aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/cxxsupp/builtins/comparetf2.c
diff options
context:
space:
mode:
authorAnton Samokhvalov <pg83@yandex.ru>2022-02-10 16:45:17 +0300
committerDaniil Cherednik <dcherednik@yandex-team.ru>2022-02-10 16:45:17 +0300
commitd3a398281c6fd1d3672036cb2d63f842d2cb28c5 (patch)
treedd4bd3ca0f36b817e96812825ffaf10d645803f2 /contrib/libs/cxxsupp/builtins/comparetf2.c
parent72cb13b4aff9bc9cf22e49251bc8fd143f82538f (diff)
downloadydb-d3a398281c6fd1d3672036cb2d63f842d2cb28c5.tar.gz
Restoring authorship annotation for Anton Samokhvalov <pg83@yandex.ru>. Commit 2 of 2.
Diffstat (limited to 'contrib/libs/cxxsupp/builtins/comparetf2.c')
-rw-r--r--contrib/libs/cxxsupp/builtins/comparetf2.c276
1 files changed, 138 insertions, 138 deletions
diff --git a/contrib/libs/cxxsupp/builtins/comparetf2.c b/contrib/libs/cxxsupp/builtins/comparetf2.c
index 0b4c16b1e3..c0ad8ed0ae 100644
--- a/contrib/libs/cxxsupp/builtins/comparetf2.c
+++ b/contrib/libs/cxxsupp/builtins/comparetf2.c
@@ -1,138 +1,138 @@
-//===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is dual licensed under the MIT and the University of Illinois Open
-// Source Licenses. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// // This file implements the following soft-float comparison routines:
-//
-// __eqtf2 __getf2 __unordtf2
-// __letf2 __gttf2
-// __lttf2
-// __netf2
-//
-// The semantics of the routines grouped in each column are identical, so there
-// is a single implementation for each, and wrappers to provide the other names.
-//
-// The main routines behave as follows:
-//
-// __letf2(a,b) returns -1 if a < b
-// 0 if a == b
-// 1 if a > b
-// 1 if either a or b is NaN
-//
-// __getf2(a,b) returns -1 if a < b
-// 0 if a == b
-// 1 if a > b
-// -1 if either a or b is NaN
-//
-// __unordtf2(a,b) returns 0 if both a and b are numbers
-// 1 if either a or b is NaN
-//
-// Note that __letf2( ) and __getf2( ) are identical except in their handling of
-// NaN values.
-//
-//===----------------------------------------------------------------------===//
-
-#define QUAD_PRECISION
-#include "fp_lib.h"
-
-#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
-enum LE_RESULT {
- LE_LESS = -1,
- LE_EQUAL = 0,
- LE_GREATER = 1,
- LE_UNORDERED = 1
-};
-
-COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- // If either a or b is NaN, they are unordered.
- if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
-
- // If a and b are both zeros, they are equal.
- if ((aAbs | bAbs) == 0) return LE_EQUAL;
-
- // If at least one of a and b is positive, we get the same result comparing
- // a and b as signed integers as we would with a floating-point compare.
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
- else {
- // Otherwise, both are negative, so we need to flip the sense of the
- // comparison to get the correct result. (This assumes a twos- or ones-
- // complement integer representation; if integers are represented in a
- // sign-magnitude representation, then this flip is incorrect).
- if (aInt > bInt) return LE_LESS;
- else if (aInt == bInt) return LE_EQUAL;
- else return LE_GREATER;
- }
-}
-
-#if defined(__ELF__)
-// Alias for libgcc compatibility
-FNALIAS(__cmptf2, __letf2);
-#endif
-
-enum GE_RESULT {
- GE_LESS = -1,
- GE_EQUAL = 0,
- GE_GREATER = 1,
- GE_UNORDERED = -1 // Note: different from LE_UNORDERED
-};
-
-COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
-
- const srep_t aInt = toRep(a);
- const srep_t bInt = toRep(b);
- const rep_t aAbs = aInt & absMask;
- const rep_t bAbs = bInt & absMask;
-
- if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
- if ((aAbs | bAbs) == 0) return GE_EQUAL;
- if ((aInt & bInt) >= 0) {
- if (aInt < bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- } else {
- if (aInt > bInt) return GE_LESS;
- else if (aInt == bInt) return GE_EQUAL;
- else return GE_GREATER;
- }
-}
-
-COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
- const rep_t aAbs = toRep(a) & absMask;
- const rep_t bAbs = toRep(b) & absMask;
- return aAbs > infRep || bAbs > infRep;
-}
-
-// The following are alternative names for the preceding routines.
