diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssyevx.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssyevx.c')
-rw-r--r-- | contrib/libs/clapack/ssyevx.c | 531 |
1 files changed, 531 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssyevx.c b/contrib/libs/clapack/ssyevx.c new file mode 100644 index 0000000000..8b6679c7d1 --- /dev/null +++ b/contrib/libs/clapack/ssyevx.c @@ -0,0 +1,531 @@ +/* ssyevx.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; + +/* Subroutine */ int ssyevx_(char *jobz, char *range, char *uplo, integer *n, + real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu, + real *abstol, integer *m, real *w, real *z__, integer *ldz, real * + work, integer *lwork, integer *iwork, integer *ifail, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2; + real r__1, r__2; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, nb, jj; + real eps, vll, vuu, tmp1; + integer indd, inde; + real anrm; + integer imax; + real rmin, rmax; + logical test; + integer itmp1, indee; + real sigma; + extern logical lsame_(char *, char *); + integer iinfo; + extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *); + char order[1]; + logical lower; + extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *, + integer *), sswap_(integer *, real *, integer *, real *, integer * +); + logical wantz, alleig, indeig; + integer iscale, indibl; + logical valeig; + extern doublereal slamch_(char *); + real safmin; + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + extern /* Subroutine */ int xerbla_(char *, integer *); + real abstll, bignum; + integer indtau, indisp, indiwo, indwkn; + extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *, + integer *, real *, integer *); + integer indwrk, lwkmin; + extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *, + real *, integer *, integer *, real *, integer *, real *, integer * +, integer *, integer *), ssterf_(integer *, real *, real *, + integer *); + integer llwrkn, llwork, nsplit; + real smlnum; + extern doublereal slansy_(char *, char *, integer *, real *, integer *, + real *); + extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *, + real *, integer *, integer *, real *, real *, real *, integer *, + integer *, real *, integer *, integer *, real *, integer *, + integer *); + integer lwkopt; + logical lquery; + extern /* Subroutine */ int sorgtr_(char *, integer *, real *, integer *, + real *, real *, integer *, integer *), ssteqr_(char *, + integer *, real *, real *, real *, integer *, real *, integer *), sormtr_(char *, char *, char *, integer *, integer *, + real *, integer *, real *, real *, integer *, real *, integer *, + integer *), ssytrd_(char *, integer *, + real *, integer *, real *, real *, real *, real *, integer *, + integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SSYEVX computes selected eigenvalues and, optionally, eigenvectors */ +/* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */ +/* selected by specifying either a range of values or a range of indices */ +/* for the desired eigenvalues. */ + +/* Arguments */ +/* ========= */ + +/* JOBZ (input) CHARACTER*1 */ +/* = 'N': Compute eigenvalues only; */ +/* = 'V': Compute eigenvalues and eigenvectors. */ + +/* RANGE (input) CHARACTER*1 */ +/* = 'A': all eigenvalues will be found. */ +/* = 'V': all eigenvalues in the half-open interval (VL,VU] */ +/* will be found. */ +/* = 'I': the IL-th through IU-th eigenvalues will be found. */ + +/* UPLO (input) CHARACTER*1 */ +/* = 'U': Upper triangle of A is stored; */ +/* = 'L': Lower triangle of A is stored. */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. */ + +/* A (input/output) REAL array, dimension (LDA, N) */ +/* On entry, the symmetric matrix A. If UPLO = 'U', the */ +/* leading N-by-N upper triangular part of A contains the */ +/* upper triangular part of the matrix A. If UPLO = 'L', */ +/* the leading N-by-N lower triangular part of A contains */ +/* the lower triangular part of the matrix A. */ +/* On exit, the lower triangle (if UPLO='L') or the upper */ +/* triangle (if UPLO='U') of A, including the diagonal, is */ +/* destroyed. