diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgegv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgegv.c')
-rw-r--r-- | contrib/libs/clapack/zgegv.c | 781 |
1 files changed, 781 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgegv.c b/contrib/libs/clapack/zgegv.c new file mode 100644 index 0000000000..a244aa15c9 --- /dev/null +++ b/contrib/libs/clapack/zgegv.c @@ -0,0 +1,781 @@ +/* zgegv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublecomplex c_b1 = {0.,0.}; +static doublecomplex c_b2 = {1.,0.}; +static integer c__1 = 1; +static integer c_n1 = -1; +static doublereal c_b29 = 1.; + +/* Subroutine */ int zgegv_(char *jobvl, char *jobvr, integer *n, + doublecomplex *a, integer *lda, doublecomplex *b, integer *ldb, + doublecomplex *alpha, doublecomplex *beta, doublecomplex *vl, integer + *ldvl, doublecomplex *vr, integer *ldvr, doublecomplex *work, integer + *lwork, doublereal *rwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, + vr_offset, i__1, i__2, i__3, i__4; + doublereal d__1, d__2, d__3, d__4; + doublecomplex z__1, z__2; + + /* Builtin functions */ + double d_imag(doublecomplex *); + + /* Local variables */ + integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo; + doublereal eps; + logical ilv; + doublereal absb, anrm, bnrm; + integer itau; + doublereal temp; + logical ilvl, ilvr; + integer lopt; + doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta; + extern logical lsame_(char *, char *); + integer ileft, iinfo, icols, iwork, irows; + extern doublereal dlamch_(char *); + doublereal salfai; + extern /* Subroutine */ int zggbak_(char *, char *, integer *, integer *, + integer *, doublereal *, doublereal *, integer *, doublecomplex *, + integer *, integer *), zggbal_(char *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, integer * +, integer *, doublereal *, doublereal *, doublereal *, integer *); + doublereal salfar, safmin; + extern /* Subroutine */ int xerbla_(char *, integer *); + doublereal safmax; + char chtemp[1]; + logical ldumma[1]; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, + integer *, doublereal *); + integer ijobvl, iright; + logical ilimit; + extern /* Subroutine */ int zgghrd_(char *, char *, integer *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, integer * +), zlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublecomplex *, + integer *, integer *); + integer ijobvr; + extern /* Subroutine */ int zgeqrf_(integer *, integer *, doublecomplex *, + integer *, doublecomplex *, doublecomplex *, integer *, integer * +); + integer lwkmin; + extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *), + zlaset_(char *, integer *, integer *, doublecomplex *, + doublecomplex *, doublecomplex *, integer *), ztgevc_( + char *, char *, logical *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *, integer *, integer *, doublecomplex *, + doublereal *, integer *), zhgeqz_(char *, char *, + char *, integer *, integer *, integer *, doublecomplex *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, doublecomplex *, integer *, doublecomplex *, + integer *, doublecomplex *, integer *, doublereal *, integer *); + integer irwork, lwkopt; + logical lquery; + extern /* Subroutine */ int zungqr_(integer *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *, integer *), zunmqr_(char *, char *, integer *, integer + *, integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* This routine is deprecated and has been replaced by routine ZGGEV. */ + +/* ZGEGV computes the eigenvalues and, optionally, the left and/or right */ +/* eigenvectors of a complex matrix pair (A,B). */ +/* Given two square matrices A and B, */ +/* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */ +/* eigenvalues lambda and corresponding (non-zero) eigenvectors x such */ +/* that */ +/* A*x = lambda*B*x. */ + +/* An alternate form is to find the eigenvalues mu and corresponding */ +/* eigenvectors y such that */ +/* mu*A*y = B*y. */ + +/* These two forms are equivalent with mu = 1/lambda and x = y if */ +/* neither lambda nor mu is zero. In