aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/ssyevx.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/ssyevx.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/ssyevx.c')
-rw-r--r--contrib/libs/clapack/ssyevx.c531
1 files changed, 531 insertions, 0 deletions
diff --git a/contrib/libs/clapack/ssyevx.c b/contrib/libs/clapack/ssyevx.c
new file mode 100644
index 0000000000..8b6679c7d1
--- /dev/null
+++ b/contrib/libs/clapack/ssyevx.c
@@ -0,0 +1,531 @@
+/* ssyevx.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+static integer c_n1 = -1;
+
+/* Subroutine */ int ssyevx_(char *jobz, char *range, char *uplo, integer *n,
+ real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu,
+ real *abstol, integer *m, real *w, real *z__, integer *ldz, real *
+ work, integer *lwork, integer *iwork, integer *ifail, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
+ real r__1, r__2;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ integer i__, j, nb, jj;
+ real eps, vll, vuu, tmp1;
+ integer indd, inde;
+ real anrm;
+ integer imax;
+ real rmin, rmax;
+ logical test;
+ integer itmp1, indee;
+ real sigma;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ char order[1];
+ logical lower;
+ extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
+ integer *), sswap_(integer *, real *, integer *, real *, integer *
+);
+ logical wantz, alleig, indeig;
+ integer iscale, indibl;
+ logical valeig;
+ extern doublereal slamch_(char *);
+ real safmin;
+ extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
+ integer *, integer *);
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real abstll, bignum;
+ integer indtau, indisp, indiwo, indwkn;
+ extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
+ integer *, real *, integer *);
+ integer indwrk, lwkmin;
+ extern /* Subroutine */ int sstein_(integer *, real *, real *, integer *,
+ real *, integer *, integer *, real *, integer *, real *, integer *
+, integer *, integer *), ssterf_(integer *, real *, real *,
+ integer *);
+ integer llwrkn, llwork, nsplit;
+ real smlnum;
+ extern doublereal slansy_(char *, char *, integer *, real *, integer *,
+ real *);
+ extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *,
+ real *, integer *, integer *, real *, real *, real *, integer *,
+ integer *, real *, integer *, integer *, real *, integer *,
+ integer *);
+ integer lwkopt;
+ logical lquery;
+ extern /* Subroutine */ int sorgtr_(char *, integer *, real *, integer *,
+ real *, real *, integer *, integer *), ssteqr_(char *,
+ integer *, real *, real *, real *, integer *, real *, integer *), sormtr_(char *, char *, char *, integer *, integer *,
+ real *, integer *, real *, real *, integer *, real *, integer *,
+ integer *), ssytrd_(char *, integer *,
+ real *, integer *, real *, real *, real *, real *, integer *,
+ integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSYEVX computes selected eigenvalues and, optionally, eigenvectors */
+/* of a real symmetric matrix A. Eigenvalues and eigenvectors can be */
+/* selected by specifying either a range of values or a range of indices */
+/* for the desired eigenvalues. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* RANGE (input) CHARACTER*1 */
+/* = 'A': all eigenvalues will be found. */
+/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
+/* will be found. */
+/* = 'I': the IL-th through IU-th eigenvalues will be found. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* A (input/output) REAL array, dimension (LDA, N) */
+/* On entry, the symmetric matrix A. If UPLO = 'U', the */
+/* leading N-by-N upper triangular part of A contains the */
+/* upper triangular part of the matrix A. If UPLO = 'L', */
+/* the leading N-by-N lower triangular part of A contains */
+/* the lower triangular part of the matrix A. */
+/* On exit, the lower triangle (if UPLO='L') or the upper */
+/* triangle (if UPLO='U') of A, including the diagonal, is */
+/* destroyed. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* VL (input) REAL */
+/* VU (input) REAL */
+/* If RANGE='V', the lower and upper bounds of the interval to */
+/* be searched for eigenvalues. VL < VU. */
+/* Not referenced if RANGE = 'A' or 'I'. */
+
+/* IL (input) INTEGER */
+/* IU (input) INTEGER */
+/* If RANGE='I', the indices (in ascending order) of the */
+/* smallest and largest eigenvalues to be returned. */
