aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/stgsen.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/stgsen.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/stgsen.c')
-rw-r--r--contrib/libs/clapack/stgsen.c832
1 files changed, 832 insertions, 0 deletions
diff --git a/contrib/libs/clapack/stgsen.c b/contrib/libs/clapack/stgsen.c
new file mode 100644
index 0000000000..93d55c1706
--- /dev/null
+++ b/contrib/libs/clapack/stgsen.c
@@ -0,0 +1,832 @@
+/* stgsen.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c__2 = 2;
+static real c_b28 = 1.f;
+
+/* Subroutine */ int stgsen_(integer *ijob, logical *wantq, logical *wantz,
+ logical *select, integer *n, real *a, integer *lda, real *b, integer *
+ ldb, real *alphar, real *alphai, real *beta, real *q, integer *ldq,
+ real *z__, integer *ldz, integer *m, real *pl, real *pr, real *dif,
+ real *work, integer *lwork, integer *iwork, integer *liwork, integer *
+ info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
+ z_offset, i__1, i__2;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal), r_sign(real *, real *);
+
+ /* Local variables */
+ integer i__, k, n1, n2, kk, ks, mn2, ijb;
+ real eps;
+ integer kase;
+ logical pair;
+ integer ierr;
+ real dsum;
+ logical swap;
+ extern /* Subroutine */ int slag2_(real *, integer *, real *, integer *,
+ real *, real *, real *, real *, real *, real *);
+ integer isave[3];
+ logical wantd;
+ integer lwmin;
+ logical wantp;
+ extern /* Subroutine */ int slacn2_(integer *, real *, real *, integer *,
+ real *, integer *, integer *);
+ logical wantd1, wantd2;
+ real dscale, rdscal;
+ extern doublereal slamch_(char *);
+ extern /* Subroutine */ int xerbla_(char *, integer *), slacpy_(
+ char *, integer *, integer *, real *, integer *, real *, integer *
+), stgexc_(logical *, logical *, integer *, real *,
+ integer *, real *, integer *, real *, integer *, real *, integer *
+, integer *, integer *, real *, integer *, integer *);
+ integer liwmin;
+ extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
+ real *);
+ real smlnum;
+ logical lquery;
+ extern /* Subroutine */ int stgsyl_(char *, integer *, integer *, integer
+ *, real *, integer *, real *, integer *, real *, integer *, real *
+, integer *, real *, integer *, real *, integer *, real *, real *,
+ real *, integer *, integer *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
+/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
+/* January 2007 */
+
+/* Modified to call SLACN2 in place of SLACON, 7 Feb 03, SJH. */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* STGSEN reorders the generalized real Schur decomposition of a real */
+/* matrix pair (A, B) (in terms of an orthonormal equivalence trans- */
+/* formation Q' * (A, B) * Z), so that a selected cluster of eigenvalues */
+/* appears in the leading diagonal blocks of the upper quasi-triangular */
+/* matrix A and the upper triangular B. The leading columns of Q and */
+/* Z form orthonormal bases of the corresponding left and right eigen- */
+/* spaces (deflating subspaces). (A, B) must be in generalized real */
+/* Schur canonical form (as returned by SGGES), i.e. A is block upper */
+/* triangular with 1-by-1 and 2-by-2 diagonal blocks. B is upper */
+/* triangular. */
+
+/* STGSEN also computes the generalized eigenvalues */
+
+/* w(j) = (ALPHAR(j) + i*ALPHAI(j))/BETA(j) */
+
+/* of the reordered matrix pair (A, B). */
+
+/* Optionally, STGSEN computes the estimates of reciprocal condition */
