } + if (inMap[coreIdIndex]) { + coreLevel = idx; + types[idx++] = KMP_HW_CORE; + } + if (inMap[threadIdIndex]) { + threadLevel = idx; + types[idx++] = KMP_HW_THREAD; + } + KMP_ASSERT(depth > 0); + + // Construct the data structure that is to be returned. + __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types); + + for (i = 0; i < num_avail; ++i) { + unsigned os = threadInfo[i][osIdIndex]; + int src_index; + int dst_index = 0; + kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); + hw_thread.clear(); + hw_thread.os_id = os; + + idx = 0; + for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) { + if (!inMap[src_index]) { + continue; + } + if (src_index == pkgIdIndex) { + hw_thread.ids[pkgLevel] = threadInfo[i][src_index]; + } else if (src_index == coreIdIndex) { + hw_thread.ids[coreLevel] = threadInfo[i][src_index]; + } else if (src_index == threadIdIndex) { + hw_thread.ids[threadLevel] = threadInfo[i][src_index]; + } + dst_index++; + } + } + + __kmp_free(inMap); + __kmp_free(lastId); + __kmp_free(totals); + __kmp_free(maxCt); + __kmp_free(counts); + CLEANUP_THREAD_INFO; + __kmp_topology->sort_ids(); + if (!__kmp_topology->check_ids()) { + kmp_topology_t::deallocate(__kmp_topology); + __kmp_topology = nullptr; + *msg_id = kmp_i18n_str_PhysicalIDsNotUnique; + return false; + } + return true; } - -// // Create and return a table of affinity masks, indexed by OS thread ID. // This routine handles OR'ing together all the affinity masks of threads // that are sufficiently close, if granularity > fine. -// -static kmp_affin_mask_t * -__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique, - AddrUnsPair *address2os, unsigned numAddrs) -{ - // - // First form a table of affinity masks in order of OS thread id. - // - unsigned depth; - unsigned maxOsId; - unsigned i; - - KMP_ASSERT(numAddrs > 0); - depth = address2os[0].first.depth; - - maxOsId = 0; - for (i = 0; i < numAddrs; i++) { - unsigned osId = address2os[i].second; - if (osId > maxOsId) { - maxOsId = osId; - } - } - kmp_affin_mask_t *osId2Mask; - KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1)); - - // - // Sort the address2os table according to physical order. Doing so - // will put all threads on the same core/package/node in consecutive - // locations. - // - qsort(address2os, numAddrs, sizeof(*address2os), - __kmp_affinity_cmp_Address_labels); - - KMP_ASSERT(__kmp_affinity_gran_levels >= 0); - if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { - KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); - } - if (__kmp_affinity_gran_levels >= (int)depth) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffThreadsMayMigrate); - } - } - - // - // Run through the table, forming the masks for all threads on each - // core. Threads on the same core will have identical "Address" - // objects, not considering the last level, which must be the thread - // id. All threads on a core will appear consecutively. - // - unsigned unique = 0; - unsigned j = 0; // index of 1st thread on core - unsigned leader = 0; - Address *leaderAddr = &(address2os[0].first); - kmp_affin_mask_t *sum; - KMP_CPU_ALLOC_ON_STACK(sum); - KMP_CPU_ZERO(sum); - KMP_CPU_SET(address2os[0].second, sum); - for (i = 1; i < numAddrs; i++) { - // - // If this thread is sufficiently close to the leader (within the - // granularity setting), then set the bit for this os thread in the - // affinity mask for this group, and go on to the next thread. - // - if (leaderAddr->isClose(address2os[i].first, - __kmp_affinity_gran_levels)) { - KMP_CPU_SET(address2os[i].second, sum); - continue; - } - - // - // For every thread in this group, copy the mask to the thread's - // entry in the osId2Mask table. Mark the first address as a - // leader. - // - for (; j < i; j++) { - unsigned osId = address2os[j].second; - KMP_DEBUG_ASSERT(osId <= maxOsId); - kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); - KMP_CPU_COPY(mask, sum); - address2os[j].first.leader = (j == leader); - } - unique++; - - // - // Start a new mask. - // - leader = i; - leaderAddr = &(address2os[i].first); - KMP_CPU_ZERO(sum); - KMP_CPU_SET(address2os[i].second, sum); - } - - // - // For every thread in last group, copy the mask to the thread's - // entry in the osId2Mask table. - // +static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex, + unsigned *numUnique) { + // First form a table of affinity masks in order of OS thread id. + int maxOsId; + int i; + int numAddrs = __kmp_topology->get_num_hw_threads(); + int depth = __kmp_topology->get_depth(); + KMP_ASSERT(numAddrs); + KMP_ASSERT(depth); + + maxOsId = 0; + for (i = numAddrs - 1;; --i) { + int osId = __kmp_topology->at(i).os_id; + if (osId > maxOsId) { + maxOsId = osId; + } + if (i == 0) + break; + } + kmp_affin_mask_t *osId2Mask; + KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1)); + KMP_ASSERT(__kmp_affinity_gran_levels >= 0); + if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) { + KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels); + } + if (__kmp_affinity_gran_levels >= (int)depth) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffThreadsMayMigrate); + } + } + + // Run through the table, forming the masks for all threads on each core. + // Threads on the same core will have identical kmp_hw_thread_t objects, not + // considering the last level, which must be the thread id. All threads on a + // core will appear consecutively. + int unique = 0; + int j = 0; // index of 1st thread on core + int leader = 0; + kmp_affin_mask_t *sum; + KMP_CPU_ALLOC_ON_STACK(sum); + KMP_CPU_ZERO(sum); + KMP_CPU_SET(__kmp_topology->at(0).os_id, sum); + for (i = 1; i < numAddrs; i++) { + // If this thread is sufficiently close to the leader (within the + // granularity setting), then set the bit for this os thread in the + // affinity mask for this group, and go on to the next thread. + if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) { + KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); + continue; + } + + // For every thread in this group, copy the mask to the thread's entry in + // the osId2Mask table. Mark the first address as a leader. for (; j < i; j++) { - unsigned osId = address2os[j].second; - KMP_DEBUG_ASSERT(osId <= maxOsId); - kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); - KMP_CPU_COPY(mask, sum); - address2os[j].first.leader = (j == leader); + int osId = __kmp_topology->at(j).os_id; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + __kmp_topology->at(j).leader = (j == leader); } unique++; - KMP_CPU_FREE_FROM_STACK(sum); - *maxIndex = maxOsId; - *numUnique = unique; - return osId2Mask; + // Start a new mask. + leader = i; + KMP_CPU_ZERO(sum); + KMP_CPU_SET(__kmp_topology->at(i).os_id, sum); + } + + // For every thread in last group, copy the mask to the thread's + // entry in the osId2Mask table. + for (; j < i; j++) { + int osId = __kmp_topology->at(j).os_id; + KMP_DEBUG_ASSERT(osId <= maxOsId); + kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId); + KMP_CPU_COPY(mask, sum); + __kmp_topology->at(j).leader = (j == leader); + } + unique++; + KMP_CPU_FREE_FROM_STACK(sum); + + *maxIndex = maxOsId; + *numUnique = unique; + return osId2Mask; } - -// // Stuff for the affinity proclist parsers. It's easier to declare these vars // as file-static than to try and pass them through the calling sequence of // the recursive-descent OMP_PLACES parser. -// static kmp_affin_mask_t *newMasks; static int numNewMasks; static int nextNewMask; -#define ADD_MASK(_mask) \ - { \ - if (nextNewMask >= numNewMasks) { \ - int i; \ - numNewMasks *= 2; \ - kmp_affin_mask_t* temp; \ - KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ - for(i=0;i<numNewMasks/2;i++) { \ - kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \ - kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \ - KMP_CPU_COPY(dest, src); \ - } \ - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \ - newMasks = temp; \ - } \ - KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ - nextNewMask++; \ - } - -#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \ - { \ - if (((_osId) > _maxOsId) || \ - (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ - if (__kmp_affinity_verbose || (__kmp_affinity_warnings \ - && (__kmp_affinity_type != affinity_none))) { \ - KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ - } \ - } \ - else { \ - ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ - } \ - } - +#define ADD_MASK(_mask) \ + { \ + if (nextNewMask >= numNewMasks) { \ + int i; \ + numNewMasks *= 2; \ + kmp_affin_mask_t *temp; \ + KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \ + for (i = 0; i < numNewMasks / 2; i++) { \ + kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \ + kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \ + KMP_CPU_COPY(dest, src); \ + } \ + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \ + newMasks = temp; \ + } \ + KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \ + nextNewMask++; \ + } + +#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \ + { \ + if (((_osId) > _maxOsId) || \ + (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \ + if (__kmp_affinity_verbose || \ + (__kmp_affinity_warnings && \ + (__kmp_affinity_type != affinity_none))) { \ + KMP_WARNING(AffIgnoreInvalidProcID, _osId); \ + } \ + } else { \ + ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \ + } \ + } -// // Re-parse the proclist (for the explicit affinity type), and form the list // of affinity newMasks indexed by gtid. -// -static void -__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, - unsigned int *out_numMasks, const char *proclist, - kmp_affin_mask_t *osId2Mask, int maxOsId) -{ - int i; - const char *scan = proclist; - const char *next = proclist; - - // - // We use malloc() for the temporary mask vector, - // so that we can use realloc() to extend it. - // - numNewMasks = 2; - KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); - nextNewMask = 0; - kmp_affin_mask_t *sumMask; - KMP_CPU_ALLOC(sumMask); - int setSize = 0; - - for (;;) { - int start, end, stride; - - SKIP_WS(scan); - next = scan; - if (*next == '\0') { - break; +static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, + const char *proclist, + kmp_affin_mask_t *osId2Mask, + int maxOsId) { + int i; + const char *scan = proclist; + const char *next = proclist; + + // We use malloc() for the temporary mask vector, so that we can use + // realloc() to extend it. + numNewMasks = 2; + KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); + nextNewMask = 0; + kmp_affin_mask_t *sumMask; + KMP_CPU_ALLOC(sumMask); + int setSize = 0; + + for (;;) { + int start, end, stride; + + SKIP_WS(scan); + next = scan; + if (*next == '\0') { + break; + } + + if (*next == '{') { + int num; + setSize = 0; + next++; // skip '{' + SKIP_WS(next); + scan = next; + + // Read the first integer in the set. + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist"); + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); + + // Copy the mask for that osId to the sum (union) mask. + if ((num > maxOsId) || + (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + KMP_CPU_ZERO(sumMask); + } else { + KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize = 1; + } + + for (;;) { + // Check for end of set. + SKIP_WS(next); + if (*next == '}') { + next++; // skip '}' + break; } - if (*next == '{') { - int num; - setSize = 0; - next++; // skip '{' - SKIP_WS(next); - scan = next; - - // - // Read the first integer in the set. - // - KMP_ASSERT2((*next >= '0') && (*next <= '9'), - "bad proclist"); - SKIP_DIGITS(next); - num = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(num >= 0, "bad explicit proc list"); - - // - // Copy the mask for that osId to the sum (union) mask. - // - if ((num > maxOsId) || - (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - KMP_CPU_ZERO(sumMask); - } - else { - KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num)); - setSize = 1; - } - - for (;;) { - // - // Check for end of set. - // - SKIP_WS(next); - if (*next == '}') { - next++; // skip '}' - break; - } - - // - // Skip