summaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
diff options
context:
space:
mode:
authorarcadia-devtools <[email protected]>2022-02-25 13:32:34 +0300
committerarcadia-devtools <[email protected]>2022-02-25 13:32:34 +0300
commit5a69c8d3bf97c5729c2f38e3edf38ad072cc8660 (patch)
treebe60467f93523358c938a3b0e7704db98aca1368 /contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
parent79b9f78973dff05d368d9cddf75f1f7ea23ae439 (diff)
intermediate changes
ref:2c72e25aac316b2b2e56bf74f87d33341e8ce8ba
Diffstat (limited to 'contrib/libs/cxxsupp/openmp/kmp_affinity.cpp')
-rw-r--r--contrib/libs/cxxsupp/openmp/kmp_affinity.cpp8611
1 files changed, 4233 insertions, 4378 deletions
diff --git a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
index 4e6699ff214..8b40bd7ecda 100644
--- a/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
+++ b/contrib/libs/cxxsupp/openmp/kmp_affinity.cpp
@@ -2,2993 +2,3046 @@
* kmp_affinity.cpp -- affinity management
*/
-
//===----------------------------------------------------------------------===//
//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.txt for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
-
#include "kmp.h"
+#include "kmp_affinity.h"
#include "kmp_i18n.h"
#include "kmp_io.h"
#include "kmp_str.h"
#include "kmp_wrapper_getpid.h"
-#include "kmp_affinity.h"
+#if KMP_USE_HIER_SCHED
+#error #include "kmp_dispatch_hier.h"
+#endif
+#if KMP_USE_HWLOC
+// Copied from hwloc
+#define HWLOC_GROUP_KIND_INTEL_MODULE 102
+#define HWLOC_GROUP_KIND_INTEL_TILE 103
+#define HWLOC_GROUP_KIND_INTEL_DIE 104
+#define HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP 220
+#endif
+
+// The machine topology
+kmp_topology_t *__kmp_topology = nullptr;
+// KMP_HW_SUBSET environment variable
+kmp_hw_subset_t *__kmp_hw_subset = nullptr;
// Store the real or imagined machine hierarchy here
static hierarchy_info machine_hierarchy;
-void __kmp_cleanup_hierarchy() {
- machine_hierarchy.fini();
-}
+void __kmp_cleanup_hierarchy() { machine_hierarchy.fini(); }
void __kmp_get_hierarchy(kmp_uint32 nproc, kmp_bstate_t *thr_bar) {
- kmp_uint32 depth;
- // The test below is true if affinity is available, but set to "none". Need to init on first use of hierarchical barrier.
- if (TCR_1(machine_hierarchy.uninitialized))
- machine_hierarchy.init(NULL, nproc);
+ kmp_uint32 depth;
+ // The test below is true if affinity is available, but set to "none". Need to
+ // init on first use of hierarchical barrier.
+ if (TCR_1(machine_hierarchy.uninitialized))
+ machine_hierarchy.init(nproc);
+
+ // Adjust the hierarchy in case num threads exceeds original
+ if (nproc > machine_hierarchy.base_num_threads)
+ machine_hierarchy.resize(nproc);
+
+ depth = machine_hierarchy.depth;
+ KMP_DEBUG_ASSERT(depth > 0);
+
+ thr_bar->depth = depth;
+ __kmp_type_convert(machine_hierarchy.numPerLevel[0] - 1,
+ &(thr_bar->base_leaf_kids));
+ thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
+}
- // Adjust the hierarchy in case num threads exceeds original
- if (nproc > machine_hierarchy.base_num_threads)
- machine_hierarchy.resize(nproc);
+static int nCoresPerPkg, nPackages;
+static int __kmp_nThreadsPerCore;
+#ifndef KMP_DFLT_NTH_CORES
+static int __kmp_ncores;
+#endif
- depth = machine_hierarchy.depth;
- KMP_DEBUG_ASSERT(depth > 0);
+const char *__kmp_hw_get_catalog_string(kmp_hw_t type, bool plural) {
+ switch (type) {
+ case KMP_HW_SOCKET:
+ return ((plural) ? KMP_I18N_STR(Sockets) : KMP_I18N_STR(Socket));
+ case KMP_HW_DIE:
+ return ((plural) ? KMP_I18N_STR(Dice) : KMP_I18N_STR(Die));
+ case KMP_HW_MODULE:
+ return ((plural) ? KMP_I18N_STR(Modules) : KMP_I18N_STR(Module));
+ case KMP_HW_TILE:
+ return ((plural) ? KMP_I18N_STR(Tiles) : KMP_I18N_STR(Tile));
+ case KMP_HW_NUMA:
+ return ((plural) ? KMP_I18N_STR(NumaDomains) : KMP_I18N_STR(NumaDomain));
+ case KMP_HW_L3:
+ return ((plural) ? KMP_I18N_STR(L3Caches) : KMP_I18N_STR(L3Cache));
+ case KMP_HW_L2:
+ return ((plural) ? KMP_I18N_STR(L2Caches) : KMP_I18N_STR(L2Cache));
+ case KMP_HW_L1:
+ return ((plural) ? KMP_I18N_STR(L1Caches) : KMP_I18N_STR(L1Cache));
+ case KMP_HW_LLC:
+ return ((plural) ? KMP_I18N_STR(LLCaches) : KMP_I18N_STR(LLCache));
+ case KMP_HW_CORE:
+ return ((plural) ? KMP_I18N_STR(Cores) : KMP_I18N_STR(Core));
+ case KMP_HW_THREAD:
+ return ((plural) ? KMP_I18N_STR(Threads) : KMP_I18N_STR(Thread));
+ case KMP_HW_PROC_GROUP:
+ return ((plural) ? KMP_I18N_STR(ProcGroups) : KMP_I18N_STR(ProcGroup));
+ }
+ return KMP_I18N_STR(Unknown);
+}
- thr_bar->depth = depth;
- thr_bar->base_leaf_kids = (kmp_uint8)machine_hierarchy.numPerLevel[0]-1;
- thr_bar->skip_per_level = machine_hierarchy.skipPerLevel;
+const char *__kmp_hw_get_keyword(kmp_hw_t type, bool plural) {
+ switch (type) {
+ case KMP_HW_SOCKET:
+ return ((plural) ? "sockets" : "socket");
+ case KMP_HW_DIE:
+ return ((plural) ? "dice" : "die");
+ case KMP_HW_MODULE:
+ return ((plural) ? "modules" : "module");
+ case KMP_HW_TILE:
+ return ((plural) ? "tiles" : "tile");
+ case KMP_HW_NUMA:
+ return ((plural) ? "numa_domains" : "numa_domain");
+ case KMP_HW_L3:
+ return ((plural) ? "l3_caches" : "l3_cache");
+ case KMP_HW_L2:
+ return ((plural) ? "l2_caches" : "l2_cache");
+ case KMP_HW_L1:
+ return ((plural) ? "l1_caches" : "l1_cache");
+ case KMP_HW_LLC:
+ return ((plural) ? "ll_caches" : "ll_cache");
+ case KMP_HW_CORE:
+ return ((plural) ? "cores" : "core");
+ case KMP_HW_THREAD:
+ return ((plural) ? "threads" : "thread");
+ case KMP_HW_PROC_GROUP:
+ return ((plural) ? "proc_groups" : "proc_group");
+ }
+ return ((plural) ? "unknowns" : "unknown");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+// kmp_hw_thread_t methods
+int kmp_hw_thread_t::compare_ids(const void *a, const void *b) {
+ const kmp_hw_thread_t *ahwthread = (const kmp_hw_thread_t *)a;
+ const kmp_hw_thread_t *bhwthread = (const kmp_hw_thread_t *)b;
+ int depth = __kmp_topology->get_depth();
+ for (int level = 0; level < depth; ++level) {
+ if (ahwthread->ids[level] < bhwthread->ids[level])
+ return -1;
+ else if (ahwthread->ids[level] > bhwthread->ids[level])
+ return 1;
+ }
+ if (ahwthread->os_id < bhwthread->os_id)
+ return -1;
+ else if (ahwthread->os_id > bhwthread->os_id)
+ return 1;
+ return 0;
}
#if KMP_AFFINITY_SUPPORTED
+int kmp_hw_thread_t::compare_compact(const void *a, const void *b) {
+ int i;
+ const kmp_hw_thread_t *aa = (const kmp_hw_thread_t *)a;
+ const kmp_hw_thread_t *bb = (const kmp_hw_thread_t *)b;
+ int depth = __kmp_topology->get_depth();
+ KMP_DEBUG_ASSERT(__kmp_affinity_compact >= 0);
+ KMP_DEBUG_ASSERT(__kmp_affinity_compact <= depth);
+ for (i = 0; i < __kmp_affinity_compact; i++) {
+ int j = depth - i - 1;
+ if (aa->sub_ids[j] < bb->sub_ids[j])
+ return -1;
+ if (aa->sub_ids[j] > bb->sub_ids[j])
+ return 1;
+ }
+ for (; i < depth; i++) {
+ int j = i - __kmp_affinity_compact;
+ if (aa->sub_ids[j] < bb->sub_ids[j])
+ return -1;
+ if (aa->sub_ids[j] > bb->sub_ids[j])
+ return 1;
+ }
+ return 0;
+}
+#endif
-//
-// Print the affinity mask to the character array in a pretty format.
-//
-#if KMP_USE_HWLOC
-char *
-__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
-{
- int num_chars_to_write, num_chars_written;
- char* scan;
- KMP_ASSERT(buf_len >= 40);
-
- // bufsize of 0 just retrieves the needed buffer size.
- num_chars_to_write = hwloc_bitmap_list_snprintf(buf, 0, (hwloc_bitmap_t)mask);
-
- // need '{', "xxxxxxxx...xx", '}', '\0' = num_chars_to_write + 3 bytes
- // * num_chars_to_write returned by hwloc_bitmap_list_snprintf does not
- // take into account the '\0' character.
- if(hwloc_bitmap_iszero((hwloc_bitmap_t)mask)) {
- KMP_SNPRINTF(buf, buf_len, "{<empty>}");
- } else if(num_chars_to_write < buf_len - 3) {
- // no problem fitting the mask into buf_len number of characters
- buf[0] = '{';
- // use buf_len-3 because we have the three characters: '{' '}' '\0' to add to the buffer
- num_chars_written = hwloc_bitmap_list_snprintf(buf+1, buf_len-3, (hwloc_bitmap_t)mask);
- buf[num_chars_written+1] = '}';
- buf[num_chars_written+2] = '\0';
- } else {
- // Need to truncate the affinity mask string and add ellipsis.
- // To do this, we first write out the '{' + str(mask)
- buf[0] = '{';
- hwloc_bitmap_list_snprintf(buf+1, buf_len-7, (hwloc_bitmap_t)mask);
- // then, what we do here is go to the 7th to last character, then go backwards until we are NOT
- // on a digit then write "...}\0". This way it is a clean ellipsis addition and we don't
- // overwrite part of an affinity number. i.e., we avoid something like { 45, 67, 8...} and get
- // { 45, 67,...} instead.
- scan = buf + buf_len - 7;
- while(*scan >= '0' && *scan <= '9' && scan >= buf)
- scan--;
- *(scan+1) = '.';
- *(scan+2) = '.';
- *(scan+3) = '.';
- *(scan+4) = '}';
- *(scan+5) = '\0';
- }
- return buf;
+void kmp_hw_thread_t::print() const {
+ int depth = __kmp_topology->get_depth();
+ printf("%4d ", os_id);
+ for (int i = 0; i < depth; ++i) {
+ printf("%4d ", ids[i]);
+ }
+ printf("\n");
}
-#else
-char *
-__kmp_affinity_print_mask(char *buf, int buf_len, kmp_affin_mask_t *mask)
-{
- KMP_ASSERT(buf_len >= 40);
- char *scan = buf;
- char *end = buf + buf_len - 1;
- //
- // Find first element / check for empty set.
- //
- size_t i;
- for (i = 0; i < KMP_CPU_SETSIZE; i++) {
- if (KMP_CPU_ISSET(i, mask)) {
- break;
- }
- }
- if (i == KMP_CPU_SETSIZE) {
- KMP_SNPRINTF(scan, end-scan+1, "{<empty>}");
- while (*scan != '\0') scan++;
- KMP_ASSERT(scan <= end);
- return buf;
+////////////////////////////////////////////////////////////////////////////////
+// kmp_topology_t methods
+
+// Remove layers that don't add information to the topology.
+// This is done by having the layer take on the id = UNKNOWN_ID (-1)
+void kmp_topology_t::_remove_radix1_layers() {
+ int preference[KMP_HW_LAST];
+ int top_index1, top_index2;
+ // Set up preference associative array
+ preference[KMP_HW_PROC_GROUP] = 110;
+ preference[KMP_HW_SOCKET] = 100;
+ preference[KMP_HW_CORE] = 95;
+ preference[KMP_HW_THREAD] = 90;
+ preference[KMP_HW_NUMA] = 85;
+ preference[KMP_HW_DIE] = 80;
+ preference[KMP_HW_TILE] = 75;
+ preference[KMP_HW_MODULE] = 73;
+ preference[KMP_HW_L3] = 70;
+ preference[KMP_HW_L2] = 65;
+ preference[KMP_HW_L1] = 60;
+ preference[KMP_HW_LLC] = 5;
+ top_index1 = 0;
+ top_index2 = 1;
+ while (top_index1 < depth - 1 && top_index2 < depth) {
+ kmp_hw_t type1 = types[top_index1];
+ kmp_hw_t type2 = types[top_index2];
+ KMP_ASSERT_VALID_HW_TYPE(type1);
+ KMP_ASSERT_VALID_HW_TYPE(type2);
+ // Do not allow the three main topology levels (sockets, cores, threads) to
+ // be compacted down
+ if ((type1 == KMP_HW_THREAD || type1 == KMP_HW_CORE ||
+ type1 == KMP_HW_SOCKET) &&
+ (type2 == KMP_HW_THREAD || type2 == KMP_HW_CORE ||
+ type2 == KMP_HW_SOCKET)) {
+ top_index1 = top_index2++;
+ continue;
+ }
+ bool radix1 = true;
+ bool all_same = true;
+ int id1 = hw_threads[0].ids[top_index1];
+ int id2 = hw_threads[0].ids[top_index2];
+ int pref1 = preference[type1];
+ int pref2 = preference[type2];
+ for (int hwidx = 1; hwidx < num_hw_threads; ++hwidx) {
+ if (hw_threads[hwidx].ids[top_index1] == id1 &&
+ hw_threads[hwidx].ids[top_index2] != id2) {
+ radix1 = false;
+ break;
+ }
+ if (hw_threads[hwidx].ids[top_index2] != id2)
+ all_same = false;
+ id1 = hw_threads[hwidx].ids[top_index1];
+ id2 = hw_threads[hwidx].ids[top_index2];
+ }
+ if (radix1) {
+ // Select the layer to remove based on preference
+ kmp_hw_t remove_type, keep_type;
+ int remove_layer, remove_layer_ids;
+ if (pref1 > pref2) {
+ remove_type = type2;
+ remove_layer = remove_layer_ids = top_index2;
+ keep_type = type1;
+ } else {
+ remove_type = type1;
+ remove_layer = remove_layer_ids = top_index1;
+ keep_type = type2;
+ }
+ // If all the indexes for the second (deeper) layer are the same.
+ // e.g., all are zero, then make sure to keep the first layer's ids
+ if (all_same)
+ remove_layer_ids = top_index2;
+ // Remove radix one type by setting the equivalence, removing the id from
+ // the hw threads and removing the layer from types and depth
+ set_equivalent_type(remove_type, keep_type);
+ for (int idx = 0; idx < num_hw_threads; ++idx) {
+ kmp_hw_thread_t &hw_thread = hw_threads[idx];
+ for (int d = remove_layer_ids; d < depth - 1; ++d)
+ hw_thread.ids[d] = hw_thread.ids[d + 1];
+ }
+ for (int idx = remove_layer; idx < depth - 1; ++idx)
+ types[idx] = types[idx + 1];
+ depth--;
+ } else {
+ top_index1 = top_index2++;
}
+ }
+ KMP_ASSERT(depth > 0);
+}
- KMP_SNPRINTF(scan, end-scan+1, "{%ld", (long)i);
- while (*scan != '\0') scan++;
- i++;
- for (; i < KMP_CPU_SETSIZE; i++) {
- if (! KMP_CPU_ISSET(i, mask)) {
- continue;
- }
+void kmp_topology_t::_set_last_level_cache() {
+ if (get_equivalent_type(KMP_HW_L3) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_L3);
+ else if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
+#if KMP_MIC_SUPPORTED
+ else if (__kmp_mic_type == mic3) {
+ if (get_equivalent_type(KMP_HW_L2) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_L2);
+ else if (get_equivalent_type(KMP_HW_TILE) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_TILE);
+ // L2/Tile wasn't detected so just say L1
+ else
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
+ }
+#endif
+ else if (get_equivalent_type(KMP_HW_L1) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_L1);
+ // Fallback is to set last level cache to socket or core
+ if (get_equivalent_type(KMP_HW_LLC) == KMP_HW_UNKNOWN) {
+ if (get_equivalent_type(KMP_HW_SOCKET) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_SOCKET);
+ else if (get_equivalent_type(KMP_HW_CORE) != KMP_HW_UNKNOWN)
+ set_equivalent_type(KMP_HW_LLC, KMP_HW_CORE);
+ }
+ KMP_ASSERT(get_equivalent_type(KMP_HW_LLC) != KMP_HW_UNKNOWN);
+}
- //
- // Check for buffer overflow. A string of the form ",<n>" will have
- // at most 10 characters, plus we want to leave room to print ",...}"
- // if the set is too large to print for a total of 15 characters.
- // We already left room for '\0' in setting end.
- //
- if (end - scan < 15) {
- break;
+// Gather the count of each topology layer and the ratio
+void kmp_topology_t::_gather_enumeration_information() {
+ int previous_id[KMP_HW_LAST];
+ int max[KMP_HW_LAST];
+
+ for (int i = 0; i < depth; ++i) {
+ previous_id[i] = kmp_hw_thread_t::UNKNOWN_ID;
+ max[i] = 0;
+ count[i] = 0;
+ ratio[i] = 0;
+ }
+ for (int i = 0; i < num_hw_threads; ++i) {
+ kmp_hw_thread_t &hw_thread = hw_threads[i];
+ for (int layer = 0; layer < depth; ++layer) {
+ int id = hw_thread.ids[layer];
+ if (id != previous_id[layer]) {
+ // Add an additional increment to each count
+ for (int l = layer; l < depth; ++l)
+ count[l]++;
+ // Keep track of topology layer ratio statistics
+ max[layer]++;
+ for (int l = layer + 1; l < depth; ++l) {
+ if (max[l] > ratio[l])
+ ratio[l] = max[l];
+ max[l] = 1;
}
- KMP_SNPRINTF(scan, end-scan+1, ",%-ld", (long)i);
- while (*scan != '\0') scan++;
+ break;
+ }
}
- if (i < KMP_CPU_SETSIZE) {
- KMP_SNPRINTF(scan, end-scan+1, ",...");
- while (*scan != '\0') scan++;
+ for (int layer = 0; layer < depth; ++layer) {
+ previous_id[layer] = hw_thread.ids[layer];
}
- KMP_SNPRINTF(scan, end-scan+1, "}");
- while (*scan != '\0') scan++;
- KMP_ASSERT(scan <= end);
- return buf;
+ }
+ for (int layer = 0; layer < depth; ++layer) {
+ if (max[layer] > ratio[layer])
+ ratio[layer] = max[layer];
+ }
}
-#endif // KMP_USE_HWLOC
-
-
-void
-__kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask)
-{
- KMP_CPU_ZERO(mask);
-# if KMP_GROUP_AFFINITY
+// Find out if the topology is uniform
+void kmp_topology_t::_discover_uniformity() {
+ int num = 1;
+ for (int level = 0; level < depth; ++level)
+ num *= ratio[level];
+ flags.uniform = (num == count[depth - 1]);
+}
- if (__kmp_num_proc_groups > 1) {
- int group;
- KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
- for (group = 0; group < __kmp_num_proc_groups; group++) {
- int i;
- int num = __kmp_GetActiveProcessorCount(group);
- for (i = 0; i < num; i++) {
- KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
- }
+// Set all the sub_ids for each hardware thread
+void kmp_topology_t::_set_sub_ids() {
+ int previous_id[KMP_HW_LAST];
+ int sub_id[KMP_HW_LAST];
+
+ for (int i = 0; i < depth; ++i) {
+ previous_id[i] = -1;
+ sub_id[i] = -1;
+ }
+ for (int i = 0; i < num_hw_threads; ++i) {
+ kmp_hw_thread_t &hw_thread = hw_threads[i];
+ // Setup the sub_id
+ for (int j = 0; j < depth; ++j) {
+ if (hw_thread.ids[j] != previous_id[j]) {
+ sub_id[j]++;
+ for (int k = j + 1; k < depth; ++k) {
+ sub_id[k] = 0;
}
+ break;
+ }
}
- else
-
-# endif /* KMP_GROUP_AFFINITY */
-
- {
- int proc;
- for (proc = 0; proc < __kmp_xproc; proc++) {
- KMP_CPU_SET(proc, mask);
- }
+ // Set previous_id
+ for (int j = 0; j < depth; ++j) {
+ previous_id[j] = hw_thread.ids[j];
}
-}
-
-//
-// When sorting by labels, __kmp_affinity_assign_child_nums() must first be
-// called to renumber the labels from [0..n] and place them into the child_num
-// vector of the address object. This is done in case the labels used for
-// the children at one node of the hierarchy differ from those used for
-// another node at the same level. Example: suppose the machine has 2 nodes
-// with 2 packages each. The first node contains packages 601 and 602, and
-// second node contains packages 603 and 604. If we try to sort the table
-// for "scatter" affinity, the table will still be sorted 601, 602, 603, 604
-// because we are paying attention to the labels themselves, not the ordinal
-// child numbers. By using the child numbers in the sort, the result is
-// {0,0}=601, {0,1}=603, {1,0}=602, {1,1}=604.
-//
-static void
-__kmp_affinity_assign_child_nums(AddrUnsPair *address2os,
- int numAddrs)
-{
- KMP_DEBUG_ASSERT(numAddrs > 0);
- int depth = address2os->first.depth;
- unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
- unsigned *lastLabel = (unsigned *)__kmp_allocate(depth
- * sizeof(unsigned));
- int labCt;
- for (labCt = 0; labCt < depth; labCt++) {
- address2os[0].first.childNums[labCt] = counts[labCt] = 0;
- lastLabel[labCt] = address2os[0].first.labels[labCt];
- }
- int i;
- for (i = 1; i < numAddrs; i++) {
- for (labCt = 0; labCt < depth; labCt++) {
- if (address2os[i].first.labels[labCt] != lastLabel[labCt]) {
- int labCt2;
- for (labCt2 = labCt + 1; labCt2 < depth; labCt2++) {
- counts[labCt2] = 0;
- lastLabel[labCt2] = address2os[i].first.labels[labCt2];
- }
- counts[labCt]++;
- lastLabel[labCt] = address2os[i].first.labels[labCt];
- break;
- }
- }
- for (labCt = 0; labCt < depth; labCt++) {
- address2os[i].first.childNums[labCt] = counts[labCt];
- }
- for (; labCt < (int)Address::maxDepth; labCt++) {
- address2os[i].first.childNums[labCt] = 0;
- }
+ // Set the sub_ids field
+ for (int j = 0; j < depth; ++j) {
+ hw_thread.sub_ids[j] = sub_id[j];
}
+ }
}
-
-//
-// All of the __kmp_affinity_create_*_map() routines should set
-// __kmp_affinity_masks to a vector of affinity mask objects of length
-// __kmp_affinity_num_masks, if __kmp_affinity_type != affinity_none, and
-// return the number of levels in the machine topology tree (zero if
-// __kmp_affinity_type == affinity_none).
-//
-// All of the __kmp_affinity_create_*_map() routines should set *fullMask
-// to the affinity mask for the initialization thread. They need to save and
-// restore the mask, and it could be needed later, so saving it is just an
-// optimization to avoid calling kmp_get_system_affinity() again.
-//
-static kmp_affin_mask_t *fullMask = NULL;
-
-kmp_affin_mask_t *
-__kmp_affinity_get_fullMask() { return fullMask; }
-
-
-static int nCoresPerPkg, nPackages;
-static int __kmp_nThreadsPerCore;
+void kmp_topology_t::_set_globals() {
+ // Set nCoresPerPkg, nPackages, __kmp_nThreadsPerCore, __kmp_ncores
+ int core_level, thread_level, package_level;
+ package_level = get_level(KMP_HW_SOCKET);
+#if KMP_GROUP_AFFINITY
+ if (package_level == -1)
+ package_level = get_level(KMP_HW_PROC_GROUP);
+#endif
+ core_level = get_level(KMP_HW_CORE);
+ thread_level = get_level(KMP_HW_THREAD);
+
+ KMP_ASSERT(core_level != -1);
+ KMP_ASSERT(thread_level != -1);
+
+ __kmp_nThreadsPerCore = calculate_ratio(thread_level, core_level);
+ if (package_level != -1) {
+ nCoresPerPkg = calculate_ratio(core_level, package_level);
+ nPackages = get_count(package_level);
+ } else {
+ // assume one socket
+ nCoresPerPkg = get_count(core_level);
+ nPackages = 1;
+ }
#ifndef KMP_DFLT_NTH_CORES
-static int __kmp_ncores;
+ __kmp_ncores = get_count(core_level);
#endif
-
-//
-// __kmp_affinity_uniform_topology() doesn't work when called from
-// places which support arbitrarily many levels in the machine topology
-// map, i.e. the non-default cases in __kmp_affinity_create_cpuinfo_map()
-// __kmp_affinity_create_x2apicid_map().
-//
-inline static bool
-__kmp_affinity_uniform_topology()
-{
- return __kmp_avail_proc == (__kmp_nThreadsPerCore * nCoresPerPkg * nPackages);
}
+kmp_topology_t *kmp_topology_t::allocate(int nproc, int ndepth,
+ const kmp_hw_t *types) {
+ kmp_topology_t *retval;
+ // Allocate all data in one large allocation
+ size_t size = sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc +
+ sizeof(int) * ndepth * 3;
+ char *bytes = (char *)__kmp_allocate(size);
+ retval = (kmp_topology_t *)bytes;
+ if (nproc > 0) {
+ retval->hw_threads = (kmp_hw_thread_t *)(bytes + sizeof(kmp_topology_t));
+ } else {
+ retval->hw_threads = nullptr;
+ }
+ retval->num_hw_threads = nproc;
+ retval->depth = ndepth;
+ int *arr =
+ (int *)(bytes + sizeof(kmp_topology_t) + sizeof(kmp_hw_thread_t) * nproc);
+ retval->types = (kmp_hw_t *)arr;
+ retval->ratio = arr + ndepth;
+ retval->count = arr + 2 * ndepth;
+ KMP_FOREACH_HW_TYPE(type) { retval->equivalent[type] = KMP_HW_UNKNOWN; }
+ for (int i = 0; i < ndepth; ++i) {
+ retval->types[i] = types[i];
+ retval->equivalent[types[i]] = types[i];
+ }
+ return retval;
+}
-//
-// Print out the detailed machine topology map, i.e. the physical locations
-// of each OS proc.
-//
-static void
-__kmp_affinity_print_topology(AddrUnsPair *address2os, int len, int depth,
- int pkgLevel, int coreLevel, int threadLevel)
-{
- int proc;
+void kmp_topology_t::deallocate(kmp_topology_t *topology) {
+ if (topology)
+ __kmp_free(topology);
+}
- KMP_INFORM(OSProcToPhysicalThreadMap, "KMP_AFFINITY");
- for (proc = 0; proc < len; proc++) {
- int level;
- kmp_str_buf_t buf;
- __kmp_str_buf_init(&buf);
- for (level = 0; level < depth; level++) {
- if (level == threadLevel) {
- __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Thread));
- }
- else if (level == coreLevel) {
- __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Core));
- }
- else if (level == pkgLevel) {
- __kmp_str_buf_print(&buf, "%s ", KMP_I18N_STR(Package));
- }
- else if (level > pkgLevel) {
- __kmp_str_buf_print(&buf, "%s_%d ", KMP_I18N_STR(Node),
- level - pkgLevel - 1);
- }
- else {
- __kmp_str_buf_print(&buf, "L%d ", level);
- }
- __kmp_str_buf_print(&buf, "%d ",
- address2os[proc].first.labels[level]);
- }
- KMP_INFORM(OSProcMapToPack, "KMP_AFFINITY", address2os[proc].second,
- buf.str);
- __kmp_str_buf_free(&buf);
+bool kmp_topology_t::check_ids() const {
+ // Assume ids have been sorted
+ if (num_hw_threads == 0)
+ return true;
+ for (int i = 1; i < num_hw_threads; ++i) {
+ kmp_hw_thread_t &current_thread = hw_threads[i];
+ kmp_hw_thread_t &previous_thread = hw_threads[i - 1];
+ bool unique = false;
+ for (int j = 0; j < depth; ++j) {
+ if (previous_thread.ids[j] != current_thread.ids[j]) {
+ unique = true;
+ break;
+ }
}
+ if (unique)
+ continue;
+ return false;
+ }
+ return true;
}
-#if KMP_USE_HWLOC
-static int
-__kmp_affinity_create_hwloc_map(AddrUnsPair **address2os,
- kmp_i18n_id_t *const msg_id)
-{
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
-
- //
- // Save the affinity mask for the current thread.
- //
- kmp_affin_mask_t *oldMask;
- KMP_CPU_ALLOC(oldMask);
- __kmp_get_system_affinity(oldMask, TRUE);
-
- unsigned depth = hwloc_topology_get_depth(__kmp_hwloc_topology);
- int threadLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_PU);
- int coreLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_CORE);
- int pkgLevel = hwloc_get_type_depth(__kmp_hwloc_topology, HWLOC_OBJ_SOCKET);
- __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 0;
-
- //
- // This makes an assumption about the topology being four levels:
- // machines -> packages -> cores -> hardware threads
- //
- hwloc_obj_t current_level_iterator = hwloc_get_root_obj(__kmp_hwloc_topology);
- hwloc_obj_t child_iterator;
- for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
- child_iterator != NULL;
- child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
- {
- nPackages++;
- }
- current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, pkgLevel, 0);
- for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
- child_iterator != NULL;
- child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
- {
- nCoresPerPkg++;
- }
- current_level_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, coreLevel, 0);
- for(child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, NULL);
- child_iterator != NULL;
- child_iterator = hwloc_get_next_child(__kmp_hwloc_topology, current_level_iterator, child_iterator))
- {
- __kmp_nThreadsPerCore++;
- }
+void kmp_topology_t::dump() const {
+ printf("***********************\n");
+ printf("*** __kmp_topology: ***\n");
+ printf("***********************\n");
+ printf("* depth: %d\n", depth);
+
+ printf("* types: ");
+ for (int i = 0; i < depth; ++i)
+ printf("%15s ", __kmp_hw_get_keyword(types[i]));
+ printf("\n");
+
+ printf("* ratio: ");
+ for (int i = 0; i < depth; ++i) {
+ printf("%15d ", ratio[i]);
+ }
+ printf("\n");
+
+ printf("* count: ");
+ for (int i = 0; i < depth; ++i) {
+ printf("%15d ", count[i]);
+ }
+ printf("\n");
+
+ printf("* equivalent map:\n");
+ KMP_FOREACH_HW_TYPE(i) {
+ const char *key = __kmp_hw_get_keyword(i);
+ const char *value = __kmp_hw_get_keyword(equivalent[i]);
+ printf("%-15s -> %-15s\n", key, value);
+ }
+
+ printf("* uniform: %s\n", (is_uniform() ? "Yes" : "No"));
+
+ printf("* num_hw_threads: %d\n", num_hw_threads);
+ printf("* hw_threads:\n");
+ for (int i = 0; i < num_hw_threads; ++i) {
+ hw_threads[i].print();
+ }
+ printf("***********************\n");
+}
- if (! KMP_AFFINITY_CAPABLE())
- {
- //
- // Hack to try and infer the machine topology using only the data
- // available from cpuid on the current thread, and __kmp_xproc.
- //
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
-
- __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (__kmp_affinity_uniform_topology()) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
- return 0;
- }
+void kmp_topology_t::print(const char *env_var) const {
+ kmp_str_buf_t buf;
+ int print_types_depth;
+ __kmp_str_buf_init(&buf);
+ kmp_hw_t print_types[KMP_HW_LAST + 2];
+
+ // Num Available Threads
+ KMP_INFORM(AvailableOSProc, env_var, num_hw_threads);
+
+ // Uniform or not
+ if (is_uniform()) {
+ KMP_INFORM(Uniform, env_var);
+ } else {
+ KMP_INFORM(NonUniform, env_var);
+ }
+
+ // Equivalent types
+ KMP_FOREACH_HW_TYPE(type) {
+ kmp_hw_t eq_type = equivalent[type];
+ if (eq_type != KMP_HW_UNKNOWN && eq_type != type) {
+ KMP_INFORM(AffEqualTopologyTypes, env_var,
+ __kmp_hw_get_catalog_string(type),
+ __kmp_hw_get_catalog_string(eq_type));
+ }
+ }
+
+ // Quick topology
+ KMP_ASSERT(depth > 0 && depth <= (int)KMP_HW_LAST);
+ // Create a print types array that always guarantees printing
+ // the core and thread level
+ print_types_depth = 0;
+ for (int level = 0; level < depth; ++level)
+ print_types[print_types_depth++] = types[level];
+ if (equivalent[KMP_HW_CORE] != KMP_HW_CORE) {
+ // Force in the core level for quick topology
+ if (print_types[print_types_depth - 1] == KMP_HW_THREAD) {
+ // Force core before thread e.g., 1 socket X 2 threads/socket
+ // becomes 1 socket X 1 core/socket X 2 threads/socket
+ print_types[print_types_depth - 1] = KMP_HW_CORE;
+ print_types[print_types_depth++] = KMP_HW_THREAD;
+ } else {
+ print_types[print_types_depth++] = KMP_HW_CORE;
+ }
+ }
+ // Always put threads at very end of quick topology
+ if (equivalent[KMP_HW_THREAD] != KMP_HW_THREAD)
+ print_types[print_types_depth++] = KMP_HW_THREAD;
+
+ __kmp_str_buf_clear(&buf);
+ kmp_hw_t numerator_type;
+ kmp_hw_t denominator_type = KMP_HW_UNKNOWN;
+ int core_level = get_level(KMP_HW_CORE);
+ int ncores = get_count(core_level);
+
+ for (int plevel = 0, level = 0; plevel < print_types_depth; ++plevel) {
+ int c;
+ bool plural;
+ numerator_type = print_types[plevel];
+ KMP_ASSERT_VALID_HW_TYPE(numerator_type);
+ if (equivalent[numerator_type] != numerator_type)
+ c = 1;
+ else
+ c = get_ratio(level++);
+ plural = (c > 1);
+ if (plevel == 0) {
+ __kmp_str_buf_print(&buf, "%d %s", c,
+ __kmp_hw_get_catalog_string(numerator_type, plural));
+ } else {
+ __kmp_str_buf_print(&buf, " x %d %s/%s", c,
+ __kmp_hw_get_catalog_string(numerator_type, plural),
+ __kmp_hw_get_catalog_string(denominator_type));
+ }
+ denominator_type = numerator_type;
+ }
+ KMP_INFORM(TopologyGeneric, env_var, buf.str, ncores);
+
+ if (num_hw_threads <= 0) {
+ __kmp_str_buf_free(&buf);
+ return;
+ }
+
+ // Full OS proc to hardware thread map
+ KMP_INFORM(OSProcToPhysicalThreadMap, env_var);
+ for (int i = 0; i < num_hw_threads; i++) {
+ __kmp_str_buf_clear(&buf);
+ for (int level = 0; level < depth; ++level) {
+ kmp_hw_t type = types[level];
+ __kmp_str_buf_print(&buf, "%s ", __kmp_hw_get_catalog_string(type));
+ __kmp_str_buf_print(&buf, "%d ", hw_threads[i].ids[level]);
+ }
+ KMP_INFORM(OSProcMapToPack, env_var, hw_threads[i].os_id, buf.str);
+ }
+
+ __kmp_str_buf_free(&buf);
+}
- //
- // Allocate the data structure to be returned.
