aboutsummaryrefslogtreecommitdiffstats
path: root/contrib/libs/clapack/dlaln2.c
diff options
context:
space:
mode:
authorshmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
committershmel1k <shmel1k@ydb.tech>2022-09-02 12:44:59 +0300
commit90d450f74722da7859d6f510a869f6c6908fd12f (patch)
tree538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlaln2.c
parent01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff)
downloadydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlaln2.c')
-rw-r--r--contrib/libs/clapack/dlaln2.c575
1 files changed, 575 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlaln2.c b/contrib/libs/clapack/dlaln2.c
new file mode 100644
index 0000000000..9eaa3edff6
--- /dev/null
+++ b/contrib/libs/clapack/dlaln2.c
@@ -0,0 +1,575 @@
+/* dlaln2.f -- translated by f2c (version 20061008).
+ You must link the resulting object file with libf2c:
+ on Microsoft Windows system, link with libf2c.lib;
+ on Linux or Unix systems, link with .../path/to/libf2c.a -lm
+ or, if you install libf2c.a in a standard place, with -lf2c -lm
+ -- in that order, at the end of the command line, as in
+ cc *.o -lf2c -lm
+ Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
+
+ http://www.netlib.org/f2c/libf2c.zip
+*/
+
+#include "f2c.h"
+#include "blaswrap.h"
+
+/* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw,
+ doublereal *smin, doublereal *ca, doublereal *a, integer *lda,
+ doublereal *d1, doublereal *d2, doublereal *b, integer *ldb,
+ doublereal *wr, doublereal *wi, doublereal *x, integer *ldx,
+ doublereal *scale, doublereal *xnorm, integer *info)
+{
+ /* Initialized data */
+
+ static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ };
+ static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ };
+ static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2,
+ 4,3,2,1 };
+
+ /* System generated locals */
+ integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset;
+ doublereal d__1, d__2, d__3, d__4, d__5, d__6;
+ static doublereal equiv_0[4], equiv_1[4];
+
+ /* Local variables */
+ integer j;
+#define ci (equiv_0)
+#define cr (equiv_1)
+ doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22,
+ li21, csi, ui11, lr21, ui12, ui22;
+#define civ (equiv_0)
+ doublereal csr, ur11, ur12, ur22;
+#define crv (equiv_1)
+ doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs;
+ integer icmax;
+ doublereal bnorm, cnorm, smini;
+ extern doublereal dlamch_(char *);
+ extern /* Subroutine */ int dladiv_(doublereal *, doublereal *,
+ doublereal *, doublereal *, doublereal *, doublereal *);
+ doublereal bignum, smlnum;
+
+
+/* -- LAPACK auxiliary routine (version 3.2) -- */
+/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
+/* November 2006 */
+
+/* .. Scalar Arguments .. */
+/* .. */
+/* .. Array Arguments .. */
+/* .. */
+
+/* Purpose */
+/* ======= */
+
+/* DLALN2 solves a system of the form (ca A - w D ) X = s B */
+/* or (ca A' - w D) X = s B with possible scaling ("s") and */
+/* perturbation of A. (A' means A-transpose.) */
+
+/* A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */
+/* real diagonal matrix, w is a real or complex value, and X and B are */
+/* NA x 1 matrices -- real if w is real, complex if w is complex. NA */
+/* may be 1 or 2. */
+
