diff options
| author | shmel1k <[email protected]> | 2022-09-02 12:44:59 +0300 |
|---|---|---|
| committer | shmel1k <[email protected]> | 2022-09-02 12:44:59 +0300 |
| commit | 90d450f74722da7859d6f510a869f6c6908fd12f (patch) | |
| tree | 538c718dedc76cdfe37ad6d01ff250dd930d9278 /contrib/libs/clapack/dgegs.c | |
| parent | 01f64c1ecd0d4ffa9e3a74478335f1745f26cc75 (diff) | |
[] add metering mode to CLI
Diffstat (limited to 'contrib/libs/clapack/dgegs.c')
| -rw-r--r-- | contrib/libs/clapack/dgegs.c | 548 |
1 files changed, 548 insertions, 0 deletions
diff --git a/contrib/libs/clapack/dgegs.c b/contrib/libs/clapack/dgegs.c new file mode 100644 index 00000000000..cb409fbe18b --- /dev/null +++ b/contrib/libs/clapack/dgegs.c @@ -0,0 +1,548 @@ +/* dgegs.f -- translated by f2c (version 20061008). + You must link the resulting object file with libf2c: + on Microsoft Windows system, link with libf2c.lib; + on Linux or Unix systems, link with .../path/to/libf2c.a -lm + or, if you install libf2c.a in a standard place, with -lf2c -lm + -- in that order, at the end of the command line, as in + cc *.o -lf2c -lm + Source for libf2c is in /netlib/f2c/libf2c.zip, e.g., + + http://www.netlib.org/f2c/libf2c.zip +*/ + +#include "f2c.h" +#include "blaswrap.h" + +/* Table of constant values */ + +static integer c__1 = 1; +static integer c_n1 = -1; +static doublereal c_b36 = 0.; +static doublereal c_b37 = 1.; + +/* Subroutine */ int dgegs_(char *jobvsl, char *jobvsr, integer *n, + doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal * + alphar, doublereal *alphai, doublereal *beta, doublereal *vsl, + integer *ldvsl, doublereal *vsr, integer *ldvsr, doublereal *work, + integer *lwork, integer *info) +{ + /* System generated locals */ + integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, + vsr_dim1, vsr_offset, i__1, i__2; + + /* Local variables */ + integer nb, nb1, nb2, nb3, ihi, ilo; + doublereal eps, anrm, bnrm; + integer itau, lopt; + extern logical lsame_(char *, char *); + integer ileft, iinfo, icols; + logical ilvsl; + integer iwork; + logical ilvsr; + integer irows; + extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *, + integer *, doublereal *, doublereal *, integer *, doublereal *, + integer *, integer *), dggbal_(char *, integer *, + doublereal *, integer *, doublereal *, integer *, integer *, + integer *, doublereal *, doublereal *, doublereal *, integer *); + extern doublereal dlamch_(char *), dlange_(char *, integer *, + integer *, doublereal *, integer *, doublereal *); + extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *, + integer *, doublereal *, integer *, doublereal *, integer *, + doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal + *, doublereal *, integer *, integer *, doublereal *, integer *, + integer *); + logical ilascl, ilbscl; + extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *, + integer *, doublereal *, doublereal *, integer *, integer *), + dlacpy_(char *, integer *, integer *, doublereal *, integer *, + doublereal *, integer *); + doublereal safmin; + extern /* Subroutine */ int dlaset_(char *, integer *, integer *, + doublereal *, doublereal *, doublereal *, integer *), + xerbla_(char *, integer *); + extern integer ilaenv_(integer *, char *, char *, integer *, integer *, + integer *, integer *); + doublereal bignum; + extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *, + integer *, integer *, doublereal *, integer *, doublereal *, + integer *, doublereal *, doublereal *, doublereal *, doublereal *, + integer *, doublereal *, integer *, doublereal *, integer *, + integer *); + integer ijobvl, iright, ijobvr; + extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *, + doublereal *, integer *, doublereal *, doublereal *, integer *, + integer *); + doublereal anrmto; + integer lwkmin; + doublereal bnrmto; + extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *, + integer *, doublereal *, integer *, doublereal *, doublereal *, + integer *, doublereal *, integer *, integer *); + doublereal