diff options
author | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
---|---|---|
committer | shmel1k <shmel1k@ydb.tech> | 2022-09-02 12:44:59 +0300 |
commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dlahrd.c | |
parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
download | ydb-90d450f74722da7859d6f510a869f6c6908fd12f.tar.gz |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dlahrd.c')
-rw-r--r-- | contrib/libs/clapack/dlahrd.c | 285 |
1 files changed, 285 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dlahrd.c b/contrib/libs/clapack/dlahrd.c new file mode 100644 index 0000000000..4516fbad61 --- /dev/null +++ b/contrib/libs/clapack/dlahrd.c @@ -0,0 +1,285 @@ +/* dlahrd.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static doublereal c_b4 = -1.; +static doublereal c_b5 = 1.; +static integer c__1 = 1; +static doublereal c_b38 = 0.; + +/* Subroutine */ int dlahrd_(integer *n, integer *k, integer *nb, doublereal * + a, integer *lda, doublereal *tau, doublereal *t, integer *ldt, + doublereal *y, integer *ldy) +{ + /* System generated locals */ + integer a_dim1, a_offset, t_dim1, t_offset, y_dim1, y_offset, i__1, i__2, + i__3; + doublereal d__1; + + /* Local variables */ + integer i__; + doublereal ei; + extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, + integer *), dgemv_(char *, integer *, integer *, doublereal *, + doublereal *, integer *, doublereal *, integer *, doublereal *, + doublereal *, integer *), dcopy_(integer *, doublereal *, + integer *, doublereal *, integer *), daxpy_(integer *, doublereal + *, doublereal *, integer *, doublereal *, integer *), dtrmv_(char + *, char *, char *, integer *, doublereal *, integer *, doublereal + *, integer *), dlarfg_(integer *, + doublereal *, doublereal *, integer *, doublereal *); + + +/* -- LAPACK auxiliary routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* DLAHRD reduces the first NB columns of a real general n-by-(n-k+1) */ +/* matrix A so that elements below the k-th subdiagonal are zero. The */ +/* reduction is performed by an orthogonal similarity transformation */ +/* Q' * A * Q. The routine returns the matrices V and T which determine */ +/* Q as a block reflector I - V*T*V', and also the matrix Y = A * V * T. */ + +/* This is an OBSOLETE auxiliary routine. */ +/* This routine will be 'deprecated' in a future release. */ +/* Please use the new routine DLAHR2 instead. */ + +/* Arguments */ +/* ========= */ + +/* N (input) INTEGER */ +/* The order of the matrix A. */ + +/* K (input) INTEGER */ +/* The offset for the reduction. Elements below the k-th */ +/* subdiagonal in the first NB columns are reduced to zero. */ + +/* NB (input) INTEGER */ +/* The number of columns to be reduced. */ + +/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N-K+1) */ +/* On entry, the n-by-(n-k+1) general matrix A. */ +/* On exit, the elements on and above the k-th subdiagonal in */ +/* the first NB columns are overwritten with the corresponding */ +/* elements of the reduced matrix; the elements below the k-th */ +/* subdiagonal, with the array TAU, represent the matrix Q as a */ +/* product of elementary reflectors. The other columns of A are */ +/* unchanged. See Further Details. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of the array A. LDA >= max(1,N). */ + +/* TAU (output) DOUBLE PRECISION array, dimension (NB) */ +/* The scalar factors of the elementary reflectors. See Further */ +/* Details. */ + +/* T (output) DOUBLE PRECISION array, dimension (LDT,NB) */ +/* The upper triangular matrix T. */ + +/* LDT (input) INTEGER */ +/* The leading dimension of the array T. LDT >= NB. */ + +/* Y (output) DOUBLE PRECISION array, dimension (LDY,NB) */ +/* The n-by-nb matrix Y. */ + +/* LDY (input) INTEGER */ +/* The leading dimension of the array Y. LDY >= N. */ + +/* Further Details */ +/* =============== */ + +/* The matrix Q is represented as a product of nb elementary reflectors */ + +/* Q = H(1) H(2) . . . H(nb). */ + +/* Each H(i) has the form */ + +/* H(i) = I - tau * v * v' */ + +/* where tau is a real scalar, and v is a real vector with */ +/* v(1:i+k-1) = 