+/* If w is complex, X and B are represented as NA x 2 matrices, */
+/* the first column of each being the real part and the second */
+/* being the imaginary part. */
+
+/* "s" is a scaling factor (.LE. 1), computed by DLALN2, which is */
+/* so chosen that X can be computed without overflow. X is further */
+/* scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */
+/* than overflow. */
+
+/* If both singular values of (ca A - w D) are less than SMIN, */
+/* SMIN*identity will be used instead of (ca A - w D). If only one */
+/* singular value is less than SMIN, one element of (ca A - w D) will be */
+/* perturbed enough to make the smallest singular value roughly SMIN. */
+/* If both singular values are at least SMIN, (ca A - w D) will not be */
+/* perturbed. In any case, the perturbation will be at most some small */
+/* multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values */
+/* are computed by infinity-norm approximations, and thus will only be */
+/* correct to a factor of 2 or so. */
+
+/* Note: all input quantities are assumed to be smaller than overflow */
+/* by a reasonable factor. (See BIGNUM.) */
+
+/* Arguments */
+/* ========== */
+
+/* LTRANS (input) LOGICAL */
+/* =.TRUE.: A-transpose will be used. */
+/* =.FALSE.: A will be used (not transposed.) */
+
+/* NA (input) INTEGER */
+/* The size of the matrix A. It may (only) be 1 or 2. */
+
+/* NW (input) INTEGER */
+/* 1 if "w" is real, 2 if "w" is complex. It may only be 1 */
+/* or 2. */
+
+/* SMIN (input) DOUBLE PRECISION */
+/* The desired lower bound on the singular values of A. This */
+/* should be a safe distance away from underflow or overflow, */
+/* say, between (underflow/machine precision) and (machine */
+/* precision * overflow ). (See BIGNUM and ULP.) */
+
+/* CA (input) DOUBLE PRECISION */
+/* The coefficient c, which A is multiplied by. */
+
+/* A (input) DOUBLE PRECISION array, dimension (LDA,NA) */
+/* The NA x NA matrix A. */
+
+/* LDA (input) INTEGER */
+/* The leading dimension of A. It must be at least NA. */
+
+/* D1 (input) DOUBLE PRECISION */
+/* The 1,1 element in the diagonal matrix D. */
+
+/* D2 (input) DOUBLE PRECISION */
+/* The 2,2 element in the diagonal matrix D. Not used if NW=1. */
+
+/* B (input) DOUBLE PRECISION array, dimension (LDB,NW) */
+/* The NA x NW matrix B (right-hand side). If NW=2 ("w" is */
+/* complex), column 1 contains the real part of B and column 2 */
+/* contains the imaginary part. */
+
+/* LDB (input) INTEGER */
+/* The leading dimension of B. It must be at least NA. */
+
+/* WR (input) DOUBLE PRECISION */
+/* The real part of the scalar "w". */
+
+/* WI (input) DOUBLE PRECISION */
+/* The imaginary part of the scalar "w". Not used if NW=1. */
+
+/* X (output) DOUBLE PRECISION array, dimension (LDX,NW) */
+/* The NA x NW matrix X (unknowns), as computed by DLALN2. */
+/* If NW=2 ("w" is complex), on exit, column 1 will contain */
+/* the real part of X and column 2 will contain the imaginary */
+/* part. */
+
+/* LDX (input) INTEGER */
+/* The leading dimension of X. It must be at least NA. */
+
+/* SCALE (output) DOUBLE PRECISION */
+/* The scale factor that B must be multiplied by to insure */
+/* that overflow does not occur when computing X. Thus, */