order to deal with the case that */ +/* lambda or mu is zero or small, two values alpha and beta are returned */ +/* for each eigenvalue, such that lambda = alpha/beta and */ +/* mu = beta/alpha. */ + +/* The vectors x and y in the above equations are right eigenvectors of */ +/* the matrix pair (A,B). Vectors u and v satisfying */ +/* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */ +/* are left eigenvectors of (A,B). */ + +/* Note: this routine performs "full balancing" on A and B -- see */ +/* "Further Details", below. */ + +/* Arguments */ +/* ========= */ + +/* JOBVL (input) CHARACTER*1 */ +/* = 'N': do not compute the left generalized eigenvectors; */ +/* = 'V': compute the left generalized eigenvectors (returned */ +/* in VL). */ + +/* JOBVR (input) CHARACTER*1 */ +/* = 'N': do not compute the right generalized eigenvectors; */ +/* = 'V': compute the right generalized eigenvectors (returned */ +/* in VR). */ + +/* N (input) INTEGER */ +/* The order of the matrices A, B, VL, and VR. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ +/* On entry, the matrix A. */ +/* If JOBVL = 'V' or JOBVR = 'V', then on exit A */ +/* contains the Schur form of A from the generalized Schur */ +/* factorization of the pair (A,B) after balancing. If no */ +/* eigenvectors were computed, then only the diagonal elements */ +/* of the Schur form will be correct. See ZGGHRD and ZHGEQZ */ +/* for details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of A. LDA >= max(1,N). */ + +/* B (input/output) COMPLEX*16 array, dimension (LDB, N) */ +/* On entry, the matrix B. */ +/* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */ +/* upper triangular matrix obtained from B in the generalized */ +/* Schur factorization of the pair (A,B) after balancing. */ +/* If no eigenvectors were computed, then only the diagonal */ +/* elements of B will be correct. See ZGGHRD and ZHGEQZ for */ +/* details. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of B. LDB >= max(1,N). */ + +/* ALPHA (output) COMPLEX*16 array, dimension (N) */ +/* The complex scalars alpha that define the eigenvalues of */ +/* GNEP. */ + +/* BETA (output) COMPLEX*16 array, dimension (N) */ +/* The complex scalars beta that define the eigenvalues of GNEP. */ + +/* Together, the quantities alpha = ALPHA(j) and beta = BETA(j) */ +/* represent the j-th eigenvalue of the matrix pair (A,B), in */ +/* one of the forms lambda = alpha/beta or mu = beta/alpha. */ +/* Since either lambda or mu may overflow, they should not, */ +/* in general, be computed. */ + +/* VL (output) COMPLEX*16 array, dimension (LDVL,N) */ +/* If JOBVL = 'V', the left eigenvectors u(j) are stored */ +/* in the columns of VL, in the same order as their eigenvalues. */ +/* Each eigenvector is scaled so that its largest component has */ +/* abs(real part) + abs(imag. part) = 1, except for eigenvectors */ +/* corresponding to an eigenvalue with alpha = beta = 0, which */ +/* are set to zero. */ +/* Not referenced if JOBVL = 'N'. */ + +/* LDVL (input) INTEGER */ +/* The leading dimension of the matrix VL. LDVL >= 1, and */ +/* if JOBVL = 'V', LDVL >= N. */ + +/* VR (output) COMPLEX*16 array, dimension (LDVR,N) */ +/* If JOBVR = 'V', the right eigenvectors x(j) are stored */ +/* in the columns of VR, in the same order as their eigenvalues. */ +/* Each eigenvector is scaled so that its largest component has */ +/* abs(real part) + abs(imag. part) = 1, except for eigenvectors */ +/* corresponding to an eigenvalue with alpha = beta = 0, which */ +/* are set to zero. */ +/* Not referenced if JOBVR = 'N'. */ + +/* LDVR (input) INTEGER */ +/* The leading dimension of the matrix VR. LDVR >= 1, and */ +/* if JOBVR = 'V', LDVR >= N. */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,2*N). */ +/* For good performance, LWORK must generally be larger. */ +/* To compute the optimal value of LWORK, call ILAENV to get */ +/* blocksizes (for ZGEQRF, ZUNMQR, and ZUNGQR.) Then compute: */ +/* NB -- MAX of the blocksizes for ZGEQRF, ZUNMQR, and ZUNGQR; */ +/* The optimal LWORK is MAX( 