optional comma. - // - if (*next == ',') { - next++; - } - SKIP_WS(next); - - // - // Read the next integer in the set. - // - scan = next; - KMP_ASSERT2((*next >= '0') && (*next <= '9'), - "bad explicit proc list"); - - SKIP_DIGITS(next); - num = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(num >= 0, "bad explicit proc list"); - - // - // Add the mask for that osId to the sum mask. - // - if ((num > maxOsId) || - (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - } - else { - KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); - setSize++; - } - } - if (setSize > 0) { - ADD_MASK(sumMask); - } - - SKIP_WS(next); - if (*next == ',') { - next++; - } - scan = next; - continue; + // Skip optional comma. + if (*next == ',') { + next++; } - - // - // Read the first integer. - // - KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - start = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(start >= 0, "bad explicit proc list"); SKIP_WS(next); - // - // If this isn't a range, then add a mask to the list and go on. - // - if (*next != '-') { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - - // - // Skip optional comma. - // - if (*next == ',') { - next++; - } - scan = next; - continue; - } - - // - // This is a range. Skip over the '-' and read in the 2nd int. - // - next++; // skip '-' - SKIP_WS(next); + // Read the next integer in the set. scan = next; KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); - SKIP_DIGITS(next); - end = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(end >= 0, "bad explicit proc list"); - - // - // Check for a stride parameter - // - stride = 1; - SKIP_WS(next); - if (*next == ':') { - // - // A stride is specified. Skip over the ':" and read the 3rd int. - // - int sign = +1; - next++; // skip ':' - SKIP_WS(next); - scan = next; - if (*next == '-') { - sign = -1; - next++; - SKIP_WS(next); - scan = next; - } - KMP_ASSERT2((*next >= '0') && (*next <= '9'), - "bad explicit proc list"); - SKIP_DIGITS(next); - stride = __kmp_str_to_int(scan, *next); - KMP_ASSERT2(stride >= 0, "bad explicit proc list"); - stride *= sign; - } - // - // Do some range checks. - // - KMP_ASSERT2(stride != 0, "bad explicit proc list"); - if (stride > 0) { - KMP_ASSERT2(start <= end, "bad explicit proc list"); - } - else { - KMP_ASSERT2(start >= end, "bad explicit proc list"); - } - KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); - - // - // Add the mask for each OS proc # to the list. - // - if (stride > 0) { - do { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - start += stride; - } while (start <= end); - } - else { - do { - ADD_MASK_OSID(start, osId2Mask, maxOsId); - start += stride; - } while (start >= end); - } + SKIP_DIGITS(next); + num = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(num >= 0, "bad explicit proc list"); - // - // Skip optional comma. - // + // Add the mask for that osId to the sum mask. + if ((num > maxOsId) || + (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + } else { + KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num)); + setSize++; + } + } + if (setSize > 0) { + ADD_MASK(sumMask); + } + + SKIP_WS(next); + if (*next == ',') { + next++; + } + scan = next; + continue; + } + + // Read the first integer. + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + start = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(start >= 0, "bad explicit proc list"); + SKIP_WS(next); + + // If this isn't a range, then add a mask to the list and go on. + if (*next != '-') { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + + // Skip optional comma. + if (*next == ',') { + next++; + } + scan = next; + continue; + } + + // This is a range. Skip over the '-' and read in the 2nd int. + next++; // skip '-' + SKIP_WS(next); + scan = next; + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + end = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(end >= 0, "bad explicit proc list"); + + // Check for a stride parameter + stride = 1; + SKIP_WS(next); + if (*next == ':') { + // A stride is specified. Skip over the ':" and read the 3rd int. + int sign = +1; + next++; // skip ':' + SKIP_WS(next); + scan = next; + if (*next == '-') { + sign = -1; + next++; SKIP_WS(next); - if (*next == ',') { - next++; - } scan = next; + } + KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list"); + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_ASSERT2(stride >= 0, "bad explicit proc list"); + stride *= sign; + } + + // Do some range checks. + KMP_ASSERT2(stride != 0, "bad explicit proc list"); + if (stride > 0) { + KMP_ASSERT2(start <= end, "bad explicit proc list"); + } else { + KMP_ASSERT2(start >= end, "bad explicit proc list"); } + KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list"); - *out_numMasks = nextNewMask; - if (nextNewMask == 0) { - *out_masks = NULL; - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - return; + // Add the mask for each OS proc # to the list. + if (stride > 0) { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start <= end); + } else { + do { + ADD_MASK_OSID(start, osId2Mask, maxOsId); + start += stride; + } while (start >= end); } - KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); - for(i = 0; i < nextNewMask; i++) { - kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); - kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); - KMP_CPU_COPY(dest, src); + + // Skip optional comma. + SKIP_WS(next); + if (*next == ',') { + next++; } + scan = next; + } + + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - KMP_CPU_FREE(sumMask); + return; + } + KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); + for (i = 0; i < nextNewMask; i++) { + kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); + kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); + KMP_CPU_COPY(dest, src); + } + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); + KMP_CPU_FREE(sumMask); } - -# if OMP_40_ENABLED - /*----------------------------------------------------------------------------- - Re-parse the OMP_PLACES proc id list, forming the newMasks for the different places. Again, Here is the grammar: @@ -3007,1729 +3060,1531 @@ subplace := num : num : signed signed := num signed := + signed signed := - signed - -----------------------------------------------------------------------------*/ +static void __kmp_process_subplace_list(const char **scan, + kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, + int *setSize) { + const char *next; -static void -__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask, - int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) -{ - const char *next; + for (;;) { + int start, count, stride, i; - for (;;) { - int start, count, stride, i; - - // - // Read in the starting proc id - // - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), - "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - start = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(start >= 0); - *scan = next; - - // - // valid follow sets are ',' ':' and '}' - // - SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - if ((start > maxOsId) || - (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - } - else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - (*setSize)++; - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; - } - KMP_ASSERT2(**scan == ':', "bad explicit places list"); - (*scan)++; // skip ':' - - // - // Read count parameter - // - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), - "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - count = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(count >= 0); - *scan = next; - - // - // valid follow sets are ',' ':' and '}' - // - SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - for (i = 0; i < count; i++) { - if ((start > maxOsId) || - (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - break; // don't proliferate warnings for large count - } - else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - start++; - (*setSize)++; - } - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; - } - KMP_ASSERT2(**scan == ':', "bad explicit places list"); - (*scan)++; // skip ':' - - // - // Read stride parameter - // - int sign = +1; - for (;;) { - SKIP_WS(*scan); - if (**scan == '+') { - (*scan)++; // skip '+' - continue; - } - if (**scan == '-') { - sign *= -1; - (*scan)++; // skip '-' - continue; - } - break; - } - SKIP_WS(*scan); - KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), - "bad explicit places list"); - next = *scan; - SKIP_DIGITS(next); - stride = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(stride >= 0); - *scan = next; - stride *= sign; - - // - // valid follow sets are ',' and '}' - // - SKIP_WS(*scan); - if (**scan == '}' || **scan == ',') { - for (i = 0; i < count; i++) { - if ((start > maxOsId) || - (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, start); - } - break; // don't proliferate warnings for large count - } - else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); - start += stride; - (*setSize)++; - } - } - if (**scan == '}') { - break; - } - (*scan)++; // skip ',' - continue; - } - - KMP_ASSERT2(0, "bad explicit places list"); + // Read in the starting proc id + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + start = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(start >= 0); + *scan = next; + + // valid follow sets are ',' ':' and '}' + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + if ((start > maxOsId) || + (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + } else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + (*setSize)++; + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; } -} - - -static void -__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, - int maxOsId, kmp_affin_mask_t *tempMask, int *setSize) -{ - const char *next; + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' - // - // valid follow sets are '{' '!' and num - // + // Read count parameter SKIP_WS(*scan); - if (**scan == '{') { - (*scan)++; // skip '{' - __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask, - setSize); - KMP_ASSERT2(**scan == '}', "bad explicit places list"); - (*scan)++; // skip '}' - } - else if (**scan == '!') { - (*scan)++; // skip '!' - __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); - KMP_CPU_COMPLEMENT(maxOsId, tempMask); - } - else if ((**scan >= '0') && (**scan <= '9')) { - next = *scan; - SKIP_DIGITS(next); - int num = __kmp_str_to_int(*scan, *next); - KMP_ASSERT(num >= 0); - if ((num > maxOsId) || - (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffIgnoreInvalidProcID, num); - } - } - else { - KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); - (*setSize)++; + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(count >= 0); + *scan = next; + + // valid follow sets are ',' ':' and '}' + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start++; + (*setSize)++; } - *scan = next; // skip num - } - else { - KMP_ASSERT2(0, "bad explicit places list"); + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; } -} - - -//static void -void -__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, - unsigned int *out_numMasks, const char *placelist, - kmp_affin_mask_t *osId2Mask, int maxOsId) -{ - int i,j,count,stride,sign; - const char *scan = placelist; - const char *next = placelist; - - numNewMasks = 2; - KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); - nextNewMask = 0; - - // tempMask is modified based on the previous or initial - // place to form the current place - // previousMask contains the previous place - kmp_affin_mask_t *tempMask; - kmp_affin_mask_t *previousMask; - KMP_CPU_ALLOC(tempMask); - KMP_CPU_ZERO(tempMask); - KMP_CPU_ALLOC(previousMask); - KMP_CPU_ZERO(previousMask); - int setSize = 0; + KMP_ASSERT2(**scan == ':', "bad explicit places list"); + (*scan)++; // skip ':' + // Read stride parameter + int sign = +1; for (;;) { - __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); - - // - // valid follow sets are ',' ':' and EOL - // - SKIP_WS(scan); - if (*scan == '\0' || *scan == ',') { - if (setSize > 0) { - ADD_MASK(tempMask); - } - KMP_CPU_ZERO(tempMask); - setSize = 0; - if (*scan == '\0') { - break; - } - scan++; // skip ',' - continue; + SKIP_WS(*scan); + if (**scan == '+') { + (*scan)++; // skip '+' + continue; + } + if (**scan == '-') { + sign *= -1; + (*scan)++; // skip '-' + continue; + } + break; + } + SKIP_WS(*scan); + KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list"); + next = *scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(stride >= 0); + *scan = next; + stride *= sign; + + // valid follow sets are ',' and '}' + SKIP_WS(*scan); + if (**scan == '}' || **scan == ',') { + for (i = 0; i < count; i++) { + if ((start > maxOsId) || + (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, start); + } + break; // don't proliferate warnings for large count + } else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start)); + start += stride; + (*setSize)++; } + } + if (**scan == '}') { + break; + } + (*scan)++; // skip ',' + continue; + } - KMP_ASSERT2(*scan == ':', "bad explicit places list"); - scan++; // skip ':' - - // - // Read count parameter - // - SKIP_WS(scan); - KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), - "bad explicit places list"); - next = scan; - SKIP_DIGITS(next); - count = __kmp_str_to_int(scan, *next); - KMP_ASSERT(count >= 0); - scan = next; + KMP_ASSERT2(0, "bad explicit places list"); + } +} - // - // valid follow sets are ',' ':' and EOL - // - SKIP_WS(scan); - if (*scan == '\0' || *scan == ',') { - stride = +1; - } - else { - KMP_ASSERT2(*scan == ':', "bad explicit places list"); - scan++; // skip ':' - - // - // Read stride parameter - // - sign = +1; - for (;;) { - SKIP_WS(scan); - if (*scan == '+') { - scan++; // skip '+' - continue; - } - if (*scan == '-') { - sign *= -1; - scan++; // skip '-' - continue; - } - break; - } - SKIP_WS(scan); - KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), - "bad explicit places list"); - next = scan; - SKIP_DIGITS(next); - stride = __kmp_str_to_int(scan, *next); - KMP_DEBUG_ASSERT(stride >= 0); - scan = next; - stride *= sign; - } +static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask, + int maxOsId, kmp_affin_mask_t *tempMask, + int *setSize) { + const char *next; + + // valid follow sets are '{' '!' and num + SKIP_WS(*scan); + if (**scan == '{') { + (*scan)++; // skip '{' + __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize); + KMP_ASSERT2(**scan == '}', "bad explicit places list"); + (*scan)++; // skip '}' + } else if (**scan == '!') { + (*scan)++; // skip '!' + __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize); + KMP_CPU_COMPLEMENT(maxOsId, tempMask); + } else if ((**scan >= '0') && (**scan <= '9')) { + next = *scan; + SKIP_DIGITS(next); + int num = __kmp_str_to_int(*scan, *next); + KMP_ASSERT(num >= 0); + if ((num > maxOsId) || + (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffIgnoreInvalidProcID, num); + } + } else { + KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num)); + (*setSize)++; + } + *scan = next; // skip num + } else { + KMP_ASSERT2(0, "bad explicit places list"); + } +} - // Add places determined by initial_place : count : stride - for (i = 0; i < count; i++) { - if (setSize == 0) { - break; - } - // Add the current place, then build the next place (tempMask) from that - KMP_CPU_COPY(previousMask, tempMask); - ADD_MASK(previousMask); - KMP_CPU_ZERO(tempMask); - setSize = 0; - KMP_CPU_SET_ITERATE(j, previousMask) { - if (! KMP_CPU_ISSET(j, previousMask)) { - continue; - } - else if ((j+stride > maxOsId) || (j+stride < 0) || - (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) { - if ((__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) && i < count - 1) { - KMP_WARNING(AffIgnoreInvalidProcID, j+stride); - } - } - else { - KMP_CPU_SET(j+stride, tempMask); - setSize++; - } - } - } - KMP_CPU_ZERO(tempMask); - setSize = 0; +// static void +void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks, + unsigned int *out_numMasks, + const char *placelist, + kmp_affin_mask_t *osId2Mask, + int maxOsId) { + int i, j, count, stride, sign; + const char *scan = placelist; + const char *next = placelist; + + numNewMasks = 2; + KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks); + nextNewMask = 0; + + // tempMask is modified based on the previous or initial + // place to form the current place + // previousMask contains the previous place + kmp_affin_mask_t *tempMask; + kmp_affin_mask_t *previousMask; + KMP_CPU_ALLOC(tempMask); + KMP_CPU_ZERO(tempMask); + KMP_CPU_ALLOC(previousMask); + KMP_CPU_ZERO(previousMask); + int setSize = 0; + + for (;;) { + __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize); + + // valid follow sets are ',' ':' and EOL + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + if (setSize > 0) { + ADD_MASK(tempMask); + } + KMP_CPU_ZERO(tempMask); + setSize = 0; + if (*scan == '\0') { + break; + } + scan++; // skip ',' + continue; + } + + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' + + // Read count parameter + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + count = __kmp_str_to_int(scan, *next); + KMP_ASSERT(count >= 0); + scan = next; + + // valid follow sets are ',' ':' and EOL + SKIP_WS(scan); + if (*scan == '\0' || *scan == ',') { + stride = +1; + } else { + KMP_ASSERT2(*scan == ':', "bad explicit places list"); + scan++; // skip ':' - // - // valid follow sets are ',' and EOL - // + // Read stride parameter + sign = +1; + for (;;) { SKIP_WS(scan); - if (*scan == '\0') { - break; + if (*scan == '+') { + scan++; // skip '+' + continue; } - if (*scan == ',') { - scan++; // skip ',' - continue; + if (*scan == '-') { + sign *= -1; + scan++; // skip '-' + continue; } - - KMP_ASSERT2(0, "bad explicit places list"); + break; + } + SKIP_WS(scan); + KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list"); + next = scan; + SKIP_DIGITS(next); + stride = __kmp_str_to_int(scan, *next); + KMP_DEBUG_ASSERT(stride >= 0); + scan = next; + stride *= sign; + } + + // Add places determined by initial_place : count : stride + for (i = 0; i < count; i++) { + if (setSize == 0) { + break; + } + // Add the current place, then build the next place (tempMask) from that + KMP_CPU_COPY(previousMask, tempMask); + ADD_MASK(previousMask); + KMP_CPU_ZERO(tempMask); + setSize = 0; + KMP_CPU_SET_ITERATE(j, previousMask) { + if (!KMP_CPU_ISSET(j, previousMask)) { + continue; + } + if ((j + stride > maxOsId) || (j + stride < 0) || + (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) || + (!KMP_CPU_ISSET(j + stride, + KMP_CPU_INDEX(osId2Mask, j + stride)))) { + if ((__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) && + i < count - 1) { + KMP_WARNING(AffIgnoreInvalidProcID, j + stride); + } + continue; + } + KMP_CPU_SET(j + stride, tempMask); + setSize++; + } } + KMP_CPU_ZERO(tempMask); + setSize = 0; - *out_numMasks = nextNewMask; - if (nextNewMask == 0) { - *out_masks = NULL; - KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); - return; + // valid follow sets are ',' and EOL + SKIP_WS(scan); + if (*scan == '\0') { + break; } - KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); - KMP_CPU_FREE(tempMask); - KMP_CPU_FREE(previousMask); - for(i = 0; i < nextNewMask; i++) { - kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); - kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i); - KMP_CPU_COPY(dest, src); + if (*scan == ',') { + scan++; // skip ',' + continue; } + + KMP_ASSERT2(0, "bad explicit places list"); + } + + *out_numMasks = nextNewMask; + if (nextNewMask == 0) { + *out_masks = NULL; KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); + return; + } + KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask); + KMP_CPU_FREE(tempMask); + KMP_CPU_FREE(previousMask); + for (i = 0; i < nextNewMask; i++) { + kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); + kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i); + KMP_CPU_COPY(dest, src); + } + KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks); } -# endif /* OMP_40_ENABLED */ - #undef ADD_MASK #undef ADD_MASK_OSID -static void -__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth) -{ - if (__kmp_place_num_sockets == 0 && - __kmp_place_num_cores == 0 && - __kmp_place_num_threads_per_core == 0 ) - return; // no topology limiting actions requested, exit - if (__kmp_place_num_sockets == 0) - __kmp_place_num_sockets = nPackages; // use all available sockets - if (__kmp_place_num_cores == 0) - __kmp_place_num_cores = nCoresPerPkg; // use all available cores - if (__kmp_place_num_threads_per_core == 0 || - __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore) - __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts - - if ( !__kmp_affinity_uniform_topology() ) { - KMP_WARNING( AffThrPlaceNonUniform ); - return; // don't support non-uniform topology - } - if ( depth != 3 ) { - KMP_WARNING( AffThrPlaceNonThreeLevel ); - return; // don't support not-3-level topology - } - if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) { - KMP_WARNING(AffThrPlaceManySockets); - return; - } - if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) { - KMP_WARNING( AffThrPlaceManyCores ); - return; - } - - AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) * - __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core); - - int i, j, k, n_old = 0, n_new = 0; - for (i = 0; i < nPackages; ++i) - if (i < __kmp_place_socket_offset || - i >= __kmp_place_socket_offset + __kmp_place_num_sockets) - n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket - else - for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket - if (j < __kmp_place_core_offset || - j >= __kmp_place_core_offset + __kmp_place_num_cores) - n_old += __kmp_nThreadsPerCore; // skip not-requested core - else - for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core - if (k < __kmp_place_num_threads_per_core) { - newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data - n_new++; - } - n_old++; - } - KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore); - KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores * - __kmp_place_num_threads_per_core); - - nPackages = __kmp_place_num_sockets; // correct nPackages - nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg - __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore - __kmp_avail_proc = n_new; // correct avail_proc - __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores - - __kmp_free( *pAddr ); - *pAddr = newAddr; // replace old topology with new one -} - - -static AddrUnsPair *address2os = NULL; -static int * procarr = NULL; -static int __kmp_aff_depth = 0; - -static void -__kmp_aux_affinity_initialize(void) -{ - if (__kmp_affinity_masks != NULL) { - KMP_ASSERT(fullMask != NULL); - return; - } - - // - // Create the "full" mask - this defines all of the processors that we - // consider to be in the machine model. If respect is set, then it is - // the initialization thread's affinity mask. Otherwise, it is all - // processors that we know about on the machine. - // - if (fullMask == NULL) { - KMP_CPU_ALLOC(fullMask); - } - if (KMP_AFFINITY_CAPABLE()) { - if (__kmp_affinity_respect_mask) { - __kmp_get_system_affinity(fullMask, TRUE); - - // - // Count the number of available processors. - // - unsigned i; - __kmp_avail_proc = 0; - KMP_CPU_SET_ITERATE(i, fullMask) { - if (! KMP_CPU_ISSET(i, fullMask)) { - continue; - } - __kmp_avail_proc++; - } - if (__kmp_avail_proc > __kmp_xproc) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(ErrorInitializeAffinity); - } - __kmp_affinity_type = affinity_none; - KMP_AFFINITY_DISABLE(); - return; - } - } - else { - __kmp_affinity_entire_machine_mask(fullMask); - __kmp_avail_proc = __kmp_xproc; - } - } - - int depth = -1; - kmp_i18n_id_t msg_id = kmp_i18n_null; - - // - // For backward compatibility, setting KMP_CPUINFO_FILE => - // KMP_TOPOLOGY_METHOD=cpuinfo - // - if ((__kmp_cpuinfo_file != NULL) && - (__kmp_affinity_top_method == affinity_top_method_all)) { - __kmp_affinity_top_method = affinity_top_method_cpuinfo; - } - - if (__kmp_affinity_top_method == affinity_top_method_all) { - // - // In the default code path, errors are not fatal - we just try using - // another method. We only emit a warning message if affinity is on, - // or the verbose flag is set, an the nowarnings flag was not set. - // - const char *file_name = NULL; - int line = 0; -# if KMP_USE_HWLOC - if (depth < 0) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); - } - if(!