+/* (ca A - w D) X will be SCALE*B, not B (ignoring */
+/* perturbations of A.) It will be at most 1. */
+
+/* XNORM (output) DOUBLE PRECISION */
+/* The infinity-norm of X, when X is regarded as an NA x NW */
+/* real matrix. */
+
+/* INFO (output) INTEGER */
+/* An error flag. It will be set to zero if no error occurs, */
+/* a negative number if an argument is in error, or a positive */
+/* number if ca A - w D had to be perturbed. */
+/* The possible values are: */
+/* = 0: No error occurred, and (ca A - w D) did not have to be */
+/* perturbed. */
+/* = 1: (ca A - w D) had to be perturbed to make its smallest */
+/* (or only) singular value greater than SMIN. */
+/* NOTE: In the interests of speed, this routine does not */
+/* check the inputs for errors. */
+
+/* ===================================================================== */
+
+/* .. Parameters .. */
+/* .. */
+/* .. Local Scalars .. */
+/* .. */
+/* .. Local Arrays .. */
+/* .. */
+/* .. External Functions .. */
+/* .. */
+/* .. External Subroutines .. */
+/* .. */
+/* .. Intrinsic Functions .. */
+/* .. */
+/* .. Equivalences .. */
+/* .. */
+/* .. Data statements .. */
+ /* Parameter adjustments */
+ a_dim1 = *lda;
+ a_offset = 1 + a_dim1;
+ a -= a_offset;
+ b_dim1 = *ldb;
+ b_offset = 1 + b_dim1;
+ b -= b_offset;
+ x_dim1 = *ldx;
+ x_offset = 1 + x_dim1;
+ x -= x_offset;
+
+ /* Function Body */
+/* .. */
+/* .. Executable Statements .. */
+
+/* Compute BIGNUM */
+
+ smlnum = 2. * dlamch_("Safe minimum");
+ bignum = 1. / smlnum;
+ smini = max(*smin,smlnum);
+
+/* Don't check for input errors */
+
+ *info = 0;
+
+/* Standard Initializations */
+
+ *scale = 1.;
+
+ if (*na == 1) {
+
+/* 1 x 1 (i.e., scalar) system C X = B */
+
+ if (*nw == 1) {
+
+/* Real 1x1 system. */
+
+/* C = ca A - w D */
+
+ csr = *ca * a[a_dim1 + 1] - *wr * *d1;
+ cnorm = abs(csr);
+
+/* If | C | < SMINI, use C = SMINI */
+
+ if (cnorm < smini) {
+ csr = smini;
+ cnorm = smini;
+ *info = 1;
+ }
+
+/* Check scaling for X = B / C */
+
+ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1));
+ if (cnorm < 1. && bnorm > 1.) {
+ if (bnorm > bignum * cnorm) {
+ *scale = 1. / bnorm;
+ }
+ }
+
+/* Compute X */
+
+ x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr;
+ *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1));
+ } else {
+
+/* Complex 1x1 system (w is complex) */
+
+/* C = ca A - w D */
+
+ csr = *ca * a[a_dim1 + 1] - *wr * *d1;
+ csi = -(*wi) * *d1;
+ cnorm = abs(csr) + abs(csi);
+
+/* If | C | < SMINI, use C = SMINI */
+
+ if (cnorm < smini) {
+ csr = smini;
+ csi = 0.;
+ cnorm = smini;
+ *info = 1;
+ }
+
+/* Check scaling for X = B / C */
+
+ bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 <<
+ 1) + 1], abs(d__2));
+ if (cnorm < 1. && bnorm > 1.) {
+ if (bnorm > bignum * cnorm) {
+ *scale = 1. / bnorm;
+ }
+ }
+
+/* Compute X */
+
+ d__1 = *scale * b[b_dim1 + 1];
+ d__2 = *scale * b[(b_dim1 << 1) + 1];
+ dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1)
+ + 1]);
+ *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 <<
+ 1) + 1], abs(d__2));
+ }
+
+ } else {
+
+/* 2x2 System */
+
+/* Compute the real part of C = ca A - w D (or ca A' - w D ) */
+
+ cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1;
+ cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2;
+ if (*ltrans) {
+ cr[2] = *ca * a[a_dim1 + 2];
+ cr[1] = *ca * a[(a_dim1 << 1) + 1];
+ } else {
+ cr[1] = *ca * a[a_dim1 + 2];
+ cr[2] = *ca * a[(a_dim1 << 1) + 1];
+ }
+
+ if (*nw == 1) {
+
+/* Real 2x2 system (w is real) */
+
+/* Find the largest element in C */
+
+ cmax = 0.;
+ icmax = 0;
+
+ for (j = 1; j <= 4; ++j) {
+ if ((d__1 = crv[j - 1], abs(d__1)) > cmax) {
+ cmax = (d__1 = crv[j - 1], abs(d__1));
+ icmax = j;
+ }
+/* L10: */
+ }
+
+/* If norm(C) < SMINI, use SMINI*identity. */
+
+ if (cmax < smini) {
+/* Computing MAX */
+ d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[
+ b_dim1 + 2], abs(d__2));
+ bnorm = max(d__3,d__4);
+ if (smini < 1. && bnorm > 1.) {
+ if (bnorm > bignum * smini) {
+ *scale = 1. / bnorm;
+ }
+ }
+ temp = *scale / smini;
+ x[x_dim1 + 1] = temp * b[b_dim1 + 1];
+ x[x_dim1 + 2] = temp * b[b_dim1 + 2];
+ *xnorm = temp * bnorm;
+ *info = 1;
+ return 0;
+ }
+
+/* Gaussian elimination with complete pivoting. */
+
+ ur11 = crv[icmax - 1];
+ cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
+ ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
+ cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
+ ur11r = 1. / ur11;
+ lr21 = ur11r * cr21;
+ ur22 = cr22 - ur12 * lr21;
+
+/* If smaller pivot < SMINI, use SMINI */
+
+ if (abs(ur22) < smini) {
+ ur22 = smini;
+ *info = 1;
+ }
+ if (rswap[icmax - 1]) {
+ br1 = b[b_dim1 + 2];
+ br2 = b[b_dim1 + 1];
+ } else {
+ br1 = b[b_dim1 + 1];
+ br2 = b[b_dim1 + 2];
+ }
+ br2 -= lr21 * br1;
+/* Computing MAX */
+ d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2);
+ bbnd = max(d__2,d__3);
+ if (bbnd > 1. && abs(ur22) < 1.) {
+ if (bbnd >= bignum * abs(ur22)) {
+ *scale = 1. / bbnd;
+ }
+ }
+
+ xr2 = br2 * *scale / ur22;
+ xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12);
+ if (zswap[icmax - 1]) {
+ x[x_dim1 + 1] = xr2;
+ x[x_dim1 + 2] = xr1;
+ } else {
+ x[x_dim1 + 1] = xr1;
+ x[x_dim1 + 2] = xr2;
+ }
+/* Computing MAX */
+ d__1 = abs(xr1), d__2 = abs(xr2);
+ *xnorm = max(d__1,d__2);
+
+/* Further scaling if norm(A) norm(X) > overflow */
+
+ if (*xnorm > 1. && cmax > 1.) {
+ if (*xnorm > bignum / cmax) {
+ temp = cmax / bignum;
+ x[x_dim1 + 1] = temp * x[x_dim1 + 1];
+ x[x_dim1 + 2] = temp * x[x_dim1 + 2];
+ *xnorm = temp * *xnorm;
+ *scale = temp * *scale;
+ }
+ }
+ } else {
+
+/* Complex 2x2 system (w is complex) */
+
+/* Find the largest element in C */
+
+ ci[0] = -(*wi) * *d1;
+ ci[1] = 0.;
+ ci[2] = 0.;
+ ci[3] = -(*wi) * *d2;
+ cmax = 0.;
+ icmax = 0;
+
+ for (j = 1; j <= 4; ++j) {
+ if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs(
+ d__2)) > cmax) {
+ cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1]
+ , abs(d__2));
+ icmax = j;
+ }
+/* L20: */
+ }
+
+/* If norm(C) < SMINI, use SMINI*identity. */
+
+ if (cmax < smini) {
+/* Computing MAX */
+ d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1
+ << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2],
+ abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4));
+ bnorm = max(d__5,d__6);
+ if (smini < 1. && bnorm > 1.) {
+ if (bnorm > bignum * smini) {
+ *scale = 1. / bnorm;
+ }
+ }
+ temp = *scale / smini;
+ x[x_dim1 + 1] = temp * b[b_dim1 + 1];
+ x[x_dim1 + 2] = temp * b[b_dim1 + 2];