- //
- AddrUnsPair *retval = (AddrUnsPair *)__kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
-
- unsigned num_hardware_threads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
- unsigned i;
- hwloc_obj_t hardware_thread_iterator;
- int nActiveThreads = 0;
- for(i=0;i<num_hardware_threads;i++) {
- hardware_thread_iterator = hwloc_get_obj_by_depth(__kmp_hwloc_topology, threadLevel, i);
- Address addr(3);
- if(! KMP_CPU_ISSET(i, fullMask)) continue;
- addr.labels[0] = hardware_thread_iterator->parent->parent->logical_index;
- addr.labels[1] = hardware_thread_iterator->parent->logical_index % nCoresPerPkg;
- addr.labels[2] = hardware_thread_iterator->logical_index % __kmp_nThreadsPerCore;
- retval[nActiveThreads] = AddrUnsPair(addr, hardware_thread_iterator->os_index);
- nActiveThreads++;
- }
+void kmp_topology_t::canonicalize() {
+ _remove_radix1_layers();
+ _gather_enumeration_information();
+ _discover_uniformity();
+ _set_sub_ids();
+ _set_globals();
+ _set_last_level_cache();
+
+#if KMP_MIC_SUPPORTED
+ // Manually Add L2 = Tile equivalence
+ if (__kmp_mic_type == mic3) {
+ if (get_level(KMP_HW_L2) != -1)
+ set_equivalent_type(KMP_HW_TILE, KMP_HW_L2);
+ else if (get_level(KMP_HW_TILE) != -1)
+ set_equivalent_type(KMP_HW_L2, KMP_HW_TILE);
+ }
+#endif
- //
- // If there's only one thread context to bind to, return now.
- //
- KMP_ASSERT(nActiveThreads > 0);
- if (nActiveThreads == 1) {
- __kmp_ncores = nPackages = 1;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-
- KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
+ // Perform post canonicalization checking
+ KMP_ASSERT(depth > 0);
+ for (int level = 0; level < depth; ++level) {
+ // All counts, ratios, and types must be valid
+ KMP_ASSERT(count[level] > 0 && ratio[level] > 0);
+ KMP_ASSERT_VALID_HW_TYPE(types[level]);
+ // Detected types must point to themselves
+ KMP_ASSERT(equivalent[types[level]] == types[level]);
+ }
- if (__kmp_affinity_type == affinity_none) {
- __kmp_free(retval);
- KMP_CPU_FREE(oldMask);
- return 0;
- }
+#if KMP_AFFINITY_SUPPORTED
+ // Set the number of affinity granularity levels
+ if (__kmp_affinity_gran_levels < 0) {
+ kmp_hw_t gran_type = get_equivalent_type(__kmp_affinity_gran);
+ // Check if user's granularity request is valid
+ if (gran_type == KMP_HW_UNKNOWN) {
+ // First try core, then thread, then package
+ kmp_hw_t gran_types[3] = {KMP_HW_CORE, KMP_HW_THREAD, KMP_HW_SOCKET};
+ for (auto g : gran_types) {
+ if (__kmp_topology->get_equivalent_type(g) != KMP_HW_UNKNOWN) {
+ gran_type = g;
+ break;
+ }
+ }
+ KMP_ASSERT(gran_type != KMP_HW_UNKNOWN);
+ // Warn user what granularity setting will be used instead
+ KMP_WARNING(AffGranularityBad, "KMP_AFFINITY",
+ __kmp_hw_get_catalog_string(__kmp_affinity_gran),
+ __kmp_hw_get_catalog_string(gran_type));
+ __kmp_affinity_gran = gran_type;
+ }
+ __kmp_affinity_gran_levels = 0;
+ for (int i = depth - 1; i >= 0 && get_type(i) != gran_type; --i)
+ __kmp_affinity_gran_levels++;
+ }
+#endif // KMP_AFFINITY_SUPPORTED
+}
- //
- // Form an Address object which only includes the package level.
- //
- Address addr(1);
- addr.labels[0] = retval[0].first.labels[pkgLevel-1];
- retval[0].first = addr;
+// Canonicalize an explicit packages X cores/pkg X threads/core topology
+void kmp_topology_t::canonicalize(int npackages, int ncores_per_pkg,
+ int nthreads_per_core, int ncores) {
+ int ndepth = 3;
+ depth = ndepth;
+ KMP_FOREACH_HW_TYPE(i) { equivalent[i] = KMP_HW_UNKNOWN; }
+ for (int level = 0; level < depth; ++level) {
+ count[level] = 0;
+ ratio[level] = 0;
+ }
+ count[0] = npackages;
+ count[1] = ncores;
+ count[2] = __kmp_xproc;
+ ratio[0] = npackages;
+ ratio[1] = ncores_per_pkg;
+ ratio[2] = nthreads_per_core;
+ equivalent[KMP_HW_SOCKET] = KMP_HW_SOCKET;
+ equivalent[KMP_HW_CORE] = KMP_HW_CORE;
+ equivalent[KMP_HW_THREAD] = KMP_HW_THREAD;
+ types[0] = KMP_HW_SOCKET;
+ types[1] = KMP_HW_CORE;
+ types[2] = KMP_HW_THREAD;
+ //__kmp_avail_proc = __kmp_xproc;
+ _discover_uniformity();
+}
- if (__kmp_affinity_gran_levels < 0) {
- __kmp_affinity_gran_levels = 0;
- }
+// Apply the KMP_HW_SUBSET envirable to the topology
+// Returns true if KMP_HW_SUBSET filtered any processors
+// otherwise, returns false
+bool kmp_topology_t::filter_hw_subset() {
+ // If KMP_HW_SUBSET wasn't requested, then do nothing.
+ if (!__kmp_hw_subset)
+ return false;
+
+ // Check to see if KMP_HW_SUBSET is a valid subset of the detected topology
+ int hw_subset_depth = __kmp_hw_subset->get_depth();
+ kmp_hw_t specified[KMP_HW_LAST];
+ KMP_ASSERT(hw_subset_depth > 0);
+ KMP_FOREACH_HW_TYPE(i) { specified[i] = KMP_HW_UNKNOWN; }
+ for (int i = 0; i < hw_subset_depth; ++i) {
+ int max_count;
+ int num = __kmp_hw_subset->at(i).num;
+ int offset = __kmp_hw_subset->at(i).offset;
+ kmp_hw_t type = __kmp_hw_subset->at(i).type;
+ kmp_hw_t equivalent_type = equivalent[type];
+ int level = get_level(type);
+
+ // Check to see if current layer is in detected machine topology
+ if (equivalent_type != KMP_HW_UNKNOWN) {
+ __kmp_hw_subset->at(i).type = equivalent_type;
+ } else {
+ KMP_WARNING(AffHWSubsetNotExistGeneric,
+ __kmp_hw_get_catalog_string(type));
+ return false;
+ }
+
+ // Check to see if current layer has already been specified
+ // either directly or through an equivalent type
+ if (specified[equivalent_type] != KMP_HW_UNKNOWN) {
+ KMP_WARNING(AffHWSubsetEqvLayers, __kmp_hw_get_catalog_string(type),
+ __kmp_hw_get_catalog_string(specified[equivalent_type]));
+ return false;
+ }
+ specified[equivalent_type] = type;
+
+ // Check to see if layers are in order
+ if (i + 1 < hw_subset_depth) {
+ kmp_hw_t next_type = get_equivalent_type(__kmp_hw_subset->at(i + 1).type);
+ if (next_type == KMP_HW_UNKNOWN) {
+ KMP_WARNING(
+ AffHWSubsetNotExistGeneric,
+ __kmp_hw_get_catalog_string(__kmp_hw_subset->at(i + 1).type));
+ return false;
+ }
+ int next_topology_level = get_level(next_type);
+ if (level > next_topology_level) {
+ KMP_WARNING(AffHWSubsetOutOfOrder, __kmp_hw_get_catalog_string(type),
+ __kmp_hw_get_catalog_string(next_type));
+ return false;
+ }
+ }
+
+ // Check to see if each layer's num & offset parameters are valid
+ max_count = get_ratio(level);
+ if (max_count < 0 || num + offset > max_count) {
+ bool plural = (num > 1);
+ KMP_WARNING(AffHWSubsetManyGeneric,
+ __kmp_hw_get_catalog_string(type, plural));
+ return false;
+ }
+ }
+
+ // Apply the filtered hardware subset
+ int new_index = 0;
+ for (int i = 0; i < num_hw_threads; ++i) {
+ kmp_hw_thread_t &hw_thread = hw_threads[i];
+ // Check to see if this hardware thread should be filtered
+ bool should_be_filtered = false;
+ for (int level = 0, hw_subset_index = 0;
+ level < depth && hw_subset_index < hw_subset_depth; ++level) {
+ kmp_hw_t topology_type = types[level];
+ auto hw_subset_item = __kmp_hw_subset->at(hw_subset_index);
+ kmp_hw_t hw_subset_type = hw_subset_item.type;
+ if (topology_type != hw_subset_type)
+ continue;
+ int num = hw_subset_item.num;
+ int offset = hw_subset_item.offset;
+ hw_subset_index++;
+ if (hw_thread.sub_ids[level] < offset ||
+ hw_thread.sub_ids[level] >= offset + num) {
+ should_be_filtered = true;
+ break;
+ }
+ }
+ if (!should_be_filtered) {
+ if (i != new_index)
+ hw_threads[new_index] = hw_thread;
+ new_index++;
+ } else {
+#if KMP_AFFINITY_SUPPORTED
+ KMP_CPU_CLR(hw_thread.os_id, __kmp_affin_fullMask);
+#endif
+ __kmp_avail_proc--;
+ }
+ }
+ KMP_DEBUG_ASSERT(new_index <= num_hw_threads);
+ num_hw_threads = new_index;
+
+ // Post hardware subset canonicalization
+ _gather_enumeration_information();
+ _discover_uniformity();
+ _set_globals();
+ _set_last_level_cache();
+ return true;
+}
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
- }
+bool kmp_topology_t::is_close(int hwt1, int hwt2, int hw_level) const {
+ if (hw_level >= depth)
+ return true;
+ bool retval = true;
+ const kmp_hw_thread_t &t1 = hw_threads[hwt1];
+ const kmp_hw_thread_t &t2 = hw_threads[hwt2];
+ for (int i = 0; i < (depth - hw_level); ++i) {
+ if (t1.ids[i] != t2.ids[i])
+ return false;
+ }
+ return retval;
+}
- *address2os = retval;
- KMP_CPU_FREE(oldMask);
- return 1;
- }
+////////////////////////////////////////////////////////////////////////////////
- //
- // Sort the table by physical Id.
- //
- qsort(retval, nActiveThreads, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
+#if KMP_AFFINITY_SUPPORTED
+class kmp_affinity_raii_t {
+ kmp_affin_mask_t *mask;
+ bool restored;
- //
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore,
- // nCoresPerPkg, & nPackages. Make sure all these vars are set
- // correctly, and return if affinity is not enabled.
- //
- __kmp_ncores = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, coreLevel);
+public:
+ kmp_affinity_raii_t() : restored(false) {
+ KMP_CPU_ALLOC(mask);
+ KMP_ASSERT(mask != NULL);
+ __kmp_get_system_affinity(mask, TRUE);
+ }
+ void restore() {
+ __kmp_set_system_affinity(mask, TRUE);
+ KMP_CPU_FREE(mask);
+ restored = true;
+ }
+ ~kmp_affinity_raii_t() {
+ if (!restored) {
+ __kmp_set_system_affinity(mask, TRUE);
+ KMP_CPU_FREE(mask);
+ }
+ }
+};
- //
- // Check to see if the machine topology is uniform
- //
- unsigned npackages = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, pkgLevel);
- unsigned ncores = __kmp_ncores;
- unsigned nthreads = hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology, threadLevel);
- unsigned uniform = (npackages * nCoresPerPkg * __kmp_nThreadsPerCore == nthreads);
+bool KMPAffinity::picked_api = false;
- //
- // Print the machine topology summary.
- //
- if (__kmp_affinity_verbose) {
- char mask[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
+void *KMPAffinity::Mask::operator new(size_t n) { return __kmp_allocate(n); }
+void *KMPAffinity::Mask::operator new[](size_t n) { return __kmp_allocate(n); }
+void KMPAffinity::Mask::operator delete(void *p) { __kmp_free(p); }
+void KMPAffinity::Mask::operator delete[](void *p) { __kmp_free(p); }
+void *KMPAffinity::operator new(size_t n) { return __kmp_allocate(n); }
+void KMPAffinity::operator delete(void *p) { __kmp_free(p); }
- KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (uniform) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
+void KMPAffinity::pick_api() {
+ KMPAffinity *affinity_dispatch;
+ if (picked_api)
+ return;
+#if KMP_USE_HWLOC
+ // Only use Hwloc if affinity isn't explicitly disabled and
+ // user requests Hwloc topology method
+ if (__kmp_affinity_top_method == affinity_top_method_hwloc &&
+ __kmp_affinity_type != affinity_disabled) {
+ affinity_dispatch = new KMPHwlocAffinity();
+ } else
+#endif
+ {
+ affinity_dispatch = new KMPNativeAffinity();
+ }
+ __kmp_affinity_dispatch = affinity_dispatch;
+ picked_api = true;
+}
- kmp_str_buf_t buf;
- __kmp_str_buf_init(&buf);
+void KMPAffinity::destroy_api() {
+ if (__kmp_affinity_dispatch != NULL) {
+ delete __kmp_affinity_dispatch;
+ __kmp_affinity_dispatch = NULL;
+ picked_api = false;
+ }
+}
- __kmp_str_buf_print(&buf, "%d", npackages);
- //for (level = 1; level <= pkgLevel; level++) {
- // __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
- // }
- KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
+#define KMP_ADVANCE_SCAN(scan) \
+ while (*scan != '\0') { \
+ scan++; \
+ }
- __kmp_str_buf_free(&buf);
+// Print the affinity mask to the character array in a pretty format.
+// The format is a comma separated list of non-negative integers or integer
+// ranges: e.g., 1,2,3-5,7,9-15
+// The format can also be the string "{<empty>}" if no bits are set in mask
+char *__kmp_affinity_print_mask(char *buf, int buf_len,
+ kmp_affin_mask_t *mask) {
+ int start = 0, finish = 0, previous = 0;
+ bool first_range;
+ KMP_ASSERT(buf);
+ KMP_ASSERT(buf_len >= 40);
+ KMP_ASSERT(mask);
+ char *scan = buf;
+ char *end = buf + buf_len - 1;
+
+ // Check for empty set.
+ if (mask->begin() == mask->end()) {
+ KMP_SNPRINTF(scan, end - scan + 1, "{<empty>}");
+ KMP_ADVANCE_SCAN(scan);
+ KMP_ASSERT(scan <= end);
+ return buf;
+ }
+
+ first_range = true;
+ start = mask->begin();
+ while (1) {
+ // Find next range
+ // [start, previous] is inclusive range of contiguous bits in mask
+ for (finish = mask->next(start), previous = start;
+ finish == previous + 1 && finish != mask->end();
+ finish = mask->next(finish)) {
+ previous = finish;
+ }
+
+ // The first range does not need a comma printed before it, but the rest
+ // of the ranges do need a comma beforehand
+ if (!first_range) {
+ KMP_SNPRINTF(scan, end - scan + 1, "%s", ",");
+ KMP_ADVANCE_SCAN(scan);
+ } else {
+ first_range = false;
}
-
- if (__kmp_affinity_type == affinity_none) {
- KMP_CPU_FREE(oldMask);
- return 0;
+ // Range with three or more contiguous bits in the affinity mask
+ if (previous - start > 1) {
+ KMP_SNPRINTF(scan, end - scan + 1, "%u-%u", start, previous);
+ } else {
+ // Range with one or two contiguous bits in the affinity mask
+ KMP_SNPRINTF(scan, end - scan + 1, "%u", start);
+ KMP_ADVANCE_SCAN(scan);
+ if (previous - start > 0) {
+ KMP_SNPRINTF(scan, end - scan + 1, ",%u", previous);
+ }
+ }
+ KMP_ADVANCE_SCAN(scan);
+ // Start over with new start point
+ start = finish;
+ if (start == mask->end())
+ break;
+ // Check for overflow
+ if (end - scan < 2)
+ break;
+ }
+
+ // Check for overflow
+ KMP_ASSERT(scan <= end);
+ return buf;
+}
+#undef KMP_ADVANCE_SCAN
+
+// Print the affinity mask to the string buffer object in a pretty format
+// The format is a comma separated list of non-negative integers or integer
+// ranges: e.g., 1,2,3-5,7,9-15
+// The format can also be the string "{<empty>}" if no bits are set in mask
+kmp_str_buf_t *__kmp_affinity_str_buf_mask(kmp_str_buf_t *buf,
+ kmp_affin_mask_t *mask) {
+ int start = 0, finish = 0, previous = 0;
+ bool first_range;
+ KMP_ASSERT(buf);
+ KMP_ASSERT(mask);
+
+ __kmp_str_buf_clear(buf);
+
+ // Check for empty set.
+ if (mask->begin() == mask->end()) {
+ __kmp_str_buf_print(buf, "%s", "{<empty>}");
+ return buf;
+ }
+
+ first_range = true;
+ start = mask->begin();
+ while (1) {
+ // Find next range
+ // [start, previous] is inclusive range of contiguous bits in mask
+ for (finish = mask->next(start), previous = start;
+ finish == previous + 1 && finish != mask->end();
+ finish = mask->next(finish)) {
+ previous = finish;
+ }
+
+ // The first range does not need a comma printed before it, but the rest
+ // of the ranges do need a comma beforehand
+ if (!first_range) {
+ __kmp_str_buf_print(buf, "%s", ",");
+ } else {
+ first_range = false;
}
+ // Range with three or more contiguous bits in the affinity mask
+ if (previous - start > 1) {
+ __kmp_str_buf_print(buf, "%u-%u", start, previous);
+ } else {
+ // Range with one or two contiguous bits in the affinity mask
+ __kmp_str_buf_print(buf, "%u", start);
+ if (previous - start > 0) {
+ __kmp_str_buf_print(buf, ",%u", previous);
+ }
+ }
+ // Start over with new start point
+ start = finish;
+ if (start == mask->end())
+ break;
+ }
+ return buf;
+}
- //
- // Find any levels with radiix 1, and remove them from the map
- // (except for the package level).
- //
- int new_depth = 0;
- int level;
- unsigned proc;
- for (level = 1; level < (int)depth; level++) {
- if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
- continue;
- }
- new_depth++;
- }
+void __kmp_affinity_entire_machine_mask(kmp_affin_mask_t *mask) {
+ KMP_CPU_ZERO(mask);
- //
- // If we are removing any levels, allocate a new vector to return,
- // and copy the relevant information to it.
- //
- if (new_depth != depth-1) {
- AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
- sizeof(AddrUnsPair) * nActiveThreads);
- for (proc = 0; (int)proc < nActiveThreads; proc++) {
- Address addr(new_depth);
- new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
- }
- int new_level = 0;
- for (level = 1; level < (int)depth; level++) {
- if ((hwloc_get_nbobjs_by_depth(__kmp_hwloc_topology,level) == 1) && (level != pkgLevel)) {
- if (level == threadLevel) {
- threadLevel = -1;
- }
- else if ((threadLevel >= 0) && (level < threadLevel)) {
- threadLevel--;
- }
- if (level == coreLevel) {
- coreLevel = -1;
- }
- else if ((coreLevel >= 0) && (level < coreLevel)) {
- coreLevel--;
- }
- if (level < pkgLevel) {
- pkgLevel--;
- }
- continue;
- }
- for (proc = 0; (int)proc < nActiveThreads; proc++) {
- new_retval[proc].first.labels[new_level]
- = retval[proc].first.labels[level];
- }
- new_level++;
- }
+#if KMP_GROUP_AFFINITY
- __kmp_free(retval);
- retval = new_retval;
- depth = new_depth;
+ if (__kmp_num_proc_groups > 1) {
+ int group;
+ KMP_DEBUG_ASSERT(__kmp_GetActiveProcessorCount != NULL);
+ for (group = 0; group < __kmp_num_proc_groups; group++) {
+ int i;
+ int num = __kmp_GetActiveProcessorCount(group);
+ for (i = 0; i < num; i++) {
+ KMP_CPU_SET(i + group * (CHAR_BIT * sizeof(DWORD_PTR)), mask);
+ }
}
+ } else
- if (__kmp_affinity_gran_levels < 0) {
- //
- // Set the granularity level based on what levels are modeled
- // in the machine topology map.
- //
- __kmp_affinity_gran_levels = 0;
- if ((threadLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
- __kmp_affinity_gran_levels++;
- }
- if ((coreLevel-1 >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
- __kmp_affinity_gran_levels++;
- }
- if (__kmp_affinity_gran > affinity_gran_package) {
- __kmp_affinity_gran_levels++;
- }
- }
+#endif /* KMP_GROUP_AFFINITY */
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(retval, nActiveThreads, depth-1, pkgLevel-1,
- coreLevel-1, threadLevel-1);
+ {
+ int proc;
+ for (proc = 0; proc < __kmp_xproc; proc++) {
+ KMP_CPU_SET(proc, mask);
}
-
- KMP_CPU_FREE(oldMask);
- *address2os = retval;
- if(depth == 0) return 0;
- else return depth-1;
+ }
}
-#endif // KMP_USE_HWLOC
-//
-// If we don't know how to retrieve the machine's processor topology, or
-// encounter an error in doing so, this routine is called to form a "flat"
-// mapping of os thread id's <-> processor id's.
-//
-static int
-__kmp_affinity_create_flat_map(AddrUnsPair **address2os,
- kmp_i18n_id_t *const msg_id)
-{
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
+// All of the __kmp_affinity_create_*_map() routines should allocate the
+// internal topology object and set the layer ids for it. Each routine
+// returns a boolean on whether it was successful at doing so.
+kmp_affin_mask_t *__kmp_affin_fullMask = NULL;
- //
- // Even if __kmp_affinity_type == affinity_none, this routine might still
- // called to set __kmp_ncores, as well as
- // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
- //
- if (! KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- __kmp_ncores = nPackages = __kmp_xproc;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffFlatTopology, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
- return 0;
- }
+#if KMP_USE_HWLOC
+static inline bool __kmp_hwloc_is_cache_type(hwloc_obj_t obj) {
+#if HWLOC_API_VERSION >= 0x00020000
+ return hwloc_obj_type_is_cache(obj->type);
+#else
+ return obj->type == HWLOC_OBJ_CACHE;
+#endif
+}
- //
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore,
- // nCoresPerPkg, & nPackages. Make sure all these vars are set
- // correctly, and return now if affinity is not enabled.
- //
- __kmp_ncores = nPackages = __kmp_avail_proc;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
+// Returns KMP_HW_* type derived from HWLOC_* type
+static inline kmp_hw_t __kmp_hwloc_type_2_topology_type(hwloc_obj_t obj) {
+
+ if (__kmp_hwloc_is_cache_type(obj)) {
+ if (obj->attr->cache.type == HWLOC_OBJ_CACHE_INSTRUCTION)
+ return KMP_HW_UNKNOWN;
+ switch (obj->attr->cache.depth) {
+ case 1:
+ return KMP_HW_L1;
+ case 2:
+#if KMP_MIC_SUPPORTED
+ if (__kmp_mic_type == mic3) {
+ return KMP_HW_TILE;
+ }
+#endif
+ return KMP_HW_L2;
+ case 3:
+ return KMP_HW_L3;
+ }
+ return KMP_HW_UNKNOWN;
+ }
+
+ switch (obj->type) {
+ case HWLOC_OBJ_PACKAGE:
+ return KMP_HW_SOCKET;
+ case HWLOC_OBJ_NUMANODE:
+ return KMP_HW_NUMA;
+ case HWLOC_OBJ_CORE:
+ return KMP_HW_CORE;
+ case HWLOC_OBJ_PU:
+ return KMP_HW_THREAD;
+ case HWLOC_OBJ_GROUP:
+ if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_DIE)
+ return KMP_HW_DIE;
+ else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_TILE)
+ return KMP_HW_TILE;
+ else if (obj->attr->group.kind == HWLOC_GROUP_KIND_INTEL_MODULE)
+ return KMP_HW_MODULE;
+ else if (obj->attr->group.kind == HWLOC_GROUP_KIND_WINDOWS_PROCESSOR_GROUP)
+ return KMP_HW_PROC_GROUP;
+ return KMP_HW_UNKNOWN;
+#if HWLOC_API_VERSION >= 0x00020100
+ case HWLOC_OBJ_DIE:
+ return KMP_HW_DIE;
+#endif
+ }
+ return KMP_HW_UNKNOWN;
+}
- KMP_INFORM(AffCapableUseFlat, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
- if (__kmp_affinity_type == affinity_none) {
- return 0;
- }
+// Returns the number of objects of type 'type' below 'obj' within the topology
+// tree structure. e.g., if obj is a HWLOC_OBJ_PACKAGE object, and type is
+// HWLOC_OBJ_PU, then this will return the number of PU's under the SOCKET
+// object.
+static int __kmp_hwloc_get_nobjs_under_obj(hwloc_obj_t obj,
+ hwloc_obj_type_t type) {
+ int retval = 0;
+ hwloc_obj_t first;
+ for (first = hwloc_get_obj_below_by_type(__kmp_hwloc_topology, obj->type,
+ obj->logical_index, type, 0);
+ first != NULL && hwloc_get_ancestor_obj_by_type(__kmp_hwloc_topology,
+ obj->type, first) == obj;
+ first = hwloc_get_next_obj_by_type(__kmp_hwloc_topology, first->type,
+ first)) {
+ ++retval;
+ }
+ return retval;
+}
- //
- // Contruct the data structure to be returned.
- //
- *address2os = (AddrUnsPair*)
- __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
- int avail_ct = 0;
- unsigned int i;
- KMP_CPU_SET_ITERATE(i, fullMask) {
- //
- // Skip this proc if it is not included in the machine model.
- //
- if (! KMP_CPU_ISSET(i, fullMask)) {
- continue;
- }
+// This gets the sub_id for a lower object under a higher object in the
+// topology tree
+static int __kmp_hwloc_get_sub_id(hwloc_topology_t t, hwloc_obj_t higher,
+ hwloc_obj_t lower) {
+ hwloc_obj_t obj;
+ hwloc_obj_type_t ltype = lower->type;
+ int lindex = lower->logical_index - 1;
+ int sub_id = 0;
+ // Get the previous lower object
+ obj = hwloc_get_obj_by_type(t, ltype, lindex);
+ while (obj && lindex >= 0 &&
+ hwloc_bitmap_isincluded(obj->cpuset, higher->cpuset)) {
+ if (obj->userdata) {
+ sub_id = (int)(RCAST(kmp_intptr_t, obj->userdata));
+ break;
+ }
+ sub_id++;
+ lindex--;
+ obj = hwloc_get_obj_by_type(t, ltype, lindex);
+ }
+ // store sub_id + 1 so that 0 is differed from NULL
+ lower->userdata = RCAST(void *, sub_id + 1);
+ return sub_id;
+}
- Address addr(1);
- addr.labels[0] = i;
- (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
- }
- if (__kmp_affinity_verbose) {
- KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
+static bool __kmp_affinity_create_hwloc_map(kmp_i18n_id_t *const msg_id) {
+ kmp_hw_t type;
+ int hw_thread_index, sub_id;
+ int depth;
+ hwloc_obj_t pu, obj, root, prev;
+ kmp_hw_t types[KMP_HW_LAST];
+ hwloc_obj_type_t hwloc_types[KMP_HW_LAST];
+
+ hwloc_topology_t tp = __kmp_hwloc_topology;
+ *msg_id = kmp_i18n_null;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
+ }
+
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from hwloc on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ // hwloc only guarantees existance of PU object, so check PACKAGE and CORE
+ hwloc_obj_t o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_PACKAGE, 0);
+ if (o != NULL)
+ nCoresPerPkg = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_CORE);
+ else
+ nCoresPerPkg = 1; // no PACKAGE found
+ o = hwloc_get_obj_by_type(tp, HWLOC_OBJ_CORE, 0);
+ if (o != NULL)
+ __kmp_nThreadsPerCore = __kmp_hwloc_get_nobjs_under_obj(o, HWLOC_OBJ_PU);
+ else
+ __kmp_nThreadsPerCore = 1; // no CORE found
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ if (nCoresPerPkg == 0)
+ nCoresPerPkg = 1; // to prevent possible division by 0
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ return true;
+ }
+
+ root = hwloc_get_root_obj(tp);
+
+ // Figure out the depth and types in the topology
+ depth = 0;
+ pu = hwloc_get_pu_obj_by_os_index(tp, __kmp_affin_fullMask->begin());
+ KMP_ASSERT(pu);
+ obj = pu;
+ types[depth] = KMP_HW_THREAD;
+ hwloc_types[depth] = obj->type;
+ depth++;
+ while (obj != root && obj != NULL) {
+ obj = obj->parent;
+#if HWLOC_API_VERSION >= 0x00020000
+ if (obj->memory_arity) {
+ hwloc_obj_t memory;
+ for (memory = obj->memory_first_child; memory;
+ memory = hwloc_get_next_child(tp, obj, memory)) {
+ if (memory->type == HWLOC_OBJ_NUMANODE)
+ break;
+ }
+ if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
+ types[depth] = KMP_HW_NUMA;
+ hwloc_types[depth] = memory->type;
+ depth++;
+ }
}
-
- if (__kmp_affinity_gran_levels < 0) {
- //
- // Only the package level is modeled in the machine topology map,
- // so the #levels of granularity is either 0 or 1.
- //
- if (__kmp_affinity_gran > affinity_gran_package) {
- __kmp_affinity_gran_levels = 1;
- }
- else {
- __kmp_affinity_gran_levels = 0;
+#endif
+ type = __kmp_hwloc_type_2_topology_type(obj);
+ if (type != KMP_HW_UNKNOWN) {
+ types[depth] = type;
+ hwloc_types[depth] = obj->type;
+ depth++;
+ }
+ }
+ KMP_ASSERT(depth > 0);
+
+ // Get the order for the types correct
+ for (int i = 0, j = depth - 1; i < j; ++i, --j) {
+ hwloc_obj_type_t hwloc_temp = hwloc_types[i];
+ kmp_hw_t temp = types[i];
+ types[i] = types[j];
+ types[j] = temp;
+ hwloc_types[i] = hwloc_types[j];
+ hwloc_types[j] = hwloc_temp;
+ }
+
+ // Allocate the data structure to be returned.
+ __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
+
+ hw_thread_index = 0;
+ pu = NULL;
+ while (pu = hwloc_get_next_obj_by_type(tp, HWLOC_OBJ_PU, pu)) {
+ int index = depth - 1;
+ bool included = KMP_CPU_ISSET(pu->os_index, __kmp_affin_fullMask);
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
+ if (included) {
+ hw_thread.clear();
+ hw_thread.ids[index] = pu->logical_index;
+ hw_thread.os_id = pu->os_index;
+ index--;
+ }
+ obj = pu;
+ prev = obj;
+ while (obj != root && obj != NULL) {
+ obj = obj->parent;
+#if HWLOC_API_VERSION >= 0x00020000
+ // NUMA Nodes are handled differently since they are not within the
+ // parent/child structure anymore. They are separate children
+ // of obj (memory_first_child points to first memory child)
+ if (obj->memory_arity) {
+ hwloc_obj_t memory;
+ for (memory = obj->memory_first_child; memory;
+ memory = hwloc_get_next_child(tp, obj, memory)) {
+ if (memory->type == HWLOC_OBJ_NUMANODE)
+ break;
}
- }
- return 1;
+ if (memory && memory->type == HWLOC_OBJ_NUMANODE) {
+ sub_id = __kmp_hwloc_get_sub_id(tp, memory, prev);
+ if (included) {
+ hw_thread.ids[index] = memory->logical_index;
+ hw_thread.ids[index + 1] = sub_id;
+ index--;
+ }
+ prev = memory;
+ }
+ prev = obj;
+ }
+#endif
+ type = __kmp_hwloc_type_2_topology_type(obj);
+ if (type != KMP_HW_UNKNOWN) {
+ sub_id = __kmp_hwloc_get_sub_id(tp, obj, prev);
+ if (included) {
+ hw_thread.ids[index] = obj->logical_index;
+ hw_thread.ids[index + 1] = sub_id;
+ index--;
+ }
+ prev = obj;
+ }
+ }
+ if (included)
+ hw_thread_index++;
+ }
+ __kmp_topology->sort_ids();
+ return true;
}
+#endif // KMP_USE_HWLOC
+// If we don't know how to retrieve the machine's processor topology, or
+// encounter an error in doing so, this routine is called to form a "flat"
+// mapping of os thread id's <-> processor id's.
+static bool __kmp_affinity_create_flat_map(kmp_i18n_id_t *const msg_id) {
+ *msg_id = kmp_i18n_null;
+ int depth = 3;
+ kmp_hw_t types[] = {KMP_HW_SOCKET, KMP_HW_CORE, KMP_HW_THREAD};
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(UsingFlatOS, "KMP_AFFINITY");
+ }
+
+ // Even if __kmp_affinity_type == affinity_none, this routine might still
+ // called to set __kmp_ncores, as well as
+ // __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_ncores = nPackages = __kmp_xproc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+ return true;
+ }
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return now if affinity is
+ // not enabled.