__kmp_hwloc_error) { - depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } else if(depth < 0 && __kmp_affinity_verbose) { - KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); - } - } else if(__kmp_affinity_verbose) { - KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); - } - } -# endif - -# if KMP_ARCH_X86 || KMP_ARCH_X86_64 - - if (depth < 0) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC)); - } - - file_name = NULL; - depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - - if (depth < 0) { - if (__kmp_affinity_verbose) { - if (msg_id != kmp_i18n_null) { - KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), - KMP_I18N_STR(DecodingLegacyAPIC)); - } - else { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC)); - } - } - - file_name = NULL; - depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - } - } - -# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ - -# if KMP_OS_LINUX - - if (depth < 0) { - if (__kmp_affinity_verbose) { - if (msg_id != kmp_i18n_null) { - KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo"); - } - else { - KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo"); - } - } +// This function figures out the deepest level at which there is at least one +// cluster/core with more than one processing unit bound to it. +static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) { + int core_level = 0; - FILE *f = fopen("/proc/cpuinfo", "r"); - if (f == NULL) { - msg_id = kmp_i18n_str_CantOpenCpuinfo; - } - else { - file_name = "/proc/cpuinfo"; - depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); - fclose(f); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - } - } - -# endif /* KMP_OS_LINUX */ - -# if KMP_GROUP_AFFINITY - - if ((depth < 0) && (__kmp_num_proc_groups > 1)) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); - } - - depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); - KMP_ASSERT(depth != 0); - } - -# endif /* KMP_GROUP_AFFINITY */ - - if (depth < 0) { - if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) { - if (file_name == NULL) { - KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id)); - } - else if (line == 0) { - KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id)); - } - else { - KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id)); - } - } - // FIXME - print msg if msg_id = kmp_i18n_null ??? - - file_name = ""; - depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - KMP_ASSERT(depth > 0); - KMP_ASSERT(address2os != NULL); + for (int i = 0; i < nprocs; i++) { + const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i); + for (int j = bottom_level; j > 0; j--) { + if (hw_thread.ids[j] > 0) { + if (core_level < (j - 1)) { + core_level = j - 1; } + } } + } + return core_level; +} - // - // If the user has specified that a paricular topology discovery method - // is to be used, then we abort if that method fails. The exception is - // group affinity, which might have been implicitly set. - // - -# if KMP_ARCH_X86 || KMP_ARCH_X86_64 - - else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", - KMP_I18N_STR(Decodingx2APIC)); - } - - depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - if (depth < 0) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } - else if (__kmp_affinity_top_method == affinity_top_method_apicid) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffInfoStr, "KMP_AFFINITY", - KMP_I18N_STR(DecodingLegacyAPIC)); - } - - depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - if (depth < 0) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); - } - } +// This function counts number of clusters/cores at given level. +static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level, + int core_level) { + return __kmp_topology->get_count(core_level); +} +// This function finds to which cluster/core given processing unit is bound. +static int __kmp_affinity_find_core(int proc, int bottom_level, + int core_level) { + int core = 0; + KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads()); + for (int i = 0; i <= proc; ++i) { + if (i + 1 <= proc) { + for (int j = 0; j <= core_level; ++j) { + if (__kmp_topology->at(i + 1).sub_ids[j] != + __kmp_topology->at(i).sub_ids[j]) { + core++; + break; + } + } + } + } + return core; +} -# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ +// This function finds maximal number of processing units bound to a +// cluster/core at given level. +static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level, + int core_level) { + if (core_level >= bottom_level) + return 1; + int thread_level = __kmp_topology->get_level(KMP_HW_THREAD); + return __kmp_topology->calculate_ratio(thread_level, core_level); +} - else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { - const char *filename; - if (__kmp_cpuinfo_file != NULL) { - filename = __kmp_cpuinfo_file; - } - else { - filename = "/proc/cpuinfo"; - } +static int *procarr = NULL; +static int __kmp_aff_depth = 0; + +// Create a one element mask array (set of places) which only contains the +// initial process's affinity mask +static void __kmp_create_affinity_none_places() { + KMP_ASSERT(__kmp_affin_fullMask != NULL); + KMP_ASSERT(__kmp_affinity_type == affinity_none); + __kmp_affinity_num_masks = 1; + KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); + kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0); + KMP_CPU_COPY(dest, __kmp_affin_fullMask); +} - if (__kmp_affinity_verbose) { - KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename); +static void __kmp_aux_affinity_initialize(void) { + if (__kmp_affinity_masks != NULL) { + KMP_ASSERT(__kmp_affin_fullMask != NULL); + return; + } + + // Create the "full" mask - this defines all of the processors that we + // consider to be in the machine model. If respect is set, then it is the + // initialization thread's affinity mask. Otherwise, it is all processors that + // we know about on the machine. + if (__kmp_affin_fullMask == NULL) { + KMP_CPU_ALLOC(__kmp_affin_fullMask); + } + if (KMP_AFFINITY_CAPABLE()) { + __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE); + if (__kmp_affinity_respect_mask) { + // Count the number of available processors. + unsigned i; + __kmp_avail_proc = 0; + KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) { + if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) { + continue; + } + __kmp_avail_proc++; + } + if (__kmp_avail_proc > __kmp_xproc) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && + (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(ErrorInitializeAffinity); } + __kmp_affinity_type = affinity_none; + KMP_AFFINITY_DISABLE(); + return; + } - FILE *f = fopen(filename, "r"); - if (f == NULL) { - int code = errno; - if (__kmp_cpuinfo_file != NULL) { - __kmp_msg( - kmp_ms_fatal, - KMP_MSG(CantOpenFileForReading, filename), - KMP_ERR(code), - KMP_HNT(NameComesFrom_CPUINFO_FILE), - __kmp_msg_null - ); - } - else { - __kmp_msg( - kmp_ms_fatal, - KMP_MSG(CantOpenFileForReading, filename), - KMP_ERR(code), - __kmp_msg_null - ); - } - } - int line = 0; - depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f); - fclose(f); - if (depth < 0) { - KMP_ASSERT(msg_id != kmp_i18n_null); - if (line > 0) { - KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id)); - } - else { - KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); - } - } - if (__kmp_affinity_type == affinity_none) { - KMP_ASSERT(depth == 0); - KMP_ASSERT(address2os == NULL); - return; - } + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + __kmp_affin_fullMask); + KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf); + } + } else { + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + __kmp_affin_fullMask); + KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf); + } + __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask); + __kmp_avail_proc = __kmp_xproc; +#if KMP_OS_WINDOWS + // Set the process affinity mask since threads' affinity + // masks must be subset of process mask in Windows* OS + __kmp_affin_fullMask->set_process_affinity(true); +#endif } + } -# if KMP_GROUP_AFFINITY + kmp_i18n_id_t msg_id = kmp_i18n_null; - else if (__kmp_affinity_top_method == affinity_top_method_group) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY"); - } - - depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id); - KMP_ASSERT(depth != 0); - if (depth < 0) { - KMP_ASSERT(msg_id != kmp_i18n_null); - KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + // For backward compatibility, setting KMP_CPUINFO_FILE => + // KMP_TOPOLOGY_METHOD=cpuinfo + if ((__kmp_cpuinfo_file != NULL) && + (__kmp_affinity_top_method == affinity_top_method_all)) { + __kmp_affinity_top_method = affinity_top_method_cpuinfo; + } + + bool success = false; + if (__kmp_affinity_top_method == affinity_top_method_all) { +// In the default code path, errors are not fatal - we just try using +// another method. We only emit a warning message if affinity is on, or the +// verbose flag is set, an the nowarnings flag was not set. +#if KMP_USE_HWLOC + if (!success && + __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) { + if (!__kmp_hwloc_error) { + success = __kmp_affinity_create_hwloc_map(&msg_id); + if (!success && __kmp_affinity_verbose) { + KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); } + } else if (__kmp_affinity_verbose) { + KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY"); + } } +#endif -# endif /* KMP_GROUP_AFFINITY */ - - else if (__kmp_affinity_top_method == affinity_top_method_flat) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY"); - } +#if KMP_ARCH_X86 || KMP_ARCH_X86_64 + if (!success) { + success = __kmp_affinity_create_x2apicid_map(&msg_id); + if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); + } + } + if (!success) { + success = __kmp_affinity_create_apicid_map(&msg_id); + if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); + } + } +#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + +#if KMP_OS_LINUX + if (!success) { + int line = 0; + success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); + if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); + } + } +#endif /* KMP_OS_LINUX */ + +#if KMP_GROUP_AFFINITY + if (!success && (__kmp_num_proc_groups > 1)) { + success = __kmp_affinity_create_proc_group_map(&msg_id); + if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); + } + } +#endif /* KMP_GROUP_AFFINITY */ + + if (!success) { + success = __kmp_affinity_create_flat_map(&msg_id); + if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) { + KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id)); + } + KMP_ASSERT(success); + } + } + +// If the user has specified that a paricular topology discovery method is to be +// used, then we abort if that method fails. The exception is group affinity, +// which might have been implicitly set. +#if KMP_USE_HWLOC + else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { + KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC); + success = __kmp_affinity_create_hwloc_map(&msg_id); + if (!success) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } +#endif // KMP_USE_HWLOC - depth = __kmp_affinity_create_flat_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } - // should not fail - KMP_ASSERT(depth > 0); - KMP_ASSERT(address2os != NULL); +#if KMP_ARCH_X86 || KMP_ARCH_X86_64 + else if (__kmp_affinity_top_method == affinity_top_method_x2apicid || + __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) { + success = __kmp_affinity_create_x2apicid_map(&msg_id); + if (!success) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } else if (__kmp_affinity_top_method == affinity_top_method_apicid) { + success = __kmp_affinity_create_apicid_map(&msg_id); + if (!success) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } +#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ + + else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) { + int line = 0; + success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id); + if (!success) { + KMP_ASSERT(msg_id != kmp_i18n_null); + const char *filename = __kmp_cpuinfo_get_filename(); + if (line > 0) { + KMP_FATAL(FileLineMsgExiting, filename, line, + __kmp_i18n_catgets(msg_id)); + } else { + KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id)); + } + } + } + +#if KMP_GROUP_AFFINITY + else if (__kmp_affinity_top_method == affinity_top_method_group) { + success = __kmp_affinity_create_proc_group_map(&msg_id); + KMP_ASSERT(success); + if (!success) { + KMP_ASSERT(msg_id != kmp_i18n_null); + KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id)); + } + } +#endif /* KMP_GROUP_AFFINITY */ + + else if (__kmp_affinity_top_method == affinity_top_method_flat) { + success = __kmp_affinity_create_flat_map(&msg_id); + // should not fail + KMP_ASSERT(success); + } + + // Early exit if topology could not be created + if (!