aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/slagv2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/slagv2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/slagv2.c')
-rw-r--r--contrib/libs/clapack/slagv2.c347
1 files changed, 347 insertions, 0 deletions
diff --git a/contrib/libs/clapack/slagv2.c b/contrib/libs/clapack/slagv2.c
new file mode 100644
index 0000000000..03efb8c0b4
--- /dev/null
+++ b/contrib/libs/clapack/slagv2.c
@@ -0,0 +1,347 @@
+/* slagv2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__2 = 2;
+static integer c__1 = 1;
+
+/* Subroutine */ int slagv2_(real *a, integer *lda, real *b, integer *ldb,
+ real *alphar, real *alphai, real *beta, real *csl, real *snl, real *
+ csr, real *snr)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset;
+ real r__1, r__2, r__3, r__4, r__5, r__6;
+
+ /* Local variables */
+ real r__, t, h1, h2, h3, wi, qq, rr, wr1, wr2, ulp;
+ extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
+ integer *, real *, real *), slag2_(real *, integer *, real *,
+ integer *, real *, real *, real *, real *, real *, real *);
+ real anorm, bnorm, scale1, scale2;
+ extern /* Subroutine */ int slasv2_(real *, real *, real *, real *, real *
+, real *, real *, real *, real *);
+ extern doublereal slapy2_(real *, real *);
+ real ascale, bscale;
+ extern doublereal slamch_(char *);
+ real safmin;
+ extern /* Subroutine */ int slartg_(real *, real *, real *, real *, real *
+);
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SLAGV2 computes the Generalized Schur factorization of a real 2-by-2 */
+/* matrix pencil (A,B) where B is upper triangular. This routine */
+/* computes orthogonal (rotation) matrices given by CSL, SNL and CSR, */
+/* SNR such that */
+
+/* 1) if the pencil (A,B) has two real eigenvalues (include 0/0 or 1/0 */
+/* types), then */
+
+/* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */
+/* [ 0 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */
+
+/* [ b11 b12 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */
+/* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ], */
+
+/* 2) if the pencil (A,B) has a pair of complex conjugate eigenvalues, */
+/* then */
+
+/* [ a11 a12 ] := [ CSL SNL ] [ a11 a12 ] [ CSR -SNR ] */
+/* [ a21 a22 ] [ -SNL CSL ] [ a21 a22 ] [ SNR CSR ] */
+
+/* [ b11 0 ] := [ CSL SNL ] [ b11 b12 ] [ CSR -SNR ] */
+/* [ 0 b22 ] [ -SNL CSL ] [ 0 b22 ] [ SNR CSR ] */
+
+/* where b11 >= b22 > 0. */
+
+
+/* Arguments */
+/* ========= */
+
+/* A (input/output) REAL array, dimension (LDA, 2) */
+/* On entry, the 2 x 2 matrix A. */
+/* On exit, A is overwritten by the ``A-part'' of the */
+/* generalized Schur form. */
+
+/* LDA (input) INTEGER */
+/* THe leading dimension of the array A. LDA >= 2. */
+
+/* B (input/output) REAL array, dimension (LDB, 2) */
+/* On entry, the upper triangular 2 x 2 matrix B. */
+/* On exit, B is overwritten by the ``B-part'' of the */
+/* generalized Schur form. */
+
+/* LDB (input) INTEGER */
+/* THe leading dimension of the array B. LDB >= 2. */
+