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* VL (input) REAL */ +/* VU (input) REAL */ +/* If RANGE='V', the lower and upper bounds of the interval to */ +/* be searched for eigenvalues. VL < VU. */ +/* Not referenced if RANGE = 'A' or 'I'. */ + +/* IL (input) INTEGER */ +/* IU (input) INTEGER */ +/* If RANGE='I', the indices (in ascending order) of the */ +/* smallest and largest eigenvalues to be returned. */ +/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */ +/* Not referenced if RANGE = 'A' or 'V'. */ + +/* ABSTOL (input) REAL */ +/* The absolute error tolerance for the eigenvalues. */ +/* An approximate eigenvalue is accepted as converged */ +/* when it is determined to lie in an interval [a,b] */ +/* of width less than or equal to */ + +/* ABSTOL + EPS * max( |a|,|b| ) , */ + +/* where EPS is the machine precision. If ABSTOL is less than */ +/* or equal to zero, then EPS*|T| will be used in its place, */ +/* where |T| is the 1-norm of the tridiagonal matrix obtained */ +/* by reducing A to tridiagonal form. */ + +/* Eigenvalues will be computed most accurately when ABSTOL is */ +/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */ +/* If this routine returns with INFO>0, indicating that some */ +/* eigenvectors did not converge, try setting ABSTOL to */ +/* 2*SLAMCH('S'). */ + +/* See "Computing Small Singular Values of Bidiagonal Matrices */ +/* with Guaranteed High Relative Accuracy," by Demmel and */ +/* Kahan, LAPACK Working Note #3. */ + +/* M (output) INTEGER */ +/* The total number of eigenvalues found. 0 <= M <= N. */ +/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */ + +/* W (output) REAL array, dimension (N) */ +/* On normal exit, the first M elements contain the selected */ +/* eigenvalues in ascending order. */ + +/* Z (output) REAL array, dimension (LDZ, max(1,M)) */ +/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */ +/* contain the orthonormal eigenvectors of the matrix A */ +/* corresponding to the selected eigenvalues, with the i-th */ +/* column of Z holding the eigenvector associated with W(i). */ +/* If an eigenvector fails to converge, then that column of Z */ +/* contains the latest approximation to the eigenvector, and the */ +/* index of the eigenvector is returned in IFAIL. */ +/* If JOBZ = 'N', then Z is not referenced. */ +/* Note: the user must ensure that at least max(1,M) columns are */ +/* supplied in the array Z; if RANGE = 'V', the exact value of M */ +/* is not known in advance and an upper bound must be used. */ + +/* LDZ (input) INTEGER */ +/* The leading dimension of the array Z. LDZ >= 1, and if */ +/* JOBZ = 'V', LDZ >= max(1,N). */ + +/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The length of the array WORK. LWORK >= 1, when N <= 1; */ +/* otherwise 8*N. */ +/* For optimal efficiency, LWORK >= (NB+3)*N, */ +/* where NB is the max of the blocksize for SSYTRD and SORMTR */ +/* returned by ILAENV. */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* IWORK (workspace) INTEGER array, dimension (5*N) */ + +/* IFAIL (output) INTEGER array, dimension (N) */ +/* If JOBZ = 'V', then if INFO = 0, the first M elements of */ +/* IFAIL are zero. If INFO > 0, then IFAIL contains the */ +/* indices of the eigenvectors that failed to converge. */ +/* If JOBZ = 'N', then IFAIL is not referenced. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, then i eigenvectors failed to converge. */ +/* Their indices are stored in array IFAIL. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + --w; + z_dim1 = *ldz; + z_offset = 1 + z_dim1; + z__ -= z_offset; + --work; + --iwork; + --ifail; + + /* Function Body */ + lower = lsame_(uplo, "L"); + wantz = lsame_(jobz, "V"); + alleig = lsame_(range, "A"); + valeig = lsame_(range, "V"); + indeig = lsame_(range, "I"); + lquery = *lwork == -1; + + *info = 0; + if (! (wantz || lsame_(jobz, "N"))) { + *info = -1; + } else if (! (alleig || valeig || indeig)) { + *info = -2; + } else if (! (lower || lsame_(uplo, "U"))) { + *info = -3; + } else if (*n < 0) { + *info = -4; + } else if (*lda < max(1,*n)) { + *info = -6; + } else { + if (valeig) { + if (*n > 0 && *vu <= *vl) { + *info = -8; + } + } else if (indeig) { + if (*il < 1 || *il > max(1,*n)) { + *info = -9; + } else if (*iu < min(*n,*il) || *iu > *n) { + *info = -10; + } + } + } + if (*info == 0) { + if (*ldz < 1 || wantz && *ldz < *n) { + *info = -15; + } + } + + if (*info == 0) { + if (*n <= 1) { + lwkmin = 1; + work[1] = (real) lwkmin; + } else { + lwkmin = *n << 3; + nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1); +/* Computing MAX */ + i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, + &c_n1); + nb = max(i__1,i__2); +/* Computing MAX */ + i__1 = lwkmin, i__2 = (nb + 3) * *n; + lwkopt = max(i__1,i__2); + work[1] = (real) lwkopt; + } + + if (*lwork < lwkmin && ! lquery) { + *info = -17; + } + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("SSYEVX", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + *m = 0; + if (*n == 0) { + return 0; + } + + if (*n == 1) { + if (alleig || indeig) { + *m = 1; + w[1] = a[a_dim1 + 1]; + } else { + if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) { + *m = 1; + w[1] = a[a_dim1 + 1]; + } + } + if (wantz) { + z__[z_dim1 + 1] = 1.f; + } + return 0; + } + +/* Get machine constants. */ + + safmin = slamch_("Safe minimum"); + eps = slamch_("Precision"); + smlnum = safmin / eps; + bignum = 1.f / smlnum; + rmin = sqrt(smlnum); +/* Computing MIN */ + r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin)); + rmax = dmin(r__1,r__2); + +/* Scale matrix to allowable range, if necessary. */ + + iscale = 0; + abstll = *abstol; + if (valeig) { + vll = *vl; + vuu = *vu; + } + anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]); + if (anrm > 0.f && anrm < rmin) { + iscale = 1; + sigma = rmin / anrm; + } else if (anrm > rmax) { + iscale = 1; + sigma = rmax / anrm; + } + if (iscale == 1) { + if (lower) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j + 1; + sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1); +/* L10: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1); +/* L20: */ + } + } + if (*abstol > 0.f) { + abstll = *abstol * sigma; + } + if (valeig) { + vll = *vl * sigma; + vuu = *vu * sigma; + } + } + +/* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */ + + indtau = 1; + inde = indtau + *n; + indd = inde + *n; + indwrk = indd + *n; + llwork = *lwork - indwrk + 1; + ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[ + indtau], &work[indwrk], &llwork, &iinfo); + +/* If all eigenvalues are desired and ABSTOL is less than or equal to */ +/* zero, then call SSTERF or SORGTR and SSTEQR. If this fails for */ +/* some eigenvalue, then try SSTEBZ. */ + + test = FALSE_; + if (indeig) { + if (*il == 1 && *iu == *n) { + test = TRUE_; + } + } + if ((alleig || test) && *abstol <= 0.f) { + scopy_(n, &work[indd], &c__1, &w[1], &c__1); + indee = indwrk + (*n << 1); + if (! wantz) { + i__1 = *n - 1; + scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); + ssterf_(n, &w[1], &work[indee], info); + } else { + slacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz); + sorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk] +, &llwork, &iinfo); + i__1 = *n - 1; + scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1); + ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[ + indwrk], info); + if (*info == 0) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + ifail[i__] = 0; +/* L30: */ + } + } + } + if (*info == 0) { + *m = *n; + goto L40; + } + *info = 0; + } + +/* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */ + + if (wantz) { + *(unsigned char *)order = 'B'; + } else { + *(unsigned char *)order = 'E'; + } + indibl = 1; + indisp = indibl + *n; + indiwo = indisp + *n; + sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[ + inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[ + indwrk], &iwork[indiwo], info); + + if (wantz) { + sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[ + indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], & + ifail[1], info); + +/* Apply orthogonal matrix used in reduction to tridiagonal */ +/* form to eigenvectors returned by SSTEIN. */ + + indwkn = inde; + llwrkn = *lwork - indwkn + 1; + sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[ + z_offset], ldz, &work[indwkn], &llwrkn, &iinfo); + } + +/* If matrix was scaled, then rescale eigenvalues appropriately. */ + +L40: + if (iscale == 1) { + if (*info == 0) { + imax = *m; + } else { + imax = *info - 1; + } + r__1 = 1.f / sigma; + sscal_(&imax, &r__1, &w[1], &c__1); + } + +/* If eigenvalues are not in order, then sort them, along with */ +/* eigenvectors. */ + + if (wantz) { + i__1 = *m - 1; + for (j = 1; j <= i__1; ++j) { + i__ = 0; + tmp1 = w[j]; + i__2 = *m; + for (jj = j + 1; jj <= i__2; ++jj) { + if (w[jj] < tmp1) { + i__ = jj; + tmp1 = w[jj]; + } +/* L50: */ + } + + if (i__ != 0) { + itmp1 = iwork[indibl + i__ - 1]; + w[i__] = w[j]; + iwork[indibl + i__ - 1] = iwork[indibl + j - 1]; + w[j] = tmp1; + iwork[indibl + j - 1] = itmp1; + sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1], + &c__1); + if (*info != 0) { + itmp1 = ifail[i__]; + ifail[i__] = ifail[j]; + ifail[j] = itmp1; + } + } +/* L60: */ + } + } + +/* Set WORK(1) to optimal workspace size. */ + + work[1] = (real) lwkopt; + + return 0; + +/* End of SSYEVX */ + +} /* ssyevx_ */ |