__kmp_topology) { + if (KMP_AFFINITY_CAPABLE() && + (__kmp_affinity_verbose || + (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) { + KMP_WARNING(ErrorInitializeAffinity); + } + if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 && + __kmp_ncores > 0) { + __kmp_topology = kmp_topology_t::allocate(0, 0, NULL); + __kmp_topology->canonicalize(nPackages, nCoresPerPkg, + __kmp_nThreadsPerCore, __kmp_ncores); + if (__kmp_affinity_verbose) { + __kmp_topology->print("KMP_AFFINITY"); + } + } + __kmp_affinity_type = affinity_none; + __kmp_create_affinity_none_places(); +#if KMP_USE_HIER_SCHED + __kmp_dispatch_set_hierarchy_values(); +#endif + KMP_AFFINITY_DISABLE(); + return; + } + + // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and + // initialize other data structures which depend on the topology + __kmp_topology->canonicalize(); + if (__kmp_affinity_verbose) + __kmp_topology->print("KMP_AFFINITY"); + bool filtered = __kmp_topology->filter_hw_subset(); + if (filtered && __kmp_affinity_verbose) + __kmp_topology->print("KMP_HW_SUBSET"); + machine_hierarchy.init(__kmp_topology->get_num_hw_threads()); + KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads()); + // If KMP_AFFINITY=none, then only create the single "none" place + // which is the process's initial affinity mask or the number of + // hardware threads depending on respect,norespect + if (__kmp_affinity_type == affinity_none) { + __kmp_create_affinity_none_places(); +#if KMP_USE_HIER_SCHED + __kmp_dispatch_set_hierarchy_values(); +#endif + return; + } + int depth = __kmp_topology->get_depth(); + + // Create the table of masks, indexed by thread Id. + unsigned maxIndex; + unsigned numUnique; + kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique); + if (__kmp_affinity_gran_levels == 0) { + KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); + } + + switch (__kmp_affinity_type) { + + case affinity_explicit: + KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); + if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) { + __kmp_affinity_process_proclist( + &__kmp_affinity_masks, &__kmp_affinity_num_masks, + __kmp_affinity_proclist, osId2Mask, maxIndex); + } else { + __kmp_affinity_process_placelist( + &__kmp_affinity_masks, &__kmp_affinity_num_masks, + __kmp_affinity_proclist, osId2Mask, maxIndex); + } + if (__kmp_affinity_num_masks == 0) { + if (__kmp_affinity_verbose || + (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) { + KMP_WARNING(AffNoValidProcID); + } + __kmp_affinity_type = affinity_none; + __kmp_create_affinity_none_places(); + return; + } + break; + + // The other affinity types rely on sorting the hardware threads according to + // some permutation of the machine topology tree. Set __kmp_affinity_compact + // and __kmp_affinity_offset appropriately, then jump to a common code + // fragment to do the sort and create the array of affinity masks. + case affinity_logical: + __kmp_affinity_compact = 0; + if (__kmp_affinity_offset) { + __kmp_affinity_offset = + __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; + } + goto sortTopology; + + case affinity_physical: + if (__kmp_nThreadsPerCore > 1) { + __kmp_affinity_compact = 1; + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } + } else { + __kmp_affinity_compact = 0; } - -# if KMP_USE_HWLOC - else if (__kmp_affinity_top_method == affinity_top_method_hwloc) { - if (__kmp_affinity_verbose) { - KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY"); - } - depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id); - if (depth == 0) { - KMP_ASSERT(__kmp_affinity_type == affinity_none); - KMP_ASSERT(address2os == NULL); - return; - } -# if KMP_DEBUG - AddrUnsPair *otheraddress2os = NULL; - int otherdepth = -1; -# if KMP_MIC - otherdepth = __kmp_affinity_create_apicid_map(&otheraddress2os, &msg_id); -# else - otherdepth = __kmp_affinity_create_x2apicid_map(&otheraddress2os, &msg_id); -# endif - if(otheraddress2os != NULL && address2os != NULL) { - int i; - unsigned arent_equal_flag = 0; - for(i=0;i<__kmp_avail_proc;i++) { - if(otheraddress2os[i] != address2os[i]) arent_equal_flag = 1; - } - if(arent_equal_flag) { - KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are different from APICID\n")); - KA_TRACE(10, ("__kmp_aux_affinity_initialize: APICID Table:\n")); - for(i=0;i<__kmp_avail_proc;i++) { - otheraddress2os[i].print(); __kmp_printf("\n"); - } - KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc Table:\n")); - for(i=0;i<__kmp_avail_proc;i++) { - address2os[i].print(); __kmp_printf("\n"); - } - } - else { - KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are same as APICID\n")); - } - } -# endif // KMP_DEBUG + if (__kmp_affinity_offset) { + __kmp_affinity_offset = + __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc; } -# endif // KMP_USE_HWLOC + goto sortTopology; - if (address2os == NULL) { - if (KMP_AFFINITY_CAPABLE() - && (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none)))) { - KMP_WARNING(ErrorInitializeAffinity); + case affinity_scatter: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = 0; + } else { + __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; + } + goto sortTopology; + + case affinity_compact: + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = depth - 1; + } + goto sortTopology; + + case affinity_balanced: + if (depth <= 1) { + if (__kmp_affinity_verbose || __kmp_affinity_warnings) { + KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); + } + __kmp_affinity_type = affinity_none; + __kmp_create_affinity_none_places(); + return; + } else if (!__kmp_topology->is_uniform()) { + // Save the depth for further usage + __kmp_aff_depth = depth; + + int core_level = + __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1); + int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1, + core_level); + int maxprocpercore = __kmp_affinity_max_proc_per_core( + __kmp_avail_proc, depth - 1, core_level); + + int nproc = ncores * maxprocpercore; + if ((nproc < 2) || (nproc < __kmp_avail_proc)) { + if (__kmp_affinity_verbose || __kmp_affinity_warnings) { + KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY"); } __kmp_affinity_type = affinity_none; - KMP_AFFINITY_DISABLE(); return; - } + } - __kmp_apply_thread_places(&address2os, depth); + procarr = (int *)__kmp_allocate(sizeof(int) * nproc); + for (int i = 0; i < nproc; i++) { + procarr[i] = -1; + } - // - // Create the table of masks, indexed by thread Id. - // - unsigned maxIndex; - unsigned numUnique; - kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique, - address2os, __kmp_avail_proc); - if (__kmp_affinity_gran_levels == 0) { - KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc); - } + int lastcore = -1; + int inlastcore = 0; + for (int i = 0; i < __kmp_avail_proc; i++) { + int proc = __kmp_topology->at(i).os_id; + int core = __kmp_affinity_find_core(i, depth - 1, core_level); - // - // Set the childNums vector in all Address objects. This must be done - // before we can sort using __kmp_affinity_cmp_Address_child_num(), - // which takes into account the setting of __kmp_affinity_compact. - // - __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc); - - switch (__kmp_affinity_type) { - - case affinity_explicit: - KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL); -# if OMP_40_ENABLED - if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) -# endif - { - __kmp_affinity_process_proclist(&__kmp_affinity_masks, - &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, - maxIndex); - } -# if OMP_40_ENABLED - else { - __kmp_affinity_process_placelist(&__kmp_affinity_masks, - &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask, - maxIndex); - } -# endif - if (__kmp_affinity_num_masks == 0) { - if (__kmp_affinity_verbose || (__kmp_affinity_warnings - && (__kmp_affinity_type != affinity_none))) { - KMP_WARNING(AffNoValidProcID); - } - __kmp_affinity_type = affinity_none; - return; - } - break; - - // - // The other affinity types rely on sorting the Addresses according - // to some permutation of the machine topology tree. Set - // __kmp_affinity_compact and __kmp_affinity_offset appropriately, - // then jump to a common code fragment to do the sort and create - // the array of affinity masks. - // - - case affinity_logical: - __kmp_affinity_compact = 0; - if (__kmp_affinity_offset) { - __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset - % __kmp_avail_proc; - } - goto sortAddresses; - - case affinity_physical: - if (__kmp_nThreadsPerCore > 1) { - __kmp_affinity_compact = 1; - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = 0; - } + if (core == lastcore) { + inlastcore++; } else { - __kmp_affinity_compact = 0; - } - if (__kmp_affinity_offset) { - __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset - % __kmp_avail_proc; - } - goto sortAddresses; - - case affinity_scatter: - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = 0; - } - else { - __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact; - } - goto sortAddresses; - - case affinity_compact: - if (__kmp_affinity_compact >= depth) { - __kmp_affinity_compact = depth - 1; - } - goto sortAddresses; - - case affinity_balanced: - // Balanced works only for the case of a single package - if( nPackages > 1 ) { - if( __kmp_affinity_verbose || __kmp_affinity_warnings ) { - KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" ); - } - __kmp_affinity_type = affinity_none; - return; - } else if( __kmp_affinity_uniform_topology() ) { - break; - } else { // Non-uniform topology - - // Save the depth for further usage - __kmp_aff_depth = depth; - - // Number of hyper threads per core in HT machine - int nth_per_core = __kmp_nThreadsPerCore; - - int core_level; - if( nth_per_core > 1 ) { - core_level = depth - 2; - } else { - core_level = depth - 1; - } - int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; - int nproc = nth_per_core * ncores; - - procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); - for( int i = 0; i < nproc; i++ ) { - procarr[ i ] = -1; - } - - for( int i = 0; i < __kmp_avail_proc; i++ ) { - int proc = address2os[ i ].second; - // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread. - // If there is only one thread per core then depth == 2: level 0 - package, - // level 1 - core. - int level = depth - 1; - - // __kmp_nth_per_core == 1 - int thread = 0; - int core = address2os[ i ].first.labels[ level ]; - // If the thread level exists, that is we have more than one thread context per core - if( nth_per_core > 1 ) { - thread = address2os[ i ].first.labels[ level ] % nth_per_core; - core = address2os[ i ].first.labels[ level - 1 ]; - } - procarr[ core * nth_per_core + thread ] = proc; - } - - break; + inlastcore = 0; } + lastcore = core; - sortAddresses: - // - // Allocate the gtid->affinity mask table. - // - if (__kmp_affinity_dups) { - __kmp_affinity_num_masks = __kmp_avail_proc; - } - else { - __kmp_affinity_num_masks = numUnique; - } - -# if