smlnum; + integer lwkopt; + logical lquery; + + +/* -- LAPACK driver routine (version 3.2) -- */ +/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */ +/* November 2006 */ + +/* .. Scalar Arguments .. */ +/* .. */ +/* .. Array Arguments .. */ +/* .. */ + +/* Purpose */ +/* ======= */ + +/* This routine is deprecated and has been replaced by routine DGGES. */ + +/* DGEGS computes the eigenvalues, real Schur form, and, optionally, */ +/* left and or/right Schur vectors of a real matrix pair (A,B). */ +/* Given two square matrices A and B, the generalized real Schur */ +/* factorization has the form */ + +/* A = Q*S*Z**T, B = Q*T*Z**T */ + +/* where Q and Z are orthogonal matrices, T is upper triangular, and S */ +/* is an upper quasi-triangular matrix with 1-by-1 and 2-by-2 diagonal */ +/* blocks, the 2-by-2 blocks corresponding to complex conjugate pairs */ +/* of eigenvalues of (A,B). The columns of Q are the left Schur vectors */ +/* and the columns of Z are the right Schur vectors. */ + +/* If only the eigenvalues of (A,B) are needed, the driver routine */ +/* DGEGV should be used instead. See DGEGV for a description of the */ +/* eigenvalues of the generalized nonsymmetric eigenvalue problem */ +/* (GNEP). */ + +/* Arguments */ +/* ========= */ + +/* JOBVSL (input) CHARACTER*1 */ +/* = 'N': do not compute the left Schur vectors; */ +/* = 'V': compute the left Schur vectors (returned in VSL). */ + +/* JOBVSR (input) CHARACTER*1 */ +/* = 'N': do not compute the right Schur vectors; */ +/* = 'V': compute the right Schur vectors (returned in VSR). */ + +/* N (input) INTEGER */ +/* The order of the matrices A, B, VSL, and VSR. N >= 0. */ + +/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */ +/* On entry, the matrix A. */ +/* On exit, the upper quasi-triangular matrix S from the */ +/* generalized real Schur factorization. */ + +/* LDA (input) INTEGER */ +/* The leading dimension of A. LDA >= max(1,N). */ + +/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */ +/* On entry, the matrix B. */ +/* On exit, the upper triangular matrix T from the generalized */ +/* real Schur factorization. */ + +/* LDB (input) INTEGER */ +/* The leading dimension of B. LDB >= max(1,N). */ + +/* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */ +/* The real parts of each scalar alpha defining an eigenvalue */ +/* of GNEP. */ + +/* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */ +/* The imaginary parts of each scalar alpha defining an */ +/* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */ +/* eigenvalue is real; if positive, then the j-th and (j+1)-st */ +/* eigenvalues are a complex conjugate pair, with */ +/* ALPHAI(j+1) = -ALPHAI(j). */ + +/* BETA (output) DOUBLE PRECISION array, dimension (N) */ +/* The scalars beta that define the eigenvalues of GNEP. */ +/* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */ +/* beta = BETA(j) represent the j-th eigenvalue of the matrix */ +/* pair (A,B), in one of the forms lambda = alpha/beta or */ +/* mu = beta/alpha. Since either lambda or mu may overflow, */ +/* they should not, in general, be computed. */ + +/* VSL (output) DOUBLE PRECISION array, dimension (LDVSL,N) */ +/* If JOBVSL = 'V', the matrix of left Schur vectors Q. */ +/* Not referenced if JOBVSL = 'N'. */ + +/* LDVSL (input) INTEGER */ +/* The leading dimension of the matrix VSL. LDVSL >=1, and */ +/* if JOBVSL = 'V', LDVSL >= N. */ + +/* VSR (output) DOUBLE PRECISION array, dimension (LDVSR,N) */ +/* If JOBVSR = 'V', the matrix of right Schur vectors Z. */ +/* Not referenced if JOBVSR = 'N'. */ + +/* LDVSR (input) INTEGER */ +/* The leading dimension of the matrix VSR. LDVSR >= 1, and */ +/* if JOBVSR = 'V', LDVSR >= N. */ + +/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */ +/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */ + +/* LWORK (input) INTEGER */ +/* The dimension of the array WORK. LWORK >= max(1,4*N). */ +/* For good performance, LWORK must generally be larger. */ +/* To compute the optimal value