+ x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1];
+ x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2];
+ *xnorm = temp * bnorm;
+ *info = 1;
+ return 0;
+ }
+
+/* Gaussian elimination with complete pivoting. */
+
+ ur11 = crv[icmax - 1];
+ ui11 = civ[icmax - 1];
+ cr21 = crv[ipivot[(icmax << 2) - 3] - 1];
+ ci21 = civ[ipivot[(icmax << 2) - 3] - 1];
+ ur12 = crv[ipivot[(icmax << 2) - 2] - 1];
+ ui12 = civ[ipivot[(icmax << 2) - 2] - 1];
+ cr22 = crv[ipivot[(icmax << 2) - 1] - 1];
+ ci22 = civ[ipivot[(icmax << 2) - 1] - 1];
+ if (icmax == 1 || icmax == 4) {
+
+/* Code when off-diagonals of pivoted C are real */
+
+ if (abs(ur11) > abs(ui11)) {
+ temp = ui11 / ur11;
+/* Computing 2nd power */
+ d__1 = temp;
+ ur11r = 1. / (ur11 * (d__1 * d__1 + 1.));
+ ui11r = -temp * ur11r;
+ } else {
+ temp = ur11 / ui11;
+/* Computing 2nd power */
+ d__1 = temp;
+ ui11r = -1. / (ui11 * (d__1 * d__1 + 1.));
+ ur11r = -temp * ui11r;
+ }
+ lr21 = cr21 * ur11r;
+ li21 = cr21 * ui11r;
+ ur12s = ur12 * ur11r;
+ ui12s = ur12 * ui11r;
+ ur22 = cr22 - ur12 * lr21;
+ ui22 = ci22 - ur12 * li21;
+ } else {
+
+/* Code when diagonals of pivoted C are real */
+
+ ur11r = 1. / ur11;
+ ui11r = 0.;
+ lr21 = cr21 * ur11r;
+ li21 = ci21 * ur11r;
+ ur12s = ur12 * ur11r;
+ ui12s = ui12 * ur11r;
+ ur22 = cr22 - ur12 * lr21 + ui12 * li21;
+ ui22 = -ur12 * li21 - ui12 * lr21;
+ }
+ u22abs = abs(ur22) + abs(ui22);
+
+/* If smaller pivot < SMINI, use SMINI */
+
+ if (u22abs < smini) {
+ ur22 = smini;
+ ui22 = 0.;
+ *info = 1;
+ }
+ if (rswap[icmax - 1]) {
+ br2 = b[b_dim1 + 1];
+ br1 = b[b_dim1 + 2];
+ bi2 = b[(b_dim1 << 1) + 1];
+ bi1 = b[(b_dim1 << 1) + 2];
+ } else {
+ br1 = b[b_dim1 + 1];
+ br2 = b[b_dim1 + 2];
+ bi1 = b[(b_dim1 << 1) + 1];
+ bi2 = b[(b_dim1 << 1) + 2];
+ }
+ br2 = br2 - lr21 * br1 + li21 * bi1;
+ bi2 = bi2 - li21 * br1 - lr21 * bi1;
+/* Computing MAX */
+ d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r))
+ ), d__2 = abs(br2) + abs(bi2);
+ bbnd = max(d__1,d__2);
+ if (bbnd > 1. && u22abs < 1.) {
+ if (bbnd >= bignum * u22abs) {
+ *scale = 1. / bbnd;
+ br1 = *scale * br1;
+ bi1 = *scale * bi1;
+ br2 = *scale * br2;
+ bi2 = *scale * bi2;
+ }
+ }
+
+ dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2);
+ xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2;
+ xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2;
+ if (zswap[icmax - 1]) {
+ x[x_dim1 + 1] = xr2;
+ x[x_dim1 + 2] = xr1;
+ x[(x_dim1 << 1) + 1] = xi2;
+ x[(x_dim1 << 1) + 2] = xi1;
+ } else {
+ x[x_dim1 + 1] = xr1;
+ x[x_dim1 + 2] = xr2;
+ x[(x_dim1 << 1) + 1] = xi1;
+ x[(x_dim1 << 1) + 2] = xi2;
+ }
+/* Computing MAX */
+ d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2);
+ *xnorm = max(d__1,d__2);
+
+/* Further scaling if norm(A) norm(X) > overflow */
+
+ if (*xnorm > 1. && cmax > 1.) {
+ if (*xnorm > bignum / cmax) {
+ temp = cmax / bignum;
+ x[x_dim1 + 1] = temp * x[x_dim1 + 1];
+ x[x_dim1 + 2] = temp * x[x_dim1 + 2];
+ x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1];
+ x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2];
+ *xnorm = temp * *xnorm;
+ *scale = temp * *scale;
+ }
+ }
+ }
+ }
+
+ return 0;
+
+/* End of DLALN2 */
+
+} /* dlaln2_ */
+
+#undef crv
+#undef civ
+#undef cr
+#undef ci