OMP_40_ENABLED - if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel ) - && ( __kmp_affinity_num_places > 0 ) - && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) { - __kmp_affinity_num_masks = __kmp_affinity_num_places; - } -# endif - - KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); - - // - // Sort the address2os table according to the current setting of - // __kmp_affinity_compact, then fill out __kmp_affinity_masks. - // - qsort(address2os, __kmp_avail_proc, sizeof(*address2os), - __kmp_affinity_cmp_Address_child_num); - { - int i; - unsigned j; - for (i = 0, j = 0; i < __kmp_avail_proc; i++) { - if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) { - continue; - } - unsigned osId = address2os[i].second; - kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); - kmp_affin_mask_t *dest - = KMP_CPU_INDEX(__kmp_affinity_masks, j); - KMP_ASSERT(KMP_CPU_ISSET(osId, src)); - KMP_CPU_COPY(dest, src); - if (++j >= __kmp_affinity_num_masks) { - break; - } - } - KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); - } - break; - - default: - KMP_ASSERT2(0, "Unexpected affinity setting"); - } - - __kmp_free(osId2Mask); - machine_hierarchy.init(address2os, __kmp_avail_proc); -} - - -void -__kmp_affinity_initialize(void) -{ - // - // Much of the code above was written assumming that if a machine was not - // affinity capable, then __kmp_affinity_type == affinity_none. We now - // explicitly represent this as __kmp_affinity_type == affinity_disabled. - // - // There are too many checks for __kmp_affinity_type == affinity_none - // in this code. Instead of trying to change them all, check if - // __kmp_affinity_type == affinity_disabled, and if so, slam it with - // affinity_none, call the real initialization routine, then restore - // __kmp_affinity_type to affinity_disabled. - // - int disabled = (__kmp_affinity_type == affinity_disabled); - if (! KMP_AFFINITY_CAPABLE()) { - KMP_ASSERT(disabled); + procarr[core * maxprocpercore + inlastcore] = proc; + } } - if (disabled) { - __kmp_affinity_type = affinity_none; - } - __kmp_aux_affinity_initialize(); - if (disabled) { - __kmp_affinity_type = affinity_disabled; - } -} - - -void -__kmp_affinity_uninitialize(void) -{ - if (__kmp_affinity_masks != NULL) { - KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); - __kmp_affinity_masks = NULL; - } - if (fullMask != NULL) { - KMP_CPU_FREE(fullMask); - fullMask = NULL; - } - __kmp_affinity_num_masks = 0; -# if OMP_40_ENABLED - __kmp_affinity_num_places = 0; -# endif - if (__kmp_affinity_proclist != NULL) { - __kmp_free(__kmp_affinity_proclist); - __kmp_affinity_proclist = NULL; - } - if( address2os != NULL ) { - __kmp_free( address2os ); - address2os = NULL; - } - if( procarr != NULL ) { - __kmp_free( procarr ); - procarr = NULL; + if (__kmp_affinity_compact >= depth) { + __kmp_affinity_compact = depth - 1; } -} - -void -__kmp_affinity_set_init_mask(int gtid, int isa_root) -{ - if (! KMP_AFFINITY_CAPABLE()) { - return; + sortTopology: + // Allocate the gtid->affinity mask table. + if (__kmp_affinity_dups) { + __kmp_affinity_num_masks = __kmp_avail_proc; + } else { + __kmp_affinity_num_masks = numUnique; } - kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); - if (th->th.th_affin_mask == NULL) { - KMP_CPU_ALLOC(th->th.th_affin_mask); - } - else { - KMP_CPU_ZERO(th->th.th_affin_mask); + if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) && + (__kmp_affinity_num_places > 0) && + ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) { + __kmp_affinity_num_masks = __kmp_affinity_num_places; } - // - // Copy the thread mask to the kmp_info_t strucuture. - // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one - // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask - // is set, then the full mask is the same as the mask of the initialization - // thread. - // - kmp_affin_mask_t *mask; - int i; + KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); -# if OMP_40_ENABLED - if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) -# endif + // Sort the topology table according to the current setting of + // __kmp_affinity_compact, then fill out __kmp_affinity_masks. + __kmp_topology->sort_compact(); { - if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced) - ) { -# if KMP_GROUP_AFFINITY - if (__kmp_num_proc_groups > 1) { - return; - } -# endif - KMP_ASSERT(fullMask != NULL); - i = KMP_PLACE_ALL; - mask = fullMask; - } - else { - KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); - i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; - mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); - } - } -# if OMP_40_ENABLED - else { - if ((! isa_root) - || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { -# if KMP_GROUP_AFFINITY - if (__kmp_num_proc_groups > 1) { - return; - } -# endif - KMP_ASSERT(fullMask != NULL); - i = KMP_PLACE_ALL; - mask = fullMask; - } - else { - // - // int i = some hash function or just a counter that doesn't - // always start at 0. Use gtid for now. - // - KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 ); - i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks; - mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + int i; + unsigned j; + int num_hw_threads = __kmp_topology->get_num_hw_threads(); + for (i = 0, j = 0; i < num_hw_threads; i++) { + if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) { + continue; + } + int osId = __kmp_topology->at(i).os_id; + + kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId); + kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j); + KMP_ASSERT(KMP_CPU_ISSET(osId, src)); + KMP_CPU_COPY(dest, src); + if (++j >= __kmp_affinity_num_masks) { + break; } + } + KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks); } -# endif + // Sort the topology back using ids + __kmp_topology->sort_ids(); + break; -# if OMP_40_ENABLED - th->th.th_current_place = i; - if (isa_root) { - th->th.th_new_place = i; - th->th.th_first_place = 0; - th->th.th_last_place = __kmp_affinity_num_masks - 1; - } + default: + KMP_ASSERT2(0, "Unexpected affinity setting"); + } - if (i == KMP_PLACE_ALL) { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", - gtid)); - } - else { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", - gtid, i)); - } -# else - if (i == -1) { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n", - gtid)); - } - else { - KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n", - gtid, i)); - } -# endif /* OMP_40_ENABLED */ - - KMP_CPU_COPY(th->th.th_affin_mask, mask); - - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid, - buf); - } - -# if KMP_OS_WINDOWS - // - // On Windows* OS, the process affinity mask might have changed. - // If the user didn't request affinity and this call fails, - // just continue silently. See CQ171393. - // - if ( __kmp_affinity_type == affinity_none ) { - __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); - } - else -# endif - __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); + KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1); } +void __kmp_affinity_initialize(void) { + // Much of the code above was written assuming that if a machine was not + // affinity capable, then __kmp_affinity_type == affinity_none. We now + // explicitly represent this as __kmp_affinity_type == affinity_disabled. + // There are too many checks for __kmp_affinity_type == affinity_none + // in this code. Instead of trying to change them all, check if + // __kmp_affinity_type == affinity_disabled, and if so, slam it with + // affinity_none, call the real initialization routine, then restore + // __kmp_affinity_type to affinity_disabled. + int disabled = (__kmp_affinity_type == affinity_disabled); + if (!KMP_AFFINITY_CAPABLE()) { + KMP_ASSERT(disabled); + } + if (disabled) { + __kmp_affinity_type = affinity_none; + } + __kmp_aux_affinity_initialize(); + if (disabled) { + __kmp_affinity_type = affinity_disabled; + } +} -# if OMP_40_ENABLED - -void -__kmp_affinity_set_place(int gtid) -{ - int retval; +void __kmp_affinity_uninitialize(void) { + if (__kmp_affinity_masks != NULL) { + KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks); + __kmp_affinity_masks = NULL; + } + if (__kmp_affin_fullMask != NULL) { + KMP_CPU_FREE(__kmp_affin_fullMask); + __kmp_affin_fullMask = NULL; + } + __kmp_affinity_num_masks = 0; + __kmp_affinity_type = affinity_default; + __kmp_affinity_num_places = 0; + if (__kmp_affinity_proclist != NULL) { + __kmp_free(__kmp_affinity_proclist); + __kmp_affinity_proclist = NULL; + } + if (procarr != NULL) { + __kmp_free(procarr); + procarr = NULL; + } +#if KMP_USE_HWLOC + if (__kmp_hwloc_topology != NULL) { + hwloc_topology_destroy(__kmp_hwloc_topology); + __kmp_hwloc_topology = NULL; + } +#endif + if (__kmp_hw_subset) { + kmp_hw_subset_t::deallocate(__kmp_hw_subset); + __kmp_hw_subset = nullptr; + } + if (__kmp_topology) { + kmp_topology_t::deallocate(__kmp_topology); + __kmp_topology = nullptr; + } + KMPAffinity::destroy_api(); +} - if (! KMP_AFFINITY_CAPABLE()) { +void __kmp_affinity_set_init_mask(int gtid, int isa_root) { + if (!KMP_AFFINITY_CAPABLE()) { + return; + } + + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + if (th->th.th_affin_mask == NULL) { + KMP_CPU_ALLOC(th->th.th_affin_mask); + } else { + KMP_CPU_ZERO(th->th.th_affin_mask); + } + + // Copy the thread mask to the kmp_info_t structure. If + // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that + // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set, + // then the full mask is the same as the mask of the initialization thread. + kmp_affin_mask_t *mask; + int i; + + if (KMP_AFFINITY_NON_PROC_BIND) { + if ((__kmp_affinity_type == affinity_none) || + (__kmp_affinity_type == affinity_balanced) || + KMP_HIDDEN_HELPER_THREAD(gtid)) { +#if KMP_GROUP_AFFINITY + if (__kmp_num_proc_groups > 1) { return; - } - - kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); - - KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n", - gtid, th->th.th_new_place, th->th.th_current_place)); - - // - // Check that the new place is within this thread's partition. - // - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - KMP_ASSERT(th->th.th_new_place >= 0); - KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); - if (th->th.th_first_place <= th->th.th_last_place) { - KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) - && (th->th.th_new_place <= th->th.th_last_place)); - } - else { - KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) - || (th->th.th_new_place >= th->th.th_last_place)); - } - - // - // Copy the thread mask to the kmp_info_t strucuture, - // and set this thread's affinity. - // - kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks, - th->th.th_new_place); - KMP_CPU_COPY(th->th.th_affin_mask, mask); - th->th.th_current_place = th->th.th_new_place; + } +#endif + KMP_ASSERT(__kmp_affin_fullMask != NULL); + i = 0; + mask = __kmp_affin_fullMask; + } else { + int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); + KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); + i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + } + } else { + if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) || + (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) { +#if KMP_GROUP_AFFINITY + if (__kmp_num_proc_groups > 1) { + return; + } +#endif + KMP_ASSERT(__kmp_affin_fullMask != NULL); + i = KMP_PLACE_ALL; + mask = __kmp_affin_fullMask; + } else { + // int i = some hash function or just a counter that doesn't + // always start at 0. Use adjusted gtid for now. + int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid); + KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0); + i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks; + mask = KMP_CPU_INDEX(__kmp_affinity_masks, i); + } + } + + th->th.th_current_place = i; + if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) { + th->th.th_new_place = i; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + } else if (KMP_AFFINITY_NON_PROC_BIND) { + // When using a Non-OMP_PROC_BIND affinity method, + // set all