of LWORK, call ILAENV to get */ +/* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: */ +/* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR */ +/* The optimal LWORK is 2*N + N*(NB+1). */ + +/* If LWORK = -1, then a workspace query is assumed; the routine */ +/* only calculates the optimal size of the WORK array, returns */ +/* this value as the first entry of the WORK array, and no error */ +/* message related to LWORK is issued by XERBLA. */ + +/* INFO (output) INTEGER */ +/* = 0: successful exit */ +/* < 0: if INFO = -i, the i-th argument had an illegal value. */ +/* = 1,...,N: */ +/* The QZ iteration failed. (A,B) are not in Schur */ +/* form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */ +/* be correct for j=INFO+1,...,N. */ +/* > N: errors that usually indicate LAPACK problems: */ +/* =N+1: error return from DGGBAL */ +/* =N+2: error return from DGEQRF */ +/* =N+3: error return from DORMQR */ +/* =N+4: error return from DORGQR */ +/* =N+5: error return from DGGHRD */ +/* =N+6: error return from DHGEQZ (other than failed */ +/* iteration) */ +/* =N+7: error return from DGGBAK (computing VSL) */ +/* =N+8: error return from DGGBAK (computing VSR) */ +/* =N+9: error return from DLASCL (various places) */ + +/* ===================================================================== */ + +/* .. Parameters .. */ +/* .. */ +/* .. Local Scalars .. */ +/* .. */ +/* .. External Subroutines .. */ +/* .. */ +/* .. External Functions .. */ +/* .. */ +/* .. Intrinsic Functions .. */ +/* .. */ +/* .. Executable Statements .. */ + +/* Decode the input arguments */ + + /* Parameter adjustments */ + a_dim1 = *lda; + a_offset = 1 + a_dim1; + a -= a_offset; + b_dim1 = *ldb; + b_offset = 1 + b_dim1; + b -= b_offset; + --alphar; + --alphai; + --beta; + vsl_dim1 = *ldvsl; + vsl_offset = 1 + vsl_dim1; + vsl -= vsl_offset; + vsr_dim1 = *ldvsr; + vsr_offset = 1 + vsr_dim1; + vsr -= vsr_offset; + --work; + + /* Function Body */ + if (lsame_(jobvsl, "N")) { + ijobvl = 1; + ilvsl = FALSE_; + } else if (lsame_(jobvsl, "V")) { + ijobvl = 2; + ilvsl = TRUE_; + } else { + ijobvl = -1; + ilvsl = FALSE_; + } + + if (lsame_(jobvsr, "N")) { + ijobvr = 1; + ilvsr = FALSE_; + } else if (lsame_(jobvsr, "V")) { + ijobvr = 2; + ilvsr = TRUE_; + } else { + ijobvr = -1; + ilvsr = FALSE_; + } + +/* Test the input arguments */ + +/* Computing MAX */ + i__1 = *n << 2; + lwkmin = max(i__1,1); + lwkopt = lwkmin; + work[1] = (doublereal) lwkopt; + lquery = *lwork == -1; + *info = 0; + if (ijobvl <= 0) { + *info = -1; + } else if (ijobvr <= 0) { + *info = -2; + } else if (*n < 0) { + *info = -3; + } else if (*lda < max(1,*n)) { + *info = -5; + } else if (*ldb < max(1,*n)) { + *info = -7; + } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) { + *info = -12; + } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) { + *info = -14; + } else if (*lwork < lwkmin && ! lquery) { + *info = -16; + } + + if (*info == 0) { + nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1); + nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1); + nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1); +/* Computing MAX */ + i__1 = max(nb1,nb2); + nb = max(i__1,nb3); + lopt = (*n << 1) + *n * (nb + 1); + work[1] = (doublereal) lopt; + } + + if (*info != 0) { + i__1 = -(*info); + xerbla_("DGEGS ", &i__1); + return 0; + } else if (lquery) { + return 0; + } + +/* Quick return if possible */ + + if (*n == 0) { + return 0; + } + +/* Get machine constants */ + + eps = dlamch_("E") * dlamch_("B"); + safmin = dlamch_("S"); + smlnum = *n * safmin / eps; + bignum = 1. / smlnum; + +/* Scale A if max element outside range [SMLNUM,BIGNUM] */ + + anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]); + ilascl = FALSE_; + if (anrm > 0. && anrm < smlnum) { + anrmto = smlnum; + ilascl = TRUE_; + } else if (anrm > bignum) { + anrmto = bignum; + ilascl = TRUE_; + } + + if (ilascl) { + dlascl_("G", &c_n1, &c_n1, &anrm, &anrmto, n, n, &a[a_offset], lda, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + } + +/* Scale B if max element outside range [SMLNUM,BIGNUM] */ + + bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]); + ilbscl = FALSE_; + if (bnrm > 0. && bnrm < smlnum) { + bnrmto = smlnum; + ilbscl = TRUE_; + } else if (bnrm > bignum) { + bnrmto = bignum; + ilbscl = TRUE_; + } + + if (ilbscl) { + dlascl_("G", &c_n1, &c_n1, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + } + +/* Permute the matrix to make it more nearly triangular */ +/* Workspace layout: (2*N words -- "work..." not actually used) */ +/* left_permutation, right_permutation, work... */ + + ileft = 1; + iright = *n + 1; + iwork = iright + *n; + dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[ + ileft], &work[iright], &work[iwork], &iinfo); + if (iinfo != 0) { + *info = *n + 1; + goto L10; + } + +/* Reduce B to triangular form, and initialize VSL and/or VSR */ +/* Workspace layout: ("work..." must have at least N words) */ +/* left_permutation, right_permutation, tau, work... */ + + irows = ihi + 1 - ilo; + icols = *n + 1 - ilo; + itau = iwork; + iwork = itau + irows; + i__1 = *lwork + 1 - iwork; + dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[ + iwork], &i__1, &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 2; + goto L10; + } + + i__1 = *lwork + 1 - iwork; + dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, & + work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, & + iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 3; + goto L10; + } + + if (ilvsl) { + dlaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl); + i__1 = irows - 1; + i__2 = irows - 1; + dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[ilo + + 1 + ilo * vsl_dim1], ldvsl); + i__1 = *lwork + 1 - iwork; + dorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, & + work[itau], &work[iwork], &i__1, &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + *info = *n + 4; + goto L10; + } + } + + if (ilvsr) { + dlaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr); + } + +/* Reduce to generalized Hessenberg form */ + + dgghrd_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], + ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &iinfo); + if (iinfo != 0) { + *info = *n + 5; + goto L10; + } + +/* Perform QZ algorithm, computing Schur vectors if desired */ +/* Workspace layout: ("work..." must have at least 1 word) */ +/* left_permutation, right_permutation, work... */ + + iwork = itau; + i__1 = *lwork + 1 - iwork; + dhgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[ + b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset] +, ldvsl, &vsr[vsr_offset], ldvsr, &work[iwork], &i__1, &iinfo); + if (iinfo >= 0) { +/* Computing MAX */ + i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1; + lwkopt = max(i__1,i__2); + } + if (iinfo != 0) { + if (iinfo > 0 && iinfo <= *n) { + *info = iinfo; + } else if (iinfo > *n && iinfo <= *n << 1) { + *info = iinfo - *n; + } else { + *info = *n + 6; + } + goto L10; + } + +/* Apply permutation to VSL and VSR */ + + if (ilvsl) { + dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[ + vsl_offset], ldvsl, &iinfo); + if (iinfo != 0) { + *info = *n + 7; + goto L10; + } + } + if (ilvsr) { + dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[ + vsr_offset], ldvsr, &iinfo); + if (iinfo != 0) { + *info = *n + 8; + goto L10; + } + } + +/* Undo scaling */ + + if (ilascl) { + dlascl_("H", &c_n1, &c_n1, &anrmto, &anrm, n, n, &a[a_offset], lda, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphar[1], n, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + dlascl_("G", &c_n1, &c_n1, &anrmto, &anrm, n, &c__1, &alphai[1], n, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + } + + if (ilbscl) { + dlascl_("U", &c_n1, &c_n1, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + dlascl_("G", &c_n1, &c_n1, &bnrmto, &bnrm, n, &c__1, &beta[1], n, & + iinfo); + if (iinfo != 0) { + *info = *n + 9; + return 0; + } + } + +L10: + work[1] = (doublereal) lwkopt; + + return 0; + +/* End of DGEGS */ + +} /* dgegs_ */ |
