aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/zpotf2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zpotf2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zpotf2.c')
-rw-r--r--contrib/libs/clapack/zpotf2.c245
1 files changed, 245 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zpotf2.c b/contrib/libs/clapack/zpotf2.c
new file mode 100644
index 0000000000..ffdb708a60
--- /dev/null
+++ b/contrib/libs/clapack/zpotf2.c
@@ -0,0 +1,245 @@
+/* zpotf2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublecomplex c_b1 = {1.,0.};
+static integer c__1 = 1;
+
+/* Subroutine */ int zpotf2_(char *uplo, integer *n, doublecomplex *a,
+ integer *lda, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, i__1, i__2, i__3;
+ doublereal d__1;
+ doublecomplex z__1, z__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer j;
+ doublereal ajj;
+ extern logical lsame_(char *, char *);
+ extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *,
+ doublecomplex *, integer *, doublecomplex *, integer *);
+ extern /* Subroutine */ int zgemv_(char *, integer *, integer *,
+ doublecomplex *, doublecomplex *, integer *, doublecomplex *,
+ integer *, doublecomplex *, doublecomplex *, integer *);
+ logical upper;
+ extern logical disnan_(doublereal *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), zdscal_(
+ integer *, doublereal *, doublecomplex *, integer *), zlacgv_(
+ integer *, doublecomplex *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* ZPOTF2 computes the Cholesky factorization of a complex Hermitian */
+/* positive definite matrix A. */
+
+/* The factorization has the form */
+/* A = U' * U , if UPLO = 'U', or */
+/* A = L * L', if UPLO = 'L', */
+/* where U is an upper triangular matrix and L is lower triangular. */
+
+/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the upper or lower triangular part of the */
+/* Hermitian matrix A is stored. */
+/* = 'U': Upper triangular */
+/* = 'L': Lower triangular */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) COMPLEX*16 array, dimension (LDA,N) */
+/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
+/* n by n upper triangular part of A contains the upper */
+/* triangular part of the matrix A, and the strictly lower */
+/* triangular part of A is not referenced. If UPLO = 'L', the */
+/* leading n by n lower triangular part of A contains the lower */
+/* triangular part of the matrix A, and the strictly upper */
+/* triangular part of A is not referenced. */
+
+/* On exit, if INFO = 0, the factor U or L from the Cholesky */
+/* factorization A = U'*U or A = L*L'. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -k, the k-th argument had an illegal value */
+/* > 0: if INFO = k, the leading minor of order k is not */
+/* positive definite, and the factorization could not be */
+/* completed. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*lda < max(1,*n)) {
+ *info = -4;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("ZPOTF2", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Compute the Cholesky factorization A = U'*U. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute U(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j + j * a_dim1;
+ d__1 = a[i__2].r;
+ i__3 = j - 1;
+ zdotc_(&z__2, &i__3, &a[j * a_dim1 + 1], &c__1, &a[j * a_dim1 + 1]
+, &c__1);
+ z__1.r = d__1 - z__2.r, z__1.i = -z__2.i;
+ ajj = z__1.r;
+ if (ajj <= 0. || disnan_(&ajj)) {
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.;
+
+/* Compute elements J+1:N of row J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
+ i__2 = j - 1;
+ i__3 = *n - j;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("Transpose", &i__2, &i__3, &z__1, &a[(j + 1) * a_dim1
+ + 1], lda, &a[j * a_dim1 + 1], &c__1, &c_b1, &a[j + (
+ j + 1) * a_dim1], lda);
+ i__2 = j - 1;
+ zlacgv_(&i__2, &a[j * a_dim1 + 1], &c__1);
+ i__2 = *n - j;
+ d__1 = 1. / ajj;
+ zdscal_(&i__2, &d__1, &a[j + (j + 1) * a_dim1], lda);
+ }
+/* L10: */
+ }
+ } else {
+
+/* Compute the Cholesky factorization A = L*L'. */
+
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+
+/* Compute L(J,J) and test for non-positive-definiteness. */
+
+ i__2 = j + j * a_dim1;
+ d__1 = a[i__2].r;
+ i__3 = j - 1;
+ zdotc_(&z__2, &i__3, &a[j + a_dim1], lda, &a[j + a_dim1], lda);
+ z__1.r = d__1 - z__2.r, z__1.i = -z__2.i;
+ ajj = z__1.r;
+ if (ajj <= 0. || disnan_(&ajj)) {
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.;
+ goto L30;
+ }
+ ajj = sqrt(ajj);
+ i__2 = j + j * a_dim1;
+ a[i__2].r = ajj, a[i__2].i = 0.;
+
+/* Compute elements J+1:N of column J. */
+
+ if (j < *n) {
+ i__2 = j - 1;
+ zlacgv_(&i__2, &a[j + a_dim1], lda);
+ i__2 = *n - j;
+ i__3 = j - 1;
+ z__1.r = -1., z__1.i = -0.;
+ zgemv_("No transpose", &i__2, &i__3, &z__1, &a[j + 1 + a_dim1]
+, lda, &a[j + a_dim1], lda, &c_b1, &a[j + 1 + j *
+ a_dim1], &c__1);
+ i__2 = j - 1;
+ zlacgv_(&i__2, &a[j + a_dim1], lda);
+ i__2 = *n - j;
+ d__1 = 1. / ajj;
+ zdscal_(&i__2, &d__1, &a[j + 1 + j * a_dim1], &c__1);
+ }
+/* L20: */
+ }
+ }
+ goto L40;
+
+L30:
+ *info = j;
+
+L40:
+ return 0;
+
+/* End of ZPOTF2 */
+
+} /* zpotf2_ */