threads' place-partition-var to the entire place list + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + } + + if (i == KMP_PLACE_ALL) { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n", + gtid)); + } else { + KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n", + gtid, i)); + } + + KMP_CPU_COPY(th->th.th_affin_mask, mask); + + if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid) + /* to avoid duplicate printing (will be correctly printed on barrier) */ + && (__kmp_affinity_type == affinity_none || + (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), + __kmp_gettid(), gtid, buf); + } + +#if KMP_DEBUG + // Hidden helper thread affinity only printed for debug builds + if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)", + (kmp_int32)getpid(), __kmp_gettid(), gtid, buf); + } +#endif - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), - gtid, buf); - } +#if KMP_OS_WINDOWS + // On Windows* OS, the process affinity mask might have changed. If the user + // didn't request affinity and this call fails, just continue silently. + // See CQ171393. + if (__kmp_affinity_type == affinity_none) { + __kmp_set_system_affinity(th->th.th_affin_mask, FALSE); + } else +#endif __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); } -# endif /* OMP_40_ENABLED */ +void __kmp_affinity_set_place(int gtid) { + if (!KMP_AFFINITY_CAPABLE()) { + return; + } + + kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]); + + KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current " + "place = %d)\n", + gtid, th->th.th_new_place, th->th.th_current_place)); + + // Check that the new place is within this thread's partition. + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + KMP_ASSERT(th->th.th_new_place >= 0); + KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks); + if (th->th.th_first_place <= th->th.th_last_place) { + KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) && + (th->th.th_new_place <= th->th.th_last_place)); + } else { + KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) || + (th->th.th_new_place >= th->th.th_last_place)); + } + + // Copy the thread mask to the kmp_info_t structure, + // and set this thread's affinity. + kmp_affin_mask_t *mask = + KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place); + KMP_CPU_COPY(th->th.th_affin_mask, mask); + th->th.th_current_place = th->th.th_new_place; + + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, + th->th.th_affin_mask); + KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(), + __kmp_gettid(), gtid, buf); + } + __kmp_set_system_affinity(th->th.th_affin_mask, TRUE); +} +int __kmp_aux_set_affinity(void **mask) { + int gtid; + kmp_info_t *th; + int retval; -int -__kmp_aux_set_affinity(void **mask) -{ - int gtid; - kmp_info_t *th; - int retval; + if (!KMP_AFFINITY_CAPABLE()) { + return -1; + } - if (! KMP_AFFINITY_CAPABLE()) { - return -1; - } - - gtid = __kmp_entry_gtid(); - KA_TRACE(1000, ;{ + gtid = __kmp_entry_gtid(); + KA_TRACE( + 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n", - gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } - else { - unsigned proc; - int num_procs = 0; - - KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) { - if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { - continue; - } - num_procs++; - if (! KMP_CPU_ISSET(proc, fullMask)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - break; - } - } - if (num_procs == 0) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } - -# if KMP_GROUP_AFFINITY - if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); - } -# endif /* KMP_GROUP_AFFINITY */ - - } - } - - th = __kmp_threads[gtid]; - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); - if (retval == 0) { - KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); - } - -# if OMP_40_ENABLED - th->th.th_current_place = KMP_PLACE_UNDEFINED; - th->th.th_new_place = KMP_PLACE_UNDEFINED; - th->th.th_first_place = 0; - th->th.th_last_place = __kmp_affinity_num_masks - 1; - - // - // Turn off 4.0 affinity for the current tread at this parallel level. - // - th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; -# endif - - return retval; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf( + "kmp_set_affinity: setting affinity mask for thread %d = %s\n", + gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } else { + unsigned proc; + int num_procs = 0; + + KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) { + if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) { + continue; + } + num_procs++; + } + if (num_procs == 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } + +#if KMP_GROUP_AFFINITY + if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity"); + } +#endif /* KMP_GROUP_AFFINITY */ + } + } + + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); + retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + if (retval == 0) { + KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask)); + } + + th->th.th_current_place = KMP_PLACE_UNDEFINED; + th->th.th_new_place = KMP_PLACE_UNDEFINED; + th->th.th_first_place = 0; + th->th.th_last_place = __kmp_affinity_num_masks - 1; + + // Turn off 4.0 affinity for the current tread at this parallel level. + th->th.th_current_task->td_icvs.proc_bind = proc_bind_false; + + return retval; } +int __kmp_aux_get_affinity(void **mask) { + int gtid; + int retval; + kmp_info_t *th; -int -__kmp_aux_get_affinity(void **mask) -{ - int gtid; - int retval; - kmp_info_t *th; + if (!KMP_AFFINITY_CAPABLE()) { + return -1; + } - if (! KMP_AFFINITY_CAPABLE()) { - return -1; - } + gtid = __kmp_entry_gtid(); + th = __kmp_threads[gtid]; + KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - gtid = __kmp_entry_gtid(); - th = __kmp_threads[gtid]; - KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL); - - KA_TRACE(1000, ;{ + KA_TRACE( + 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - th->th.th_affin_mask); - __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf); - }); + th->th.th_affin_mask); + __kmp_printf( + "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, + buf); + }); - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); - } + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity"); } + } -# if !KMP_OS_WINDOWS +#if !KMP_OS_WINDOWS - retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); - KA_TRACE(1000, ;{ + retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE); + KA_TRACE( + 1000, (""); { char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf); - }); - return retval; + (kmp_affin_mask_t *)(*mask)); + __kmp_printf( + "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, + buf); + }); + return retval; -# else - - KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); - return 0; +#else + (void)retval; -# endif /* KMP_OS_WINDOWS */ + KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask); + return 0; +#endif /* KMP_OS_WINDOWS */ } -int -__kmp_aux_set_affinity_mask_proc(int proc, void **mask) -{ - int retval; +int __kmp_aux_get_affinity_max_proc() { + if (!KMP_AFFINITY_CAPABLE()) { + return 0; + } +#if KMP_GROUP_AFFINITY + if (__kmp_num_proc_groups > 1) { + return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT); + } +#endif + return __kmp_xproc; +} - if (! KMP_AFFINITY_CAPABLE()) { - return -1; - } +int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) { + if (!KMP_AFFINITY_CAPABLE()) { + return -1; + } - KA_TRACE(1000, ;{ + KA_TRACE( + 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); - } - } - - if ((proc < 0) -# if !KMP_USE_HWLOC - || ((unsigned)proc >= KMP_CPU_SETSIZE) -# endif - ) { - return -1; - } - if (! KMP_CPU_ISSET(proc, fullMask)) { - return -2; - } - - KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); - return 0; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in " + "affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc"); + } + } + + if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { + return -1; + } + if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { + return -2; + } + + KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask)); + return 0; } +int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) { + if (!KMP_AFFINITY_CAPABLE()) { + return -1; + } -int -__kmp_aux_unset_affinity_mask_proc(int proc, void **mask) -{ - int retval; - - if (! KMP_AFFINITY_CAPABLE()) { - return -1; - } - - KA_TRACE(1000, ;{ + KA_TRACE( + 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); - } - } - - if ((proc < 0) -# if !KMP_USE_HWLOC - || ((unsigned)proc >= KMP_CPU_SETSIZE) -# endif - ) { - return -1; - } - if (! KMP_CPU_ISSET(proc, fullMask)) { - return -2; - } - - KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); - return 0; + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in " + "affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc"); + } + } + + if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { + return -1; + } + if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { + return -2; + } + + KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask)); + return 0; } +int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) { + if (!KMP_AFFINITY_CAPABLE()) { + return -1; + } -int -__kmp_aux_get_affinity_mask_proc(int proc, void **mask) -{ - int retval; - - if (! KMP_AFFINITY_CAPABLE()) { - return -1; - } - - KA_TRACE(1000, ;{ + KA_TRACE( + 1000, (""); { int gtid = __kmp_entry_gtid(); char buf[KMP_AFFIN_MASK_PRINT_LEN]; __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, - (kmp_affin_mask_t *)(*mask)); - __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n", - proc, gtid, buf); - }); - - if (__kmp_env_consistency_check) { - if ((mask == NULL) || (*mask == NULL)) { - KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); - } - } - - if ((proc < 0) -# if !KMP_USE_HWLOC - || ((unsigned)proc >= KMP_CPU_SETSIZE) -# endif - ) { - return -1; - } - if (! KMP_CPU_ISSET(proc, fullMask)) { - return 0; - } + (kmp_affin_mask_t *)(*mask)); + __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in " + "affinity mask for thread %d = %s\n", + proc, gtid, buf); + }); + + if (__kmp_env_consistency_check) { + if ((mask == NULL) || (*mask == NULL)) { + KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc"); + } + } + + if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) { + return -1; + } + if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) { + return 0; + } - return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); + return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask)); } - // Dynamic affinity settings - Affinity balanced -void __kmp_balanced_affinity( int tid, int nthreads ) -{ - if( __kmp_affinity_uniform_topology() ) { - int coreID; - int threadID; - // Number of hyper threads per core in HT machine - int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; - // Number of cores - int ncores = __kmp_ncores; - // How many threads will be bound to each core - int chunk = nthreads / ncores; - // How many cores will have an additional thread bound to it - "big cores" - int big_cores = nthreads % ncores; - // Number of threads on the big cores - int big_nth = ( chunk + 1 ) * big_cores; - if( tid < big_nth ) { - coreID = tid / (chunk + 1 ); - threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ; - } else { //tid >= big_nth - coreID = ( tid - big_cores ) / chunk; - threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ; - } - - KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), - "Illegal set affinity operation when not capable"); - - kmp_affin_mask_t *mask; - KMP_CPU_ALLOC_ON_STACK(mask); - KMP_CPU_ZERO(mask); - - // Granularity == thread - if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { - int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second; - KMP_CPU_SET( osID, mask); - } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core - for( int i = 0; i < __kmp_nth_per_core; i++ ) { - int osID; - osID = address2os[ coreID * __kmp_nth_per_core + i ].second; - KMP_CPU_SET( osID, mask); - } - } - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), - tid, buf); - } - __kmp_set_system_affinity( mask, TRUE ); - KMP_CPU_FREE_FROM_STACK(mask); - } else { // Non-uniform topology - - kmp_affin_mask_t *mask; - KMP_CPU_ALLOC_ON_STACK(mask); - KMP_CPU_ZERO(mask); - - // Number of hyper threads per core in HT machine - int nth_per_core = __kmp_nThreadsPerCore; - int core_level; - if( nth_per_core > 1 ) { - core_level = __kmp_aff_depth - 2; - } else { - core_level = __kmp_aff_depth - 1; - } - - // Number of cores - maximum value; it does not count trail cores with 0 processors - int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1; - - // For performance gain consider the special case nthreads == __kmp_avail_proc - if( nthreads == __kmp_avail_proc ) { - if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { - int osID = address2os[ tid ].second; - KMP_CPU_SET( osID, mask); - } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core - int coreID = address2os[ tid ].first.labels[ core_level ]; - // We'll count found osIDs for the current core; they can be not more than nth_per_core; - // since the address2os is sortied we can break when cnt==nth_per_core - int cnt = 0; - for( int i = 0; i < __kmp_avail_proc; i++ ) { - int osID = address2os[ i ].second; - int core = address2os[ i ].first.labels[ core_level ]; - if( core == coreID ) { - KMP_CPU_SET( osID, mask); - cnt++; - if( cnt == nth_per_core ) { - break; - } - } - } - } - } else if( nthreads <= __kmp_ncores ) { - - int core = 0; - for( int i = 0; i < ncores; i++ ) { - // Check if this core from procarr[] is in the mask - int in_mask = 0; - for( int j = 0; j < nth_per_core; j++ ) { - if( procarr[ i * nth_per_core + j ] != - 1 ) { - in_mask = 1; - break; - } - } - if( in_mask ) { - if( tid == core ) { - for( int j = 0; j < nth_per_core; j++ ) { - int osID = procarr[ i * nth_per_core + j ]; - if( osID != -1 ) { - KMP_CPU_SET( osID, mask ); - // For granularity=thread it is enough to set the first available osID for this core - if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { - break; - } - } - } - break; - } else { - core++; - } - } - } - - } else { // nthreads > __kmp_ncores - - // Array to save the number of processors at each core - int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores); - // Array to save the number of cores with "x" available processors; - int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); - // Array to save the number of cores with # procs from x to nth_per_core - int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1)); +void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) { + KMP_DEBUG_ASSERT(th); + bool fine_gran = true; + int tid = th->th.th_info.ds.ds_tid; + + // Do not perform balanced affinity for the hidden helper threads + if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th))) + return; + + switch (__kmp_affinity_gran) { + case KMP_HW_THREAD: + break; + case KMP_HW_CORE: + if (__kmp_nThreadsPerCore > 1) { + fine_gran = false; + } + break; + case KMP_HW_SOCKET: + if (nCoresPerPkg > 1) { + fine_gran = false; + } + break; + default: + fine_gran = false; + } + + if (__kmp_topology->is_uniform()) { + int coreID; + int threadID; + // Number of hyper threads per core in HT machine + int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores; + // Number of cores + int ncores = __kmp_ncores; + if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) { + __kmp_nth_per_core = __kmp_avail_proc / nPackages; + ncores = nPackages; + } + // How many threads will be bound to each core + int chunk = nthreads / ncores; + // How many cores will have an additional thread bound to it - "big cores" + int big_cores = nthreads % ncores; + // Number of threads on the big cores + int big_nth = (chunk + 1) * big_cores; + if (tid < big_nth) { + coreID = tid / (chunk + 1); + threadID = (tid % (chunk + 1)) % __kmp_nth_per_core; + } else { // tid >= big_nth + coreID = (tid - big_cores) / chunk; + threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core; + } + KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(), + "Illegal set affinity operation when not capable"); + + kmp_affin_mask_t *mask = th->th.th_affin_mask; + KMP_CPU_ZERO(mask); - for( int i = 0; i <= nth_per_core; i++ ) { - ncores_with_x_procs[ i ] = 0; - ncores_with_x_to_max_procs[ i ] = 0; - } + if (fine_gran) { + int osID = + __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id; + KMP_CPU_SET(osID, mask); + } else { + for (int i = 0; i < __kmp_nth_per_core; i++) { + int osID; + osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id; + KMP_CPU_SET(osID, mask); + } + } + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), + __kmp_gettid(), tid, buf); + } + __kmp_set_system_affinity(mask, TRUE); + } else { // Non-uniform topology - for( int i = 0; i < ncores; i++ ) { - int cnt = 0; - for( int j = 0; j < nth_per_core; j++ ) { - if( procarr[ i * nth_per_core + j ] != -1 ) { - cnt++; - } - } - nproc_at_core[ i ] = cnt; - ncores_with_x_procs[ cnt ]++; - } + kmp_affin_mask_t *mask = th->th.th_affin_mask; + KMP_CPU_ZERO(mask); - for( int i = 0; i <= nth_per_core; i++ ) { - for( int j = i; j <= nth_per_core; j++ ) { - ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ]; + int core_level = + __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1); + int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, + __kmp_aff_depth - 1, core_level); + int nth_per_core = __kmp_affinity_max_proc_per_core( + __kmp_avail_proc, __kmp_aff_depth - 1, core_level); + + // For performance gain consider the special case nthreads == + // __kmp_avail_proc + if (nthreads == __kmp_avail_proc) { + if (fine_gran) { + int osID = __kmp_topology->at(tid).os_id; + KMP_CPU_SET(osID, mask); + } else { + int core = + __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level); + for (int i = 0; i < __kmp_avail_proc; i++) { + int osID = __kmp_topology->at(i).os_id; + if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) == + core) { + KMP_CPU_SET(osID, mask); + } + } + } + } else if (nthreads <= ncores) { + + int core = 0; + for (int i = 0; i < ncores; i++) { + // Check if this core from procarr[] is in the mask + int in_mask = 0; + for (int j = 0; j < nth_per_core; j++) { + if (procarr[i * nth_per_core + j] != -1) { + in_mask = 1; + break; + } + } + if (in_mask) { + if (tid == core) { + for (int j = 0; j < nth_per_core; j++) { + int osID = procarr[i * nth_per_core + j]; + if (osID != -1) { + KMP_CPU_SET(osID, mask); + // For fine granularity it is enough to set the first available + // osID for this core + if (fine_gran) { + break; } + } } - - // Max number of processors - int nproc = nth_per_core * ncores; - // An array to keep number of threads per each context - int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc ); - for( int i = 0; i < nproc; i++ ) { - newarr[ i ] = 0; - } - - int nth = nthreads; - int flag = 0; - while( nth > 0 ) { - for( int j = 1; j <= nth_per_core; j++ ) { - int cnt = ncores_with_x_to_max_procs[ j ]; - for( int i = 0; i < ncores; i++ ) { - // Skip the core with 0 processors - if( nproc_at_core[ i ] == 0 ) { - continue; - } - for( int k = 0; k < nth_per_core; k++ ) { - if( procarr[ i * nth_per_core + k ] != -1 ) { - if( newarr[ i * nth_per_core + k ] == 0 ) { - newarr[ i * nth_per_core + k ] = 1; - cnt--; - nth--; - break; - } else { - if( flag != 0 ) { - newarr[ i * nth_per_core + k ] ++; - cnt--; - nth--; - break; - } - } - } - } - if( cnt == 0 || nth == 0 ) { - break; - } - } - if( nth == 0 ) { - break; - } - } - flag = 1; + break; + } else { + core++; + } + } + } + } else { // nthreads > ncores + // Array to save the number of processors at each core + int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores); + // Array to save the number of cores with "x" available processors; + int *ncores_with_x_procs = + (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); + // Array to save the number of cores with # procs from x to nth_per_core + int *ncores_with_x_to_max_procs = + (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1)); + + for (int i = 0; i <= nth_per_core; i++) { + ncores_with_x_procs[i] = 0; + ncores_with_x_to_max_procs[i] = 0; + } + + for (int i = 0; i < ncores; i++) { + int cnt = 0; + for (int j = 0; j < nth_per_core; j++) { + if (procarr[i * nth_per_core + j] != -1) { + cnt++; + } + } + nproc_at_core[i] = cnt; + ncores_with_x_procs[cnt]++; + } + + for (int i = 0; i <= nth_per_core; i++) { + for (int j = i; j <= nth_per_core; j++) { + ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j]; + } + } + + // Max number of processors + int nproc = nth_per_core * ncores; + // An array to keep number of threads per each context + int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc); + for (int i = 0; i < nproc; i++) { + newarr[i] = 0; + } + + int nth = nthreads; + int flag = 0; + while (nth > 0) { + for (int j = 1; j <= nth_per_core; j++) { + int cnt = ncores_with_x_to_max_procs[j]; + for (int i = 0; i < ncores; i++) { + // Skip the core with 0 processors + if (nproc_at_core[i] == 0) { + continue; } - int sum = 0; - for( int i = 0; i < nproc; i++ ) { - sum += newarr[ i ]; - if( sum > tid ) { - // Granularity == thread - if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) { - int osID = procarr[ i ]; - KMP_CPU_SET( osID, mask); - } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core - int coreID = i / nth_per_core; - for( int ii = 0; ii < nth_per_core; ii++ ) { - int osID = procarr[ coreID * nth_per_core + ii ]; - if( osID != -1 ) { - KMP_CPU_SET( osID, mask); - } - } - } + for (int k = 0; k < nth_per_core; k++) { + if (procarr[i * nth_per_core + k] != -1) { + if (newarr[i * nth_per_core + k] == 0) { + newarr[i * nth_per_core + k] = 1; + cnt--; + nth--; + break; + } else { + if (flag != 0) { + newarr[i * nth_per_core + k]++; + cnt--; + nth--; break; + } } + } + } + if (cnt == 0 || nth == 0) { + break; + } + } + if (nth == 0) { + break; + } + } + flag = 1; + } + int sum = 0; + for (int i = 0; i < nproc; i++) { + sum += newarr[i]; + if (sum > tid) { + if (fine_gran) { + int osID = procarr[i]; + KMP_CPU_SET(osID, mask); + } else { + int coreID = i / nth_per_core; + for (int ii = 0; ii < nth_per_core; ii++) { + int osID = procarr[coreID * nth_per_core + ii]; + if (osID != -1) { + KMP_CPU_SET(osID, mask); + } } - __kmp_free( newarr ); + } + break; } + } + __kmp_free(newarr); + } - if (__kmp_affinity_verbose) { - char buf[KMP_AFFIN_MASK_PRINT_LEN]; - __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); - KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), - tid, buf); - } - __kmp_set_system_affinity( mask, TRUE ); - KMP_CPU_FREE_FROM_STACK(mask); + if (__kmp_affinity_verbose) { + char buf[KMP_AFFIN_MASK_PRINT_LEN]; + __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask); + KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), + __kmp_gettid(), tid, buf); } + __kmp_set_system_affinity(mask, TRUE); + } +} + +#if KMP_OS_LINUX || KMP_OS_FREEBSD +// We don't need this entry for Windows because +// there is GetProcessAffinityMask() api +// +// The intended usage is indicated by these steps: +// 1) The user gets the current affinity mask +// 2) Then sets the affinity by calling this function +// 3) Error check the return value +// 4) Use non-OpenMP parallelization +// 5) Reset the affinity to what was stored in step 1) +#ifdef __cplusplus +extern "C" +#endif + int + kmp_set_thread_affinity_mask_initial() +// the function returns 0 on success, +// -1 if we cannot bind thread +// >0 (errno) if an error happened during binding +{ + int gtid = __kmp_get_gtid(); + if (gtid < 0) { + // Do not touch non-omp threads + KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " + "non-omp thread, returning\n")); + return -1; + } + if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) { + KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " + "affinity not initialized, returning\n")); + return -1; + } + KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: " + "set full mask for thread %d\n", + gtid)); + KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL); + return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE); } +#endif #endif // KMP_AFFINITY_SUPPORTED |