+ __kmp_ncores = nPackages = __kmp_avail_proc;
+ __kmp_nThreadsPerCore = nCoresPerPkg = 1;
+
+ // Construct the data structure to be returned.
+ __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct);
+ hw_thread.clear();
+ hw_thread.os_id = i;
+ hw_thread.ids[0] = i;
+ hw_thread.ids[1] = 0;
+ hw_thread.ids[2] = 0;
+ avail_ct++;
+ }
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(OSProcToPackage, "KMP_AFFINITY");
+ }
+ return true;
+}
-# if KMP_GROUP_AFFINITY
-
-//
+#if KMP_GROUP_AFFINITY
// If multiple Windows* OS processor groups exist, we can create a 2-level
-// topology map with the groups at level 0 and the individual procs at
-// level 1.
-//
+// topology map with the groups at level 0 and the individual procs at level 1.
// This facilitates letting the threads float among all procs in a group,
// if granularity=group (the default when there are multiple groups).
-//
-static int
-__kmp_affinity_create_proc_group_map(AddrUnsPair **address2os,
- kmp_i18n_id_t *const msg_id)
-{
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
-
- //
- // If we don't have multiple processor groups, return now.
- // The flat mapping will be used.
- //
- if ((! KMP_AFFINITY_CAPABLE()) || (__kmp_get_proc_group(fullMask) >= 0)) {
- // FIXME set *msg_id
- return -1;
- }
-
- //
- // Contruct the data structure to be returned.
- //
- *address2os = (AddrUnsPair*)
- __kmp_allocate(sizeof(**address2os) * __kmp_avail_proc);
- int avail_ct = 0;
- int i;
- KMP_CPU_SET_ITERATE(i, fullMask) {
- //
- // Skip this proc if it is not included in the machine model.
- //
- if (! KMP_CPU_ISSET(i, fullMask)) {
- continue;
- }
-
- Address addr(2);
- addr.labels[0] = i / (CHAR_BIT * sizeof(DWORD_PTR));
- addr.labels[1] = i % (CHAR_BIT * sizeof(DWORD_PTR));
- (*address2os)[avail_ct++] = AddrUnsPair(addr,i);
-
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffOSProcToGroup, "KMP_AFFINITY", i, addr.labels[0],
- addr.labels[1]);
- }
- }
-
- if (__kmp_affinity_gran_levels < 0) {
- if (__kmp_affinity_gran == affinity_gran_group) {
- __kmp_affinity_gran_levels = 1;
- }
- else if ((__kmp_affinity_gran == affinity_gran_fine)
- || (__kmp_affinity_gran == affinity_gran_thread)) {
- __kmp_affinity_gran_levels = 0;
- }
- else {
- const char *gran_str = NULL;
- if (__kmp_affinity_gran == affinity_gran_core) {
- gran_str = "core";
- }
- else if (__kmp_affinity_gran == affinity_gran_package) {
- gran_str = "package";
- }
- else if (__kmp_affinity_gran == affinity_gran_node) {
- gran_str = "node";
- }
- else {
- KMP_ASSERT(0);
- }
-
- // Warning: can't use affinity granularity \"gran\" with group topology method, using "thread"
- __kmp_affinity_gran_levels = 0;
- }
- }
- return 2;
+static bool __kmp_affinity_create_proc_group_map(kmp_i18n_id_t *const msg_id) {
+ *msg_id = kmp_i18n_null;
+ int depth = 3;
+ kmp_hw_t types[] = {KMP_HW_PROC_GROUP, KMP_HW_CORE, KMP_HW_THREAD};
+ const static size_t BITS_PER_GROUP = CHAR_BIT * sizeof(DWORD_PTR);
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
+ }
+
+ // If we aren't affinity capable, then use flat topology
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ nPackages = __kmp_num_proc_groups;
+ __kmp_nThreadsPerCore = 1;
+ __kmp_ncores = __kmp_xproc;
+ nCoresPerPkg = nPackages / __kmp_ncores;
+ return true;
+ }
+
+ // Construct the data structure to be returned.
+ __kmp_topology = kmp_topology_t::allocate(__kmp_avail_proc, depth, types);
+ int avail_ct = 0;
+ int i;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(avail_ct++);
+ hw_thread.clear();
+ hw_thread.os_id = i;
+ hw_thread.ids[0] = i / BITS_PER_GROUP;
+ hw_thread.ids[1] = hw_thread.ids[2] = i % BITS_PER_GROUP;
+ }
+ return true;
+}
+#endif /* KMP_GROUP_AFFINITY */
+
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+
+template <kmp_uint32 LSB, kmp_uint32 MSB>
+static inline unsigned __kmp_extract_bits(kmp_uint32 v) {
+ const kmp_uint32 SHIFT_LEFT = sizeof(kmp_uint32) * 8 - 1 - MSB;
+ const kmp_uint32 SHIFT_RIGHT = LSB;
+ kmp_uint32 retval = v;
+ retval <<= SHIFT_LEFT;
+ retval >>= (SHIFT_LEFT + SHIFT_RIGHT);
+ return retval;
}
-# endif /* KMP_GROUP_AFFINITY */
-
-
-# if KMP_ARCH_X86 || KMP_ARCH_X86_64
-
-static int
-__kmp_cpuid_mask_width(int count) {
- int r = 0;
+static int __kmp_cpuid_mask_width(int count) {
+ int r = 0;
- while((1<<r) < count)
- ++r;
- return r;
+ while ((1 << r) < count)
+ ++r;
+ return r;
}
-
class apicThreadInfo {
public:
- unsigned osId; // param to __kmp_affinity_bind_thread
- unsigned apicId; // from cpuid after binding
- unsigned maxCoresPerPkg; // ""
- unsigned maxThreadsPerPkg; // ""
- unsigned pkgId; // inferred from above values
- unsigned coreId; // ""
- unsigned threadId; // ""
+ unsigned osId; // param to __kmp_affinity_bind_thread
+ unsigned apicId; // from cpuid after binding
+ unsigned maxCoresPerPkg; // ""
+ unsigned maxThreadsPerPkg; // ""
+ unsigned pkgId; // inferred from above values
+ unsigned coreId; // ""
+ unsigned threadId; // ""
};
-
-static int
-__kmp_affinity_cmp_apicThreadInfo_os_id(const void *a, const void *b)
-{
- const apicThreadInfo *aa = (const apicThreadInfo *)a;
- const apicThreadInfo *bb = (const apicThreadInfo *)b;
- if (aa->osId < bb->osId) return -1;
- if (aa->osId > bb->osId) return 1;
- return 0;
-}
-
-
-static int
-__kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a, const void *b)
-{
- const apicThreadInfo *aa = (const apicThreadInfo *)a;
- const apicThreadInfo *bb = (const apicThreadInfo *)b;
- if (aa->pkgId < bb->pkgId) return -1;
- if (aa->pkgId > bb->pkgId) return 1;
- if (aa->coreId < bb->coreId) return -1;
- if (aa->coreId > bb->coreId) return 1;
- if (aa->threadId < bb->threadId) return -1;
- if (aa->threadId > bb->threadId) return 1;
- return 0;
+static int __kmp_affinity_cmp_apicThreadInfo_phys_id(const void *a,
+ const void *b) {
+ const apicThreadInfo *aa = (const apicThreadInfo *)a;
+ const apicThreadInfo *bb = (const apicThreadInfo *)b;
+ if (aa->pkgId < bb->pkgId)
+ return -1;
+ if (aa->pkgId > bb->pkgId)
+ return 1;
+ if (aa->coreId < bb->coreId)
+ return -1;
+ if (aa->coreId > bb->coreId)
+ return 1;
+ if (aa->threadId < bb->threadId)
+ return -1;
+ if (aa->threadId > bb->threadId)
+ return 1;
+ return 0;
}
+class kmp_cache_info_t {
+public:
+ struct info_t {
+ unsigned level, mask;
+ };
+ kmp_cache_info_t() : depth(0) { get_leaf4_levels(); }
+ size_t get_depth() const { return depth; }
+ info_t &operator[](size_t index) { return table[index]; }
+ const info_t &operator[](size_t index) const { return table[index]; }
+
+ static kmp_hw_t get_topology_type(unsigned level) {
+ KMP_DEBUG_ASSERT(level >= 1 && level <= MAX_CACHE_LEVEL);
+ switch (level) {
+ case 1:
+ return KMP_HW_L1;
+ case 2:
+ return KMP_HW_L2;
+ case 3:
+ return KMP_HW_L3;
+ }
+ return KMP_HW_UNKNOWN;
+ }
+
+private:
+ static const int MAX_CACHE_LEVEL = 3;
+
+ size_t depth;
+ info_t table[MAX_CACHE_LEVEL];
+
+ void get_leaf4_levels() {
+ unsigned level = 0;
+ while (depth < MAX_CACHE_LEVEL) {
+ unsigned cache_type, max_threads_sharing;
+ unsigned cache_level, cache_mask_width;
+ kmp_cpuid buf2;
+ __kmp_x86_cpuid(4, level, &buf2);
+ cache_type = __kmp_extract_bits<0, 4>(buf2.eax);
+ if (!cache_type)
+ break;
+ // Skip instruction caches
+ if (cache_type == 2) {
+ level++;
+ continue;
+ }
+ max_threads_sharing = __kmp_extract_bits<14, 25>(buf2.eax) + 1;
+ cache_mask_width = __kmp_cpuid_mask_width(max_threads_sharing);
+ cache_level = __kmp_extract_bits<5, 7>(buf2.eax);
+ table[depth].level = cache_level;
+ table[depth].mask = ((-1) << cache_mask_width);
+ depth++;
+ level++;
+ }
+ }
+};
-//
// On IA-32 architecture and Intel(R) 64 architecture, we attempt to use
// an algorithm which cycles through the available os threads, setting
// the current thread's affinity mask to that thread, and then retrieves
// the Apic Id for each thread context using the cpuid instruction.
-//
-static int
-__kmp_affinity_create_apicid_map(AddrUnsPair **address2os,
- kmp_i18n_id_t *const msg_id)
-{
- kmp_cpuid buf;
- int rc;
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
-
- //
- // Check if cpuid leaf 4 is supported.
- //
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax < 4) {
- *msg_id = kmp_i18n_str_NoLeaf4Support;
- return -1;
- }
-
- //
- // The algorithm used starts by setting the affinity to each available
- // thread and retrieving info from the cpuid instruction, so if we are
- // not capable of calling __kmp_get_system_affinity() and
- // _kmp_get_system_affinity(), then we need to do something else - use
- // the defaults that we calculated from issuing cpuid without binding
- // to each proc.
- //
- if (! KMP_AFFINITY_CAPABLE()) {
- //
- // Hack to try and infer the machine topology using only the data
- // available from cpuid on the current thread, and __kmp_xproc.
- //
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
-
- //
- // Get an upper bound on the number of threads per package using
- // cpuid(1).
- //
- // On some OS/chps combinations where HT is supported by the chip
- // but is disabled, this value will be 2 on a single core chip.
- // Usually, it will be 2 if HT is enabled and 1 if HT is disabled.
- //
- __kmp_x86_cpuid(1, 0, &buf);
- int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
- if (maxThreadsPerPkg == 0) {
- maxThreadsPerPkg = 1;
- }
-
- //
- // The num cores per pkg comes from cpuid(4).
- // 1 must be added to the encoded value.
- //
- // The author of cpu_count.cpp treated this only an upper bound
- // on the number of cores, but I haven't seen any cases where it
- // was greater than the actual number of cores, so we will treat
- // it as exact in this block of code.
- //
- // First, we need to check if cpuid(4) is supported on this chip.
- // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
- // has the value n or greater.
- //
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax >= 4) {
- __kmp_x86_cpuid(4, 0, &buf);
- nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
- }
- else {
- nCoresPerPkg = 1;
- }
-
- //
- // There is no way to reliably tell if HT is enabled without issuing
- // the cpuid instruction from every thread, can correlating the cpuid
- // info, so if the machine is not affinity capable, we assume that HT
- // is off. We have seen quite a few machines where maxThreadsPerPkg
- // is 2, yet the machine does not support HT.
- //
- // - Older OSes are usually found on machines with older chips, which
- // do not support HT.
- //
- // - The performance penalty for mistakenly identifying a machine as
- // HT when it isn't (which results in blocktime being incorrecly set
- // to 0) is greater than the penalty when for mistakenly identifying
- // a machine as being 1 thread/core when it is really HT enabled
- // (which results in blocktime being incorrectly set to a positive
- // value).
- //
- __kmp_ncores = __kmp_xproc;
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- __kmp_nThreadsPerCore = 1;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffNotCapableUseLocCpuid, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (__kmp_affinity_uniform_topology()) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
- return 0;
- }
-
- //
- //
- // From here on, we can assume that it is safe to call
- // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
- // even if __kmp_affinity_type = affinity_none.
- //
-
- //
- // Save the affinity mask for the current thread.
- //
- kmp_affin_mask_t *oldMask;
- KMP_CPU_ALLOC(oldMask);
- KMP_ASSERT(oldMask != NULL);
- __kmp_get_system_affinity(oldMask, TRUE);
-
- //
- // Run through each of the available contexts, binding the current thread
- // to it, and obtaining the pertinent information using the cpuid instr.
- //
- // The relevant information is:
- //
- // Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
- // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
- //
- // Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The
- // value of this field determines the width of the core# + thread#
- // fields in the Apic Id. It is also an upper bound on the number
- // of threads per package, but it has been verified that situations
- // happen were it is not exact. In particular, on certain OS/chip
- // combinations where Intel(R) Hyper-Threading Technology is supported
- // by the chip but has
- // been disabled, the value of this field will be 2 (for a single core
- // chip). On other OS/chip combinations supporting
- // Intel(R) Hyper-Threading Technology, the value of
- // this field will be 1 when Intel(R) Hyper-Threading Technology is
- // disabled and 2 when it is enabled.
- //
- // Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The
- // value of this field (+1) determines the width of the core# field in
- // the Apic Id. The comments in "cpucount.cpp" say that this value is
- // an upper bound, but the IA-32 architecture manual says that it is
- // exactly the number of cores per package, and I haven't seen any
- // case where it wasn't.
- //
- // From this information, deduce the package Id, core Id, and thread Id,
- // and set the corresponding fields in the apicThreadInfo struct.
- //
- unsigned i;
- apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
- __kmp_avail_proc * sizeof(apicThreadInfo));
- unsigned nApics = 0;
- KMP_CPU_SET_ITERATE(i, fullMask) {
- //
- // Skip this proc if it is not included in the machine model.
- //
- if (! KMP_CPU_ISSET(i, fullMask)) {
- continue;
- }
- KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
-
- __kmp_affinity_bind_thread(i);
- threadInfo[nApics].osId = i;
-
- //
- // The apic id and max threads per pkg come from cpuid(1).
- //
- __kmp_x86_cpuid(1, 0, &buf);
- if (! (buf.edx >> 9) & 1) {
- __kmp_set_system_affinity(oldMask, TRUE);
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_ApicNotPresent;
- return -1;
- }
- threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
- threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
- if (threadInfo[nApics].maxThreadsPerPkg == 0) {
- threadInfo[nApics].maxThreadsPerPkg = 1;
- }
-
- //
- // Max cores per pkg comes from cpuid(4).
- // 1 must be added to the encoded value.
- //
- // First, we need to check if cpuid(4) is supported on this chip.
- // To see if cpuid(n) is supported, issue cpuid(0) and check if eax
- // has the value n or greater.
- //
- __kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax >= 4) {
- __kmp_x86_cpuid(4, 0, &buf);
- threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
- }
- else {
- threadInfo[nApics].maxCoresPerPkg = 1;
- }
-
- //
- // Infer the pkgId / coreId / threadId using only the info
- // obtained locally.
- //
- int widthCT = __kmp_cpuid_mask_width(
- threadInfo[nApics].maxThreadsPerPkg);
- threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
-
- int widthC = __kmp_cpuid_mask_width(
- threadInfo[nApics].maxCoresPerPkg);
- int widthT = widthCT - widthC;
- if (widthT < 0) {
- //
- // I've never seen this one happen, but I suppose it could, if
- // the cpuid instruction on a chip was really screwed up.
- // Make sure to restore the affinity mask before the tail call.
- //
- __kmp_set_system_affinity(oldMask, TRUE);
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
-
- int maskC = (1 << widthC) - 1;
- threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT)
- &maskC;
-
- int maskT = (1 << widthT) - 1;
- threadInfo[nApics].threadId = threadInfo[nApics].apicId &maskT;
-
- nApics++;
- }
-
- //
- // We've collected all the info we need.
- // Restore the old affinity mask for this thread.
- //
- __kmp_set_system_affinity(oldMask, TRUE);
-
- //
- // If there's only one thread context to bind to, form an Address object
- // with depth 1 and return immediately (or, if affinity is off, set
- // address2os to NULL and return).
- //
- // If it is configured to omit the package level when there is only a
- // single package, the logic at the end of this routine won't work if
- // there is only a single thread - it would try to form an Address
- // object with depth 0.
- //
- KMP_ASSERT(nApics > 0);
- if (nApics == 1) {
- __kmp_ncores = nPackages = 1;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-
- KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
-
- if (__kmp_affinity_type == affinity_none) {
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- return 0;
- }
-
- *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
- Address addr(1);
- addr.labels[0] = threadInfo[0].pkgId;
- (*address2os)[0] = AddrUnsPair(addr, threadInfo[0].osId);
-
- if (__kmp_affinity_gran_levels < 0) {
- __kmp_affinity_gran_levels = 0;
- }
-
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
- }
-
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- return 1;
- }
-
- //
- // Sort the threadInfo table by physical Id.
- //
- qsort(threadInfo, nApics, sizeof(*threadInfo),
- __kmp_affinity_cmp_apicThreadInfo_phys_id);
-
- //
- // The table is now sorted by pkgId / coreId / threadId, but we really
- // don't know the radix of any of the fields. pkgId's may be sparsely
- // assigned among the chips on a system. Although coreId's are usually
- // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
- // [0..threadsPerCore-1], we don't want to make any such assumptions.
- //
- // For that matter, we don't know what coresPerPkg and threadsPerCore
- // (or the total # packages) are at this point - we want to determine
- // that now. We only have an upper bound on the first two figures.
- //
- // We also perform a consistency check at this point: the values returned
- // by the cpuid instruction for any thread bound to a given package had
- // better return the same info for maxThreadsPerPkg and maxCoresPerPkg.
- //
- nPackages = 1;
- nCoresPerPkg = 1;
+static bool __kmp_affinity_create_apicid_map(kmp_i18n_id_t *const msg_id) {
+ kmp_cpuid buf;
+ *msg_id = kmp_i18n_null;
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
+ }
+
+ // Check if cpuid leaf 4 is supported.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax < 4) {
+ *msg_id = kmp_i18n_str_NoLeaf4Support;
+ return false;
+ }
+
+ // The algorithm used starts by setting the affinity to each available thread
+ // and retrieving info from the cpuid instruction, so if we are not capable of
+ // calling __kmp_get_system_affinity() and _kmp_get_system_affinity(), then we
+ // need to do something else - use the defaults that we calculated from
+ // issuing cpuid without binding to each proc.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+
+ // Get an upper bound on the number of threads per package using cpuid(1).
+ // On some OS/chps combinations where HT is supported by the chip but is
+ // disabled, this value will be 2 on a single core chip. Usually, it will be
+ // 2 if HT is enabled and 1 if HT is disabled.
+ __kmp_x86_cpuid(1, 0, &buf);
+ int maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (maxThreadsPerPkg == 0) {
+ maxThreadsPerPkg = 1;
+ }
+
+ // The num cores per pkg comes from cpuid(4). 1 must be added to the encoded
+ // value.
+ //
+ // The author of cpu_count.cpp treated this only an upper bound on the
+ // number of cores, but I haven't seen any cases where it was greater than
+ // the actual number of cores, so we will treat it as exact in this block of
+ // code.
+ //
+ // First, we need to check if cpuid(4) is supported on this chip. To see if
+ // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n or
+ // greater.
+ __kmp_x86_cpuid(0, 0, &buf);
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ nCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ } else {
+ nCoresPerPkg = 1;
+ }
+
+ // There is no way to reliably tell if HT is enabled without issuing the
+ // cpuid instruction from every thread, can correlating the cpuid info, so
+ // if the machine is not affinity capable, we assume that HT is off. We have
+ // seen quite a few machines where maxThreadsPerPkg is 2, yet the machine
+ // does not support HT.
+ //
+ // - Older OSes are usually found on machines with older chips, which do not
+ // support HT.
+ // - The performance penalty for mistakenly identifying a machine as HT when
+ // it isn't (which results in blocktime being incorrectly set to 0) is
+ // greater than the penalty when for mistakenly identifying a machine as
+ // being 1 thread/core when it is really HT enabled (which results in
+ // blocktime being incorrectly set to a positive value).
+ __kmp_ncores = __kmp_xproc;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
__kmp_nThreadsPerCore = 1;
- unsigned nCores = 1;
-
- unsigned pkgCt = 1; // to determine radii
- unsigned lastPkgId = threadInfo[0].pkgId;
- unsigned coreCt = 1;
- unsigned lastCoreId = threadInfo[0].coreId;
- unsigned threadCt = 1;
- unsigned lastThreadId = threadInfo[0].threadId;
-
- // intra-pkg consist checks
- unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
- unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
-
- for (i = 1; i < nApics; i++) {
- if (threadInfo[i].pkgId != lastPkgId) {
- nCores++;
- pkgCt++;
- lastPkgId = threadInfo[i].pkgId;
- if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
- coreCt = 1;
- lastCoreId = threadInfo[i].coreId;
- if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
- threadCt = 1;
- lastThreadId = threadInfo[i].threadId;
-
- //
- // This is a different package, so go on to the next iteration
- // without doing any consistency checks. Reset the consistency
- // check vars, though.
- //
- prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
- prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
- continue;
- }
-
- if (threadInfo[i].coreId != lastCoreId) {
- nCores++;
- coreCt++;
- lastCoreId = threadInfo[i].coreId;
- if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
- threadCt = 1;
- lastThreadId = threadInfo[i].threadId;
- }
- else if (threadInfo[i].threadId != lastThreadId) {
- threadCt++;
- lastThreadId = threadInfo[i].threadId;
- }
- else {
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
- return -1;
- }
-
- //
- // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
- // fields agree between all the threads bounds to a given package.
- //
- if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg)
- || (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
- return -1;
- }
- }
- nPackages = pkgCt;
- if ((int)coreCt > nCoresPerPkg) nCoresPerPkg = coreCt;
- if ((int)threadCt > __kmp_nThreadsPerCore) __kmp_nThreadsPerCore = threadCt;
-
- //
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore,
- // nCoresPerPkg, & nPackages. Make sure all these vars are set
- // correctly, and return now if affinity is not enabled.
- //
- __kmp_ncores = nCores;
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-
- KMP_INFORM(AffUseGlobCpuid, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (__kmp_affinity_uniform_topology()) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
-
- }
-
- if (__kmp_affinity_type == affinity_none) {
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- return 0;
+ return true;
+ }
+
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
+ // __kmp_affinity_type = affinity_none.
+
+ // Save the affinity mask for the current thread.
+ kmp_affinity_raii_t previous_affinity;
+
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ //
+ // The relevant information is:
+ // - Apic Id: Bits 24:31 of ebx after issuing cpuid(1) - each thread context
+ // has a uniqie Apic Id, which is of the form pkg# : core# : thread#.
+ // - Max Threads Per Pkg: Bits 16:23 of ebx after issuing cpuid(1). The value
+ // of this field determines the width of the core# + thread# fields in the
+ // Apic Id. It is also an upper bound on the number of threads per
+ // package, but it has been verified that situations happen were it is not
+ // exact. In particular, on certain OS/chip combinations where Intel(R)
+ // Hyper-Threading Technology is supported by the chip but has been
+ // disabled, the value of this field will be 2 (for a single core chip).
+ // On other OS/chip combinations supporting Intel(R) Hyper-Threading
+ // Technology, the value of this field will be 1 when Intel(R)
+ // Hyper-Threading Technology is disabled and 2 when it is enabled.
+ // - Max Cores Per Pkg: Bits 26:31 of eax after issuing cpuid(4). The value
+ // of this field (+1) determines the width of the core# field in the Apic
+ // Id. The comments in "cpucount.cpp" say that this value is an upper
+ // bound, but the IA-32 architecture manual says that it is exactly the
+ // number of cores per package, and I haven't seen any case where it
+ // wasn't.
+ //
+ // From this information, deduce the package Id, core Id, and thread Id,
+ // and set the corresponding fields in the apicThreadInfo struct.
+ unsigned i;
+ apicThreadInfo *threadInfo = (apicThreadInfo *)__kmp_allocate(
+ __kmp_avail_proc * sizeof(apicThreadInfo));
+ unsigned nApics = 0;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
}
+ KMP_DEBUG_ASSERT((int)nApics < __kmp_avail_proc);
- //
- // Now that we've determined the number of packages, the number of cores
- // per package, and the number of threads per core, we can construct the
- // data structure that is to be returned.
- //
- int pkgLevel = 0;
- int coreLevel = (nCoresPerPkg <= 1) ? -1 : 1;
- int threadLevel = (__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
- unsigned depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
-
- KMP_ASSERT(depth > 0);
- *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair) * nApics);
-
- for (i = 0; i < nApics; ++i) {
- Address addr(depth);
- unsigned os = threadInfo[i].osId;
- int d = 0;
+ __kmp_affinity_dispatch->bind_thread(i);
+ threadInfo[nApics].osId = i;
- if (pkgLevel >= 0) {
- addr.labels[d++] = threadInfo[i].pkgId;
- }
- if (coreLevel >= 0) {
- addr.labels[d++] = threadInfo[i].coreId;
- }
- if (threadLevel >= 0) {
- addr.labels[d++] = threadInfo[i].threadId;
- }
- (*address2os)[i] = AddrUnsPair(addr, os);
- }
-
- if (__kmp_affinity_gran_levels < 0) {
- //
- // Set the granularity level based on what levels are modeled
- // in the machine topology map.
- //
- __kmp_affinity_gran_levels = 0;
- if ((threadLevel >= 0)
- && (__kmp_affinity_gran > affinity_gran_thread)) {
- __kmp_affinity_gran_levels++;
- }
- if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
- __kmp_affinity_gran_levels++;
- }
- if ((pkgLevel >= 0) && (__kmp_affinity_gran > affinity_gran_package)) {
- __kmp_affinity_gran_levels++;
- }
+ // The apic id and max threads per pkg come from cpuid(1).
+ __kmp_x86_cpuid(1, 0, &buf);
+ if (((buf.edx >> 9) & 1) == 0) {
+ __kmp_free(threadInfo);
+ *msg_id = kmp_i18n_str_ApicNotPresent;
+ return false;
}
-
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(*address2os, nApics, depth, pkgLevel,
- coreLevel, threadLevel);
+ threadInfo[nApics].apicId = (buf.ebx >> 24) & 0xff;
+ threadInfo[nApics].maxThreadsPerPkg = (buf.ebx >> 16) & 0xff;
+ if (threadInfo[nApics].maxThreadsPerPkg == 0) {
+ threadInfo[nApics].maxThreadsPerPkg = 1;
}
- __kmp_free(threadInfo);
- KMP_CPU_FREE(oldMask);
- return depth;
-}
-
-
-//
-// Intel(R) microarchitecture code name Nehalem, Dunnington and later
-// architectures support a newer interface for specifying the x2APIC Ids,
-// based on cpuid leaf 11.
-//
-static int
-__kmp_affinity_create_x2apicid_map(AddrUnsPair **address2os,
- kmp_i18n_id_t *const msg_id)
-{
- kmp_cpuid buf;
-
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
-
- //
- // Check to see if cpuid leaf 11 is supported.
+ // Max cores per pkg comes from cpuid(4). 1 must be added to the encoded
+ // value.
//
+ // First, we need to check if cpuid(4) is supported on this chip. To see if
+ // cpuid(n) is supported, issue cpuid(0) and check if eax has the value n
+ // or greater.
__kmp_x86_cpuid(0, 0, &buf);
- if (buf.eax < 11) {
- *msg_id = kmp_i18n_str_NoLeaf11Support;
- return -1;
- }
- __kmp_x86_cpuid(11, 0, &buf);
- if (buf.ebx == 0) {
- *msg_id = kmp_i18n_str_NoLeaf11Support;
- return -1;
- }
-
- //
- // Find the number of levels in the machine topology. While we're at it,
- // get the default values for __kmp_nThreadsPerCore & nCoresPerPkg. We will
- // try to get more accurate values later by explicitly counting them,
- // but get reasonable defaults now, in case we return early.
- //
- int level;
- int threadLevel = -1;
- int coreLevel = -1;
- int pkgLevel = -1;
- __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
-
- for (level = 0;; level++) {
- if (level > 31) {
- //
- // FIXME: Hack for DPD200163180
- //
- // If level is big then something went wrong -> exiting
- //
- // There could actually be 32 valid levels in the machine topology,
- // but so far, the only machine we have seen which does not exit
- // this loop before iteration 32 has fubar x2APIC settings.
- //
- // For now, just reject this case based upon loop trip count.
- //
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
- __kmp_x86_cpuid(11, level, &buf);
- if (buf.ebx == 0) {
- if (pkgLevel < 0) {
- //
- // Will infer nPackages from __kmp_xproc
- //
- pkgLevel = level;
- level++;
- }
- break;
- }
- int kind = (buf.ecx >> 8) & 0xff;
- if (kind == 1) {
- //
- // SMT level
- //
- threadLevel = level;
- coreLevel = -1;
- pkgLevel = -1;
- __kmp_nThreadsPerCore = buf.ebx & 0xff;
- if (__kmp_nThreadsPerCore == 0) {
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
- }
- else if (kind == 2) {
- //
- // core level
- //
- coreLevel = level;
- pkgLevel = -1;
- nCoresPerPkg = buf.ebx & 0xff;
- if (nCoresPerPkg == 0) {
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
- }
- else {
- if (level <= 0) {
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
- if (pkgLevel >= 0) {
- continue;
- }
- pkgLevel = level;
- nPackages = buf.ebx & 0xff;
- if (nPackages == 0) {
- *msg_id = kmp_i18n_str_InvalidCpuidInfo;
- return -1;
- }
- }
- }
- int depth = level;
-
- //
- // In the above loop, "level" was counted from the finest level (usually
- // thread) to the coarsest. The caller expects that we will place the
- // labels in (*address2os)[].first.labels[] in the inverse order, so
- // we need to invert the vars saying which level means what.
- //
- if (threadLevel >= 0) {
- threadLevel = depth - threadLevel - 1;
+ if (buf.eax >= 4) {
+ __kmp_x86_cpuid(4, 0, &buf);
+ threadInfo[nApics].maxCoresPerPkg = ((buf.eax >> 26) & 0x3f) + 1;
+ } else {
+ threadInfo[nApics].maxCoresPerPkg = 1;
+ }
+
+ // Infer the pkgId / coreId / threadId using only the info obtained locally.
+ int widthCT = __kmp_cpuid_mask_width(threadInfo[nApics].maxThreadsPerPkg);
+ threadInfo[nApics].pkgId = threadInfo[nApics].apicId >> widthCT;
+
+ int widthC = __kmp_cpuid_mask_width(threadInfo[nApics].maxCoresPerPkg);
+ int widthT = widthCT - widthC;
+ if (widthT < 0) {
+ // I've never seen this one happen, but I suppose it could, if the cpuid
+ // instruction on a chip was really screwed up. Make sure to restore the
+ // affinity mask before the tail call.
+ __kmp_free(threadInfo);
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return false;
+ }
+
+ int maskC = (1 << widthC) - 1;
+ threadInfo[nApics].coreId = (threadInfo[nApics].apicId >> widthT) & maskC;
+
+ int maskT = (1 << widthT) - 1;
+ threadInfo[nApics].threadId = threadInfo[nApics].apicId & maskT;
+
+ nApics++;
+ }
+
+ // We've collected all the info we need.
+ // Restore the old affinity mask for this thread.
+ previous_affinity.restore();
+
+ // Sort the threadInfo table by physical Id.
+ qsort(threadInfo, nApics, sizeof(*threadInfo),
+ __kmp_affinity_cmp_apicThreadInfo_phys_id);
+
+ // The table is now sorted by pkgId / coreId / threadId, but we really don't
+ // know the radix of any of the fields. pkgId's may be sparsely assigned among
+ // the chips on a system. Although coreId's are usually assigned
+ // [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
+ // total # packages) are at this point - we want to determine that now. We
+ // only have an upper bound on the first two figures.
+ //
+ // We also perform a consistency check at this point: the values returned by
+ // the cpuid instruction for any thread bound to a given package had better
+ // return the same info for maxThreadsPerPkg and maxCoresPerPkg.
+ nPackages = 1;
+ nCoresPerPkg = 1;
+ __kmp_nThreadsPerCore = 1;
+ unsigned nCores = 1;
+
+ unsigned pkgCt = 1; // to determine radii
+ unsigned lastPkgId = threadInfo[0].pkgId;
+ unsigned coreCt = 1;
+ unsigned lastCoreId = threadInfo[0].coreId;
+ unsigned threadCt = 1;
+ unsigned lastThreadId = threadInfo[0].threadId;
+
+ // intra-pkg consist checks
+ unsigned prevMaxCoresPerPkg = threadInfo[0].maxCoresPerPkg;
+ unsigned prevMaxThreadsPerPkg = threadInfo[0].maxThreadsPerPkg;
+
+ for (i = 1; i < nApics; i++) {
+ if (threadInfo[i].pkgId != lastPkgId) {
+ nCores++;
+ pkgCt++;
+ lastPkgId = threadInfo[i].pkgId;
+ if ((int)coreCt > nCoresPerPkg)
+ nCoresPerPkg = coreCt;
+ coreCt = 1;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+
+ // This is a different package, so go on to the next iteration without
+ // doing any consistency checks. Reset the consistency check vars, though.
+ prevMaxCoresPerPkg = threadInfo[i].maxCoresPerPkg;
+ prevMaxThreadsPerPkg = threadInfo[i].maxThreadsPerPkg;
+ continue;
+ }
+
+ if (threadInfo[i].coreId != lastCoreId) {
+ nCores++;
+ coreCt++;
+ lastCoreId = threadInfo[i].coreId;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+ threadCt = 1;
+ lastThreadId = threadInfo[i].threadId;
+ } else if (threadInfo[i].threadId != lastThreadId) {
+ threadCt++;
+ lastThreadId = threadInfo[i].threadId;
+ } else {
+ __kmp_free(threadInfo);
+ *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
+ return false;
+ }
+
+ // Check to make certain that the maxCoresPerPkg and maxThreadsPerPkg
+ // fields agree between all the threads bounds to a given package.
