aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dspgvd.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dspgvd.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dspgvd.c')
-rw-r--r--contrib/libs/clapack/dspgvd.c334
1 files changed, 334 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dspgvd.c b/contrib/libs/clapack/dspgvd.c
new file mode 100644
index 0000000000..75ceb69e6b
--- /dev/null
+++ b/contrib/libs/clapack/dspgvd.c
@@ -0,0 +1,334 @@
+/* dspgvd.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Table of constant values */
+
+static integer c__1 = 1;
+
+/* Subroutine */ int dspgvd_(integer *itype, char *jobz, char *uplo, integer *
+ n, doublereal *ap, doublereal *bp, doublereal *w, doublereal *z__,
+ integer *ldz, doublereal *work, integer *lwork, integer *iwork,
+ integer *liwork, integer *info)
+{
+ /* System generated locals */
+ integer z_dim1, z_offset, i__1;
+ doublereal d__1, d__2;
+
+ /* Local variables */
+ integer j, neig;
+ extern logical lsame_(char *, char *);
+ integer lwmin;
+ char trans[1];
+ logical upper;
+ extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *,
+ doublereal *, doublereal *, integer *),
+ dtpsv_(char *, char *, char *, integer *, doublereal *,
+ doublereal *, integer *);
+ logical wantz;
+ extern /* Subroutine */ int xerbla_(char *, integer *), dspevd_(
+ char *, char *, integer *, doublereal *, doublereal *, doublereal
+ *, integer *, doublereal *, integer *, integer *, integer *,
+ integer *);
+ integer liwmin;
+ extern /* Subroutine */ int dpptrf_(char *, integer *, doublereal *,
+ integer *), dspgst_(integer *, char *, integer *,
+ doublereal *, doublereal *, integer *);
+ logical lquery;
+
+
+/* -- LAPACK driver routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DSPGVD computes all the eigenvalues, and optionally, the eigenvectors */
+/* of a real generalized symmetric-definite eigenproblem, of the form */
+/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
+/* B are assumed to be symmetric, stored in packed format, and B is also */
+/* positive definite. */
+/* If eigenvectors are desired, it uses a divide and conquer algorithm. */
+
+/* The divide and conquer algorithm makes very mild assumptions about */
+/* floating point arithmetic. It will work on machines with a guard */
+/* digit in add/subtract, or on those binary machines without guard */
+/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
+/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
+/* without guard digits, but we know of none. */
+
+/* Arguments */
+/* ========= */
+
+/* ITYPE (input) INTEGER */
+/* Specifies the problem type to be solved: */
+/* = 1: A*x = (lambda)*B*x */
+/* = 2: A*B*x = (lambda)*x */
+/* = 3: B*A*x = (lambda)*x */
+
+/* JOBZ (input) CHARACTER*1 */
+/* = 'N': Compute eigenvalues only; */
+/* = 'V': Compute eigenvalues and eigenvectors. */
+
+/* UPLO (input) CHARACTER*1 */
+/* = 'U': Upper triangles of A and B are stored; */
+/* = 'L': Lower triangles of A and B are stored. */
+
+/* N (input) INTEGER */
+/* The order of the matrices A and B. N >= 0. */
+
+/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* A, packed columnwise in a linear array. The j-th column of A */
+/* is stored in the array AP as follows: */
+/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
+
+/* On exit, the contents of AP are destroyed. */
+
+/* BP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
+/* On entry, the upper or lower triangle of the symmetric matrix */
+/* B, packed columnwise in a linear array. The j-th column of B */
+/* is stored in the array BP as follows: */
+/* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
+/* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
+
+/* On exit, the triangular factor U or L from the Cholesky */
+/* factorization B = U**T*U or B = L*L**T, in the same storage */
+/* format as B. */
+
+/* W (output) DOUBLE PRECISION array, dimension (N) */
+/* If INFO = 0, the eigenvalues in ascending order. */
+
+/* Z (output) DOUBLE PRECISION array, dimension (LDZ, N) */
+/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
+/* eigenvectors. The eigenvectors are normalized as follows: */
+/* if ITYPE = 1 or 2, Z**T*B*Z = I; */
+/* if ITYPE = 3, Z**T*inv(B)*Z = I. */
+/* If JOBZ = 'N', then Z is not referenced. */
+
+/* LDZ (input) INTEGER */
+/* The leading dimension of the array Z. LDZ >= 1, and if */
+/* JOBZ = 'V', LDZ >= max(1,N). */
+
+/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
+/* On exit, if INFO = 0, WORK(1) returns the required LWORK. */
