diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlaln2.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlaln2.c')
-rw-r--r-- | contrib/libs/clapack/dlaln2.c | 575 |
1 files changed, 575 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlaln2.c b/contrib/libs/clapack/dlaln2.c new file mode 100644 index 0000000000..9eaa3edff6 --- /dev/null +++ b/contrib/libs/clapack/dlaln2.c @@ -0,0 +1,575 @@ +/* dlaln2.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Subroutine */ int dlaln2_(logical *ltrans, integer *na, integer *nw, + doublereal *smin, doublereal *ca, doublereal *a, integer *lda, + doublereal *d1, doublereal *d2, doublereal *b, integer *ldb, + doublereal *wr, doublereal *wi, doublereal *x, integer *ldx, + doublereal *scale, doublereal *xnorm, integer *info) +{ + /* Initialized data */ + + static logical zswap[4] = { FALSE_,FALSE_,TRUE_,TRUE_ }; + static logical rswap[4] = { FALSE_,TRUE_,FALSE_,TRUE_ }; + static integer ipivot[16] /* was [4][4] */ = { 1,2,3,4,2,1,4,3,3,4,1,2, + 4,3,2,1 }; + + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, x_dim1, x_offset; + doublereal d__1, d__2, d__3, d__4, d__5, d__6; + static doublereal equiv_0[4], equiv_1[4]; + + /* Local variables */ + integer j; +#define ci (equiv_0) +#define cr (equiv_1) + doublereal bi1, bi2, br1, br2, xi1, xi2, xr1, xr2, ci21, ci22, cr21, cr22, + li21, csi, ui11, lr21, ui12, ui22; +#define civ (equiv_0) + doublereal csr, ur11, ur12, ur22; +#define crv (equiv_1) + doublereal bbnd, cmax, ui11r, ui12s, temp, ur11r, ur12s, u22abs; + integer icmax; + doublereal bnorm, cnorm, smini; + extern doublereal dlamch_(char *); + extern /* Subroutine */ int dladiv_(doublereal *, doublereal *, + doublereal *, doublereal *, doublereal *, doublereal *); + doublereal bignum, smlnum; + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLALN2 solves a system of the form (ca A - w D ) X = s B */ +/* or (ca A' - w D) X = s B with possible scaling ("s") and */ +/* perturbation of A. (A' means A-transpose.) */ + +/* A is an NA x NA real matrix, ca is a real scalar, D is an NA x NA */ +/* real diagonal matrix, w is a real or complex value, and X and B are */ +/* NA x 1 matrices -- real if w is real, complex if w is complex. NA */ +/* may be 1 or 2. */ + +/* If w is complex, X and B are represented as NA x 2 matrices, */ +/* the first column of each being the real part and the second */ +/* being the imaginary part. */ + +/* "s" is a scaling factor (.LE. 1), computed by DLALN2, which is */ +/* so chosen that X can be computed without overflow. X is further */ +/* scaled if necessary to assure that norm(ca A - w D)*norm(X) is less */ +/* than overflow. */ + +/* If both singular values of (ca A - w D) are less than SMIN, */ +/* SMIN*identity will be used instead of (ca A - w D). If only one */ +/* singular value is less than SMIN, one element of (ca A - w D) will be */ +/* perturbed enough to make the smallest singular value roughly SMIN. */ +/* If both singular values are at