+ if ((prevMaxCoresPerPkg != threadInfo[i].maxCoresPerPkg) ||
+ (prevMaxThreadsPerPkg != threadInfo[i].maxThreadsPerPkg)) {
+ __kmp_free(threadInfo);
+ *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
+ return false;
+ }
+ }
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly
+ nPackages = pkgCt;
+ if ((int)coreCt > nCoresPerPkg)
+ nCoresPerPkg = coreCt;
+ if ((int)threadCt > __kmp_nThreadsPerCore)
+ __kmp_nThreadsPerCore = threadCt;
+ __kmp_ncores = nCores;
+ KMP_DEBUG_ASSERT(nApics == (unsigned)__kmp_avail_proc);
+
+ // Now that we've determined the number of packages, the number of cores per
+ // package, and the number of threads per core, we can construct the data
+ // structure that is to be returned.
+ int idx = 0;
+ int pkgLevel = 0;
+ int coreLevel = 1;
+ int threadLevel = 2;
+ //(__kmp_nThreadsPerCore <= 1) ? -1 : ((coreLevel >= 0) ? 2 : 1);
+ int depth = (pkgLevel >= 0) + (coreLevel >= 0) + (threadLevel >= 0);
+ kmp_hw_t types[3];
+ if (pkgLevel >= 0)
+ types[idx++] = KMP_HW_SOCKET;
+ if (coreLevel >= 0)
+ types[idx++] = KMP_HW_CORE;
+ if (threadLevel >= 0)
+ types[idx++] = KMP_HW_THREAD;
+
+ KMP_ASSERT(depth > 0);
+ __kmp_topology = kmp_topology_t::allocate(nApics, depth, types);
+
+ for (i = 0; i < nApics; ++i) {
+ idx = 0;
+ unsigned os = threadInfo[i].osId;
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
+ hw_thread.clear();
+
+ if (pkgLevel >= 0) {
+ hw_thread.ids[idx++] = threadInfo[i].pkgId;
}
if (coreLevel >= 0) {
- coreLevel = depth - coreLevel - 1;
- }
- KMP_DEBUG_ASSERT(pkgLevel >= 0);
- pkgLevel = depth - pkgLevel - 1;
-
- //
- // The algorithm used starts by setting the affinity to each available
- // thread and retrieving info from the cpuid instruction, so if we are
- // not capable of calling __kmp_get_system_affinity() and
- // _kmp_get_system_affinity(), then we need to do something else - use
- // the defaults that we calculated from issuing cpuid without binding
- // to each proc.
- //
- if (! KMP_AFFINITY_CAPABLE())
- {
- //
- // Hack to try and infer the machine topology using only the data
- // available from cpuid on the current thread, and __kmp_xproc.
- //
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
-
- __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
- nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffNotCapableUseLocCpuidL11, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (__kmp_affinity_uniform_topology()) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
- return 0;
- }
-
- //
- //
- // From here on, we can assume that it is safe to call
- // __kmp_get_system_affinity() and __kmp_set_system_affinity(),
- // even if __kmp_affinity_type = affinity_none.
- //
-
- //
- // Save the affinity mask for the current thread.
- //
- kmp_affin_mask_t *oldMask;
- KMP_CPU_ALLOC(oldMask);
- __kmp_get_system_affinity(oldMask, TRUE);
-
- //
- // Allocate the data structure to be returned.
- //
- AddrUnsPair *retval = (AddrUnsPair *)
- __kmp_allocate(sizeof(AddrUnsPair) * __kmp_avail_proc);
-
- //
- // Run through each of the available contexts, binding the current thread
- // to it, and obtaining the pertinent information using the cpuid instr.
- //
- unsigned int proc;
- int nApics = 0;
- KMP_CPU_SET_ITERATE(proc, fullMask) {
- //
- // Skip this proc if it is not included in the machine model.
- //
- if (! KMP_CPU_ISSET(proc, fullMask)) {
- continue;
- }
- KMP_DEBUG_ASSERT(nApics < __kmp_avail_proc);
-
- __kmp_affinity_bind_thread(proc);
-
- //
- // Extrach the labels for each level in the machine topology map
- // from the Apic ID.
- //
- Address addr(depth);
- int prev_shift = 0;
-
- for (level = 0; level < depth; level++) {
- __kmp_x86_cpuid(11, level, &buf);
- unsigned apicId = buf.edx;
- if (buf.ebx == 0) {
- if (level != depth - 1) {
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
- return -1;
- }
- addr.labels[depth - level - 1] = apicId >> prev_shift;
- level++;
- break;
- }
- int shift = buf.eax & 0x1f;
- int mask = (1 << shift) - 1;
- addr.labels[depth - level - 1] = (apicId & mask) >> prev_shift;
- prev_shift = shift;
- }
- if (level != depth) {
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_InconsistentCpuidInfo;
- return -1;
- }
-
- retval[nApics] = AddrUnsPair(addr, proc);
- nApics++;
- }
-
- //
- // We've collected all the info we need.
- // Restore the old affinity mask for this thread.
- //
- __kmp_set_system_affinity(oldMask, TRUE);
-
- //
- // If there's only one thread context to bind to, return now.
- //
- KMP_ASSERT(nApics > 0);
- if (nApics == 1) {
- __kmp_ncores = nPackages = 1;
- __kmp_nThreadsPerCore = nCoresPerPkg = 1;
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-
- KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- KMP_INFORM(Topology, "KMP_AFFINITY", nPackages, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
- }
-
- if (__kmp_affinity_type == affinity_none) {
- __kmp_free(retval);
- KMP_CPU_FREE(oldMask);
- return 0;
- }
-
- //
- // Form an Address object which only includes the package level.
- //
- Address addr(1);
- addr.labels[0] = retval[0].first.labels[pkgLevel];
- retval[0].first = addr;
-
- if (__kmp_affinity_gran_levels < 0) {
- __kmp_affinity_gran_levels = 0;
- }
-
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(retval, 1, 1, 0, -1, -1);
- }
-
- *address2os = retval;
- KMP_CPU_FREE(oldMask);
- return 1;
- }
-
- //
- // Sort the table by physical Id.
- //
- qsort(retval, nApics, sizeof(*retval), __kmp_affinity_cmp_Address_labels);
-
- //
- // Find the radix at each of the levels.
- //
- unsigned *totals = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
- unsigned *counts = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
- unsigned *maxCt = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
- unsigned *last = (unsigned *)__kmp_allocate(depth * sizeof(unsigned));
- for (level = 0; level < depth; level++) {
- totals[level] = 1;
- maxCt[level] = 1;
- counts[level] = 1;
- last[level] = retval[0].first.labels[level];
+ hw_thread.ids[idx++] = threadInfo[i].coreId;
}
-
- //
- // From here on, the iteration variable "level" runs from the finest
- // level to the coarsest, i.e. we iterate forward through
- // (*address2os)[].first.labels[] - in the previous loops, we iterated
- // backwards.
- //
- for (proc = 1; (int)proc < nApics; proc++) {
- int level;
- for (level = 0; level < depth; level++) {
- if (retval[proc].first.labels[level] != last[level]) {
- int j;
- for (j = level + 1; j < depth; j++) {
- totals[j]++;
- counts[j] = 1;
- // The line below causes printing incorrect topology information
- // in case the max value for some level (maxCt[level]) is encountered earlier than
- // some less value while going through the array.
- // For example, let pkg0 has 4 cores and pkg1 has 2 cores. Then maxCt[1] == 2
- // whereas it must be 4.
- // TODO!!! Check if it can be commented safely
- //maxCt[j] = 1;
- last[j] = retval[proc].first.labels[j];
- }
- totals[level]++;
- counts[level]++;
- if (counts[level] > maxCt[level]) {
- maxCt[level] = counts[level];
- }
- last[level] = retval[proc].first.labels[level];
- break;
- }
- else if (level == depth - 1) {
- __kmp_free(last);
- __kmp_free(maxCt);
- __kmp_free(counts);
- __kmp_free(totals);
- __kmp_free(retval);
- KMP_CPU_FREE(oldMask);
- *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
- return -1;
- }
- }
- }
-
- //
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore,
- // nCoresPerPkg, & nPackages. Make sure all these vars are set
- // correctly, and return if affinity is not enabled.
- //
if (threadLevel >= 0) {
- __kmp_nThreadsPerCore = maxCt[threadLevel];
- }
- else {
- __kmp_nThreadsPerCore = 1;
- }
- nPackages = totals[pkgLevel];
-
- if (coreLevel >= 0) {
- __kmp_ncores = totals[coreLevel];
- nCoresPerPkg = maxCt[coreLevel];
- }
- else {
- __kmp_ncores = nPackages;
- nCoresPerPkg = 1;
- }
-
- //
- // Check to see if the machine topology is uniform
- //
- unsigned prod = maxCt[0];
- for (level = 1; level < depth; level++) {
- prod *= maxCt[level];
- }
- bool uniform = (prod == totals[level - 1]);
-
- //
- // Print the machine topology summary.
- //
- if (__kmp_affinity_verbose) {
- char mask[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(mask, KMP_AFFIN_MASK_PRINT_LEN, oldMask);
-
- KMP_INFORM(AffUseGlobCpuidL11, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", mask);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", mask);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (uniform) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
-
- kmp_str_buf_t buf;
- __kmp_str_buf_init(&buf);
-
- __kmp_str_buf_print(&buf, "%d", totals[0]);
- for (level = 1; level <= pkgLevel; level++) {
- __kmp_str_buf_print(&buf, " x %d", maxCt[level]);
- }
- KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, nCoresPerPkg,
- __kmp_nThreadsPerCore, __kmp_ncores);
-
- __kmp_str_buf_free(&buf);
- }
-
- if (__kmp_affinity_type == affinity_none) {
- __kmp_free(last);
- __kmp_free(maxCt);
- __kmp_free(counts);
- __kmp_free(totals);
- __kmp_free(retval);
- KMP_CPU_FREE(oldMask);
- return 0;
- }
+ hw_thread.ids[idx++] = threadInfo[i].threadId;
+ }
+ hw_thread.os_id = os;
+ }
+
+ __kmp_free(threadInfo);
+ __kmp_topology->sort_ids();
+ if (!__kmp_topology->check_ids()) {
+ kmp_topology_t::deallocate(__kmp_topology);
+ __kmp_topology = nullptr;
+ *msg_id = kmp_i18n_str_LegacyApicIDsNotUnique;
+ return false;
+ }
+ return true;
+}
- //
- // Find any levels with radiix 1, and remove them from the map
- // (except for the package level).
- //
- int new_depth = 0;
- for (level = 0; level < depth; level++) {
- if ((maxCt[level] == 1) && (level != pkgLevel)) {
- continue;
- }
- new_depth++;
- }
+// Intel(R) microarchitecture code name Nehalem, Dunnington and later
+// architectures support a newer interface for specifying the x2APIC Ids,
+// based on CPUID.B or CPUID.1F
+/*
+ * CPUID.B or 1F, Input ECX (sub leaf # aka level number)
+ Bits Bits Bits Bits
+ 31-16 15-8 7-4 4-0
+---+-----------+--------------+-------------+-----------------+
+EAX| reserved | reserved | reserved | Bits to Shift |
+---+-----------|--------------+-------------+-----------------|
+EBX| reserved | Num logical processors at level (16 bits) |
+---+-----------|--------------+-------------------------------|
+ECX| reserved | Level Type | Level Number (8 bits) |
+---+-----------+--------------+-------------------------------|
+EDX| X2APIC ID (32 bits) |
+---+----------------------------------------------------------+
+*/
+
+enum {
+ INTEL_LEVEL_TYPE_INVALID = 0, // Package level
+ INTEL_LEVEL_TYPE_SMT = 1,
+ INTEL_LEVEL_TYPE_CORE = 2,
+ INTEL_LEVEL_TYPE_TILE = 3,
+ INTEL_LEVEL_TYPE_MODULE = 4,
+ INTEL_LEVEL_TYPE_DIE = 5,
+ INTEL_LEVEL_TYPE_LAST = 6,
+};
- //
- // If we are removing any levels, allocate a new vector to return,
- // and copy the relevant information to it.
- //
- if (new_depth != depth) {
- AddrUnsPair *new_retval = (AddrUnsPair *)__kmp_allocate(
- sizeof(AddrUnsPair) * nApics);
- for (proc = 0; (int)proc < nApics; proc++) {
- Address addr(new_depth);
- new_retval[proc] = AddrUnsPair(addr, retval[proc].second);
- }
- int new_level = 0;
- int newPkgLevel = -1;
- int newCoreLevel = -1;
- int newThreadLevel = -1;
- int i;
- for (level = 0; level < depth; level++) {
- if ((maxCt[level] == 1)
- && (level != pkgLevel)) {
- //
- // Remove this level. Never remove the package level
- //
- continue;
- }
- if (level == pkgLevel) {
- newPkgLevel = level;
- }
- if (level == coreLevel) {
- newCoreLevel = level;
- }
- if (level == threadLevel) {
- newThreadLevel = level;
- }
- for (proc = 0; (int)proc < nApics; proc++) {
- new_retval[proc].first.labels[new_level]
- = retval[proc].first.labels[level];
- }
- new_level++;
- }
+struct cpuid_level_info_t {
+ unsigned level_type, mask, mask_width, nitems, cache_mask;
+};
- __kmp_free(retval);
- retval = new_retval;
- depth = new_depth;
- pkgLevel = newPkgLevel;
- coreLevel = newCoreLevel;
- threadLevel = newThreadLevel;
- }
-
- if (__kmp_affinity_gran_levels < 0) {
- //
- // Set the granularity level based on what levels are modeled
- // in the machine topology map.
- //
- __kmp_affinity_gran_levels = 0;
- if ((threadLevel >= 0) && (__kmp_affinity_gran > affinity_gran_thread)) {
- __kmp_affinity_gran_levels++;
- }
- if ((coreLevel >= 0) && (__kmp_affinity_gran > affinity_gran_core)) {
- __kmp_affinity_gran_levels++;
- }
- if (__kmp_affinity_gran > affinity_gran_package) {
- __kmp_affinity_gran_levels++;
- }
- }
+static kmp_hw_t __kmp_intel_type_2_topology_type(int intel_type) {
+ switch (intel_type) {
+ case INTEL_LEVEL_TYPE_INVALID:
+ return KMP_HW_SOCKET;
+ case INTEL_LEVEL_TYPE_SMT:
+ return KMP_HW_THREAD;
+ case INTEL_LEVEL_TYPE_CORE:
+ return KMP_HW_CORE;
+ case INTEL_LEVEL_TYPE_TILE:
+ return KMP_HW_TILE;
+ case INTEL_LEVEL_TYPE_MODULE:
+ return KMP_HW_MODULE;
+ case INTEL_LEVEL_TYPE_DIE:
+ return KMP_HW_DIE;
+ }
+ return KMP_HW_UNKNOWN;
+}
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(retval, nApics, depth, pkgLevel,
- coreLevel, threadLevel);
+// This function takes the topology leaf, a levels array to store the levels
+// detected and a bitmap of the known levels.
+// Returns the number of levels in the topology
+static unsigned
+__kmp_x2apicid_get_levels(int leaf,
+ cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST],
+ kmp_uint64 known_levels) {
+ unsigned level, levels_index;
+ unsigned level_type, mask_width, nitems;
+ kmp_cpuid buf;
+
+ // New algorithm has known topology layers act as highest unknown topology
+ // layers when unknown topology layers exist.
+ // e.g., Suppose layers were SMT <X> CORE <Y> <Z> PACKAGE, where <X> <Y> <Z>
+ // are unknown topology layers, Then SMT will take the characteristics of
+ // (SMT x <X>) and CORE will take the characteristics of (CORE x <Y> x <Z>).
+ // This eliminates unknown portions of the topology while still keeping the
+ // correct structure.
+ level = levels_index = 0;
+ do {
+ __kmp_x86_cpuid(leaf, level, &buf);
+ level_type = __kmp_extract_bits<8, 15>(buf.ecx);
+ mask_width = __kmp_extract_bits<0, 4>(buf.eax);
+ nitems = __kmp_extract_bits<0, 15>(buf.ebx);
+ if (level_type != INTEL_LEVEL_TYPE_INVALID && nitems == 0)
+ return 0;
+
+ if (known_levels & (1ull << level_type)) {
+ // Add a new level to the topology
+ KMP_ASSERT(levels_index < INTEL_LEVEL_TYPE_LAST);
+ levels[levels_index].level_type = level_type;
+ levels[levels_index].mask_width = mask_width;
+ levels[levels_index].nitems = nitems;
+ levels_index++;
+ } else {
+ // If it is an unknown level, then logically move the previous layer up
+ if (levels_index > 0) {
+ levels[levels_index - 1].mask_width = mask_width;
+ levels[levels_index - 1].nitems = nitems;
+ }
+ }
+ level++;
+ } while (level_type != INTEL_LEVEL_TYPE_INVALID);
+
+ // Set the masks to & with apicid
+ for (unsigned i = 0; i < levels_index; ++i) {
+ if (levels[i].level_type != INTEL_LEVEL_TYPE_INVALID) {
+ levels[i].mask = ~((-1) << levels[i].mask_width);
+ levels[i].cache_mask = (-1) << levels[i].mask_width;
+ for (unsigned j = 0; j < i; ++j)
+ levels[i].mask ^= levels[j].mask;
+ } else {
+ KMP_DEBUG_ASSERT(levels_index > 0);
+ levels[i].mask = (-1) << levels[i - 1].mask_width;
+ levels[i].cache_mask = 0;
}
-
- __kmp_free(last);
- __kmp_free(maxCt);
- __kmp_free(counts);
- __kmp_free(totals);
- KMP_CPU_FREE(oldMask);
- *address2os = retval;
- return depth;
+ }
+ return levels_index;
}
+static bool __kmp_affinity_create_x2apicid_map(kmp_i18n_id_t *const msg_id) {
+
+ cpuid_level_info_t levels[INTEL_LEVEL_TYPE_LAST];
+ kmp_hw_t types[INTEL_LEVEL_TYPE_LAST];
+ unsigned levels_index;
+ kmp_cpuid buf;
+ kmp_uint64 known_levels;
+ int topology_leaf, highest_leaf, apic_id;
+ int num_leaves;
+ static int leaves[] = {0, 0};
+
+ kmp_i18n_id_t leaf_message_id;
+
+ KMP_BUILD_ASSERT(sizeof(known_levels) * CHAR_BIT > KMP_HW_LAST);
+
+ *msg_id = kmp_i18n_null;
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
+ }
+
+ // Figure out the known topology levels
+ known_levels = 0ull;
+ for (int i = 0; i < INTEL_LEVEL_TYPE_LAST; ++i) {
+ if (__kmp_intel_type_2_topology_type(i) != KMP_HW_UNKNOWN) {
+ known_levels |= (1ull << i);
+ }
+ }
+
+ // Get the highest cpuid leaf supported
+ __kmp_x86_cpuid(0, 0, &buf);
+ highest_leaf = buf.eax;
+
+ // If a specific topology method was requested, only allow that specific leaf
+ // otherwise, try both leaves 31 and 11 in that order
+ num_leaves = 0;
+ if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
+ num_leaves = 1;
+ leaves[0] = 11;
+ leaf_message_id = kmp_i18n_str_NoLeaf11Support;
+ } else if (__kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
+ num_leaves = 1;
+ leaves[0] = 31;
+ leaf_message_id = kmp_i18n_str_NoLeaf31Support;
+ } else {
+ num_leaves = 2;
+ leaves[0] = 31;
+ leaves[1] = 11;
+ leaf_message_id = kmp_i18n_str_NoLeaf11Support;
+ }
+
+ // Check to see if cpuid leaf 31 or 11 is supported.
+ __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
+ topology_leaf = -1;
+ for (int i = 0; i < num_leaves; ++i) {
+ int leaf = leaves[i];
+ if (highest_leaf < leaf)
+ continue;
+ __kmp_x86_cpuid(leaf, 0, &buf);
+ if (buf.ebx == 0)
+ continue;
+ topology_leaf = leaf;
+ levels_index = __kmp_x2apicid_get_levels(leaf, levels, known_levels);
+ if (levels_index == 0)
+ continue;
+ break;
+ }
+ if (topology_leaf == -1 || levels_index == 0) {
+ *msg_id = leaf_message_id;
+ return false;
+ }
+ KMP_ASSERT(levels_index <= INTEL_LEVEL_TYPE_LAST);
+
+ // The algorithm used starts by setting the affinity to each available thread
+ // and retrieving info from the cpuid instruction, so if we are not capable of
+ // calling __kmp_get_system_affinity() and __kmp_get_system_affinity(), then
+ // we need to do something else - use the defaults that we calculated from
+ // issuing cpuid without binding to each proc.
+ if (!KMP_AFFINITY_CAPABLE()) {
+ // Hack to try and infer the machine topology using only the data
+ // available from cpuid on the current thread, and __kmp_xproc.
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ for (unsigned i = 0; i < levels_index; ++i) {
+ if (levels[i].level_type == INTEL_LEVEL_TYPE_SMT) {
+ __kmp_nThreadsPerCore = levels[i].nitems;
+ } else if (levels[i].level_type == INTEL_LEVEL_TYPE_CORE) {
+ nCoresPerPkg = levels[i].nitems;
+ }
+ }
+ __kmp_ncores = __kmp_xproc / __kmp_nThreadsPerCore;
+ nPackages = (__kmp_xproc + nCoresPerPkg - 1) / nCoresPerPkg;
+ return true;
+ }
+
+ // Allocate the data structure to be returned.
+ int depth = levels_index;
+ for (int i = depth - 1, j = 0; i >= 0; --i, ++j)
+ types[j] = __kmp_intel_type_2_topology_type(levels[i].level_type);
+ __kmp_topology =
+ kmp_topology_t::allocate(__kmp_avail_proc, levels_index, types);
+
+ // Insert equivalent cache types if they exist
+ kmp_cache_info_t cache_info;
+ for (size_t i = 0; i < cache_info.get_depth(); ++i) {
+ const kmp_cache_info_t::info_t &info = cache_info[i];
+ unsigned cache_mask = info.mask;
+ unsigned cache_level = info.level;
+ for (unsigned j = 0; j < levels_index; ++j) {
+ unsigned hw_cache_mask = levels[j].cache_mask;
+ kmp_hw_t cache_type = kmp_cache_info_t::get_topology_type(cache_level);
+ if (hw_cache_mask == cache_mask && j < levels_index - 1) {
+ kmp_hw_t type =
+ __kmp_intel_type_2_topology_type(levels[j + 1].level_type);
+ __kmp_topology->set_equivalent_type(cache_type, type);
+ }
+ }
+ }
+
+ // From here on, we can assume that it is safe to call
+ // __kmp_get_system_affinity() and __kmp_set_system_affinity(), even if
+ // __kmp_affinity_type = affinity_none.
+
+ // Save the affinity mask for the current thread.
+ kmp_affinity_raii_t previous_affinity;
+
+ // Run through each of the available contexts, binding the current thread
+ // to it, and obtaining the pertinent information using the cpuid instr.
+ unsigned int proc;
+ int hw_thread_index = 0;
+ KMP_CPU_SET_ITERATE(proc, __kmp_affin_fullMask) {
+ cpuid_level_info_t my_levels[INTEL_LEVEL_TYPE_LAST];
+ unsigned my_levels_index;
+
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ continue;
+ }
+ KMP_DEBUG_ASSERT(hw_thread_index < __kmp_avail_proc);
+
+ __kmp_affinity_dispatch->bind_thread(proc);
+
+ // New algorithm
+ __kmp_x86_cpuid(topology_leaf, 0, &buf);
+ apic_id = buf.edx;
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(hw_thread_index);
+ my_levels_index =
+ __kmp_x2apicid_get_levels(topology_leaf, my_levels, known_levels);
+ if (my_levels_index == 0 || my_levels_index != levels_index) {
+ *msg_id = kmp_i18n_str_InvalidCpuidInfo;
+ return false;
+ }
+ hw_thread.clear();
+ hw_thread.os_id = proc;
+ // Put in topology information
+ for (unsigned j = 0, idx = depth - 1; j < my_levels_index; ++j, --idx) {
+ hw_thread.ids[idx] = apic_id & my_levels[j].mask;
+ if (j > 0) {
+ hw_thread.ids[idx] >>= my_levels[j - 1].mask_width;
+ }
+ }
+ hw_thread_index++;
+ }
+ KMP_ASSERT(hw_thread_index > 0);
+ __kmp_topology->sort_ids();
+ if (!__kmp_topology->check_ids()) {
+ kmp_topology_t::deallocate(__kmp_topology);
+ __kmp_topology = nullptr;
+ *msg_id = kmp_i18n_str_x2ApicIDsNotUnique;
+ return false;
+ }
+ return true;
+}
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-
-
-#define osIdIndex 0
-#define threadIdIndex 1
-#define coreIdIndex 2
-#define pkgIdIndex 3
-#define nodeIdIndex 4
+#define osIdIndex 0
+#define threadIdIndex 1
+#define coreIdIndex 2
+#define pkgIdIndex 3
+#define nodeIdIndex 4
typedef unsigned *ProcCpuInfo;
static unsigned maxIndex = pkgIdIndex;
+static int __kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a,
+ const void *b) {
+ unsigned i;
+ const unsigned *aa = *(unsigned *const *)a;
+ const unsigned *bb = *(unsigned *const *)b;
+ for (i = maxIndex;; i--) {
+ if (aa[i] < bb[i])
+ return -1;
+ if (aa[i] > bb[i])
+ return 1;
+ if (i == osIdIndex)
+ break;
+ }
+ return 0;
+}
-static int
-__kmp_affinity_cmp_ProcCpuInfo_os_id(const void *a, const void *b)
-{
- const unsigned *aa = (const unsigned *)a;
- const unsigned *bb = (const unsigned *)b;
- if (aa[osIdIndex] < bb[osIdIndex]) return -1;
- if (aa[osIdIndex] > bb[osIdIndex]) return 1;
- return 0;
-};
-
+#if KMP_USE_HIER_SCHED
+// Set the array sizes for the hierarchy layers
+static void __kmp_dispatch_set_hierarchy_values() {
+ // Set the maximum number of L1's to number of cores
+ // Set the maximum number of L2's to to either number of cores / 2 for
+ // Intel(R) Xeon Phi(TM) coprocessor formally codenamed Knights Landing
+ // Or the number of cores for Intel(R) Xeon(R) processors
+ // Set the maximum number of NUMA nodes and L3's to number of packages
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1] =
+ nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L1 + 1] = __kmp_ncores;
+#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
+ KMP_MIC_SUPPORTED
+ if (__kmp_mic_type >= mic3)
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores / 2;
+ else
+#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L2 + 1] = __kmp_ncores;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_L3 + 1] = nPackages;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_NUMA + 1] = nPackages;
+ __kmp_hier_max_units[kmp_hier_layer_e::LAYER_LOOP + 1] = 1;
+ // Set the number of threads per unit
+ // Number of hardware threads per L1/L2/L3/NUMA/LOOP
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_THREAD + 1] = 1;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L1 + 1] =
+ __kmp_nThreadsPerCore;
+#if KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_FREEBSD || KMP_OS_WINDOWS) && \
+ KMP_MIC_SUPPORTED
+ if (__kmp_mic_type >= mic3)
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
+ 2 * __kmp_nThreadsPerCore;
+ else
+#endif // KMP_ARCH_X86_64 && (KMP_OS_LINUX || KMP_OS_WINDOWS)
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L2 + 1] =
+ __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_L3 + 1] =
+ nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_NUMA + 1] =
+ nCoresPerPkg * __kmp_nThreadsPerCore;
+ __kmp_hier_threads_per[kmp_hier_layer_e::LAYER_LOOP + 1] =
+ nPackages * nCoresPerPkg * __kmp_nThreadsPerCore;
+}
-static int
-__kmp_affinity_cmp_ProcCpuInfo_phys_id(const void *a, const void *b)
-{
- unsigned i;
- const unsigned *aa = *((const unsigned **)a);
- const unsigned *bb = *((const unsigned **)b);
- for (i = maxIndex; ; i--) {
- if (aa[i] < bb[i]) return -1;
- if (aa[i] > bb[i]) return 1;
- if (i == osIdIndex) break;
- }
+// Return the index into the hierarchy for this tid and layer type (L1, L2, etc)
+// i.e., this thread's L1 or this thread's L2, etc.
+int __kmp_dispatch_get_index(int tid, kmp_hier_layer_e type) {
+ int index = type + 1;
+ int num_hw_threads = __kmp_hier_max_units[kmp_hier_layer_e::LAYER_THREAD + 1];
+ KMP_DEBUG_ASSERT(type != kmp_hier_layer_e::LAYER_LAST);
+ if (type == kmp_hier_layer_e::LAYER_THREAD)
+ return tid;
+ else if (type == kmp_hier_layer_e::LAYER_LOOP)
return 0;
+ KMP_DEBUG_ASSERT(__kmp_hier_max_units[index] != 0);
+ if (tid >= num_hw_threads)
+ tid = tid % num_hw_threads;
+ return (tid / __kmp_hier_threads_per[index]) % __kmp_hier_max_units[index];
}
+// Return the number of t1's per t2
+int __kmp_dispatch_get_t1_per_t2(kmp_hier_layer_e t1, kmp_hier_layer_e t2) {
+ int i1 = t1 + 1;
+ int i2 = t2 + 1;
+ KMP_DEBUG_ASSERT(i1 <= i2);
+ KMP_DEBUG_ASSERT(t1 != kmp_hier_layer_e::LAYER_LAST);
+ KMP_DEBUG_ASSERT(t2 != kmp_hier_layer_e::LAYER_LAST);
+ KMP_DEBUG_ASSERT(__kmp_hier_threads_per[i1] != 0);
+ // (nthreads/t2) / (nthreads/t1) = t1 / t2
+ return __kmp_hier_threads_per[i2] / __kmp_hier_threads_per[i1];
+}
+#endif // KMP_USE_HIER_SCHED
+
+static inline const char *__kmp_cpuinfo_get_filename() {
+ const char *filename;
+ if (__kmp_cpuinfo_file != nullptr)
+ filename = __kmp_cpuinfo_file;
+ else
+ filename = "/proc/cpuinfo";
+ return filename;
+}
+
+static inline const char *__kmp_cpuinfo_get_envvar() {
+ const char *envvar = nullptr;
+ if (__kmp_cpuinfo_file != nullptr)
+ envvar = "KMP_CPUINFO_FILE";
+ return envvar;
+}
-//
// Parse /proc/cpuinfo (or an alternate file in the same format) to obtain the
// affinity map.
-//
-static int
-__kmp_affinity_create_cpuinfo_map(AddrUnsPair **address2os, int *line,
- kmp_i18n_id_t *const msg_id, FILE *f)
-{
- *address2os = NULL;
- *msg_id = kmp_i18n_null;
-
- //
- // Scan of the file, and count the number of "processor" (osId) fields,
- // and find the highest value of <n> for a node_<n> field.
- //
- char buf[256];
- unsigned num_records = 0;
- while (! feof(f)) {
- buf[sizeof(buf) - 1] = 1;
- if (! fgets(buf, sizeof(buf), f)) {
- //
- // Read errors presumably because of EOF
- //
- break;
- }
-
- char s1[] = "processor";
- if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
- num_records++;
- continue;
- }
-
- //
- // FIXME - this will match "node_<n> <garbage>"
- //
- unsigned level;
- if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
- if (nodeIdIndex + level >= maxIndex) {
- maxIndex = nodeIdIndex + level;
- }
- continue;
- }
- }
-
- //
- // Check for empty file / no valid processor records, or too many.
- // The number of records can't exceed the number of valid bits in the
- // affinity mask.
- //
- if (num_records == 0) {
- *line = 0;
- *msg_id = kmp_i18n_str_NoProcRecords;
- return -1;
- }
- if (num_records > (unsigned)__kmp_xproc) {
- *line = 0;
- *msg_id = kmp_i18n_str_TooManyProcRecords;
- return -1;
- }
-
- //
- // Set the file pointer back to the begginning, so that we can scan the
- // file again, this time performing a full parse of the data.
- // Allocate a vector of ProcCpuInfo object, where we will place the data.
- // Adding an extra element at the end allows us to remove a lot of extra
- // checks for termination conditions.
- //
- if (fseek(f, 0, SEEK_SET) != 0) {
- *line = 0;
- *msg_id = kmp_i18n_str_CantRewindCpuinfo;
- return -1;
- }
-
- //
- // Allocate the array of records to store the proc info in. The dummy
- // element at the end makes the logic in filling them out easier to code.
- //
- unsigned **threadInfo = (unsigned **)__kmp_allocate((num_records + 1)
- * sizeof(unsigned *));
- unsigned i;
- for (i = 0; i <= num_records; i++) {
- threadInfo[i] = (unsigned *)__kmp_allocate((maxIndex + 1)
- * sizeof(unsigned));
- }
-
-#define CLEANUP_THREAD_INFO \
- for (i = 0; i <= num_records; i++) { \
- __kmp_free(threadInfo[i]); \
- } \
- __kmp_free(threadInfo);
-
- //
- // A value of UINT_MAX means that we didn't find the field
- //
- unsigned __index;
-
-#define INIT_PROC_INFO(p) \
- for (__index = 0; __index <= maxIndex; __index++) { \
- (p)[__index] = UINT_MAX; \
- }
-
- for (i = 0; i <= num_records; i++) {
- INIT_PROC_INFO(threadInfo[i]);
- }
-
- unsigned num_avail = 0;
- *line = 0;
- while (! feof(f)) {
- //
- // Create an inner scoping level, so that all the goto targets at the
- // end of the loop appear in an outer scoping level. This avoids
- // warnings about jumping past an initialization to a target in the
- // same block.
- //
- {
- buf[sizeof(buf) - 1] = 1;
- bool long_line = false;
- if (! fgets(buf, sizeof(buf), f)) {
- //
- // Read errors presumably because of EOF
- //
- // If there is valid data in threadInfo[num_avail], then fake
- // a blank line in ensure that the last address gets parsed.
- //
- bool valid = false;
- for (i = 0; i <= maxIndex; i++) {
- if (threadInfo[num_avail][i] != UINT_MAX) {
- valid = true;
- }
- }
- if (! valid) {
- break;
- }
- buf[0] = 0;
- } else if (!buf[sizeof(buf) - 1]) {
- //
- // The line is longer than the buffer. Set a flag and don't
- // emit an error if we were going to ignore the line, anyway.
