diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/zgeesx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/zgeesx.c')
-rw-r--r-- | contrib/libs/clapack/zgeesx.c | 477 |
1 files changed, 477 insertions, 0 deletions
diff --git a/contrib/libs/clapack/zgeesx.c b/contrib/libs/clapack/zgeesx.c new file mode 100644 index 0000000000..c04109e6d7 --- /dev/null +++ b/contrib/libs/clapack/zgeesx.c @@ -0,0 +1,477 @@ +/* zgeesx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c__0 = 0; +static integer c_n1 = -1; + +/* Subroutine */ int zgeesx_(char *jobvs, char *sort, L_fp select, char * + sense, integer *n, doublecomplex *a, integer *lda, integer *sdim, + doublecomplex *w, doublecomplex *vs, integer *ldvs, doublereal * + rconde, doublereal *rcondv, doublecomplex *work, integer *lwork, + doublereal *rwork, logical *bwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, vs_dim1, vs_offset, i__1, i__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, ihi, ilo; + doublereal dum[1], eps; + integer ibal; + doublereal anrm; + integer ierr, itau, iwrk, lwrk, icond, ieval; + extern logical lsame_(char *, char *); + extern /* Subroutine */ int zcopy_(integer *, doublecomplex *, integer *, + doublecomplex *, integer *), dlabad_(doublereal *, doublereal *); + logical scalea; + extern doublereal dlamch_(char *); + doublereal cscale; + extern /* Subroutine */ int dlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublereal *, + integer *, integer *), zgebak_(char *, char *, integer *, + integer *, integer *, doublereal *, integer *, doublecomplex *, + integer *, integer *), zgebal_(char *, integer *, + doublecomplex *, integer *, integer *, integer *, doublereal *, + integer *), xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, + integer *, doublereal *); + doublereal bignum; + extern /* Subroutine */ int zgehrd_(integer *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *, integer *), zlascl_(char *, integer *, integer *, + doublereal *, doublereal *, integer *, integer *, doublecomplex *, + integer *, integer *); + logical wantsb, wantse; + extern /* Subroutine */ int zlacpy_(char *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *); + integer minwrk, maxwrk; + logical wantsn; + doublereal smlnum; + extern /* Subroutine */ int zhseqr_(char *, char *, integer *, integer *, + integer *, doublecomplex *, integer *, doublecomplex *, + doublecomplex *, integer *, doublecomplex *, integer *, integer *); + integer hswork; + extern /* Subroutine */ int zunghr_(integer *, integer *, integer *, + doublecomplex *, integer *, doublecomplex *, doublecomplex *, + integer *, integer *); + logical wantst, wantsv, wantvs; + extern /* Subroutine */ int ztrsen_(char *, char *, logical *, integer *, + doublecomplex *, integer *, doublecomplex *, integer *, + doublecomplex *, integer *, doublereal *, doublereal *, + doublecomplex *, integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ +/* .. Function Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* ZGEESX computes for an N-by-N complex nonsymmetric matrix A, the */ +/* eigenvalues, the Schur form T, and, optionally, the matrix of Schur */ +/* vectors Z. This gives the Schur factorization A = Z*T*(Z**H). */ + +/* Optionally, it also orders the eigenvalues on the diagonal of the */ +/* Schur form so that selected eigenvalues are at the top left; */ +/* computes a reciprocal condition number for the average of the */ +/* selected eigenvalues (RCONDE); and computes a reciprocal condition */ +/* number for the right invariant subspace corresponding to the */ +/* selected eigenvalues (RCONDV). The leading columns of Z form an */ +/* orthonormal basis for this invariant subspace. */ + +/* For further explanation of the reciprocal condition numbers RCONDE */ +/* and RCONDV, see Section 4.10 of the LAPACK Users' Guide (where */ +/* these quantities are called s and sep respectively). */ + +/* A complex matrix is in Schur form if it is upper triangular. */ + +/* Arguments */ +/* ========= */ + +/* JOBVS (input) CHARACTER*1 */ +/* = 'N': Schur vectors are not computed; */ +/* = 'V': Schur vectors are computed. */ + +/* SORT (input) CHARACTER*1 */ +/* Specifies whether or not to order the eigenvalues on the */ +/* diagonal of the Schur form. */ +/* = 'N': Eigenvalues are not ordered; */ +/* = 'S': Eigenvalues are ordered (see SELECT). */ + +/* SELECT (external procedure) LOGICAL FUNCTION of one COMPLEX*16 argument */ +/* SELECT must be declared EXTERNAL in the calling subroutine. */ +/* If SORT = 'S', SELECT is used to select eigenvalues to order */ +/* to the top left of the Schur form. */ +/* If SORT = 'N', SELECT is not referenced. */ +/* An eigenvalue W(j) is selected if SELECT(W(j)) is true. */ + +/* SENSE (input) CHARACTER*1 */ +/* Determines which reciprocal condition numbers are computed. */ +/* = 'N': None are computed; */ +/* = 'E': Computed for average of selected eigenvalues only; */ +/* = 'V': Computed for selected right invariant subspace only; */ +/* = 'B': Computed for both. */ +/* If SENSE = 'E', 'V' or 'B', SORT must equal 'S'. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) COMPLEX*16 array, dimension (LDA, N) */ +/* On entry, the N-by-N matrix A. */ +/* On exit, A is overwritten by its Schur form T. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* SDIM (output) INTEGER */ +/* If SORT = 'N', SDIM = 0. */ +/* If SORT = 'S', SDIM = number of eigenvalues for which */ +/* SELECT is true. */ + +/* W (output) COMPLEX*16 array, dimension (N) */ +/* W contains the computed eigenvalues, in the same order */ +/* that they appear on the diagonal of the output Schur form T. */ + +/* VS (output) COMPLEX*16 array, dimension (LDVS,N) */ +/* If JOBVS = 'V', VS contains the unitary matrix Z of Schur */ +/* vectors. */ +/* If JOBVS = 'N', VS is not referenced. */ + +/* LDVS (input) INTEGER */ +/* The leading dimension of the array VS. LDVS >= 1, and if */ +/* JOBVS = 'V', LDVS >= N. */ + +/* RCONDE (output) DOUBLE PRECISION */ +/* If SENSE = 'E' or 'B', RCONDE contains the reciprocal */ +/* condition number for the average of the selected eigenvalues. */ +/* Not referenced if SENSE = 'N' or 'V'. */ + +/* RCONDV (output) DOUBLE PRECISION */ +/* If SENSE = 'V' or 'B', RCONDV contains the reciprocal */ +/* condition number for the selected right invariant subspace. */ +/* Not referenced if SENSE = 'N' or 'E'. */ + +/* WORK (workspace/output) COMPLEX*16 array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,2*N). */ +/* Also, if SENSE = 'E' or 'V' or 'B', LWORK >= 2*SDIM*(N-SDIM), */ +/* where SDIM is the number of selected eigenvalues computed by */ +/* this routine. Note that 2*SDIM*(N-SDIM) <= N*N/2. Note also */ +/* that an error is only returned if LWORK < max(1,2*N), but if */ +/* SENSE = 'E' or 'V' or 'B' this may not be large enough. */ +/* For good performance, LWORK must generally be larger. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates upper bound on the optimal size of the */ +/* array WORK, returns this value as the first entry of the WORK */ +/* array, and no error message related to LWORK is issued by */ +/* XERBLA. */ + +/* RWORK (workspace) DOUBLE PRECISION array, dimension (N) */ + +/* BWORK (workspace) LOGICAL array, dimension (N) */ +/* Not referenced if SORT = 'N'. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* > 0: if INFO = i, and i is */ +/* <= N: the QR algorithm failed to compute all the */ +/* eigenvalues; elements 1:ILO-1 and i+1:N of W */ +/* contain those eigenvalues which have converged; if */ +/* JOBVS = 'V', VS contains the transformation which */ +/* reduces A to its partially converged Schur form. */ +/* = N+1: the eigenvalues could not be reordered because some */ +/* eigenvalues were too close to separate (the problem */ +/* is very ill-conditioned); */ +/* = N+2: after reordering, roundoff changed values of some */ +/* complex eigenvalues so that leading eigenvalues in */ +/* the Schur form no longer satisfy SELECT=.TRUE. This */ +/* could also be caused by underflow due to scaling. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + vs_dim1 = *ldvs; + vs_offset = 1 + vs_dim1; + vs -= vs_offset; + --work; + --rwork; + --bwork; + + /* Function Body */ + *info = 0; + wantvs = lsame_(jobvs, "V"); + wantst = lsame_(sort, "S"); + wantsn = lsame_(sense, "N"); + wantse = lsame_(sense, "E"); + wantsv = lsame_(sense, "V"); + wantsb = lsame_(sense, "B"); + if (! wantvs && ! lsame_(jobvs, "N")) { + *info = -1; + } else if (! wantst && ! lsame_(sort, "N")) { + *info = -2; + } else if (! (wantsn || wantse || wantsv || wantsb) || ! wantst && ! + wantsn) { + *info = -4; + } else if (*n < 0) { + *info = -5; + } else if (*lda < max(1,*n)) { + *info = -7; + } else if (*ldvs < 1 || wantvs && *ldvs < *n) { + *info = -11; + } + +/* Compute workspace */ +/* (Note: Comments in the code beginning "Workspace:" describe the */ +/* minimal amount of real workspace needed at that point in the */ +/* code, as well as the preferred amount for good performance. */ +/* CWorkspace refers to complex workspace, and RWorkspace to real */ +/* workspace. NB refers to the optimal block size for the */ +/* immediately following subroutine, as returned by ILAENV. */ +/* HSWORK refers to the workspace preferred by ZHSEQR, as */ +/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */ +/* the worst case. */ +/* If SENSE = 'E', 'V' or 'B', then the amount of workspace needed */ +/* depends on SDIM, which is computed by the routine ZTRSEN later */ +/* in the code.) */ + + if (*info == 0) { + if (*n == 0) { + minwrk = 1; + lwrk = 1; + } else { + maxwrk = *n + *n * ilaenv_(&c__1, "ZGEHRD", " ", n, &c__1, n, & + c__0); + minwrk = *n << 1; + + zhseqr_("S", jobvs, n, &c__1, n, &a[a_offset], lda, &w[1], &vs[ + vs_offset], ldvs, &work[1], &c_n1, &ieval); + hswork = (integer) work[1].r; + + if (! wantvs) { + maxwrk = max(maxwrk,hswork); + } else { +/* Computing MAX */ + i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "ZUNGHR", + " ", n, &c__1, n, &c_n1); + maxwrk = max(i__1,i__2); + maxwrk = max(maxwrk,hswork); + } + lwrk = maxwrk; + if (! wantsn) { +/* Computing MAX */ + i__1 = lwrk, i__2 = *n * *n / 2; + lwrk = max(i__1,i__2); + } + } + work[1].r = (doublereal) lwrk, work[1].i = 0.; + + if (*lwork < minwrk) { + *info = -15; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("ZGEESX", &i__1); + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + *sdim = 0; + return 0; + } + +/* Get machine constants */ + + eps = dlamch_("P"); + smlnum = dlamch_("S"); + bignum = 1. / smlnum; + dlabad_(&smlnum, &bignum); + smlnum = sqrt(smlnum) / eps; + bignum = 1. / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = zlange_("M", n, n, &a[a_offset], lda, dum); + scalea = FALSE_; + if (anrm > 0. && anrm < smlnum) { + scalea = TRUE_; + cscale = smlnum; + } else if (anrm > bignum) { + scalea = TRUE_; + cscale = bignum; + } + if (scalea) { + zlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, & + ierr); + } + + +/* Permute the matrix to make it more nearly triangular */ +/* (CWorkspace: none) */ +/* (RWorkspace: need N) */ + + ibal = 1; + zgebal_("P", n, &a[a_offset], lda, &ilo, &ihi, &rwork[ibal], &ierr); + +/* Reduce to upper Hessenberg form */ +/* (CWorkspace: need 2*N, prefer N+N*NB) */ +/* (RWorkspace: none) */ + + itau = 1; + iwrk = *n + itau; + i__1 = *lwork - iwrk + 1; + zgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, + &ierr); + + if (wantvs) { + +/* Copy Householder vectors to VS */ + + zlacpy_("L", n, n, &a[a_offset], lda, &vs[vs_offset], ldvs) + ; + +/* Generate unitary matrix in VS */ +/* (CWorkspace: need 2*N-1, prefer N+(N-1)*NB) */ +/* (RWorkspace: none) */ + + i__1 = *lwork - iwrk + 1; + zunghr_(n, &ilo, &ihi, &vs[vs_offset], ldvs, &work[itau], &work[iwrk], + &i__1, &ierr); + } + + *sdim = 0; + +/* Perform QR iteration, accumulating Schur vectors in VS if desired */ +/* (CWorkspace: need 1, prefer HSWORK (see comments) ) */ +/* (RWorkspace: none) */ + + iwrk = itau; + i__1 = *lwork - iwrk + 1; + zhseqr_("S", jobvs, n, &ilo, &ihi, &a[a_offset], lda, &w[1], &vs[ + vs_offset], ldvs, &work[iwrk], &i__1, &ieval); + if (ieval > 0) { + *info = ieval; + } + +/* Sort eigenvalues if desired */ + + if (wantst && *info == 0) { + if (scalea) { + zlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &w[1], n, & + ierr); + } + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + bwork[i__] = (*select)(&w[i__]); +/* L10: */ + } + +/* Reorder eigenvalues, transform Schur vectors, and compute */ +/* reciprocal condition numbers */ +/* (CWorkspace: if SENSE is not 'N', need 2*SDIM*(N-SDIM) */ +/* otherwise, need none ) */ +/* (RWorkspace: none) */ + + i__1 = *lwork - iwrk + 1; + ztrsen_(sense, jobvs, &bwork[1], n, &a[a_offset], lda, &vs[vs_offset], + ldvs, &w[1], sdim, rconde, rcondv, &work[iwrk], &i__1, & + icond); + if (! wantsn) { +/* Computing MAX */ + i__1 = maxwrk, i__2 = (*sdim << 1) * (*n - *sdim); + maxwrk = max(i__1,i__2); + } + if (icond == -14) { + +/* Not enough complex workspace */ + + *info = -15; + } + } + + if (wantvs) { + +/* Undo balancing */ +/* (CWorkspace: none) */ +/* (RWorkspace: need N) */ + + zgebak_("P", "R", n, &ilo, &ihi, &rwork[ibal], n, &vs[vs_offset], + ldvs, &ierr); + } + + if (scalea) { + +/* Undo scaling for the Schur form of A */ + + zlascl_("U", &c__0, &c__0, &cscale, &anrm, n, n, &a[a_offset], lda, & + ierr); + i__1 = *lda + 1; + zcopy_(n, &a[a_offset], &i__1, &w[1], &c__1); + if ((wantsv || wantsb) && *info == 0) { + dum[0] = *rcondv; + dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, & + c__1, &ierr); + *rcondv = dum[0]; + } + } + + work[1].r = (doublereal) maxwrk, work[1].i = 0.; + return 0; + +/* End of ZGEESX */ + +} /* zgeesx_ */ |