+
+/* LWORK (input) INTEGER */
+/* The dimension of the array WORK. */
+/* If N <= 1, LWORK >= 1. */
+/* If JOBZ = 'N' and N > 1, LWORK >= 2*N. */
+/* If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2. */
+
+/* If LWORK = -1, then a workspace query is assumed; the routine */
+/* only calculates the required sizes of the WORK and IWORK */
+/* arrays, returns these values as the first entries of the WORK */
+/* and IWORK arrays, and no error message related to LWORK or */
+/* LIWORK is issued by XERBLA. */
+
+/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
+/* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
+
+/* LIWORK (input) INTEGER */
+/* The dimension of the array IWORK. */
+/* If JOBZ = 'N' or N <= 1, LIWORK >= 1. */
+/* If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. */
+
+/* If LIWORK = -1, then a workspace query is assumed; the */
+/* routine only calculates the required sizes of the WORK and */
+/* IWORK arrays, returns these values as the first entries of */
+/* the WORK and IWORK arrays, and no error message related to */
+/* LWORK or LIWORK is issued by XERBLA. */
+
+/* INFO (output) INTEGER */
+/* = 0: successful exit */
+/* < 0: if INFO = -i, the i-th argument had an illegal value */
+/* > 0: DPPTRF or DSPEVD returned an error code: */
+/* <= N: if INFO = i, DSPEVD failed to converge; */
+/* i off-diagonal elements of an intermediate */
+/* tridiagonal form did not converge to zero; */
+/* > N: if INFO = N + i, for 1 <= i <= N, then the leading */
+/* minor of order i of B is not positive definite. */
+/* The factorization of B could not be completed and */
+/* no eigenvalues or eigenvectors were computed. */
+
+/* Further Details */
+/* =============== */
+
+/* Based on contributions by */
+/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Test the input parameters. */
+
+ /* Parameter adjustments */
+ --ap;
+ --bp;
+ --w;
+ z_dim1 = *ldz;
+ z_offset = 1 + z_dim1;
+ z__ -= z_offset;
+ --work;
+ --iwork;
+
+ /* Function Body */
+ wantz = lsame_(jobz, "V");
+ upper = lsame_(uplo, "U");
+ lquery = *lwork == -1 || *liwork == -1;
+
+ *info = 0;
+ if (*itype < 1 || *itype > 3) {
+ *info = -1;
+ } else if (! (wantz || lsame_(jobz, "N"))) {
+ *info = -2;
+ } else if (! (upper || lsame_(uplo, "L"))) {
+ *info = -3;
+ } else if (*n < 0) {
+ *info = -4;
+ } else if (*ldz < 1 || wantz && *ldz < *n) {
+ *info = -9;
+ }
+
+ if (*info == 0) {
+ if (*n <= 1) {
+ liwmin = 1;
+ lwmin = 1;
+ } else {
+ if (wantz) {
+ liwmin = *n * 5 + 3;
+/* Computing 2nd power */
+ i__1 = *n;
+ lwmin = *n * 6 + 1 + (i__1 * i__1 << 1);
+ } else {
+ liwmin = 1;
+ lwmin = *n << 1;
+ }
+ }
+ work[1] = (doublereal) lwmin;
+ iwork[1] = liwmin;
+
+ if (*lwork < lwmin && ! lquery) {
+ *info = -11;
+ } else if (*liwork < liwmin && ! lquery) {
+ *info = -13;
+ }
+ }
+
+ if (*info != 0) {
+ i__1 = -(*info);
+ xerbla_("DSPGVD", &i__1);
+ return 0;
+ } else if (lquery) {
+ return 0;
+ }
+
+/* Quick return if possible */
+
+ if (*n == 0) {
+ return 0;
+ }
+
+/* Form a Cholesky factorization of BP. */
+
+ dpptrf_(uplo, n, &bp[1], info);
+ if (*info != 0) {
+ *info = *n + *info;
+ return 0;
+ }
+
+/* Transform problem to standard eigenvalue problem and solve. */
+
+ dspgst_(itype, uplo, n, &ap[1], &bp[1], info);
+ dspevd_(jobz, uplo, n, &ap[1], &w[1], &z__[z_offset], ldz, &work[1],
+ lwork, &iwork[1], liwork, info);
+/* Computing MAX */
+ d__1 = (doublereal) lwmin;
+ lwmin = (integer) max(d__1,work[1]);
+/* Computing MAX */
+ d__1 = (doublereal) liwmin, d__2 = (doublereal) iwork[1];
+ liwmin = (integer) max(d__1,d__2);
+
+ if (wantz) {
+
+/* Backtransform eigenvectors to the original problem. */
+
+ neig = *n;
+ if (*info > 0) {
+ neig = *info - 1;
+ }
+ if (*itype == 1 || *itype == 2) {
+
+/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
+/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'N';
+ } else {
+ *(unsigned char *)trans = 'T';
+ }
+
+ i__1 = neig;
+ for (j = 1; j <= i__1; ++j) {
+ dtpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L10: */
+ }
+
+ } else if (*itype == 3) {
+
+/* For B*A*x=(lambda)*x; */
+/* backtransform eigenvectors: x = L*y or U'*y */
+
+ if (upper) {
+ *(unsigned char *)trans = 'T';
+ } else {
+ *(unsigned char *)trans = 'N';
+ }
+
+ i__1 = neig;
+ for (j = 1; j <= i__1; ++j) {
+ dtpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
+ 1], &c__1);
+/* L20: */
+ }
+ }
+ }
+
+ work[1] = (doublereal) lwmin;
+ iwork[1] = liwmin;
+
+ return 0;
+
+/* End of DSPGVD */
+
+} /* dspgvd_ */