diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlantp.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlantp.c')
-rw-r--r-- | contrib/libs/clapack/dlantp.c | 391 |
1 files changed, 391 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlantp.c b/contrib/libs/clapack/dlantp.c new file mode 100644 index 00000000000..dd110985ff8 --- /dev/null +++ b/contrib/libs/clapack/dlantp.c @@ -0,0 +1,391 @@ +/* dlantp.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; + +doublereal dlantp_(char *norm, char *uplo, char *diag, integer *n, doublereal + *ap, doublereal *work) +{ + /* System generated locals */ + integer i__1, i__2; + doublereal ret_val, d__1, d__2, d__3; + + /* Builtin functions */ + double sqrt(doublereal); + + /* Local variables */ + integer i__, j, k; + doublereal sum, scale; + logical udiag; + extern logical lsame_(char *, char *); + doublereal value; + extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *, + doublereal *, doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLANTP returns the value of the one norm, or the Frobenius norm, or */ +/* the infinity norm, or the element of largest absolute value of a */ +/* triangular matrix A, supplied in packed form. */ + +/* Description */ +/* =========== */ + +/* DLANTP returns the value */ + +/* DLANTP = ( max(abs(A(i,j))), NORM = 'M' or 'm' */ +/* ( */ +/* ( norm1(A), NORM = '1', 'O' or 'o' */ +/* ( */ +/* ( normI(A), NORM = 'I' or 'i' */ +/* ( */ +/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */ + +/* where norm1 denotes the one norm of a matrix (maximum column sum), */ +/* normI denotes the infinity norm of a matrix (maximum row sum) and */ +/* normF denotes the Frobenius norm of a matrix (square root of sum of */ +/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */ + +/* Arguments */ +/* ========= */ + +/* NORM (input) CHARACTER*1 */ +/* Specifies the value to be returned in DLANTP as described */ +/* above. */ + +/* UPLO (input) CHARACTER*1 */ +/* Specifies whether the matrix A is upper or lower triangular. */ +/* = 'U': Upper triangular */ +/* = 'L': Lower triangular */ + +/* DIAG (input) CHARACTER*1 */ +/* Specifies whether or not the matrix A is unit triangular. */ +/* = 'N': Non-unit triangular */ +/* = 'U': Unit triangular */ + +/* N (input) INTEGER */ +/* The order of the matrix A. N >= 0. When N = 0, DLANTP is */ +/* set to zero. */ + +/* AP (input) DOUBLE PRECISION array, dimension (N*(N+1)/2) */ +/* The upper or lower triangular matrix A, packed columnwise in */ +/* a linear array. The j-th column of A is stored in the array */ +/* AP as follows: */ +/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */ +/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */ +/* Note that when DIAG = 'U', the elements of the array AP */ +/* corresponding to the diagonal elements of the matrix A are */ +/* not referenced, but are assumed to be one. */ + +/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */ +/* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */ +/* referenced. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + + /* Parameter adjustments */ + --work; + --ap; + + /* Function Body */ + if (*n == 0) { + value = 0.; + } else if (lsame_(norm, "M")) { + +/* Find max(abs(A(i,j))). */ + + k = 1; + if (lsame_(diag, "U")) { + value = 1.; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = k + j - 2; + for (i__ = k; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); + value = max(d__2,d__3); +/* L10: */ + } + k += j; +/* L20: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = k + *n - j; + for (i__ = k + 1; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); + value = max(d__2,d__3); +/* L30: */ + } + k = k + *n - j + 1; +/* L40: */ + } + } + } else { + value = 0.; + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = k + j - 1; + for (i__ = k; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); + value = max(d__2,d__3); +/* L50: */ + } + k += j; +/* L60: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = k + *n - j; + for (i__ = k; i__ <= i__2; ++i__) { +/* Computing MAX */ + d__2 = value, d__3 = (d__1 = ap[i__], abs(d__1)); + value = max(d__2,d__3); +/* L70: */ + } + k = k + *n - j + 1; +/* L80: */ + } + } + } + } else if (lsame_(norm, "O") || *(unsigned char *) + norm == '1') { + +/* Find norm1(A). */ + + value = 0.; + k = 1; + udiag = lsame_(diag, "U"); + if (lsame_(uplo, "U")) { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (udiag) { + sum = 1.; + i__2 = k + j - 2; + for (i__ = k; i__ <= i__2; ++i__) { + sum += (d__1 = ap[i__], abs(d__1)); +/* L90: */ + } + } else { + sum = 0.; + i__2 = k + j - 1; + for (i__ = k; i__ <= i__2; ++i__) { + sum += (d__1 = ap[i__], abs(d__1)); +/* L100: */ + } + } + k += j; + value = max(value,sum); +/* L110: */ + } + } else { + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + if (udiag) { + sum = 1.; + i__2 = k + *n - j; + for (i__ = k + 1; i__ <= i__2; ++i__) { + sum += (d__1 = ap[i__], abs(d__1)); +/* L120: */ + } + } else { + sum = 0.; + i__2 = k + *n - j; + for (i__ = k; i__ <= i__2; ++i__) { + sum += (d__1 = ap[i__], abs(d__1)); +/* L130: */ + } + } + k = k + *n - j + 1; + value = max(value,sum); +/* L140: */ + } + } + } else if (lsame_(norm, "I")) { + +/* Find normI(A). */ + + k = 1; + if (lsame_(uplo, "U")) { + if (lsame_(diag, "U")) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 1.; +/* L150: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j - 1; + for (i__ = 1; i__ <= i__2; ++i__) { + work[i__] += (d__1 = ap[k], abs(d__1)); + ++k; +/* L160: */ + } + ++k; +/* L170: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.; +/* L180: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = j; + for (i__ = 1; i__ <= i__2; ++i__) { + work[i__] += (d__1 = ap[k], abs(d__1)); + ++k; +/* L190: */ + } +/* L200: */ + } + } + } else { + if (lsame_(diag, "U")) { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 1.; +/* L210: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + ++k; + i__2 = *n; + for (i__ = j + 1; i__ <= i__2; ++i__) { + work[i__] += (d__1 = ap[k], abs(d__1)); + ++k; +/* L220: */ + } +/* L230: */ + } + } else { + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { + work[i__] = 0.; +/* L240: */ + } + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n; + for (i__ = j; i__ <= i__2; ++i__) { + work[i__] += (d__1 = ap[k], abs(d__1)); + ++k; +/* L250: */ + } +/* L260: */ + } + } + } + value = 0.; + i__1 = *n; + for (i__ = 1; i__ <= i__1; ++i__) { +/* Computing MAX */ + d__1 = value, d__2 = work[i__]; + value = max(d__1,d__2); +/* L270: */ + } + } else if (lsame_(norm, "F") || lsame_(norm, "E")) { + +/* Find normF(A). */ + + if (lsame_(uplo, "U")) { + if (lsame_(diag, "U")) { + scale = 1.; + sum = (doublereal) (*n); + k = 2; + i__1 = *n; + for (j = 2; j <= i__1; ++j) { + i__2 = j - 1; + dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); + k += j; +/* L280: */ + } + } else { + scale = 0.; + sum = 1.; + k = 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + dlassq_(&j, &ap[k], &c__1, &scale, &sum); + k += j; +/* L290: */ + } + } + } else { + if (lsame_(diag, "U")) { + scale = 1.; + sum = (doublereal) (*n); + k = 2; + i__1 = *n - 1; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j; + dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); + k = k + *n - j + 1; +/* L300: */ + } + } else { + scale = 0.; + sum = 1.; + k = 1; + i__1 = *n; + for (j = 1; j <= i__1; ++j) { + i__2 = *n - j + 1; + dlassq_(&i__2, &ap[k], &c__1, &scale, &sum); + k = k + *n - j + 1; +/* L310: */ + } + } + } + value = scale * sqrt(sum); + } + + ret_val = value; + return ret_val; + +/* End of DLANTP */ + +} /* dlantp_ */ |