0, v(i+k) = 1; v(i+k+1:n) is stored on exit in */ +/* A(i+k+1:n,i), and tau in TAU(i). */ + +/* The elements of the vectors v together form the (n-k+1)-by-nb matrix */ +/* V which is needed, with T and Y, to apply the transformation to the */ +/* unreduced part of the matrix, using an update of the form: */ +/* A := (I - V*T*V') * (A - Y*V'). */ + +/* The contents of A on exit are illustrated by the following example */ +/* with n = 7, k = 3 and nb = 2: */ + +/* ( a h a a a ) */ +/* ( a h a a a ) */ +/* ( a h a a a ) */ +/* ( h h a a a ) */ +/* ( v1 h a a a ) */ +/* ( v1 v2 a a a ) */ +/* ( v1 v2 a a a ) */ + +/* where a denotes an element of the original matrix A, h denotes a */ +/* modified element of the upper Hessenberg matrix H, and vi denotes an */ +/* element of the vector defining H(i). */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Quick return if possible */ + + /* Parameter adjustments */ + --tau; + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + t_dim1 = *ldt; + t_offset = 1 + t_dim1; + t -= t_offset; + y_dim1 = *ldy; + y_offset = 1 + y_dim1; + y -= y_offset; + + /* Function Body */ + if (*n <= 1) { + return 0; + } + + i__1 = *nb; + for (i__ = 1; i__ <= i__1; ++i__) { + if (i__ > 1) { + +/* Update A(1:n,i) */ + +/* Compute i-th column of A - Y * V' */ + + i__2 = i__ - 1; + dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &a[*k + + i__ - 1 + a_dim1], lda, &c_b5, &a[i__ * a_dim1 + 1], & + c__1); + +/* Apply I - V * T' * V' to this column (call it b) from the */ +/* left, using the last column of T as workspace */ + +/* Let V = ( V1 ) and b = ( b1 ) (first I-1 rows) */ +/* ( V2 ) ( b2 ) */ + +/* where V1 is unit lower triangular */ + +/* w := V1' * b1 */ + + i__2 = i__ - 1; + dcopy_(&i__2, &a[*k + 1 + i__ * a_dim1], &c__1, &t[*nb * t_dim1 + + 1], &c__1); + i__2 = i__ - 1; + dtrmv_("Lower", "Transpose", "Unit", &i__2, &a[*k + 1 + a_dim1], + lda, &t[*nb * t_dim1 + 1], &c__1); + +/* w := w + V2'*b2 */ + + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], + lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b5, &t[*nb * + t_dim1 + 1], &c__1); + +/* w := T'*w */ + + i__2 = i__ - 1; + dtrmv_("Upper", "Transpose", "Non-unit", &i__2, &t[t_offset], ldt, + &t[*nb * t_dim1 + 1], &c__1); + +/* b2 := b2 - V2*w */ + + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + dgemv_("No transpose", &i__2, &i__3, &c_b4, &a[*k + i__ + a_dim1], + lda, &t[*nb * t_dim1 + 1], &c__1, &c_b5, &a[*k + i__ + + i__ * a_dim1], &c__1); + +/* b1 := b1 - V1*w */ + + i__2 = i__ - 1; + dtrmv_("Lower", "No transpose", "Unit", &i__2, &a[*k + 1 + a_dim1] +, lda, &t[*nb * t_dim1 + 1], &c__1); + i__2 = i__ - 1; + daxpy_(&i__2, &c_b4, &t[*nb * t_dim1 + 1], &c__1, &a[*k + 1 + i__ + * a_dim1], &c__1); + + a[*k + i__ - 1 + (i__ - 1) * a_dim1] = ei; + } + +/* Generate the elementary reflector H(i) to annihilate */ +/* A(k+i+1:n,i) */ + + i__2 = *n - *k - i__ + 1; +/* Computing MIN */ + i__3 = *k + i__ + 1; + dlarfg_(&i__2, &a[*k + i__ + i__ * a_dim1], &a[min(i__3, *n)+ i__ * + a_dim1], &c__1, &tau[i__]); + ei = a[*k + i__ + i__ * a_dim1]; + a[*k + i__ + i__ * a_dim1] = 1.; + +/* Compute Y(1:n,i) */ + + i__2 = *n - *k - i__ + 1; + dgemv_("No transpose", n, &i__2, &c_b5, &a[(i__ + 1) * a_dim1 + 1], + lda, &a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &y[i__ * + y_dim1 + 1], &c__1); + i__2 = *n - *k - i__ + 1; + i__3 = i__ - 1; + dgemv_("Transpose", &i__2, &i__3, &c_b5, &a[*k + i__ + a_dim1], lda, & + a[*k + i__ + i__ * a_dim1], &c__1, &c_b38, &t[i__ * t_dim1 + + 1], &c__1); + i__2 = i__ - 1; + dgemv_("No transpose", n, &i__2, &c_b4, &y[y_offset], ldy, &t[i__ * + t_dim1 + 1], &c__1, &c_b5, &y[i__ * y_dim1 + 1], &c__1); + dscal_(n, &tau[i__], &y[i__ * y_dim1 + 1], &c__1); + +/* Compute T(1:i,i) */ + + i__2 = i__ - 1; + d__1 = -tau[i__]; + dscal_(&i__2, &d__1, &t[i__ * t_dim1 + 1], &c__1); + i__2 = i__ - 1; + dtrmv_("Upper", "No transpose", "Non-unit", &i__2, &t[t_offset], ldt, + &t[i__ * t_dim1 + 1], &c__1) + ; + t[i__ + i__ * t_dim1] = tau[i__]; + +/* L10: */ + } + a[*k + *nb + *nb * a_dim1] = ei; + + return 0; + +/* End of DLAHRD */ + +} /* dlahrd_ */ |