+/* numbers for eigenvalues and eigenspaces. These are Difu[(A11,B11), */
+/* (A22,B22)] and Difl[(A11,B11), (A22,B22)], i.e. the separation(s) */
+/* between the matrix pairs (A11, B11) and (A22,B22) that correspond to */
+/* the selected cluster and the eigenvalues outside the cluster, resp., */
+/* and norms of "projections" onto left and right eigenspaces w.r.t. */
+/* the selected cluster in the (1,1)-block. */
+
+/* Arguments */
+/* ========= */
+
+/* IJOB (input) INTEGER */
+/* Specifies whether condition numbers are required for the */
+/* cluster of eigenvalues (PL and PR) or the deflating subspaces */
+/* (Difu and Difl): */
+/* =0: Only reorder w.r.t. SELECT. No extras. */
+/* =1: Reciprocal of norms of "projections" onto left and right */
+/* eigenspaces w.r.t. the selected cluster (PL and PR). */
+/* =2: Upper bounds on Difu and Difl. F-norm-based estimate */
+/* (DIF(1:2)). */
+/* =3: Estimate of Difu and Difl. 1-norm-based estimate */
+/* (DIF(1:2)). */
+/* About 5 times as expensive as IJOB = 2. */
+/* =4: Compute PL, PR and DIF (i.e. 0, 1 and 2 above): Economic */
+/* version to get it all. */
+/* =5: Compute PL, PR and DIF (i.e. 0, 1 and 3 above) */
+
+/* WANTQ (input) LOGICAL */
+/* .TRUE. : update the left transformation matrix Q; */
+/* .FALSE.: do not update Q. */
+
+/* WANTZ (input) LOGICAL */
+/* .TRUE. : update the right transformation matrix Z; */
+/* .FALSE.: do not update Z. */
+
+/* SELECT (input) LOGICAL array, dimension (N) */
+/* SELECT specifies the eigenvalues in the selected cluster. */
+/* To select a real eigenvalue w(j), SELECT(j) must be set to */
+/* .TRUE.. To select a complex conjugate pair of eigenvalues */
+/* w(j) and w(j+1), corresponding to a 2-by-2 diagonal block, */
+/* either SELECT(j) or SELECT(j+1) or both must be set to */
+/* .TRUE.; a complex conjugate pair of eigenvalues must be */
+/* either both included in the cluster or both excluded. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* A (input/output) REAL array, dimension(LDA,N) */
+/* On entry, the upper quasi-triangular matrix A, with (A, B) in */
+/* generalized real Schur canonical form. */
+/* On exit, A is overwritten by the reordered matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* B (input/output) REAL array, dimension(LDB,N) */
+/* On entry, the upper triangular matrix B, with (A, B) in */
+/* generalized real Schur canonical form. */
+/* On exit, B is overwritten by the reordered matrix B. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* ALPHAR (output) REAL array, dimension (N) */
+/* ALPHAI (output) REAL array, dimension (N) */
+/* BETA (output) REAL array, dimension (N) */
+/* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
+/* be the generalized eigenvalues. ALPHAR(j) + ALPHAI(j)*i */
+/* and BETA(j),j=1,...,N are the diagonals of the complex Schur */
+/* form (S,T) that would result if the 2-by-2 diagonal blocks of */
+/* the real generalized Schur form of (A,B) were further reduced */
+/* to triangular form using complex unitary transformations. */
+/* If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
+/* positive, then the j-th and (j+1)-st eigenvalues are a */
+/* complex conjugate pair, with ALPHAI(j+1) negative. */
+
+/* Q (input/output) REAL array, dimension (LDQ,N) */
+/* On entry, if WANTQ = .TRUE., Q is an N-by-N matrix. */
+/* On exit, Q has been postmultiplied by the left orthogonal */
