diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/sgbsv.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/sgbsv.c')
-rw-r--r-- | contrib/libs/clapack/sgbsv.c | 176 |
1 files changed, 176 insertions, 0 deletions
diff --git a/contrib/libs/clapack/sgbsv.c b/contrib/libs/clapack/sgbsv.c new file mode 100644 index 00000000000..ee6db5e1c87 --- /dev/null +++ b/contrib/libs/clapack/sgbsv.c @@ -0,0 +1,176 @@ +/* sgbsv.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int sgbsv_(integer *n, integer *kl, integer *ku, integer * + nrhs, real *ab, integer *ldab, integer *ipiv, real *b, integer *ldb, + integer *info) +{ + /* System generated locals */ + integer ab_dim1, ab_offset, b_dim1, b_offset, i__1; + + /* Local variables */ + extern /* Subroutine */ int xerbla_(char *, integer *), sgbtrf_( + integer *, integer *, integer *, integer *, real *, integer *, + integer *, integer *), sgbtrs_(char *, integer *, integer *, + integer *, integer *, real *, integer *, integer *, real *, + integer *, integer *); + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* SGBSV computes the solution to a real system of linear equations */ +/* A * X = B, where A is a band matrix of order N with KL subdiagonals */ +/* and KU superdiagonals, and X and B are N-by-NRHS matrices. */ + +/* The LU decomposition with partial pivoting and row interchanges is */ +/* used to factor A as A = L * U, where L is a product of permutation */ +/* and unit lower triangular matrices with KL subdiagonals, and U is */ +/* upper triangular with KL+KU superdiagonals. The factored form of A */ +/* is then used to solve the system of equations A * X = B. */ + +/* Arguments */ +/* ========= */ + +/* N (input) INTEGER */ +/* The number of linear equations, i.e., the order of the */ +/* matrix A. N >= 0. */ + +/* KL (input) INTEGER */ +/* The number of subdiagonals within the band of A. KL >= 0. */ + +/* KU (input) INTEGER */ +/* The number of superdiagonals within the band of A. KU >= 0. */ + +/* NRHS (input) INTEGER */ +/* The number of right hand sides, i.e., the number of columns */ +/* of the matrix B. NRHS >= 0. */ + +/* AB (input/output) REAL array, dimension (LDAB,N) */ +/* On entry, the matrix A in band storage, in rows KL+1 to */ +/* 2*KL+KU+1; rows 1 to KL of the array need not be set. */ +/* The j-th column of A is stored in the j-th column of the */ +/* array AB as follows: */ +/* AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL) */ +/* On exit, details of the factorization: U is stored as an */ +/* upper triangular band matrix with KL+KU superdiagonals in */ +/* rows 1 to KL+KU+1, and the multipliers used during the */ +/* factorization are stored in rows KL+KU+2 to 2*KL+KU+1. */ +/* See below for further details. */ + +/* LDAB (input) INTEGER */ +/* The leading dimension of the array AB. LDAB >= 2*KL+KU+1. */ + +/* IPIV (output) INTEGER array, dimension (N) */ +/* The pivot indices that define the permutation matrix P; */ +/* row i of the matrix was interchanged with row IPIV(i). */ + +/* B (input/output) REAL array, dimension (LDB,NRHS) */ +/* On entry, the N-by-NRHS right hand side matrix B. */ +/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of the array B. LDB >= max(1,N). */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value */ +/* > 0: if INFO = i, U(i,i) is exactly zero. The factorization */ +/* has been completed, but the factor U is exactly */ +/* singular, and the solution has not been computed. */ + +/* Further Details */ +/* =============== */ + +/* The band storage scheme is illustrated by the following example, when */ +/* M = N = 6, KL = 2, KU = 1: */ + +/* On entry: On exit: */ + +/* * * * + + + * * * u14 u25 u36 */ +/* * * + + + + * * u13 u24 u35 u46 */ +/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */ +/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */ +/* a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * */ +/* a31 a42 a53 a64 * * m31 m42 m53 m64 * * */ + +/* Array elements marked * are not used by the routine; elements marked */ +/* + need not be set on entry, but are required by the routine to store */ +/* elements of U because of fill-in resulting from the row interchanges. */ + +/* ===================================================================== */ + +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Test the input parameters. */ + + /* Parameter adjustments */ + ab_dim1 = *ldab; + ab_offset = 1 + ab_dim1; + ab -= ab_offset; + --ipiv; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + + /* Function Body */ + *info = 0; + if (*n < 0) { + *info = -1; + } else if (*kl < 0) { + *info = -2; + } else if (*ku < 0) { + *info = -3; + } else if (*nrhs < 0) { + *info = -4; + } else if (*ldab < (*kl << 1) + *ku + 1) { + *info = -6; + } else if (*ldb < max(*n,1)) { + *info = -9; + } + if (*info != 0) { + i__1 = -(*info); + xerbla_("SGBSV ", &i__1); + return 0; + } + +/* Compute the LU factorization of the band matrix A. */ + + sgbtrf_(n, n, kl, ku, &ab[ab_offset], ldab, &ipiv[1], info); + if (*info == 0) { + +/* Solve the system A*X = B, overwriting B with X. */ + + sgbtrs_("No transpose", n, kl, ku, nrhs, &ab[ab_offset], ldab, &ipiv[ + 1], &b[b_offset], ldb, info); + } + return 0; + +/* End of SGBSV */ + +} /* sgbsv_ */ |