+/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
+/* Not referenced if RANGE = 'A' or 'V'. */
+
+/* ABSTOL (input) REAL */
+/* The absolute error tolerance for the eigenvalues. */
+/* An approximate eigenvalue is accepted as converged */
+/* when it is determined to lie in an interval [a,b] */
+/* of width less than or equal to */
+
+/* ABSTOL + EPS * max( |a|,|b| ) , */
+
+/* where EPS is the machine precision. If ABSTOL is less than */
+/* or equal to zero, then EPS*|T| will be used in its place, */
+/* where |T| is the 1-norm of the tridiagonal matrix obtained */
+/* by reducing A to tridiagonal form. */
+
+/* Eigenvalues will be computed most accurately when ABSTOL is */
+/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
+/* If this routine returns with INFO>0, indicating that some */
+/* eigenvectors did not converge, try setting ABSTOL to */
+/* 2*SLAMCH('S'). */
+
+/* See "Computing Small Singular Values of Bidiagonal Matrices */
+/* with Guaranteed High Relative Accuracy," by Demmel and */
+/* Kahan, LAPACK Working Note #3. */
+
+/* M (output) INTEGER */
+/* The total number of eigenvalues found. 0 <= M <= N. */
+/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
+
+/* W (output) REAL array, dimension (N) */
+/* On normal exit, the first M elements contain the selected */
+/* eigenvalues in ascending order. */
+
+/* Z (output) REAL array, dimension (LDZ, max(1,M)) */
+/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
+/* contain the orthonormal eigenvectors of the matrix A */
+/* corresponding to the selected eigenvalues, with the i-th */
+/* column of Z holding the eigenvector associated with W(i). */
+/* If an eigenvector fails to converge, then that column of Z */
+/* contains the latest approximation to the eigenvector, and the */
+/* index of the eigenvector is returned in IFAIL. */
+/* If JOBZ = 'N', then Z is not referenced. */
+/* Note: the user must ensure that at least max(1,M) columns are */
+/* supplied in the array Z; if RANGE = 'V', the exact value of M */
+/* is not known in advance and an upper bound must be used. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The length of the array WORK. LWORK >= 1, when N <= 1; */
+/* otherwise 8*N. */
+/* For optimal efficiency, LWORK >= (NB+3)*N, */
+/* where NB is the max of the blocksize for SSYTRD and SORMTR */
+/* returned by ILAENV. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the optimal size of the WORK array, returns */
+/* this value as the first entry of the WORK array, and no error */
+/* message related to LWORK is issued by XERBLA. */
+
+/* IWORK (workspace) INTEGER array, dimension (5*N) */
+
+/* IFAIL (output) INTEGER array, dimension (N) */
+/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
+/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
+/* indices of the eigenvectors that failed to converge. */
+/* If JOBZ = 'N', then IFAIL is not referenced. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, then i eigenvectors failed to converge. */
+/* Their indices are stored in array IFAIL. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+ --ifail;
+
+ /* Function Body */
+ lower = lsame_(uplo, "L");
+ wantz = lsame_(jobz, "V");
+ alleig = lsame_(range, "A");
+ valeig = lsame_(range, "V");
+ indeig = lsame_(range, "I");
+ lquery = *lwork == -1;
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (alleig || valeig || indeig)) {
+ *info = -2;
+ } else if (! (lower || lsame_(uplo, "U"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*lda < max(1,*n)) {
+ *info = -6;
+ } else {
+ if (valeig) {
+ if (*n > 0 && *vu <= *vl) {
+ *info = -8;
+ }
+ } else if (indeig) {
+ if (*il < 1 || *il > max(1,*n)) {
+ *info = -9;
+ } else if (*iu < min(*n,*il) || *iu > *n) {
+ *info = -10;
+ }
+ }
+ }
+ if (*info == 0) {
+ if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -15;
+ }
+ }
+
+ if (*info == 0) {
+ if (*n <= 1) {
+ lwkmin = 1;
+ work[1] = (real) lwkmin;
+ } else {
+ lwkmin = *n << 3;
+ nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1);
+/* Computing MAX */
+ i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1,
+ &c_n1);
+ nb = max(i__1,i__2);
+/* Computing MAX */
+ i__1 = lwkmin, i__2 = (nb + 3) * *n;
+ lwkopt = max(i__1,i__2);
+ work[1] = (real) lwkopt;
+ }
+
+ if (*lwork < lwkmin && ! lquery) {
