aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/sgbsv.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgbsv.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgbsv.c')
-rw-r--r--contrib/libs/clapack/sgbsv.c176
1 files changed, 176 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgbsv.c b/contrib/libs/clapack/sgbsv.c
new file mode 100644
index 00000000000..ee6db5e1c87
--- /dev/null
+++ b/contrib/libs/clapack/sgbsv.c
@@ -0,0 +1,176 @@
+/* sgbsv.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int sgbsv_(integer *n, integer *kl, integer *ku, integer *
+ nrhs, real *ab, integer *ldab, integer *ipiv, real *b, integer *ldb,
+ integer *info)
+{
+ /* System generated locals */
+ integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
+
+ /* Local variables */
+ extern /* Subroutine */ int xerbla_(char *, integer *), sgbtrf_(
+ integer *, integer *, integer *, integer *, real *, integer *,
+ integer *, integer *), sgbtrs_(char *, integer *, integer *,
+ integer *, integer *, real *, integer *, integer *, real *,
+ integer *, integer *);
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* SGBSV computes the solution to a real system of linear equations */
+/* A * X = B, where A is a band matrix of order N with KL subdiagonals */
+/* and KU superdiagonals, and X and B are N-by-NRHS matrices. */
+
+/* The LU decomposition with partial pivoting and row interchanges is */
+/* used to factor A as A = L * U, where L is a product of permutation */
+/* and unit lower triangular matrices with KL subdiagonals, and U is */
+/* upper triangular with KL+KU superdiagonals. The factored form of A */
+/* is then used to solve the system of equations A * X = B. */
+
+/* Arguments */
+/* ========= */
+
+/* N (input) INTEGER */
+/* The number of linear equations, i.e., the order of the */
+/* matrix A. N >= 0. */
+
+/* KL (input) INTEGER */
+/* The number of subdiagonals within the band of A. KL >= 0. */
+
+/* KU (input) INTEGER */
+/* The number of superdiagonals within the band of A. KU >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* AB (input/output) REAL array, dimension (LDAB,N) */
+/* On entry, the matrix A in band storage, in rows KL+1 to */
+/* 2*KL+KU+1; rows 1 to KL of the array need not be set. */
+/* The j-th column of A is stored in the j-th column of the */
+/* array AB as follows: */
+/* AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) */
+/* On exit, details of the factorization: U is stored as an */
+/* upper triangular band matrix with KL+KU superdiagonals in */
+/* rows 1 to KL+KU+1, and the multipliers used during the */
+/* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */
+/* See below for further details. */
+
+/* LDAB (input) INTEGER */
+/* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */
+
+/* IPIV (output) INTEGER array, dimension (N) */
+/* The pivot indices that define the permutation matrix P; */
+/* row i of the matrix was interchanged with row IPIV(i). */
+
+/* B (input/output) REAL array, dimension (LDB,NRHS) */
+/* On entry, the N-by-NRHS right hand side matrix B. */
+/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */
+/* has been completed, but the factor U is exactly */
+/* singular, and the solution has not been computed. */
+
+/* Further Details */
+/* =============== */
+
+/* The band storage scheme is illustrated by the following example, when */
+/* M = N = 6, KL = 2, KU = 1: */
+
+/* On entry: On exit: */
+
+/* * * * + + + * * * u14 u25 u36 */
+/* * * + + + + * * u13 u24 u35 u46 */
+/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
+/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
+/* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */
+/* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */
+
+/* Array elements marked * are not used by the routine; elements marked */
+/* + need not be set on entry, but are required by the routine to store */
+/* elements of U because of fill-in resulting from the row interchanges. */
+
+/* ===================================================================== */
+
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ ab_dim1 = *ldab;
+ ab_offset = 1 + ab_dim1;
+ ab -= ab_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ if (*n < 0) {
+ *info = -1;
+ } else if (*kl < 0) {
+ *info = -2;
+ } else if (*ku < 0) {
+ *info = -3;
+ } else if (*nrhs < 0) {
+ *info = -4;
+ } else if (*ldab < (*kl << 1) + *ku + 1) {
+ *info = -6;
+ } else if (*ldb < max(*n,1)) {
+ *info = -9;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("SGBSV ", &i__1);
+ return 0;
+ }
+
+/* Compute the LU factorization of the band matrix A. */
+
+ sgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info);
+ if (*info == 0) {
+
+/* Solve the system A*X = B, overwriting B with X. */
+
+ sgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[
+ 1], &b[b_offset], ldb, info);
+ }
+ return 0;
+
+/* End of SGBSV */
+
+} /* sgbsv_ */