+/* ALPHAR (output) REAL array, dimension (2) */
+/* ALPHAI (output) REAL array, dimension (2) */
+/* BETA (output) REAL array, dimension (2) */
+/* (ALPHAR(k)+i*ALPHAI(k))/BETA(k) are the eigenvalues of the */
+/* pencil (A,B), k=1,2, i = sqrt(-1). Note that BETA(k) may */
+/* be zero. */
+
+/* CSL (output) REAL */
+/* The cosine of the left rotation matrix. */
+
+/* SNL (output) REAL */
+/* The sine of the left rotation matrix. */
+
+/* CSR (output) REAL */
+/* The cosine of the right rotation matrix. */
+
+/* SNR (output) REAL */
+/* The sine of the right rotation matrix. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ --alphar;
+ --alphai;
+ --beta;
+
+ /* Function Body */
+ safmin = slamch_("S");
+ ulp = slamch_("P");
+
+/* Scale A */
+
+/* Computing MAX */
+ r__5 = (r__1 = a[a_dim1 + 1], dabs(r__1)) + (r__2 = a[a_dim1 + 2], dabs(
+ r__2)), r__6 = (r__3 = a[(a_dim1 << 1) + 1], dabs(r__3)) + (r__4 =
+ a[(a_dim1 << 1) + 2], dabs(r__4)), r__5 = max(r__5,r__6);
+ anorm = dmax(r__5,safmin);
+ ascale = 1.f / anorm;
+ a[a_dim1 + 1] = ascale * a[a_dim1 + 1];
+ a[(a_dim1 << 1) + 1] = ascale * a[(a_dim1 << 1) + 1];
+ a[a_dim1 + 2] = ascale * a[a_dim1 + 2];
+ a[(a_dim1 << 1) + 2] = ascale * a[(a_dim1 << 1) + 2];
+
+/* Scale B */
+
+/* Computing MAX */
+ r__4 = (r__3 = b[b_dim1 + 1], dabs(r__3)), r__5 = (r__1 = b[(b_dim1 << 1)
+ + 1], dabs(r__1)) + (r__2 = b[(b_dim1 << 1) + 2], dabs(r__2)),
+ r__4 = max(r__4,r__5);
+ bnorm = dmax(r__4,safmin);
+ bscale = 1.f / bnorm;
+ b[b_dim1 + 1] = bscale * b[b_dim1 + 1];
+ b[(b_dim1 << 1) + 1] = bscale * b[(b_dim1 << 1) + 1];
+ b[(b_dim1 << 1) + 2] = bscale * b[(b_dim1 << 1) + 2];
+
+/* Check if A can be deflated */
+
+ if ((r__1 = a[a_dim1 + 2], dabs(r__1)) <= ulp) {
+ *csl = 1.f;
+ *snl = 0.f;
+ *csr = 1.f;
+ *snr = 0.f;
+ a[a_dim1 + 2] = 0.f;
+ b[b_dim1 + 2] = 0.f;
+
+/* Check if B is singular */
+
+ } else if ((r__1 = b[b_dim1 + 1], dabs(r__1)) <= ulp) {
+ slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
+ *csr = 1.f;
+ *snr = 0.f;
+ srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
+ srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
+ a[a_dim1 + 2] = 0.f;
+ b[b_dim1 + 1] = 0.f;
+ b[b_dim1 + 2] = 0.f;
+
+ } else if ((r__1 = b[(b_dim1 << 1) + 2], dabs(r__1)) <= ulp) {
+ slartg_(&a[(a_dim1 << 1) + 2], &a[a_dim1 + 2], csr, snr, &t);
+ *snr = -(*snr);
+ srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1, csr,
+ snr);
+ srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1, csr,
+ snr);
+ *csl = 1.f;
+ *snl = 0.f;
+ a[a_dim1 + 2] = 0.f;
+ b[b_dim1 + 2] = 0.f;
+ b[(b_dim1 << 1) + 2] = 0.f;
+
+ } else {
+
+/* B is nonsingular, first compute the eigenvalues of (A,B) */
+
+ slag2_(&a[a_offset], lda, &b[b_offset], ldb, &safmin, &scale1, &
+ scale2, &wr1, &wr2, &wi);
+
+ if (wi == 0.f) {
+
+/* two real eigenvalues, compute s*A-w*B */
+
+ h1 = scale1 * a[a_dim1 + 1] - wr1 * b[b_dim1 + 1];
+ h2 = scale1 * a[(a_dim1 << 1) + 1] - wr1 * b[(b_dim1 << 1) + 1];
+ h3 = scale1 * a[(a_dim1 << 1) + 2] - wr1 * b[(b_dim1 << 1) + 2];
+