least SMIN, (ca A - w D) will not be */ +/* perturbed. In any case, the perturbation will be at most some small */ +/* multiple of max( SMIN, ulp*norm(ca A - w D) ). The singular values */ +/* are computed by infinity-norm approximations, and thus will only be */ +/* correct to a factor of 2 or so. */ + +/* Note: all input quantities are assumed to be smaller than overflow */ +/* by a reasonable factor. (See BIGNUM.) */ + +/* Arguments */ +/* ========== */ + +/* LTRANS (input) LOGICAL */ +/* =.TRUE.: A-transpose will be used. */ +/* =.FALSE.: A will be used (not transposed.) */ + +/* NA (input) INTEGER */ +/* The size of the matrix A. It may (only) be 1 or 2. */ + +/* NW (input) INTEGER */ +/* 1 if "w" is real, 2 if "w" is complex. It may only be 1 */ +/* or 2. */ + +/* SMIN (input) DOUBLE PRECISION */ +/* The desired lower bound on the singular values of A. This */ +/* should be a safe distance away from underflow or overflow, */ +/* say, between (underflow/machine precision) and (machine */ +/* precision * overflow ). (See BIGNUM and ULP.) */ + +/* CA (input) DOUBLE PRECISION */ +/* The coefficient c, which A is multiplied by. */ + +/* A (input) DOUBLE PRECISION array, dimension (LDA,NA) */ +/* The NA x NA matrix A. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of A. It must be at least NA. */ + +/* D1 (input) DOUBLE PRECISION */ +/* The 1,1 element in the diagonal matrix D. */ + +/* D2 (input) DOUBLE PRECISION */ +/* The 2,2 element in the diagonal matrix D. Not used if NW=1. */ + +/* B (input) DOUBLE PRECISION array, dimension (LDB,NW) */ +/* The NA x NW matrix B (right-hand side). If NW=2 ("w" is */ +/* complex), column 1 contains the real part of B and column 2 */ +/* contains the imaginary part. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of B. It must be at least NA. */ + +/* WR (input) DOUBLE PRECISION */ +/* The real part of the scalar "w". */ + +/* WI (input) DOUBLE PRECISION */ +/* The imaginary part of the scalar "w". Not used if NW=1. */ + +/* X (output) DOUBLE PRECISION array, dimension (LDX,NW) */ +/* The NA x NW matrix X (unknowns), as computed by DLALN2. */ +/* If NW=2 ("w" is complex), on exit, column 1 will contain */ +/* the real part of X and column 2 will contain the imaginary */ +/* part. */ + +/* LDX (input) INTEGER */ +/* The leading dimension of X. It must be at least NA. */ + +/* SCALE (output) DOUBLE PRECISION */ +/* The scale factor that B must be multiplied by to insure */ +/* that overflow does not occur when computing X. Thus, */ +/* (ca A - w D) X will be SCALE*B, not B (ignoring */ +/* perturbations of A.) It will be at most 1. */ + +/* XNORM (output) DOUBLE PRECISION */ +/* The infinity-norm of X, when X is regarded as an NA x NW */ +/* real matrix. */ + +/* INFO (output) INTEGER */ +/* An error flag. It will be set to zero if no error occurs, */ +/* a negative number if an argument is in error, or a positive */ +/* number if ca A - w D had to be perturbed. */ +/* The possible values are: */ +/* = 0: No error occurred, and (ca A - w D) did not have to be */ +/* perturbed. */ +/* = 1: (ca A - w D) had to be perturbed to make its smallest */ +/* (or only) singular value greater than SMIN. */ +/* NOTE: In the interests of speed, this routine does not */ +/* check the inputs for errors. */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. Local Arrays .