+/* transformation matrix which reorder (A, B); The leading M */
+/* columns of Q form orthonormal bases for the specified pair of */
+/* left eigenspaces (deflating subspaces). */
+/* If WANTQ = .FALSE., Q is not referenced. */
+
+/* LDQ (input) INTEGER */
+/* The leading dimension of the array Q. LDQ >= 1; */
+/* and if WANTQ = .TRUE., LDQ >= N. */
+
+/* Z (input/output) REAL array, dimension (LDZ,N) */
+/* On entry, if WANTZ = .TRUE., Z is an N-by-N matrix. */
+/* On exit, Z has been postmultiplied by the left orthogonal */
+/* transformation matrix which reorder (A, B); The leading M */
+/* columns of Z form orthonormal bases for the specified pair of */
+/* left eigenspaces (deflating subspaces). */
+/* If WANTZ = .FALSE., Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1; */
+/* If WANTZ = .TRUE., LDZ >= N. */
+
+/* M (output) INTEGER */
+/* The dimension of the specified pair of left and right eigen- */
+/* spaces (deflating subspaces). 0 <= M <= N. */
+
+/* PL (output) REAL */
+/* PR (output) REAL */
+/* If IJOB = 1, 4 or 5, PL, PR are lower bounds on the */
+/* reciprocal of the norm of "projections" onto left and right */
+/* eigenspaces with respect to the selected cluster. */
+/* 0 < PL, PR <= 1. */
+/* If M = 0 or M = N, PL = PR = 1. */
+/* If IJOB = 0, 2 or 3, PL and PR are not referenced. */
+
+/* DIF (output) REAL array, dimension (2). */
+/* If IJOB >= 2, DIF(1:2) store the estimates of Difu and Difl. */
+/* If IJOB = 2 or 4, DIF(1:2) are F-norm-based upper bounds on */
+/* Difu and Difl. If IJOB = 3 or 5, DIF(1:2) are 1-norm-based */
+/* estimates of Difu and Difl. */
+/* If M = 0 or N, DIF(1:2) = F-norm([A, B]). */
+/* If IJOB = 0 or 1, DIF is not referenced. */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. LWORK >= 4*N+16. */
+/* If IJOB = 1, 2 or 4, LWORK >= MAX(4*N+16, 2*M*(N-M)). */
+/* If IJOB = 3 or 5, LWORK >= MAX(4*N+16, 4*M*(N-M)). */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* IF IJOB = 0, IWORK is not referenced. Otherwise, */
+/* on exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. LIWORK >= 1. */
+/* If IJOB = 1, 2 or 4, LIWORK >= N+6. */
+/* If IJOB = 3 or 5, LIWORK >= MAX(2*M*(N-M), N+6). */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the optimal size of the IWORK array, */
+/* returns this value as the first entry of the IWORK array, and */
+/* no error message related to LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* =0: Successful exit. */
+/* <0: If INFO = -i, the i-th argument had an illegal value. */
+/* =1: Reordering of (A, B) failed because the transformed */
+/* matrix pair (A, B) would be too far from generalized */
+/* Schur form; the problem is very ill-conditioned. */
+/* (A, B) may have been partially reordered. */
+/* If requested, 0 is returned in DIF(*), PL and PR. */
+
+/* Further Details */
+/* =============== */
+
+/* STGSEN first collects the selected eigenvalues by computing */
+/* orthogonal U and W that move them to the top left corner of (A, B). */
+/* In other words, the selected eigenvalues are the eigenvalues of */
+/* (A11, B11) in: */
+
+/* U'*(A, B)*W = (A11 A12) (B11 B12) n1 */
+/* ( 0 A22),( 0 B22) n2 */
+/* n1 n2 n1 n2 */
+
+/* where N = n1+n2 and U' means the transpose of U. The first n1 columns */
+/* of U and W span the specified pair of left and right eigenspaces */
+/* (deflating subspaces) of (A, B). */
+
+/* If (A, B) has been obtained from the generalized real Schur */
