aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sspevd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sspevd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sspevd.c')
-rw-r--r--contrib/libs/clapack/sspevd.c310
1 files changed, 310 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sspevd.c b/contrib/libs/clapack/sspevd.c
new file mode 100644
index 00000000000..7abae02d77a
--- /dev/null
+++ b/contrib/libs/clapack/sspevd.c
@@ -0,0 +1,310 @@
+/* sspevd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int sspevd_(char *jobz, char *uplo, integer *n, real *ap,
+ real *w, real *z__, integer *ldz, real *work, integer *lwork, integer
+ *iwork, integer *liwork, integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1;
+ real r__1;
+
+ /* Builtin functions */
+ double sqrt(doublereal);
+
+ /* Local variables */
+ real eps;
+ integer inde;
+ real anrm, rmin, rmax, sigma;
+ extern logical lsame_(char *, char *);
+ integer iinfo;
+ extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
+ integer lwmin;
+ logical wantz;
+ integer iscale;
+ extern doublereal slamch_(char *);
+ real safmin;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+ real bignum;
+ integer indtau;
+ extern /* Subroutine */ int sstedc_(char *, integer *, real *, real *,
+ real *, integer *, real *, integer *, integer *, integer *,
+ integer *);
+ integer indwrk, liwmin;
+ extern doublereal slansp_(char *, char *, integer *, real *, real *);
+ extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
+ integer llwork;
+ real smlnum;
+ extern /* Subroutine */ int ssptrd_(char *, integer *, real *, real *,
+ real *, real *, integer *);
+ logical lquery;
+ extern /* Subroutine */ int sopmtr_(char *, char *, char *, integer *,
+ integer *, real *, real *, real *, integer *, real *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SSPEVD computes all the eigenvalues and, optionally, eigenvectors */
+/* of a real symmetric matrix A in packed storage. If eigenvectors are */
+/* desired, it uses a divide and conquer algorithm. */
+
+/* The divide and conquer algorithm makes very mild assumptions about */
+/* floating point arithmetic. It will work on machines with a guard */
+/* digit in add/subtract, or on those binary machines without guard */
+/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
+/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* Arguments */
+/* ========= */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangle of A is stored; */
+/* = 'L': Lower triangle of A is stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* AP (input/output) REAL array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, AP is overwritten by values generated during the */
+/* reduction to tridiagonal form. If UPLO = 'U', the diagonal */
+/* and first superdiagonal of the tridiagonal matrix T overwrite */
+/* the corresponding elements of A, and if UPLO = 'L', the */
+/* diagonal and first subdiagonal of T overwrite the */
+/* corresponding elements of A. */
+
+/* W (output) REAL array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) REAL array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
+/* eigenvectors of the matrix A, with the i-th column of Z */
+/* holding the eigenvector associated with W(i). */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the required LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If N <= 1, LWORK must be at least 1. */
+/* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. */
+/* If JOBZ = 'V' and N > 1, LWORK must be at least */
+/* 1 + 6*N + N**2. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the required sizes of the WORK and IWORK */
+/* arrays, returns these values as the first entries of the WORK */
+/* and IWORK arrays, and no error message related to LWORK or */
+/* LIWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. */
+/* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */
+/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the required sizes of the WORK and */
+/* IWORK arrays, returns these values as the first entries of */
+/* the WORK and IWORK arrays, and no error message related to */
+/* LWORK or LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value. */
+/* > 0: if INFO = i, the algorithm failed to converge; i */
+/* off-diagonal elements of an intermediate tridiagonal */
+/* form did not converge to zero. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ap;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ lquery = *lwork == -1 || *liwork == -1;
+
+ *info = 0;
+ if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -1;
+ } else if (! (lsame_(uplo, "U") || lsame_(uplo,
+ "L"))) {
+ *info = -2;
+ } else if (*n < 0) {
+ *info = -3;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -7;
+ }
+
+ if (*info == 0) {
+ if (*n <= 1) {
+ liwmin = 1;
+ lwmin = 1;
+ } else {
+ if (wantz) {
+ liwmin = *n * 5 + 3;
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = *n * 6 + 1 + i__1 * i__1;
+ } else {
+ liwmin = 1;
+ lwmin = *n << 1;
+ }
+ }
+ iwork[1] = liwmin;
+ work[1] = (real) lwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -9;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -11;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SSPEVD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+ if (*n == 1) {
+ w[1] = ap[1];
+ if (wantz) {
+ z__[z_dim1 + 1] = 1.f;
+ }
+ return 0;
+ }
+
+/* Get machine constants. */
+
+ safmin = slamch_("Safe minimum");
+ eps = slamch_("Precision");
+ smlnum = safmin / eps;
+ bignum = 1.f / smlnum;
+ rmin = sqrt(smlnum);
+ rmax = sqrt(bignum);
+
+/* Scale matrix to allowable range, if necessary. */
+
+ anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
+ iscale = 0;
+ if (anrm > 0.f && anrm < rmin) {
+ iscale = 1;
+ sigma = rmin / anrm;
+ } else if (anrm > rmax) {
+ iscale = 1;
+ sigma = rmax / anrm;
+ }
+ if (iscale == 1) {
+ i__1 = *n * (*n + 1) / 2;
+ sscal_(&i__1, &sigma, &ap[1], &c__1);
+ }
+
+/* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */
+
+ inde = 1;
+ indtau = inde + *n;
+ ssptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
+
+/* For eigenvalues only, call SSTERF. For eigenvectors, first call */
+/* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
+/* tridiagonal matrix, then call SOPMTR to multiply it by the */
+/* Householder transformations represented in AP. */
+
+ if (! wantz) {
+ ssterf_(n, &w[1], &work[inde], info);
+ } else {
+ indwrk = indtau + *n;
+ llwork = *lwork - indwrk + 1;
+ sstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk]
+, &llwork, &iwork[1], liwork, info);
+ sopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset],
+ ldz, &work[indwrk], &iinfo);
+ }
+
+/* If matrix was scaled, then rescale eigenvalues appropriately. */
+
+ if (iscale == 1) {
+ r__1 = 1.f / sigma;
+ sscal_(n, &r__1, &w[1], &c__1);
+ }
+
+ work[1] = (real) lwmin;
+ iwork[1] = liwmin;
+ return 0;
+
+/* End of SSPEVD */
+
+} /* sspevd_ */