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Equivalences .. */ +/* .. */ +/* .. Data statements .. */ + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + x_dim1 = *ldx; + x_offset = 1 + x_dim1; + x -= x_offset; + + /* Function Body */ +/* .. */ +/* .. Executable Statements .. */ + +/* Compute BIGNUM */ + + smlnum = 2. * dlamch_("Safe minimum"); + bignum = 1. / smlnum; + smini = max(*smin,smlnum); + +/* Don't check for input errors */ + + *info = 0; + +/* Standard Initializations */ + + *scale = 1.; + + if (*na == 1) { + +/* 1 x 1 (i.e., scalar) system C X = B */ + + if (*nw == 1) { + +/* Real 1x1 system. */ + +/* C = ca A - w D */ + + csr = *ca * a[a_dim1 + 1] - *wr * *d1; + cnorm = abs(csr); + +/* If | C | < SMINI, use C = SMINI */ + + if (cnorm < smini) { + csr = smini; + cnorm = smini; + *info = 1; + } + +/* Check scaling for X = B / C */ + + bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)); + if (cnorm < 1. && bnorm > 1.) { + if (bnorm > bignum * cnorm) { + *scale = 1. / bnorm; + } + } + +/* Compute X */ + + x[x_dim1 + 1] = b[b_dim1 + 1] * *scale / csr; + *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)); + } else { + +/* Complex 1x1 system (w is complex) */ + +/* C = ca A - w D */ + + csr = *ca * a[a_dim1 + 1] - *wr * *d1; + csi = -(*wi) * *d1; + cnorm = abs(csr) + abs(csi); + +/* If | C | < SMINI, use C = SMINI */ + + if (cnorm < smini) { + csr = smini; + csi = 0.; + cnorm = smini; + *info = 1; + } + +/* Check scaling for X = B / C */ + + bnorm = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 << + 1) + 1], abs(d__2)); + if (cnorm < 1. && bnorm > 1.) { + if (bnorm > bignum * cnorm) { + *scale = 1. / bnorm; + } + } + +/* Compute X */ + + d__1 = *scale * b[b_dim1 + 1]; + d__2 = *scale * b[(b_dim1 << 1) + 1]; + dladiv_(&d__1, &d__2, &csr, &csi, &x[x_dim1 + 1], &x[(x_dim1 << 1) + + 1]); + *xnorm = (d__1 = x[x_dim1 + 1], abs(d__1)) + (d__2 = x[(x_dim1 << + 1) + 1], abs(d__2)); + } + + } else { + +/* 2x2 System */ + +/* Compute the real part of C = ca A - w D (or ca A' - w D ) */ + + cr[0] = *ca * a[a_dim1 + 1] - *wr * *d1; + cr[3] = *ca * a[(a_dim1 << 1) + 2] - *wr * *d2; + if (*ltrans) { + cr[2] = *ca * a[a_dim1 + 2]; + cr[1] = *ca * a[(a_dim1 << 1) + 1]; + } else { + cr[1] = *ca * a[a_dim1 + 2]; + cr[2] = *ca * a[(a_dim1 << 1) + 1]; + } + + if (*nw == 1) { + +/* Real 2x2 system (w is real) */ + +/* Find the largest element in C */ + + cmax = 0.; + icmax = 0; + + for (j = 1; j <= 4; ++j) { + if ((d__1 = crv[j - 1], abs(d__1)) > cmax) { + cmax = (d__1 = crv[j - 1], abs(d__1)); + icmax = j; + } +/* L10: */ + } + +/* If norm(C) < SMINI, use