+/* decomposition of a matrix pair (C, D) = Q*(A, B)*Z', then the */
+/* reordered generalized real Schur form of (C, D) is given by */
+
+/* (C, D) = (Q*U)*(U'*(A, B)*W)*(Z*W)', */
+
+/* and the first n1 columns of Q*U and Z*W span the corresponding */
+/* deflating subspaces of (C, D) (Q and Z store Q*U and Z*W, resp.). */
+
+/* Note that if the selected eigenvalue is sufficiently ill-conditioned, */
+/* then its value may differ significantly from its value before */
+/* reordering. */
+
+/* The reciprocal condition numbers of the left and right eigenspaces */
+/* spanned by the first n1 columns of U and W (or Q*U and Z*W) may */
+/* be returned in DIF(1:2), corresponding to Difu and Difl, resp. */
+
+/* The Difu and Difl are defined as: */
+
+/* Difu[(A11, B11), (A22, B22)] = sigma-min( Zu ) */
+/* and */
+/* Difl[(A11, B11), (A22, B22)] = Difu[(A22, B22), (A11, B11)], */
+
+/* where sigma-min(Zu) is the smallest singular value of the */
+/* (2*n1*n2)-by-(2*n1*n2) matrix */
+
+/* Zu = [ kron(In2, A11) -kron(A22', In1) ] */
+/* [ kron(In2, B11) -kron(B22', In1) ]. */
+
+/* Here, Inx is the identity matrix of size nx and A22' is the */
+/* transpose of A22. kron(X, Y) is the Kronecker product between */
+/* the matrices X and Y. */
+
+/* When DIF(2) is small, small changes in (A, B) can cause large changes */
+/* in the deflating subspace. An approximate (asymptotic) bound on the */
+/* maximum angular error in the computed deflating subspaces is */
+
+/* EPS * norm((A, B)) / DIF(2), */
+
+/* where EPS is the machine precision. */
+
+/* The reciprocal norm of the projectors on the left and right */
+/* eigenspaces associated with (A11, B11) may be returned in PL and PR. */
+/* They are computed as follows. First we compute L and R so that */
+/* P*(A, B)*Q is block diagonal, where */
+
+/* P = ( I -L ) n1 Q = ( I R ) n1 */
+/* ( 0 I ) n2 and ( 0 I ) n2 */
+/* n1 n2 n1 n2 */
+
+/* and (L, R) is the solution to the generalized Sylvester equation */
+
+/* A11*R - L*A22 = -A12 */
+/* B11*R - L*B22 = -B12 */
+
+/* Then PL = (F-norm(L)**2+1)**(-1/2) and PR = (F-norm(R)**2+1)**(-1/2). */
+/* An approximate (asymptotic) bound on the average absolute error of */
+/* the selected eigenvalues is */
+
+/* EPS * norm((A, B)) / PL. */
+
+/* There are also global error bounds which valid for perturbations up */
+/* to a certain restriction: A lower bound (x) on the smallest */
+/* F-norm(E,F) for which an eigenvalue of (A11, B11) may move and */
+/* coalesce with an eigenvalue of (A22, B22) under perturbation (E,F), */
+/* (i.e. (A + E, B + F), is */
+
+/* x = min(Difu,Difl)/((1/(PL*PL)+1/(PR*PR))**(1/2)+2*max(1/PL,1/PR)). */
+
+/* An approximate bound on x can be computed from DIF(1:2), PL and PR. */
+
+/* If y = ( F-norm(E,F) / x) <= 1, the angles between the perturbed */
+/* (L', R') and unperturbed (L, R) left and right deflating subspaces */
+/* associated with the selected cluster in the (1,1)-blocks can be */
+/* bounded as */
+
+/* max-angle(L, L') <= arctan( y * PL / (1 - y * (1 - PL * PL)**(1/2)) */
+/* max-angle(R, R') <= arctan( y * PR / (1 - y * (1 - PR * PR)**(1/2)) */
+
+/* See LAPACK User's Guide section 4.11 or the following references */
+/* for more information. */
+
+/* Note that if the default method for computing the Frobenius-norm- */
+/* based estimate DIF is not wanted (see SLATDF), then the parameter */
+/* IDIFJB (see below) should be changed from 3 to 4 (routine SLATDF */