+ *info = -17;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SSYEVX", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ *m = 0;
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ if (alleig || indeig) {
+ *m = 1;
+ w[1] = a[a_dim1 + 1];
+ } else {
+ if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
+ *m = 1;
+ w[1] = a[a_dim1 + 1];
+ }
+ }
+ if (wantz) {
+ z__[z_dim1 + 1] = 1.f;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = slamch_("Safe minimum");
+ eps = slamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1.f / smlnum;
+ rmin = sqrt(smlnum);
+/* Computing MIN */
+ r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
+ rmax = dmin(r__1,r__2);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ iscale = 0;
+ abstll = *abstol;
+ if (valeig) {
+ vll = *vl;
+ vuu = *vu;
+ }
+ anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
+ if (anrm > 0.f && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ if (lower) {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ i__2 = *n - j + 1;
+ sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
+/* L10: */
+ }
+ } else {
+ i__1 = *n;
+ for (j = 1; j <= i__1; ++j) {
+ sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
+/* L20: */
+ }
+ }
+ if (*abstol > 0.f) {
+ abstll = *abstol * sigma;
+ }
+ if (valeig) {
+ vll = *vl * sigma;
+ vuu = *vu * sigma;
+ }
+ }
+
+/* Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
+
+ indtau = 1;
+ inde = indtau + *n;
+ indd = inde + *n;
+ indwrk = indd + *n;
+ llwork = *lwork - indwrk + 1;
+ ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
+ indtau], &work[indwrk], &llwork, &iinfo);
+
+/* If all eigenvalues are desired and ABSTOL is less than or equal to */
+/* zero, then call SSTERF or SORGTR and SSTEQR. If this fails for */
+/* some eigenvalue, then try SSTEBZ. */
+
+ test = FALSE_;
+ if (indeig) {
+ if (*il == 1 && *iu == *n) {
+ test = TRUE_;
+ }
+ }
+ if ((alleig || test) && *abstol <= 0.f) {
+ scopy_(n, &work[indd], &c__1, &w[1], &c__1);
+ indee = indwrk + (*n << 1);
+ if (! wantz) {
+ i__1 = *n - 1;
+ scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ ssterf_(n, &w[1], &work[indee], info);
+ } else {
+ slacpy_("A", n, n, &a[a_offset], lda, &z__[z_offset], ldz);
+ sorgtr_(uplo, n, &z__[z_offset], ldz, &work[indtau], &work[indwrk]
+, &llwork, &iinfo);
+ i__1 = *n - 1;
+ scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
+ ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
+ indwrk], info);
+ if (*info == 0) {
+ i__1 = *n;
+ for (i__ = 1; i__ <= i__1; ++i__) {
+ ifail[i__] = 0;
+/* L30: */
+ }
+ }
+ }
+ if (*info == 0) {
+ *m = *n;
+ goto L40;
+ }
+ *info = 0;
+ }
+
+/* Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
+
+ if (wantz) {
+ *(unsigned char *)order = 'B';
+ } else {
+ *(unsigned char *)order = 'E';
+ }
+ indibl = 1;
+ indisp = indibl + *n;
+ indiwo = indisp + *n;
+ sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
+ inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
+ indwrk], &iwork[indiwo], info);
+
+ if (wantz) {
+ sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
+ indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
+ ifail[1], info);
+
+/* Apply orthogonal matrix used in reduction to tridiagonal */
+/* form to eigenvectors returned by SSTEIN. */
+
+ indwkn = inde;
+ llwrkn = *lwork - indwkn + 1;
+ sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
+ z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+L40:
+ if (iscale == 1) {
+ if (*info == 0) {
+ imax = *m;
+ } else {
+ imax = *info - 1;
+ }
+ r__1 = 1.f / sigma;
+ sscal_(&imax, &r__1, &w[1], &c__1);
+ }
+
+/* If eigenvalues are not in order, then sort them, along with */
+/* eigenvectors. */
+
+ if (wantz) {
+ i__1 = *m - 1;
+ for (j = 1; j <= i__1; ++j) {
+ i__ = 0;
+ tmp1 = w[j];
+ i__2 = *m;
+ for (jj = j + 1; jj <= i__2; ++jj) {
+ if (w[jj] < tmp1) {
+ i__ = jj;
+ tmp1 = w[jj];
+ }
+/* L50: */
+ }
+
+ if (i__ != 0) {
+ itmp1 = iwork[indibl + i__ - 1];
+ w[i__] = w[j];
+ iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
+ w[j] = tmp1;
+ iwork[indibl + j - 1] = itmp1;
+ sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
+ &c__1);
+ if (*info != 0) {
+ itmp1 = ifail[i__];
+ ifail[i__] = ifail[j];
+ ifail[j] = itmp1;
+ }
+ }
+/* L60: */
+ }
+ }
+
+/* Set WORK(1) to optimal workspace size. */
+
+ work[1] = (real) lwkopt;
+
+ return 0;
+
+/* End of SSYEVX */
+
+} /* ssyevx_ */