- //
- long_line = true;
-
-#define CHECK_LINE \
- if (long_line) { \
- CLEANUP_THREAD_INFO; \
- *msg_id = kmp_i18n_str_LongLineCpuinfo; \
- return -1; \
- }
- }
- (*line)++;
-
- char s1[] = "processor";
- if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s1) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
- if (threadInfo[num_avail][osIdIndex] != UINT_MAX) goto dup_field;
- threadInfo[num_avail][osIdIndex] = val;
-#if KMP_OS_LINUX && USE_SYSFS_INFO
- char path[256];
- KMP_SNPRINTF(path, sizeof(path),
- "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
- threadInfo[num_avail][osIdIndex]);
- __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
-
- KMP_SNPRINTF(path, sizeof(path),
- "/sys/devices/system/cpu/cpu%u/topology/core_id",
- threadInfo[num_avail][osIdIndex]);
- __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
- continue;
+static bool __kmp_affinity_create_cpuinfo_map(int *line,
+ kmp_i18n_id_t *const msg_id) {
+ const char *filename = __kmp_cpuinfo_get_filename();
+ const char *envvar = __kmp_cpuinfo_get_envvar();
+ *msg_id = kmp_i18n_null;
+
+ if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
+ }
+
+ kmp_safe_raii_file_t f(filename, "r", envvar);
+
+ // Scan of the file, and count the number of "processor" (osId) fields,
+ // and find the highest value of <n> for a node_<n> field.
+ char buf[256];
+ unsigned num_records = 0;
+ while (!feof(f)) {
+ buf[sizeof(buf) - 1] = 1;
+ if (!fgets(buf, sizeof(buf), f)) {
+ // Read errors presumably because of EOF
+ break;
+ }
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ num_records++;
+ continue;
+ }
+
+ // FIXME - this will match "node_<n> <garbage>"
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
+ // validate the input fisrt:
+ if (level > (unsigned)__kmp_xproc) { // level is too big
+ level = __kmp_xproc;
+ }
+ if (nodeIdIndex + level >= maxIndex) {
+ maxIndex = nodeIdIndex + level;
+ }
+ continue;
+ }
+ }
+
+ // Check for empty file / no valid processor records, or too many. The number
+ // of records can't exceed the number of valid bits in the affinity mask.
+ if (num_records == 0) {
+ *msg_id = kmp_i18n_str_NoProcRecords;
+ return false;
+ }
+ if (num_records > (unsigned)__kmp_xproc) {
+ *msg_id = kmp_i18n_str_TooManyProcRecords;
+ return false;
+ }
+
+ // Set the file pointer back to the beginning, so that we can scan the file
+ // again, this time performing a full parse of the data. Allocate a vector of
+ // ProcCpuInfo object, where we will place the data. Adding an extra element
+ // at the end allows us to remove a lot of extra checks for termination
+ // conditions.
+ if (fseek(f, 0, SEEK_SET) != 0) {
+ *msg_id = kmp_i18n_str_CantRewindCpuinfo;
+ return false;
+ }
+
+ // Allocate the array of records to store the proc info in. The dummy
+ // element at the end makes the logic in filling them out easier to code.
+ unsigned **threadInfo =
+ (unsigned **)__kmp_allocate((num_records + 1) * sizeof(unsigned *));
+ unsigned i;
+ for (i = 0; i <= num_records; i++) {
+ threadInfo[i] =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ }
+
+#define CLEANUP_THREAD_INFO \
+ for (i = 0; i <= num_records; i++) { \
+ __kmp_free(threadInfo[i]); \
+ } \
+ __kmp_free(threadInfo);
+
+ // A value of UINT_MAX means that we didn't find the field
+ unsigned __index;
+
+#define INIT_PROC_INFO(p) \
+ for (__index = 0; __index <= maxIndex; __index++) { \
+ (p)[__index] = UINT_MAX; \
+ }
+
+ for (i = 0; i <= num_records; i++) {
+ INIT_PROC_INFO(threadInfo[i]);
+ }
+
+ unsigned num_avail = 0;
+ *line = 0;
+ while (!feof(f)) {
+ // Create an inner scoping level, so that all the goto targets at the end of
+ // the loop appear in an outer scoping level. This avoids warnings about
+ // jumping past an initialization to a target in the same block.
+ {
+ buf[sizeof(buf) - 1] = 1;
+ bool long_line = false;
+ if (!fgets(buf, sizeof(buf), f)) {
+ // Read errors presumably because of EOF
+ // If there is valid data in threadInfo[num_avail], then fake
+ // a blank line in ensure that the last address gets parsed.
+ bool valid = false;
+ for (i = 0; i <= maxIndex; i++) {
+ if (threadInfo[num_avail][i] != UINT_MAX) {
+ valid = true;
+ }
+ }
+ if (!valid) {
+ break;
+ }
+ buf[0] = 0;
+ } else if (!buf[sizeof(buf) - 1]) {
+ // The line is longer than the buffer. Set a flag and don't
+ // emit an error if we were going to ignore the line, anyway.
+ long_line = true;
+
+#define CHECK_LINE \
+ if (long_line) { \
+ CLEANUP_THREAD_INFO; \
+ *msg_id = kmp_i18n_str_LongLineCpuinfo; \
+ return false; \
+ }
+ }
+ (*line)++;
+
+ char s1[] = "processor";
+ if (strncmp(buf, s1, sizeof(s1) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s1) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][osIdIndex] != UINT_MAX)
+#if KMP_ARCH_AARCH64
+ // Handle the old AArch64 /proc/cpuinfo layout differently,
+ // it contains all of the 'processor' entries listed in a
+ // single 'Processor' section, therefore the normal looking
+ // for duplicates in that section will always fail.
+ num_avail++;
#else
- }
- char s2[] = "physical id";
- if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s2) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
- if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX) goto dup_field;
- threadInfo[num_avail][pkgIdIndex] = val;
- continue;
- }
- char s3[] = "core id";
- if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s3) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
- if (threadInfo[num_avail][coreIdIndex] != UINT_MAX) goto dup_field;
- threadInfo[num_avail][coreIdIndex] = val;
- continue;
+ goto dup_field;
+#endif
+ threadInfo[num_avail][osIdIndex] = val;
+#if KMP_OS_LINUX && !(KMP_ARCH_X86 || KMP_ARCH_X86_64)
+ char path[256];
+ KMP_SNPRINTF(
+ path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/physical_package_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][pkgIdIndex]);
+
+ KMP_SNPRINTF(path, sizeof(path),
+ "/sys/devices/system/cpu/cpu%u/topology/core_id",
+ threadInfo[num_avail][osIdIndex]);
+ __kmp_read_from_file(path, "%u", &threadInfo[num_avail][coreIdIndex]);
+ continue;
+#else
+ }
+ char s2[] = "physical id";
+ if (strncmp(buf, s2, sizeof(s2) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s2) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][pkgIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][pkgIdIndex] = val;
+ continue;
+ }
+ char s3[] = "core id";
+ if (strncmp(buf, s3, sizeof(s3) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s3) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][coreIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][coreIdIndex] = val;
+ continue;
#endif // KMP_OS_LINUX && USE_SYSFS_INFO
- }
- char s4[] = "thread id";
- if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s4) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
- if (threadInfo[num_avail][threadIdIndex] != UINT_MAX) goto dup_field;
- threadInfo[num_avail][threadIdIndex] = val;
- continue;
- }
- unsigned level;
- if (KMP_SSCANF(buf, "node_%d id", &level) == 1) {
- CHECK_LINE;
- char *p = strchr(buf + sizeof(s4) - 1, ':');
- unsigned val;
- if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1)) goto no_val;
- KMP_ASSERT(nodeIdIndex + level <= maxIndex);
- if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX) goto dup_field;
- threadInfo[num_avail][nodeIdIndex + level] = val;
- continue;
- }
-
- //
- // We didn't recognize the leading token on the line.
- // There are lots of leading tokens that we don't recognize -
- // if the line isn't empty, go on to the next line.
- //
- if ((*buf != 0) && (*buf != '\n')) {
- //
- // If the line is longer than the buffer, read characters
- // until we find a newline.
- //
- if (long_line) {
- int ch;
- while (((ch = fgetc(f)) != EOF) && (ch != '\n'));
- }
- continue;
- }
-
- //
- // A newline has signalled the end of the processor record.
- // Check that there aren't too many procs specified.
- //
- if ((int)num_avail == __kmp_xproc) {
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_TooManyEntries;
- return -1;
- }
-
- //
- // Check for missing fields. The osId field must be there, and we
- // currently require that the physical id field is specified, also.
- //
- if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingProcField;
- return -1;
- }
- if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingPhysicalIDField;
- return -1;
- }
-
- //
- // Skip this proc if it is not included in the machine model.
- //
- if (! KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex], fullMask)) {
- INIT_PROC_INFO(threadInfo[num_avail]);
- continue;
- }
-
- //
- // We have a successful parse of this proc's info.
- // Increment the counter, and prepare for the next proc.
- //
- num_avail++;
- KMP_ASSERT(num_avail <= num_records);
- INIT_PROC_INFO(threadInfo[num_avail]);
+ }
+ char s4[] = "thread id";
+ if (strncmp(buf, s4, sizeof(s4) - 1) == 0) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ if (threadInfo[num_avail][threadIdIndex] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][threadIdIndex] = val;
+ continue;
+ }
+ unsigned level;
+ if (KMP_SSCANF(buf, "node_%u id", &level) == 1) {
+ CHECK_LINE;
+ char *p = strchr(buf + sizeof(s4) - 1, ':');
+ unsigned val;
+ if ((p == NULL) || (KMP_SSCANF(p + 1, "%u\n", &val) != 1))
+ goto no_val;
+ KMP_ASSERT(nodeIdIndex + level <= maxIndex);
+ if (threadInfo[num_avail][nodeIdIndex + level] != UINT_MAX)
+ goto dup_field;
+ threadInfo[num_avail][nodeIdIndex + level] = val;
+ continue;
+ }
+
+ // We didn't recognize the leading token on the line. There are lots of
+ // leading tokens that we don't recognize - if the line isn't empty, go on
+ // to the next line.
+ if ((*buf != 0) && (*buf != '\n')) {
+ // If the line is longer than the buffer, read characters
+ // until we find a newline.
+ if (long_line) {
+ int ch;
+ while (((ch = fgetc(f)) != EOF) && (ch != '\n'))
+ ;
}
continue;
+ }
- no_val:
+ // A newline has signalled the end of the processor record.
+ // Check that there aren't too many procs specified.
+ if ((int)num_avail == __kmp_xproc) {
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_MissingValCpuinfo;
- return -1;
+ *msg_id = kmp_i18n_str_TooManyEntries;
+ return false;
+ }
- dup_field:
+ // Check for missing fields. The osId field must be there, and we
+ // currently require that the physical id field is specified, also.
+ if (threadInfo[num_avail][osIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
- return -1;
- }
- *line = 0;
-
-# if KMP_MIC && REDUCE_TEAM_SIZE
- unsigned teamSize = 0;
-# endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- // check for num_records == __kmp_xproc ???
-
- //
- // If there's only one thread context to bind to, form an Address object
- // with depth 1 and return immediately (or, if affinity is off, set
- // address2os to NULL and return).
- //
- // If it is configured to omit the package level when there is only a
- // single package, the logic at the end of this routine won't work if
- // there is only a single thread - it would try to form an Address
- // object with depth 0.
- //
- KMP_ASSERT(num_avail > 0);
- KMP_ASSERT(num_avail <= num_records);
- if (num_avail == 1) {
- __kmp_ncores = 1;
- __kmp_nThreadsPerCore = nCoresPerPkg = nPackages = 1;
- if (__kmp_affinity_verbose) {
- if (! KMP_AFFINITY_CAPABLE()) {
- KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- }
- else {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- fullMask);
- KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- }
- int index;
- kmp_str_buf_t buf;
- __kmp_str_buf_init(&buf);
- __kmp_str_buf_print(&buf, "1");
- for (index = maxIndex - 1; index > pkgIdIndex; index--) {
- __kmp_str_buf_print(&buf, " x 1");
- }
- KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, 1, 1, 1);
- __kmp_str_buf_free(&buf);
- }
-
- if (__kmp_affinity_type == affinity_none) {
- CLEANUP_THREAD_INFO;
- return 0;
- }
-
- *address2os = (AddrUnsPair*)__kmp_allocate(sizeof(AddrUnsPair));
- Address addr(1);
- addr.labels[0] = threadInfo[0][pkgIdIndex];
- (*address2os)[0] = AddrUnsPair(addr, threadInfo[0][osIdIndex]);
-
- if (__kmp_affinity_gran_levels < 0) {
- __kmp_affinity_gran_levels = 0;
- }
-
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(*address2os, 1, 1, 0, -1, -1);
- }
-
+ *msg_id = kmp_i18n_str_MissingProcField;
+ return false;
+ }
+ if (threadInfo[0][pkgIdIndex] == UINT_MAX) {
CLEANUP_THREAD_INFO;
- return 1;
- }
-
- //
- // Sort the threadInfo table by physical Id.
- //
- qsort(threadInfo, num_avail, sizeof(*threadInfo),
- __kmp_affinity_cmp_ProcCpuInfo_phys_id);
-
- //
- // The table is now sorted by pkgId / coreId / threadId, but we really
- // don't know the radix of any of the fields. pkgId's may be sparsely
- // assigned among the chips on a system. Although coreId's are usually
- // assigned [0 .. coresPerPkg-1] and threadId's are usually assigned
- // [0..threadsPerCore-1], we don't want to make any such assumptions.
- //
- // For that matter, we don't know what coresPerPkg and threadsPerCore
- // (or the total # packages) are at this point - we want to determine
- // that now. We only have an upper bound on the first two figures.
- //
- unsigned *counts = (unsigned *)__kmp_allocate((maxIndex + 1)
- * sizeof(unsigned));
- unsigned *maxCt = (unsigned *)__kmp_allocate((maxIndex + 1)
- * sizeof(unsigned));
- unsigned *totals = (unsigned *)__kmp_allocate((maxIndex + 1)
- * sizeof(unsigned));
- unsigned *lastId = (unsigned *)__kmp_allocate((maxIndex + 1)
- * sizeof(unsigned));
-
- bool assign_thread_ids = false;
- unsigned threadIdCt;
- unsigned index;
-
- restart_radix_check:
- threadIdCt = 0;
-
- //
- // Initialize the counter arrays with data from threadInfo[0].
- //
- if (assign_thread_ids) {
- if (threadInfo[0][threadIdIndex] == UINT_MAX) {
- threadInfo[0][threadIdIndex] = threadIdCt++;
- }
- else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
- threadIdCt = threadInfo[0][threadIdIndex] + 1;
- }
- }
- for (index = 0; index <= maxIndex; index++) {
- counts[index] = 1;
- maxCt[index] = 1;
- totals[index] = 1;
- lastId[index] = threadInfo[0][index];;
- }
-
- //
- // Run through the rest of the OS procs.
- //
- for (i = 1; i < num_avail; i++) {
- //
- // Find the most significant index whose id differs
- // from the id for the previous OS proc.
- //
- for (index = maxIndex; index >= threadIdIndex; index--) {
- if (assign_thread_ids && (index == threadIdIndex)) {
- //
- // Auto-assign the thread id field if it wasn't specified.
- //
- if (threadInfo[i][threadIdIndex] == UINT_MAX) {
- threadInfo[i][threadIdIndex] = threadIdCt++;
- }
-
- //
- // Aparrently the thread id field was specified for some
- // entries and not others. Start the thread id counter
- // off at the next higher thread id.
- //
- else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
- threadIdCt = threadInfo[i][threadIdIndex] + 1;
- }
- }
- if (threadInfo[i][index] != lastId[index]) {
- //
- // Run through all indices which are less significant,
- // and reset the counts to 1.
- //
- // At all levels up to and including index, we need to
- // increment the totals and record the last id.
- //
- unsigned index2;
- for (index2 = threadIdIndex; index2 < index; index2++) {
- totals[index2]++;
- if (counts[index2] > maxCt[index2]) {
- maxCt[index2] = counts[index2];
- }
- counts[index2] = 1;
- lastId[index2] = threadInfo[i][index2];
- }
- counts[index]++;
- totals[index]++;
- lastId[index] = threadInfo[i][index];
-
- if (assign_thread_ids && (index > threadIdIndex)) {
-
-# if KMP_MIC && REDUCE_TEAM_SIZE
- //
- // The default team size is the total #threads in the machine
- // minus 1 thread for every core that has 3 or more threads.
- //
- teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
-# endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- //
- // Restart the thread counter, as we are on a new core.
- //
- threadIdCt = 0;
-
- //
- // Auto-assign the thread id field if it wasn't specified.
- //
- if (threadInfo[i][threadIdIndex] == UINT_MAX) {
- threadInfo[i][threadIdIndex] = threadIdCt++;
- }
-
- //
- // Aparrently the thread id field was specified for some
- // entries and not others. Start the thread id counter
- // off at the next higher thread id.
- //
- else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
- threadIdCt = threadInfo[i][threadIdIndex] + 1;
- }
- }
- break;
- }
- }
- if (index < threadIdIndex) {
- //
- // If thread ids were specified, it is an error if they are not
- // unique. Also, check that we waven't already restarted the
- // loop (to be safe - shouldn't need to).
- //
- if ((threadInfo[i][threadIdIndex] != UINT_MAX)
- || assign_thread_ids) {
- __kmp_free(lastId);
- __kmp_free(totals);
- __kmp_free(maxCt);
- __kmp_free(counts);
- CLEANUP_THREAD_INFO;
- *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
- return -1;
- }
-
- //
- // If the thread ids were not specified and we see entries
- // entries that are duplicates, start the loop over and
- // assign the thread ids manually.
- //
- assign_thread_ids = true;
- goto restart_radix_check;
- }
- }
-
-# if KMP_MIC && REDUCE_TEAM_SIZE
- //
- // The default team size is the total #threads in the machine
- // minus 1 thread for every core that has 3 or more threads.
- //
- teamSize += ( threadIdCt <= 2 ) ? ( threadIdCt ) : ( threadIdCt - 1 );
-# endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- for (index = threadIdIndex; index <= maxIndex; index++) {
- if (counts[index] > maxCt[index]) {
- maxCt[index] = counts[index];
- }
- }
-
- __kmp_nThreadsPerCore = maxCt[threadIdIndex];
- nCoresPerPkg = maxCt[coreIdIndex];
- nPackages = totals[pkgIdIndex];
+ *msg_id = kmp_i18n_str_MissingPhysicalIDField;
+ return false;
+ }
+
+ // Skip this proc if it is not included in the machine model.
+ if (!KMP_CPU_ISSET(threadInfo[num_avail][osIdIndex],
+ __kmp_affin_fullMask)) {
+ INIT_PROC_INFO(threadInfo[num_avail]);
+ continue;
+ }
- //
- // Check to see if the machine topology is uniform
- //
- unsigned prod = totals[maxIndex];
- for (index = threadIdIndex; index < maxIndex; index++) {
- prod *= maxCt[index];
+ // We have a successful parse of this proc's info.
+ // Increment the counter, and prepare for the next proc.
+ num_avail++;
+ KMP_ASSERT(num_avail <= num_records);
+ INIT_PROC_INFO(threadInfo[num_avail]);
}
- bool uniform = (prod == totals[threadIdIndex]);
-
- //
- // When affinity is off, this routine will still be called to set
- // __kmp_ncores, as well as __kmp_nThreadsPerCore,
- // nCoresPerPkg, & nPackages. Make sure all these vars are set
- // correctly, and return now if affinity is not enabled.
- //
- __kmp_ncores = totals[coreIdIndex];
+ continue;
- if (__kmp_affinity_verbose) {
- if (! KMP_AFFINITY_CAPABLE()) {
- KMP_INFORM(AffNotCapableUseCpuinfo, "KMP_AFFINITY");
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (uniform) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- }
- else {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, fullMask);
- KMP_INFORM(AffCapableUseCpuinfo, "KMP_AFFINITY");
- if (__kmp_affinity_respect_mask) {
- KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
- } else {
- KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
- }
- KMP_INFORM(AvailableOSProc, "KMP_AFFINITY", __kmp_avail_proc);
- if (uniform) {
- KMP_INFORM(Uniform, "KMP_AFFINITY");
- } else {
- KMP_INFORM(NonUniform, "KMP_AFFINITY");
- }
- }
- kmp_str_buf_t buf;
- __kmp_str_buf_init(&buf);
+ no_val:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_MissingValCpuinfo;
+ return false;
- __kmp_str_buf_print(&buf, "%d", totals[maxIndex]);
- for (index = maxIndex - 1; index >= pkgIdIndex; index--) {
- __kmp_str_buf_print(&buf, " x %d", maxCt[index]);
+ dup_field:
+ CLEANUP_THREAD_INFO;
+ *msg_id = kmp_i18n_str_DuplicateFieldCpuinfo;
+ return false;
+ }
+ *line = 0;
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ unsigned teamSize = 0;
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // check for num_records == __kmp_xproc ???
+
+ // If it is configured to omit the package level when there is only a single
+ // package, the logic at the end of this routine won't work if there is only a
+ // single thread
+ KMP_ASSERT(num_avail > 0);
+ KMP_ASSERT(num_avail <= num_records);
+
+ // Sort the threadInfo table by physical Id.
+ qsort(threadInfo, num_avail, sizeof(*threadInfo),
+ __kmp_affinity_cmp_ProcCpuInfo_phys_id);
+
+ // The table is now sorted by pkgId / coreId / threadId, but we really don't
+ // know the radix of any of the fields. pkgId's may be sparsely assigned among
+ // the chips on a system. Although coreId's are usually assigned
+ // [0 .. coresPerPkg-1] and threadId's are usually assigned
+ // [0..threadsPerCore-1], we don't want to make any such assumptions.
+ //
+ // For that matter, we don't know what coresPerPkg and threadsPerCore (or the
+ // total # packages) are at this point - we want to determine that now. We
+ // only have an upper bound on the first two figures.
+ unsigned *counts =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *maxCt =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *totals =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+ unsigned *lastId =
+ (unsigned *)__kmp_allocate((maxIndex + 1) * sizeof(unsigned));
+
+ bool assign_thread_ids = false;
+ unsigned threadIdCt;
+ unsigned index;
+
+restart_radix_check:
+ threadIdCt = 0;
+
+ // Initialize the counter arrays with data from threadInfo[0].
+ if (assign_thread_ids) {
+ if (threadInfo[0][threadIdIndex] == UINT_MAX) {
+ threadInfo[0][threadIdIndex] = threadIdCt++;
+ } else if (threadIdCt <= threadInfo[0][threadIdIndex]) {
+ threadIdCt = threadInfo[0][threadIdIndex] + 1;
+ }
+ }
+ for (index = 0; index <= maxIndex; index++) {
+ counts[index] = 1;
+ maxCt[index] = 1;
+ totals[index] = 1;
+ lastId[index] = threadInfo[0][index];
+ ;
+ }
+
+ // Run through the rest of the OS procs.
+ for (i = 1; i < num_avail; i++) {
+ // Find the most significant index whose id differs from the id for the
+ // previous OS proc.
+ for (index = maxIndex; index >= threadIdIndex; index--) {
+ if (assign_thread_ids && (index == threadIdIndex)) {
+ // Auto-assign the thread id field if it wasn't specified.
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+ // Apparently the thread id field was specified for some entries and not
+ // others. Start the thread id counter off at the next higher thread id.
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
+ }
+ if (threadInfo[i][index] != lastId[index]) {
+ // Run through all indices which are less significant, and reset the
+ // counts to 1. At all levels up to and including index, we need to
+ // increment the totals and record the last id.
+ unsigned index2;
+ for (index2 = threadIdIndex; index2 < index; index2++) {
+ totals[index2]++;
+ if (counts[index2] > maxCt[index2]) {
+ maxCt[index2] = counts[index2];
+ }
+ counts[index2] = 1;
+ lastId[index2] = threadInfo[i][index2];
+ }
+ counts[index]++;
+ totals[index]++;
+ lastId[index] = threadInfo[i][index];
+
+ if (assign_thread_ids && (index > threadIdIndex)) {
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ // Restart the thread counter, as we are on a new core.
+ threadIdCt = 0;
+
+ // Auto-assign the thread id field if it wasn't specified.
+ if (threadInfo[i][threadIdIndex] == UINT_MAX) {
+ threadInfo[i][threadIdIndex] = threadIdCt++;
+ }
+
+ // Apparently the thread id field was specified for some entries and
+ // not others. Start the thread id counter off at the next higher
+ // thread id.
+ else if (threadIdCt <= threadInfo[i][threadIdIndex]) {
+ threadIdCt = threadInfo[i][threadIdIndex] + 1;
+ }
}
- KMP_INFORM(TopologyExtra, "KMP_AFFINITY", buf.str, maxCt[coreIdIndex],
- maxCt[threadIdIndex], __kmp_ncores);
-
- __kmp_str_buf_free(&buf);
- }
-
-# if KMP_MIC && REDUCE_TEAM_SIZE
- //
- // Set the default team size.
- //
- if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
- __kmp_dflt_team_nth = teamSize;
- KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting __kmp_dflt_team_nth = %d\n",
- __kmp_dflt_team_nth));
+ break;
+ }
}
-# endif // KMP_MIC && REDUCE_TEAM_SIZE
-
- if (__kmp_affinity_type == affinity_none) {
+ if (index < threadIdIndex) {
+ // If thread ids were specified, it is an error if they are not unique.
+ // Also, check that we waven't already restarted the loop (to be safe -
+ // shouldn't need to).
+ if ((threadInfo[i][threadIdIndex] != UINT_MAX) || assign_thread_ids) {
__kmp_free(lastId);
__kmp_free(totals);
__kmp_free(maxCt);
__kmp_free(counts);
CLEANUP_THREAD_INFO;
- return 0;
- }
-
- //
- // Count the number of levels which have more nodes at that level than
- // at the parent's level (with there being an implicit root node of
- // the top level). This is equivalent to saying that there is at least
- // one node at this level which has a sibling. These levels are in the
- // map, and the package level is always in the map.
- //
- bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
- int level = 0;
- for (index = threadIdIndex; index < maxIndex; index++) {
- KMP_ASSERT(totals[index] >= totals[index + 1]);
- inMap[index] = (totals[index] > totals[index + 1]);
- }
- inMap[maxIndex] = (totals[maxIndex] > 1);
- inMap[pkgIdIndex] = true;
-
- int depth = 0;
- for (index = threadIdIndex; index <= maxIndex; index++) {
- if (inMap[index]) {
- depth++;
- }
- }
- KMP_ASSERT(depth > 0);
-
- //
- // Construct the data structure that is to be returned.
- //
- *address2os = (AddrUnsPair*)
- __kmp_allocate(sizeof(AddrUnsPair) * num_avail);
- int pkgLevel = -1;
- int coreLevel = -1;
- int threadLevel = -1;
-
- for (i = 0; i < num_avail; ++i) {
- Address addr(depth);
- unsigned os = threadInfo[i][osIdIndex];
- int src_index;
- int dst_index = 0;
-
- for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
- if (! inMap[src_index]) {
- continue;
- }
- addr.labels[dst_index] = threadInfo[i][src_index];
- if (src_index == pkgIdIndex) {
- pkgLevel = dst_index;
- }
- else if (src_index == coreIdIndex) {
- coreLevel = dst_index;
- }
- else if (src_index == threadIdIndex) {
- threadLevel = dst_index;
- }
- dst_index++;
- }
- (*address2os)[i] = AddrUnsPair(addr, os);
- }
-
- if (__kmp_affinity_gran_levels < 0) {
- //
- // Set the granularity level based on what levels are modeled
- // in the machine topology map.
- //
- unsigned src_index;
- __kmp_affinity_gran_levels = 0;
- for (src_index = threadIdIndex; src_index <= maxIndex; src_index++) {
- if (! inMap[src_index]) {
- continue;
- }
- switch (src_index) {
- case threadIdIndex:
- if (__kmp_affinity_gran > affinity_gran_thread) {
- __kmp_affinity_gran_levels++;
- }
-
- break;
- case coreIdIndex:
- if (__kmp_affinity_gran > affinity_gran_core) {
- __kmp_affinity_gran_levels++;
- }
- break;
-
- case pkgIdIndex:
- if (__kmp_affinity_gran > affinity_gran_package) {
- __kmp_affinity_gran_levels++;
- }
- break;
- }
- }
- }
-
- if (__kmp_affinity_verbose) {
- __kmp_affinity_print_topology(*address2os, num_avail, depth, pkgLevel,
- coreLevel, threadLevel);
- }
-
- __kmp_free(inMap);
- __kmp_free(lastId);
- __kmp_free(totals);
- __kmp_free(maxCt);
- __kmp_free(counts);
- CLEANUP_THREAD_INFO;
- return depth;
+ *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
+ return false;
+ }
+
+ // If the thread ids were not specified and we see entries entries that
+ // are duplicates, start the loop over and assign the thread ids manually.
+ assign_thread_ids = true;
+ goto restart_radix_check;
+ }
+ }
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // The default team size is the total #threads in the machine
+ // minus 1 thread for every core that has 3 or more threads.
+ teamSize += (threadIdCt <= 2) ? (threadIdCt) : (threadIdCt - 1);
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (counts[index] > maxCt[index]) {
+ maxCt[index] = counts[index];
+ }
+ }
+
+ __kmp_nThreadsPerCore = maxCt[threadIdIndex];
+ nCoresPerPkg = maxCt[coreIdIndex];
+ nPackages = totals[pkgIdIndex];
+
+ // When affinity is off, this routine will still be called to set
+ // __kmp_ncores, as well as __kmp_nThreadsPerCore, nCoresPerPkg, & nPackages.
+ // Make sure all these vars are set correctly, and return now if affinity is
+ // not enabled.
+ __kmp_ncores = totals[coreIdIndex];
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ return true;
+ }
+
+#if KMP_MIC && REDUCE_TEAM_SIZE
+ // Set the default team size.
+ if ((__kmp_dflt_team_nth == 0) && (teamSize > 0)) {
+ __kmp_dflt_team_nth = teamSize;
+ KA_TRACE(20, ("__kmp_affinity_create_cpuinfo_map: setting "
+ "__kmp_dflt_team_nth = %d\n",
+ __kmp_dflt_team_nth));
+ }
+#endif // KMP_MIC && REDUCE_TEAM_SIZE
+
+ KMP_DEBUG_ASSERT(num_avail == (unsigned)__kmp_avail_proc);
+
+ // Count the number of levels which have more nodes at that level than at the
+ // parent's level (with there being an implicit root node of the top level).
+ // This is equivalent to saying that there is at least one node at this level
+ // which has a sibling. These levels are in the map, and the package level is
+ // always in the map.
+ bool *inMap = (bool *)__kmp_allocate((maxIndex + 1) * sizeof(bool));
+ for (index = threadIdIndex; index < maxIndex; index++) {
+ KMP_ASSERT(totals[index] >= totals[index + 1]);
+ inMap[index] = (totals[index] > totals[index + 1]);
+ }
+ inMap[maxIndex] = (totals[maxIndex] > 1);
+ inMap[pkgIdIndex] = true;
+ inMap[coreIdIndex] = true;
+ inMap[threadIdIndex] = true;
+
+ int depth = 0;
+ int idx = 0;
+ kmp_hw_t types[KMP_HW_LAST];
+ int pkgLevel = -1;
+ int coreLevel = -1;
+ int threadLevel = -1;
+ for (index = threadIdIndex; index <= maxIndex; index++) {
+ if (inMap[index]) {
+ depth++;
+ }
+ }
+ if (inMap[pkgIdIndex]) {
+ pkgLevel = idx;
+ types[idx++] = KMP_HW_SOCKET;
+ }
+ if (inMap[coreIdIndex]) {
+ coreLevel = idx;
+ types[idx++] = KMP_HW_CORE;
+ }
+ if (inMap[threadIdIndex]) {
+ threadLevel = idx;
+ types[idx++] = KMP_HW_THREAD;
+ }
+ KMP_ASSERT(depth > 0);
+
+ // Construct the data structure that is to be returned.
+ __kmp_topology = kmp_topology_t::allocate(num_avail, depth, types);
+
+ for (i = 0; i < num_avail; ++i) {
+ unsigned os = threadInfo[i][osIdIndex];
+ int src_index;
+ int dst_index = 0;
+ kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
+ hw_thread.clear();
+ hw_thread.os_id = os;
+
+ idx = 0;
+ for (src_index = maxIndex; src_index >= threadIdIndex; src_index--) {
+ if (!inMap[src_index]) {
+ continue;
+ }
+ if (src_index == pkgIdIndex) {
+ hw_thread.ids[pkgLevel] = threadInfo[i][src_index];
+ } else if (src_index == coreIdIndex) {
+ hw_thread.ids[coreLevel] = threadInfo[i][src_index];
+ } else if (src_index == threadIdIndex) {
+ hw_thread.ids[threadLevel] = threadInfo[i][src_index];
+ }
+ dst_index++;
+ }
+ }
+
+ __kmp_free(inMap);
+ __kmp_free(lastId);
+ __kmp_free(totals);
+ __kmp_free(maxCt);
+ __kmp_free(counts);
+ CLEANUP_THREAD_INFO;
+ __kmp_topology->sort_ids();
+ if (!__kmp_topology->check_ids()) {
+ kmp_topology_t::deallocate(__kmp_topology);
+ __kmp_topology = nullptr;
+ *msg_id = kmp_i18n_str_PhysicalIDsNotUnique;
+ return false;
+ }
+ return true;
}
-
-//
// Create and return a table of affinity masks, indexed by OS thread ID.
// This routine handles OR'ing together all the affinity masks of threads
// that are sufficiently close, if granularity > fine.
-//
-static kmp_affin_mask_t *
-__kmp_create_masks(unsigned *maxIndex, unsigned *numUnique,
- AddrUnsPair *address2os, unsigned numAddrs)
-{
- //
- // First form a table of affinity masks in order of OS thread id.
- //
- unsigned depth;
- unsigned maxOsId;
- unsigned i;
-
- KMP_ASSERT(numAddrs > 0);
- depth = address2os[0].first.depth;
-
- maxOsId = 0;
- for (i = 0; i < numAddrs; i++) {
- unsigned osId = address2os[i].second;
- if (osId > maxOsId) {
- maxOsId = osId;
- }
- }
- kmp_affin_mask_t *osId2Mask;
- KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId+1));
-
- //
- // Sort the address2os table according to physical order. Doing so
- // will put all threads on the same core/package/node in consecutive
- // locations.
- //
- qsort(address2os, numAddrs, sizeof(*address2os),
- __kmp_affinity_cmp_Address_labels);
-
- KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
- if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
- KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
- }
- if (__kmp_affinity_gran_levels >= (int)depth) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffThreadsMayMigrate);
- }
- }
-
- //
- // Run through the table, forming the masks for all threads on each
- // core. Threads on the same core will have identical "Address"
- // objects, not considering the last level, which must be the thread
- // id. All threads on a core will appear consecutively.