+/* (IJOB = 2 will be used)). See STGSYL for more details. */
+
+/* Based on contributions by */
+/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
+/* Umea University, S-901 87 Umea, Sweden. */
+
+/* References */
+/* ========== */
+
+/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
+/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
+/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
+/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
+
+/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
+/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
+/* Estimation: Theory, Algorithms and Software, */
+/* Report UMINF - 94.04, Department of Computing Science, Umea */
+/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
+/* Note 87. To appear in Numerical Algorithms, 1996. */
+
+/* [3] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
+/* for Solving the Generalized Sylvester Equation and Estimating the */
+/* Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
+/* Department of Computing Science, Umea University, S-901 87 Umea, */
+/* Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
+/* Note 75. To appear in ACM Trans. on Math. Software, Vol 22, No 1, */
+/* 1996. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Decode and test the input parameters */
+
+ /* Parameter adjustments */
+ --select;
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --alphar;
+ --alphai;
+ --beta;
+ q_dim1 = *ldq;
+ q_offset = 1 + q_dim1;
+ q -= q_offset;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --dif;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ *info = 0;
+ lquery = *lwork == -1 || *liwork == -1;
+
+ if (*ijob < 0 || *ijob > 5) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -5;
+ } else if (*lda < max(1,*n)) {
+ *info = -7;
+ } else if (*ldb < max(1,*n)) {
+ *info = -9;
+ } else if (*ldq < 1 || *wantq && *ldq < *n) {
+ *info = -14;
+ } else if (*ldz < 1 || *wantz && *ldz < *n) {
+ *info = -16;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STGSEN", &i__1);
+ return 0;
+ }
+
+/* Get machine constants */
+
+ eps = slamch_("P");
+ smlnum = slamch_("S") / eps;
+ ierr = 0;
+
+ wantp = *ijob == 1 || *ijob >= 4;
+ wantd1 = *ijob == 2 || *ijob == 4;
+ wantd2 = *ijob == 3 || *ijob == 5;
+ wantd = wantd1 || wantd2;
+
+/* Set M to the dimension of the specified pair of deflating */
+/* subspaces. */
+
+ *m = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (pair) {
+ pair = FALSE_;
+ } else {
+ if (k < *n) {
+ if (a[k + 1 + k * a_dim1] == 0.f) {
+ if (select[k]) {
+ ++(*m);
+ }
+ } else {
+ pair = TRUE_;
+ if (select[k] || select[k + 1]) {
+ *m += 2;
+ }
+ }
+ } else {
+ if (select[*n]) {
+ ++(*m);
+ }
+ }
+ }
+/* L10: */
+ }
+
+ if (*ijob == 1 || *ijob == 2 || *ijob == 4) {
+/* Computing MAX */
+ i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m <<
+ 1) * (*n - *m);
+ lwmin = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = 1, i__2 = *n + 6;
+ liwmin = max(i__1,i__2);
+ } else if (*ijob == 3 || *ijob == 5) {
+/* Computing MAX */
+ i__1 = 1, i__2 = (*n << 2) + 16, i__1 = max(i__1,i__2), i__2 = (*m <<
+ 2) * (*n - *m);
+ lwmin = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = 1, i__2 = (*m << 1) * (*n - *m), i__1 = max(i__1,i__2), i__2 =
+ *n + 6;
+ liwmin = max(i__1,i__2);
+ } else {
+/* Computing MAX */
+ i__1 = 1, i__2 = (*n << 2) + 16;
+ lwmin = max(i__1,i__2);
+ liwmin = 1;
+ }
+
+ work[1] = (real) lwmin;