2*N, N*(NB+1) ). */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* RWORK (workspace/output) DOUBLE PRECISION array, dimension (8*N) */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* =1,...,N: */ +/* The QZ iteration failed. No eigenvectors have been */ +/* calculated, but ALPHA(j) and BETA(j) should be */ +/* correct for j=INFO+1,...,N. */ +/* > N: errors that usually indicate LAPACK problems: */ +/* =N+1: error return from ZGGBAL */ +/* =N+2: error return from ZGEQRF */ +/* =N+3: error return from ZUNMQR */ +/* =N+4: error return from ZUNGQR */ +/* =N+5: error return from ZGGHRD */ +/* =N+6: error return from ZHGEQZ (other than failed */ +/* iteration) */ +/* =N+7: error return from ZTGEVC */ +/* =N+8: error return from ZGGBAK (computing VL) */ +/* =N+9: error return from ZGGBAK (computing VR) */ +/* =N+10: error return from ZLASCL (various calls) */ + +/* Further Details */ +/* =============== */ + +/* Balancing */ +/* --------- */ + +/* This driver calls ZGGBAL to both permute and scale rows and columns */ +/* of A and B. The permutations PL and PR are chosen so that PL*A*PR */ +/* and PL*B*R will be upper triangular except for the diagonal blocks */ +/* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */ +/* possible. The diagonal scaling matrices DL and DR are chosen so */ +/* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */ +/* one (except for the elements that start out zero.) */ + +/* After the eigenvalues and eigenvectors of the balanced matrices */ +/* have been computed, ZGGBAK transforms the eigenvectors back to what */ +/* they would have been (in perfect arithmetic) if they had not been */ +/* balanced. */ + +/* Contents of A and B on Exit */ +/* -------- -- - --- - -- ---- */ + +/* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */ +/* both), then on exit the arrays A and B will contain the complex Schur */ +/* form[*] of the "balanced" versions of A and B. If no eigenvectors */ +/* are computed, then only the diagonal blocks will be correct. */ + +/* [*] In other words, upper triangular form. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Statement Functions .. */ +/* .. */ +/* .. Statement Function definitions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --alpha; + --beta; + vl_dim1 = *ldvl; + vl_offset = 1 + vl_dim1; + vl -= vl_offset; + vr_dim1 = *ldvr; + vr_offset = 1 + vr_dim1; + vr -= vr_offset; + --work; + --rwork; + + /* Function Body */ + if (lsame_(jobvl, "N")) { + ijobvl = 1; + ilvl = FALSE_; + } else if (lsame_(jobvl, "V")) { + ijobvl = 2; + ilvl = TRUE_; + } else { + ijobvl = -1; + ilvl = FALSE_; + } + + if (lsame_(jobvr, "N")) { + ijobvr = 1; + ilvr = FALSE_; + } else if (lsame_(jobvr, "V")) { + ijobvr = 2; + ilvr = TRUE_; + } else { + ijobvr = -1; + ilvr = FALSE_; + } + ilv = ilvl || ilvr; + +/* Test the input arguments */ + +/* Computing MAX */ + i__1 = *n << 1; + lwkmin = max(i__1,1); + lwkopt = lwkmin; + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + lquery = *lwork == -1; + *info = 0; + if (ijobvl <= 0) { + *info = -1; + } else if (ijobvr <= 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -7; + } else if (*ldvl < 1 || ilvl && *ldvl < *n) { + *info = -11; + } else if (*ldvr < 1 || ilvr && *ldvr < *n) { + *info = -13; + } else if (*lwork < lwkmin && ! lquery) { + *info = -15; + } + + if (*info == 0) { + nb1 = ilaenv_(&c__1, "ZGEQRF", " ", n, n, &c_n1, &c_n1); + nb2 = ilaenv_(&c__1, "ZUNMQR", " ", n, n, n, &c_n1); + nb3 = ilaenv_(&c__1, "ZUNGQR", " ", n, n, n, &c_n1); +/* Computing MAX */ + i__1 = max(nb1,nb2); + nb = max(i__1,nb3); +/* Computing MAX */ + i__1 = *n << 1, i__2 = *n * (nb + 1); + lopt = max(i__1,i__2); + work[1].r = (doublereal) lopt, work[1].i = 0.; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZGEGV ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = dlamch_("E") * dlamch_("B"); + safmin = dlamch_("S"); + safmin += safmin; + safmax = 1. / safmin; + +/* Scale A */ + + anrm = zlange_("M", n, n, &a[a_offset], lda, &rwork[1]); + anrm1 = anrm; + anrm2 = 1.; + if (anrm < 1.) { + if (safmax * anrm < 1.) { + anrm1 = safmin; + anrm2 = safmax * anrm; + } + } + + if (anrm > 0.) { + zlascl_("G", &c_n1, &c_n1, &anrm, &c_b29, n, n, &a[a_offset], lda, & + iinfo); + if (iinfo != 0) { + *info = *n + 10; + return 0; + } + } + +/* Scale B */ + + bnrm = zlange_("M", n, n, &b[b_offset], ldb, &rwork[1]); + bnrm1 = bnrm; + bnrm2 = 1.; + if (bnrm < 1.) { + if (safmax * bnrm < 1.) { + bnrm1 = safmin; + bnrm2 = safmax * bnrm; + } + } + + if (bnrm > 0.) { + zlascl_("G", &c_n1, &c_n1, &bnrm, &c_b29, n, n, &b[b_offset], ldb, & + iinfo); + if (iinfo != 0) { + *info = *n + 10; + return 0; + } + } + +/* Permute the matrix to make it more nearly triangular */ +/* Also "balance" the matrix. */ + + ileft = 1; + iright = *n + 1; + irwork = iright + *n; + zggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &rwork[ + ileft], &rwork[iright], &rwork[irwork], &iinfo); + if (iinfo != 0) { + *info = *n + 1; + goto L80; + } + +/* Reduce B to triangular form, and initialize VL and/or VR */ + + irows = ihi + 1 - ilo; + if (ilv) { + icols = *n + 1 - ilo; + } else { + icols = irows; + } + itau = 1; + iwork = itau + irows; + i__1 = *lwork + 1 - iwork; + zgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ + iwork], &i__1, &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__3 = iwork; + i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 2; + goto L80; + } + + i__1 = *lwork + 1 - iwork; + zunmqr_("L", "C", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & + work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & + iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__3 = iwork; + i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 3; + goto L80; + } + + if (ilvl) { + zlaset_("Full", n, n, &c_b1, &c_b2, &vl[vl_offset], ldvl); + i__1 = irows - 1; + i__2 = irows - 1; + zlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo + + 1 + ilo * vl_dim1], ldvl); + i__1 = *lwork + 1 - iwork; + zungqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[ + itau], &work[iwork], &i__1, &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__3 = iwork; + i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 4; + goto L80; + } + } + + if (ilvr) { + zlaset_("Full", n, n, &c_b1, &c_b2, &vr[vr_offset], ldvr); + } + +/* Reduce to generalized Hessenberg form */ + + if (ilv) { + +/* Eigenvectors requested -- work on whole matrix. */ + + zgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], + ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo); + } else { + zgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda, + &b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[ + vr_offset], ldvr, &iinfo); + } + if (iinfo != 0) { + *info = *n + 5; + goto L80; + } + +/* Perform QZ algorithm */ + + iwork = itau; + if (ilv) { + *(unsigned char *)chtemp = 'S'; + } else { + *(unsigned char *)chtemp = 'E'; + } + i__1 = *lwork + 1 - iwork; + zhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[ + b_offset], ldb, &alpha[1], &beta[1], &vl[vl_offset], ldvl, &vr[ + vr_offset], ldvr, &work[iwork], &i__1, &rwork[irwork], &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__3 = iwork; + i__1 = lwkopt, i__2 = (integer) work[i__3].r + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + if (iinfo > 0 && iinfo <= *n) { + *info = iinfo; + } else if (iinfo > *n && iinfo <= *n << 1) { + *info = iinfo - *n; + } else { + *info = *n + 6; + } + goto L80; + } + + if (ilv) { + +/* Compute Eigenvectors */ + + if (ilvl) { + if (ilvr) { + *(unsigned char *)chtemp = 'B'; + } else { + *(unsigned char *)chtemp = 'L'; + } + } else { + *(unsigned char *)chtemp = 'R'; + } + + ztgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb, + &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[ + iwork], &rwork[irwork], &iinfo); + if (iinfo != 0) { + *info = *n + 7; + goto L80; + } + +/* Undo balancing on VL and VR, rescale */ + + if (ilvl) { + zggbak_("P", "L", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, + &vl[vl_offset], ldvl, &iinfo); + if (iinfo != 0) { + *info = *n + 8; + goto L80; + } + i__1 = *n; + for (jc = 1; jc <= i__1; ++jc) { + temp = 0.; + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { +/* Computing MAX */ + i__3 = jr + jc * vl_dim1; + d__3 = temp, d__4 = (d__1 = vl[i__3].r, abs(d__1)) + ( + d__2 = d_imag(&vl[jr + jc * vl_dim1]), abs(d__2)); + temp = max(d__3,d__4); +/* L10: */ + } + if (temp < safmin) { + goto L30; + } + temp = 1. / temp; + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { + i__3 = jr + jc * vl_dim1; + i__4 = jr + jc * vl_dim1; + z__1.r = temp * vl[i__4].r, z__1.i = temp * vl[i__4].i; + vl[i__3].r = z__1.r, vl[i__3].i = z__1.i; +/* L20: */ + } +L30: + ; + } + } + if (ilvr) { + zggbak_("P", "R", n, &ilo, &ihi, &rwork[ileft], &rwork[iright], n, + &vr[vr_offset], ldvr, &iinfo); + if (iinfo != 0) { + *info = *n + 9; + goto L80; + } + i__1 = *n; + for (jc = 1; jc <= i__1; ++jc) { + temp = 0.; + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { +/* Computing MAX */ + i__3 = jr + jc * vr_dim1; + d__3 = temp, d__4 = (d__1 = vr[i__3].r, abs(d__1)) + ( + d__2 = d_imag(&vr[jr + jc * vr_dim1]), abs(d__2)); + temp = max(d__3,d__4); +/* L40: */ + } + if (temp < safmin) { + goto L60; + } + temp = 1. / temp; + i__2 = *n; + for (jr = 1; jr <= i__2; ++jr) { + i__3 = jr + jc * vr_dim1; + i__4 = jr + jc * vr_dim1; + z__1.r = temp * vr[i__4].r, z__1.i = temp * vr[i__4].i; + vr[i__3].r = z__1.r, vr[i__3].i = z__1.i; +/* L50: */ + } +L60: + ; + } + } + +/* End of eigenvector calculation */ + + } + +/* Undo scaling in alpha, beta */ + +/* Note: this does not give the alpha and beta for the unscaled */ +/* problem. */ + +/* Un-scaling is limited to avoid underflow in alpha and beta */ +/* if they are significant. */ + + i__1 = *n; + for (jc = 1; jc <= i__1; ++jc) { + i__2 = jc; + absar = (d__1 = alpha[i__2].r, abs(d__1)); + absai = (d__1 = d_imag(&alpha[jc]), abs(d__1)); + i__2 = jc; + absb = (d__1 = beta[i__2].r, abs(d__1)); + i__2 = jc; + salfar = anrm * alpha[i__2].r; + salfai = anrm * d_imag(&alpha[jc]); + i__2 = jc; + sbeta = bnrm * beta[i__2].r; + ilimit = FALSE_; + scale = 1.; + +/* Check for significant underflow in imaginary part of ALPHA */ + +/* Computing MAX */ + d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps * + absb; + if (abs(salfai) < safmin && absai >= max(d__1,d__2)) { + ilimit = TRUE_; +/* Computing MAX */ + d__1 = safmin, d__2 = anrm2 * absai; + scale = safmin / anrm1 / max(d__1,d__2); + } + +/* Check for significant underflow in real part of ALPHA */ + +/* Computing MAX */ + d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps * + absb; + if (abs(salfar) < safmin && absar >= max(d__1,d__2)) { + ilimit = TRUE_; +/* Computing MAX */ +/* Computing MAX */ + d__3 = safmin, d__4 = anrm2 * absar; + d__1 = scale, d__2 = safmin / anrm1 / max(d__3,d__4); + scale = max(d__1,d__2); + } + +/* Check for significant underflow in BETA */ + +/* Computing MAX */ + d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps * + absai; + if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) { + ilimit = TRUE_; +/* Computing MAX */ +/* Computing MAX */ + d__3 = safmin, d__4 = bnrm2 * absb; + d__1 = scale, d__2 = safmin / bnrm1 / max(d__3,d__4); + scale = max(d__1,d__2); + } + +/* Check for possible overflow when limiting scaling */ + + if (ilimit) { +/* Computing MAX */ + d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2), + d__2 = abs(sbeta); + temp = scale * safmin * max(d__1,d__2); + if (temp > 1.) { + scale /= temp; + } + if (scale < 1.) { + ilimit = FALSE_; + } + } + +/* Recompute un-scaled ALPHA, BETA if necessary. */ + + if (ilimit) { + i__2 = jc; + salfar = scale * alpha[i__2].r * anrm; + salfai = scale * d_imag(&alpha[jc]) * anrm; + i__2 = jc; + z__2.r = scale * beta[i__2].r, z__2.i = scale * beta[i__2].i; + z__1.r = bnrm * z__2.r, z__1.i = bnrm * z__2.i; + sbeta = z__1.r; + } + i__2 = jc; + z__1.r = salfar, z__1.i = salfai; + alpha[i__2].r = z__1.r, alpha[i__2].i = z__1.i; + i__2 = jc; + beta[i__2].r = sbeta, beta[i__2].i = 0.; +/* L70: */ + } + +L80: + work[1].r = (doublereal) lwkopt, work[1].i = 0.; + + return 0; + +/* End of ZGEGV */ + +} /* zgegv_ */ |