- //
- unsigned unique = 0;
- unsigned j = 0; // index of 1st thread on core
- unsigned leader = 0;
- Address *leaderAddr = &(address2os[0].first);
- kmp_affin_mask_t *sum;
- KMP_CPU_ALLOC_ON_STACK(sum);
- KMP_CPU_ZERO(sum);
- KMP_CPU_SET(address2os[0].second, sum);
- for (i = 1; i < numAddrs; i++) {
- //
- // If this thread is sufficiently close to the leader (within the
- // granularity setting), then set the bit for this os thread in the
- // affinity mask for this group, and go on to the next thread.
- //
- if (leaderAddr->isClose(address2os[i].first,
- __kmp_affinity_gran_levels)) {
- KMP_CPU_SET(address2os[i].second, sum);
- continue;
- }
-
- //
- // For every thread in this group, copy the mask to the thread's
- // entry in the osId2Mask table. Mark the first address as a
- // leader.
- //
- for (; j < i; j++) {
- unsigned osId = address2os[j].second;
- KMP_DEBUG_ASSERT(osId <= maxOsId);
- kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
- KMP_CPU_COPY(mask, sum);
- address2os[j].first.leader = (j == leader);
- }
- unique++;
-
- //
- // Start a new mask.
- //
- leader = i;
- leaderAddr = &(address2os[i].first);
- KMP_CPU_ZERO(sum);
- KMP_CPU_SET(address2os[i].second, sum);
- }
-
- //
- // For every thread in last group, copy the mask to the thread's
- // entry in the osId2Mask table.
- //
+static kmp_affin_mask_t *__kmp_create_masks(unsigned *maxIndex,
+ unsigned *numUnique) {
+ // First form a table of affinity masks in order of OS thread id.
+ int maxOsId;
+ int i;
+ int numAddrs = __kmp_topology->get_num_hw_threads();
+ int depth = __kmp_topology->get_depth();
+ KMP_ASSERT(numAddrs);
+ KMP_ASSERT(depth);
+
+ maxOsId = 0;
+ for (i = numAddrs - 1;; --i) {
+ int osId = __kmp_topology->at(i).os_id;
+ if (osId > maxOsId) {
+ maxOsId = osId;
+ }
+ if (i == 0)
+ break;
+ }
+ kmp_affin_mask_t *osId2Mask;
+ KMP_CPU_ALLOC_ARRAY(osId2Mask, (maxOsId + 1));
+ KMP_ASSERT(__kmp_affinity_gran_levels >= 0);
+ if (__kmp_affinity_verbose && (__kmp_affinity_gran_levels > 0)) {
+ KMP_INFORM(ThreadsMigrate, "KMP_AFFINITY", __kmp_affinity_gran_levels);
+ }
+ if (__kmp_affinity_gran_levels >= (int)depth) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffThreadsMayMigrate);
+ }
+ }
+
+ // Run through the table, forming the masks for all threads on each core.
+ // Threads on the same core will have identical kmp_hw_thread_t objects, not
+ // considering the last level, which must be the thread id. All threads on a
+ // core will appear consecutively.
+ int unique = 0;
+ int j = 0; // index of 1st thread on core
+ int leader = 0;
+ kmp_affin_mask_t *sum;
+ KMP_CPU_ALLOC_ON_STACK(sum);
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(__kmp_topology->at(0).os_id, sum);
+ for (i = 1; i < numAddrs; i++) {
+ // If this thread is sufficiently close to the leader (within the
+ // granularity setting), then set the bit for this os thread in the
+ // affinity mask for this group, and go on to the next thread.
+ if (__kmp_topology->is_close(leader, i, __kmp_affinity_gran_levels)) {
+ KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
+ continue;
+ }
+
+ // For every thread in this group, copy the mask to the thread's entry in
+ // the osId2Mask table. Mark the first address as a leader.
for (; j < i; j++) {
- unsigned osId = address2os[j].second;
- KMP_DEBUG_ASSERT(osId <= maxOsId);
- kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
- KMP_CPU_COPY(mask, sum);
- address2os[j].first.leader = (j == leader);
+ int osId = __kmp_topology->at(j).os_id;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ __kmp_topology->at(j).leader = (j == leader);
}
unique++;
- KMP_CPU_FREE_FROM_STACK(sum);
- *maxIndex = maxOsId;
- *numUnique = unique;
- return osId2Mask;
+ // Start a new mask.
+ leader = i;
+ KMP_CPU_ZERO(sum);
+ KMP_CPU_SET(__kmp_topology->at(i).os_id, sum);
+ }
+
+ // For every thread in last group, copy the mask to the thread's
+ // entry in the osId2Mask table.
+ for (; j < i; j++) {
+ int osId = __kmp_topology->at(j).os_id;
+ KMP_DEBUG_ASSERT(osId <= maxOsId);
+ kmp_affin_mask_t *mask = KMP_CPU_INDEX(osId2Mask, osId);
+ KMP_CPU_COPY(mask, sum);
+ __kmp_topology->at(j).leader = (j == leader);
+ }
+ unique++;
+ KMP_CPU_FREE_FROM_STACK(sum);
+
+ *maxIndex = maxOsId;
+ *numUnique = unique;
+ return osId2Mask;
}
-
-//
// Stuff for the affinity proclist parsers. It's easier to declare these vars
// as file-static than to try and pass them through the calling sequence of
// the recursive-descent OMP_PLACES parser.
-//
static kmp_affin_mask_t *newMasks;
static int numNewMasks;
static int nextNewMask;
-#define ADD_MASK(_mask) \
- { \
- if (nextNewMask >= numNewMasks) { \
- int i; \
- numNewMasks *= 2; \
- kmp_affin_mask_t* temp; \
- KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
- for(i=0;i<numNewMasks/2;i++) { \
- kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i); \
- kmp_affin_mask_t* dest = KMP_CPU_INDEX(temp, i); \
- KMP_CPU_COPY(dest, src); \
- } \
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks/2); \
- newMasks = temp; \
- } \
- KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
- nextNewMask++; \
- }
-
-#define ADD_MASK_OSID(_osId,_osId2Mask,_maxOsId) \
- { \
- if (((_osId) > _maxOsId) || \
- (! KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings \
- && (__kmp_affinity_type != affinity_none))) { \
- KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
- } \
- } \
- else { \
- ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
- } \
- }
-
+#define ADD_MASK(_mask) \
+ { \
+ if (nextNewMask >= numNewMasks) { \
+ int i; \
+ numNewMasks *= 2; \
+ kmp_affin_mask_t *temp; \
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(temp, numNewMasks); \
+ for (i = 0; i < numNewMasks / 2; i++) { \
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i); \
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(temp, i); \
+ KMP_CPU_COPY(dest, src); \
+ } \
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks / 2); \
+ newMasks = temp; \
+ } \
+ KMP_CPU_COPY(KMP_CPU_INDEX(newMasks, nextNewMask), (_mask)); \
+ nextNewMask++; \
+ }
+
+#define ADD_MASK_OSID(_osId, _osId2Mask, _maxOsId) \
+ { \
+ if (((_osId) > _maxOsId) || \
+ (!KMP_CPU_ISSET((_osId), KMP_CPU_INDEX((_osId2Mask), (_osId))))) { \
+ if (__kmp_affinity_verbose || \
+ (__kmp_affinity_warnings && \
+ (__kmp_affinity_type != affinity_none))) { \
+ KMP_WARNING(AffIgnoreInvalidProcID, _osId); \
+ } \
+ } else { \
+ ADD_MASK(KMP_CPU_INDEX(_osId2Mask, (_osId))); \
+ } \
+ }
-//
// Re-parse the proclist (for the explicit affinity type), and form the list
// of affinity newMasks indexed by gtid.
-//
-static void
-__kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
- unsigned int *out_numMasks, const char *proclist,
- kmp_affin_mask_t *osId2Mask, int maxOsId)
-{
- int i;
- const char *scan = proclist;
- const char *next = proclist;
-
- //
- // We use malloc() for the temporary mask vector,
- // so that we can use realloc() to extend it.
- //
- numNewMasks = 2;
- KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
- nextNewMask = 0;
- kmp_affin_mask_t *sumMask;
- KMP_CPU_ALLOC(sumMask);
- int setSize = 0;
-
- for (;;) {
- int start, end, stride;
-
- SKIP_WS(scan);
- next = scan;
- if (*next == '\0') {
- break;
+static void __kmp_affinity_process_proclist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks,
+ const char *proclist,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId) {
+ int i;
+ const char *scan = proclist;
+ const char *next = proclist;
+
+ // We use malloc() for the temporary mask vector, so that we can use
+ // realloc() to extend it.
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+ kmp_affin_mask_t *sumMask;
+ KMP_CPU_ALLOC(sumMask);
+ int setSize = 0;
+
+ for (;;) {
+ int start, end, stride;
+
+ SKIP_WS(scan);
+ next = scan;
+ if (*next == '\0') {
+ break;
+ }
+
+ if (*next == '{') {
+ int num;
+ setSize = 0;
+ next++; // skip '{'
+ SKIP_WS(next);
+ scan = next;
+
+ // Read the first integer in the set.
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad proclist");
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
+
+ // Copy the mask for that osId to the sum (union) mask.
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ KMP_CPU_ZERO(sumMask);
+ } else {
+ KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize = 1;
+ }
+
+ for (;;) {
+ // Check for end of set.
+ SKIP_WS(next);
+ if (*next == '}') {
+ next++; // skip '}'
+ break;
}
- if (*next == '{') {
- int num;
- setSize = 0;
- next++; // skip '{'
- SKIP_WS(next);
- scan = next;
-
- //
- // Read the first integer in the set.
- //
- KMP_ASSERT2((*next >= '0') && (*next <= '9'),
- "bad proclist");
- SKIP_DIGITS(next);
- num = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(num >= 0, "bad explicit proc list");
-
- //
- // Copy the mask for that osId to the sum (union) mask.
- //
- if ((num > maxOsId) ||
- (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- KMP_CPU_ZERO(sumMask);
- }
- else {
- KMP_CPU_COPY(sumMask, KMP_CPU_INDEX(osId2Mask, num));
- setSize = 1;
- }
-
- for (;;) {
- //
- // Check for end of set.
- //
- SKIP_WS(next);
- if (*next == '}') {
- next++; // skip '}'
- break;
- }
-
- //
- // Skip optional comma.
- //
- if (*next == ',') {
- next++;
- }
- SKIP_WS(next);
-
- //
- // Read the next integer in the set.
- //
- scan = next;
- KMP_ASSERT2((*next >= '0') && (*next <= '9'),
- "bad explicit proc list");
-
- SKIP_DIGITS(next);
- num = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(num >= 0, "bad explicit proc list");
-
- //
- // Add the mask for that osId to the sum mask.
- //
- if ((num > maxOsId) ||
- (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- }
- else {
- KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
- setSize++;
- }
- }
- if (setSize > 0) {
- ADD_MASK(sumMask);
- }
-
- SKIP_WS(next);
- if (*next == ',') {
- next++;
- }
- scan = next;
- continue;
+ // Skip optional comma.
+ if (*next == ',') {
+ next++;
}
-
- //
- // Read the first integer.
- //
- KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
- SKIP_DIGITS(next);
- start = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(start >= 0, "bad explicit proc list");
SKIP_WS(next);
- //
- // If this isn't a range, then add a mask to the list and go on.
- //
- if (*next != '-') {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
-
- //
- // Skip optional comma.
- //
- if (*next == ',') {
- next++;
- }
- scan = next;
- continue;
- }
-
- //
- // This is a range. Skip over the '-' and read in the 2nd int.
- //
- next++; // skip '-'
- SKIP_WS(next);
+ // Read the next integer in the set.
scan = next;
KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
- SKIP_DIGITS(next);
- end = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(end >= 0, "bad explicit proc list");
-
- //
- // Check for a stride parameter
- //
- stride = 1;
- SKIP_WS(next);
- if (*next == ':') {
- //
- // A stride is specified. Skip over the ':" and read the 3rd int.
- //
- int sign = +1;
- next++; // skip ':'
- SKIP_WS(next);
- scan = next;
- if (*next == '-') {
- sign = -1;
- next++;
- SKIP_WS(next);
- scan = next;
- }
- KMP_ASSERT2((*next >= '0') && (*next <= '9'),
- "bad explicit proc list");
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(scan, *next);
- KMP_ASSERT2(stride >= 0, "bad explicit proc list");
- stride *= sign;
- }
- //
- // Do some range checks.
- //
- KMP_ASSERT2(stride != 0, "bad explicit proc list");
- if (stride > 0) {
- KMP_ASSERT2(start <= end, "bad explicit proc list");
- }
- else {
- KMP_ASSERT2(start >= end, "bad explicit proc list");
- }
- KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
-
- //
- // Add the mask for each OS proc # to the list.
- //
- if (stride > 0) {
- do {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
- start += stride;
- } while (start <= end);
- }
- else {
- do {
- ADD_MASK_OSID(start, osId2Mask, maxOsId);
- start += stride;
- } while (start >= end);
- }
+ SKIP_DIGITS(next);
+ num = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(num >= 0, "bad explicit proc list");
- //
- // Skip optional comma.
- //
+ // Add the mask for that osId to the sum mask.
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ } else {
+ KMP_CPU_UNION(sumMask, KMP_CPU_INDEX(osId2Mask, num));
+ setSize++;
+ }
+ }
+ if (setSize > 0) {
+ ADD_MASK(sumMask);
+ }
+
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ // Read the first integer.
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(start >= 0, "bad explicit proc list");
+ SKIP_WS(next);
+
+ // If this isn't a range, then add a mask to the list and go on.
+ if (*next != '-') {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+
+ // Skip optional comma.
+ if (*next == ',') {
+ next++;
+ }
+ scan = next;
+ continue;
+ }
+
+ // This is a range. Skip over the '-' and read in the 2nd int.
+ next++; // skip '-'
+ SKIP_WS(next);
+ scan = next;
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ end = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(end >= 0, "bad explicit proc list");
+
+ // Check for a stride parameter
+ stride = 1;
+ SKIP_WS(next);
+ if (*next == ':') {
+ // A stride is specified. Skip over the ':" and read the 3rd int.
+ int sign = +1;
+ next++; // skip ':'
+ SKIP_WS(next);
+ scan = next;
+ if (*next == '-') {
+ sign = -1;
+ next++;
SKIP_WS(next);
- if (*next == ',') {
- next++;
- }
scan = next;
+ }
+ KMP_ASSERT2((*next >= '0') && (*next <= '9'), "bad explicit proc list");
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT2(stride >= 0, "bad explicit proc list");
+ stride *= sign;
+ }
+
+ // Do some range checks.
+ KMP_ASSERT2(stride != 0, "bad explicit proc list");
+ if (stride > 0) {
+ KMP_ASSERT2(start <= end, "bad explicit proc list");
+ } else {
+ KMP_ASSERT2(start >= end, "bad explicit proc list");
}
+ KMP_ASSERT2((end - start) / stride <= 65536, "bad explicit proc list");
- *out_numMasks = nextNewMask;
- if (nextNewMask == 0) {
- *out_masks = NULL;
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- return;
+ // Add the mask for each OS proc # to the list.
+ if (stride > 0) {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start <= end);
+ } else {
+ do {
+ ADD_MASK_OSID(start, osId2Mask, maxOsId);
+ start += stride;
+ } while (start >= end);
}
- KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
- for(i = 0; i < nextNewMask; i++) {
- kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
- kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
- KMP_CPU_COPY(dest, src);
+
+ // Skip optional comma.
+ SKIP_WS(next);
+ if (*next == ',') {
+ next++;
}
+ scan = next;
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- KMP_CPU_FREE(sumMask);
+ return;
+ }
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ for (i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
+ }
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ KMP_CPU_FREE(sumMask);
}
-
-# if OMP_40_ENABLED
-
/*-----------------------------------------------------------------------------
-
Re-parse the OMP_PLACES proc id list, forming the newMasks for the different
places. Again, Here is the grammar:
@@ -3007,1729 +3060,1531 @@ subplace := num : num : signed
signed := num
signed := + signed
signed := - signed
-
-----------------------------------------------------------------------------*/
+static void __kmp_process_subplace_list(const char **scan,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask,
+ int *setSize) {
+ const char *next;
-static void
-__kmp_process_subplace_list(const char **scan, kmp_affin_mask_t *osId2Mask,
- int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
-{
- const char *next;
+ for (;;) {
+ int start, count, stride, i;
- for (;;) {
- int start, count, stride, i;
-
- //
- // Read in the starting proc id
- //
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
- "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- start = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(start >= 0);
- *scan = next;
-
- //
- // valid follow sets are ',' ':' and '}'
- //
- SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- if ((start > maxOsId) ||
- (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- }
- else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- (*setSize)++;
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
- }
- KMP_ASSERT2(**scan == ':', "bad explicit places list");
- (*scan)++; // skip ':'
-
- //
- // Read count parameter
- //
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
- "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- count = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(count >= 0);
- *scan = next;
-
- //
- // valid follow sets are ',' ':' and '}'
- //
- SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- for (i = 0; i < count; i++) {
- if ((start > maxOsId) ||
- (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- break; // don't proliferate warnings for large count
- }
- else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- start++;
- (*setSize)++;
- }
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
- }
- KMP_ASSERT2(**scan == ':', "bad explicit places list");
- (*scan)++; // skip ':'
-
- //
- // Read stride parameter
- //
- int sign = +1;
- for (;;) {
- SKIP_WS(*scan);
- if (**scan == '+') {
- (*scan)++; // skip '+'
- continue;
- }
- if (**scan == '-') {
- sign *= -1;
- (*scan)++; // skip '-'
- continue;
- }
- break;
- }
- SKIP_WS(*scan);
- KMP_ASSERT2((**scan >= '0') && (**scan <= '9'),
- "bad explicit places list");
- next = *scan;
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(stride >= 0);
- *scan = next;
- stride *= sign;
-
- //
- // valid follow sets are ',' and '}'
- //
- SKIP_WS(*scan);
- if (**scan == '}' || **scan == ',') {
- for (i = 0; i < count; i++) {
- if ((start > maxOsId) ||
- (! KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, start);
- }
- break; // don't proliferate warnings for large count
- }
- else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
- start += stride;
- (*setSize)++;
- }
- }
- if (**scan == '}') {
- break;
- }
- (*scan)++; // skip ','
- continue;
- }
-
- KMP_ASSERT2(0, "bad explicit places list");
+ // Read in the starting proc id
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ start = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(start >= 0);
+ *scan = next;
+
+ // valid follow sets are ',' ':' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ (*setSize)++;
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
}
-}
-
-
-static void
-__kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
- int maxOsId, kmp_affin_mask_t *tempMask, int *setSize)
-{
- const char *next;
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
- //
- // valid follow sets are '{' '!' and num
- //
+ // Read count parameter
SKIP_WS(*scan);
- if (**scan == '{') {
- (*scan)++; // skip '{'
- __kmp_process_subplace_list(scan, osId2Mask, maxOsId , tempMask,
- setSize);
- KMP_ASSERT2(**scan == '}', "bad explicit places list");
- (*scan)++; // skip '}'
- }
- else if (**scan == '!') {
- (*scan)++; // skip '!'
- __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
- KMP_CPU_COMPLEMENT(maxOsId, tempMask);
- }
- else if ((**scan >= '0') && (**scan <= '9')) {
- next = *scan;
- SKIP_DIGITS(next);
- int num = __kmp_str_to_int(*scan, *next);
- KMP_ASSERT(num >= 0);
- if ((num > maxOsId) ||
- (! KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffIgnoreInvalidProcID, num);
- }
- }
- else {
- KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
- (*setSize)++;
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(count >= 0);
+ *scan = next;
+
+ // valid follow sets are ',' ':' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start++;
+ (*setSize)++;
}
- *scan = next; // skip num
- }
- else {
- KMP_ASSERT2(0, "bad explicit places list");
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
}
-}
-
-
-//static void
-void
-__kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
- unsigned int *out_numMasks, const char *placelist,
- kmp_affin_mask_t *osId2Mask, int maxOsId)
-{
- int i,j,count,stride,sign;
- const char *scan = placelist;
- const char *next = placelist;
-
- numNewMasks = 2;
- KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
- nextNewMask = 0;
-
- // tempMask is modified based on the previous or initial
- // place to form the current place
- // previousMask contains the previous place
- kmp_affin_mask_t *tempMask;
- kmp_affin_mask_t *previousMask;
- KMP_CPU_ALLOC(tempMask);
- KMP_CPU_ZERO(tempMask);
- KMP_CPU_ALLOC(previousMask);
- KMP_CPU_ZERO(previousMask);
- int setSize = 0;
+ KMP_ASSERT2(**scan == ':', "bad explicit places list");
+ (*scan)++; // skip ':'
+ // Read stride parameter
+ int sign = +1;
for (;;) {
- __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
-
- //
- // valid follow sets are ',' ':' and EOL
- //
- SKIP_WS(scan);
- if (*scan == '\0' || *scan == ',') {
- if (setSize > 0) {
- ADD_MASK(tempMask);
- }
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
- if (*scan == '\0') {
- break;
- }
- scan++; // skip ','
- continue;
+ SKIP_WS(*scan);
+ if (**scan == '+') {
+ (*scan)++; // skip '+'
+ continue;
+ }
+ if (**scan == '-') {
+ sign *= -1;
+ (*scan)++; // skip '-'
+ continue;
+ }
+ break;
+ }
+ SKIP_WS(*scan);
+ KMP_ASSERT2((**scan >= '0') && (**scan <= '9'), "bad explicit places list");
+ next = *scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(stride >= 0);
+ *scan = next;
+ stride *= sign;
+
+ // valid follow sets are ',' and '}'
+ SKIP_WS(*scan);
+ if (**scan == '}' || **scan == ',') {
+ for (i = 0; i < count; i++) {
+ if ((start > maxOsId) ||
+ (!KMP_CPU_ISSET(start, KMP_CPU_INDEX(osId2Mask, start)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, start);
+ }
+ break; // don't proliferate warnings for large count
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, start));
+ start += stride;
+ (*setSize)++;
}
+ }
+ if (**scan == '}') {
+ break;
+ }
+ (*scan)++; // skip ','
+ continue;
+ }
- KMP_ASSERT2(*scan == ':', "bad explicit places list");
- scan++; // skip ':'
-
- //
- // Read count parameter
- //
- SKIP_WS(scan);
- KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
- "bad explicit places list");
- next = scan;
- SKIP_DIGITS(next);
- count = __kmp_str_to_int(scan, *next);
- KMP_ASSERT(count >= 0);
- scan = next;
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
- //
- // valid follow sets are ',' ':' and EOL
- //
- SKIP_WS(scan);
- if (*scan == '\0' || *scan == ',') {
- stride = +1;
- }
- else {
- KMP_ASSERT2(*scan == ':', "bad explicit places list");
- scan++; // skip ':'
-
- //
- // Read stride parameter
- //
- sign = +1;
- for (;;) {
- SKIP_WS(scan);
- if (*scan == '+') {
- scan++; // skip '+'
- continue;
- }
- if (*scan == '-') {
- sign *= -1;
- scan++; // skip '-'
- continue;
- }
- break;
- }
- SKIP_WS(scan);
- KMP_ASSERT2((*scan >= '0') && (*scan <= '9'),
- "bad explicit places list");
- next = scan;
- SKIP_DIGITS(next);
- stride = __kmp_str_to_int(scan, *next);
- KMP_DEBUG_ASSERT(stride >= 0);
- scan = next;
- stride *= sign;
- }
+static void __kmp_process_place(const char **scan, kmp_affin_mask_t *osId2Mask,
+ int maxOsId, kmp_affin_mask_t *tempMask,
+ int *setSize) {
+ const char *next;
+
+ // valid follow sets are '{' '!' and num
+ SKIP_WS(*scan);
+ if (**scan == '{') {
+ (*scan)++; // skip '{'
+ __kmp_process_subplace_list(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_ASSERT2(**scan == '}', "bad explicit places list");
+ (*scan)++; // skip '}'
+ } else if (**scan == '!') {
+ (*scan)++; // skip '!'
+ __kmp_process_place(scan, osId2Mask, maxOsId, tempMask, setSize);
+ KMP_CPU_COMPLEMENT(maxOsId, tempMask);
+ } else if ((**scan >= '0') && (**scan <= '9')) {
+ next = *scan;
+ SKIP_DIGITS(next);
+ int num = __kmp_str_to_int(*scan, *next);
+ KMP_ASSERT(num >= 0);
+ if ((num > maxOsId) ||
+ (!KMP_CPU_ISSET(num, KMP_CPU_INDEX(osId2Mask, num)))) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffIgnoreInvalidProcID, num);
+ }
+ } else {
+ KMP_CPU_UNION(tempMask, KMP_CPU_INDEX(osId2Mask, num));
+ (*setSize)++;
+ }
+ *scan = next; // skip num
+ } else {
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+}
- // Add places determined by initial_place : count : stride
- for (i = 0; i < count; i++) {
- if (setSize == 0) {
- break;
- }
- // Add the current place, then build the next place (tempMask) from that
- KMP_CPU_COPY(previousMask, tempMask);
- ADD_MASK(previousMask);
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
- KMP_CPU_SET_ITERATE(j, previousMask) {
- if (! KMP_CPU_ISSET(j, previousMask)) {
- continue;
- }
- else if ((j+stride > maxOsId) || (j+stride < 0) ||
- (! KMP_CPU_ISSET(j+stride, KMP_CPU_INDEX(osId2Mask, j+stride)))) {
- if ((__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) && i < count - 1) {
- KMP_WARNING(AffIgnoreInvalidProcID, j+stride);
- }
- }
- else {
- KMP_CPU_SET(j+stride, tempMask);
- setSize++;
- }
- }
- }
- KMP_CPU_ZERO(tempMask);
- setSize = 0;
+// static void
+void __kmp_affinity_process_placelist(kmp_affin_mask_t **out_masks,
+ unsigned int *out_numMasks,
+ const char *placelist,
+ kmp_affin_mask_t *osId2Mask,
+ int maxOsId) {
+ int i, j, count, stride, sign;
+ const char *scan = placelist;
+ const char *next = placelist;
+
+ numNewMasks = 2;
+ KMP_CPU_INTERNAL_ALLOC_ARRAY(newMasks, numNewMasks);
+ nextNewMask = 0;
+
+ // tempMask is modified based on the previous or initial
+ // place to form the current place
+ // previousMask contains the previous place
+ kmp_affin_mask_t *tempMask;
+ kmp_affin_mask_t *previousMask;
+ KMP_CPU_ALLOC(tempMask);
+ KMP_CPU_ZERO(tempMask);
+ KMP_CPU_ALLOC(previousMask);
+ KMP_CPU_ZERO(previousMask);
+ int setSize = 0;
+
+ for (;;) {
+ __kmp_process_place(&scan, osId2Mask, maxOsId, tempMask, &setSize);
+
+ // valid follow sets are ',' ':' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ if (setSize > 0) {
+ ADD_MASK(tempMask);
+ }
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ if (*scan == '\0') {
+ break;
+ }
+ scan++; // skip ','
+ continue;
+ }
+
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
+
+ // Read count parameter
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ count = __kmp_str_to_int(scan, *next);
+ KMP_ASSERT(count >= 0);
+ scan = next;
+
+ // valid follow sets are ',' ':' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0' || *scan == ',') {
+ stride = +1;
+ } else {
+ KMP_ASSERT2(*scan == ':', "bad explicit places list");
+ scan++; // skip ':'
- //
- // valid follow sets are ',' and EOL
- //
+ // Read stride parameter
+ sign = +1;
+ for (;;) {
SKIP_WS(scan);
- if (*scan == '\0') {
- break;
+ if (*scan == '+') {
+ scan++; // skip '+'
+ continue;
}
- if (*scan == ',') {
- scan++; // skip ','
- continue;
+ if (*scan == '-') {
+ sign *= -1;
+ scan++; // skip '-'
+ continue;
}
-
- KMP_ASSERT2(0, "bad explicit places list");
+ break;
+ }
+ SKIP_WS(scan);
+ KMP_ASSERT2((*scan >= '0') && (*scan <= '9'), "bad explicit places list");
+ next = scan;
+ SKIP_DIGITS(next);
+ stride = __kmp_str_to_int(scan, *next);
+ KMP_DEBUG_ASSERT(stride >= 0);
+ scan = next;
+ stride *= sign;
+ }
+
+ // Add places determined by initial_place : count : stride
+ for (i = 0; i < count; i++) {
+ if (setSize == 0) {
+ break;
+ }
+ // Add the current place, then build the next place (tempMask) from that
+ KMP_CPU_COPY(previousMask, tempMask);
+ ADD_MASK(previousMask);
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
+ KMP_CPU_SET_ITERATE(j, previousMask) {
+ if (!KMP_CPU_ISSET(j, previousMask)) {
+ continue;
+ }
+ if ((j + stride > maxOsId) || (j + stride < 0) ||
+ (!KMP_CPU_ISSET(j, __kmp_affin_fullMask)) ||
+ (!KMP_CPU_ISSET(j + stride,
+ KMP_CPU_INDEX(osId2Mask, j + stride)))) {
+ if ((__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) &&
+ i < count - 1) {
+ KMP_WARNING(AffIgnoreInvalidProcID, j + stride);
+ }
+ continue;
+ }
+ KMP_CPU_SET(j + stride, tempMask);
+ setSize++;
+ }
}
+ KMP_CPU_ZERO(tempMask);
+ setSize = 0;
- *out_numMasks = nextNewMask;
- if (nextNewMask == 0) {
- *out_masks = NULL;
- KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
- return;
+ // valid follow sets are ',' and EOL
+ SKIP_WS(scan);
+ if (*scan == '\0') {
+ break;
}
- KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
- KMP_CPU_FREE(tempMask);
- KMP_CPU_FREE(previousMask);
- for(i = 0; i < nextNewMask; i++) {
- kmp_affin_mask_t* src = KMP_CPU_INDEX(newMasks, i);
- kmp_affin_mask_t* dest = KMP_CPU_INDEX((*out_masks), i);
- KMP_CPU_COPY(dest, src);
+ if (*scan == ',') {
+ scan++; // skip ','
+ continue;
}
+
+ KMP_ASSERT2(0, "bad explicit places list");
+ }
+
+ *out_numMasks = nextNewMask;
+ if (nextNewMask == 0) {
+ *out_masks = NULL;
KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
+ return;
+ }
+ KMP_CPU_ALLOC_ARRAY((*out_masks), nextNewMask);
+ KMP_CPU_FREE(tempMask);
+ KMP_CPU_FREE(previousMask);
+ for (i = 0; i < nextNewMask; i++) {
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(newMasks, i);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX((*out_masks), i);
+ KMP_CPU_COPY(dest, src);
+ }
+ KMP_CPU_INTERNAL_FREE_ARRAY(newMasks, numNewMasks);
}
-# endif /* OMP_40_ENABLED */
-
#undef ADD_MASK
#undef ADD_MASK_OSID
-static void
-__kmp_apply_thread_places(AddrUnsPair **pAddr, int depth)
-{
- if (__kmp_place_num_sockets == 0 &&
- __kmp_place_num_cores == 0 &&
- __kmp_place_num_threads_per_core == 0 )
- return; // no topology limiting actions requested, exit
- if (__kmp_place_num_sockets == 0)
- __kmp_place_num_sockets = nPackages; // use all available sockets
- if (__kmp_place_num_cores == 0)
- __kmp_place_num_cores = nCoresPerPkg; // use all available cores
- if (__kmp_place_num_threads_per_core == 0 ||
- __kmp_place_num_threads_per_core > __kmp_nThreadsPerCore)
- __kmp_place_num_threads_per_core = __kmp_nThreadsPerCore; // use all HW contexts
-
- if ( !__kmp_affinity_uniform_topology() ) {
- KMP_WARNING( AffThrPlaceNonUniform );
- return; // don't support non-uniform topology
- }
- if ( depth != 3 ) {
- KMP_WARNING( AffThrPlaceNonThreeLevel );
- return; // don't support not-3-level topology
- }
- if (__kmp_place_socket_offset + __kmp_place_num_sockets > nPackages) {
- KMP_WARNING(AffThrPlaceManySockets);
- return;
- }
- if ( __kmp_place_core_offset + __kmp_place_num_cores > nCoresPerPkg ) {
- KMP_WARNING( AffThrPlaceManyCores );
- return;
- }
-
- AddrUnsPair *newAddr = (AddrUnsPair *)__kmp_allocate( sizeof(AddrUnsPair) *
- __kmp_place_num_sockets * __kmp_place_num_cores * __kmp_place_num_threads_per_core);
-
- int i, j, k, n_old = 0, n_new = 0;
- for (i = 0; i < nPackages; ++i)
- if (i < __kmp_place_socket_offset ||
- i >= __kmp_place_socket_offset + __kmp_place_num_sockets)
- n_old += nCoresPerPkg * __kmp_nThreadsPerCore; // skip not-requested socket
- else
- for (j = 0; j < nCoresPerPkg; ++j) // walk through requested socket
- if (j < __kmp_place_core_offset ||
- j >= __kmp_place_core_offset + __kmp_place_num_cores)
- n_old += __kmp_nThreadsPerCore; // skip not-requested core
- else
- for (k = 0; k < __kmp_nThreadsPerCore; ++k) { // walk through requested core
- if (k < __kmp_place_num_threads_per_core) {
- newAddr[n_new] = (*pAddr)[n_old]; // collect requested thread's data
- n_new++;
- }
- n_old++;
- }
- KMP_DEBUG_ASSERT(n_old == nPackages * nCoresPerPkg * __kmp_nThreadsPerCore);
- KMP_DEBUG_ASSERT(n_new == __kmp_place_num_sockets * __kmp_place_num_cores *
- __kmp_place_num_threads_per_core);
-
- nPackages = __kmp_place_num_sockets; // correct nPackages
- nCoresPerPkg = __kmp_place_num_cores; // correct nCoresPerPkg
- __kmp_nThreadsPerCore = __kmp_place_num_threads_per_core; // correct __kmp_nThreadsPerCore
- __kmp_avail_proc = n_new; // correct avail_proc
- __kmp_ncores = nPackages * __kmp_place_num_cores; // correct ncores
-
- __kmp_free( *pAddr );
- *pAddr = newAddr; // replace old topology with new one
-}
-
-
-static AddrUnsPair *address2os = NULL;
-static int * procarr = NULL;
-static int __kmp_aff_depth = 0;
-
-static void
-__kmp_aux_affinity_initialize(void)
-{
- if (__kmp_affinity_masks != NULL) {
- KMP_ASSERT(fullMask != NULL);
- return;
- }
-
- //
- // Create the "full" mask - this defines all of the processors that we
- // consider to be in the machine model. If respect is set, then it is
- // the initialization thread's affinity mask. Otherwise, it is all
- // processors that we know about on the machine.
- //
- if (fullMask == NULL) {
- KMP_CPU_ALLOC(fullMask);
- }
- if (KMP_AFFINITY_CAPABLE()) {
- if (__kmp_affinity_respect_mask) {
- __kmp_get_system_affinity(fullMask, TRUE);
-
- //
- // Count the number of available processors.