+ iwork[1] = liwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -22;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -24;
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("STGSEN", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible. */
+
+ if (*m == *n || *m == 0) {
+ if (wantp) {
+ *pl = 1.f;
+ *pr = 1.f;
+ }
+ if (wantd) {
+ dscale = 0.f;
+ dsum = 1.f;
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ slassq_(n, &a[i__ * a_dim1 + 1], &c__1, &dscale, &dsum);
+ slassq_(n, &b[i__ * b_dim1 + 1], &c__1, &dscale, &dsum);
+/* L20: */
+ }
+ dif[1] = dscale * sqrt(dsum);
+ dif[2] = dif[1];
+ }
+ goto L60;
+ }
+
+/* Collect the selected blocks at the top-left corner of (A, B). */
+
+ ks = 0;
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (pair) {
+ pair = FALSE_;
+ } else {
+
+ swap = select[k];
+ if (k < *n) {
+ if (a[k + 1 + k * a_dim1] != 0.f) {
+ pair = TRUE_;
+ swap = swap || select[k + 1];
+ }
+ }
+
+ if (swap) {
+ ++ks;
+
+/* Swap the K-th block to position KS. */
+/* Perform the reordering of diagonal blocks in (A, B) */
+/* by orthogonal transformation matrices and update */
+/* Q and Z accordingly (if requested): */
+
+ kk = k;
+ if (k != ks) {
+ stgexc_(wantq, wantz, n, &a[a_offset], lda, &b[b_offset],
+ ldb, &q[q_offset], ldq, &z__[z_offset], ldz, &kk,
+ &ks, &work[1], lwork, &ierr);
+ }
+
+ if (ierr > 0) {
+
+/* Swap is rejected: exit. */
+
+ *info = 1;
+ if (wantp) {
+ *pl = 0.f;
+ *pr = 0.f;
+ }
+ if (wantd) {
+ dif[1] = 0.f;
+ dif[2] = 0.f;
+ }
+ goto L60;
+ }
+
+ if (pair) {
+ ++ks;
+ }
+ }
+ }
+/* L30: */
+ }
+ if (wantp) {
+
+/* Solve generalized Sylvester equation for R and L */
+/* and compute PL and PR. */
+
+ n1 = *m;
+ n2 = *n - *m;
+ i__ = n1 + 1;
+ ijb = 0;
+ slacpy_("Full", &n1, &n2, &a[i__ * a_dim1 + 1], lda, &work[1], &n1);
+ slacpy_("Full", &n1, &n2, &b[i__ * b_dim1 + 1], ldb, &work[n1 * n2 +
+ 1], &n1);
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ * a_dim1]
+, lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ + i__ *
+ b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &dif[1], &
+ work[(n1 * n2 << 1) + 1], &i__1, &iwork[1], &ierr);
+
+/* Estimate the reciprocal of norms of "projections" onto left */
+/* and right eigenspaces. */
+
+ rdscal = 0.f;
+ dsum = 1.f;
+ i__1 = n1 * n2;
+ slassq_(&i__1, &work[1], &c__1, &rdscal, &dsum);
+ *pl = rdscal * sqrt(dsum);
+ if (*pl == 0.f) {
+ *pl = 1.f;
+ } else {
+ *pl = dscale / (sqrt(dscale * dscale / *pl + *pl) * sqrt(*pl));
+ }
+ rdscal = 0.f;
+ dsum = 1.f;
+ i__1 = n1 * n2;
+ slassq_(&i__1, &work[n1 * n2 + 1], &c__1, &rdscal, &dsum);
+ *pr = rdscal * sqrt(dsum);
+ if (*pr == 0.f) {
+ *pr = 1.f;
+ } else {
+ *pr = dscale / (sqrt(dscale * dscale / *pr + *pr) * sqrt(*pr));
+ }
+ }
+
+ if (wantd) {
+
+/* Compute estimates of Difu and Difl. */
+
+ if (wantd1) {
+ n1 = *m;
+ n2 = *n - *m;
+ i__ = n1 + 1;
+ ijb = 3;
+
+/* Frobenius norm-based Difu-estimate. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ + i__ *
+ a_dim1], lda, &work[1], &n1, &b[b_offset], ldb, &b[i__ +
+ i__ * b_dim1], ldb, &work[n1 * n2 + 1], &n1, &dscale, &
+ dif[1], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
+ ierr);
+
+/* Frobenius norm-based Difl-estimate. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda, &a[
+ a_offset], lda, &work[1], &n2, &b[i__ + i__ * b_dim1],
+ ldb, &b[b_offset], ldb, &work[n1 * n2 + 1], &n2, &dscale,
+ &dif[2], &work[(n1 << 1) * n2 + 1], &i__1, &iwork[1], &
+ ierr);
+ } else {
+
+
+/* Compute 1-norm-based estimates of Difu and Difl using */