-
-COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
-
-COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
-
-COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
- return __letf2(a, b);
-}
-
-COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
- return __getf2(a, b);
-}
-
-#endif
+//===-- lib/comparetf2.c - Quad-precision comparisons -------------*- C -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is dual licensed under the MIT and the University of Illinois Open
+// Source Licenses. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// // This file implements the following soft-float comparison routines:
+//
+// __eqtf2 __getf2 __unordtf2
+// __letf2 __gttf2
+// __lttf2
+// __netf2
+//
+// The semantics of the routines grouped in each column are identical, so there
+// is a single implementation for each, and wrappers to provide the other names.
+//
+// The main routines behave as follows:
+//
+// __letf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// 1 if either a or b is NaN
+//
+// __getf2(a,b) returns -1 if a < b
+// 0 if a == b
+// 1 if a > b
+// -1 if either a or b is NaN
+//
+// __unordtf2(a,b) returns 0 if both a and b are numbers
+// 1 if either a or b is NaN
+//
+// Note that __letf2( ) and __getf2( ) are identical except in their handling of
+// NaN values.
+//
+//===----------------------------------------------------------------------===//
+
+#define QUAD_PRECISION
+#include "fp_lib.h"
+
+#if defined(CRT_HAS_128BIT) && defined(CRT_LDBL_128BIT)
+enum LE_RESULT {
+ LE_LESS = -1,
+ LE_EQUAL = 0,
+ LE_GREATER = 1,
+ LE_UNORDERED = 1
+};
+
+COMPILER_RT_ABI enum LE_RESULT __letf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ // If either a or b is NaN, they are unordered.
+ if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED;
+
+ // If a and b are both zeros, they are equal.
+ if ((aAbs | bAbs) == 0) return LE_EQUAL;
+
+ // If at least one of a and b is positive, we get the same result comparing
+ // a and b as signed integers as we would with a floating-point compare.
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt) return LE_LESS;
+ else if (aInt == bInt) return LE_EQUAL;
+ else return LE_GREATER;
+ }
+ else {
+ // Otherwise, both are negative, so we need to flip the sense of the
+ // comparison to get the correct result. (This assumes a twos- or ones-
+ // complement integer representation; if integers are represented in a
+ // sign-magnitude representation, then this flip is incorrect).
+ if (aInt > bInt) return LE_LESS;
+ else if (aInt == bInt) return LE_EQUAL;
+ else return LE_GREATER;
+ }
+}
+
+#if defined(__ELF__)
+// Alias for libgcc compatibility
+FNALIAS(__cmptf2, __letf2);
+#endif
+
+enum GE_RESULT {
+ GE_LESS = -1,
+ GE_EQUAL = 0,
+ GE_GREATER = 1,
+ GE_UNORDERED = -1 // Note: different from LE_UNORDERED
+};
+
+COMPILER_RT_ABI enum GE_RESULT __getf2(fp_t a, fp_t b) {
+
+ const srep_t aInt = toRep(a);
+ const srep_t bInt = toRep(b);
+ const rep_t aAbs = aInt & absMask;
+ const rep_t bAbs = bInt & absMask;
+
+ if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED;
+ if ((aAbs | bAbs) == 0) return GE_EQUAL;
+ if ((aInt & bInt) >= 0) {
+ if (aInt < bInt) return GE_LESS;
+ else if (aInt == bInt) return GE_EQUAL;
+ else return GE_GREATER;
+ } else {
+ if (aInt > bInt) return GE_LESS;
+ else if (aInt == bInt) return GE_EQUAL;
+ else return GE_GREATER;
+ }
+}
+
+COMPILER_RT_ABI int __unordtf2(fp_t a, fp_t b) {
+ const rep_t aAbs = toRep(a) & absMask;
+ const rep_t bAbs = toRep(b) & absMask;
+ return aAbs > infRep || bAbs > infRep;
+}
+
+// The following are alternative names for the preceding routines.
+
+COMPILER_RT_ABI enum LE_RESULT __eqtf2(fp_t a, fp_t b) {
+ return __letf2(a, b);
+}
+
+COMPILER_RT_ABI enum LE_RESULT __lttf2(fp_t a, fp_t b) {
+ return __letf2(a, b);
+}
+
+COMPILER_RT_ABI enum LE_RESULT __netf2(fp_t a, fp_t b) {
+ return __letf2(a, b);
+}
+
+COMPILER_RT_ABI enum GE_RESULT __gttf2(fp_t a, fp_t b) {
+ return __getf2(a, b);
+}
+
+#endif