diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zpotf2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zpotf2.c')
-rw-r--r-- | contrib/libs/clapack/zpotf2.c | 245 |
1 files changed, 245 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zpotf2.c b/contrib/libs/clapack/zpotf2.c new file mode 100644 index 0000000000..ffdb708a60 --- /dev/null +++ b/contrib/libs/clapack/zpotf2.c @@ -0,0 +1,245 @@ +/* zpotf2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {1.,0.}; +static integer c__1 = 1; + +/* Subroutine */ int zpotf2_(char *uplo, integer *n, doublecomplex *a, + integer *lda, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, i__1, i__2, i__3; + doublereal d__1; + doublecomplex z__1, z__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer j; + doublereal ajj; + extern logical lsame_(char *, char *); + extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *); + extern /* Subroutine */ int zgemv_(char *, integer *, integer *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *); + logical upper; + extern logical disnan_(doublereal *); + extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_( + integer *, doublereal *, doublecomplex *, integer *), zlacgv_( + integer *, doublecomplex *, integer *); + + +/* -- LAPACK routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZPOTF2 computes the Cholesky factorization of a complex Hermitian */ +/* positive definite matrix A. */ + +/* The factorization has the form */ +/* A = U' * U , if UPLO = 'U', or */ +/* A = L * L', if UPLO = 'L', */ +/* where U is an upper triangular matrix and L is lower triangular. */ + +/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */ + +/* Arguments */ +/* ========= */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the upper or lower triangular part of the */ +/* Hermitian matrix A is stored. */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */ +/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */ +/* n by n upper triangular part of A contains the upper */ +/* triangular part of the matrix A, and the strictly lower */ +/* triangular part of A is not referenced. If UPLO = 'L', the */ +/* leading n by n lower triangular part of A contains the lower */ +/* triangular part of the matrix A, and the strictly upper */ +/* triangular part of A is not referenced. */ + +/* On exit, if INFO = 0, the factor U or L from the Cholesky */ +/* factorization A = U'*U or A = L*L'. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -k, the k-th argument had an illegal value */ +/* > 0: if INFO = k, the leading minor of order k is not */ +/* positive definite, and the factorization could not be */ +/* completed. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + + /* Function Body */ + *info = 0; + upper = lsame_(uplo, "U"); + if (! upper && ! lsame_(uplo, "L")) { + *info = -1; + } else if (*n < 0) { + *info = -2; + } else if (*lda < max(1,*n)) { + *info = -4; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZPOTF2", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + + if (upper) { + +/* Compute the Cholesky factorization A = U'*U. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + +/* Compute U(J,J) and test for non-positive-definiteness. */ + + i__2 = j + j * a_dim1; + d__1 = a[i__2].r; + i__3 = j - 1; + zdotc_(&z__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1] +, &c__1); + z__1.r = d__1 - z__2.r, z__1.i = -z__2.i; + ajj = z__1.r; + if (ajj <= 0. || disnan_(&ajj)) { + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.; + goto L30; + } + ajj = sqrt(ajj); + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.; + +/* Compute elements J+1:N of row J. */ + + if (j < *n) { + i__2 = j - 1; + zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1); + i__2 = j - 1; + i__3 = *n - j; + z__1.r = -1., z__1.i = -0.; + zgemv_("Transpose", &i__2, &i__3, &z__1, &a[(j + 1) * a_dim1 + + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b1, &a[j + ( + j + 1) * a_dim1], lda); + i__2 = j - 1; + zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1); + i__2 = *n - j; + d__1 = 1. / ajj; + zdscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda); + } +/* L10: */ + } + } else { + +/* Compute the Cholesky factorization A = L*L'. */ + + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + +/* Compute L(J,J) and test for non-positive-definiteness. */ + + i__2 = j + j * a_dim1; + d__1 = a[i__2].r; + i__3 = j - 1; + zdotc_(&z__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda); + z__1.r = d__1 - z__2.r, z__1.i = -z__2.i; + ajj = z__1.r; + if (ajj <= 0. || disnan_(&ajj)) { + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.; + goto L30; + } + ajj = sqrt(ajj); + i__2 = j + j * a_dim1; + a[i__2].r = ajj, a[i__2].i = 0.; + +/* Compute elements J+1:N of column J. */ + + if (j < *n) { + i__2 = j - 1; + zlacgv_(&i__2, &a[j + a_dim1], lda); + i__2 = *n - j; + i__3 = j - 1; + z__1.r = -1., z__1.i = -0.; + zgemv_("No transpose", &i__2, &i__3, &z__1, &a[j + 1 + a_dim1] +, lda, &a[j + a_dim1], lda, &c_b1, &a[j + 1 + j * + a_dim1], &c__1); + i__2 = j - 1; + zlacgv_(&i__2, &a[j + a_dim1], lda); + i__2 = *n - j; + d__1 = 1. / ajj; + zdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1); + } +/* L20: */ + } + } + goto L40; + +L30: + *info = j; + +L40: + return 0; + +/* End of ZPOTF2 */ + +} /* zpotf2_ */ |