+/* reversed communication with SLACN2. In each step a */
+/* generalized Sylvester equation or a transposed variant */
+/* is solved. */
+
+ kase = 0;
+ n1 = *m;
+ n2 = *n - *m;
+ i__ = n1 + 1;
+ ijb = 0;
+ mn2 = (n1 << 1) * n2;
+
+/* 1-norm-based estimate of Difu. */
+
+L40:
+ slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[1], &kase,
+ isave);
+ if (kase != 0) {
+ if (kase == 1) {
+
+/* Solve generalized Sylvester equation. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("N", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
+ i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
+ ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
+ 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
+ 1], &i__1, &iwork[1], &ierr);
+ } else {
+
+/* Solve the transposed variant. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("T", &ijb, &n1, &n2, &a[a_offset], lda, &a[i__ +
+ i__ * a_dim1], lda, &work[1], &n1, &b[b_offset],
+ ldb, &b[i__ + i__ * b_dim1], ldb, &work[n1 * n2 +
+ 1], &n1, &dscale, &dif[1], &work[(n1 << 1) * n2 +
+ 1], &i__1, &iwork[1], &ierr);
+ }
+ goto L40;
+ }
+ dif[1] = dscale / dif[1];
+
+/* 1-norm-based estimate of Difl. */
+
+L50:
+ slacn2_(&mn2, &work[mn2 + 1], &work[1], &iwork[1], &dif[2], &kase,
+ isave);
+ if (kase != 0) {
+ if (kase == 1) {
+
+/* Solve generalized Sylvester equation. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("N", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
+ &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
+ b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
+ 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
+ 1], &i__1, &iwork[1], &ierr);
+ } else {
+
+/* Solve the transposed variant. */
+
+ i__1 = *lwork - (n1 << 1) * n2;
+ stgsyl_("T", &ijb, &n2, &n1, &a[i__ + i__ * a_dim1], lda,
+ &a[a_offset], lda, &work[1], &n2, &b[i__ + i__ *
+ b_dim1], ldb, &b[b_offset], ldb, &work[n1 * n2 +
+ 1], &n2, &dscale, &dif[2], &work[(n1 << 1) * n2 +
+ 1], &i__1, &iwork[1], &ierr);
+ }
+ goto L50;
+ }
+ dif[2] = dscale / dif[2];
+
+ }
+ }
+
+L60:
+
+/* Compute generalized eigenvalues of reordered pair (A, B) and */
+/* normalize the generalized Schur form. */
+
+ pair = FALSE_;
+ i__1 = *n;
+ for (k = 1; k <= i__1; ++k) {
+ if (pair) {
+ pair = FALSE_;
+ } else {
+
+ if (k < *n) {
+ if (a[k + 1 + k * a_dim1] != 0.f) {
+ pair = TRUE_;
+ }
+ }
+
+ if (pair) {
+
+/* Compute the eigenvalue(s) at position K. */
+
+ work[1] = a[k + k * a_dim1];
+ work[2] = a[k + 1 + k * a_dim1];
+ work[3] = a[k + (k + 1) * a_dim1];
+ work[4] = a[k + 1 + (k + 1) * a_dim1];
+ work[5] = b[k + k * b_dim1];
+ work[6] = b[k + 1 + k * b_dim1];
+ work[7] = b[k + (k + 1) * b_dim1];
+ work[8] = b[k + 1 + (k + 1) * b_dim1];
+ r__1 = smlnum * eps;
+ slag2_(&work[1], &c__2, &work[5], &c__2, &r__1, &beta[k], &
+ beta[k + 1], &alphar[k], &alphar[k + 1], &alphai[k]);
+ alphai[k + 1] = -alphai[k];
+
+ } else {
+
+ if (r_sign(&c_b28, &b[k + k * b_dim1]) < 0.f) {
+
+/* If B(K,K) is negative, make it positive */
+
+ i__2 = *n;
+ for (i__ = 1; i__ <= i__2; ++i__) {
+ a[k + i__ * a_dim1] = -a[k + i__ * a_dim1];
+ b[k + i__ * b_dim1] = -b[k + i__ * b_dim1];
+ if (*wantq) {
+ q[i__ + k * q_dim1] = -q[i__ + k * q_dim1];
+ }
+/* L80: */
+ }
+ }
+
+ alphar[k] = a[k + k * a_dim1];
+ alphai[k] = 0.f;
+ beta[k] = b[k + k * b_dim1];
+
+ }
+ }
+/* L70: */
+ }
+
+ work[1] = (real) lwmin;
+ iwork[1] = liwmin;
+
+ return 0;
+
+/* End of STGSEN */
+
+} /* stgsen_ */