SMINI*identity. */ + + if (cmax < smini) { +/* Computing MAX */ + d__3 = (d__1 = b[b_dim1 + 1], abs(d__1)), d__4 = (d__2 = b[ + b_dim1 + 2], abs(d__2)); + bnorm = max(d__3,d__4); + if (smini < 1. && bnorm > 1.) { + if (bnorm > bignum * smini) { + *scale = 1. / bnorm; + } + } + temp = *scale / smini; + x[x_dim1 + 1] = temp * b[b_dim1 + 1]; + x[x_dim1 + 2] = temp * b[b_dim1 + 2]; + *xnorm = temp * bnorm; + *info = 1; + return 0; + } + +/* Gaussian elimination with complete pivoting. */ + + ur11 = crv[icmax - 1]; + cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; + ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; + cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; + ur11r = 1. / ur11; + lr21 = ur11r * cr21; + ur22 = cr22 - ur12 * lr21; + +/* If smaller pivot < SMINI, use SMINI */ + + if (abs(ur22) < smini) { + ur22 = smini; + *info = 1; + } + if (rswap[icmax - 1]) { + br1 = b[b_dim1 + 2]; + br2 = b[b_dim1 + 1]; + } else { + br1 = b[b_dim1 + 1]; + br2 = b[b_dim1 + 2]; + } + br2 -= lr21 * br1; +/* Computing MAX */ + d__2 = (d__1 = br1 * (ur22 * ur11r), abs(d__1)), d__3 = abs(br2); + bbnd = max(d__2,d__3); + if (bbnd > 1. && abs(ur22) < 1.) { + if (bbnd >= bignum * abs(ur22)) { + *scale = 1. / bbnd; + } + } + + xr2 = br2 * *scale / ur22; + xr1 = *scale * br1 * ur11r - xr2 * (ur11r * ur12); + if (zswap[icmax - 1]) { + x[x_dim1 + 1] = xr2; + x[x_dim1 + 2] = xr1; + } else { + x[x_dim1 + 1] = xr1; + x[x_dim1 + 2] = xr2; + } +/* Computing MAX */ + d__1 = abs(xr1), d__2 = abs(xr2); + *xnorm = max(d__1,d__2); + +/* Further scaling if norm(A) norm(X) > overflow */ + + if (*xnorm > 1. && cmax > 1.) { + if (*xnorm > bignum / cmax) { + temp = cmax / bignum; + x[x_dim1 + 1] = temp * x[x_dim1 + 1]; + x[x_dim1 + 2] = temp * x[x_dim1 + 2]; + *xnorm = temp * *xnorm; + *scale = temp * *scale; + } + } + } else { + +/* Complex 2x2 system (w is complex) */ + +/* Find the largest element in C */ + + ci[0] = -(*wi) * *d1; + ci[1] = 0.; + ci[2] = 0.; + ci[3] = -(*wi) * *d2; + cmax = 0.; + icmax = 0; + + for (j = 1; j <= 4; ++j) { + if ((d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1], abs( + d__2)) > cmax) { + cmax = (d__1 = crv[j - 1], abs(d__1)) + (d__2 = civ[j - 1] + , abs(d__2)); + icmax = j; + } +/* L20: */ + } + +/* If norm(C) < SMINI, use SMINI*identity. */ + + if (cmax < smini) { +/* Computing MAX */ + d__5 = (d__1 = b[b_dim1 + 1], abs(d__1)) + (d__2 = b[(b_dim1 + << 1) + 1], abs(d__2)), d__6 = (d__3 = b[b_dim1 + 2], + abs(d__3)) + (d__4 = b[(b_dim1 << 1) + 2], abs(d__4)); + bnorm = max(d__5,d__6); + if (smini < 1. && bnorm > 1.) { + if (bnorm > bignum * smini) { + *scale = 1. / bnorm; + } + } + temp = *scale / smini; + x[x_dim1 + 1] = temp * b[b_dim1 + 1]; + x[x_dim1 + 2] = temp * b[b_dim1 + 2]; + x[(x_dim1 << 1) + 1] = temp * b[(b_dim1 << 1) + 1]; + x[(x_dim1 << 1) + 2] = temp * b[(b_dim1 << 1) + 2]; + *xnorm = temp * bnorm; + *info = 1; + return 0; + } + +/* Gaussian elimination with complete pivoting. */ + + ur11 = crv[icmax - 1]; + ui11 = civ[icmax - 1]; + cr21 = crv[ipivot[(icmax << 2) - 3] - 1]; + ci21 = civ[ipivot[(icmax << 2) - 3] - 1]; + ur12 = crv[ipivot[(icmax << 2) - 2] - 1]; + ui12 = civ[ipivot[(icmax << 2) - 2] - 1]; + cr22 = crv[ipivot[(icmax << 2) - 1] - 1]; + ci22 = civ[ipivot[(icmax << 2) - 1] - 1]; + if (icmax == 1 || icmax == 4) { + +/* Code when off-diagonals of pivoted C are real */ + + if (abs(ur11) > abs(ui11)) { + temp = ui11 / ur11; +/* Computing 2nd power */ + d__1 = temp; + ur11r = 1. / (ur11 * (d__1 * d__1 + 1.)); + ui11r = -temp * ur11r; + } else { + temp = ur11 / ui11; +/* Computing 2nd power */ + d__1 = temp; + ui11r = -1. / (ui11 * (d__1 * d__1 + 1.)); + ur11r = -temp * ui11r; + } + lr21 = cr21 * ur11r; + li21 = cr21 * ui11r; + ur12s = ur12 * ur11r; + ui12s = ur12 * ui11r; + ur22 = cr22 - ur12 * lr21; + ui22 = ci22 - ur12 * li21; + } else { + +/* Code when diagonals of pivoted C are real */ + + ur11r = 1. / ur11; + ui11r = 0.; + lr21 = cr21 * ur11r; + li21 = ci21 * ur11r; + ur12s = ur12 * ur11r; + ui12s = ui12 * ur11r; + ur22 = cr22 - ur12 * lr21 + ui12 * li21; + ui22 = -ur12 * li21 - ui12 * lr21; + } + u22abs = abs(ur22) + abs(ui22); + +/* If smaller pivot < SMINI, use SMINI */ + + if (u22abs < smini) { + ur22 = smini; + ui22 = 0.; + *info = 1; + } + if (rswap[icmax - 1]) { + br2 = b[b_dim1 + 1]; + br1 = b[b_dim1 + 2]; + bi2 = b[(b_dim1 << 1) + 1]; + bi1 = b[(b_dim1 << 1) + 2]; + } else { + br1 = b[b_dim1 + 1]; + br2 = b[b_dim1 + 2]; + bi1 = b[(b_dim1 << 1) + 1]; + bi2 = b[(b_dim1 << 1) + 2]; + } + br2 = br2 - lr21 * br1 + li21 * bi1; + bi2 = bi2 - li21 * br1 - lr21 * bi1; +/* Computing MAX */ + d__1 = (abs(br1) + abs(bi1)) * (u22abs * (abs(ur11r) + abs(ui11r)) + ), d__2 = abs(br2) + abs(bi2); + bbnd = max(d__1,d__2); + if (bbnd > 1. && u22abs < 1.) { + if (bbnd >= bignum * u22abs) { + *scale = 1. / bbnd; + br1 = *scale * br1; + bi1 = *scale * bi1; + br2 = *scale * br2; + bi2 = *scale * bi2; + } + } + + dladiv_(&br2, &bi2, &ur22, &ui22, &xr2, &xi2); + xr1 = ur11r * br1 - ui11r * bi1 - ur12s * xr2 + ui12s * xi2; + xi1 = ui11r * br1 + ur11r * bi1 - ui12s * xr2 - ur12s * xi2; + if (zswap[icmax - 1]) { + x[x_dim1 + 1] = xr2; + x[x_dim1 + 2] = xr1; + x[(x_dim1 << 1) + 1] = xi2; + x[(x_dim1 << 1) + 2] = xi1; + } else { + x[x_dim1 + 1] = xr1; + x[x_dim1 + 2] = xr2; + x[(x_dim1 << 1) + 1] = xi1; + x[(x_dim1 << 1) + 2] = xi2; + } +/* Computing MAX */ + d__1 = abs(xr1) + abs(xi1), d__2 = abs(xr2) + abs(xi2); + *xnorm = max(d__1,d__2); + +/* Further scaling if norm(A) norm(X) > overflow */ + + if (*xnorm > 1. && cmax > 1.) { + if (*xnorm > bignum / cmax) { + temp = cmax / bignum; + x[x_dim1 + 1] = temp * x[x_dim1 + 1]; + x[x_dim1 + 2] = temp * x[x_dim1 + 2]; + x[(x_dim1 << 1) + 1] = temp * x[(x_dim1 << 1) + 1]; + x[(x_dim1 << 1) + 2] = temp * x[(x_dim1 << 1) + 2]; + *xnorm = temp * *xnorm; + *scale = temp * *scale; + } + } + } + } + + return 0; + +/* End of DLALN2 */ + +} /* dlaln2_ */ + +#undef crv +#undef civ +#undef cr +#undef ci |