- //
- unsigned i;
- __kmp_avail_proc = 0;
- KMP_CPU_SET_ITERATE(i, fullMask) {
- if (! KMP_CPU_ISSET(i, fullMask)) {
- continue;
- }
- __kmp_avail_proc++;
- }
- if (__kmp_avail_proc > __kmp_xproc) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(ErrorInitializeAffinity);
- }
- __kmp_affinity_type = affinity_none;
- KMP_AFFINITY_DISABLE();
- return;
- }
- }
- else {
- __kmp_affinity_entire_machine_mask(fullMask);
- __kmp_avail_proc = __kmp_xproc;
- }
- }
-
- int depth = -1;
- kmp_i18n_id_t msg_id = kmp_i18n_null;
-
- //
- // For backward compatibility, setting KMP_CPUINFO_FILE =>
- // KMP_TOPOLOGY_METHOD=cpuinfo
- //
- if ((__kmp_cpuinfo_file != NULL) &&
- (__kmp_affinity_top_method == affinity_top_method_all)) {
- __kmp_affinity_top_method = affinity_top_method_cpuinfo;
- }
-
- if (__kmp_affinity_top_method == affinity_top_method_all) {
- //
- // In the default code path, errors are not fatal - we just try using
- // another method. We only emit a warning message if affinity is on,
- // or the verbose flag is set, an the nowarnings flag was not set.
- //
- const char *file_name = NULL;
- int line = 0;
-# if KMP_USE_HWLOC
- if (depth < 0) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
- }
- if(!__kmp_hwloc_error) {
- depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- } else if(depth < 0 && __kmp_affinity_verbose) {
- KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
- }
- } else if(__kmp_affinity_verbose) {
- KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
- }
- }
-# endif
-
-# if KMP_ARCH_X86 || KMP_ARCH_X86_64
-
- if (depth < 0) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(Decodingx2APIC));
- }
-
- file_name = NULL;
- depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
-
- if (depth < 0) {
- if (__kmp_affinity_verbose) {
- if (msg_id != kmp_i18n_null) {
- KMP_INFORM(AffInfoStrStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id),
- KMP_I18N_STR(DecodingLegacyAPIC));
- }
- else {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY", KMP_I18N_STR(DecodingLegacyAPIC));
- }
- }
-
- file_name = NULL;
- depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- }
- }
-
-# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
-
-# if KMP_OS_LINUX
-
- if (depth < 0) {
- if (__kmp_affinity_verbose) {
- if (msg_id != kmp_i18n_null) {
- KMP_INFORM(AffStrParseFilename, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id), "/proc/cpuinfo");
- }
- else {
- KMP_INFORM(AffParseFilename, "KMP_AFFINITY", "/proc/cpuinfo");
- }
- }
+// This function figures out the deepest level at which there is at least one
+// cluster/core with more than one processing unit bound to it.
+static int __kmp_affinity_find_core_level(int nprocs, int bottom_level) {
+ int core_level = 0;
- FILE *f = fopen("/proc/cpuinfo", "r");
- if (f == NULL) {
- msg_id = kmp_i18n_str_CantOpenCpuinfo;
- }
- else {
- file_name = "/proc/cpuinfo";
- depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
- fclose(f);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- }
- }
-
-# endif /* KMP_OS_LINUX */
-
-# if KMP_GROUP_AFFINITY
-
- if ((depth < 0) && (__kmp_num_proc_groups > 1)) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
- }
-
- depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
- KMP_ASSERT(depth != 0);
- }
-
-# endif /* KMP_GROUP_AFFINITY */
-
- if (depth < 0) {
- if (__kmp_affinity_verbose && (msg_id != kmp_i18n_null)) {
- if (file_name == NULL) {
- KMP_INFORM(UsingFlatOS, __kmp_i18n_catgets(msg_id));
- }
- else if (line == 0) {
- KMP_INFORM(UsingFlatOSFile, file_name, __kmp_i18n_catgets(msg_id));
- }
- else {
- KMP_INFORM(UsingFlatOSFileLine, file_name, line, __kmp_i18n_catgets(msg_id));
- }
- }
- // FIXME - print msg if msg_id = kmp_i18n_null ???
-
- file_name = "";
- depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- KMP_ASSERT(depth > 0);
- KMP_ASSERT(address2os != NULL);
+ for (int i = 0; i < nprocs; i++) {
+ const kmp_hw_thread_t &hw_thread = __kmp_topology->at(i);
+ for (int j = bottom_level; j > 0; j--) {
+ if (hw_thread.ids[j] > 0) {
+ if (core_level < (j - 1)) {
+ core_level = j - 1;
}
+ }
}
+ }
+ return core_level;
+}
- //
- // If the user has specified that a paricular topology discovery method
- // is to be used, then we abort if that method fails. The exception is
- // group affinity, which might have been implicitly set.
- //
-
-# if KMP_ARCH_X86 || KMP_ARCH_X86_64
-
- else if (__kmp_affinity_top_method == affinity_top_method_x2apicid) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
- KMP_I18N_STR(Decodingx2APIC));
- }
-
- depth = __kmp_affinity_create_x2apicid_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- if (depth < 0) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- }
- else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffInfoStr, "KMP_AFFINITY",
- KMP_I18N_STR(DecodingLegacyAPIC));
- }
-
- depth = __kmp_affinity_create_apicid_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- if (depth < 0) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
- }
- }
+// This function counts number of clusters/cores at given level.
+static int __kmp_affinity_compute_ncores(int nprocs, int bottom_level,
+ int core_level) {
+ return __kmp_topology->get_count(core_level);
+}
+// This function finds to which cluster/core given processing unit is bound.
+static int __kmp_affinity_find_core(int proc, int bottom_level,
+ int core_level) {
+ int core = 0;
+ KMP_DEBUG_ASSERT(proc >= 0 && proc < __kmp_topology->get_num_hw_threads());
+ for (int i = 0; i <= proc; ++i) {
+ if (i + 1 <= proc) {
+ for (int j = 0; j <= core_level; ++j) {
+ if (__kmp_topology->at(i + 1).sub_ids[j] !=
+ __kmp_topology->at(i).sub_ids[j]) {
+ core++;
+ break;
+ }
+ }
+ }
+ }
+ return core;
+}
-# endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+// This function finds maximal number of processing units bound to a
+// cluster/core at given level.
+static int __kmp_affinity_max_proc_per_core(int nprocs, int bottom_level,
+ int core_level) {
+ if (core_level >= bottom_level)
+ return 1;
+ int thread_level = __kmp_topology->get_level(KMP_HW_THREAD);
+ return __kmp_topology->calculate_ratio(thread_level, core_level);
+}
- else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
- const char *filename;
- if (__kmp_cpuinfo_file != NULL) {
- filename = __kmp_cpuinfo_file;
- }
- else {
- filename = "/proc/cpuinfo";
- }
+static int *procarr = NULL;
+static int __kmp_aff_depth = 0;
+
+// Create a one element mask array (set of places) which only contains the
+// initial process's affinity mask
+static void __kmp_create_affinity_none_places() {
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ KMP_ASSERT(__kmp_affinity_type == affinity_none);
+ __kmp_affinity_num_masks = 1;
+ KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, 0);
+ KMP_CPU_COPY(dest, __kmp_affin_fullMask);
+}
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffParseFilename, "KMP_AFFINITY", filename);
+static void __kmp_aux_affinity_initialize(void) {
+ if (__kmp_affinity_masks != NULL) {
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ return;
+ }
+
+ // Create the "full" mask - this defines all of the processors that we
+ // consider to be in the machine model. If respect is set, then it is the
+ // initialization thread's affinity mask. Otherwise, it is all processors that
+ // we know about on the machine.
+ if (__kmp_affin_fullMask == NULL) {
+ KMP_CPU_ALLOC(__kmp_affin_fullMask);
+ }
+ if (KMP_AFFINITY_CAPABLE()) {
+ __kmp_get_system_affinity(__kmp_affin_fullMask, TRUE);
+ if (__kmp_affinity_respect_mask) {
+ // Count the number of available processors.
+ unsigned i;
+ __kmp_avail_proc = 0;
+ KMP_CPU_SET_ITERATE(i, __kmp_affin_fullMask) {
+ if (!KMP_CPU_ISSET(i, __kmp_affin_fullMask)) {
+ continue;
+ }
+ __kmp_avail_proc++;
+ }
+ if (__kmp_avail_proc > __kmp_xproc) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings &&
+ (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(ErrorInitializeAffinity);
}
+ __kmp_affinity_type = affinity_none;
+ KMP_AFFINITY_DISABLE();
+ return;
+ }
- FILE *f = fopen(filename, "r");
- if (f == NULL) {
- int code = errno;
- if (__kmp_cpuinfo_file != NULL) {
- __kmp_msg(
- kmp_ms_fatal,
- KMP_MSG(CantOpenFileForReading, filename),
- KMP_ERR(code),
- KMP_HNT(NameComesFrom_CPUINFO_FILE),
- __kmp_msg_null
- );
- }
- else {
- __kmp_msg(
- kmp_ms_fatal,
- KMP_MSG(CantOpenFileForReading, filename),
- KMP_ERR(code),
- __kmp_msg_null
- );
- }
- }
- int line = 0;
- depth = __kmp_affinity_create_cpuinfo_map(&address2os, &line, &msg_id, f);
- fclose(f);
- if (depth < 0) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- if (line > 0) {
- KMP_FATAL(FileLineMsgExiting, filename, line, __kmp_i18n_catgets(msg_id));
- }
- else {
- KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
- }
- }
- if (__kmp_affinity_type == affinity_none) {
- KMP_ASSERT(depth == 0);
- KMP_ASSERT(address2os == NULL);
- return;
- }
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+ KMP_INFORM(InitOSProcSetRespect, "KMP_AFFINITY", buf);
+ }
+ } else {
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ __kmp_affin_fullMask);
+ KMP_INFORM(InitOSProcSetNotRespect, "KMP_AFFINITY", buf);
+ }
+ __kmp_affinity_entire_machine_mask(__kmp_affin_fullMask);
+ __kmp_avail_proc = __kmp_xproc;
+#if KMP_OS_WINDOWS
+ // Set the process affinity mask since threads' affinity
+ // masks must be subset of process mask in Windows* OS
+ __kmp_affin_fullMask->set_process_affinity(true);
+#endif
}
+ }
-# if KMP_GROUP_AFFINITY
+ kmp_i18n_id_t msg_id = kmp_i18n_null;
- else if (__kmp_affinity_top_method == affinity_top_method_group) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffWindowsProcGroupMap, "KMP_AFFINITY");
- }
-
- depth = __kmp_affinity_create_proc_group_map(&address2os, &msg_id);
- KMP_ASSERT(depth != 0);
- if (depth < 0) {
- KMP_ASSERT(msg_id != kmp_i18n_null);
- KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ // For backward compatibility, setting KMP_CPUINFO_FILE =>
+ // KMP_TOPOLOGY_METHOD=cpuinfo
+ if ((__kmp_cpuinfo_file != NULL) &&
+ (__kmp_affinity_top_method == affinity_top_method_all)) {
+ __kmp_affinity_top_method = affinity_top_method_cpuinfo;
+ }
+
+ bool success = false;
+ if (__kmp_affinity_top_method == affinity_top_method_all) {
+// In the default code path, errors are not fatal - we just try using
+// another method. We only emit a warning message if affinity is on, or the
+// verbose flag is set, an the nowarnings flag was not set.
+#if KMP_USE_HWLOC
+ if (!success &&
+ __kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC) {
+ if (!__kmp_hwloc_error) {
+ success = __kmp_affinity_create_hwloc_map(&msg_id);
+ if (!success && __kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
}
+ } else if (__kmp_affinity_verbose) {
+ KMP_INFORM(AffIgnoringHwloc, "KMP_AFFINITY");
+ }
}
+#endif
-# endif /* KMP_GROUP_AFFINITY */
-
- else if (__kmp_affinity_top_method == affinity_top_method_flat) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffUsingFlatOS, "KMP_AFFINITY");
- }
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+ if (!success) {
+ success = __kmp_affinity_create_x2apicid_map(&msg_id);
+ if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
+ }
+ }
+ if (!success) {
+ success = __kmp_affinity_create_apicid_map(&msg_id);
+ if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+#if KMP_OS_LINUX
+ if (!success) {
+ int line = 0;
+ success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
+ if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif /* KMP_OS_LINUX */
+
+#if KMP_GROUP_AFFINITY
+ if (!success && (__kmp_num_proc_groups > 1)) {
+ success = __kmp_affinity_create_proc_group_map(&msg_id);
+ if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif /* KMP_GROUP_AFFINITY */
+
+ if (!success) {
+ success = __kmp_affinity_create_flat_map(&msg_id);
+ if (!success && __kmp_affinity_verbose && msg_id != kmp_i18n_null) {
+ KMP_INFORM(AffInfoStr, "KMP_AFFINITY", __kmp_i18n_catgets(msg_id));
+ }
+ KMP_ASSERT(success);
+ }
+ }
+
+// If the user has specified that a paricular topology discovery method is to be
+// used, then we abort if that method fails. The exception is group affinity,
+// which might have been implicitly set.
+#if KMP_USE_HWLOC
+ else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
+ KMP_ASSERT(__kmp_affinity_dispatch->get_api_type() == KMPAffinity::HWLOC);
+ success = __kmp_affinity_create_hwloc_map(&msg_id);
+ if (!success) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif // KMP_USE_HWLOC
- depth = __kmp_affinity_create_flat_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
- // should not fail
- KMP_ASSERT(depth > 0);
- KMP_ASSERT(address2os != NULL);
+#if KMP_ARCH_X86 || KMP_ARCH_X86_64
+ else if (__kmp_affinity_top_method == affinity_top_method_x2apicid ||
+ __kmp_affinity_top_method == affinity_top_method_x2apicid_1f) {
+ success = __kmp_affinity_create_x2apicid_map(&msg_id);
+ if (!success) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ } else if (__kmp_affinity_top_method == affinity_top_method_apicid) {
+ success = __kmp_affinity_create_apicid_map(&msg_id);
+ if (!success) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_cpuinfo) {
+ int line = 0;
+ success = __kmp_affinity_create_cpuinfo_map(&line, &msg_id);
+ if (!success) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ const char *filename = __kmp_cpuinfo_get_filename();
+ if (line > 0) {
+ KMP_FATAL(FileLineMsgExiting, filename, line,
+ __kmp_i18n_catgets(msg_id));
+ } else {
+ KMP_FATAL(FileMsgExiting, filename, __kmp_i18n_catgets(msg_id));
+ }
+ }
+ }
+
+#if KMP_GROUP_AFFINITY
+ else if (__kmp_affinity_top_method == affinity_top_method_group) {
+ success = __kmp_affinity_create_proc_group_map(&msg_id);
+ KMP_ASSERT(success);
+ if (!success) {
+ KMP_ASSERT(msg_id != kmp_i18n_null);
+ KMP_FATAL(MsgExiting, __kmp_i18n_catgets(msg_id));
+ }
+ }
+#endif /* KMP_GROUP_AFFINITY */
+
+ else if (__kmp_affinity_top_method == affinity_top_method_flat) {
+ success = __kmp_affinity_create_flat_map(&msg_id);
+ // should not fail
+ KMP_ASSERT(success);
+ }
+
+ // Early exit if topology could not be created
+ if (!__kmp_topology) {
+ if (KMP_AFFINITY_CAPABLE() &&
+ (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none)))) {
+ KMP_WARNING(ErrorInitializeAffinity);
+ }
+ if (nPackages > 0 && nCoresPerPkg > 0 && __kmp_nThreadsPerCore > 0 &&
+ __kmp_ncores > 0) {
+ __kmp_topology = kmp_topology_t::allocate(0, 0, NULL);
+ __kmp_topology->canonicalize(nPackages, nCoresPerPkg,
+ __kmp_nThreadsPerCore, __kmp_ncores);
+ if (__kmp_affinity_verbose) {
+ __kmp_topology->print("KMP_AFFINITY");
+ }
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+#if KMP_USE_HIER_SCHED
+ __kmp_dispatch_set_hierarchy_values();
+#endif
+ KMP_AFFINITY_DISABLE();
+ return;
+ }
+
+ // Canonicalize, print (if requested), apply KMP_HW_SUBSET, and
+ // initialize other data structures which depend on the topology
+ __kmp_topology->canonicalize();
+ if (__kmp_affinity_verbose)
+ __kmp_topology->print("KMP_AFFINITY");
+ bool filtered = __kmp_topology->filter_hw_subset();
+ if (filtered && __kmp_affinity_verbose)
+ __kmp_topology->print("KMP_HW_SUBSET");
+ machine_hierarchy.init(__kmp_topology->get_num_hw_threads());
+ KMP_ASSERT(__kmp_avail_proc == __kmp_topology->get_num_hw_threads());
+ // If KMP_AFFINITY=none, then only create the single "none" place
+ // which is the process's initial affinity mask or the number of
+ // hardware threads depending on respect,norespect
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_create_affinity_none_places();
+#if KMP_USE_HIER_SCHED
+ __kmp_dispatch_set_hierarchy_values();
+#endif
+ return;
+ }
+ int depth = __kmp_topology->get_depth();
+
+ // Create the table of masks, indexed by thread Id.
+ unsigned maxIndex;
+ unsigned numUnique;
+ kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique);
+ if (__kmp_affinity_gran_levels == 0) {
+ KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
+ }
+
+ switch (__kmp_affinity_type) {
+
+ case affinity_explicit:
+ KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
+ if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel) {
+ __kmp_affinity_process_proclist(
+ &__kmp_affinity_masks, &__kmp_affinity_num_masks,
+ __kmp_affinity_proclist, osId2Mask, maxIndex);
+ } else {
+ __kmp_affinity_process_placelist(
+ &__kmp_affinity_masks, &__kmp_affinity_num_masks,
+ __kmp_affinity_proclist, osId2Mask, maxIndex);
+ }
+ if (__kmp_affinity_num_masks == 0) {
+ if (__kmp_affinity_verbose ||
+ (__kmp_affinity_warnings && (__kmp_affinity_type != affinity_none))) {
+ KMP_WARNING(AffNoValidProcID);
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+ return;
+ }
+ break;
+
+ // The other affinity types rely on sorting the hardware threads according to
+ // some permutation of the machine topology tree. Set __kmp_affinity_compact
+ // and __kmp_affinity_offset appropriately, then jump to a common code
+ // fragment to do the sort and create the array of affinity masks.
+ case affinity_logical:
+ __kmp_affinity_compact = 0;
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset =
+ __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
+ }
+ goto sortTopology;
+
+ case affinity_physical:
+ if (__kmp_nThreadsPerCore > 1) {
+ __kmp_affinity_compact = 1;
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ }
+ } else {
+ __kmp_affinity_compact = 0;
}
-
-# if KMP_USE_HWLOC
- else if (__kmp_affinity_top_method == affinity_top_method_hwloc) {
- if (__kmp_affinity_verbose) {
- KMP_INFORM(AffUsingHwloc, "KMP_AFFINITY");
- }
- depth = __kmp_affinity_create_hwloc_map(&address2os, &msg_id);
- if (depth == 0) {
- KMP_ASSERT(__kmp_affinity_type == affinity_none);
- KMP_ASSERT(address2os == NULL);
- return;
- }
-# if KMP_DEBUG
- AddrUnsPair *otheraddress2os = NULL;
- int otherdepth = -1;
-# if KMP_MIC
- otherdepth = __kmp_affinity_create_apicid_map(&otheraddress2os, &msg_id);
-# else
- otherdepth = __kmp_affinity_create_x2apicid_map(&otheraddress2os, &msg_id);
-# endif
- if(otheraddress2os != NULL && address2os != NULL) {
- int i;
- unsigned arent_equal_flag = 0;
- for(i=0;i<__kmp_avail_proc;i++) {
- if(otheraddress2os[i] != address2os[i]) arent_equal_flag = 1;
- }
- if(arent_equal_flag) {
- KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are different from APICID\n"));
- KA_TRACE(10, ("__kmp_aux_affinity_initialize: APICID Table:\n"));
- for(i=0;i<__kmp_avail_proc;i++) {
- otheraddress2os[i].print(); __kmp_printf("\n");
- }
- KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc Table:\n"));
- for(i=0;i<__kmp_avail_proc;i++) {
- address2os[i].print(); __kmp_printf("\n");
- }
- }
- else {
- KA_TRACE(10, ("__kmp_aux_affinity_initialize: Hwloc affinity places are same as APICID\n"));
- }
- }
-# endif // KMP_DEBUG
+ if (__kmp_affinity_offset) {
+ __kmp_affinity_offset =
+ __kmp_nThreadsPerCore * __kmp_affinity_offset % __kmp_avail_proc;
}
-# endif // KMP_USE_HWLOC
+ goto sortTopology;
- if (address2os == NULL) {
- if (KMP_AFFINITY_CAPABLE()
- && (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none)))) {
- KMP_WARNING(ErrorInitializeAffinity);
+ case affinity_scatter:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = 0;
+ } else {
+ __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
+ }
+ goto sortTopology;
+
+ case affinity_compact:
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
+ }
+ goto sortTopology;
+
+ case affinity_balanced:
+ if (depth <= 1) {
+ if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
+ KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
+ }
+ __kmp_affinity_type = affinity_none;
+ __kmp_create_affinity_none_places();
+ return;
+ } else if (!__kmp_topology->is_uniform()) {
+ // Save the depth for further usage
+ __kmp_aff_depth = depth;
+
+ int core_level =
+ __kmp_affinity_find_core_level(__kmp_avail_proc, depth - 1);
+ int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc, depth - 1,
+ core_level);
+ int maxprocpercore = __kmp_affinity_max_proc_per_core(
+ __kmp_avail_proc, depth - 1, core_level);
+
+ int nproc = ncores * maxprocpercore;
+ if ((nproc < 2) || (nproc < __kmp_avail_proc)) {
+ if (__kmp_affinity_verbose || __kmp_affinity_warnings) {
+ KMP_WARNING(AffBalancedNotAvail, "KMP_AFFINITY");
}
__kmp_affinity_type = affinity_none;
- KMP_AFFINITY_DISABLE();
return;
- }
+ }
- __kmp_apply_thread_places(&address2os, depth);
+ procarr = (int *)__kmp_allocate(sizeof(int) * nproc);
+ for (int i = 0; i < nproc; i++) {
+ procarr[i] = -1;
+ }
- //
- // Create the table of masks, indexed by thread Id.
- //
- unsigned maxIndex;
- unsigned numUnique;
- kmp_affin_mask_t *osId2Mask = __kmp_create_masks(&maxIndex, &numUnique,
- address2os, __kmp_avail_proc);
- if (__kmp_affinity_gran_levels == 0) {
- KMP_DEBUG_ASSERT((int)numUnique == __kmp_avail_proc);
- }
+ int lastcore = -1;
+ int inlastcore = 0;
+ for (int i = 0; i < __kmp_avail_proc; i++) {
+ int proc = __kmp_topology->at(i).os_id;
+ int core = __kmp_affinity_find_core(i, depth - 1, core_level);
- //
- // Set the childNums vector in all Address objects. This must be done
- // before we can sort using __kmp_affinity_cmp_Address_child_num(),
- // which takes into account the setting of __kmp_affinity_compact.
- //
- __kmp_affinity_assign_child_nums(address2os, __kmp_avail_proc);
-
- switch (__kmp_affinity_type) {
-
- case affinity_explicit:
- KMP_DEBUG_ASSERT(__kmp_affinity_proclist != NULL);
-# if OMP_40_ENABLED
- if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
-# endif
- {
- __kmp_affinity_process_proclist(&__kmp_affinity_masks,
- &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
- maxIndex);
- }
-# if OMP_40_ENABLED
- else {
- __kmp_affinity_process_placelist(&__kmp_affinity_masks,
- &__kmp_affinity_num_masks, __kmp_affinity_proclist, osId2Mask,
- maxIndex);
- }
-# endif
- if (__kmp_affinity_num_masks == 0) {
- if (__kmp_affinity_verbose || (__kmp_affinity_warnings
- && (__kmp_affinity_type != affinity_none))) {
- KMP_WARNING(AffNoValidProcID);
- }
- __kmp_affinity_type = affinity_none;
- return;
- }
- break;
-
- //
- // The other affinity types rely on sorting the Addresses according
- // to some permutation of the machine topology tree. Set
- // __kmp_affinity_compact and __kmp_affinity_offset appropriately,
- // then jump to a common code fragment to do the sort and create
- // the array of affinity masks.
- //
-
- case affinity_logical:
- __kmp_affinity_compact = 0;
- if (__kmp_affinity_offset) {
- __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
- % __kmp_avail_proc;
- }
- goto sortAddresses;
-
- case affinity_physical:
- if (__kmp_nThreadsPerCore > 1) {
- __kmp_affinity_compact = 1;
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = 0;
- }
+ if (core == lastcore) {
+ inlastcore++;
} else {
- __kmp_affinity_compact = 0;
- }
- if (__kmp_affinity_offset) {
- __kmp_affinity_offset = __kmp_nThreadsPerCore * __kmp_affinity_offset
- % __kmp_avail_proc;
- }
- goto sortAddresses;
-
- case affinity_scatter:
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = 0;
- }
- else {
- __kmp_affinity_compact = depth - 1 - __kmp_affinity_compact;
- }
- goto sortAddresses;
-
- case affinity_compact:
- if (__kmp_affinity_compact >= depth) {
- __kmp_affinity_compact = depth - 1;
- }
- goto sortAddresses;
-
- case affinity_balanced:
- // Balanced works only for the case of a single package
- if( nPackages > 1 ) {
- if( __kmp_affinity_verbose || __kmp_affinity_warnings ) {
- KMP_WARNING( AffBalancedNotAvail, "KMP_AFFINITY" );
- }
- __kmp_affinity_type = affinity_none;
- return;
- } else if( __kmp_affinity_uniform_topology() ) {
- break;
- } else { // Non-uniform topology
-
- // Save the depth for further usage
- __kmp_aff_depth = depth;
-
- // Number of hyper threads per core in HT machine
- int nth_per_core = __kmp_nThreadsPerCore;
-
- int core_level;
- if( nth_per_core > 1 ) {
- core_level = depth - 2;
- } else {
- core_level = depth - 1;
- }
- int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
- int nproc = nth_per_core * ncores;
-
- procarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
- for( int i = 0; i < nproc; i++ ) {
- procarr[ i ] = -1;
- }
-
- for( int i = 0; i < __kmp_avail_proc; i++ ) {
- int proc = address2os[ i ].second;
- // If depth == 3 then level=0 - package, level=1 - core, level=2 - thread.
- // If there is only one thread per core then depth == 2: level 0 - package,
- // level 1 - core.
- int level = depth - 1;
-
- // __kmp_nth_per_core == 1
- int thread = 0;
- int core = address2os[ i ].first.labels[ level ];
- // If the thread level exists, that is we have more than one thread context per core
- if( nth_per_core > 1 ) {
- thread = address2os[ i ].first.labels[ level ] % nth_per_core;
- core = address2os[ i ].first.labels[ level - 1 ];
- }
- procarr[ core * nth_per_core + thread ] = proc;
- }
-
- break;
+ inlastcore = 0;
}
+ lastcore = core;
- sortAddresses:
- //
- // Allocate the gtid->affinity mask table.
- //
- if (__kmp_affinity_dups) {
- __kmp_affinity_num_masks = __kmp_avail_proc;
- }
- else {
- __kmp_affinity_num_masks = numUnique;
- }
-
-# if OMP_40_ENABLED
- if ( ( __kmp_nested_proc_bind.bind_types[0] != proc_bind_intel )
- && ( __kmp_affinity_num_places > 0 )
- && ( (unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks ) ) {
- __kmp_affinity_num_masks = __kmp_affinity_num_places;
- }
-# endif
-
- KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
-
- //
- // Sort the address2os table according to the current setting of
- // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
- //
- qsort(address2os, __kmp_avail_proc, sizeof(*address2os),
- __kmp_affinity_cmp_Address_child_num);
- {
- int i;
- unsigned j;
- for (i = 0, j = 0; i < __kmp_avail_proc; i++) {
- if ((! __kmp_affinity_dups) && (! address2os[i].first.leader)) {
- continue;
- }
- unsigned osId = address2os[i].second;
- kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
- kmp_affin_mask_t *dest
- = KMP_CPU_INDEX(__kmp_affinity_masks, j);
- KMP_ASSERT(KMP_CPU_ISSET(osId, src));
- KMP_CPU_COPY(dest, src);
- if (++j >= __kmp_affinity_num_masks) {
- break;
- }
- }
- KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
- }
- break;
-
- default:
- KMP_ASSERT2(0, "Unexpected affinity setting");
- }
-
- __kmp_free(osId2Mask);
- machine_hierarchy.init(address2os, __kmp_avail_proc);
-}
-
-
-void
-__kmp_affinity_initialize(void)
-{
- //
- // Much of the code above was written assumming that if a machine was not
- // affinity capable, then __kmp_affinity_type == affinity_none. We now
- // explicitly represent this as __kmp_affinity_type == affinity_disabled.
- //
- // There are too many checks for __kmp_affinity_type == affinity_none
- // in this code. Instead of trying to change them all, check if
- // __kmp_affinity_type == affinity_disabled, and if so, slam it with
- // affinity_none, call the real initialization routine, then restore
- // __kmp_affinity_type to affinity_disabled.
- //
- int disabled = (__kmp_affinity_type == affinity_disabled);
- if (! KMP_AFFINITY_CAPABLE()) {
- KMP_ASSERT(disabled);
+ procarr[core * maxprocpercore + inlastcore] = proc;
+ }
}
- if (disabled) {
- __kmp_affinity_type = affinity_none;
- }
- __kmp_aux_affinity_initialize();
- if (disabled) {
- __kmp_affinity_type = affinity_disabled;
- }
-}
-
-
-void
-__kmp_affinity_uninitialize(void)
-{
- if (__kmp_affinity_masks != NULL) {
- KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
- __kmp_affinity_masks = NULL;
- }
- if (fullMask != NULL) {
- KMP_CPU_FREE(fullMask);
- fullMask = NULL;
- }
- __kmp_affinity_num_masks = 0;
-# if OMP_40_ENABLED
- __kmp_affinity_num_places = 0;
-# endif
- if (__kmp_affinity_proclist != NULL) {
- __kmp_free(__kmp_affinity_proclist);
- __kmp_affinity_proclist = NULL;
- }
- if( address2os != NULL ) {
- __kmp_free( address2os );
- address2os = NULL;
- }
- if( procarr != NULL ) {
- __kmp_free( procarr );
- procarr = NULL;
+ if (__kmp_affinity_compact >= depth) {
+ __kmp_affinity_compact = depth - 1;
}
-}
-
-void
-__kmp_affinity_set_init_mask(int gtid, int isa_root)
-{
- if (! KMP_AFFINITY_CAPABLE()) {
- return;
+ sortTopology:
+ // Allocate the gtid->affinity mask table.
+ if (__kmp_affinity_dups) {
+ __kmp_affinity_num_masks = __kmp_avail_proc;
+ } else {
+ __kmp_affinity_num_masks = numUnique;
}
- kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
- if (th->th.th_affin_mask == NULL) {
- KMP_CPU_ALLOC(th->th.th_affin_mask);
- }
- else {
- KMP_CPU_ZERO(th->th.th_affin_mask);
+ if ((__kmp_nested_proc_bind.bind_types[0] != proc_bind_intel) &&
+ (__kmp_affinity_num_places > 0) &&
+ ((unsigned)__kmp_affinity_num_places < __kmp_affinity_num_masks)) {
+ __kmp_affinity_num_masks = __kmp_affinity_num_places;
}
- //
- // Copy the thread mask to the kmp_info_t strucuture.
- // If __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one
- // that has all of the OS proc ids set, or if __kmp_affinity_respect_mask
- // is set, then the full mask is the same as the mask of the initialization
- // thread.
- //
- kmp_affin_mask_t *mask;
- int i;
+ KMP_CPU_ALLOC_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
-# if OMP_40_ENABLED
- if (__kmp_nested_proc_bind.bind_types[0] == proc_bind_intel)
-# endif
+ // Sort the topology table according to the current setting of
+ // __kmp_affinity_compact, then fill out __kmp_affinity_masks.
+ __kmp_topology->sort_compact();
{
- if ((__kmp_affinity_type == affinity_none) || (__kmp_affinity_type == affinity_balanced)
- ) {
-# if KMP_GROUP_AFFINITY
- if (__kmp_num_proc_groups > 1) {
- return;
- }
-# endif
- KMP_ASSERT(fullMask != NULL);
- i = KMP_PLACE_ALL;
- mask = fullMask;
- }
- else {
- KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
- i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
- mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
- }
- }
-# if OMP_40_ENABLED
- else {
- if ((! isa_root)
- || (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
-# if KMP_GROUP_AFFINITY
- if (__kmp_num_proc_groups > 1) {
- return;
- }
-# endif
- KMP_ASSERT(fullMask != NULL);
- i = KMP_PLACE_ALL;
- mask = fullMask;
- }
- else {
- //
- // int i = some hash function or just a counter that doesn't
- // always start at 0. Use gtid for now.
- //
- KMP_DEBUG_ASSERT( __kmp_affinity_num_masks > 0 );
- i = (gtid + __kmp_affinity_offset) % __kmp_affinity_num_masks;
- mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ int i;
+ unsigned j;
+ int num_hw_threads = __kmp_topology->get_num_hw_threads();
+ for (i = 0, j = 0; i < num_hw_threads; i++) {
+ if ((!__kmp_affinity_dups) && (!__kmp_topology->at(i).leader)) {
+ continue;
+ }
+ int osId = __kmp_topology->at(i).os_id;
+
+ kmp_affin_mask_t *src = KMP_CPU_INDEX(osId2Mask, osId);
+ kmp_affin_mask_t *dest = KMP_CPU_INDEX(__kmp_affinity_masks, j);
+ KMP_ASSERT(KMP_CPU_ISSET(osId, src));
+ KMP_CPU_COPY(dest, src);
+ if (++j >= __kmp_affinity_num_masks) {
+ break;
}
+ }
+ KMP_DEBUG_ASSERT(j == __kmp_affinity_num_masks);
}
-# endif
+ // Sort the topology back using ids
+ __kmp_topology->sort_ids();
+ break;
-# if OMP_40_ENABLED
- th->th.th_current_place = i;
- if (isa_root) {
- th->th.th_new_place = i;
- th->th.th_first_place = 0;
- th->th.th_last_place = __kmp_affinity_num_masks - 1;
- }
+ default:
+ KMP_ASSERT2(0, "Unexpected affinity setting");
+ }
- if (i == KMP_PLACE_ALL) {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
- gtid));
- }
- else {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
- gtid, i));
- }
-# else
- if (i == -1) {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to fullMask\n",
- gtid));
- }
- else {
- KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to mask %d\n",
- gtid, i));
- }
-# endif /* OMP_40_ENABLED */
-
- KMP_CPU_COPY(th->th.th_affin_mask, mask);
-
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(), gtid,
- buf);
- }
-
-# if KMP_OS_WINDOWS
- //
- // On Windows* OS, the process affinity mask might have changed.
