summaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dsytrs.c
diff options
context:
space:
mode:
authorshmel1k <[email protected]>2022-09-02 12:44:59 +0300
committershmel1k <[email protected]>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dsytrs.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dsytrs.c')
-rw-r--r--contrib/libs/clapack/dsytrs.c453
1 files changed, 453 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dsytrs.c b/contrib/libs/clapack/dsytrs.c
new file mode 100644
index 00000000000..26db5a76363
--- /dev/null
+++ b/contrib/libs/clapack/dsytrs.c
@@ -0,0 +1,453 @@
+/* dsytrs.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static doublereal c_b7 = -1.;
+static integer c__1 = 1;
+static doublereal c_b19 = 1.;
+
+/* Subroutine */ int dsytrs_(char *uplo, integer *n, integer *nrhs,
+ doublereal *a, integer *lda, integer *ipiv, doublereal *b, integer *
+ ldb, integer *info)
+{
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, i__1;
+ doublereal d__1;
+
+ /* Local variables */
+ integer j, k;
+ doublereal ak, bk;
+ integer kp;
+ doublereal akm1, bkm1;
+ extern /* Subroutine */ int dger_(integer *, integer *, doublereal *,
+ doublereal *, integer *, doublereal *, integer *, doublereal *,
+ integer *);
+ doublereal akm1k;
+ extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
+ integer *);
+ extern logical lsame_(char *, char *);
+ doublereal denom;
+ extern /* Subroutine */ int dgemv_(char *, integer *, integer *,
+ doublereal *, doublereal *, integer *, doublereal *, integer *,
+ doublereal *, doublereal *, integer *), dswap_(integer *,
+ doublereal *, integer *, doublereal *, integer *);
+ logical upper;
+ extern /* Subroutine */ int xerbla_(char *, integer *);
+
+
+/* -- LAPACK routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSYTRS solves a system of linear equations A*X = B with a real */
+/* symmetric matrix A using the factorization A = U*D*U**T or */
+/* A = L*D*L**T computed by DSYTRF. */
+
+/* Arguments */
+/* ========= */
+
+/* UPLO (input) CHARACTER*1 */
+/* Specifies whether the details of the factorization are stored */
+/* as an upper or lower triangular matrix. */
+/* = 'U': Upper triangular, form is A = U*D*U**T; */
+/* = 'L': Lower triangular, form is A = L*D*L**T. */
+
+/* N (input) INTEGER */
+/* The order of the matrix A. N >= 0. */
+
+/* NRHS (input) INTEGER */
+/* The number of right hand sides, i.e., the number of columns */
+/* of the matrix B. NRHS >= 0. */
+
+/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
+/* The block diagonal matrix D and the multipliers used to */
+/* obtain the factor U or L as computed by DSYTRF. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of the array A. LDA >= max(1,N). */
+
+/* IPIV (input) INTEGER array, dimension (N) */
+/* Details of the interchanges and the block structure of D */
+/* as determined by DSYTRF. */
+
+/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
+/* On entry, the right hand side matrix B. */
+/* On exit, the solution matrix X. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of the array B. LDB >= max(1,N). */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ --ipiv;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+
+ /* Function Body */
+ *info = 0;
+ upper = lsame_(uplo, "U");
+ if (! upper && ! lsame_(uplo, "L")) {
+ *info = -1;
+ } else if (*n < 0) {
+ *info = -2;
+ } else if (*nrhs < 0) {
+ *info = -3;
+ } else if (*lda < max(1,*n)) {
+ *info = -5;
+ } else if (*ldb < max(1,*n)) {
+ *info = -8;
+ }
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSYTRS", &i__1);
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0 || *nrhs == 0) {
+ return 0;
+ }
+
+ if (upper) {
+
+/* Solve A*X = B, where A = U*D*U'. */
+
+/* First solve U*D*X = B, overwriting B with X. */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = *n;
+L10:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L30;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(U(K)), where U(K) is the transformation */
+/* stored in column K of A. */
+
+ i__1 = k - 1;
+ dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k +
+ b_dim1], ldb, &b[b_dim1 + 1], ldb);
+
+/* Multiply by the inverse of the diagonal block. */
+
+ d__1 = 1. / a[k + k * a_dim1];
+ dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
+ --k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Interchange rows K-1 and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k - 1) {
+ dswap_(nrhs, &b[k - 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(U(K)), where U(K) is the transformation */
+/* stored in columns K-1 and K of A. */
+
+ i__1 = k - 2;
+ dger_(&i__1, nrhs, &c_b7, &a[k * a_dim1 + 1], &c__1, &b[k +
+ b_dim1], ldb, &b[b_dim1 + 1], ldb);
+ i__1 = k - 2;