+ rr = slapy2_(&h1, &h2);
+ r__1 = scale1 * a[a_dim1 + 2];
+ qq = slapy2_(&r__1, &h3);
+
+ if (rr > qq) {
+
+/* find right rotation matrix to zero 1,1 element of */
+/* (sA - wB) */
+
+ slartg_(&h2, &h1, csr, snr, &t);
+
+ } else {
+
+/* find right rotation matrix to zero 2,1 element of */
+/* (sA - wB) */
+
+ r__1 = scale1 * a[a_dim1 + 2];
+ slartg_(&h3, &r__1, csr, snr, &t);
+
+ }
+
+ *snr = -(*snr);
+ srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1,
+ csr, snr);
+ srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1,
+ csr, snr);
+
+/* compute inf norms of A and B */
+
+/* Computing MAX */
+ r__5 = (r__1 = a[a_dim1 + 1], dabs(r__1)) + (r__2 = a[(a_dim1 <<
+ 1) + 1], dabs(r__2)), r__6 = (r__3 = a[a_dim1 + 2], dabs(
+ r__3)) + (r__4 = a[(a_dim1 << 1) + 2], dabs(r__4));
+ h1 = dmax(r__5,r__6);
+/* Computing MAX */
+ r__5 = (r__1 = b[b_dim1 + 1], dabs(r__1)) + (r__2 = b[(b_dim1 <<
+ 1) + 1], dabs(r__2)), r__6 = (r__3 = b[b_dim1 + 2], dabs(
+ r__3)) + (r__4 = b[(b_dim1 << 1) + 2], dabs(r__4));
+ h2 = dmax(r__5,r__6);
+
+ if (scale1 * h1 >= dabs(wr1) * h2) {
+
+/* find left rotation matrix Q to zero out B(2,1) */
+
+ slartg_(&b[b_dim1 + 1], &b[b_dim1 + 2], csl, snl, &r__);
+
+ } else {
+
+/* find left rotation matrix Q to zero out A(2,1) */
+
+ slartg_(&a[a_dim1 + 1], &a[a_dim1 + 2], csl, snl, &r__);
+
+ }
+
+ srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
+ srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
+
+ a[a_dim1 + 2] = 0.f;
+ b[b_dim1 + 2] = 0.f;
+
+ } else {
+
+/* a pair of complex conjugate eigenvalues */
+/* first compute the SVD of the matrix B */
+
+ slasv2_(&b[b_dim1 + 1], &b[(b_dim1 << 1) + 1], &b[(b_dim1 << 1) +
+ 2], &r__, &t, snr, csr, snl, csl);
+
+/* Form (A,B) := Q(A,B)Z' where Q is left rotation matrix and */
+/* Z is right rotation matrix computed from SLASV2 */
+
+ srot_(&c__2, &a[a_dim1 + 1], lda, &a[a_dim1 + 2], lda, csl, snl);
+ srot_(&c__2, &b[b_dim1 + 1], ldb, &b[b_dim1 + 2], ldb, csl, snl);
+ srot_(&c__2, &a[a_dim1 + 1], &c__1, &a[(a_dim1 << 1) + 1], &c__1,
+ csr, snr);
+ srot_(&c__2, &b[b_dim1 + 1], &c__1, &b[(b_dim1 << 1) + 1], &c__1,
+ csr, snr);
+
+ b[b_dim1 + 2] = 0.f;
+ b[(b_dim1 << 1) + 1] = 0.f;
+
+ }
+
+ }
+
+/* Unscaling */
+
+ a[a_dim1 + 1] = anorm * a[a_dim1 + 1];
+ a[a_dim1 + 2] = anorm * a[a_dim1 + 2];
+ a[(a_dim1 << 1) + 1] = anorm * a[(a_dim1 << 1) + 1];
+ a[(a_dim1 << 1) + 2] = anorm * a[(a_dim1 << 1) + 2];
+ b[b_dim1 + 1] = bnorm * b[b_dim1 + 1];
+ b[b_dim1 + 2] = bnorm * b[b_dim1 + 2];
+ b[(b_dim1 << 1) + 1] = bnorm * b[(b_dim1 << 1) + 1];
+ b[(b_dim1 << 1) + 2] = bnorm * b[(b_dim1 << 1) + 2];
+
+ if (wi == 0.f) {
+ alphar[1] = a[a_dim1 + 1];
+ alphar[2] = a[(a_dim1 << 1) + 2];
+ alphai[1] = 0.f;
+ alphai[2] = 0.f;
+ beta[1] = b[b_dim1 + 1];
+ beta[2] = b[(b_dim1 << 1) + 2];
+ } else {
+ alphar[1] = anorm * wr1 / scale1 / bnorm;
+ alphai[1] = anorm * wi / scale1 / bnorm;
+ alphar[2] = alphar[1];
+ alphai[2] = -alphai[1];
+ beta[1] = 1.f;
+ beta[2] = 1.f;
+ }
+
+ return 0;
+
+/* End of SLAGV2 */
+
+} /* slagv2_ */