- // If the user didn't request affinity and this call fails,
- // just continue silently. See CQ171393.
- //
- if ( __kmp_affinity_type == affinity_none ) {
- __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
- }
- else
-# endif
- __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+ KMP_CPU_FREE_ARRAY(osId2Mask, maxIndex + 1);
}
+void __kmp_affinity_initialize(void) {
+ // Much of the code above was written assuming that if a machine was not
+ // affinity capable, then __kmp_affinity_type == affinity_none. We now
+ // explicitly represent this as __kmp_affinity_type == affinity_disabled.
+ // There are too many checks for __kmp_affinity_type == affinity_none
+ // in this code. Instead of trying to change them all, check if
+ // __kmp_affinity_type == affinity_disabled, and if so, slam it with
+ // affinity_none, call the real initialization routine, then restore
+ // __kmp_affinity_type to affinity_disabled.
+ int disabled = (__kmp_affinity_type == affinity_disabled);
+ if (!KMP_AFFINITY_CAPABLE()) {
+ KMP_ASSERT(disabled);
+ }
+ if (disabled) {
+ __kmp_affinity_type = affinity_none;
+ }
+ __kmp_aux_affinity_initialize();
+ if (disabled) {
+ __kmp_affinity_type = affinity_disabled;
+ }
+}
-# if OMP_40_ENABLED
-
-void
-__kmp_affinity_set_place(int gtid)
-{
- int retval;
+void __kmp_affinity_uninitialize(void) {
+ if (__kmp_affinity_masks != NULL) {
+ KMP_CPU_FREE_ARRAY(__kmp_affinity_masks, __kmp_affinity_num_masks);
+ __kmp_affinity_masks = NULL;
+ }
+ if (__kmp_affin_fullMask != NULL) {
+ KMP_CPU_FREE(__kmp_affin_fullMask);
+ __kmp_affin_fullMask = NULL;
+ }
+ __kmp_affinity_num_masks = 0;
+ __kmp_affinity_type = affinity_default;
+ __kmp_affinity_num_places = 0;
+ if (__kmp_affinity_proclist != NULL) {
+ __kmp_free(__kmp_affinity_proclist);
+ __kmp_affinity_proclist = NULL;
+ }
+ if (procarr != NULL) {
+ __kmp_free(procarr);
+ procarr = NULL;
+ }
+#if KMP_USE_HWLOC
+ if (__kmp_hwloc_topology != NULL) {
+ hwloc_topology_destroy(__kmp_hwloc_topology);
+ __kmp_hwloc_topology = NULL;
+ }
+#endif
+ if (__kmp_hw_subset) {
+ kmp_hw_subset_t::deallocate(__kmp_hw_subset);
+ __kmp_hw_subset = nullptr;
+ }
+ if (__kmp_topology) {
+ kmp_topology_t::deallocate(__kmp_topology);
+ __kmp_topology = nullptr;
+ }
+ KMPAffinity::destroy_api();
+}
- if (! KMP_AFFINITY_CAPABLE()) {
+void __kmp_affinity_set_init_mask(int gtid, int isa_root) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+ if (th->th.th_affin_mask == NULL) {
+ KMP_CPU_ALLOC(th->th.th_affin_mask);
+ } else {
+ KMP_CPU_ZERO(th->th.th_affin_mask);
+ }
+
+ // Copy the thread mask to the kmp_info_t structure. If
+ // __kmp_affinity_type == affinity_none, copy the "full" mask, i.e. one that
+ // has all of the OS proc ids set, or if __kmp_affinity_respect_mask is set,
+ // then the full mask is the same as the mask of the initialization thread.
+ kmp_affin_mask_t *mask;
+ int i;
+
+ if (KMP_AFFINITY_NON_PROC_BIND) {
+ if ((__kmp_affinity_type == affinity_none) ||
+ (__kmp_affinity_type == affinity_balanced) ||
+ KMP_HIDDEN_HELPER_THREAD(gtid)) {
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
return;
- }
-
- kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
-
- KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current place = %d)\n",
- gtid, th->th.th_new_place, th->th.th_current_place));
-
- //
- // Check that the new place is within this thread's partition.
- //
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
- KMP_ASSERT(th->th.th_new_place >= 0);
- KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
- if (th->th.th_first_place <= th->th.th_last_place) {
- KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place)
- && (th->th.th_new_place <= th->th.th_last_place));
- }
- else {
- KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place)
- || (th->th.th_new_place >= th->th.th_last_place));
- }
-
- //
- // Copy the thread mask to the kmp_info_t strucuture,
- // and set this thread's affinity.
- //
- kmp_affin_mask_t *mask = KMP_CPU_INDEX(__kmp_affinity_masks,
- th->th.th_new_place);
- KMP_CPU_COPY(th->th.th_affin_mask, mask);
- th->th.th_current_place = th->th.th_new_place;
+ }
+#endif
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ i = 0;
+ mask = __kmp_affin_fullMask;
+ } else {
+ int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
+ KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
+ i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ } else {
+ if ((!isa_root) || KMP_HIDDEN_HELPER_THREAD(gtid) ||
+ (__kmp_nested_proc_bind.bind_types[0] == proc_bind_false)) {
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return;
+ }
+#endif
+ KMP_ASSERT(__kmp_affin_fullMask != NULL);
+ i = KMP_PLACE_ALL;
+ mask = __kmp_affin_fullMask;
+ } else {
+ // int i = some hash function or just a counter that doesn't
+ // always start at 0. Use adjusted gtid for now.
+ int mask_idx = __kmp_adjust_gtid_for_hidden_helpers(gtid);
+ KMP_DEBUG_ASSERT(__kmp_affinity_num_masks > 0);
+ i = (mask_idx + __kmp_affinity_offset) % __kmp_affinity_num_masks;
+ mask = KMP_CPU_INDEX(__kmp_affinity_masks, i);
+ }
+ }
+
+ th->th.th_current_place = i;
+ if (isa_root || KMP_HIDDEN_HELPER_THREAD(gtid)) {
+ th->th.th_new_place = i;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ } else if (KMP_AFFINITY_NON_PROC_BIND) {
+ // When using a Non-OMP_PROC_BIND affinity method,
+ // set all threads' place-partition-var to the entire place list
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+ }
+
+ if (i == KMP_PLACE_ALL) {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to all places\n",
+ gtid));
+ } else {
+ KA_TRACE(100, ("__kmp_affinity_set_init_mask: binding T#%d to place %d\n",
+ gtid, i));
+ }
+
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+
+ if (__kmp_affinity_verbose && !KMP_HIDDEN_HELPER_THREAD(gtid)
+ /* to avoid duplicate printing (will be correctly printed on barrier) */
+ && (__kmp_affinity_type == affinity_none ||
+ (i != KMP_PLACE_ALL && __kmp_affinity_type != affinity_balanced))) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), gtid, buf);
+ }
+
+#if KMP_DEBUG
+ // Hidden helper thread affinity only printed for debug builds
+ if (__kmp_affinity_verbose && KMP_HIDDEN_HELPER_THREAD(gtid)) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY (hidden helper thread)",
+ (kmp_int32)getpid(), __kmp_gettid(), gtid, buf);
+ }
+#endif
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
- gtid, buf);
- }
+#if KMP_OS_WINDOWS
+ // On Windows* OS, the process affinity mask might have changed. If the user
+ // didn't request affinity and this call fails, just continue silently.
+ // See CQ171393.
+ if (__kmp_affinity_type == affinity_none) {
+ __kmp_set_system_affinity(th->th.th_affin_mask, FALSE);
+ } else
+#endif
__kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
}
-# endif /* OMP_40_ENABLED */
+void __kmp_affinity_set_place(int gtid) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return;
+ }
+
+ kmp_info_t *th = (kmp_info_t *)TCR_SYNC_PTR(__kmp_threads[gtid]);
+
+ KA_TRACE(100, ("__kmp_affinity_set_place: binding T#%d to place %d (current "
+ "place = %d)\n",
+ gtid, th->th.th_new_place, th->th.th_current_place));
+
+ // Check that the new place is within this thread's partition.
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ KMP_ASSERT(th->th.th_new_place >= 0);
+ KMP_ASSERT((unsigned)th->th.th_new_place <= __kmp_affinity_num_masks);
+ if (th->th.th_first_place <= th->th.th_last_place) {
+ KMP_ASSERT((th->th.th_new_place >= th->th.th_first_place) &&
+ (th->th.th_new_place <= th->th.th_last_place));
+ } else {
+ KMP_ASSERT((th->th.th_new_place <= th->th.th_first_place) ||
+ (th->th.th_new_place >= th->th.th_last_place));
+ }
+
+ // Copy the thread mask to the kmp_info_t structure,
+ // and set this thread's affinity.
+ kmp_affin_mask_t *mask =
+ KMP_CPU_INDEX(__kmp_affinity_masks, th->th.th_new_place);
+ KMP_CPU_COPY(th->th.th_affin_mask, mask);
+ th->th.th_current_place = th->th.th_new_place;
+
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
+ th->th.th_affin_mask);
+ KMP_INFORM(BoundToOSProcSet, "OMP_PROC_BIND", (kmp_int32)getpid(),
+ __kmp_gettid(), gtid, buf);
+ }
+ __kmp_set_system_affinity(th->th.th_affin_mask, TRUE);
+}
+int __kmp_aux_set_affinity(void **mask) {
+ int gtid;
+ kmp_info_t *th;
+ int retval;
-int
-__kmp_aux_set_affinity(void **mask)
-{
- int gtid;
- kmp_info_t *th;
- int retval;
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
- if (! KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
-
- gtid = __kmp_entry_gtid();
- KA_TRACE(1000, ;{
+ gtid = __kmp_entry_gtid();
+ KA_TRACE(
+ 1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_set_affinity: setting affinity mask for thread %d = %s\n",
- gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
- else {
- unsigned proc;
- int num_procs = 0;
-
- KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t*)(*mask))) {
- if (! KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
- continue;
- }
- num_procs++;
- if (! KMP_CPU_ISSET(proc, fullMask)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- break;
- }
- }
- if (num_procs == 0) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
-
-# if KMP_GROUP_AFFINITY
- if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
- }
-# endif /* KMP_GROUP_AFFINITY */
-
- }
- }
-
- th = __kmp_threads[gtid];
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
- retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
- if (retval == 0) {
- KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
- }
-
-# if OMP_40_ENABLED
- th->th.th_current_place = KMP_PLACE_UNDEFINED;
- th->th.th_new_place = KMP_PLACE_UNDEFINED;
- th->th.th_first_place = 0;
- th->th.th_last_place = __kmp_affinity_num_masks - 1;
-
- //
- // Turn off 4.0 affinity for the current tread at this parallel level.
- //
- th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
-# endif
-
- return retval;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf(
+ "kmp_set_affinity: setting affinity mask for thread %d = %s\n",
+ gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ } else {
+ unsigned proc;
+ int num_procs = 0;
+
+ KMP_CPU_SET_ITERATE(proc, ((kmp_affin_mask_t *)(*mask))) {
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+ if (!KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask))) {
+ continue;
+ }
+ num_procs++;
+ }
+ if (num_procs == 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+
+#if KMP_GROUP_AFFINITY
+ if (__kmp_get_proc_group((kmp_affin_mask_t *)(*mask)) < 0) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity");
+ }
+#endif /* KMP_GROUP_AFFINITY */
+ }
+ }
+
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
+ retval = __kmp_set_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ if (retval == 0) {
+ KMP_CPU_COPY(th->th.th_affin_mask, (kmp_affin_mask_t *)(*mask));
+ }
+
+ th->th.th_current_place = KMP_PLACE_UNDEFINED;
+ th->th.th_new_place = KMP_PLACE_UNDEFINED;
+ th->th.th_first_place = 0;
+ th->th.th_last_place = __kmp_affinity_num_masks - 1;
+
+ // Turn off 4.0 affinity for the current tread at this parallel level.
+ th->th.th_current_task->td_icvs.proc_bind = proc_bind_false;
+
+ return retval;
}
+int __kmp_aux_get_affinity(void **mask) {
+ int gtid;
+ int retval;
+ kmp_info_t *th;
-int
-__kmp_aux_get_affinity(void **mask)
-{
- int gtid;
- int retval;
- kmp_info_t *th;
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
- if (! KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
+ gtid = __kmp_entry_gtid();
+ th = __kmp_threads[gtid];
+ KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
- gtid = __kmp_entry_gtid();
- th = __kmp_threads[gtid];
- KMP_DEBUG_ASSERT(th->th.th_affin_mask != NULL);
-
- KA_TRACE(1000, ;{
+ KA_TRACE(
+ 1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- th->th.th_affin_mask);
- __kmp_printf("kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid, buf);
- });
+ th->th.th_affin_mask);
+ __kmp_printf(
+ "kmp_get_affinity: stored affinity mask for thread %d = %s\n", gtid,
+ buf);
+ });
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
- }
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity");
}
+ }
-# if !KMP_OS_WINDOWS
+#if !KMP_OS_WINDOWS
- retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
- KA_TRACE(1000, ;{
+ retval = __kmp_get_system_affinity((kmp_affin_mask_t *)(*mask), FALSE);
+ KA_TRACE(
+ 1000, (""); {
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_printf("kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid, buf);
- });
- return retval;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_printf(
+ "kmp_get_affinity: system affinity mask for thread %d = %s\n", gtid,
+ buf);
+ });
+ return retval;
-# else
-
- KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
- return 0;
+#else
+ (void)retval;
-# endif /* KMP_OS_WINDOWS */
+ KMP_CPU_COPY((kmp_affin_mask_t *)(*mask), th->th.th_affin_mask);
+ return 0;
+#endif /* KMP_OS_WINDOWS */
}
-int
-__kmp_aux_set_affinity_mask_proc(int proc, void **mask)
-{
- int retval;
+int __kmp_aux_get_affinity_max_proc() {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return 0;
+ }
+#if KMP_GROUP_AFFINITY
+ if (__kmp_num_proc_groups > 1) {
+ return (int)(__kmp_num_proc_groups * sizeof(DWORD_PTR) * CHAR_BIT);
+ }
+#endif
+ return __kmp_xproc;
+}
- if (! KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
+int __kmp_aux_set_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
- KA_TRACE(1000, ;{
+ KA_TRACE(
+ 1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
- }
- }
-
- if ((proc < 0)
-# if !KMP_USE_HWLOC
- || ((unsigned)proc >= KMP_CPU_SETSIZE)
-# endif
- ) {
- return -1;
- }
- if (! KMP_CPU_ISSET(proc, fullMask)) {
- return -2;
- }
-
- KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
- return 0;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_set_affinity_mask_proc: setting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_set_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_SET(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
}
+int __kmp_aux_unset_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
-int
-__kmp_aux_unset_affinity_mask_proc(int proc, void **mask)
-{
- int retval;
-
- if (! KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
-
- KA_TRACE(1000, ;{
+ KA_TRACE(
+ 1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
- }
- }
-
- if ((proc < 0)
-# if !KMP_USE_HWLOC
- || ((unsigned)proc >= KMP_CPU_SETSIZE)
-# endif
- ) {
- return -1;
- }
- if (! KMP_CPU_ISSET(proc, fullMask)) {
- return -2;
- }
-
- KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
- return 0;
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_unset_affinity_mask_proc: unsetting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_unset_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return -2;
+ }
+
+ KMP_CPU_CLR(proc, (kmp_affin_mask_t *)(*mask));
+ return 0;
}
+int __kmp_aux_get_affinity_mask_proc(int proc, void **mask) {
+ if (!KMP_AFFINITY_CAPABLE()) {
+ return -1;
+ }
-int
-__kmp_aux_get_affinity_mask_proc(int proc, void **mask)
-{
- int retval;
-
- if (! KMP_AFFINITY_CAPABLE()) {
- return -1;
- }
-
- KA_TRACE(1000, ;{
+ KA_TRACE(
+ 1000, (""); {
int gtid = __kmp_entry_gtid();
char buf[KMP_AFFIN_MASK_PRINT_LEN];
__kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN,
- (kmp_affin_mask_t *)(*mask));
- __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in affinity mask for thread %d = %s\n",
- proc, gtid, buf);
- });
-
- if (__kmp_env_consistency_check) {
- if ((mask == NULL) || (*mask == NULL)) {
- KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
- }
- }
-
- if ((proc < 0)
-# if !KMP_USE_HWLOC
- || ((unsigned)proc >= KMP_CPU_SETSIZE)
-# endif
- ) {
- return -1;
- }
- if (! KMP_CPU_ISSET(proc, fullMask)) {
- return 0;
- }
+ (kmp_affin_mask_t *)(*mask));
+ __kmp_debug_printf("kmp_get_affinity_mask_proc: getting proc %d in "
+ "affinity mask for thread %d = %s\n",
+ proc, gtid, buf);
+ });
+
+ if (__kmp_env_consistency_check) {
+ if ((mask == NULL) || (*mask == NULL)) {
+ KMP_FATAL(AffinityInvalidMask, "kmp_get_affinity_mask_proc");
+ }
+ }
+
+ if ((proc < 0) || (proc >= __kmp_aux_get_affinity_max_proc())) {
+ return -1;
+ }
+ if (!KMP_CPU_ISSET(proc, __kmp_affin_fullMask)) {
+ return 0;
+ }
- return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
+ return KMP_CPU_ISSET(proc, (kmp_affin_mask_t *)(*mask));
}
-
// Dynamic affinity settings - Affinity balanced
-void __kmp_balanced_affinity( int tid, int nthreads )
-{
- if( __kmp_affinity_uniform_topology() ) {
- int coreID;
- int threadID;
- // Number of hyper threads per core in HT machine
- int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
- // Number of cores
- int ncores = __kmp_ncores;
- // How many threads will be bound to each core
- int chunk = nthreads / ncores;
- // How many cores will have an additional thread bound to it - "big cores"
- int big_cores = nthreads % ncores;
- // Number of threads on the big cores
- int big_nth = ( chunk + 1 ) * big_cores;
- if( tid < big_nth ) {
- coreID = tid / (chunk + 1 );
- threadID = ( tid % (chunk + 1 ) ) % __kmp_nth_per_core ;
- } else { //tid >= big_nth
- coreID = ( tid - big_cores ) / chunk;
- threadID = ( ( tid - big_cores ) % chunk ) % __kmp_nth_per_core ;
- }
-
- KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
- "Illegal set affinity operation when not capable");
-
- kmp_affin_mask_t *mask;
- KMP_CPU_ALLOC_ON_STACK(mask);
- KMP_CPU_ZERO(mask);
-
- // Granularity == thread
- if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
- int osID = address2os[ coreID * __kmp_nth_per_core + threadID ].second;
- KMP_CPU_SET( osID, mask);
- } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
- for( int i = 0; i < __kmp_nth_per_core; i++ ) {
- int osID;
- osID = address2os[ coreID * __kmp_nth_per_core + i ].second;
- KMP_CPU_SET( osID, mask);
- }
- }
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
- tid, buf);
- }
- __kmp_set_system_affinity( mask, TRUE );
- KMP_CPU_FREE_FROM_STACK(mask);
- } else { // Non-uniform topology
-
- kmp_affin_mask_t *mask;
- KMP_CPU_ALLOC_ON_STACK(mask);
- KMP_CPU_ZERO(mask);
-
- // Number of hyper threads per core in HT machine
- int nth_per_core = __kmp_nThreadsPerCore;
- int core_level;
- if( nth_per_core > 1 ) {
- core_level = __kmp_aff_depth - 2;
- } else {
- core_level = __kmp_aff_depth - 1;
- }
-
- // Number of cores - maximum value; it does not count trail cores with 0 processors
- int ncores = address2os[ __kmp_avail_proc - 1 ].first.labels[ core_level ] + 1;
-
- // For performance gain consider the special case nthreads == __kmp_avail_proc
- if( nthreads == __kmp_avail_proc ) {
- if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
- int osID = address2os[ tid ].second;
- KMP_CPU_SET( osID, mask);
- } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
- int coreID = address2os[ tid ].first.labels[ core_level ];
- // We'll count found osIDs for the current core; they can be not more than nth_per_core;
- // since the address2os is sortied we can break when cnt==nth_per_core
- int cnt = 0;
- for( int i = 0; i < __kmp_avail_proc; i++ ) {
- int osID = address2os[ i ].second;
- int core = address2os[ i ].first.labels[ core_level ];
- if( core == coreID ) {
- KMP_CPU_SET( osID, mask);
- cnt++;
- if( cnt == nth_per_core ) {
- break;
- }
- }
- }
- }
- } else if( nthreads <= __kmp_ncores ) {
-
- int core = 0;
- for( int i = 0; i < ncores; i++ ) {
- // Check if this core from procarr[] is in the mask
- int in_mask = 0;
- for( int j = 0; j < nth_per_core; j++ ) {
- if( procarr[ i * nth_per_core + j ] != - 1 ) {
- in_mask = 1;
- break;
- }
- }
- if( in_mask ) {
- if( tid == core ) {
- for( int j = 0; j < nth_per_core; j++ ) {
- int osID = procarr[ i * nth_per_core + j ];
- if( osID != -1 ) {
- KMP_CPU_SET( osID, mask );
- // For granularity=thread it is enough to set the first available osID for this core
- if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
- break;
- }
- }
- }
- break;
- } else {
- core++;
- }
- }
- }
-
- } else { // nthreads > __kmp_ncores
-
- // Array to save the number of processors at each core
- int* nproc_at_core = (int*)KMP_ALLOCA(sizeof(int)*ncores);
- // Array to save the number of cores with "x" available processors;
- int* ncores_with_x_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
- // Array to save the number of cores with # procs from x to nth_per_core
- int* ncores_with_x_to_max_procs = (int*)KMP_ALLOCA(sizeof(int)*(nth_per_core+1));
+void __kmp_balanced_affinity(kmp_info_t *th, int nthreads) {
+ KMP_DEBUG_ASSERT(th);
+ bool fine_gran = true;
+ int tid = th->th.th_info.ds.ds_tid;
+
+ // Do not perform balanced affinity for the hidden helper threads
+ if (KMP_HIDDEN_HELPER_THREAD(__kmp_gtid_from_thread(th)))
+ return;
+
+ switch (__kmp_affinity_gran) {
+ case KMP_HW_THREAD:
+ break;
+ case KMP_HW_CORE:
+ if (__kmp_nThreadsPerCore > 1) {
+ fine_gran = false;
+ }
+ break;
+ case KMP_HW_SOCKET:
+ if (nCoresPerPkg > 1) {
+ fine_gran = false;
+ }
+ break;
+ default:
+ fine_gran = false;
+ }
+
+ if (__kmp_topology->is_uniform()) {
+ int coreID;
+ int threadID;
+ // Number of hyper threads per core in HT machine
+ int __kmp_nth_per_core = __kmp_avail_proc / __kmp_ncores;
+ // Number of cores
+ int ncores = __kmp_ncores;
+ if ((nPackages > 1) && (__kmp_nth_per_core <= 1)) {
+ __kmp_nth_per_core = __kmp_avail_proc / nPackages;
+ ncores = nPackages;
+ }
+ // How many threads will be bound to each core
+ int chunk = nthreads / ncores;
+ // How many cores will have an additional thread bound to it - "big cores"
+ int big_cores = nthreads % ncores;
+ // Number of threads on the big cores
+ int big_nth = (chunk + 1) * big_cores;
+ if (tid < big_nth) {
+ coreID = tid / (chunk + 1);
+ threadID = (tid % (chunk + 1)) % __kmp_nth_per_core;
+ } else { // tid >= big_nth
+ coreID = (tid - big_cores) / chunk;
+ threadID = ((tid - big_cores) % chunk) % __kmp_nth_per_core;
+ }
+ KMP_DEBUG_ASSERT2(KMP_AFFINITY_CAPABLE(),
+ "Illegal set affinity operation when not capable");
+
+ kmp_affin_mask_t *mask = th->th.th_affin_mask;
+ KMP_CPU_ZERO(mask);
- for( int i = 0; i <= nth_per_core; i++ ) {
- ncores_with_x_procs[ i ] = 0;
- ncores_with_x_to_max_procs[ i ] = 0;
- }
+ if (fine_gran) {
+ int osID =
+ __kmp_topology->at(coreID * __kmp_nth_per_core + threadID).os_id;
+ KMP_CPU_SET(osID, mask);
+ } else {
+ for (int i = 0; i < __kmp_nth_per_core; i++) {
+ int osID;
+ osID = __kmp_topology->at(coreID * __kmp_nth_per_core + i).os_id;
+ KMP_CPU_SET(osID, mask);
+ }
+ }
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), tid, buf);
+ }
+ __kmp_set_system_affinity(mask, TRUE);
+ } else { // Non-uniform topology
- for( int i = 0; i < ncores; i++ ) {
- int cnt = 0;
- for( int j = 0; j < nth_per_core; j++ ) {
- if( procarr[ i * nth_per_core + j ] != -1 ) {
- cnt++;
- }
- }
- nproc_at_core[ i ] = cnt;
- ncores_with_x_procs[ cnt ]++;
- }
+ kmp_affin_mask_t *mask = th->th.th_affin_mask;
+ KMP_CPU_ZERO(mask);
- for( int i = 0; i <= nth_per_core; i++ ) {
- for( int j = i; j <= nth_per_core; j++ ) {
- ncores_with_x_to_max_procs[ i ] += ncores_with_x_procs[ j ];
+ int core_level =
+ __kmp_affinity_find_core_level(__kmp_avail_proc, __kmp_aff_depth - 1);
+ int ncores = __kmp_affinity_compute_ncores(__kmp_avail_proc,
+ __kmp_aff_depth - 1, core_level);
+ int nth_per_core = __kmp_affinity_max_proc_per_core(
+ __kmp_avail_proc, __kmp_aff_depth - 1, core_level);
+
+ // For performance gain consider the special case nthreads ==
+ // __kmp_avail_proc
+ if (nthreads == __kmp_avail_proc) {
+ if (fine_gran) {
+ int osID = __kmp_topology->at(tid).os_id;
+ KMP_CPU_SET(osID, mask);
+ } else {
+ int core =
+ __kmp_affinity_find_core(tid, __kmp_aff_depth - 1, core_level);
+ for (int i = 0; i < __kmp_avail_proc; i++) {
+ int osID = __kmp_topology->at(i).os_id;
+ if (__kmp_affinity_find_core(i, __kmp_aff_depth - 1, core_level) ==
+ core) {
+ KMP_CPU_SET(osID, mask);
+ }
+ }
+ }
+ } else if (nthreads <= ncores) {
+
+ int core = 0;
+ for (int i = 0; i < ncores; i++) {
+ // Check if this core from procarr[] is in the mask
+ int in_mask = 0;
+ for (int j = 0; j < nth_per_core; j++) {
+ if (procarr[i * nth_per_core + j] != -1) {
+ in_mask = 1;
+ break;
+ }
+ }
+ if (in_mask) {
+ if (tid == core) {
+ for (int j = 0; j < nth_per_core; j++) {
+ int osID = procarr[i * nth_per_core + j];
+ if (osID != -1) {
+ KMP_CPU_SET(osID, mask);
+ // For fine granularity it is enough to set the first available
+ // osID for this core
+ if (fine_gran) {
+ break;
}
+ }
}
-
- // Max number of processors
- int nproc = nth_per_core * ncores;
- // An array to keep number of threads per each context
- int * newarr = ( int * )__kmp_allocate( sizeof( int ) * nproc );
- for( int i = 0; i < nproc; i++ ) {
- newarr[ i ] = 0;
- }
-
- int nth = nthreads;
- int flag = 0;
- while( nth > 0 ) {
- for( int j = 1; j <= nth_per_core; j++ ) {
- int cnt = ncores_with_x_to_max_procs[ j ];
- for( int i = 0; i < ncores; i++ ) {
- // Skip the core with 0 processors
- if( nproc_at_core[ i ] == 0 ) {
- continue;
- }
- for( int k = 0; k < nth_per_core; k++ ) {
- if( procarr[ i * nth_per_core + k ] != -1 ) {
- if( newarr[ i * nth_per_core + k ] == 0 ) {
- newarr[ i * nth_per_core + k ] = 1;
- cnt--;
- nth--;
- break;
- } else {
- if( flag != 0 ) {
- newarr[ i * nth_per_core + k ] ++;
- cnt--;
- nth--;
- break;
- }
- }
- }
- }
- if( cnt == 0 || nth == 0 ) {
- break;
- }
- }
- if( nth == 0 ) {
- break;
- }
- }
- flag = 1;
+ break;
+ } else {
+ core++;
+ }
+ }
+ }
+ } else { // nthreads > ncores
+ // Array to save the number of processors at each core
+ int *nproc_at_core = (int *)KMP_ALLOCA(sizeof(int) * ncores);
+ // Array to save the number of cores with "x" available processors;
+ int *ncores_with_x_procs =
+ (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
+ // Array to save the number of cores with # procs from x to nth_per_core
+ int *ncores_with_x_to_max_procs =
+ (int *)KMP_ALLOCA(sizeof(int) * (nth_per_core + 1));
+
+ for (int i = 0; i <= nth_per_core; i++) {
+ ncores_with_x_procs[i] = 0;
+ ncores_with_x_to_max_procs[i] = 0;
+ }
+
+ for (int i = 0; i < ncores; i++) {
+ int cnt = 0;
+ for (int j = 0; j < nth_per_core; j++) {
+ if (procarr[i * nth_per_core + j] != -1) {
+ cnt++;
+ }
+ }
+ nproc_at_core[i] = cnt;
+ ncores_with_x_procs[cnt]++;
+ }
+
+ for (int i = 0; i <= nth_per_core; i++) {
+ for (int j = i; j <= nth_per_core; j++) {
+ ncores_with_x_to_max_procs[i] += ncores_with_x_procs[j];
+ }
+ }
+
+ // Max number of processors
+ int nproc = nth_per_core * ncores;
+ // An array to keep number of threads per each context
+ int *newarr = (int *)__kmp_allocate(sizeof(int) * nproc);
+ for (int i = 0; i < nproc; i++) {
+ newarr[i] = 0;
+ }
+
+ int nth = nthreads;
+ int flag = 0;
+ while (nth > 0) {
+ for (int j = 1; j <= nth_per_core; j++) {
+ int cnt = ncores_with_x_to_max_procs[j];
+ for (int i = 0; i < ncores; i++) {
+ // Skip the core with 0 processors
+ if (nproc_at_core[i] == 0) {
+ continue;
}
- int sum = 0;
- for( int i = 0; i < nproc; i++ ) {
- sum += newarr[ i ];
- if( sum > tid ) {
- // Granularity == thread
- if( __kmp_affinity_gran == affinity_gran_fine || __kmp_affinity_gran == affinity_gran_thread) {
- int osID = procarr[ i ];
- KMP_CPU_SET( osID, mask);
- } else if( __kmp_affinity_gran == affinity_gran_core ) { // Granularity == core
- int coreID = i / nth_per_core;
- for( int ii = 0; ii < nth_per_core; ii++ ) {
- int osID = procarr[ coreID * nth_per_core + ii ];
- if( osID != -1 ) {
- KMP_CPU_SET( osID, mask);
- }
- }
- }
+ for (int k = 0; k < nth_per_core; k++) {
+ if (procarr[i * nth_per_core + k] != -1) {
+ if (newarr[i * nth_per_core + k] == 0) {
+ newarr[i * nth_per_core + k] = 1;
+ cnt--;
+ nth--;
+ break;
+ } else {
+ if (flag != 0) {
+ newarr[i * nth_per_core + k]++;
+ cnt--;
+ nth--;
break;
+ }
}
+ }
+ }
+ if (cnt == 0 || nth == 0) {
+ break;
+ }
+ }
+ if (nth == 0) {
+ break;
+ }
+ }
+ flag = 1;
+ }
+ int sum = 0;
+ for (int i = 0; i < nproc; i++) {
+ sum += newarr[i];
+ if (sum > tid) {
+ if (fine_gran) {
+ int osID = procarr[i];
+ KMP_CPU_SET(osID, mask);
+ } else {
+ int coreID = i / nth_per_core;
+ for (int ii = 0; ii < nth_per_core; ii++) {
+ int osID = procarr[coreID * nth_per_core + ii];
+ if (osID != -1) {
+ KMP_CPU_SET(osID, mask);
+ }
}
- __kmp_free( newarr );
+ }
+ break;
}
+ }
+ __kmp_free(newarr);
+ }
- if (__kmp_affinity_verbose) {
- char buf[KMP_AFFIN_MASK_PRINT_LEN];
- __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
- KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
- tid, buf);
- }
- __kmp_set_system_affinity( mask, TRUE );
- KMP_CPU_FREE_FROM_STACK(mask);
+ if (__kmp_affinity_verbose) {
+ char buf[KMP_AFFIN_MASK_PRINT_LEN];
+ __kmp_affinity_print_mask(buf, KMP_AFFIN_MASK_PRINT_LEN, mask);
+ KMP_INFORM(BoundToOSProcSet, "KMP_AFFINITY", (kmp_int32)getpid(),
+ __kmp_gettid(), tid, buf);
}
+ __kmp_set_system_affinity(mask, TRUE);
+ }
+}
+
+#if KMP_OS_LINUX || KMP_OS_FREEBSD
+// We don't need this entry for Windows because
+// there is GetProcessAffinityMask() api
+//
+// The intended usage is indicated by these steps:
+// 1) The user gets the current affinity mask
+// 2) Then sets the affinity by calling this function
+// 3) Error check the return value
+// 4) Use non-OpenMP parallelization
+// 5) Reset the affinity to what was stored in step 1)
+#ifdef __cplusplus
+extern "C"
+#endif
+ int
+ kmp_set_thread_affinity_mask_initial()
+// the function returns 0 on success,
+// -1 if we cannot bind thread
+// >0 (errno) if an error happened during binding
+{
+ int gtid = __kmp_get_gtid();
+ if (gtid < 0) {
+ // Do not touch non-omp threads
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "non-omp thread, returning\n"));
+ return -1;
+ }
+ if (!KMP_AFFINITY_CAPABLE() || !__kmp_init_middle) {
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "affinity not initialized, returning\n"));
+ return -1;
+ }
+ KA_TRACE(30, ("kmp_set_thread_affinity_mask_initial: "
+ "set full mask for thread %d\n",
+ gtid));
+ KMP_DEBUG_ASSERT(__kmp_affin_fullMask != NULL);
+ return __kmp_set_system_affinity(__kmp_affin_fullMask, FALSE);
}
+#endif
#endif // KMP_AFFINITY_SUPPORTED