+ dger_(&i__1, nrhs, &c_b7, &a[(k - 1) * a_dim1 + 1], &c__1, &b[k -
+ 1 + b_dim1], ldb, &b[b_dim1 + 1], ldb);
+
+/* Multiply by the inverse of the diagonal block. */
+
+ akm1k = a[k - 1 + k * a_dim1];
+ akm1 = a[k - 1 + (k - 1) * a_dim1] / akm1k;
+ ak = a[k + k * a_dim1] / akm1k;
+ denom = akm1 * ak - 1.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ bkm1 = b[k - 1 + j * b_dim1] / akm1k;
+ bk = b[k + j * b_dim1] / akm1k;
+ b[k - 1 + j * b_dim1] = (ak * bkm1 - bk) / denom;
+ b[k + j * b_dim1] = (akm1 * bk - bkm1) / denom;
+/* L20: */
+ }
+ k += -2;
+ }
+
+ goto L10;
+L30:
+
+/* Next solve U'*X = B, overwriting B with X. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+L40:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L50;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Multiply by inv(U'(K)), where U(K) is the transformation */
+/* stored in column K of A. */
+
+ i__1 = k - 1;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k *
+ a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ ++k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Multiply by inv(U'(K+1)), where U(K+1) is the transformation */
+/* stored in columns K and K+1 of A. */
+
+ i__1 = k - 1;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[k *
+ a_dim1 + 1], &c__1, &c_b19, &b[k + b_dim1], ldb);
+ i__1 = k - 1;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[b_offset], ldb, &a[(k
+ + 1) * a_dim1 + 1], &c__1, &c_b19, &b[k + 1 + b_dim1],
+ ldb);
+
+/* Interchange rows K and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ k += 2;
+ }
+
+ goto L40;
+L50:
+
+ ;
+ } else {
+
+/* Solve A*X = B, where A = L*D*L'. */
+
+/* First solve L*D*X = B, overwriting B with X. */
+
+/* K is the main loop index, increasing from 1 to N in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = 1;
+L60:
+
+/* If K > N, exit from loop. */
+
+ if (k > *n) {
+ goto L80;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(L(K)), where L(K) is the transformation */
+/* stored in column K of A. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ dger_(&i__1, nrhs, &c_b7, &a[k + 1 + k * a_dim1], &c__1, &b[k
+ + b_dim1], ldb, &b[k + 1 + b_dim1], ldb);
+ }
+
+/* Multiply by the inverse of the diagonal block. */
+
+ d__1 = 1. / a[k + k * a_dim1];
+ dscal_(nrhs, &d__1, &b[k + b_dim1], ldb);
+ ++k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Interchange rows K+1 and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k + 1) {
+ dswap_(nrhs, &b[k + 1 + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+
+/* Multiply by inv(L(K)), where L(K) is the transformation */
+/* stored in columns K and K+1 of A. */
+
+ if (k < *n - 1) {
+ i__1 = *n - k - 1;
+ dger_(&i__1, nrhs, &c_b7, &a[k + 2 + k * a_dim1], &c__1, &b[k
+ + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
+ i__1 = *n - k - 1;
+ dger_(&i__1, nrhs, &c_b7, &a[k + 2 + (k + 1) * a_dim1], &c__1,
+ &b[k + 1 + b_dim1], ldb, &b[k + 2 + b_dim1], ldb);
+ }
+
+/* Multiply by the inverse of the diagonal block. */
+
+ akm1k = a[k + 1 + k * a_dim1];
+ akm1 = a[k + k * a_dim1] / akm1k;
+ ak = a[k + 1 + (k + 1) * a_dim1] / akm1k;
+ denom = akm1 * ak - 1.;
+ i__1 = *nrhs;
+ for (j = 1; j <= i__1; ++j) {
+ bkm1 = b[k + j * b_dim1] / akm1k;
+ bk = b[k + 1 + j * b_dim1] / akm1k;
+ b[k + j * b_dim1] = (ak * bkm1 - bk) / denom;
+ b[k + 1 + j * b_dim1] = (akm1 * bk - bkm1) / denom;
+/* L70: */
+ }
+ k += 2;
+ }
+
+ goto L60;
+L80:
+
+/* Next solve L'*X = B, overwriting B with X. */
+
+/* K is the main loop index, decreasing from N to 1 in steps of */
+/* 1 or 2, depending on the size of the diagonal blocks. */
+
+ k = *n;
+L90:
+
+/* If K < 1, exit from loop. */
+
+ if (k < 1) {
+ goto L100;
+ }
+
+ if (ipiv[k] > 0) {
+
+/* 1 x 1 diagonal block */
+
+/* Multiply by inv(L'(K)), where L(K) is the transformation */
+/* stored in column K of A. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
+ ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k +
+ b_dim1], ldb);
+ }
+
+/* Interchange rows K and IPIV(K). */
+
+ kp = ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ --k;
+ } else {
+
+/* 2 x 2 diagonal block */
+
+/* Multiply by inv(L'(K-1)), where L(K-1) is the transformation */
+/* stored in columns K-1 and K of A. */
+
+ if (k < *n) {
+ i__1 = *n - k;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
+ ldb, &a[k + 1 + k * a_dim1], &c__1, &c_b19, &b[k +
+ b_dim1], ldb);
+ i__1 = *n - k;
+ dgemv_("Transpose", &i__1, nrhs, &c_b7, &b[k + 1 + b_dim1],
+ ldb, &a[k + 1 + (k - 1) * a_dim1], &c__1, &c_b19, &b[
+ k - 1 + b_dim1], ldb);
+ }
+
+/* Interchange rows K and -IPIV(K). */
+
+ kp = -ipiv[k];
+ if (kp != k) {
+ dswap_(nrhs, &b[k + b_dim1], ldb, &b[kp + b_dim1], ldb);
+ }
+ k += -2;
+ }
+
+ goto L90;
+L100:
+ ;
+ }
+
+ return 0;
+
+/* End of DSYTRS */
+
+} /* dsytrs_ */